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Predicting ambulance demand accurately on a fine resolution in time (e.g., ev-

ery hour) and space (e.g., every 1 km2) is critical for staff, fleet management

and dynamic deployment. There are several challenges: although the dataset

is typically large-scale, the number of observations per time period and local-

ity is almost always zero. The demand arises from complex urban geography

and exhibits complex spatio-temporal patterns, both of which we need to cap-

ture and exploit. We propose three new methods to address these challenges,

and provide spatio-temporal predictions for Toronto, Canada and Melbourne,

Australia.

First, we introduce a Bayesian time-varying Gaussian mixture model. We fix

the mixture component distributions across time, while representing the spatio-

temporal dynamics through time-varying mixture weights. We constrain the

weights to capture weekly seasonality, and apply autoregressive priors on them

to model location-specific patterns.

Second, we propose a spatio-temporal kernel density estimator. We weight

the spatial kernel of each historical observation by its informativeness to the

current predictive task. We construct spatio-temporal weight functions to in-

corporate various temporal and spatial patterns in ambulance demand.

Third, we propose a kernel warping method to incorporate complex spatial

features. For each prediction we build a kernel density estimator on a sparse set

of most similar data (labeled data), and warp these kernels to a larger set of past



data regardless of labels (point cloud). The point cloud represents boundaries,

neighborhoods, and road networks. Kernel warping can be interpreted as a

regularization and a Bayesian prior imposed for spatial features.

We show that these methods give much higher statistical predictive accu-

racy, and reduce error in predicting EMS operational performance by as much

as two-thirds compared to the industry practice.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Motivation

A primary goal of emergency medical services (EMS) is often to minimize re-

sponse times to emergencies while managing operational costs. Sophisticated

operations research methods have been developed to optimize many manage-

ment decisions, such as locations of bases, fleet size, staffing, and dynamic de-

ployment strategies [79, 33, 38]. However, these methods require ambulance

demand estimates as inputs, and their performances rely critically on the accu-

racy of these demand estimates. Demand predictions that are too high lead to

over-staffing, unnecessary vehicles and high cost, while estimates that are too

low result in slow response times to potentially life-threatening emergencies.

In practice, two types of demand estimates are of interest: aggregate tempo-

ral demand, i.e., total expected demand volume, and spatio-temporal demand,

or the spatial distribution of demand over time. Temporal aggregate demand

estimates inform effective staffing and fleet planning; spatio-temporal estimates

are critical for choosing base locations and dynamic deployment strategies.

These estimates are ideally needed at high temporal resolution (e.g., four-hour

work shifts). Similarly, spatio-temporal estimates at fine spatial granularities

are required for accurate dynamic deployment. The industry typically predicts

for every hour and every 1 km2 region.

1.1.2 Challenges

There are several typical challenges to predicting ambulance demand.
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• Ambulance demand is often exceedingly sparse at the temporal and spa-

tial resolution required for prediction. For example,Toronto receives only

23 calls per hour on average; 96% of the 1-km2 spatial regions have zero

calls in any hour. Similarly, Melbourne only receives 37 calls per hour;

99.6% of the 1-km2 regions receive no calls in any hour.

• This demand arises from complex urban geography. The city boundary

is often highly irregular. Ambulance demand can be very high (coastal

and downtown) or very low (suburbs) along the boundary. Within this

boundary, demand follows closely the city’s infrastructure and terrain;

there might be high demand along central highways and zero demand

within an internal lake. High resolutions covariates of these features are

often not readily available.

• There are notable spatial and temporal patterns in ambulance demand.

Usually, weekly seasonality is prominent [21, 50]; the industry relies heav-

ily on this seasonality to make predictions. In the case of Toronto and

Melbourne, we have noted stronger weekly, daily seasonalities and short-

term serial dependence at densely-populated regions than other locations

[98, 95, 97].

• Ambulance demand data for large cities is often large-scale. Toronto re-

ceives about 200,000 calls per year, and Melbourne receives more than

330,000. This presents computational challenges, especially since predic-

tions are needed very frequently.

It is particularly difficult to simultaneously resolve these challenges. Overcom-

ing sparsity requires considerable smoothing, while capturing complex spatio-

temporal patterns requires fine-resolution modeling. At high granularities, data

sparsity makes it difficult to detect spatio-temporal characteristics accurately. At

low granularities, differences across regions and times are not sufficiently cap-

tured for optimal ambulance planning.

2



1.1.3 Industry methods

The current industry practice for predicting ambulance demand often uses a

simple averaging formula. Demand in a 1 km2 spatial region over an hour is

typically predicted by averaging a small number of historical counts, from the

same spatial region and over the corresponding hours from previous weeks or

years [33]. In current practice, Toronto EMS averages four historical counts in

the same hour of the year over the past four years, while the EMS of Charlotte-

Mecklenburg, North Carolina averages twenty historical counts in the same

hour of the preceding four weeks for the past five years (MEDIC method) [70].

Averaging so few historical counts, which are mostly zeros, produces highly

noisy and flickering predictions, resulting in haphazard and inefficient deploy-

ment. Such methods are also sensitive to how the spatial domains are parti-

tioned [33].

1.1.4 Overview

The remainder of this dissertation is organized as follows. We survey relevant

literature in Section 1.2 and introduce the data in Section 1.3. In Chapter 2,

we present a new time-varying Gaussian mixture model for predicting spatio-

temporal ambulance demand. We describe the model (2.1), computation of the

model (2.2), additional model refinements (2.3), results on Toronto ambulance

demand data (2.4), and model performance (2.5). In Chapter 3, we propose

a spatio-temporal weighted kernel density estimation method for fast and ac-

curate spatio-temporal ambulance demand prediction. We introduce the model

(3.1), its computation (3.2), and results on Toronto ambulance demand data (3.3).

In Chapter 4, we propose a kernel warping method to predict spatio-temporal

ambulance demand on complex spatial domains. We construct the kernel warp-

ing model in 4.1, and show the results on Melbourne ambulance demand data

in 4.2. Chapter 5 concludes and discusses these methods, and look forward to

future research in ambulance demand prediction and in general, data mining in
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healthcare, operations and business.

1.2 Literature

This section surveys the relevant literature. We review some current ap-

proaches in predicting ambulance demand in 1.2.1. Then we introduce literature

on spatio-temporal Poisson point process ( 1.2.2), Bayesian mixture modeling

(1.2.3), and kernel density estimation (1.2.4). We review literature on manifold

learning and kernel warping (1.2.5).

1.2.1 Ambulance demand prediction

Several studies have modeled aggregate ambulance demand as a temporal pro-

cess. Channouf et al model daily total ambulance demand in Calgary, Canada

using Gaussian autoregressive moving-average models with seasonality and

special day effects (day-of-week, month-of-year, fixed day-month interactions)

[21]. Hourly demand is then obtained by using hour-of-day effects and assign-

ing a multinomial distribution, conditional on the daily total. Matteson et al

directly model hourly call arrival rates in Toronto, Canada by combining a dy-

namic latent factor structure with integer time series models [50]. Covariate

information is captured as constraints on the factor loadings, and smoothing

splines are applied to the factor levels and loadings. Other aggregate demand

studies for ambulance demand or the closely related problem of call center de-

mand have also considered dynamic harmonic regression [86], spectral analysis

[88], fixed-effects, mixed-effects and bivariate models [2, 39], Bayesian multi-

plicative models [90], Singular Value Decomposition [71], and Cox processes

[72].

While these temporal estimates inform staffing and fleet size, spatio-

temporal demand estimates are critical for selection of base locations and for

dynamic deployment planning, but have received far less attention. Setzler,
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Saydam and Park use artificial neural networks (ANN) on discretized spatial

and temporal domains, and compare it to industry practice [70]. ANN is supe-

rior at low spatial granularity, but both methods produce noisy results at high

spatial resolutions.

1.2.2 Spatio-temporal Poisson point process

Spatial point processes have frequently been modeled using non-homogeneous

Poisson processes (NHPP) [23, 55, 40]. In particular, Bayesian semi-parametric

mixture modeling has been proposed to account for heterogeneity in the spatial

intensity function. Examples include Dirichlet processes with beta or Gaussian

densities [47, 42], and finite Gaussian mixture models with a fixed number of

components [20]. However, EMS data is sparse at the desired temporal gran-

ularity for estimation in this industry; the average number of observations in

each two-hour period is only 45. This makes it difficult to estimate an accurate

spatial structure at each time period.

Recently, dependent Dirichlet processes have been proposed to model corre-

lated spatial densities across discrete time [80, 81, 24, 82]. These methods allow

the stick-breaking weights of the Dirichlet process to evolve in an autoregressive

manner, but necessitates a simple first-order dependence structure common to

all components. For EMS applications, it is essential to capture a much more

complex set of temporal dynamics, including short-term serial dependence as

well as daily and weekly seasonalities. Moreover, some of these dynamics vary

from location to location. To consider only the first-order dependence, and en-

force it across the entire spatial domain may be very limiting. On the other hand,

extending the dependent Dirichlet processes to include higher-order serial de-

pendence and multiple seasonalities is not straightforward. It is also not easy

to make these dynamics location-specific. Discretizing the spatial domain into

sub-regions and imposing a different autoregressive parameter on each region

would add substantial computational complexity, and is sensitive to spatial par-

titioning. Furthermore, given the large amount of data and the large number of
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time periods considered, using an infinite-dimensional Dirichlet process can be

computationally challenging.

All the methods we propose adopt the NHPP framework and aim at captur-

ing complex spatial and temporal patterns in flexible and efficient ways.

1.2.3 Bayesian mixture modeling

Mixture models provide a convenient framework to model data that originates

from different groups or cannot be modeled well by a single parametric distri-

bution. Using a fixed number of components, we can carry out Bayesian esti-

mation of mixture models via Gibbs sampling and data augmentation [83]. One

major computational challenge is lack of good convergence and mixing [49].

Components with small number of observations and small variances produce

very concentrated modes, and there is very low probability of escaping from

these modes.

Using a variable number of components mitigates this difficulty to some ex-

tent, and offers even more flexibility in modeling. One popular approach is

Richardson and Green’s reversible jump Markov chain Monte Carlo (RJMCMC)

[37, 64]. In RJMCMC, one periodically proposes a move to a different model and

rejects that proposal with the appropriate probability to ensure stationarity of

the process. Three types of moves are possible: birth-and-death of components,

split-and-combine of components, and fixed-component update.

Stephens proposes an alternative scheme by constructing a continuous

time birth-and-death Markov chain Monte Carlo (BDMCMC). Each iteration

of Stephens’ BDMCMC is a two-stage process. In the first stage, new compo-

nents are “born” or existing ones “die” in a continuous time framework. New

components are born in a constant rate; parameters of new-born components

are sampled from their respective priors. Components die at a rate so as to

maintain sampling stationarity; they die according to their relative implausi-

bility as computed from the likelihood of observations and priors. After each
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birth or death, the mixture weights are scaled proportionally to maintain sum-

to-one invariance within each time period. After a fixed duration of births and

deaths, in the second stage, the number of components are fixed and distribu-

tional parameters and mixture weights of the components are updated using

data augmentation, Gibbs sampling or Metropolis-Hastings.

Both RJMCMC and BDMCMC facilitate better mixing and convergence of

parameters. Allowing the dimension of the mixture model to vary helps mixing

of parameters within each configuration. RJMCMC and BDMCMC are similar

frameworks; one can construct a sequence of RJMCMC samplers that converges

to BDMCMC, and vice versa [19]. Although BDMCMC is more computationally

expensive in each iteration than RJMCMC, it is shown to have a greater ability

to move to very unlikely spaces, since births are always accepted regardless of

data. This leads to slightly improved mixing of all parameters [78, 19]. BDM-

CMC has been used for spatial and spatio-temporal pattern recognition [53, 52].

These studies have also suggested choices for priors for mixture model

Bayesian estimation. Richardson and Green define a set of independent, weakly

informative and hierarchical priors conjugate to univariate Gaussian mixture

models [64], which Stephens extends to the multivariate case [78].

The method we propose in Chapter 2 uses Bayesian mixture modeling and

BDMCMC.

1.2.4 Spatio-temporal kernel density estimation

Kernel density estimation (KDE) is a powerful tool for non-parametric density

estimation in spatio-temporal data. It has been widely applied to visualize or

forecast spatio-temporal crime incidence [16, 56], disease spread [93, 91], prod-

uct demand [41], and data streams [1, 59]. It allows for rapid visualization and

identification of hotspots and their evolutions in time and space. In most cases,

the time dimension is treated differently from the space dimension(s). The most

traditional approach is to build a separate spatial KDE for each discrete time pe-
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riod. However, this approach may result in uneven subset size and sparse sub-

sets with too little data for accurate density estimates. Recent studies assume a

multiplicative orthogonal relationship between the time and space dimensions.

For example, Aggarwal multiplies a spatial kernel with a linear function in time

[1]. Studies such as [16, 56, 93] multiply a spatial kernel and a temporal ker-

nel with different bandwidths and kernel functions for the two kernels. The

method we proposed in Chapter 3 is an extension of these multiplicative spatio-

temporal KDE methods [95].

We can select the bandwidth of KDE via the plug-in method [89] or

smoothed cross-validation [44, 26]. We typically use the Gaussian kernel, or for

additional computational savings, the Epanechnikov kernel with bounded sup-

port. There are many fast computational methods for KDE, including KD-trees

[10], ball trees [58], dual trees [36] and statistical regular pavings [68]. When

data show large variation in density, using one fixed bandwidth may not be

optimal [75, 17, 69]. A bandwidth too large wipes out local features where we

have sufficient data; a bandwidth too small leads to spurious peaks where data

is sparse. Ambulance demand varies substantially in space (downtown vs. sub-

urbs) and time (midnight vs. rush hours); we may be motivated to consider a

spatial- and/or time-varying bandwidth.

The methods we propose in Chapter 3 and 4 are extensions on this type of

spatio-temporal KDEs.

1.2.5 Kernel warping

Few studies have focused on modeling spatial or spatio-temporal point pro-

cesses on complex spatial structures. Most studies assume a boundary defined

a priori (either polygon or pixelated). If not, ad hoc methods based on the con-

vex hull of all observed points are typically used [65, 5]. This invariably results

in a convex boundary that may be inaccurate where data is sparse. Even with

a boundary optimally defined, few methods are equipped to handle complex
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boundary features. Ramsey proposes a finite window smoother with known

boundary conditions computed using an expensive finite element approach

[60]. Building on that, Wood, Bravington and Hedley model the boundary con-

dition as a loop of wire and the point process as a soap film suspended from

the boundary wire [92]. They represent this smoother as a penalized basis, com-

pute it via multi-grid, and select smoothness via generalized cross-validation.

They acknowledge the lack of an elegant solution when the boundary condi-

tions are unknown. Apart from boundary, other geographical characteristics

are rarely incorporated in modeling. In Chapter 4, we propose a method that

can efficiently capture and exploit a wide range of spatial characteristics. We

draw from theory and methods developed in manifold learning.

Manifold learning, a branch of machine learning, is concerned with learning

and exploiting the underlying structures of data. The assumption is that data in

a high-dimensional space resides on or near a lower-dimensional sub-manifold.

In practice, we do not have access to this sub-manifold, but we can approxi-

mate it from a point cloud, i.e., a mass of historical data. The most common

method is to construct an adjacency graph of this point cloud and make use of

the properties and structures of this graph. This idea has led to many popular

learning methods, including isomap [84], local linear embedding [67], Hessian

eigenmaps [25], and Laplacian eigenmaps [7] (see [87] for some review). These

methods have been initially designed for data representation or visualization,

but have been adapted for semi-supervised classification [8, 99, 94], and cluster-

ing [57, 73].

In particular, a variant of Laplacian eigenmaps, kernel warping, has been

proposed for semi-supervised classification [77, 8, 76, 9]. Using a small number

of labeled data and a larger number of point cloud data (labeled and unlabeled),

the method classifies new examples by constructing kernels on the labeled data

that warp to the geometry of the point cloud. This geometry is represented by

the adjacency graph of the point cloud. Smoothing orthogonal to this geome-

try is penalized heavily, whereas smoothing along this geometry is not. This

method is designed for high-dimensional classification, and has good perfor-
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mance on text and image data.

1.3 Data

We use ambulance demand data from Toronto, Canada and Melbourne, Aus-

tralia. The Toronto data is from Toronto Emergency Medical Services, for years

2007 and 2008. The data consist of 391, 296 priority emergency events received

by Toronto EMS for which an ambulance was dispatched. Each record contains

the time and the location to which the ambulance was dispatched. This includes

some calls not requiring lights-and-sirens response, but does not include sched-

uled patient transfers. We include only the first event in our analysis when

multiple responses are received for the same event; explanatory analysis did

not reveal any spatial or temporal pattern for these cases, and we treat them

as a single ambulance dispatch. We have removed all redundant calls and calls

with no locations. There was no call received for more than two hours on March

10, 2007 due to a recording system malfunction, and we have also removed all

calls from that day. These removals totaled less than 2% of the data.

Figure 1.1 (a) shows all 15, 393 observations from February 2007. Figure 1.1

(b) shows all 31 observations from 8-10 am February 1 2007. Data is consider-

ably sparse at the resolution of 2-hour periods; the average number of observa-

tions per 2-hour period is only 45.

Figure 1.2 explores some temporal characteristics at various locations in

Toronto. For Figure 1.2 (a), we compute the proportions of observations that

arise from the downtown region (outlined by the rectangle in Figure 1.1 (a)) out

of all observations for each 2-hour period from February 2007. We analyze the

autocorrelation of this time series of proportions. At downtown, we observe

evidence for weekly (84 time periods) and daily (12 time periods) seasonality

as well as low-order autocorrelation (dashed lines represent approximate 95%

point-wise confidence intervals). For Figure 1.2 (b), we repeat this procedure at

another locality in Toronto, but we only found evidence of weekly seasonality.
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Figure 1.1: Left: all 15, 393 observations in the training data (February
2007), with downtown subregion outlined by a rectangle.
Right: all 31 observations from 8-10 am February 1 2007.

In general, we consistently found weekly seasonality, but daily seasonality and

low-order autocorrelation tend to be stronger at locations such as downtown

or dense residential regions, and weaker at others such as dispersed residential

areas or large parks.

Figure 1.2: Left: Time series across 2-hour periods (top) and autocorrela-
tion function (bottom) of the proportions of observations aris-
ing from the downtown Toronto (enclosed in rectangle in Fig-
ure 1.1 (a)). Weekly, daily seasonality, and low-order autocor-
relation are observed. Right: Time series across 2-hour peri-
ods (top) and autocorrelation function (bottom) of the propor-
tions of observations arising from another region from Toronto.
Only weekly seasonality is observed.
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We also use ambulance demand data from Melbourne Emergency Medical

Services, for years 2011 and 2012. Again, each observation contains the time

and the location to which the ambulance was dispatched. There are altogether

696, 975 observations. In Figure 1.3 (a), we show in gray the locations of 696,975

demand incidents for these two years and in black those of 38 demand incidents

for a typical 1-hour period. Comparing with the map of Melbourne in Figure

1.3 (b) (map data: Google [35]), we observe a highly complex spatial boundary

as Melbourne encloses a large bay to its southwest. Demand is high near the

bay, but low on the outskirt suburban areas. Demand is visibly higher at small

satellite suburban neighborhoods and along major highways radiating out from

the city center to the suburbs. There is lack of demand due to several reservoirs

and a national park to the west and northwest. Consistent with typical patterns,

the demand exhibits strong weekly seasonality.

Figure 1.3: Left: spatial locations of all 696, 975 Melbourne ambulance de-
mand incidents from years 2011 - 2012 (in gray), and 38 de-
mand incidents for a typical 1-hour period (in black). We ob-
serve complex boundary and geographical features (e.g., high-
ways, roads, satellite suburbs). Right: map of Melbourne [35].
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CHAPTER 2

TIME-VARYING GAUSSIAN MIXTURE MODELS

We propose in this chapter a novel specification of a time-varying finite mixture

model. We assume a common set of mixture components across time periods, to

promote effective learning of the spatial structure across time, and to overcome

sparsity within each period. We allow the mixture weights to vary over time,

capturing temporal patterns and dynamics in the spatial density by imposing

seasonal constraints and applying autoregressive priors on the mixture weights.

The number of mixture components may be fixed or estimated via birth-and-

death Markov chain Monte Carlo [78]. We compare the proposed method with

a current industry practice, as well as a proposed extension of this practice. The

proposed method is shown to have highest statistical predictive accuracy, as

well as the least error in measuring operational performance.

Material from this chapter was accepted in August 2014 by the Journal of the

American Statistical Association in an article titled “A Spatio-Temporal Point

Process Model for Ambulance Demand”, authored by Zhengyi Zhou, David S.

Matteson, Dawn B. Woodard, Shane G. Henderson, and Athanasios C. Micheas

[98]. This paper was the winner of ASA health policy statistics section student

paper competition (2014) and a finalist of INFORMS data mining section stu-

dent paper award (2013). Material from this chapter was also accepted in May

2014 as a chapter titled “Temporal and spatio-temporal models for ambulance

demand” authored by Zhengyi Zhou and David S. Matteson. This is a chapter

of the edited volume “Healthcare Data Analytics, Wiley Series in Operations

Research and Management Science” edited by H. Yang and E.K. Lee [97].

We define the general setting and propose a spatio-temporal mixture model

using a fixed number of components in Section 2.1. We discuss the computation

in Section 2.2. We further extend the mixture model in Section 2.3 to assume

an unknown number of components (Section 2.3.1), include covariates (Section

2.3.2), and incorporate Toronto’s spatial boundary (Section 2.3.3). We show the

results of estimating ambulance demand in Toronto in Section 2.4, and assess the
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performance and validity of the proposed approach in Section 2.5. We conclude

in Section 2.6.

2.1 Model

We investigate Toronto’s ambulance demand on a continuous spatial domain

S ⊆ R2 and a discretized temporal domain T = {1, 2, . . . ,T } of two-hour inter-

vals (T = 336 for 28 days in February 2007). In Section 2.3.3 we define S to

lie within the boundary of Toronto. The proposed method trivially extends to

other spatial domains.

Let st,i denote the spatial location of the ith ambulance demand event occur-

ring in the tth time period, for i ∈ {1, . . . , nt}. We assume that the set of spatial lo-

cations in each time period independently follows a non-homogeneous Poisson

point process over Swith positive integrable intensity function λt. The intensity

function for each period t can be decomposed as

λt(s) = δt ft(s), (2.1)

for s ∈ S, in which δt =
∫
S
λt(s) ds is the aggregate demand intensity, or total

call volume, for period t, and ft(s) is the spatial density of demand in period t,

i.e., ft(s) > 0 for s ∈ S and
∫
S

ft(s) ds = 1. Then we have nt|λt ∼ Poisson(δt) and

st,i|λt, nt
iid
∼ ft(s), for i ∈ {1, . . . , nt}. Many prior studies propose sophisticated

methods for estimating {δt}. Here, we focus on estimating { ft(s)}, which has

received little consideration in the literature.

The proposed model is constructed in three steps. We first introduce in Sec-

tion 2.1.1 the general framework of mixture models with common component

distributions across time. We add constraints on the mixture weights in Section

2.1.2 to describe weekly seasonality. We also place autoregressive priors on the

mixture weights to capture location-specific dependencies in Section 2.1.3. For

now, we fix the number of mixture components K; estimation of K is incorpo-
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rated in Section 2.3.1.

2.1.1 Gaussian mixture model

We consider a bivariate Gaussian mixture model in which the component dis-

tributions are common through time, while mixture weights change over time.

Fixing the component distributions allows for information sharing across time

to build an accurate spatial structure, because each time period typically has

few observations. It is also natural in this application, which has established

hotspots such as downtown, residential areas and central traffic routes. Letting

the mixture weights vary across time enables us to capture dynamics in pop-

ulation movements and actions at different locations and times. The proposed

methods can be trivially extended to other distributional choices such as a mix-

ture of bivariate Student’s t distributions. For any t ∈ T , we model the spatial

distribution by a K-component Gaussian mixture

ft(s; {pt, j}, {µ j}, {Σ j}) =

K∑
j=1

pt, j φ(s;µ j,Σ j), ∀ s ∈ S, (2.2)

in which φ is the bivariate Gaussian density, with mean µ j and covariance ma-

trix Σ j, for j ∈ {1, . . . ,K}. The mixture weights are {pt, j}, satisfying pt, j ≥ 0 and∑K
j=1 pt, j = 1 for all t and j. In this specification, the number of components

K is assumed fixed across time. However, components can be period-specific

when their weights are 0 in all other periods. The component means and co-

variances are also the same in all time periods; only the mixture weights are

time-dependent.

2.1.2 Constraints for seasonality

We observe weekly seasonality in ambulance demand across the spatial domain

(Section 1.3); previous research has also confirmed that EMS total call counts
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vary greatly with time of the day and day of the week, but change little from

week to week [21, 50]. We represent this weekly seasonality by constraining all

time periods with the same position within a week (e.g., all periods correspond-

ing to Monday 8 - 10 am) to have common mixture weights.

Let B ∈ N (B � T ) denote a time block, corresponding to the desired cycle

length. In this application, B = 84, the number of 2-hour periods in a week.

Each t ∈ T is matched to the value of b ∈ {1, . . . , B} such that b mod B = t mod B.

We modify Equation (2.2) to

ft(s; {pt, j}, {µ j}, {Σ j}) = fb(s; {pb, j}, {µ j}, {Σ j}) =

K∑
j=1

pb, j φ(s;µ j,Σ j), (2.3)

so that all periods with the same position within the cycle have the same set of

mixture weights.

The usefulness of such constraints on mixture weights is not limited to rep-

resenting seasonality. We can also exempt special times, such as holidays, from

seasonality constraints, or combine consecutive time periods with similar char-

acteristics, such as rush hours or midnight hours.

2.1.3 Autoregressive priors

We also observe that EMS demand exhibits low-order serial dependence and

daily seasonality whose strengths vary with locations (Section 1.3). We may

capture this in the proposed mixture model by placing a separate condition-

ally autoregressive (CAR) prior on each series of mixture weights, i.e., {pb, j}
B
b=1

for each j in Equation (2.3). CAR priors are widely used in spatial analysis to

encourage similar parameter estimates at neighboring locations [13, 6], and in

temporal analysis to smooth parameter estimates at adjacent times [12, 46, 45].

With such priors, we can represent a rich set of dependence structures, in-

cluding complex seasonality and high-order dependence structures, which may
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be especially helpful for analyzing temporal patterns across fine time scales.

We can also use unique specification and parameters for each mixture weight,

allowing us to detect location-specific temporal patterns. These autoregres-

sive priors also create smoothing, or shrinkage, of the estimated spatial den-

sity across discrete time periods, which is desirable since the spatial density is

typically believed to vary smoothly across time.

The mixture weights, pb, j, are subject to non-negativity and sum-to-unity

constraints; placing autoregressive priors and manipulating them would re-

quire special attention. Instead, we transform them into an unconstrained

parametrization via the multinomial logit transformation (also used in [54])

πb,r = log

 pb,r

1 −
∑K−1

j=1 pb, j

 , r ∈ {1, . . . ,K − 1}, b ∈ {1, . . . , B}, (2.4)

with the following inverse transformation

pb, j =
exp{πb, j}

1 +
∑K−1

r=1 exp{πb,r}
, j = 1, . . . ,K − 1, and pb,K =

1
1 +

∑K−1
r=1 exp{πb,r}

.

We then specify autoregressive priors on the transformed weights {πb,r}. For this

application, we apply the CAR priors to capture first-order autocorrelation and

daily seasonality.

We assume that the de-meaned transformed weights from any time period

depend most closely on those from four other time periods: immediately be-

fore and after (to represent short-term serial dependence), and exactly one day

before and after (to capture daily seasonality). We impose the following priors

πb,r|π−b,r ∼ N
(
cr + ρr

[
(πb−1,r − cr) + (πb+1,r − cr) + (πb−d,r − cr) + (πb+d,r − cr)

]
, ν2

r

)
,

cr ∼ N(0, 104)

ρr ∼ U(0, 0.25)

ν2
r ∼ U(0, 104), (2.5)
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for r ∈ {1, . . . ,K−1} and b ∈ {1, . . . , B}, in whichπ−b,r = (π1,r, . . . , πb−1,r, πb+1,r, . . . , πB,r)′,

and d is the number of time periods in a day (d = 12 in this case). Since every

week has the same sequence of spatial densities, we define priors of {πb,r} circu-

larly in time, such that the last time period is joined with the first time period. In

the prior specification of {πb,r}, the CAR parameters ρr determine the persistence

in the transformed mixture weights over time, while the intercepts cr determine

their mean levels, and the variances ν2
r determine the conditional variability.

These three parameters are component-specific, and therefore location-specific.

For any ρr ∈ (−0.25, 0.25), the joint prior distribution of [π1,r, . . . , πB,r] is a proper

multivariate normal distribution [14]; we take the priors of ρr to be U(0, 0.25)

because exploratory data analysis only detected evidence of nonnegative serial

dependence. The priors on cr and νr are diffuse, reflecting the fact that we have

little prior information regarding their values.

Alternative to this circular definition of mixture weights with symmetric de-

pendence on past and future, one can also specify the marginal distribution of

π1,r and let each πb,r depend only on its past. In either setting, we can represent

a wide range of complex temporal patterns.

2.2 Computation

We apply Bayesian estimation, largely following [64] and [78] in our choices of

prior distributions and hyperparameters. Richardson and Green define a set of

independent, weakly informative and hierarchical priors conjugate to univari-

ate Gaussian mixture models [64], which Stephens extends to the multivariate

case [78]. We extend to incorporate time-varying mixture weights, and instead

of imposing independent Dirichlet priors on {pb, j}, we impose CAR priors on

πb,r as in Equation (2.5). For all other parameters, we have for j ∈ {1, . . . ,K} and
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t ∈ {1, . . . ,T },

µ j ∼ Normal
(
ξ,κ−1

)
Σ−1

j |β ∼Wishart
(
2α, (2β)−1

)
β ∼Wishart

(
2g, (2h)−1

)
,

(2.6)

in which we set α = 3, g = 1 and

ξ =

 ξ1

ξ2

 , κ =


1

R2
1

0

0 1
R2

2

 , h =


10
R2

1
0

0 10
R2

2

 ,
in which ξ1 and ξ2 are the medians of all observations in the first and second

spatial dimensions, respectively, and R1 and R2 are the lengths of the ranges of

observations in the first and second spatial dimensions, respectively. The prior

on each µ j is diffuse, with prior standard deviation in each spatial dimension

equal to the length of the range of the observations in that dimension. The

inverse covariance matrices Σ−1
j are allowed to vary across j, while centering

around the common value E(Σ−1
j |β) = αβ−1. The constant α controls the spread

of the priors on Σ−1
j ; this is taken to be 3 as in [78], yielding a diffuse prior for

Σ−1
j . The centering matrix β−1 is given an even more diffuse prior, since g is

taken to be a smaller positive constant. Our choice of h is the same as [78].

We perform estimation via Markov chain Monte Carlo (MCMC) [66, 85]. We

augment each observation st,i with its latent component label zt,i [83], simulating

a Markov chain with limiting distribution equal to the joint posterior distribu-

tion of {zt,i}, {µ j}, β, {Σ j}, {πb,r}, {cr}, {ρr}, and {νr}. After initializing all parame-

ters by drawing from their respective priors, we update {zt,i}, {µ j},β and {Σ j}

by their closed-form full conditional distributions (Equation 2.7), and update

{πb,r}, {cr}, {ρr} and {νr} via random-walk Metropolis-Hastings.
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P(zt,i = j|·) ∝ pb(t), jφ(st,i;µ j,Σ j),

[β|·] ∼Wishart

2g + 2Kα,

2h + 2
∑

j

Σ−1
j


−1 ,

[µ j|·] ∼ Normal
(
[m jΣ

−1
j + κ]−1[m jΣ

−1
j s̄ j + κξ], [m jΣ

−1
j + κ]−1

)
,

[Σ−1
j |·] ∼Wishart

2α + m j,

2β +
∑

(t,i):zt,i= j

(st,i − µ j)(st,i − µ j)′

−1 ,

(2.7)

for t ∈ {1, . . . ,T }, i ∈ {1, . . . , nt} and j ∈ {1, . . . ,K}, in which m j =
∑

t
∑nt

i=1 1{zt,i= j}

is the number of observations in all periods assigned to component j, and s̄ j =

1
m j

∑
{(t,i):zt,i= j} st,i is the mean of these observations.

We could also perform the above estimation in two stages. In the first stage,

we would estimate the distributions of all mixture components using the lo-

cations of all observations in consideration (disregarding their times). In the

second stage, we would estimate the evolution of mixture weights over time,

conditional on fixed component distributions. This two-stage estimation ap-

proach can be applied to all mixture models we propose. The two-stage method

would perhaps provide some computation savings, while the simultaneous es-

timation of all parameters would probably result in estimates with lower vari-

ance; there is likely a trade-off between computational simplicity and statistical

efficiency. For simplicity, we only demonstrate simultaneous estimation of both

component distributions and mixture weights.

After estimation, we numerically normalize ft(·) for each t with respect to

Toronto’s boundary to obtain final density estimates. As a result, we predict

outside of Toronto’s boundary with probability zero, and the density within the

boundary is elevated proportionally for each t. Here we do not impose this

boundary during estimation; we consider doing so in Section 2.3.3.
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2.3 Additional model refinements

2.3.1 Number of components

We assumed a fixed number of mixture components in our proposed model in

Section 2.1; in this section we estimate a variable number of components. As

mentioned in Section 1.2.3, allowing the number of components to vary typi-

cally improves the mixing (efficiency) of the MCMC computational method, by

allowing the Markov chain to escape local modes more quickly. Stephen’s birth-

and-death MCMC (BDMCMC) is especially effective at this [78] (reviewed in

Section 1.2.3).

We adapt BDMCMC to a spatio-temporal setting. We can generalize

Stephens’ BDMCMC to incorporate time-varying mixture weights in a straight-

forward way, by maintaining the same number of components across different

time periods within each iteration. Since the birth and death process applies in

the same way to all time periods, it is easy to show that stationarity holds for

this generalized sampling method. Following [78], we assume a truncated Pois-

son prior on the number of components K, i.e., P(K) ∝ τK/K!, K ∈ {1, . . . ,Kmax}

for some fixed τ and Kmax. All other priors and hyperparameters are as specified

in (2.5) and (2.6), and the spatial density function at each time is as in Equation

(2.3).

BDMCMC algorithm for time-binned data

Start with an initial configuration of K components,

y =
{ (
{pb,1}

B
b=1,µ1,Σ1

)
, . . . ,

(
{pb,K}

B
b=1,µK ,ΣK

) }
,

and iterate the following:

1. For j ∈ {1, . . . ,K}, calculate death rate for the jth component, d j(y), accord-
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ing to

d j(y) = λb

L
(
y\({pb, j}

B
b=1,µ j,Σ j)

)
L(y)

P(K − 1)
K P(K)

P
(
{pb,1, . . . , pb, j−1, pb, j+1, . . . , pb,K}

B
b=1

)
P

(
{pb,1, . . . , pb,K}

B
b=1

) ,

in which L(·) is joint likelihood function and P(·) represents the priors.

When calculating the contribution of an observation to the likelihood func-

tion, we use the mixture weights corresponding to that observation’s time

period.

2. Calculate the total death rate, d(y) =
∑K

j=1 d j(y).

3. Draw time to next jump from an exponential distribution with mean λb +

d(y).

4. Simulate whether the next jump is a birth or a death with Pr(birth) =

λb/(λb + d(y)) and Pr(death) = d(y)/(λb + d(y)).

5. If it is a birth, independently sample the new component’s weight from

Beta(1,K) and parameters from their respective priors. We add this com-

ponent to all time periods and adjust all other mixture weights propor-

tionally so that the sum of mixture weights is 1 for each period. If it is

a death, simulate which component dies, where the jth component of all

time periods dies with probability d j(y)/d(y). After death, we also adjust

all other mixture weights accordingly.

6. Repeat Steps 1 to 5 for a fixed amount of time T0 (increasing T0 and in-

creasing the birth rate, λb, have the same effect; without loss of generality,

we can let T0 = 1).

7. Fix the number of components, and update all other parameters via full-

conditionals or Metropolis-Hastings as illustrated in Section 2.2.

Given the large amount of data and the complexity of spatial-temporal meth-

ods, imposing a vague prior on the number of components would result in an

unfeasibly large number of mixture components, and leads to overfitting. We

therefore use strong priors on K to regularize the number of components.
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2.3.2 Covariates

There are many spatial and/or temporal covariates that we may want to incor-

porate to improve modeling accuracy and explanatory power. We can incor-

porate these covariates in the proposed time-varying Gaussian mixture model

(Section 2.1) in the following ways.

If temporal covariates xt are available (e.g., temperature and precipitation),

they may be incorporated into the hierarchical CAR priors for the (transformed)

mixture weights. Previously, in Equation (2.5), we assume a priori that the cen-

tered weights πb,r−cr follows a conditional autoregressive structure component-

wise. This may be modified such that covariate-adjusted weights πt,r−cb(t),r−a
′
rxt

follow the same conditional autoregressive structure, in which xt is a vector of

temporal covariate values for time t, and ar is a vector of location-specific coef-

ficients for the rth component. One advantage of this specification is that it can

differentiate the impacts of covariates to ambulance demand at different com-

ponent locations in space. In the presence of no covariates, the {cb(t),r} are simply

the mean values of πt,r across the weekly temporal blocks b(t), utilized to capture

the intra-week pattern. Equation (2.5) then becomes

πt,r|π−t,r ∼ N
(
cb(t),r + a′rxt + ρr[(πt−1,r − cb(t−1),r − a

′
rxt−1) + (πt+1,r − cb(t+1),r − a

′
rxt+1

)
+ (πt−d,r − cb(t−d),r − a

′
rxt−d) + (πt+d,r − cb(t+d),r − a

′
rxt+d)], ν2

r ),

cb,r ∼ N(0, 104),

ρr ∼ U(0, 0.25),

ν2
r ∼ U(0, 104).

To include a spatial or spatio-temporal covariate (e.g., population density),

we may proceed by adding it to the current model as an additional mixture

“component.” Consider a modified Equation (2.2)

ft(s; {pt, j}, {µ j}, {Σ j}) = pt,0gt(s) + (1 − pt,0)
K∑

j=1

pt, j φ(s;µ j,Σ j),
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in which gt(s) is a (possibly time-varying) spatial density, and pt,0 ∈ [0, 1] is a

time-varying probability that ambulance demand arises directly from the co-

variate density. As such, demand arises from component j of the Gaussian mix-

ture model with the time-varying probability of (1 − pt,0)pt, j, for j ∈ {1, . . . ,K}.

In this framework, we can still incorporate weekly seasonality (Equation (2.3))

and CAR priors (Equation (2.5)) on the mixture weights. The Bayesian estima-

tion extends naturally, by way of an additional data augmentation to include

the component label for gt(s). If the covariate density is the primary factor in

realized demand, we expect pt,0 to be large. In general, we can include mul-

tiple such spatial covariates, as long as we make sure all mixture weights are

well-defined.

We consider two temporal covariates: mean daily temperature and total

daily precipitation in Toronto. We found a statistically significant negative rela-

tionship between precipitation level (snow only; there was no rain in Feb 2007)

and ambulance demand at three downtown components and one at a central

traffic route. This is perhaps not surprising because snow was likely removed

from these locations more promptly; as a result there was a relatively lower

demand for ambulances (responding to traffic related events) relative to other

locations within the city. Temperature was not found to be statistically signifi-

cant at the 5% level. Including these two temporal covariates do not drastically

improve the predictive accuracy. We therefore did not include these covariates

ultimately.

Unfortunately, there are very limited spatial or spatio-temporal covariate

data available. We were only able to find scalar population density estimates for

the entire city for the entire census year. What we would like is a spatial map of

population density, or more ideally, a spatio-temporal population density that

varies in fine time scales (e.g., hourly as population shifts). This type of data is

typically not collected, especially with privacy concerns. In fact, we may have

provided a possible proxy measure of it. Indeed, it would be very interesting

to see what other factors affect ambulance demand, as well as when and where

they play a role. Perhaps some early regression models on EMS demand can
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shed some light. Studies have found that demand is higher at areas with lower

socioeconomic status and higher concentration of elderly people [3, 74, 48, 18].

However, such demographic data is also not available at a fine time scale as

population shifts. This lack of data is a widely acknowledged in the literature

of EMS demand prediction.

2.3.3 Boundary

In Section 2.1 we model Toronto’s ambulance demand on a continuous spatial

domain within R2, and we post-process the the density estimates by normaliz-

ing with respect to Toronto’s boundary after the estimation. In this section, we

consider incorporating the boundary of Toronto in the density estimation. Let

this boundary be S and define it as the convex hull of ambulance demand from

years 2007 and 2008.

In the context of Toronto EMS, assuming a boundary is natural, given Lake

Ontario to the south of the city and the suburban areas around Toronto, for

which data is not available. In our application, we observe a relatively high

density of observations along the lake edge, which is difficult for a small number

of mixture components to capture well. If we incorporate Toronto’s boundary in

estimation, the truncation of spatial densities at the boundary would encourage

mixture components that are close to the lake to move towards/beyond the

lake or take on higher weights in order to better describe the high density of

observations.

We can normalize the density estimates in Equation (2.3) according to

fb(s;θ) =
fb(s;θ)1

{s∈S}∫
S

fb(s;θ) ds
, (2.8)

in which θ is a vectorization of all the parameters. We numerically approxi-

mate the denominator of (2.8) as follows. Grid the spatial domain S into E fine,

equal-sized spatial cells each with area AE, and label centers of these E cells as
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{ue, e = 1, . . . , E}. Using {ue} as evaluation points, we approximate the normal-

izing integral using its Riemann sum
∑E

e=1 AE
[
fb(ue;θ)

]
.

Computationally, we lose the closed-form full-conditionals forµ j and Σ j and

a numerical integration is needed to compute likelihood in every Metropolis-

Hastings proposal, for every parameter. We have investigated this extension

fully, but we found the computation to be prohibitively expensive on samples

this large, and only a minor out-of-sample improvement in some test cases. As

a result, we did not impose this boundary in estimation in our proposed model.

we propose an alternative method in Chapter 4 that incorporates boundary and

other spatial features elegantly.

2.4 Predicting Toronto ambulance demand

We fit the full Gaussian mixture model with seasonality constraints and autore-

gressive priors (Section 2.1) on the Toronto EMS data from February 2007. First,

we use a fixed number of 15 components. We found 15 components to be large

enough to capture a wide range of residential, business and transportation re-

gions in Toronto, yet small enough for computational ease given the large num-

ber of observations. We then fit the model again with a variable number of

components (Section 2.3.1). Given the large amount of data and the complexity

of spatial-temporal methods, imposing a vague prior on the number of compo-

nents would result in an unfeasibly large number of mixture components, and

leads to overfitting. We therefore set the a priori maximum number of compo-

nents Kmax = 50 and chose two small values for the prior mean of the number of

components τ. These prior choices lead to posterior average numbers of compo-

nents of 19 or 24 (with posterior standard deviations of 3.1 and 4.6, respectively).

Each MCMC algorithm is run for 50,000 iterations, with the first 25,000 itera-

tions discarded as burn-in. We compute the effective sample sizes and Gelman-

Rubin diagnostics [31] of the minimum and maximum of component means and

variances along each spatial dimension. In a typical simulation, the mean pa-
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rameters have effective sample size averaged 2,606 and Gelman-Rubin below

1.05, and for covariance parameters, 6,065 and 1.09, respectively. This suggests

burn-in and mixing may be sufficient. We focus on the minimum and maxi-

mum of these parameters instead of relying on component labels because any

mixture models may encounter the label switching problem, in which the label-

ing of component parameters can permute while yielding the same posterior

distribution. However, this label switching problem does not affect estimation

of ambulance demand in time and space, because we are interested in the entire

posterior distribution, instead of inferences on individual mixture parameters.

In Section 2.5.2 we also report the estimated MCMC standard errors of the per-

formance measures [29, 15]; they are small enough to provide accuracy to 3

significant digits, further suggesting the run length may be satisfactory.

Using a personal computer, the computation times for the proposed model

with 15 components is about 4 seconds per iteration, compared to 7 and 8 sec-

onds using variable numbers of components averaged 19 and 24, respectively.

In practice, estimation using the proposed model only needs to be performed

infrequently (at most once a month in this application); density prediction of

any future time period can then be immediately calculated as the correspond-

ing density using the most recent parameter estimation results.

Figures 2.1 and 2.2 present results from fitting using 15 components. Fig-

ure 2.1 shows all 15 Gaussian component ellipses at the 90% level, using the

parameter values from the 50, 000th iteration of the Markov chain. Each compo-

nent ellipse is shaded by the posterior mean of ρr for that component, except for

the 15th component because r ∈ {1, . . . , 14}. Components at the denser greater

downtown and coastal regions of Toronto have the highest estimates of ρr; these

regions exhibit the strongest low-order serial dependence and daily seasonality.

This is in line with exploratory study in Section 1.3. The proposed model is able

to easily differentiate temporal patterns and dynamics at different locations.

Figure 2.2 shows the log predictive densities at Wednesday around midday

and midnight, as computed by the proposed mixture model with 15 compo-
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Figure 2.1: Using 15 components: Gaussian component ellipses at the 90%
level. Each component (except the 15th) is shaded with the
posterior mean of ρr for that component. The greater down-
town and coastal regions exhibit stronger low-order serial de-
pendence and daily seasonality.

nents and averaged across the last 25, 000 Monte Carlo samples. Note that the

demand is concentrated at the heart of downtown during working hours in the

day, but is more dispersed throughout Toronto during the night.

Figure 2.3 shows the log predictive densities using variable numbers of com-

ponents around Wednesday midnight; these spatial densities are similar to that

using 15 components (shown in Figure 2.2 (b)).

2.5 Model performance and validation

We evaluate the performance and validity of the proposed models in several

ways. For performance, we attempt to predict ambulance demand densities on

two sets of test data (March 2007 and February 2008). To do this using mixture

models, we train the models on data from February 2007, and use the resulting
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Figure 2.2: Using 15 components: (a) posterior log spatial density for
Wednesday 2-4pm (demand concentrated at downtown dur-
ing the day); (b) posterior log spatial density for Wednesday
2-4am (demand more spread out during the night).

Figure 2.3: Using variable number of components: (a) posterior log spatial
density for Wednesday 2-4am (night) using an average of 19
components; (b) that using an average of 24 components.

density estimates to predict for both sets of test data. We introduce in Section

2.5.1 two methods for comparisons. We compare the statistical predictive accu-

racies for all methods in Section 2.5.2. In Section 2.5.3 we then put these predic-

tive accuracies in the context of EMS operations. We verify the validity of the

method in Section 2.5.4.
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2.5.1 Comparison methods

We compare the proposed mixture models to a current industry practice, and to

a proposed extension of the industry practice that uses kernel density estima-

tion (KDE). As mentioned in Section 1.1.3, Toronto EMS employed an averag-

ing method based on a discretized spatial and temporal domains. The demand

forecast at a spatial cell in a particular time period is the average of four corre-

sponding realized demand counts for the past four years (from the same loca-

tion, week of the year, day of the week, and hour of the day). Each spatial cell

is 1 km by 1 km. A similar practice described in [70], the MEDIC method, uses

the average of up to twenty corresponding historical demands in the preceding

four weeks, for the past five years. These industry practices capture, to various

extents, yearly and weekly seasonalities present in EMS demand.

We implement the MEDIC method as far as we have historic data available.

Since we focus on predicting the demand density, we normalize demand vol-

umes at any place by the total demand for the time period. For any 2-hour

period in March 2007, we average the corresponding demand densities in the

preceding four weeks. For any 2-hour period in February 2008, we average the

corresponding demand densities in the preceding four weeks in 2008 and those

same four weeks in 2007. For example, to forecast the demand density for 8 - 10

am on the second Monday of February 2008, we average the demand densities

at 8 - 10 am in the first Monday of February 2008, the last three Mondays of

January 2008, the first Monday of February 2007 and the last three Mondays of

January 2007. Note that this means the MEDIC method is trained on at least as

much data, which is at least as recent as that used in the mixture models. We

adopt the same 1 km by 1 km spatial discretization used by Toronto EMS.

Since the proposed method is continuous in space, we also propose to extend

the MEDIC method to predict continuous demand densities as a second com-

parison method. The demand density for each 2-hour period is taken to be the

KDE for all observations from that period. Here we use a bivariate normal ker-

nel function, and bandwidths chosen by cross-validation using the predictive
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accuracy measure in Section 2.5.2. We predict demand densities for March 2007

and February 2008 by averaging past demand densities using the MEDIC rule

described above. To ensure fair comparisons, we also numerically normalize

the predictive densities produced by the two comparison methods with respect

to Toronto’s boundary.

Figure 2.4 shows the log predictive density using these two competing meth-

ods for February 6, 2008 (Wednesday) 2 - 4 am. These two densities are com-

parable with Figures 2.2 (b) and 2.3, which are the log predictive densities for

the same time period estimated from the proposed mixture models. Compared

to the proposed model, both the MEDIC and MEDIC-KDE produce less smooth

predictions compared to the proposed mixture models.

Figure 2.4: Log predictive densities using two current industry estimation
methods for 2-4am (night) on February 6, 2008 (Wednesday).
Figure 2.2(b) and Figure 2.3 show the log predictive densities
for the same period using mixture models. Compared to mix-
ture models, estimates from the MEDIC and MEDIC-KDE are
less smooth.

2.5.2 Statistical predictive accuracy

To measure the predictive accuracy of density estimates obtained from the pro-

posed mixture models, MEDIC, and the proposed MEDIC-KDE, we use the av-
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erage logarithmic score (ALS). First proposed by [34], this performance measure

is advocated for being a strictly proper scoring rule and its connections with

Bayes factor and Bayes information criterion [32, 22, 11]. We define

ALS ({s̃t,i}) =
1∑T

t=1 nt

T∑
t=1

nt∑
i=1

log f̂t(s̃t,i), (2.9)

in which f̂t(·) is the density estimate for time t obtained using various methods,

and s̃t,i denotes observations from the test data (March 2007 or February 2008).

For the proposed mixture models, we use the Monte Carlo estimate of Equation

(2.9)

ALSmix ({s̃t,i}) =
1
M

M∑
m=1

 1∑T
t=1 nt

T∑
t=1

nt∑
i=1

log f̂t(s̃t,i|θ
(m))

 ,
in which θ(m) represents the mth-iteration posterior parameter estimates gener-

ated from the training data, for m ∈ {1, . . . ,M} and some large M.

The predictive accuracies of various methods for two test data sets (March

2007 and February 2008) are shown in Table 2.1. The predictive accuracies

for Gaussian mixture models are presented with their 95% consistent, non-

overlapping batch means confidence intervals [see 43], which reflect the accu-

racy of the MCMC estimates. Here, a less negative predictive accuracy indicates

better performance. The proposed mixture models outperform the two current

industry methods. Allowing for a variable number of components improves

the predictive accuracy slightly, but the rate of improvement diminishes as the

average number of components grows. Given that the computational expense

almost doubles to obtain these modest improvements, we conclude that using a

fixed number of 15 components is largely sufficient in this application.

2.5.3 Operational predictive accuracy

In this section, we quantify the advantage of the proposed model over the in-

dustry practice. We show that the proposed model gives much more accurate
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Estimation method ALS for Mar 07 ALS for Feb 08

Gaussian
Mixture

15 components (2.1) −6.1378 ± 0.0004 −6.1491 ± 0.0005

Variable # of comp (2.3.1):
average 19 comp −6.080 ± 0.002 −6.128 ± 0.002
average 24 comp −6.072 ± 0.003 −6.122 ± 0.004

Competing
Methods

MEDIC −8.31 −7.62

MEDIC-KDE −6.87 −6.56

Table 2.1: Predictive accuracies of proposed Gaussian mixture models and
competing methods on test data of March 2007 and February
2008. The predictive accuracies for mixture models are pre-
sented with their 95% batch means confidence intervals.

forecasts of the industry’s operational performance measure. The standard EMS

operational performance measure is the fraction of events with response times

below various thresholds (e.g., 60% responded within 4 minutes). Obtaining

an accurate forecast of this performance is of paramount importance because

many aspects of the industry’s strategic management aim to optimize this per-

formance. Accuracy in estimating this performance depends crucially on the

accuracy of spatio-temporal demand density estimates.

For each of the three methods of interest, we have a set of 2-hour demand

density estimates for March 2007 and February 2008. Using density estimates

generated by method M for time period t, we predict the operational perfor-

mance by computing the proportions of demand, PM ,t(r), reachable within re-

sponse time threshold r from any of the 44 ambulance bases in Toronto (see

Figure 2.5 (a)). To do so, we first discretize Toronto into a fine spatial grid and

outline the regions that can be covered within any response time threshold. We

then numerically integrate within these regions the demand density estimates

from M , for each t and r, to obtain PM ,t(r). We also compute the realized per-

formances using the test data, Ptest,t(r). For simplicity, we assume ambulances

always travel at the median speed of Toronto EMS trips, 46.44 km / hour. We

also use the L1 (Manhattan) distance between any base and any location. We
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consider response time thresholds ranging from 60 seconds to 300 seconds at

10-second intervals.

We compute the average absolute error in predicting operational perfor-

mance made by each method under various response time thresholds, as com-

pared to the truth. We define

Error(M , r) =
1
T

T∑
t=1

|PM ,t(r) −Ptest,t(r)|.

In Figure 2.5 (b) and (c), we show Error(M , r) against r for each method M (mix-

ture model with 15 components, MEDIC, and MEDIC-KDE), using test data

from March 2007 and February 2008, respectively. The 95% point-wise confi-

dence bands for Error(M , r) are shown in gray; these bands indicate interval

estimates for the average absolute errors for each M and r given a series of er-

rors. We find that the proposed method predicts the operational performance

much more accurately, given the same set of operational assumptions about

base locations, speed and distance. It reduces error by as much as two-thirds

compared to the MEDIC method, despite sometimes using less recent training

data. We expect similar orderings of the three methods under different sets of

operational strategies.

2.5.4 Model validation

We assess the goodness-of-fit of the proposed models and the validity of the

NHPP assumption. We use the model checking approach in [82], where each

marginal of the point event data is transformed into quantities that are assumed

to be uniformly distributed, and compared to the true uniform distribution

graphically. In particular, we have assumed that the point process follows a

NHPP with time-varying intensity λt(s) = δt ft(s). We have posterior estimates

of { ft(s)} from the proposed mixture models. We estimate δt in two ways. First,

we assume that δt = nt, in which nt is the actual, realized demand counts in

34



Figure 2.5: (a) all 44 ambulance bases in Toronto; (b) and (c) average ab-
solute error in measuring operational performance made by
the proposed mixture model (15 components), MEDIC, and
MEDIC-KDE, using test data from March 2007 and February
2008, respectively (with 95% point-wise confidence intervals in
gray). The proposed mixture model outperforms the compet-
ing methods.

the t-th period. In this case, we attempt to validate the proposed model only

with respect to the spatial densities with no uncertainty from δt. Second, we use

method proposed in Matteson et al to estimate [50].

Point locations along the first and the second spatial dimension thus follow

one-dimensional NHPP with marginalized intensities of λt(·), denoted as λ1,t(·)

and λ2,t(·), respectively. We compute the corresponding cumulative intensities

Λ1,t(·) and Λ2,t(·) and sort the observations for each time period into ordered

marginals {s̄ j,1, . . . , s̄ j,nt} for each dimension j ∈ {1, 2}. If the assumptions are

valid and the models have perfect goodness-of-fit, then {Λ j,t(s̄ j,i) : i = 1, . . . , nt}

for each t and j ∈ {1, 2} follows a homogeneous Poisson process with unit rate,

and ui, j,t = 1−exp{−(Λ j,t(s̄ j,i)−Λ j,t(s̄ j,i−1)} for i ∈ {1, . . . nt}, j ∈ {1, 2} and t ∈ {1, . . . ,T }

are i.i.d uniform random variables on (0,1). We compare the ui, j,t samples ob-

tained from the models with the uniform distribution via quantile-quantile (Q-

Q) plots. We have a set of {ui, j,t} for each set of posterior parameter estimates. In

Figures 2.6 and 2.7 we show the mean Q-Q line using actual, realized values for

δt and estimated δt from Matteson et al [50], respectively. We include the 95%
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point-wise intervals reflecting the uncertainty in MCMC sampling. All plots in-

dicate high goodness-of-fit, whether we are using a fixed or a variable number

of components and whether we are using actual or estimated δt.

Figure 2.6: Posterior Q - Q plots (solid) and 95% posterior intervals (dash)
for the proposed mixture models using actual, realized de-
mand aggregate counts for δt. All three plots show that the
models are adequate and appropriate.

Figure 2.7: Posterior Q - Q plots (solid) and 95% posterior intervals (dash)
for the proposed mixture models using methods of Matteson
et al [50] to estimate δt. All three plots indicate that our models
fit the data well.

We repeat the model checking procedure on data at downtown and data

along the boundary near the lake and the proposed mixture model with a fixed

number of 15 components. We show the result for downtown in Figure (2.8),
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and that the lake edge in Figure (2.9). We observe that the proposed mixture

model has reasonably high goodness-of-fit in both regions, although not as per-

fect as goodness-of-fit for Toronto as a whole. Similar results are obtained using

variable number of components. This shows that it may be advantageous to

impose the boundary of Toronto during estimation. As we discussed in Section

2.3.3, we did not pursue this due to high computational expense.

Figure 2.8: Model Checking at downtown: (a) all training data, with
downtown outlined in a rectangle; (b) Q-Q plot (solid) and 95%
posterior interval (dash) using data from the downtown rectan-
gle and the proposed 15-component mixture model.

2.6 Discussion

We predict spatio-temporal ambulance demand in fine resolutions in time and

space by extending Gaussian mixture models. We jointly estimate mixture com-

ponent distributions over time to promote efficient learning of spatial structures

even though data is sparse within each time period. We express a diverse set of

location-specific seasonalities and serial dependence typical in the spatial den-

sities of ambulance demand by re-parameterizing the mixture weights and ap-

plying conditionally autoregressive priors. We additionally illustrate how to

estimate the number of components, incorporate covariate information and im-
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Figure 2.9: Model Checking along the boundary with lake: (a) all training
data, with the boundary region enclosed by two lines; (b) Q-Q
plot (solid) and 95% posterior interval (dash) using data be-
tween the two lines and the proposed 15-component mixture
model.

pose spatial boundary.

Practically, our method outperforms the current EMS industry practice, both

statistically and operationally. Methodologically, we have developed a set of

easily generalizable tools to analyze a wide range of spatio-temporal point pro-

cess applications. Our method is parsimonious, straightforward to implement,

and computationally feasible for large-scale datasets.
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CHAPTER 3

SPATIO-TEMPORAL WEIGHTED KERNEL DENSITY ESTIMATION

We propose a fast and accurate method for predicting spatio-temporal am-

bulance demand that is practical and scalable in industrial settings. We follow

Chapter 2 in predicting in discrete time and continuous space. We propose a

novel specification of spatio-temporal kernel density estimation (stKDE). First,

we learn parametrically the temporal and spatial characteristics of the demand.

Each historical observation is annotated with a weight based on what we have

learned. This spatio-temporal weight function scales how helpful different his-

torical observations are to a given predictive task. Then we construct a spatial

kernel density estimator weighted by the informativeness weight function, and

use the resulting kernel density estimates as predictions. In this way, we effi-

ciently emphasize the historical data most important to prediction and, as far as

possible, exploit the spatial and temporal characteristics in the data.

The proposed stKDE method have three main advantages

1. accessibility: stKDE is fully automated and robust. It is easy to inter-

pret and use by non-specialized personnel, while other approaches such

as artificial neural network (ANN [70]), or time-varying Gaussian mix-

ture models (GMM, Chapter 2) may need special expertise (e.g., tuning,

MCMC diagnostics).

2. efficiency: stKDE has low computational complexity. It is faster than

GMM; inferring latent component label in GMM is costly. It can afford

more frequent parameter estimation updates and online predictions.

3. accuracy: stKDE gives more accurate predictions than current industry

practice with similar computational expense. It also outperforms naive

KDE methods (and ANN via [70]); it is at least as accurate as GMM.

Material from this chapter is accepted in May 2015 by ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining in an article
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titled “Predicting Ambulance Demand: A Spatio-Temporal Kernel Approach”,

authored by Zhengyi Zhou and David S. Matteson [95].

We propose the stKDE model in Section 3.1 and discuss computational meth-

ods in Section 3.2. We show the empirical results on Toronto ambulance demand

in Section 3.3, and conclude in Section 3.4.

3.1 Model

We model Toronto’s ambulance demand on a continuous spatial domain S ⊆ R2

and a discretized temporal domain of one-hour intervals T = {1, 2, . . .}. Let st,i

be the location of the i-th ambulance demand arising from the t-th time period,

for i ∈ {1, . . . , nt}, where nt is the total number of ambulances demanded in the

t-th period. Similar to Chapter 2, we model {st,i : i = 1, . . . nt} for each time period

t independently follow an NHPP over S, with positive intensity function λt. As

in Equation 2.1, the intensity function λt(s) can be decomposed as δt ft(s), for

s ∈ S, where δt is the aggregate demand intensity over the spatial domain, and

ft(·) is the continuous spatial density of the demand at time t. Like Chapter 2,

we also focus on predicting the spatio-temporal demand density { ft}, which has

received far less attention in the literature.

3.1.1 Spatio-temporal kernel density estimation

Suppose we observe and utilize historical ambulance demand from a set of past

time periodsTobs, and we would like to forecast demand for a future time period

u. We propose to predict fu using a spatio-temporal weighted kernel density es-

timator. We place a bivariate spatial kernel K at the location of each past obser-

vation in Tobs, and weight each kernel by the helpfulness of the corresponding
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observation in predicting for the uth time period. Specifically, we have for s ∈ S

fu(s) =
1∑

t∈Tobs
w(st,i, u)

∑
t∈Tobs

w(st,i, u) KH(s − st,i). (3.1)

Here, w(st,i, u) is the helpfulness weight function multiplied with the spatial ker-

nel of the past observation st,i. This weight function is defined in detail in Section

3.1.2. KH is the chosen bivariate spatial kernel with bandwidthH , i.e.,

KH(s − st,i) =
1
|H |

K
(
H−1/2(s − st,i)

)

3.1.2 Weight function

The weight function w aims to capture the utility of a past observation in pre-

dicting demand at a future period. Specifically, we would like to incorporate in

w the spatial and temporal dependencies in the demand. Domain knowledge on

EMS demand densities focuses our attention on weekly and daily seasonalities

and short-term serial dependence of a few hours, which have varying strengths

in different neighborhoods.

We can therefore discretize the spatial domain into C large spatial cells, rep-

resenting a rough division into neighborhoods. We assume that temporal de-

pendencies within each cell remain constant in space. Let wc denote the weight

function local to each discretized cell c ∈ {1, . . . ,C}. Within this cell, we further

assume that the informativeness of a past observation from time t in predicting

for future time u only depends on how far back t is from u. We use the weight

function to measure how positively correlated two demand densities (u − t) pe-

riods apart are in each cell. We model the weight function as

wc(u − t) = ρu−t
1,c + ρu−t

2,c ρ
sin2

(
π(u−t)

T1

)
3,c ρ

sin2
(
π(u−t)

T2

)
4,c , (3.2)
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for c ∈ {1, . . . ,C}. We combine all wc to have

w(st,i, u) =

C∑
c=1

wc(u − t)1
{st,i∈cell c}. (3.3)

Here, {ρ1,c}, {ρ2,c}, {ρ3,c} and {ρ4,c} for c ∈ {1, . . . ,C} are all constrained to take val-

ues in [0, 1]. We use a separate ρ parameter to capture each typical EMS pat-

terns for easy interpretation and comparisons across locations (e.g., downtown

vs suburbs) and times (e.g., winter vs summer). The term ρu−t
1,c describes any

potential short-term serial dependence. Its parametric form is the same as a

stationary first-order autoregressive model, AR(1), and is also equivalent to the

squared exponential function often used in Gaussian processes [61]. The term

with ρ3,c describes any potential daily seasonality with T1 = 24, whereas the

term with ρ4,c describes any potential weekly seasonality with T2 = 24× 7 = 168.

The parametric form of these two terms corresponds to the periodic function

used in Gaussian processes [61]. These two seasonality terms are multiplied,

and further discounted by a squared exponential function, ρu−t
2,c . Finally, we sum

the short-term dependency effect and the seasonality effects. The different ρ

terms are combined in similar to the typical approach to combining covariance

functions in Gaussian processes. . There may be other weight functions that

work similarly; we draw inspirations from Gaussian processes because these

functions are well-studied and have some nice properties (e.g., infinite differen-

tiability). This parametrization of the weight function is easy to interpret and

visualize, and flexible to experiment with, even for non-experts.

The weight function is bounded between 0 and 2. We avoid negative

weights to avoid negative kernels in the kernel density estimator, which compli-

cates bandwidth selection, results in negative density estimates that need to be

floored at zero, and produces discontinuities in the derivatives of the estimates

[69]. The magnitudes of the weights are nominal, as long as they are comparable

across all C regions, since they are normalized in Equation (3.1).

Equations (3.1), (3.2) and (3.3) together form the model.
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3.2 Computation

3.2.1 Parameter estimation

We must select or estimate the kernel function K and bivariate bandwidth H

in Equation (3.1), as well as the spatial discretization C and 4C number of ρ pa-

rameters in the weight function (3.2). Since the nature of ambulance demand

does not change drastically over time, these estimations may be performed in-

frequently in practice (at most several times a year).

For K, we can use the typical Gaussian kernel, or for additional computa-

tional savings, the Epanechnikov kernel with bounded support. We can select

the bandwidthH via the plug-in method [89] or smoothed cross-validation [26].

We can also adopt one of many fast computational methods for KDE, including

kd-trees [10], ball trees [58], dual trees [36] and statistical regular pavings [68].

For the weight function (3.2), we can choose the discretization mesh or C a

priori or via cross-validation. A larger value of C allows personalized temporal

patterns on a finer grid, but if C is too large, data may become too sparse for ac-

curate estimation of temporal dependencies. In our application, C is best chosen

to be close to 20, yielding discrete regions that are roughly 5 km by 5 km each.

The 4C number of ρ parameters in the weight function could be chosen in a

number of standard ways; for instance we could use stochastic gradient ascent

to maximize the joint likelihood of training data. For accurate estimation, we

would need to use training data with tens of thousands of observations, and in-

cur non-trivial computational cost. Here we introduce a much faster alternative

method to estimate these parameters.

In Equation (3.2), wc measures how positively correlated two demand densi-

ties (u − t) periods apart are at cell c. We can directly estimate this correlation as

follows. For each cell c, we can approximate its demand density for any period

by the proportion of observations arising from this cell out of all observations

from that period. We can then obtain a time series of proportions and compute
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its (discrete) autocorrelation function Ac(`) for lag ` ∈ {1, . . . , L}, where L is the

maximum lag considered. Typically L can be taken to be around several weeks

(hundreds of one-hour periods). The non-negative part of this autocorrelation,

A+
c (`), or a smoothed version of it, is precisely what wc aims to capture. For ex-

ample, Figure 2 (a) shows an example of the autocorrelation function Ac(`), and

the grey lines in Figure 2 (b) shows the corresponding A+
c (`), for ` ∈ {1, . . . , 672}

(up to 4 weeks of one-hour periods).

The goal is to find appropriate ρ parameters such that wc best fits the shape

of A+
c . To do this, we would like to minimize the sum of squared errors between

ρ0,cwc(`) and A+
c (`) at all time lags ` from 1 to L. We can find the optimal ρ0,c

to ρ4,c for this minimization using gradient descent or grid search. The extra

parameter ρ0,c is needed to scale wc to curve-match the magnitude of A+
c , and is

of no real significance. Of greater importance is curvature or shape of A+
c , which

is captured in ρ1,c to ρ4,c. To make wc comparable across all C cells, we need to

normalize wc such that the area under wc up to L is the same across different

cells.

In summary, we estimate the ρ parameters in C minimization problems: for

each c ∈ {1, . . . ,C},

min
ρ j,c,∀ j∈{0,...,4}

L∑
`=1

(
A+

c (`) − ρ0,cwc(`)
)2 (3.4)

s.t.
L∑
`=1

wc(`) = 1.

This computation is much more efficient than the joint estimation of 4C pa-

rameters by maximizing likelihood. Here, we do not need to involve the kernel

density estimator, nor loop through tens of thousands of ambulance demand

observations. We can easily compute the C minimization problems in parallel.

For each cell, we have a low-dimensional (5 parameters) problem with a small

number of observations L (around hundreds of hours of time lags). A wide ar-

ray of standard algorithms for solving optimization problems can be applied.
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For example, we can Lagrangian relax the constraint into the objective and use

the genetic algorithm or particle swarm.

3.2.2 Prediction

Once the infrequently performed parameter estimation is done, predictions for

any future time period can be calculated instantaneously using short sliding

windows of length L. We can additionally refine or customize the prediction

procedure in the following two ways.

First, to boost predictive accuracy, we can bilinearly interpolate the weight

values smoothly over the spatial domain instead of taking only C sets of values

on a discretized grid. This is appropriate since we believe that the temporal pat-

terns vary smoothly across the spatial domain. It also mitigates the sensitivity

to predictions induced by choices of C.

Secondly, we can impose an omission threshold value, O, for the weights. If

the weight of a past observation st,i is below this threshold, i.e., if w(st,i, u) < O,

we can omit this observation in the calculation of weighted KDE by overrid-

ing w(st,i, u) = 0. The threshold can be chosen to balance the tradeoff between

computational expense and predictive accuracy.

3.3 Predicting Toronto ambulance demand

The computation has two stages. In the first stage, we estimate or choose all pa-

rameters, including the kernel K, bandwidth H , discretization C and 4C num-

ber of ρ parameters. This estimation only needs to be performed infrequently.

For this parameter estimation, we use Toronto ambulance data from January to

July 2008. Figure 3.1 (a) shows the spatial locations of all observations from this

7-month period. In the second stage, we predict future ambulance demand on

a sliding window of length L = 672 (4 weeks, around 15, 000 observations) for

45



each one-hour period from August to December 2008.

In estimation, we choose the Gaussian kernel for K, select the bandwidthH

via the plug-in method [89] and discretize Toronto into C = 21 equally-sized

regions. We estimate the ρ parameters in the weight function using the method

detailed in Section 3.2. As an example, we outline the cell c covering down-

town Toronto in Figure 3.1 (a). We show in the top panel of Figure 3.1 (b) the

autocorrelation function Ac for the proportions of observations arising from this

downtown cell out of all observations across hourly time periods. This auto-

correlation function indicates weekly, daily seasonalities and low-order serial

dependence. The bottom panel of Figure 3.1 (b) shows in gray A+
c and in black

the fitted weight function ρ0,cwc for downtown, with ρ1,c = 0.95 (short-term se-

rial dependence), ρ3,c = 0.001 (daily seasonality), ρ4,c = 0.145 (weekly seasonal-

ity) and ρ2,c = 0.9995 (discounting for seasonalities). The fitted weight function

provides interpretable basis to understand exactly which historical observations

are the most important for prediction. For example, from Figure 3.1 (b), an EMS

manager can recognize that at downtown, ambulance demand in the past day

or two and corresponding hour of the past few weeks are the most important.

We checked the cross-correlation among the 21 weight functions estimated at

different regions in Toronto. Neighboring weight functions showed some asso-

ciation, but those far apart are not correlated.

Once parameter estimation is done, we predict forward using a sliding win-

dow of 4 weeks for each one-hour period from August to December 2008. Figure

3.2 shows the predictive densities on August 6, 2008 (Wednesday) at two differ-

ent time periods. The ambulance demand is, not surprisingly, concentrated at

the heart of downtown during day time on Wednesday (Figure 3.2 (b)), and

more spread out throughout the city during night time on Wednesday (Figure

3.2 (a)). This illustrates that the proposed model can differentiate temporal pat-

terns at different time periods and locations.

We compare stKDE to the following competing methods

(a) The MEDIC method, which is an industry practice implemented in

46



Figure 3.1: Left: spatial locations of all Toronto ambulance demand data
from January to July 2008. To evaluate location-specific weight
functions, we discretize the spatial domain into 21 cells, and
here we outline the cell containing downtown Toronto. Right:
(top) the autocorrelation function of the proportions of obser-
vations arising from the rectangle in Figure 1 over all observa-
tions across one-hour periods; (bottom) the fitted weight func-
tion (black) against the nonnegative part of the autocorrelation
function (gray).

Charlotte-Mecklenburg, NC (§1). We implement this method as far as

we have data. The cell count in a 1-km2 region and a 1-hour period is

predicted by the average of corresponding cell counts in the preceding

4 weeks in the past two years. The log predictive density produced by

MEDIC for August 6, 2008 (Wednesday) at 2 - 3 am is shown in Figure 3.3.

Compared to Figure 3.2 (a), the MEDIC prediction appears much noisier.

(b) Two naive KDEs, (i) using data from the most recent hour to predict the

next hour, and (ii) using all data from the past four weeks with equal

weights (this produces a spatial only model, with almost no temporal vari-

ation).

(c) A time-varying Gaussian mixture model. We quote results from Table 2.1

implemented on Toronto data with different training / testing months and

various modeling specifications (e.g., number of components). The com-

putational expense is considerable.

To compare the statistical predictive accuracies of our model and the indus-
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Figure 3.2: Log predictive density using stKDE for Aug 6, 2008 (Wednes-
day) at (a) 2 - 3 am (demand more spread out at night) and (b)
2 - 3 pm (demand concentrated at downtown during the day).

try method, we use the metric of average log score (ALS, defined in Equation

(2.9) in Chapter 2). It is the average log likelihood of test data. A less negative

average log score indicates better performance.

We show in Table 3.1 the predictive accuracies produced by our method. We

present three variations of prediction: (i) using the estimated discretized weight

functions wc as they are, (ii) spatially interpolating the estimated weight values,

and (iii) imposing an omission threshold on the estimated weight values such

that each prediction uses a comparable amount of data as the industry method

(about 200 observations).

The stKDE method significantly outperforms the MEDIC method (indus-

try practice). It also outperforms the naive KDE methods, demonstrating the

utility of incorporating spatio-temporal patterns via the weight functions. Our

performance is comparable to time-varying GMM as it is implemented on

Toronto data with different training / testing months and modeling specifica-

tions. Among the three variations of stKDE, allowing for bilinear interpolation

of weight values improves the predictive accuracy slightly. In the third varia-

tion, including the omission threshold leads to a small loss of accuracy but re-
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Figure 3.3: Log predictive density using industry method for Aug 6, 2008
(Wednesday) at 2 - 3 am. Figure 3.2 (a) shows the prediction by
stKDE for the same period, which is less noisy.

duces computational cost significantly to be comparable to the industry method.

Prediction method Accuracy

stKDE −6.106
+ interpolation −6.102
+ threshold (less data) −6.635

MEDIC −8.642

naiveKDE most recent hour −6.921
all equal weights −6.254

GMM −6.072 to −6.149

Table 3.1: Predictive accuracies of stKDE and competing methods. Results
of GMM are quoted from Table 2.1 implemented on Toronto data
with various training / testing months and model specifications.

The infrequent estimation of weight functions and bandwidth takes several

hours on a personal computer. This offline training is significantly shorter than

that of GMM (inferring latent component labels in GMM is costly). It does not
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take much longer than estimating bandwidths for naive KDE methods. Once es-

timation is done, making each new prediction is instantaneous (a few seconds).

We could further reduce the computational expense of stKDE by parallelizing

weight estimation, using a tree-based algorithm for fast KDE computation, us-

ing a bounded kernel function, or creating a look-up table of densities (none of

these was done).

3.4 Discussion

We propose a spatio-temporal weighted kernel density estimator to predict

spatio-temporal ambulance demand in Toronto with higher accuracy than and

comparable computational cost as a typical industry practice.

We propose a spatio-temporal weighted kernel density estimator. The spa-

tial kernel of each historical observation is multiplied with a weight value to

indicate the informativeness of this historical observation to the current predic-

tive task. The spatio-temporal weight functions are inferred from dependencies

in data, are unique to each neighborhood and can be updated regularly. This

is an improvement from the ad hoc heuristic that only accounts for the weekly

and yearly seasonality across the entire city. The weight functions are also flex-

ible to represent various spatial and temporal characteristics. They are easy

to experiment with, visualize and interpret by non-experts. Moreover, stKDE

easily handles missing data by placing zero weight and scaling up weights on

other data proportionally. It can also easily predict many hours or days into the

future.

The proposed method provides efficient estimation of the weight function,

and offers customizable prediction to balance the tradeoffs between accuracy

and computational cost. It is straightforward to implement by non-specialized

users and scalable to large-scale datasets, and can be easily generalized to a

wide range of other applications with spatial-temporal point process data.

50



CHAPTER 4

SPATIO-TEMPORAL KERNEL WARPING

We propose a novel method for modeling spatio-temporal ambulance de-

mand against a complex set of spatial structures and geographical features. We

follow Chapters 2 and 3 in predicting in discrete time and continuous space.

To predict ambulance demand for a future time period, we only have a sparse

set of historical data that is very relevant for this prediction (labeled data). We

fit a KDE on them, but warp the kernels to a larger set of historical data re-

gardless of their direct relevance to this particular predictive task (point cloud).

This point cloud describes our belief about the spatial structure on which the

labeled data lies. It captures exterior and interior boundaries without needing

to explicitly define boundaries and boundary conditions. It also incorporates

a wide range of complex spatial similarities and discontinuities, such as roads,

city blocks, and neighborhoods of varying shapes and densities. Intuitively, this

warping can be thought of as a regularization that penalizes radical departure

from and encourages flow of information along our intuition of the geography.

In a Bayesian sense, it can also be thought of as imposing a prior based on how

similar or different the point process is across different locations. Such a regular-

ization or prior is especially beneficial when the labeled data is sparse. We select

the kernel bandwidth and the degree of warping efficiently via cross-validation.

Both of these parameters can be made time- and/or location-specific.

We implement this method on ambulance demand data from Melbourne in

years 2011 and 2012 introduced in Section 1.3. The proposed kernel warping

model gives significantly more accurate predictions than previous approaches,

including the MEDIC method as an industry practice, unwarped KDE, and

GMM.

Material from this chapter is to be submitted in an article titled “Predict-

ing ambulance demand using kernel warping”, authored by Zhengyi Zhou and

David S. Matteson [96].

We develop the kernel warping model in Section 4.1. We construct an un-
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warped KDE in Section 4.1.1, warp the kernels to the point cloud in Section

4.1.2, and allow for time and location-specific warping in Section 4.1.3 for the

Melbourne data. Some details on computation are included in Section 4.1.4.

We show the empirical results for Melbourne ambulance demand in Section 4.2,

and conclude in Section 4.3.

4.1 Model

We model Melbourne’s ambulance demand on a continuous spatial domain S ⊆

R2 and a discretized temporal domain of one-hour intervalsT = {1, 2, . . .}. Let st,i

be the location of the i-th ambulance demand arising from the t-th time period,

for i ∈ {1, . . . , nt}, where nt is the total number of ambulances demanded in the

t-th period. Similar to Chapters 2 and 3, we model {st,i : i = 1, . . . nt} as an NHPP

over S for each t, with intensity λt. We decompose the intensity function as

λt(s) = δt ft(s) (as in Equation 2.1), for s ∈ S, where δt =
∫
S
λt(s) ds is the aggregate

demand intensity over the spatial domain, and ft(·) is the continuous spatial

density of the demand at time t. We focus on predicting the spatio-temporal

demand density { ft} as in previous chapters.

4.1.1 Spatio-temporal KDE

Suppose we want to predict Melbourne’s ambulance demand for a future 1-

hour period u. Given the prominent weekly seasonality, the most relevant obser-

vations are from the corresponding hour of the week for the past M weeks. They

constitute the labeled data for this predictive task. This approach is aligned with

the industry practice, and is shown to work well in [98]. We choose the sliding

window width M a priori. With a larger M, the training data is less sparse, but

each training becomes more expensive and less adaptive to recent changes in

demand patterns (e.g., summer vs. winter). The industry and recent studies

have considered M between 4 and 8. We set M = 8, resulting in an average

labeled data size of about 300 points (ranging from 100 to 450 for different peri-
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ods). Let Tu = {u − 168m : m ∈ {1, . . . ,M}} denote the set of labeled time periods,

in which 168 is the number of 1-hour periods in a week.

Starting with a simple KDE on the labeled data, we predict for any x ∈ S,

fu(x) =
1∑

t∈Tu
nt

∑
t∈Tu

nt∑
i=1

k
(
x, st,i |H

)
. (4.1)

Here, k is the chosen bivariate spatial kernel with bandwidth matrix H . As

before, we use the Gaussian kernel, and choose bandwidth H via the plug-in

method [89] or smoothed cross-validation [44, 26]. As mentioned in Section

1.2.4, we may be motivated to consider a spatial- and/or time-varying band-

width H since data density varies substantially in space (downtown vs. neigh-

borhoods) and time (midnight vs. rush hours).

4.1.2 Kernel warping

We would like to warp each kernel k in Equation (4.1) to a larger set of point

cloud data that describes the spatial boundary and characteristics of Melbourne.

We choose the point cloud data, construct an adjacency graph on the point

cloud, define the graph Laplacian matrix, and warp the kernel to this Laplacian

matrix. We discuss in detail each step.

Step 1 [Choosing the point cloud]: Typically in Laplacian eigenmap and kernel

warping applications, all labeled and unlabeled data is used as the point cloud.

In the context of spatial statistics and our application, there are several points of

consideration:

(a) Which points? We consider all observations in the near past, irregardless

of the time period. If we use the same sliding window width of M = 8

previous weeks, we are choosing from about 50,000 points.

(b) How many points? There is a trade-off: the more points we use for the

point cloud, the better the quality of our approximation of the geography,
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but the slower the computation. Since we are in a low-dimensional space

of R2, we may not need a very large number of points to depict the most

salient boundary and spatial structures. In our application, we find 1000

spatial points to represent Melbourne’s geography reasonably well.

(c) Points or mesh? Alternative to using past observations, we can also use past

data to define a pixelated spatial domain and use the centers of included

pixels as the point cloud. Doing so we lose some resolution and infor-

mation on data density, but may gain computationally if it can reduce the

number of point cloud data significantly. A regularly spaced point cloud

also induces a sparse, band-diagonal graph Laplacian matrix (to be dis-

cussed later), leading to further savings.

(d) Global or local? We can have one global point cloud for the entire spatial do-

main. We can also discretize the spatial domain into several regions with

separate local point clouds. Local point clouds can provide computational

advantages if they are smaller. They may also offer accuracy advantages

if they depict finer-grain characteristics or allow for customized degree of

warping at each locale. We discuss this further in Section 4.1.3.

In our application, we randomly sample 1000 historical observations as the

point cloud for each “component” (to be explained in Section 4.1.3). We denote

the set of point cloud data as {zi} for i ∈ {1, . . . ,Z}. See Figure 4.1 (a) for an exam-

ple cloud of 1000 points over the entire city of Melbourne. For our application,

we find that predictive accuracy is not sensitive to the random sampling of the

point cloud data. If it were, a larger point cloud might be needed, or predictions

might be repeated and averaged over several point cloud samples.

Step 2 [Constructing the adjacency graph]: We construct a graph with nodes

at each point in the point cloud and edges connecting points that are close. We

represent this graph using a symmetric, positive semidefinite adjacency matrix

A.

(a) Which nodes to connect? Knowledge about the spatial domain (e.g., inside
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a building vs outside) or regularity of the point cloud (e.g., regular mesh)

may inform a natural way to define how nodes should be connected. With-

out such knowledge, we can connect nodes zi and z j if zi is among the n

nearest neighbors of z j or z j is among the n nearest neighbors of zi (sym-

metric relation). This requires us to choose n. In our experience, n should

be big enough to ensure that the point cloud is sufficiently connected in-

stead of being very fragmented, but small enough to emphasize local re-

lationships. A second way is to connect nodes if the (Euclidean) distance

between them is smaller than a threshold. This requires us to choose the

threshold.

(b) Weighted edges? In the simplest case, we can set Ai j = 1 if nodes zi and

z j are connected and 0 otherwise. Another idea suggested in [7] is to

define weighted edges depending on the distance between points, i.e.,

Ai j = exp{−||zi − z j||
2/r} if zi and z j are connected and 0 otherwise. The

authors note that they do not have a principled way of choosing r; we find

it reasonable to choose r empirically by fitting an exponential distribution

on all distances between connected nodes. They also note that in practice

a binary adjacency graph works well, and we agree.

In our application, we use n = 5 nearest neighbors and binary weights to

construct A. Figure 4.1 (a) shows the adjacency graph of a sample point cloud of

size 1000. Again, we find our predictive accuracy to be insensitive towards any

reasonable variations in these choices.

Step 3 [Constructing the Laplacian matrix]: The graph Laplacian matrix L is

defined to be L = D − A, in which D is the diagonal degree matrix, with its

diagonal entries being the column (or equivalently, row) sum of A, i.e., Dii =∑
j Ai j. L is a symmetric, positive semidefinite matrix. If the graph has multiple

connected components, L can be rearranged into a block diagonal matrix, where

each block is the respective Laplacian matrix for each connected component.

Here is the intuition of the Laplacian matrix. The (discrete) point cloud adja-
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cency graph is an empirical approximation to our target (continuous) manifold

of Melbourne geography. The (discrete) graph Laplacian matrix L is then an

approximation to the (continuous) Laplace-Beltrami operator on this manifold.

The Laplace-Beltrami operator is a manifold generalization of the Laplace op-

erator, which is a linear second order differential operator on functions (in our

case, kernels). This L induces a semi-norm on kernels which penalizes changes

between adjacent nodes. There is a close analogy to heat flow; the heat (partial

differential) equation has a Laplace operator in space. Intuitively, L guides how

information (heat) spreads on the spatial structure (manifold approximated by

graph) from any initial KDE (initial heat distribution).

Step 4 [Warping the kernels]: We warp each kernel k from Equation (4.1) to the

point cloud to generate a new warped kernel k̃. For any x ∈ S and any s in the

set of labeled data,

k̃(x, s |H) = k(x, s |H) − kT
x (I + λLK)−1λLks, (4.2)

in which kx = [k(x, z1 |H), . . . , k(x, zZ |H)] and ks = [k(s, z1 |H), . . . ,

k(s, zZ |H)] are vectors of kernels evaluated at x or s and the point cloud data

{zi}. Matrix K =
[
k(zi, z j |H)

]
i, j∈{1,...,Z}

is a symmetric matrix of kernels evaluated

at all pairs of point cloud data, and I is a Z by Z identity matrix. The parameter

λ > 0 represents the degree of deformation. When λ = 0, we have k̃ = k. When

λ → ∞, k̃ approaches a positive constant on the point cloud (steady state heat

distribution).

Equation (4.2) is obtained by warping the Reproducing Kernel Hilbert Space

(RKHS) associated with the chosen kernel. We modify the RKHS with a point-

cloud semi-norm λL. This deforms the kernel k along a finite-dimensional sub-

space given by the point cloud data. The modified RKHS is shown to be another

RKHS, i.e., k̃ is a properly defined kernel. See [76] and [9] for more details (they

use the point cloud semi-norm of λLp; we consider the simplified case where

p = 1).
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There are three interpretations of this type of kernel warping. The first is that

of heat flow as mentioned before. We allow information (heat) to spread along

the graph of the point cloud (approximately the manifold of geography). The

second interpretation is a graph regularizer. Variations between adjacent nodes

in the graph are penalized, and thus violation of the spatial structure implied

by the point cloud are penalized. Lastly, in the Bayesian framework, kernel

warping can informally be thought of as imposing a data-dependent informa-

tive prior to describe our belief of the data geometry.

We replace the regular Gaussian kernel k in Equation (4.1) with the new

warped kernel k̃ defined in (4.2) to predict the density of ambulance demand fu

at a future time period u. We set a priori the sliding window width M, the point

cloud data type / size, the number of nearest neighbors n, and the weights used

to construct the Laplacian matrix. We estimate the Gaussian kernel bandwidth

H and the degree of deformation λ.

We show in Figure 4.1 (b) and (c) examples of warping kernels. Three kernels

of bandwidthH = diag(2, 2) are placed on three observations drawn and circled

in red in Figure 4.1 (a). They are warped towards the point cloud in (a) with

degree of deformation λ = 0.5 (b) and 2 (c). With a larger λ, the kernels conform

to the spatial boundary and characteristics to a greater extent.

4.1.3 Spatio-temporal kernel warping

Melbourne’s ambulance demand shows substantial density variations with pat-

terns in time (midnight vs rush hour) and in space (downtown vs neighbor-

hoods). It may be beneficial to allow bandwidth H and degree of deforma-

tion λ to vary with time and space. Ideally, we would like to find, in time and

space, pockets of the point process with similar characteristics, and apply simi-

lar smoothing and deformation.

We discretize time according to our modeling aims, i.e., into 1-hour time

periods. For each hour, we further discretize the spatial domain into a small
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Figure 4.1: Examples of kernel warping: (a) the adjacency graph of a sam-
ple point cloud of size 1000; three observations are highlighted
in red; (b) and (c), warped kernels centered at the these three
observations with degrees of deformation λ = 0.5 and 2, re-
spectively.

number of regions, as motivated by the behavior of labeled data for that time

period. We call each subregion of each hour a component, and perform estima-

tions and predictions independently on each component. The spatial discretiza-

tion splits a global point cloud into local ones, cuts all edges connecting across

regions, and decomposes the Laplacian matrix into blocks. Labeled data are

also matched into components. We estimate a separate set of H and λ for each

component by cross-validation (details in Section 4.1.4).

We discretize spatially by clustering. For any given future time period, we

cluster on its labeled data (about 300 points). We allow different numbers of

clusters and clustering configurations for each time period. In our application,

this gives more accurate predictions than imposing a universal clustering con-

figuration across time. We also obtain better results by clustering on labeled

data rather than clustering on the point cloud data (the point cloud is much

more similar across time than the labeled data). In our case, spatial character-

istics across time are different enough that the gain in personalized modeling

exceeds the loss in stablization offered by a common arrangement.
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We choose to cluster using K-means based on Euclidean distance. K-means

is fast and automated, clusters all points, and gives even clusters. Even cluster

sizes are desirable because a very small cluster does not provide enough labeled

data to reliably estimate parameters via cross-validation. To avoid this, we set

a threshold minimum number of points in any cluster. We set the threshold

at 15 points, which in practice limits the number of clusters to be below 8. If

we fail to clear this threshold, we lower the number of clusters. Density-based

clustering algorithms such as DBSCAN [28] and shared nearest neighbors [27]

do not classify all points, and do not allow easy specification of the number of

clusters. Graph-based clustering algorithms such as affinity propagation [30]

and spectral clustering [57] do not cluster on Euclidean distance, and may be

less intuitive for spatial point patterns. In our case, hierarchical clustering gives

very uneven cluster sizes.

For each time period, we binary search for the best number of clusters based

on validation likelihood. Increasing the number of clusters leads to two oppos-

ing forces. On the one hand, we add in another 1000 points into the cloud and

the flexibility to customize parameters locally. On the other hand, we sparsify

the labeled data for each cluster and destabilize parameter estimation. It is an

empirical question for each time period whether we have enough labeled data

to afford this increase in complexity. In our case, we find the number of clusters

to be largely proportional to the size of labeled data.

4.1.4 Computation

We estimate the kernel bandwidth H and the degree of deformation λ for each

spatio-temporal component. To reduce the dimensionality, we parametrize H

to be a scalar multiple of the plug-in bandwidth Hpi obtained if we fit an un-

warped KDE for the same component. That is we define H = αHpi, and es-

timate α. Alternatively, we can define a radial bandwidth H = diag(β, β), re-

ducing the Gaussian kernel to a radial basis function. We use H = αHpi be-

cause this parametrization gives slightly better performance in our preliminary

59



analysis. To estimate a full H is more difficult because H needs to be positive

semi-definite.

We choose H and λ for each component using 5-fold cross-validation to

maximize average validation likelihood. We implement a surrogate, derivative-

free optimization procedure called the stochastic radial basis function (RBF)

method [62, 63]. It is a fast algorithm for global optimization of computationally

expensive objective functions. Each iteration builds an RBF model to approxi-

mate the expensive function, selects subsequent candidate points, and evaluates

them in parallel. We choose this approach because our objective function (like-

lihood) evaluation is not instantaneous. It takes between 0.5 and 4 seconds,

depending on the sizes of the labeled data and point cloud (Python code on a

personal computer). We also do not have simple derivative computations. In

our experience, 100 such evaluations are sufficient to provide a good optimum,

competitive to those found by grid search, pattern search, or evolutionary algo-

rithms. However, a wide range of optimization tools can be applied here.

In our application, we find a typical optimal α to be between 0.05 and 0.3. We

need a concentration of heat which is then spread or warped to the point cloud.

A typical optimal λ is between 0 and 2. Most time periods choose between 1

and 3 spatial components. We warm start the binary search for the number of

clusters based on the size of the labeled data. The best configuration is usually

found within 3 searches.

Given the prominent weekly seasonality, we believe that the corresponding

parameter values are also similar from week to week. In fact, we believe that the

nature of deformation and smoothing does not vary significantly over several

months, and thus only estimate the parameters for a one-week cycle once every

few months. With the most recent weekly set of parameter values, we predict

forward in an online fashion with a sliding window of M = 8 weeks, making use

of the most recent 8 weeks of data available. Each prediction is instantaneous.

The most expensive part of the computation is evaluating kernels between

all pairs of point cloud data and taking the inverse of a large matrix. Several
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local point clouds of reasonable sizes (< 2000) is computationally more effi-

cient than one massive global point cloud. There are ways to optimize this

computation, including using right division instead of inversion, saving pre-

computed kernel evaluation matrices and vectors, exploiting sparse, banded-

diagonal Laplacian matrix, using a tree-based algorithm for fast KDE computa-

tion [36], and using a look-up table for Gaussian densities (most of these opti-

mizations are not used in our implementation). The computation is “embarrass-

ingly parallelizable”, across validation likelihood evaluations and across spatio-

temporal components.

4.2 Predicting ambulance demand for Melbourne

We would like to predict ambulance demand in Melbourne for every 1-hour

period in March 2011. There are two stages to this computation. In the first

stage, we estimate all parameters for a weekly cycle. The parameters include

the spatial clustering configuration for each 1-hour period, as well as the pa-

rameters λ (degree of warping) and α (in bandwidthH = αHpi) for each spatial

component in each 1-hour period. This estimation only needs to be performed

very infrequently, and in our case, once. For this estimation, we use Melbourne

ambulance demand data from 8 weeks in January and February 2011. In the sec-

ond stage, we use the estimated weekly set of parameter values to predict future

ambulance demand on a sliding window of 8 weeks for each 1-hour period in

March 2011.

Figure 4.2 shows the predictive density predicted by kernel warping for two

time periods on March 2, 2011 (Wednesday). We have only about 150 labeled

data to predict for 2 - 3 am (a), and cross validate to use only 1 spatial compo-

nent. We have almost 400 labeled data for 2 - 3 pm (b) and cross-validate to

choose 5 spatial components.

We consider two variations in estimation: (i) spatio-temporal kernel warp-

ing (S-T param), in which we separately estimate parameters for each 1-hour
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Figure 4.2: Log predictive densities using spatio-temporal kernel warping
for March 2, 2011 (Wednesday) at (a) 2 - 3 am (night), and (b)
2 - 3 pm (day). For time period (a), we have sparse data and
cross-validate to choose 1 spatial component. For time period
(b), we have more data and choose 5 spatial components.

period and spatial region (via clustering, Section 4.1.3), and (ii) temporal kernel

warping (T param), in which we separately estimate parameters for each 1-hour

period (no spatial clustering). We show in Figure 4.3 the predictive densities

produced by these two approaches for the same time period. The densities look

similar, with slightly more details when we use spatio-temporal kernel warping

(we cross-validate to select 3 spatial clusters).

We compare the proposed kernel warping models to the following compet-

ing methods

(a) The MEDIC method, which is an industry practice implemented in

Charlotte-Mecklenburg, NC (Section 1.1.3). We implement this method as

far as we have data. The cell count in a 1-km2 region and a 1-hour period

is predicted by the average of corresponding cell counts in the preceding

8 weeks.

(b) Unwarped KDE, corresponding to Equation (3.1). The bandwidth H is

chosen via the plug-in method (PI) [89] and smoothed cross-validation
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Figure 4.3: Log predictive densities for March 2, 2011 (Wednesday) at 10
- 11 am using (a) spatio-temporal kernel warping (3 spatial
clusters), and (b) temporal kernel warping. The density in (a)
shows slightly more details.

(SCV) [26]. This H is separately estimated for each time period, but does

not vary in space.

(c) A simplified version of Gaussian mixture model (GMM) as detailed in

[98]. The means and covariances of Gaussian components are fixed

through time, and the mixture weights vary in time and constrained to

be the same across weeks (but no autoregressive priors as detailed in Sec-

tion 2.1.3. We use labeled data from the last 8 weeks, and consider fixed

numbers of 15, 30 and 50 components.

Figure 4.4 show the log predictive density using the MEDIC method, un-

warped KDE (PI), and GMM (30 components) for March 2, 2011 at 2 - 3 pm.

These densities are comparable with Figure 4.2 (b), which shows the log pre-

dictive density for the same period predicted by the proposed kernel warping.

Even with 400 labeled data, the MEDIC method gives exceedingly noisy predic-

tions, while unwarped and KDE produce over-smoothed densities that do not

adapt well to the spatial features of Melbourne.

We use several performance metrics to compare the statistical predictive ac-
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Figure 4.4: Log predictive densities using comparison methods for 2 - 3
pm on March 2, 2011 (Wednesday): (a) the MEDIC method
(an industry practice); (b) unwarped KDE with bandwidth se-
lected by the plug-in method (PI); (c) time-varying Gaussian
mixture model with 30 components. These densities are to be
compared to Figure 4.2 (b), which is the prediction using kernel
warping for the same period.

curacies of different methods. First, we use average log score (ALS). Similar to

Equation 2.9, we define

ALS (u) =

nu∑
i=1

log f̂u(s̃u,i),

for each test time period u in the set of all test time periods Ttest, in which {s̃u,i} are

the test data, and f̂u(·) is the predictive density for period u obtained by various

methods. For the MEDIC method, we normalize cell counts to discrete density

by dividing over the total count in each period.

Secondly, we compare accuracy in cell counts for every 1-km2 region and

1-hour period. For the proposed kernel warping, unwarped KDE, and GMM,

we discretize continuous predictions in space to each 1 km2, and convert to

counts by multiplying the total count for the period as predicted by the MEDIC

method. We compute the root-mean-square error, both within the smallest rect-

angle enclosing all data (plotting window in Figures 4.2 and 4.4) (RMSE) and
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within a pixelated data-driven boundary of Melbourne B (RMSEB). For each

test time period u ∈ Ttest,

RMSE (u) =

√√
1
C

C∑
c=1

(yu,c − ŷu,c)2,

where C is the number of 1 km2 cells in the rectangular observation window, yu,c

and ŷu,c are the actual and predicted count for period u and cell c respectively.

For RMSEB, we use cells c within the pixelated boundary B and C as the number

of 1 km2 cells within this boundary.

Additionally, since these cell counts (mostly 0s and 1s) are more appropri-

ately modeled by a discrete distribution such as the Poisson distribution, we

also compute the root-mean-square Anscombe residuals [4, 51], which specifi-

cally adjusts to measure predictive accuracy for Poisson data. Similarly, we con-

sider within all of the rectangular window (ANSC) and within the boundary of

Melbourne (ANSCB). Using the same notations as above,

ANSC (u) =

√√√
1
C

C∑
c=1

 (3/2)(y2/3
u,c − ŷ2/3

u,c )

ŷ1/6
u,c

2

,

and ANSCB similarly defined. We show in Table 4.1 the mean predictive accu-

racies of various methods, averaged across all test time periods Ttest (all 1-hour

periods in March 2011). A less negative ALS, and smaller RMSE, RMSEB, ANSC,

and ANSCB indicate better predictive accuracy. Both versions of kernel warping

have a significant advantage over the comparison methods in all performance

measures, especially in RMSEB and ANSCB. Between the two versions of ker-

nel warping, allowing parameters to be location-specific (in addition to being

time-specific) provides additional benefits, even though a large number of time

periods choose to use only 1 spatial component. We further show in Figure 4.5

the box-plots illustrating the variations of some of these metrics across time pe-

riods. Kernel warping has not only the best mean performance, but also the

smallest variations across time periods.
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Prediction method ALG RMSE RMSEB ANSC ANSCB

Kernel warping S-T param −7.53 0.0500 0.0498 0.176 0.171
T param −7.56 0.0518 0.0514 0.178 0.172

(a) MEDIC −10.11 0.0589 0.0996 0.479 0.810

(b) Unwarped PI −8.14 0.0562 0.0950 0.199 0.334
KDE SCV −8.15 0.0562 0.0950 0.194 0.325

(c) GMM 15 comp −7.96 0.0562 0.0949 0.181 0.304
30 comp −7.87 0.0561 0.0948 0.191 0.323
50 comp −7.93 0.0561 0.0949 0.188 0.316

Table 4.1: Mean predictive accuracies across all 1-hour periods in March
2011 of the proposed kernel warping and competing methods.
Kernel warping outperforms the competing methods.

Figure 4.5: Box-plots of predictive accuracies of kernel warping (S-T pa-
rameters), GMM (30 comp), KDE (PI bandwidth), and the
MEDIC method (an industry practice) over 672 test periods,
as measured by average log score (left, less negative is better),
RMSEB (middle, smaller is better), and ANSCB (right, smaller
is better).

4.3 Discussion

We propose a kernel warping method that smooths intelligently towards geo-

graphical characteristics to overcome sparsity and model complex spatial fea-
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tures at the same time. We demonstrate our proposed method predicts EMS

demand in Melbourne more accurately than the state of the art in the practice

and research of ambulance demand prediction.

To predict ambulance demand for any hour, we use a spatio-temporal ker-

nel density estimator on the sparse set of most similar labeled data, but warp

these kernels to a larger set of point cloud drawn from all historical observations

regardless of labels. We construct an adjacency graph on this point cloud to ap-

proximate Melbourne’s spatial boundaries, neighborhoods, and road networks

in a data-driven manner. Kernels on labeled data are warped to encourage flow

along and penalize flow orthogonal to this graph structure. This kernel warping

can be interpreted (i) physically as heat flow on an empirical manifold, (ii) com-

putationally as a regularization against large variations across adjacent nodes,

and (iii) in the Bayesian framework as a prior of the spatial structure.
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CHAPTER 5

DISCUSSION

5.1 Predicting spatio-temporal ambulance demand

Fine-resolution spatio-temporal ambulance demand predictions are crucial to

optimal ambulance planning. The EMS industry practice and early studies are

often simple and do not give accurate estimates. We provide three much-needed

and highly accurate methods to predict spatio-temporal ambulance demand at

fine scales.

First, in Chapter 2, we use finite mixture models to capture the complex tem-

poral patterns and dynamics in this large-scale dataset. We demonstrate that

the proposed method predicts the EMS operational performance much more

accurately, reducing error by as much as two-thirds compared to an industry

practice. Many management decisions seek to optimize this estimated opera-

tional performance; the proposed method predicts this optimization objective

with more accuracy, leading to more confidence in optimization.

We have developed a set of easily generalizable tools suitable to analyze a

wide range of spatio-temporal point process applications. We jointly estimate

mixture component distributions over time to promote efficient learning of spa-

tial structures, and describe spatial and temporal characteristics using mixture

weights. This approach can be applied to various settings in which particular

spatial aspects of the point process are time invariant, or data are too sparse at

the desired temporal granularity to describe spatial structures accurately. The

evolution of mixture weights provides a flexible and simple framework to ex-

plore complex temporal patterns, dynamics, and their interactions with space

in a spatio-temporal point process. In this application, we capture seasonalities

by constraining the mixture weights, and represent any location-specific depen-

dence structure by imposing CAR priors on the mixture weights. We have also

shown that prediction may be implemented with a variable number of compo-

nents, inclusion of covariate information and incorporation of a spatial bound-
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ary. The proposed method is parsimonious, flexible, straightforward to imple-

ment, and computationally-feasible for large-scale datasets.

The proposed model utilizes the same data as the current industry methods,

and does not require any additional data collection. Future work can investigate

the use of additional covariates, such as weather, special events, population and

demographic variables, in addition to historical data. A further challenge is to

collect and make use of data on population and demographic shifts across fine

time scales, e.g., hourly. Additionally, a computationally-feasible way of incor-

porating the boundary of Toronto and accounting for the high concentration of

observations near the boundary would be an important contribution.

Second, in Chapter 3, we use a spatio-temporal weighted kernel density es-

timator (stKDE) to predict spatio-temporal ambulance demand in Toronto with

higher accuracy and comparable computational cost as a typical industry prac-

tice.

Methodologically, we multiply the spatial kernel of each historical observa-

tion with a weight value to indicate the informativeness of this historical obser-

vation to the current predictive task. The spatio-temporal weight functions are

inferred from dependencies in data, are unique to each neighborhood and can

be updated regularly. This is a step up from the ad hoc heuristic that only ac-

counts for the same simply weekly and yearly seasonality across the entire city.

The weight functions are also flexible to represent various spatial and temporal

characteristic. They are easy to experiment, visualize, interpret and implement

by non-specialized personnel from the EMS industry without requiring special

statistical expertise. Moreover, stKDE easily handle missing data by placing

zero weight and scaling up weights on other data proportionally. It can also

easily predict many hours or days into the future.

We design efficient estimation of the weight function, and offer customizable

prediction to balance the trade-offs between accuracy and computational cost.

The tools we have developed can be easily generalized to a wide range of other

applications with spatial-temporal point process data.
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Third, in Chapter 4, we propose a novel predictive method using spatio-

temporal kernel warping to overcome data sparsity and capturing complex

spatial feature. To predict for each hour, we build a kernel density estima-

tor on a sparse set of most similar data from relevant past time periods (la-

beled data), but warp these kernels to a larger set of past data irregardless of

time periods (point cloud). The point cloud represents the spatial structure

and geographical characteristics of Melbourne, including complex boundaries,

road networks, and neighborhoods. Borrowing from manifold learning, kernel

warping is done through graph Laplacian of the point cloud and can be inter-

preted as a regularization towards and imposing a prior of features of spatial

domain. Kernel bandwidth and degree of warping can be efficiently estimated

via cross-validation, and can be made time- and/or location-specific. Our pro-

posed model gives significantly more accurate predictions compared to a cur-

rent industry practice, an unwarped kernel density estimation, and a Gaussian

mixture model.

Kernel warping circumvents the need to define boundaries and boundary

conditions, which are often difficult in the practice of modeling point patterns

on complex spatial domains. It also captures and exploits finer-grain inter-

nal spatial structure other than boundary features, which can be prominent in

various heterogeneous environments such as cities, buildings, mountains, and

forests. Kernel warping is not limited to density estimation. It can be adapted

to model a wide range of functions and surfaces. It can be used to perform a

broad set of tasks including prediction, classification, clustering, and visualiza-

tion. Inferences on uncertainty, if desired, can be obtained by assessing cross-

validation variance and warping kernels to different samples of point clouds.

There is much flexibility in designing the point cloud and its Laplacian. We of-

fer some discussions on these in the context of spatial and spatio-temporal point

patterns. We also offer efficient estimation of kernel bandwidth and degree of

warping local to time periods and locations via cross-validation. The proposed

method is straightforward to implement and easy to experiment with. The tools

we have developed can be easily generalized to model a wide range of spatial
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or spatio-temporal point process on complex spatial domains.

5.2 Data mining in healthcare, operations and business

Data has transformed industries such as healthcare, operations and business.

New challenges arise when we use data to inform decisions in these indus-

tries. The methodologies developed in this dissertation explore solutions to

three such challenges.

5.2.1 How to exploit complex dependencies in data

Much effort has focused on developing sophisticated statistical methods for in-

dependent data, or incorporating dependence specific to one dimension, such

as time or space. However, in real-world data, patterns across time, space, event

type, users and other features are the norm. Additionally, patterns in different

dimensions often interact to give rise to highly intricate dependence structures.

For example, ambulance demand exhibits daily seasonality at densely popu-

lated areas, but not in lightly populated neighborhoods. Factors such as pre-

cipitation have different impacts on ambulance demand at different times (e.g.,

commute hours vs. at night) and locations (where snow is promptly cleared vs.

where it is not).

To capture such complex dependencies is critical for accurate prediction;

these dependencies provide invaluable information that we ought to take ad-

vantage of. The challenge is to design modeling schemes that allow flexible

dependence representation. Using the time-varying Gaussian mixture model

proposed in Chapter 2, we improve predictive accuracy by 20-25% compared

to current industry practice. Incorporating location-specific temporal dynamics

alone boosts predictive accuracy by 3%.

This is an important area of research with many interesting questions. For
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example, event type adds another layer of dependence; crimes of different

severities, demand of different priorities, or product promotions of different

types are rarely independent. Most studies that jointly model multiple types of

events assume independence among event types and between event types and

time, location and features. Incorporating these dependencies will provide fur-

ther insights for accurate prediction. Additionally, modern data in healthcare,

operations and business comes in many forms; we would also like to model

how language or opinions from texts, networks, or images, change with time,

space, and other factors.

5.2.2 How to overcome information overload

Many predictions are made from proprietary black box models. We pour in all

the data we have, with little understanding of how relevant each data compo-

nent is; we also cannot easily understand how predictions are made. In contrast,

it is very appealing to be able to draw out the most relevant aspects of data and

represent them in an interpretable form for accurate inference. Predictions can

be improved via dimension reduction. More importantly, domain experts such

as doctors or business managers can easily understand which factors play cen-

tral roles in prediction. There has been a lot of effort on ranking the importance

of features (e.g., decision trees, association rule mining). In spatio-temporal pre-

dictions, I have shown that spatial and temporal information in data can pro-

vide important pathways to constructing interpretable models.

For example, using the spatio-temporal weighted kernel density estimation

proposed in Chapter 3, we use a spatio-temporal weight function to represent

exactly how important each historical data is to the current predictive task. We

can potentially also represent which covariates are the most helpful in any pre-

dictive task. Domain experts in EMS can easily learn insights and act accord-

ingly.

Spatial and temporal characteristics in the data are easy to visualize and can
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be very powerful. It would be interesting to explore how they can provide in-

terpretable and informative basis for other problems such as those in clustering

and classification, by ranking data and/or features.

5.2.3 How to overcome sparsity in data

Ironically, we frequently encounter data sparsity despite having massive

amounts of data. This is a result of our desire to predict at high resolution. We

would like to predict product demand at Amazon for every product, shipping

method and destination city, and predict ambulance demand for every hour,

every 1 km2 region, and every priority class. For many of these requirement

combinations, we have little data. If we naively restrict our attention to within

each combination, we can do no better than very noisy predictions, while avoid-

ing always predicting zero events.

Temporal and spatial characteristics in data often provide us with opportu-

nities to borrow observations or information from outside of the target require-

ment combination. Here we have explored clustering, hierarchical structure,

Bayesian modeling, mixture models or kernel methods, and pooling / combin-

ing data across time and/or space. Most of these methods are aided by under-

standing patterns and dynamics in time and space.

Subsequent interesting questions to ask include how to intelligently dis-

aggregate uncertainty back to each combination. Second, mainstream predictive

performance measures tend not to behave very well on sparse data. Many mea-

sures become undefined with sparse data, and always predicting zero events

frequently has the highest performance. The quest is to look for measures robust

and fair for sparse data. Finally, we eventually have to answer the foundational

question of what is predictable and what is not.
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