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ABSTRACT

Niobium diselenide (NbSe2) possess a high electrical conductivity and low ther-

mal conductivity, making it a candidate for thermoelectric devices. While the

electronic properties of NbSe2 has been relatively explored, the lateral ther-

mal conductivity for NbSe2 has remained unknown. In this report, we present

the lateral thermal conductivity of NbSe2 determined by nondestructive opto-

thermo method utilizing micro-Raman spectroscopy. The thermal conductivity

κ = (15 ± 4) W/mK was obtained at room temperature and we further verified

by hall measurements that NbSe2 conducts heat mostly through electrons. The

results shed lights on the potential of Niobium diselenide as a thermoelectric

device.
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CHAPTER 1

INTRODUCTION

The discovery of graphene[1] and the mechanically exfoliation technique have

led to many advancements in layered materials. Layered materials are bounded

by van der Waals force, which give rise their unique properties. The absence of

dangling bonds at the surface enables them to grow defect free heterostructures

by van der Waals epitaxy[2]. The properties of mono- to few-layer materials,

however, have remained relatively unexplored. With the progressing of me-

chanically exfoliation techniques, we are able to fabricate samples and explore

their unique properties.

1.1 Niobium Diselenide and it’s challenge

Early studies of NbSe2 demonstrated NbSe2 to be among the first few layered-

structured supercondutors with Tc ranging from 5.9 to 7.0 K[3]. About the same

time, bulk thermoelectric properties studies[4] of NbSe2 showed Seebeck coef-

ficient of 12 (µV/K) and the thermal conductivity of 2.1 (W/mK). NbSe2 is a

sensitive materials that oxidizes easily under open environment, therefore de-

termining the thermal conductivity of thin film NbSe2 is non-trivial.

1.2 Overview of this thesis

Recent studies on TMDs (transitional metal dichalcogenindes) have shown dis-

similar and unique properties that is absent in their bulk form [5]. The challenge
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in determining the thermal conductivity of thin film NbSe2 lies in the mate-

rial’s tendency of oxidation in ambient environment. However, by utilizing the

contactless opto-themo method we eliminate this concern by enclosing the thin

film NbSe2 sample in vacuum environment. The result is κ = (15±4) W/mK. We

also performed Hall measurements to determine the electron contribution of the

thermal conductivity. Measurements ranging from 1 µA to 500 µA returns aver-

age resistance of 3.09×10−7 Ωm, corresponding to electron thermal conductivity

κe of 23.9 W/mK by WiedemannFranz law. The κ is extracted using radial heat

diffusion model by fitting the increase in sample temperature to experimental

obtained results.
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CHAPTER 2

LITERATURE REVIEW ON TEMPERATURE-DEPENDENT RAMAN

In this chapter includes a brief review of the past results using temperature-

dependent Raman. Several advantages of this method are: non-destructive,

contactless, quick response, and relatively resistant to crystal impurities.

Temperature-dependent Raman was first employed on silicon before moving

on to other materials. A detailed review of determining κ using this technique

is provided by Judek[6]. The purpose of this review is to provide readers a

compact and general knowledge of this technique.

2.1 Silicon

The study of the decaying of optical phonon to two LA phonon in silicon[7]

were the very first studies utilizing temperature-dependent Raman. They ob-

served temperature dependence for both the Raman frequency and linewidth.

The use of temperature-dependent Raman to determine κ, however, were first

used for silicon with different porosity[8]. In the report, they employed laser

beam heating which will cause the local temperature to rise and the increase in

local temperature is largely dependent on the local κ. The relation of local κ can

be described as

κ =
2∆P
πa∆T

(2.1)

where πa is the beam periphery. ∆P = P2 − P1 is the power difference and

∆T = T2 − T1 is the temperature increase. Both T1 and T2 are predetermined

by temperature-dependent Raman which the laser power is set to the lowest

laser power to minimize the heating of the sample. This report established the

3



use of temperature-dependent Raman to determine the local heat increment.

This method turns out to be very powerful that later it led to the opto-thermal

technique which is currently used to extract the κ of thin films.

2.2 Graphene

Temperature dependence of graphene were first reported by Calizo et at.[9]

They observed the Raman frequency shift of G mode for both bi- and mono-

layer graphene. The frequency of the G mode with respect to temperature can

be fitted by

ω = ω0 + χT T (2.2)

where ω0 is the G mode frequency when temperature T approaches 0 K

with a linear extrapolation. χT is the first-order temperature coefficient. The

higher-order terms were ignored because they are expected to appear at higher

temperature[10]. The Raman frequency shift due to temperature can be de-

scribed by thermal expansion and other anharmonic effect which can be ob-

served in silicon[7]. Later, Balandin et al.[11] restrict the heat flow within

graphene by suspending the flake over a trench. With the energy conservation

equation he obtained
∂Q
∂t

= −κ

∮
∇T · dS (2.3)

where Q is the heat transfer within time t. He considered two limiting cases, for

the radial heat wave

κ = χT
1

2hπ

(δω
δP

)−1
(2.4)

where δω
δP is the Raman peak position shift of G mode due to power difference

and h is the thickness of monolayer graphene. Another extreme case he consid-
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ered is the plane-wave heat front

κ = χT
L

2hW

(δω
δP

)−1
(2.5)

where L and W is the length and width of the flake. With the above equations

he was able to extract the suspended κ for graphene to be (4.84 ± 0.44) × 103

to (5.3 ± 0.48) × 103 W/mK. This is the first reported thermal conductivity for

graphene, however, the values were an overestimate.

Cai et al.[12] refined the technique by growing graphene on top of Au-coated

SiNx membrane with 3.8 µm holes. With the introduction of the temperature

distribution from the heat diffusion equation in cylindrical coordinate

1
r

d
dr

(
r

dT2(r)
dr

)
−

g
κst

(T2(r) − Tamb) +
q(r)
κs

(2.6)

where q(r) is the volumetric heating. By solving T (r) and normalize with q(r)

and fit with the experimental results he was able to obtained (370 + 650/-

320) W/mK for the supported graphene at room temperature. The suspended

graphene returns (2500 + 1100/-1050) W/mK at 350 K and decrease to (1400 +

500/-480) W/mK at 500 K. The detailed calculation will be derived in the fol-

lowing chapter.

2.3 Transitional metal dichaclogenides

Transitional metal dichalcogenides (TMDS) are a family of materials with sto-

chiometry of AX2. TMDs have a wide spectrum of electrical properties from

semiconductor-like to metal-like[13]. However, the thermal transport proper-

ties have been relatively unexplored because the traditional thermal conductiv-

ity measurements such as the 3ω method requires measurable temperature gra-
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dient over the thickness[14]. After the techniques and equation developed by

Cai et al.[12], researchers have been employing the technique for determining κ

of layered materials. In this chapter, two examples from the TMDs family will

be given to provide background information and also our attempt to validate

the use of opto-thermo techniques on TMDs.

2.3.1 MoS2

Yan et al.[15] measured the κ of monolayer MoS2 to be = (34.5 ± 4) W/mK at

room temperature. The sample was prepared by mechanical exfoliation and

was transferred on to prepatterned Si3N4/SiO2/Si substrate with holes of 1.2

µm in diameter. They observed a saturation behavior for the redshift in power-

dependent Raman, which they attributed to nonlinearity terms because the

sample was heated to high enough temperature. Both temperature- and power-

dependent Raman showed good linear relationship at the temperature ranging

from 100 K to 320 K. They also compared the first-order temperature coefficient

with different supporting substrate and found out that E1
2g mode is more sus-

ceptible to substrate strain than A1g mode[16].

2.3.2 MoSe2

Zhang et al.[17] used similar techniques to determined the κ for mono- and bi-

layer MoS2 and MoSe2. The determined values are (84±17) W/mK and (77±25)

W/mK for mono- and bi-layer MoS2, similar to the results obtained by Yan.

The κ for MoSe2 are (59 ± 18) W/mK and (42 ± 13) W/mK for mono- and bi-

6



layer respectively. In the report, they also determine the interfacial thermal con-

ductance g to be 0.1 to 1 MW/m2K. They determined the g by measuring the

temperature increase ∆T with respect to distance from the center of the trench

and fit the results with the T (r) determined by (2.6). The outcome g is an order

of magnitude lower than previously reported, suggesting that g will affect the

extracted κ for trenches with the diameter of 1 µm.

2.3.3 WS2

Last example in this chapter is WS2, which has larger bandgap (≈ 2.1eV)[18]

than MoS2. Peimyoo et al.[19] reported 32 W/mK and 53 W/mK for mono- and

bi-layer WS2 using holes of 6 µm in diameter. The calculation details in this

paper was not disclosed, but the κ is within the same order of magnitude with

MoS2 and MoSe2.

The above examples show a glimpse of the potential of opto-thermo tech-

nique, the technique is suitable for determining κ for layered materials. How-

ever, the calculation method will only be valid provide that both the first-order

temperature and power coefficient are reasonably linear in the range of interest.

Second assumption from (2.6) is that the heat conducts isotropically, therefore

the technique will not be accurate for materials with high anisotropicity heat

conduction.
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CHAPTER 3

HEAT DIFFUSION MODEL

To extract the κ from temperature- and power-dependent Raman spectroscopy,

it is essential to first solve the heat dissipation equation for within and outside

the suspended region. Temperature distribution within and outside are denoted

as T1(r) and T2(r) respectively with r is the radial distance from the center of the

trench
1
r

d
dr

(
r

dT1(r)
dr

)
+

q(r)
κ

= 0 with 0 < r ≤ R, (3.1)

1
r

d
dr

(
r

dT2(r)
dr

)
−

g
κst

(T2(r) − Tamb) +
q(r)
κs

= 0 with r > R (3.2)

where t = 120nm is the thickness of the thin film NbSe2 sample, R = 1.5µm is the

radius of the trench, Tamb is the ambient temperature, κ and κs are the thermal

conductivity of thin film NbSe2 within and outside the suspended region respec-

tively. The difference between (3.1) and (3.2) is the dissipation of heat through

thin film NbSe2 to the substrate through g, the interfacial thermal conductance

per unit area between thin film NbSe2 and the Si/SiO2 substrate. Because the

thickness is relatively small compare to the dimension of the thin film NbSe2

flake, the heat conducted through the term g will affect the extracted κ when g

is less than 20 MW/m2K. The details will be discussed later in the Parameters

section.

The power transfer by the laser beam is normalized by q(r), the volumetric

heating (W/m3) given by

q(r) =
Iα
t

exp
(
−

r2

r2
0

)
(3.3)

where α = (42 ± 5)% is the absorbance of the thin film NbSe2 at 532nm de-

termined by measurement and I = P/(πr2
0) is the power per unit area at beam

8



center with r0 the half Gaussian beam width. (3.2) can be reduced to a nonho-

mogeneous Bessel’s with the use of θ = (T2(r) − Tamb) and γ =
(

g
κst

)1/2
r

∂2θ

∂γ2 +
1
γ

∂θ

∂γ
− θ = −

Iα
g

exp
(
−
γ2

γ2
0

)
(3.4)

The temperature distribution solutions to (3.1) and (3.2) take the form

T1(r) = C1 + C2 ln(r) + C3Ei
(
−

r2

r2
0

)
(3.5)

T2(r) = C4 + C5I0(γ) + C6K0(γ) (3.6)

where Ci are coefficient determined by boundary conditions set by the experi-

ment conditions. I0 and K0 are the zero-order modified Bessel functions of the

first and second kind respectively.

3.1 Boundary conditions and coefficients

There are four boundary equations for determining the coefficients Ci, but some

coefficients could be determined with quick analysis. C4 = Tamb and C5 = 0 is

obvious by considering T2(∞) = Tamb because I0(∞) → ∞, the first boundary

condition stating that the substrate is maintained at room temperature. Since

the dimension of the substrate is at least 106 times greater than the thin film

NbSe2, the temperature increase in the substrate is negligible. The flake is at

least 2 times larger than the diameter of the trench in any planar dimension so

it gives that the excess heat would be dissipated completely at the edges of the

thin film NbSe2. The rest of the coefficient could than be determined by

T2(∞) = Tamb (3.7)

9



T1(r) |r=R= T2(γ) |r=R (3.8)

κ
dT1(r)

r
|r=R= κs

T2(γ)
r
|r=R (3.9)

−2πRtκs
T2(γ)

r
|r=R= αP (3.10)

We justified (3.7) by stating that the substrate is not heated by the laser and

the excess heat on the thin film NbSe2 would dissipate completely at the edge

of the flake. (3.8) is the temperature gradient must remained continuous at the

trench edge. (3.9) is the energy conservation between the suspended and sup-

ported thin film NbSe2, note that the heat could also dissipation through am-

bient however since the the sample is kept in cryostat pumped to vacuum this

path contributes negligibly to the total heat dissipation. (3.10) is another energy

conservation related to (3.9), this condition states that the heat flux passing the

trench edge must be equal to the heat absorbed by the thin film NbSe2. With the

above boundary equations we can solve the remaining coefficient.

With T1(0) must be finite, we can obtain C2 = −2C3 by taking derivative of

both sides of (3.5).

0 = C2
∂ ln(r)
∂r

+ C3

d∂Ei(− r2

r2
0
)

∂r
=

C2

r
+

C3exp(− r2

r2
0
)

− r2

r2
0

×
−2r
r2

0

(3.11)

The last coefficient left in (3.2) can be determined by (3.10)

C6 =
αP

2πRtκsγK1(Rγ)
(3.12)

With T2(r) solved, we can move on to solve the coefficients in T1(r). By (3.9)

C3 =
αP

2πRtκsγK1(Rγ)
κsγK1(Rγ)

2κ
2

[
exp

(
− R2

r2
0

)
− 1

] (3.13)

Note that the derivative of K0(γ) is

∂K0(γ)
∂r

= K1(γ)
( g
κst

)1/2
(3.14)
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With only C1 and (3.7) left, we solve the constant term for (3.5)

C1 = Tamb +
αP

2πRtκsγK1(Rγ)
κsγK1(Rγ)

2κ
2

[
exp

(
− R2

r2
0

)
− 1

] × [
Ei(−

R2

r2
0

)− 2 ln(R)
]
−

K0(Rγ) × αP
2πRtκsγK1(Rγ)

(3.15)

The entire solution T1(r) takes the form

T1(r) = Tamb +
αP

2πRtκsγK1(Rγ)
κsγK1(Rγ)

2κ
2

[
exp

(
− R2

r2
0

)
− 1

] × [
Ei(−

R2

r2
0

) − 2 ln(R)
]

−
K0(Rγ) × αP

2πRtκsγK1(Rγ)
+

αP
2πRtκsγK1(Rγ)

κsγK1(Rγ)
2κ
2

[
exp

(
− R2

r2
0

)
− 1

] × [
Ei(−

r2

r2
0

) − 2 ln(r)
]

(3.16)

Below shows a calculated temperature profile T (r) for different values of κ, the

higher the κ the lower the temperature increase. In general, the temperature

distribution T (r) for higher κ is relatively independent of g. The manifestation

of g can be seen at temperature distribution outside the trench T2(r). Essentially

all the heat needs to be dissipated by g at the edge of the thin film NbSe2, the

’pinning’ effect of g will be discussed in detail later.

Figure 3.1: Example stacking of T (r) for different κ.

An example stacking of T1(r) and q(r) is show in Figure 3.2. Note that be-

cause of low interfacial thermal conductance (g = 2 MW/m2K), temperature

11



Figure 3.2: Example stacking of T (r) and q(r) plot.

increases (Difference between T (r) adn Tamb) even outside the trench. The dis-

tribution needs to be normalized to reflect the collective response we obtained

from Raman measurements, so we further normalized by the angle to obtain the

averaged weighted Tm

Tm ≈

∫ ∞
0

T (r)r exp
(
− r2

r2
0

)
dr∫ ∞

0
r exp

(
− r2

r2
0

)
dr

(3.17)

The nominator and the denominator of (3.17) can be seen in Figure 3.3. The

nominator is the area under red curve and the denominator is the area under

the blue curve, also note that the Gaussian beam width is much smaller than

the trench diameter therefore the heating outside the trench due to laser is neg-

ligible. The reason why Tm contains T (r) rather than T1(r) is because we have to

consider the entire temperature distribution due to laser heating, however the

model will be inaccurate if region outside the trench is also heated by laser out-

side the trench. If the Guassian beam width is larger than the trench, then we

have to consider both the interfacial conductance g and supported thermal con-

ductivity κs as they will change the temperature distribution T (r) significantly
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Figure 3.3: Visualization of Tm calculation.

since (3.10) will not hold true for this case. Therefore, it is essential for the Gaus-

sian beam width to be less than the diameter of the trench. We can simplify the

equation by replacing T (r) by T1(r) if the diameter is much larger than Gaussian

beam width without much deviation as T1(r)q(r)r decays quickly outside the

Gaussian beam width (The red curve is roughly same width as the blue curve).

Finally we determined the thermal conductivity κ by fitting (3.17) to the ex-

perimental result (Texp)

Texp = Tamb +
χP

χT
P (3.18)

3.2 Parameters

In this section simulations for each individual parameter is presented in hope

to provide readers an fundamental understanding of the errors accompanied

with the parameter. All simulations use the first-order temperature coefficient

from sample 161027 HL NbS e2 and first-order power coefficient from sample

13



161027 HL NbS e2. The initial parameters are Half Gaussian beam width r0 =

0.22 µm, Absorption coefficient α = 0.42 determined by measurement which

will later be discussed in Measurement setup, interfacial thermal conductivity

g = 2 MW/m2K , and lastly the supported thermal conductivity κs = κ. Each

subsection varies only the specify parameter while the others remained fixed to

enable us to see the general trend regarding the specify parameter.

3.2.1 Half Guassian beam width r0

As mentioned in the previous section, it is essential that the Guassian beam

width to be smaller the trench diameter so the supported thin film NbSe2 will

not be heated by the laser as (3.10) will be invalid if that is not the case. The

half Guassian beam width is estimated to be 0.26µm, 0.23 µm, and 0.19µm for

long-working distance 50×, 50×, and 100× with r0 = λ/πNA[12]. The simulated

3D drawing of q(r) is shown on next page. In Figure. (3.7), the peak q(r) for 100×

is almost twice of the peak q(r) for long-working distance 50×. However, since

the Gaussian width is sufficiently smaller than the diameter of the trench, all

lens should obtain similar κ. In fact, in the experimental section we do obtained

similar results even with different lenses (see Appendix A).
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Figure 3.4: q(r) for 100X NA=0.9 lens

Figure 3.5: q(r) for 50X NA=0.75 lens.
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Figure 3.6: q(r) for long-working distance 50X NA=0.65 lens.

Figure 3.7: q(r) stacking for 100X, 50X, and LW 50X lens.

Lastly in this subsection let’s consider the variation resulting from r0 by fix-

ing all the other parameters, including the first-order temperature and power

coefficients. In the experiments, however, the first-order temperature and

power coefficients will be different for different r0.
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Figure 3.8: κ for various r0 using A1g.

Figure 3.9: κ for various r0 using E1
2g.

Both the Inverse and the second-order Polynomial fittings could describe

the relation between r0 and κ reasonably well. The actual lens used for

161027 HL NbS e2 is the 50× NA= 0.75, so the extracted κ is (14.4 ± 4) W/mK

depending on which Raman mode we use. The importance in this plot is that

the error of r0 could result in different κ rather than the exact value itself. In the

later Experimental chapter, we will take this uncertainty into account.

17



3.2.2 Absorption coefficient α

Absorption coefficient α is the portion of the power absorbed by thin film NbSe2.

α’s role in determining the temperature distribution T (r) lies in (3.10), the total

power conservation equation. Since α does not affect the shape of the tempera-

ture distribution T (r), the extracted κ varies linearly with α.

Figure 3.10: κ for various α using A1g.

Figure 3.11: κ for various α using E1
2g.
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3.2.3 Interfacial thermal conductance g

Figure 3.12: T (r) for various g using κ = 15 W/mK.

The interfacial thermal conductance g plays a big role in determining the

temperature distribution T (r). Figure 3.12 shows an example for various tem-

perature distribution T (r) corresponding to different g. The affect for various

g can be seen at the absolute temperature at the edge. The ’pinning’ to ambient

temperature is more prominent for higher g. As seen in Figure 3.12, the tempera-

ture distribution T (r) does not change significantly after g = 20 MW/m2K. After

this saturation of heat dissipation through substrate, the extracted κ becomes

relatively independent of g. The interfacial thermal conductance is assumed to

be g = 2 MW/m2K for κ extraction, which is the experimental value range for

graphene[6], MoS2[6][20], and MoSe2[20] on SiO2.

Figure 3.13 and Figure 3.14 both show similar trend which could be de-

scribed by inverse fitting equation. The extracted thermal conductivity κ for A1g

mode is roughly 0.5 W/mK lower than E1
2g mode for same interfacial thermal

conductance g.

19



Figure 3.13: Extracted κ for various g, A1g mode.

Figure 3.14: Extracted κ for various g, E1
2g mode.

3.2.4 Supported thermal conductivity κs

The effect of supported thermal conductivity of thin film NbSe2 κs on the tem-

perature distribution T (r) is similar to g. However, rather than pinning the tem-

perature at the edge of the trench to Tamb, higher κs to κ ratio conducts more heat

to the edge of the thin film NbSe2 edge. If we extrapolate κs = 0 W/mK, the
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extracted κ will be similar to the case of which g is extrapolate to infinity; if we

set κs = κ, the extracted κ will be determined by g alone. In both cases which

either κs = 0 W/mK or g→ ∞MW/m2K, the extracted κ is closed to 12 W/mK.

Figure 3.15: T (r) for various κs to κ ratio.

Figure 3.16: Extracted κ for various κs to κ ratio, A1g mode.

In Figure 3.15, the temperature distribution T (r) is similar to Figur 3.12. The

’pinning’ effect is more prominent at lower supported thermal conductivity κs,

which the temperature increase is restricted within the trench and the heat is
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Figure 3.17: Extracted κ for various κs to κ ratio, E1
2g mode.

conducted through substrate at the trench edge. Figure 3.16 and Figure 3.17

show the dependence of κ to κs, again the extracted thermal conductivity κ for

A1g mode is roughly 0.5 W/mK lower than E1
2g mode for same κs to κ ratio.

However since the thin film NbSe2 and the substrate are bounded only by van

der Waals force, κs is assumed to be same as κ for final extraction.

To conclude, for the parameters analyzed in this chapter, the extracted κ will

have the maximum difference of 4 W/mK. The uncertainty of absorption coeffi-

cient α will be the dominant factor of this difference since κ varies linearly with

α. Difference from both g and κs will only be large in the extreme cases therefore

are assumed to be minor factor of the κ difference.
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CHAPTER 4

TEMPERATURE- AND POWER-DEPENDENT RAMAN

In this chapter, detailed descriptions for the measurements and the results

will be discussed. The main focus of this chapter is to provide readers a exper-

imental guide to the opto-thermo technique, which can be employed on other

2-D materials of interest in the future. The data mentioned in this chapter is the

final data used for κ extraction.

4.1 Sample preparation

The NbSe2 sample was prepared by mechanically exfoliating commercially

available bulk NbSe2 crystal (HQ graphene Inc.) and transferred to prepat-

terned Si/SiO2 substrates within 90 min to minimize oxidation. The trenches

was etched down from the Si02, ranging from 100 − 200nm in depth to prevent

contact between the thin film NbSe2 and the substrate due to deflection. There

are two substrates used in the experiments, one for temperature-dependent Ra-

man and the other for power-dependent Raman. The temperature-dependent

Raman was done on linear trench shown in Figure 4.2 and 4.3. The advantages

of linear trench include easier sample preparation and relatively resistive to lat-

eral shaking. However for power measurements, circular trench is preferred

because the inadequate modeling for linear flakes. The power-dependent mea-

surement was done on circular trench shown in Figure 4.4 and 4.5. The optical

image of 161027 HL NbS e2 and 170117 HL NbS e2 is shown in Figure 4.1, both

are taken using 100×.
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Figure 4.1: Optical image of 161027 HL NbS e2 and 170117 HL NbS e2.

Figure 4.2: AFM image of 161027 HL NbS e2 for temperature-dependent
Raman.

Figure 4.3: Step height of 161027 HL NbS e2, the sample is measured to be
25 nm.
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Figure 4.4: AFM image of 170117 HL NbS e2 for power-dependent Raman.

Figure 4.5: Step height of 170117 HL NbS e2, the sample is measured to be
120 nm.

4.1.1 Surface roughness and flake thickness

The NbSe2 sample on the circular trench is much thicker that the sample on the

linear trench. It is believed that the transferring of the flake would be easier if

transferring from a rougher material to a smoother substrate because the inter-

action between flake and the material is most likely to be van der Waals force[1].

Therefore it is more difficult to transfer a thinner flake onto a rough substrate

and vice versa.
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Figure 4.6: The RMS for the linear trench is measured to be 0.9 nm.

Figure 4.7: The RMS for the circular trench is measured to be 4.16 nm.

4.2 Measurement setup

In this section, descriptions of the apparatus and the procedure will be pro-

vided. The three system will be discussed here includes: Renishaw InVia Con-

focal Raman microscope system, Oxford Instrument cryostat, and absorption

coefficient measurement.
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4.2.1 Raman system

Raman spectra were obtained using Renishaw InVia Confocal Raman micro-

scope system with 532nm laser excitation. The temperature-dependent spec-

tra was collected using long-working distance 50× objective with 0.65 NA. The

laser power for temperature-dependent Raman was maintained below 0.1 mW

to avoid excess heating of the sample. Power-dependent Raman spectra was

obtained using 50× and 100× with NA of 0.75 and 0.9 respectively. The half

Guassian beam width is estimated to be 0.26µm, 0.22 µm, and 0.19µm for long-

working distance 50×, 50×, and 100× with r0 = λ/πNA[12]. The grating was

2400 l/mm for all measurements and the spectral resolution was ∼1.1 cm−1. All

measurements were calibrated using silicon peak at 520.6 cm−1 before any data

was collected.

4.2.2 Cryostat

The thin film NbSe2 sample was kept in cryostat (Oxford Instrument) with con-

trollable heating stage, the temperature error was kept within ± 1K by stabi-

lizing the temperature for 10 min. The reason that we didn’t use the cryostat

for power-dependent measurement is that the window of the cryostat broadens

the laser beam, therefore less power is deposited onto the thin film NbSe2. The

cryostat also have another inherit problem which is the shaking caused by the

pumps. There are two pumps for the cryostat system, one is the turbo pump

to pump the cryostat and another is the mechanical pump to deliver the liquid

nitrogen from the dewar. Even with isolations the shaking cannot be reduced

to less than 1 µm, this will change the half Guassian beam width r0 significantly
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thus making the power-dependent Raman measurements less reliable.

4.2.3 Absorption coefficient

The absorption coefficient of the thin film NbSe2 is determined by the setup

schematic shown in Figure 4.8.

Figure 4.8: Schematic drawing of absorption measurement, the value in
the box indicate the percentage measured at the terminal. The
value measured before the light blue lens (red box) is set as the
initial value.

The calculated transmission of each component is shown in Figure 4.9. The

arrow represents the transmission path of the component calculated. Note that

most of the power is lost through the beam splitter. We can then use the cal-

culated percentage to determine the actual power incident and reflected on the

sample, which is placed under the lens drawn in gray.

Now we can calculate the actual power reflected by the Si/SiO2, which is

done by dividing the final value (green box) by the transmission percentages of
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Figure 4.9: The transmission percentage of each individual component.
The transmission of the beam splitter (light green) and the lens
(gray) are used.

Figure 4.10: The calibration measurement using Si with 200 µm SiO2, the
values in the boxes are absolute values measured.

the components along the beam path (green arrow).

RS i/S iO2 = 2.1 ×
1

33.89%
×

1
82.52%

= 7.51 µW (4.1)

The first fraction is the power lost through the beam splitter and the second is

the power lost through the lens. The reflectance is calculated to be 7.51/32.817 =

22.88 % where 32.817 µ W is the power incident on the Si/SiO2 by 266.49 ×
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12.31%. The reflectance is within 20 35 %,which is similar for literature data

bare silicon and silicon after a prolong exposure[21].

Figure 4.11: The absorption measurement data of 100nm NbSe2 sample.

The measurement data for 100nm NbSe2 sample is shown schematically in

Figure 4.11. With similar calculation, the actual power reflected by the 100 nm

NbSe2 sample is

RNbS e22 = 8 ×
1

33.89%
×

1
82.52%

= 28.61 µW (4.2)

Finally the reflectance is calculated to be 28.61/49.24 = 58.1 % where 49.24

µW is the power incident on the Si/SiO2 by 400 × 12.31%. Since the flake is

opaque so we assumed the absorption coefficient to be 100 − 58.1 ∼ 42%.

4.3 Results

To quantify the effect of temperature and power on Raman spectra, both A1g

and E1
2g modes were fitted using Lorentzian fit as shown in Figure 4.12. The
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center of the fitting is used throughout the calculations and the FWHM of the

fitting for temperature-dependent Raman spectra is recorded. Two peaks are

used here: A1g mode at 230.9 cm−1 and E1
2g mode at 238.3 cm−1[22]. The Raman

shift for both peaks are within 10 cm−1, therefore it is hard to distinguish the

peaks at both low and moderate power. The reason for low power is that A1g

mode will be very dominant and thus making it difficult to differentiate the

E1
2g mode. At moderate power it is because the first-order power coefficient for

E1
2g mode is two times larger than A1g mode, so at moderate power two modes

merge together. However at high enough power the Raman shift will saturates

and the modes become distinguishable again.

Figure 4.12: Example Lorentzian fitting.

4.3.1 Temperature-dependent Raman

The peaks showed redshift with increasing temperature and power, and the

thermal effect can be described by Grüneisen model[23]

ω(T ) = ωT0 + χT T (4.3)
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Figure 4.13: Example Lorentzian fitting for 110 K, 180 K, 270 K, and 340 K.

where ωT0 is the intercept of Raman shift when flake temperature T approach

0 K. χT is the first-order temperature coefficient for A1g and E1
2g modes which

can be derived from the slope of temperature dependence. The Raman fre-

quency shift due to temperature can be described by thermal expansion and

other anharmonic effect which can be observed in silicon[7] and other layered

selenide systems[24]. Nonlinearity from higher-order terms can been seen on

other TMDs materials[25] and are expected to be more dominant at higher

temperature[10], however linear dependence is desired for extracting κ at tem-

perature range of interest.

Figure 4.13 shows temperature-dependent data for both 20 nm and 25 nm

flakes with Lorentzian peak position fit for A1g and E1
2g modes plotted as func-

tions of temperature.The temperature coefficients for A1g mode are −(0.0157 ±

0.0005) cm−1/K and −(0.0148 ± 0.0006) cm−1/K for 20 nm and 25 nm respec-

tively. E1
2g mode peaks have twice the redshift compare to A1g mode and their

temperature coefficients are −(0.0379 ± 0.0019) cm−1/K and −(0.0341 ± 0.0021)

cm−1/K for 20 nm and 25 nm respectively. The slope is more negative for 20 nm
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Figure 4.14: Raman shift of 25 nm and 20nm NbSe2 with respect to tem-
perature using linear trench.

flake because the temperature range is larger, which higher-order terms con-

tribute to nonlinearity. The larger fitting error for E1
2g mode can be attributed to

the broad nature of the peak shape as in Figure 4.13 which have lower signal-

to-noise ratio, however, FWHM (Figure 4.15) for E1
2g mode does not increase

with temperature while A1g mode does; A1g mode on the other hand, have small

fitting error because of higher signal-to-noise ratio.

Table 4.1 shows the experimental data for temperature-dependent Raman

spectra. The first-order temperature coefficients χT for both 25 nm and 20 nm

flakes are similar, suggesting that the first-order temperature coefficient chiT is

relatively independent of thickness for thin film NbSe2. The values of 25 nm

sample (161027 HL NbS e2) are used for κ extraction because the thickness is

closer to the sample in power-dependent Raman spectra (161027 HL NbS e2).

AFM image and section height of 20 nm sample (161020 HL NbS e2) are shown

in Figure A.8 and Figure A.9.
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Table 4.1: First-order temperature coefficient

Thickness Raman mode T range (K) χT (cm−1/K) ωT0 (cm−1)

25 nm E1
2g 70∼370 −0.03408 ± 0.0021 250.815

25 nm A1g 70∼370 −0.01482 ± 0.0006 231.925

20 nm E1
2g 70∼400 −0.03794 ± 0.0019 249.942

20 nm A1g 70∼400 −0.01566 ± 0.0005 233.689

Figure 4.15: FWHM for 161027 HL NbS e2 with respect to temperature, the
FWHM of A1g mode increases after 250K while no trend ob-
served for E1

2g mode.

The FWHM at each temperature is plotted in Figure 4.14. Linear depen-

dence for A1g mode is observed starting from 250 K. No similar dependence is

observed for E1
2g. The FWHM for both modes are within reasonable range to be

used in κ extraction.
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Figure 4.16: Example Lorentzian fitting for 0.317 mW, 0.347 mW, 0.384
mW, and 1.024 mW.

4.3.2 Power-dependent Raman

Likewise we can fit the first-order power coefficient at low power described by

ω(P) = ωP0 + χPP (4.4)

where P is the laser power and ωP0 is the intercept of Raman shift when P

approach 0. Both Raman modes exhibit good linearity dependence between

0.3 mW and 1.7 mW, above that the Raman shift saturates as seen in Figure

4.17. The saturation could be the consequence of nonlinearity higher-order

terms from higher temperature. The first-order coefficients are −(2.987 ± 0.091)

cm−1/mW and −(1.359 ± 0.091) cm−1/mW for A1g and E1
2g modes respectively.

The E1
2g mode shifted more than twice of A1g mode, which showed higher de-

pendence of laser power.

The sensitive responses to both temperature and power indicates strong lo-

calized heating affect, which we can probe the local temperature by the mea-

sured the Raman frequency change. By combining the two data and fitted using
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Figure 4.17: Raman shift of 120nm NbSe2 with respect to power using cir-
cular trench.

Table 4.2: First-order power coefficient

Thickness Raman mode P range (mW) χP (cm−1/mW) ωP0 (cm−1)

120 nm E1
2g 0.347∼1.641 −2.987 ± 0.091 237.962

120 nm A1g 0.347∼1.641 −1.359 ± 0.039 228.713

(3.17), the extracted κ is shown in Table. 4.3

Table 4.3: Extracted κ using different χT and χP

Raman mode χP (cm−1/mW) χT (cm−1/K) κ (W/mK)

E1
2g −2.987 ± 0.091 −0.03794 ± 0.0019 14.78

A1g −1.359 ± 0.039 −0.01566 ± 0.0005 14.05

E1
2g −2.987 ± 0.091 −0.03408 ± 0.0021 16.62

A1g −1.359 ± 0.039 −0.01482 ± 0.0006 14.94

The χP are from 170117 HL NbS e2 (120nm) and the χT in the first two

columns are from 161027 HL NbS e2 (25nm) and the latter two are from
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161020 HL NbS e2 (20nm). The extracted κ does not vary significantly with the

χT of different thickness. Another consideration is the penetration depth of Nio-

bium Diselenide, which is estimated to be 30 nm [26] and the absorption coef-

ficient is 0.3 for 30nm flakes[27]. With that the extracted thermal conductivity κ

then becomes (39 ± 0.5) W/mK. However, this is under the assumption that χP

does not change with thickness. Decrease in the absolute value of χP was ob-

served in both MoS2 and MoSe2 from monolayer to bilayer[20] by a least 25%.

χP is very sensitive to thickness and therefore has to be experimentally verified

to draw further conclusions.

Figure 4.18: κ difference resulting from Gaussian beam width deviation
using A1g mode.
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Figure 4.19: κ difference resulting from Gaussian beam width deviation
using E1

2g mode.
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CHAPTER 5

HALL MEASUREMENT

Figure 5.1: From the left, 100× optical image of NbSe2 on prepatterned
Hall bar substrate. Dotted lines show the Hall bar patterned,
both width and length are 2 µm.

To determine the electronic contribution of the κ, we measured the carrier

concentration of NbSe2 by Hall bar measurements with prepatterned substrate

(Figure 5.1a and Figure 5.1b). Both width and length are 2 µm and the mechani-

cally exfoliated NbSe2 sample is measured to be 270 nm by AFM measurements

from Figure 5.1(c). The average sheet resistance from 1 µA to 500 µA is 1.145

Ω/� and normalized to thickness returns 3.1 × 10−5 Ω cm, comparable to bulk

NbSe2[28] with 15×10−5 Ω cm. Hall coefficient is 2.47×10−3 cm3/coul suggesting

p-type transport is also consistent with bulk data[28]. The measured Hall mo-

bilities range from 3 to 14 cm2/Vs, an order higher than monolayer NbSe2[1].

The electron contribution for NbSe2 determined by Wiedemann-Franz law is

therefore 23.9 W/mK. From the electrical transport analysis , it is reasonable to

state that thin film NbSe2 conducts heat mostly by electrons.
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APPENDIX A

ADDITIONAL POWER-DEPENDENT MEASUREMENT

Figure A.1: κ obtained from various measurements for power-dependent
Raman.Sample 161208 and 170228 does not have full coverage
over the trench.

Table A.1: First-order power coefficient

Thickness r0 (µm) Mode P range (mW) χP (cm−1/mW) ωP0 (cm−1)

100 nm 0.19 E1
2g 0.43∼1.688 −3.13 ± 0.0191 238.999

100 nm 0.19 A1g 0.43∼1.688 −1.412 ± 0.029 229.35

80 nm 0.19 E1
2g 0.044∼0.955 −6.598 ± 0.255 238.173

80 nm 0.19 A1g 0.044∼0.955 −2.135 ± 0.126 229.149
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Figure A.2: Raman shift of 161208 HL NbS e2 (100nm) with respect to
power using circular trench.

Figure A.3: Raman shift of 161208 HL NbS e2 (80nm) with respect to
power using circular trench.
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Figure A.4: AFM image of 161208 HL NbS e2 (100nm).

Figure A.5: Step height of 161208 HL NbS e2, the sample is measured to be
100 nm. Note that the trench is not fully covered.

42



Figure A.6: AFM image of 170227 HL NbS e2 (80nm).

Figure A.7: Step height of 170227 HL NbS e2, the sample is measured to be
80 nm. Note that the trench is not fully covered.
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Figure A.8: AFM image of 161020 HL NbS e2 (20nm). Another sample for
temperature-dependent Raman.

Figure A.9: Step height of 161020 HL NbS e2, the sample is measured to be
20 nm.
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