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Results are presented from a search for dark matter particles produced in

association with a Higgs boson decaying to two photons in proton-proton col-

lision data collected at a center-of-mass energy of 13 TeV. The search is based

on data collected in 2015 and 2016 by the CMS experiment at the CERN Large

Hadron Collider. The analyzed data correspond to an integrated luminosity

of 2.2 fb−1 and 35.9 fb−1, respectively. No significant excess over the standard

model background expectation is observed. The results are used to constrain

at the 95% confidence level dark matter production cross section in the con-

text of two simplified models. A Z′ mediator in a Z′-two-Higgs-doublet model

with mass between 550 and 860 GeV is excluded for dark matter masses below

100 GeV. Additionally, in a baryonic Z′ model, Z′ masses below 574 GeV are

excluded, for a dark matter mass of 1 GeV.

The thesis also explores some of the challenges associated with the upgraded

High-Luminosity Large Hadron Collider. One important challenge will be inte-

grating real-time charged particle track finding and reconstruction into a hard-

ware data selection system. A proposed FPGA-based solution that reconstructs

tracks within 4µs is discussed.
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CHAPTER 1

INTRODUCTION

The goal of particle physics is to understand the fundamental building

blocks of matter and their interactions. These interactions, in turn, provide clues

as to how the universe formed. The standard model (SM) of particle physics is

an extensive theory which has been remarkably successful in describing the in-

teractions of the elementary particles. It is a model that has been well-tested

through various experiments over the last few decades. In fact, there is excel-

lent agreement between the predictions of the SM and the observed values [1].

For example, the SM predicted the existence of the W, Z, and Higgs bosons and

the top quark. Furthermore, numerous properties observed for these particles,

including the Higgs boson cross section and branching fractions, are accurately

predicted by the SM.

To study the smallest pieces of matter, particle physicists try to convert en-

ergy into new massive particles. To do this, particles are accelerated and then

collided. This has historically been an extremely successful method of probing

the SM, and has provided a lot of information over the last few decades about

fundamental particles. This method of probing particles has also been fruitful

at the CERN Large Hadron Collider (LHC). In 2012 at the LHC, the SM was

completed with the discovery of the Higgs boson by both the ATLAS and CMS

Collaborations [2, 3]. This discovery has offered a new probe of the SM and

beyond the SM theories.

There are still several questions in particle physics that remain unanswered

within the SM framework. These questions span from how to include the gravi-

tational force in the framework, to why is there a large matter-antimatter asym-
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metry in the universe, to how do neutrinos have mass. The particle composition

of dark matter (DM) is another mystery. Astrophysical evidence has strongly

suggested the existence of DM in the universe. However, any particle nature of

DM is not predicted by the SM and remains completely unknown.

Several beyond the SM theories predict DM particles that interact with SM

particles. One way to look for DM-SM particle interactions is at collider experi-

ments by looking for events (particle collisions) where SM and DM particles are

produced and recoil away from each other. Since any DM produced at the LHC

is unlikely to interact with the detector, these recoiling events are characterized

by large imbalances in the recorded momentum transverse, or perpendicular,

to the beam. In effect, there is a large amount of missing transverse momen-

tum (~p miss
T ) nearly back-to-back with a SM particle. The signature exploited in

this thesis, are events where DM is produced in association with a Higgs bo-

son. More specifically, the case where the Higgs boson decays to two photons is

examined.

This thesis will explore the details of this search, starting with the theoret-

ical models that motivate the search. Next the apparatus for generating and

collecting data, the LHC accelerator and the CMS detector, respectively, will

be described. The reconstruction of various physics objects that are used in

the analysis will be presented. Given next are the specifics of the event selec-

tion and background estimation. This will include a discussion of the statistical

treatment of the data and the systematic uncertainties affecting the analysis. Fi-

nally, the results will be presented along with their interpretation in the context

of two benchmark signal models.

The LHC, which is currently operating at a center-of-mass energy
√

s of
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13 TeV, will continue running for many years. Various upgrades are planned

over the next decade to ensure that CERN will further expand its physics reach.

In 2025, the LHC will begin its next phase, the High-Luminosity LHC (HL-

LHC). Because of the increase in the peak luminosity to be delivered by the

HL-LHC, the CMS detector will be subjected to a greater number of simultane-

ous proton-proton interactions (pileup). To deal with the many challenges that

are associated with high pileup, the CMS detector will undergo “Phase II” up-

grades. In addition to the above mentioned dark matter search, this thesis will

also explore several developments related to these upgrades.

Of particular interest are the changes to the hardware trigger (data selection)

system. For the first time, this trigger will include charged particle track re-

construction. This provides an important new handle for selecting interesting

physics events in this intense environment. In order to make tracks out of de-

tector hits within the 4µs latency budget, CMS will use field-programmable

gate array (FPGA) technology which can preform calculations at speeds of

roughly 300 MHz. The tracklet algorithm is a proposed FPGA-based approach

to charged particle track reconstruction for the trigger which will be described

in more detail in a later chapter.
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CHAPTER 2

THEORETICAL MOTIVATION

In this Chapter, an overview of the standard model (SM) is presented in Sec-

tion 2.1 while Section 2.2 introduces the necessity of the Higgs boson in the SM.

These sections are based on the introduction to the SM from Ref. [4]. Section 2.3

presents the astrophysical evidence for dark matter and Section 2.4 offers an

overview of how the Higgs boson can be used to search for dark matter parti-

cles. Finally, the signal models directly explored in this thesis are presented in

Section 2.5.

2.1 Standard model

The standard model of particle physics is a description of nature which sum-

marizes the current best understanding of the fundamental structure of matter.

It describes the elementary particles (summarized in Fig. 2.1) and the strong

and electroweak forces that govern their interactions. The standard model La-

grangian contains information about the kinetic energy, mass and interaction

potentials of each of the particles in the model.

The SM Lagrangian is built [4] as the most general Lagrangian constructed

from the gauge symmetries of the strong, weak, and electromagnetic forces and

the irreducible representation of the particles in these groups. Starting with the

free field Lagrangian densities L and the chosen group, the original L contains

all possible fields and interactions that are invariant under the gauge symmetry

of the group. This symmetry implies that there are conserved quantum num-

bers in each particle interaction. The resulting Lagrangian describes the allowed
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particle interactions in the SM. The gauge group of the SM is a local

SU(3)C × SU(2)L × U(1)Y , (2.1)

which is the product of the strong force symmetry group SU(3)C and the

SU(2)L×U(1)Y symmetry group of the unified electromagnetic and weak forces.

The subscripts C, L, and Y are used here simply to denote color, left handedness,

and hypercharge, respectively. These are conserved quantum numbers in the

SM.

The quantum chromodynamic (QCD) portion of the SM Lagrangian de-

scribes the strong force. The L is constructed from the free particle fields for

the six quarks, each with three color charges. To enforce a local SU(3) sym-

metry invariance, eight Ga
µ, a = 1...8 gauge fields (gluons) are introduced into

the Lagrangian. Gluons are massless and electrically neutral, but carry a color

quantum number and therefore interact with themselves. The resulting gauge

invariant L contains the quark propagator, the quark-gluon interaction poten-

tials, and the gluon self-interaction potential.

The electroweak Lagrangian is extracted in a similar way. The fermion part

of the SM involves three generations of quarks and leptons, each consisting

of left-handed doublets and right-handed singlets under SU(2). The L of the

fermion free fields is required to be symmetric under SU(2)×U(1). Three gauge

fields W a
µ , a = 1...3 and an additional gauge field Bµ are introduced for the

SU(2) and U(1) groups, respectively. After extracting the final gauge invariant

Lagrangian, the photon, W±, and Z bosons are interpreted as different linear

combinations of W a
µ and Bµ.

If the SM symmetry was unbroken, all of the gauge fields mentioned above

would have to be massless. Mass terms in the Lagrangian are not invariant
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Figure 2.1: Particle constituents of the standard model.

under the transformations of each group and therefore do not maintain their

respective group’s symmetry. However, while the photon and gluons are mass-

less, experimentally it is known that the W± and Z bosons, carriers of the weak

force, have masses of approximately 80 and 91 GeV, respectively [1]. One the-

oretical explanation that introduces mass terms in the SM is spontaneous elec-

troweak symmetry breaking (SSB). The details of SSB and the Higgs mechanism

are described in the following section.

2.2 Higgs mechanism

The addition of bare mass terms in the Lagrangian mentioned above explicitly

breaks the symmetry in the equations of motion themselves. Instead, the sym-
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metries can be spontaneously broken in the ground state. In the Higgs mecha-

nism, the addition of a complex scalar SU(2) doublet φ to the SM enables SSB in

this way and enables mass terms in the SM Lagrangian.

For the Higgs doublet φ:

φ =

φ+

φ0

 =
1√
2

φ1 + iφ2

φ3 + iφ4

 (2.2)

the Lagrangian density of the new scalar field is:

L = (Dµφ)†Dµφ− V (φ), (2.3)

where the gauge covariant derivative Dµφ is:

Dµφ =
(
∂µ +

ig

2
~σ · ~Wµ +

ig′

2
~Bµ

)
φ (2.4)

where g and g′ are coupling constants and ~σ are the Pauli matrices.

The vacuum expectation value of the φ field is the solution to the equations

of motion with the least energy. This ground state of φ (defined in Eq. 2.2) can

be chosen along a convenient axis so that only φ3 is nonzero:

ν ≡ 〈0|φ|0〉 =
1√
2

0

ν

 . (2.5)

In this axis, the potential of φ can be expressed as:

V (φ)→ V (ν) =
1

2
µ2ν2 +

1

4
λν4. (2.6)

The potential must be minimized with respect to ν to extract the ground state.

If µ2 > 0, the minimum is found at ν = 0 which does not break the SU(2)×U(1)

symmetry. For the case of µ2 < 0, the potential V (φ), which is sketched in

Fig. 2.2, has a circle of degenerate minima at a radius of ν =
√
−µ2/λ. The
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ground state is a random point along this circle, thus spontaneously breaking

the SU(2)× U(1) symmetry.

A consequence of SSB is the generation of massless spin-0 particles called

Goldstone bosons. However, these extra degrees of freedom can be absorbed as

mass terms for the W and Z boson. To see this, it is useful to work in the unitary

gauge where the physical particle content is manifest. Let φ be:

φ =
1√
2

 0

ν + h

 (2.7)

where h is the physical Higgs boson. In this case, from Eq. 2.4, one obtains the

terms:
g2ν2

4
W+µW−

µ +
1

2
(g2 + g′2)

ν2

4
ZµZµ, (2.8)

where linear combinations of W a
µ and Bµ are used to define W± and Z. The

terms above are the mass terms in SM for the W and Z bosons. The combina-

tion of W a
µ and Bµ orthogonal to the Z is the photon, and it remains massless.

The additional terms from Eq. 2.3 contain the Higgs field kinetic energy term,
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Higgs interaction terms (including self-interactions and those with the W and Z

bosons) and a mass mh =
√
−2µ2 =

√
2λν term for the Higgs boson.

Lepton and quark masses are generated in a similar way. Terms that involve

the interaction of these fermions with the scalar Higgs field are included in the

Lagrangian so long as they continue to obey the required symmetry relations.

Using the same ground state chosen in Eq. 2.7, the Lagrangian after SSB has

mass terms for the fermions that are proportional to ν along with fermion-Higgs

boson interaction terms that are proportional to the fermion’s mass.

From all of this, it is seen that the Higgs mechanism is the ingredient in the

SM that gives all other particles mass. However, there was no experimental

evidence for the existence of a scalar particle and therefore no evidence of the

Higgs mechanism. The Higgs boson remained an elusive missing piece of the

SM for over 40 years. The lack of observation of this important particle, was one

of the motivations for building the LHC. And in July 2012, the discovery of the

Higgs boson was finally announced.

The Higgs boson was observed by both the ATLAS and CMS Collaborations

by its decay to several different SM particles [2, 3]. CMS alone observed an ex-

cess of events at a mass of 125 GeV with a statistical significance of greater than

five standard deviations above the background expectation. The probability

that the background-only hypothesis would fluctuate and yield this distribu-

tion is less than one in three million.

To achieve this discovery, searches for the Higgs boson were performed in

the h → γγ, h → ZZ, h → WW, h → bb, and h → ττ decay channels. The

branching fraction, or the probability for the Higgs boson to decay via each of
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Figure 2.3: SM Higgs boson branching fractions as a function of mass for a large
mass range (left) and near mh = 125 GeV (right) [5].

these channels, is computed in the SM. The predicted SM branching fractions for

the Higgs boson are shown in Fig. 2.3. It is seen here that the decay h→ bb is the

most likely at mh = 125 GeV. However, the h → bb channel has a much worse

mass resolution and larger background than the h → γγ and h → ZZ channels.

In actuality, the h→ γγ and h→ ZZ channels were the main discovery channels

in the observation of the Higgs boson.

The excess of events in the CMS h → γγ analysis is visible in the diphoton

invariant mass of 10.4 fb−1 of data as shown in Fig. 2.4. The h → γγ channel

is uniquely important because based on spin conservation, a new particle that

decays to two photons must be a boson but cannot have spin-1. This suggests

that the observed particle is in fact a scalar boson and the SM Higgs boson.

From the high mass resolution of the h→ γγ and h→ ZZ channels, the CMS

experiment was able to measure the mass of the Higgs boson and compare the

signal strength with SM expectations. The current best estimate of the Higgs

boson mass is 125.09 ± 0.24 GeV and the observed signal strength (the ratio of
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Figure 2.4: Higgs boson observation at CMS in the h→ γγ channel [3].

observed cross section to SM predicted cross section) is 1.10± 0.11 [1].

The discovery of the Higgs boson offers new ways to examine the SM. Pre-

cise measurements of the Higgs boson production cross section and branching

fractions will test the extent of standard model’s compatibility with the behav-

ior of the Higgs boson observed in nature. However, there are also many open

questions in particle physics that are not contained within the SM framework.

As mentioned earlier, dark matter is one of these mysteries. Any particle nature

of DM is not described in the SM and remains completely unknown experimen-

tally. The next few sections will detail more about what is known and unknown

about dark matter and how the discovery of the Higgs boson opens up new

search regimes for particle dark matter.
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2.3 Dark matter

There is a large amount of astrophysical evidence of the existence of dark matter

in the universe, only a fraction of which will be touched on here. Whether DM

has particle origin remains a mystery. There are a number of well-motivated

theories beyond the SM that predict the existence of a DM particle. A review of

particle dark matter is presented in Ref. [6].

Some of the most convincing evidence of DM comes from galaxy-scale cos-

mological observations. From the light emitted from galaxies, astronomers can

estimate the density of visible mass which seems to be clustered mainly at the

center of the galaxy. Astronomers examine rotation curves: the circular veloc-

ity of the galaxy as a function of distance r from its center. From Newtonian

dynamics, the velocity should be proportional to
√
m(r)/r where m(r) is the in-

tegrated density. Thus it is expected that further away from the galactic center,

where the mass drops to zero, the velocity would decrease as a function of 1/
√
r.

However, the measured velocities are roughly constant across the entire galaxy,

as seen in Fig. 2.5. By assuming there is some heavy non-luminous (dark) mat-

ter that is roughly constant in the galactic halo, the predicted shape recovers the

observed rotation curve.

Gravitational lensing of colliding galaxies provides additional evidence of

dark matter. Gravitational lensing is a property of general relativity in which

light rays from a distant object are deflected along the path to the observer by

the gravitational field from a closer object, thus distorting the appearance of the

far-field object. In the colliding galaxies of the Bullet Cluster, the stars mostly

traveled through each other. The gasses of the system interacted, emitting a
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large amount of x-rays, and suggesting that the majority of the baryonic matter

was slowed down with respect to the stars. However, the gravitation lensing of

galaxies behind these clusters show that the majority of the mass behaves as if it

has passed through without interacting [7]. This suggests the presence of dark

matter that pulls the mass distribution away from the visible collision center.

The cosmological scale also provides strong evidence of dark matter [8]. In

the early universe, initial gravitational fluctuations gave rise to overdensities

of baryonic matter and dark matter. Radiation pressure from photons pushed

back on these overdensities of baryonic matter only, while the dark matter con-

tinued to clump. This pull and push from gravity and pressure effectively cre-

ated a damped harmonic oscillator for the baryonic matter. These early bary-

onic acoustic oscillations can be measured in the cosmic microwave background

(CMB). The CMB is the relic radiation of the recombination epoch, the point

when photons could escape the dense plasma because the free protons and

electrons first combined to form translucent hydrogen gas. The CMB photons

have been propagating since then. The power spectrum, built from a spheri-

cal harmonic decomposition, characterizes the size of fluctuations in the CMB

as a function of angular scale. This is used to estimate the baryonic and non-

baryonic mass density of the universe. The Planck Collaboration has done ex-

tremely precise measures of the CMB and shown that dark matter is six times

more abundant that baryonic matter in the universe [9].

There are a plethora of particle DM models that have been put forth to

explain the differences in observed and expected mass in the universe. The

amount of luminous matter in the universe is well measured, so DM particles

must be electrically neutral so that the do not interact with photons. DM can at
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Figure 2.5: Fit (solid curve) to observed (points) rotation curve of the NGC 6503
galaxy. The fit includes the contributions from: visible components (dashed),
gas (dotted), and a hypothetical dark-halo (dash-dot curve) [10].

most weakly interact with SM particles to avoid constraints from collider and

DM searches. SM neutrinos, which are neutral and weakly-interacting, are too

light to recover all cosmological DM observations. One class of DM particle

theories that encompasses all of these constraints is that of weakly-interacting

massive particles (WIMPs). To explain the expected abundance of dark mat-

ter in the universe, it is hypothesized that there are massive DM particles that

interact very weakly with ordinary SM particles.

WIMPs are a current leading candidate for particle dark matter because of

the so-called WIMP miracle [11]. If a dark matter particle χ exists, it would

have existed in thermal equilibrium and in abundance in the early universe.

The equilibrium abundance was maintained by equal rates of creation (l̄l→ χχ̄)

and annihilation (χχ̄ → l̄l). As the universe cooled to the point where the tem-

perature was below the dark matter mass, the creation rate of DM dropped. The

DM abundance continued to annihilate and the relative abundance dropped ex-

ponentially until the annihilation rate dropped below the expansion rate. At

that point, DM annihilation happened too infrequently, and the total num-
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ber of DM particles was essentially frozen. This relic density 1 is relatively

constant from that point to the current universe. From the Boltzmann equa-

tion, the relic density is given by Ωχh
2 = 3 × 10−27 cm3 s−1〈σν〉−1, where 〈σν〉

is the DM annihilation cross section [11]. Independent from this, the annihi-

lation cross section of a hypothetical weak-scale particle can be estimated as

〈σν〉 ≈ α2(100 GeV)−2 ≈ 10−25 cm3 s−1 where α is the fine structure constant.

The WIMP miracle is the remarkable realization that a new weak-scale parti-

cle (of mass ≈ 100 GeV) has the right annihilation cross section to account for

the observed dark matter abundance in the universe Ωχh
2 = 0.120± 0.001 from

Planck measurements [9].

Searches for DM particles have been carried out with direct and indirect de-

tection experiments and at particle colliders, like the LHC. Each of these experi-

ments hopes to observe the DM-SM particle interaction, illustrated in Fig. 2.6, in

a different way. Direct detection experiments look for scattering of DM and SM

particles. Indirect detection experiments look for DM annihilation to SM par-

ticles. Collider searches look for production of DM particles from SM particle

collisions.

Direct detection experiments aim to observe scattering of DM particles with

atomic nuclei on Earth [8]. The DM particles from the galactic halo will bump

into the nuclei causing a momentum transfer that can be detected by these ex-

periments. A DM-nucleon interaction may be as rare as a few per year per

thousands of kilograms of target material. Therefore, typically large cavities

filled with tons of heavy target material, like xenon or argon, are needed to

have any chance of observing these interactions. Also, these detectors need to

1 The relic density is the ratio of the density of DM particles in the universe to the critical
density. The critical density is the average density of matter required to just halt the expansion
of the universe (ie. a flat universe).
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Figure 2.6: Schematic of the effective SM-DM interaction probed by direct de-
tection, indirect detection, and collider searches. The red arrows indicate the
direction of time in each type of search.

Figure 2.7: The observed (solid) or expected (dashed) exclusion limits from sev-
eral direct detection experiments on DM-nucleon scattering cross section as a
function of mDM [12] for the low mass (left) and high mass (right) regimes. Pos-
sible signal regions observed in several experiments are shown as circular con-
tours.

be built with low radioactive materials and placed underground to bring back-

ground radiation levels down enough to observe any signal events. The latest

direct detection experiment results have constrained the DM-nucleon scattering

cross section for many different dark matter masses, as shown in Fig. 2.7.

Indirect detection experiments rely on detecting SM particles that were cre-
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ated by DM annihilation or decays in the sky. Neutral signals (like gamma

rays) from these events travel in a roughly straight path, and can be detected

by ground or space-based telescopes. The gamma ray flux data can be used to

set limits on the annihilation cross section, by using the line-of-sight integral

of the density through the DM distribution. Challenges arise in interpreting

the data, since all astrophysical background sources must be taken into account

correctly [8].

In collider experiment searches for dark matter, SM particles are smashed

together with the hopes that the energy of the collision will be converted into

the production of massive new particles. These new particles could be DM or

mediators of DM-SM interactions. If the mediator of these interactions is pro-

duced, it can decay either to DM or back to SM particles. The latter case would

produce a new resonance in the dijet or dilepton spectrum. In this way, resonant

searches have excluded large swatches of particle DM parameter space [13–15].

In the case where the mediator decays to DM, since DM is weakly-interacting,

it is likely to escape the detector. If the DM is produced with some SM par-

ticles, the DM will leave an imbalance in the recorded momentum of the SM

particles in the collision (registered as pmiss
T ). These “Mono-X” searches for a SM

particle (X) plus pmiss
T offer a more direct search for DM production at colliders.

In an example simplified model [16, 17], the SM is extended by an additional

U(1) gauge symmetry under which candidate Dirac fermion DM particles are

charged. A vector mediator facilitates an s-channel production of DM that is

searched for in various resonant and Mono-X searches. A summary of the CMS

and ATLAS exclusions for this model are shown in Fig. 2.8. With the discovery

of the Higgs boson, Mono-h searches offer a new probe of DM, detailed in the

following section.
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fied model of Dirac DM production as a function of DM and mediator mass by
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2.4 Mono-h searches

As mentioned in the Section 2.3, to date only gravitational interactions have

been observed between DM and SM particles. The Higgs boson, described in

Section 2.2, interacts with massive SM particles with couplings proportional to

their mass. It is possible that there could be a new DM-SM interaction that

occurs via the Higgs boson. This makes searching for DM particles using the

newly discovered Higgs boson particularly enticing [18–20].

Searches for Higgs bosons decaying to invisible particles, i.e. h → pmiss
T ,

have put tight constraints on DM particles with masses less than about mh/2 ≈

60 GeV [21, 22]. However, this is not the only way that a Higgs boson could

interact with DM particles. A DM particle could be produced in association

with a Higgs boson. The Higgs boson could be produced in initial- or final-state

radiation in an event where DM is also produced. However, initial-state radia-

tion of an SM-like Higgs boson from a quark or gluon is suppressed by Yukawa

or loop processes, respectively [18–20]. Therefore, the associated production of

DM and a Higgs boson could arise from a new interaction between DM and SM

particles.

The signature of a Higgs boson recoiling off of invisible particles has been

explored by both ATLAS and CMS using several different Higgs boson decay

channels. There are advantages and disadvantages to each channel, so it is use-

ful to analyze the data in terms of all of these modes. The h → bb channel, be-

cause it has the largest Higgs boson branching fraction (shown earlier in Fig. 2.3)

offers the largest statistical power for these searches. However, this channel suf-

fers from large multijet backgrounds and low mass resolution. To deal with the
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large background rates, the h → bb channel generally requires triggering on

events with high pmiss
T . On the other hand, the h→ γγ channel, which is a much

more unlikely Higgs boson decay mode (happening only 0.2% of the time), of-

fers smaller backgrounds and a more precise measurement of invariant mass.

This channel does not need a minimum pmiss
T threshold for triggering and is

therefore complementary to searches for DM with the larger Higgs boson decay

channels.

Both ATLAS and CMS Collaborations have completed several searches for

DM particles produced in association with a Higgs boson. At both
√

s = 8 TeV

and
√

s = 13 TeV, no significant excesses have been observed by either experi-

ment in the h → γγ, h → bb, h → ττ , h → WW, or h → ZZ channels [23–32].

This thesis will explain the first CMS search for DM in the h → γγ channel,

which is published in Ref. [28] and Ref. [29] for the 2015 and 2016 data sets, re-

spectively. The two benchmark signal models used in this analysis are detailed

in the following section.

2.5 Signal models

There are many proposed extensions to the SM that provide new SM-DM inter-

actions and DM particle candidates. There are also many proposed extensions

that rely uniquely on the Higgs boson to facilitate these interactions. Gener-

ally, these models can be split into effective field theories (EFTs) or simplified

models. The EFTs introduce non-renormalizable operators thereby generating

h + DM directly without specifying the underlying particles involved in the in-

teraction. On the other hand, simplified models offer an explicit model where
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new particles are introduced that mediate the DM-SM particle interactions. Both

EFTs and simplified models are useful for exploring beyond the SM physics, and

DM searches have been interpreted in both ways.

The results for the Mono-h search presented here are solely interpreted in the

context of two benchmark simplified models. The signal models (descriptions to

follow), recommended by the LHC Dark Matter Forum [16], are a Z′-two-Higgs-

doublet model (Z′-2HDM) and a baryonic Z′ model. Mono-h searches have a

unique sensitivity to the Z′-2HDM signal [16], whereas the baryonic Z′ model

offers a way to compare Mono-h results with direct DM detection experiments.

Simulated samples of these models, used for choosing the analysis selection

criteria and estimating the sensitivity of the search, are made at leading order

(LO) by the MADGRAPH5 aMC@NLO v2.3.0 [33] generator. The decay of the

Higgs boson to two photons is simulated by PYTHIA 8.205 [34].

2.5.1 Z′-2HDM interpretation

In the Z′-2HDM scenario, the standard model is extended by an additional

U(1)Z′ symmetry, with a corresponding massive Z′ gauge boson while an ad-

ditional SU(2) scalar doublet extends the Higgs sector. Resonant production

of the Z′ is possible and can produce a Mono-h signal when the Z′ decays to a

Higgs boson h and a pseudoscalar A, which decays to a pair of Dirac fermion

DM particles. The LO Feynman diagram for the Z′-2HDM production of dark

matter is shown in Fig. 2.9.
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Figure 2.9: The LO Feynman diagram of Z′-2HDM associated production of DM
(χ) with a Higgs boson.

The interesting particles in this Z′-2HDM scenario are:

• the massive Z′ gauge boson

• the pseudoscalar A

• Dirac fermion dark matter χ

• two charged scalars H±

• a heavy neutral scalar H

• a lighter neutral scalar h (assumed to be the observed Higgs boson).

A Type-2 2HDM framework [35,36] is used to formulate the extended Higgs

sector in this model. As mentioned in Section 2.2, the standard model Higgs

mechanism requires a single SU(2) scalar doublet. The ground state of this

doublet spontaneously breaks the electroweak symmetry which gives masses to

the other SM particles. Instead of assuming a single scalar doublet, in a 2HDM,

two scalar doublets are added. This yields eight fields: three are Goldstone

bosons which are eaten to give the W and Z bosons mass (as in the SM) and

five are physical scalar Higgs fields. The five Higgs fields include two charged
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scalars H±, a heavy neutral scalar H, a lighter neutral scalar h which is assumed

to be the observed 125 GeV Higgs boson, and one pseudoscalar A. The A is

assumed to have a large branching fraction (B) to the dark matter particles.

Without any additional constraints, the introduction of a second scalar dou-

blet can introduce flavor changing neutral currents (FCNCs) at tree level. In

2HDMs, the Yukawa couplings for fermions with the neutral scalars are not si-

multaneously diagonalizable, which allows for FCNCs mediated by the neutral

Higgs scalars. Tree-level FCNC is strongly disfavored experimentally, for exam-

ple by searches for b→ sγ at CLEO [37]. To avoid these constraints, in a Type-2

2HDM, up-type quarks only couple to one Higgs doublet Φu while down-type

quarks and leptons couple to the other doublet Φd [35].

After electroweak symmetry breaking, the Φu and Φd doublets attain vac-

uum expectation values of νu and νd, respectively. In the unitary gauge, the

doublets are parameterized as:

Φu =
1√
2

 cos β H+

νu + cosα h + sinα H + i cos β A

 (2.9)

Φd =
1√
2

 − sin β H+

νd − sinα h + cosα H− i sin β A

 (2.10)

where the ratio of vacuum expectation values is denoted as tan β = νu/νd and

α is the h-H mixing angle. This analysis assumes α = β − π/2, which is the

limit where h has SM-like couplings to fermions and gauge bosons [19]. The

observed 125 GeV Higgs boson is assumed to be this SM-like Higgs boson and

is denoted as h throughout this thesis.

23



The model is described by several parameters:

• the pseudoscalar mass mA

• the DM mass mDM

• the Z′ mass mZ′

• the masses of the scalars H and H±

• the ratio of vacuum expectation values tan β = νu/νd

• the Z′ coupling constant gZ′

• the DM-A coupling constant gDM.

The masses of the Z′ and A are the only parameters that effect the kinematic

distributions. The pmiss
T distribution is of particular interest in this analysis and

can be seen changing for different values ofmZ′ andmA in Fig. 2.10. All other pa-

rameters primarily affect the theoretical production cross section σth, branching

fraction, and decay widths of the signal [16]. Therefore, the analysis presented

here considers a Z′ resonance with mass between 450 and 2000 GeV, and an A

with mass between 300 and 700 GeV.

The scalars H and H± are assumed to have masses at 300 GeV to avoid con-

straints from b→ sγ [35]. The parameters tan β and gDM are fixed to unity, while

gZ′ = 0.8 as recommended by Ref. [16]. The DM mass is fixed tomDM = 100 GeV,

although since B(A → χχ̄) only increases by 7% as mDM decreases, the results

presented here are also valid for 1 ≤ mDM < 100 GeV. The value of B(A → χχ̄)

does decrease when mA is greater than twice the top quark mass, as the decay

A→ tt becomes kinematically accessible. The analysis only considers A decays

to DM particles and the signal cross section includes the value of B(A→ χχ̄).
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Figure 2.10: The pmiss
T distribution generated in Z′-2HDM simulated samples of

h + DM, varying mZ′ (left) and mA (right) [16].

The decay Z′ → Zh is possible in this Z′-2HDM. This decay can also have a

Mono-h signature if Z → νν. However it is not considered in this analysis, and

so the results presented here are somewhat conservative for this model.

2.5.2 Baryonic Z′ interpretation

In a baryonic Z′ model [16, 18] of dark matter production, a new U(1)B baryon

number symmetry is added to the SM with a corresponding vector Z′ gauge

boson. It is assumed that the Z′ does not couple to leptons (thus evading dilep-

ton constraints). The consistency of this model necessitates the existence of new

stable baryonic states that are neutral under the SM gauge symmetries [38]. In

this model, these new states are natural DM candidates. For this search, it is as-

sumed that DM is a Dirac fermion. The particles of interest in this model are: (i)

the baryonic Z′ gauge boson mediator, (ii) the baryonic Higgs boson hB, (iii) the

SM Higgs boson h, and (iv) the Dirac fermion DM χ. The Mono-h production

of DM is an s-channel process and the corresponding LO Feynman diagram is

shown in Fig. 2.11.
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Figure 2.11: The LO Feynman diagram of DM associated production with a
Higgs boson in the baryonic Z′ model.

In this model, the Z′ acquires mass from a baryonic Higgs boson hB which

spontaneously breaks the U(1)B symmetry and acquires a vacuum expectation

value νB. Generally, the hB can mix with the SM Higgs boson, which allows the

Z′ to interact with the SM h. The h-hB mixing angle denoted sin θ determines the

Z′-h coupling ghZ′Z′ = 2m2
Z′ sin θ/νB.

The model is specified by the parameters:

• the Z′ mass mZ′

• the DM mass mDM

• the h-hB mixing angle sin θ

• the DM-Z′ coupling constant gDM

• the quark couplings gq

• the h-Z′ coupling ghZ′Z′ .

Only the mZ′ and mDM parameters effect the kinematic distributions. The

pmiss
T distributions for varying DM masses are shown in Fig. 2.12 for two choices

of mZ′ . The remaining parameters are set following the recommendations of
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Figure 2.12: The pmiss
T distribution generated in baryonic Z′ simulated samples

of h + DM, for mZ′ = 100 GeV (left) and mZ′ = 1 TeV (right) [16].

Ref. [16]. The coupling parameters are set to gDM = 1, gq = 0.25 and ghZ′Z′ = m2
Z′ ,

and the mixing angle is set to sin θ = 0.3. The choice of these parameters max-

imizes the predicted cross section. Results for other values of these parameters

can be obtained by rescaling the cross section.

The analysis scans over the two mass parameters, looking for signals with

mZ′ between 100 and 2500 GeV and DM masses between 1 and 900 GeV. If

the Z′ has a mass below mh/2 ≈ 60 GeV, then the decay h → Z′Z′ becomes

kinematically accessible. This would change the branching fractions of the SM-

like h and therefore is not considered in this analysis.
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CHAPTER 3

THE LHC AND CMS APPARATUS

The apparatus used in the search for dark matter are the Large Hadron Col-

lider (LHC) and the Compact Muon Solenoid (CMS) detector. The LHC, de-

scribed in Sec. 3.1, is used to accelerate protons and bring them into collision

at the center of the CMS detector. The CMS detector and its subdetectors are

described in Sec. 3.2.

3.1 Large Hadron Collider

The LHC [39] is the most powerful particle accelerator and collider built to

date. The LHC is a two-beam superconducting hadron accelerator that was

constructed inside the already existing 27 km circumference LEP tunnel. It lies

approximately 100 m underground near the city of Geneva and the France-Swiss

border. The LHC provides proton-proton (pp) collisions at the CMS detector ev-

ery 25 ns. The LHC was designed to collide protons at
√

s = 14 TeV and with a

peak luminosity of 1034 cm−2 s−1. Currently, the maximum energy provided by

the LHC is
√

s = 13 TeV.

The rate of events Revents = σL produced at the LHC is a function of the

production cross section σ and the machine luminosity L. The luminosity is

a measurement of the flux of collisions per unit time and depends only on the

beam parameters. Luminosity is a function of the number of particles per bunch

of each beam N1 and N2, the number of bunches per beam nb, the revolution

frequency frev, the cross sectional area of the beams A, and a reduction factor F
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Figure 3.1: The peak luminosity (left) and cumulative integrated luminosity
(right) delivered by the LHC day-by-day during the 2016 run [41].

dependent on the crossing angles of the beams. The luminosity is given by [40]:

L =
N1N2nbfrev

AF
, (3.1)

where the cross sectional area of the beams A = 4πεnβ∗

γ
is determined by the

emittance εn (spread of the beam in position and momentum phase space) and

the β∗, the transverse size of the beam along the beam trajectory.

Based on the production rate, the total number of collisions generated at the

LHC is

Nevents =

∫
σLdt, (3.2)

which is a function of the instantaneous luminosity integrated over the run time

(or “integrated luminosity”) measured in inverse barns (1 barn = 10−34 cm2).

During 2016, the LHC exceeded its planned peak luminosity and delivered over

40 fb−1 of integrated luminosity. The peak luminosity and integrated luminosity

day-by-day in 2016 are shown in Fig. 3.1.

The acceleration of protons in the CERN accelerator complex starts with the

extraction of protons from a single bottle of hydrogen gas. The hydrogen gas

is disassociated to get free hydrogen atoms. An electric field in the Linac2 is
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Figure 3.2: Sketch of the CERN accelerator complex (not to scale). Protons in-
jected from LINAC2 go to the PSB then PS then SPS and finally the LHC.

used to strip electrons away from these hydrogen atoms, yielding protons which

are accelerated to 50 MeV. Protons are then accelerated through consecutive

rings of the LHC complex, as shown in the sketch of Fig. 3.2. The protons are

accelerated to 1.4 GeV, 25 GeV, and then 450 GeV by the Proton Synchrotron

Booster (PSB), Proton Synchrotron (PS), and then the Super Proton Synchrotron

(SPS), consecutively. Finally the protons are supplied to the two beam pipes –

tubes kept at ultrahigh vacuum – of the LHC. The LHC accelerates the protons

up to their collision energy of 6.5 TeV.

Acceleration and deflection of a beam of protons is achieved using electro-

magnetic fields since these fields exert a force on any charged particle. Electric

fields in radiofrequency (RF) cavities are generated by varying magnetic fields

in time. Magnetic fields in RF cavities oscillate (switch directions) at 400 MHz in
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the LHC. The RF cavities are built such that electromagnetic waves become res-

onant in the cavities. Any charged particle that passes through a cavity feels the

force from its standing waves. The particles gain energy (or lose energy if they

are too fast) from the electromagnetic field in each passage. RF cavities are used

to accelerate protons in each of the stages of the CERN accelerator complex.

Magnetic fields are also used to direct the particles to allow the protons to

pass in a circle around the accelerator and guide the beam repeatedly through

the circular accelerator. The LHC magnet system is composed of niobium-

titanium (NbTi) superconductors that are cooled with superfluid helium to

1.9 K. A central feature of the magnet system of the LHC ring are 1,232 main

dipoles 15 m in length, each generating magnetic fields of 8.33 T. A cross section

of an LHC dipole is shown in Fig. 3.3. These dipoles bend the proton beams

tightly around the LHC. The LHC complex has more than 50 types of magnets,

including 392 quadrupole magnets that focus (squeeze) the beams. These mag-

nets offer finely-tuned adjustments to the particles’ trajectories and spread in

space [39].

After rotating around the LHC for about 30 min, the proton beams are

brought into collision at the four LHC experiments: ALICE [42], ATLAS [43],

CMS [44], and LHCb [45]. ALICE is a heavy ion detector, that primarily exam-

ines proton-lead or lead-lead collision events that occur in special month long

LHC runs. ATLAS and CMS are both general purpose detectors used for prob-

ing pp and heavy ion collisions. LHCb is dedicated to studying CP violation

and B hadron decay measurements. The analysis presented in this thesis is per-

formed on pp collision data taken at the CMS detector. Therefore, the rest of this

chapter will detail the apparatus of the CMS experiment.
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Figure 3.3: Sketch of the cross section of an LHC dipole (left) and the generated
magnetic field (right) [46, 47].

3.2 The CMS detector

The CMS experiment, shown in Fig. 3.4, is one of the two general purpose

detectors at the LHC. It measures 22 m long by 15 m in diameter and weighs

12,500 tons. The coordinate system used to describe CMS and the data collected

there is given in Section 3.2.1. The central feature of the CMS apparatus is a

superconducting solenoid, described in Section 3.2.2. Within the solenoid are

a silicon pixel and silicon strip tracker (Section 3.2.3), and an electromagnetic

(Section 3.2.4) and hadronic (Section 3.2.5) calorimeter. Outside of the solenoid

is a muon system described in Section 3.2.6. Additional information about the

CMS detector can be found in Ref. [44].

3.2.1 Coordinate system

The CMS detector surrounds a portion of the LHC beam pipe and its coordinate

system is inherited from the geometry of this system. The origin is centered at
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Figure 3.4: Illustration of the CMS detector [44]. A cut out is made to show the
subdetectors that make up the inside of the detector.

the nominal collision point in the experiment. The x axis points towards the

center of the LHC, while the y axis points upwards. To make a right-handed

coordinate system, the z axis direction is along the counterclockwise beam line.

Because of the cylindrical nature of the detector, polar coordinates are conve-

nient in this system. The radial distance r gives the distance from the beam pipe,

while φ is the azimuth angle of the x-y (transverse) plane. The polar angle θ is

measured with respect to the counterclockwise beam direction (i.e. the positive

z axis). Additionally, it is useful to define the pseudorapidity η = − ln(tan(θ/2)).

Note, the value η = 0 corresponds to a direction perpendicular to the beam line,

while η = ∞ is parallel to the beam line. Pseudorapidity approaches rapidity

y = 1
2

ln(E+pz
E−pz ) when a particle’s momentum is much higher than its mass.
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Figure 3.5: Magnetic field and field lines of the CMS solenoid [48].

3.2.2 Solenoid

The central feature of the CMS detector is its superconducting solenoid that

provides a uniform magnetic field of 3.8 T along the beam direction, shown in

Fig. 3.5. The solenoid, with an inner diameter of 6 m, encases the tracker and

calorimeters. In order to achieve a magnetic field of 3.8 T, the magnet is com-

posed of four layers of NbTi superconductor coils. Each coil is reinforced with

aluminum conductors. This structure is shown in Fig. 3.6 (left).

The flux of the magnetic field is returned by a 10,000 ton iron yoke. The yoke

covers most of the 4π solid angle. The iron yoke, shown in Fig. 3.6 (right), is

instrumented as four stations outside of the solenoid and as part of the muon

system. In this way, the yoke has the additional benefit of being a stopper for

particles entering the muon system. Effectively only muons can make it through

the calorimeters and the iron yoke and reach the outer muon chambers.
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Figure 3.6: Cross section of the reinforced conductor coils (left) and yoke during
assembly (right) of the CMS magnet system [44].

3.2.3 Silicon trackers

A silicon pixel and strip tracker [49] is located within the solenoid volume. The

pixels occupy the region closest to the interaction point and are described in

Sec. 3.2.3. The silicon strip tracker, described in Sec. 3.2.3, lies just outside of the

pixel system. Positions of charged particles as they pass through the silicon are

recorded and used to recover the particles’ trajectories (and consequently their

momenta). The pixels record precise three-dimensional positions, while the

strip tracker provides coarser one- or two-dimensional position measurements.

Trajectories are measured by these inner tracker detectors covering 0 ≤ φ ≤ 2π

and |η| < 2.50. A layout of the tracker system is shown in Fig. 3.7. Images of the

pixel and strip tracker are shown in Fig. 3.8.

Pixel detector

The innermost layer of the CMS detector is the silicon pixel detector [49]. Be-

cause it is the layer closest to the beam, the pixel detector receives the largest

radiation dose of all the CMS detector components. In 2016, the pixel detector
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Figure 3.7: Schematic of the CMS silicon tracker system [44]. The pixel system
makes up the innermost layers, the silicon strip system is composed of several
different subdetectors: TIB, TID, TOB, and TEC.

Figure 3.8: Photos of portions of the pixel detector (left) and strip detector (right)
during installation [44, 50].

reached the end of its usable lifespan and was replaced in preparation for the

remainder of Run 2 and Run 3 (2017-2023). The pixel detector in 2015 and 2016,

the time of the analyses presented in this thesis, is described below.

The pixel detector is composed of 66 million silicon pixels that are spread

over three cylindrical layers at radii of 4.4, 7.3, and 10.2 cm from the beam pipe

and two endcap disks located at |z| = 34.6 and 46.5 cm. The pixel detector is

36



designed such that any charged particle traversing the detector should have

three precise position measurements.

The sensors are 100µm by 150µm pixels composed of high dose n-implants

in a high resistance n-substrate. This radiation-hard design ensures a high signal

charge at moderate bias voltages. A charged particle will cause electrons to be

ejected from the silicon atoms and create electron-hole pairs. These charges

are collected on the surface by an electric current. Read-out chips (ROCs) with

a custom ASIC are bump bonded to a 52×80 set of pixel sensors. A detector

module is composed of 8 to 16 ROCs. A token bit manager orchestrates the read

out of the ROCs in each module.

Silicon strip tracker

The silicon strip tracker [49] is located just outside of the pixel detector in the

radial region between 20 and 116 cm. The strip tracker is composed of three sys-

tems: the tracker inner barrel/disks (TIB/TID), the tracker outer barrel (TOB),

and tracker endcaps (TECs). The sensor elements are single sided p-on-n type

silicon micro-strip sensors. Custom integrated circuits amplify, shape, and store

the signals from the silicon sensors. The CMS tracker is the largest silicon tracker

ever built. It is composed of 24,244 silicon strip sensors covering a region of

198 m2.

The TIB/TID is composed of 320µm thick silicon strips positioned parallel

to the beam axis in four barrel layers and positioned radially in three disks at

each end. The strip pitch is 80µm for layers 1 and 2, 120µm for layers 3 and 4,

and varied between 100 and 141µm for the disks. The TOB is made of 500µm
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thick strips with pitches of 183µm on the four inner layers and 122µm on the

outer two layers. The strip side of the sensor provides a measurement of the φ

position of a particle hit. A second sensor is mounted back-to-back with a stereo

angle of 100 mrad to provide a measurement of the z coordinate in the TIB and

TOB and r coordinate in the TID.

Beyond the TOB, the TEC covers the region 124 < |z| < 282 cm. Each TEC

subdetector is composed of nine disks with up to seven rings of silicon strips.

The strips on the inner four (outer three) rings are 320µm (500µm) thick. The

strips are arranged radially and have pitches varying from 97 to 184µm. Rings

1, 2, and 5 of the TEC have second rotated strip sensors back-to-back thus pro-

viding measures of the r coordinate.

A charged particle with |η| < 2.4 should have about nine hits in the silicon

strip tracker and at least four two-dimensional measurements. The design pro-

vides a single point resolution of about 23 to 53µm for φ and 230 to 530µm for

z/r coordinates. Alignment of the tracker is monitored frequently with lasers

and reconstructed tracks.

3.2.4 Electromagnetic calorimeter

Outside of the silicon tracker system at a radius of 1.29 m is a lead tungstate

(PbWO4) crystal electromagnetic calorimeter (ECAL) [51]. The ECAL is a her-

metic homogeneous calorimeter composed of 61,200 crystals in the barrel and

about 15,000 crystals in the endcaps. The barrel calorimeter (EB) covers the

region |η| < 1.479, while the endcaps (EE) cover 1.479 < |η| < 3.0. An addi-

tional preshower detector is located in front of the EE detectors in the region
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Figure 3.9: Schematic of the CMS electromagnetic calorimeter [44].

1.653 < |η| < 2.6. A schematic of the ECAL is shown in Fig. 3.9.

The PbWO4 crystals, shown in Fig. 3.10 (left), are very dense, but highly

transparent scintillators. The scintillator emits 80% of the light in 25 ns, com-

parable to the LHC bunch spacing. Their short radiation length (0.89 cm) and

Moliére radius (2.2 cm) means electromagnetic showers are relatively small, al-

lowing for a precise position measurement. The performance of the crystals is

temperature dependent. To maintain the necessary resolution, the crystals have

to be kept at 18 ± 0.05 ◦C. Lasers are used to monitor the loss of optical trans-

mission in the crystals due to radiation.

In the EB, the crystals are aligned in a quasi-projective geometry (visible in

Fig. 3.9) to avoid having gaps aligned with particle trajectories. This means

the crystals are oriented with a 3◦ offset in both η and φ between the crystal’s
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Figure 3.10: Lead tungstate crystal and light collector from the ECAL (left) and
brass and plastic scintillator towers from the HCAL (right) [44].

axis and the trajectory from the interaction point. The EB crystals have a ta-

pered shape, the front face of the crystal is 22×22 mm2 while the rear face is

26×26 mm2. The crystals are 230 mm long which corresponds to 25.8 radiation

lengths. The granularity (∆η,∆φ) is approximately (0.0174, 0.0174). A pair of

avalanche photodiodes collect the light emitted by each crystal in the barrel.

In the EE, 5×5 units (supercrystals) of crystals are mounted at angles from

3 to 8◦. The front and rear face of the EE crystals are 28.6×28.6 mm2 and

30×30 mm2, respectively. The crystals are 220 mm long in the EE. A single vac-

uum phototriode collects the light at the back of each crystal in the endcaps.

The preshower detector is a 20 cm thick sampling calorimeter composed of

two layers of lead radiators which initiate electromagnetic showers and two lay-

ers of silicon strip sensors that measure the deposited energy. The silicon strips

have a 1.9µm pitch and cover an active area of 61×61 mm2. The preshower im-

proves the spatial resolution of the EE which improves photon and neutral pion

identification capabilities of the ECAL.

Only above energies of about 500 GeV does leakage out of the rear of the

ECAL become significant. Below this, in the typical range of particles produced
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at CMS, the energy resolution of the ECAL can be parameterized as [44]:

( σ
E

)2
=
(2.8%√

E

)2
+
(0.12

E

)2
+ (0.30%)2. (3.3)

The first term is the stochastic term, second term is the noise term, and the last

is a constant term. The stochastic energy resolution comes from photostatistics,

event-by-event fluctuations in the shower containment, and differences in en-

ergy deposited and measured by the preshower. Electronic noise, digitization

noise, and pileup contribute to the noise term. The constant term arises from

energy leakage out the rear, intercallibration errors, and the nonuniformity of

longitudinal light collection.

3.2.5 Hadronic calorimeter

Directly outside of the ECAL is a brass and scintillator hadron calorimeter

(HCAL) [52] that occupies the radial region from 1.77 to 2.95 m. The HCAL

is a hermetic sampling calorimeter that measures a particle’s position, energy,

and arrival time. This portion of the CMS detector is particularly important for

jet and pmiss
T reconstruction. The HCAL is composed of four main components:

the barrel (HB), the endcaps (HE), the outer barrel calorimeter (HO), and the

forward calorimeter (HF). A schematic of the HCAL is shown in Fig. 3.11.

A tower in the HCAL is composed of several alternating layers of absorbers

and plastic scintillators, shown in Fig. 3.10 (right). Generally, incoming particles

hit the dense absorber layers and interact creating numerous secondary parti-

cles. The shower of particles then passes through the scintillating layers causing

them to emit light. The light recorded from all layers of the tower by a hybrid

photodiode is a measure of the energy of the incoming particle.
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Figure 3.11: Longitudinal schematic of the CMS hadronic calorimeter [44].

The HB surrounds the ECAL and fits inside of the solenoid and is extended

to |η| < 1.3. For structural support, stainless steel absorbers are used for the

first and last layer of the HB towers. The towers in the HB are composed of

18 brass absorbers and 15 plastic scintillator layers 3.7 mm thick. An addi-

tional first and last scintillator are each 9 mm thick. The tower composition

of the HE is similar to that of the HB. A tower is composed of 18 brass layers

and 17 plastic scintillators with an additional first scintillator 9 mm thick. The

HE extends from 1.3 < |η| < 3.0. The HCAL segmentation (∆η,∆φ) is ap-

proximately (0.087, 0.087) for the region |η| < 1.6 and (0.17, 0.17) for the region

1.6 < |η| < 3.0.

The HO ensures that any energy that leaks out of the HB is still measured.

The HO is found after the first layer of the iron flux return yoke and reaches |η| <

1.3. A single layer of 10 mm scintillator makes up the HO. The total absorber
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thickness of the HCAL is 5.39 radiation lengths [44] near η = 0. This increases

to 10.3 radiation lengths at |η| ≈ 1.3. The HF extends the reach of the HCAL

in the forward region to |η| < 5.0. The HF is composed of a cylindrical steel

absorber, radiation-hard quartz fibers are interspersed every 5 mm. The quartz

800µm diameter fibers act as the active scintillating material.

3.2.6 Muon system

The muon system makes up the outermost layers of the CMS detectors. The

CMS experiment uses three types of gas-ionization detectors for muon identi-

fication [53]. A sketch of the muon system layout is shown in Fig. 3.12. Since

high momentum muons can traverse meters of iron without interacting, they are

not stopped by the previous layers of the detector and reach these outer layers.

Three types of muon chambers are used to get accurate position measurements.

Drift tube (DT) chambers cover the region |η| < 1.2 and are organized into

four stations that are interspersed among the steel flux-return yoke outside of

the magnet. Each DT consists of a 4 cm wide gas-filled aluminum tubes. When

a charged particle traverses the volume, it ionizes the gas releasing electrons

which drift towards the positively-charged wire, as shown in Fig. 3.13 (left).

This yields accurate position measurements of the muons throughout the layers

of the muon chambers.

In the endcap regions of 0.9 < |η| < 2.4, the muon system is composed of

cathode strip chambers (CSCs) also implemented as four interspersed stations.

CSCs are composed of positively-charged wires perpendicular to negatively-

charged copper strips within the gas volume. As in the DTs, a muon ionizes
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Figure 3.12: Sketch of a quarter of the CMS detector with muon systems la-
beled [54].

the gas and electrons cascade toward the wires, while positive ions move to-

ward the strips. Because the wires and strips are perpendicular to each other,

the passing particle is registered in two position coordinates. The effect of a

traversing muon in a CSC is sketched in Fig. 3.13 (right).

In addition, there are six layers of resistive plate chambers (RPCs) in the

range of |η| < 1.6 for use in the trigger system because of their precise timing

resolution of about 1 ns. The RPCs are composed of two oppositely-charged

parallel plates separated by a gas volume. When a particle passes through and

ionizes the gas it again create a cascade of electrons. External sensors quickly

detect the electrons and the pattern of the hits are used in the trigger to measure

the muon’s momentum.
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Figure 3.13: Sketch of a muon traversing a DT (left) and a CSC (right) [44].

3.2.7 Data acquisition and trigger system

The CMS trigger and data acquisition system is designed to collect and analyze

the information from the CMS detector at the LHC bunch crossing frequency

of 40 MHz. At design luminosity, the pp interaction rate at CMS is larger than

1 GHz. However, most of these events are not hard-scattering interactions. CMS

relies on a two-tiered trigger system, described in more detail in Ref. [55], to

select the most interesting collisions and reduce the stored-data rate to manage-

able levels. The first level (Level-1 or L1) is a hardware trigger that brings the

data rate to 100 kHz, the maximum rate allowed by the CMS readout electron-

ics. Next, a high-level trigger (HLT), implemented in software, further improves

the purity of events of interest and reduces the rate to around 400-1000 Hz for

offline storage.

Level-1 trigger

Within 4µs of a collision, the L1 system provides a tentative accept or reject

signal. The L1 accepts a collision event if it contains candidate physics objects,

for example energy clusters consistent with a photon or electron. The current
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Figure 3.14: Overview of the CMS L1 trigger system [55].

L1 uses only detector information from the calorimeters and muon detectors 1.

A schematic of the L1 trigger is shown in Fig. 3.14. Trigger primitives from the

calorimeters (HF, HCAL, and ECAL) and from the muon detectors (RPC, CSC,

and DT) are processed in several steps before being sent to the global trigger for

the accept/reject decision.

The calorimeter information is processed through two stages: a regional

(RCT) and then global (GCT) calorimeter trigger. The RCT processes in par-

allel energy deposit information from over 8000 ECAL and HCAL towers. The

output of the RCT are electron/photon candidates and regional energy sums. In

the GCT, the electrons/photons are sorted, jets are found, and global quantities

like pmiss
T are calculated. The GCT outputs a sorted subset of the found physics

objects to the global trigger.

At the same time, L1 muon objects are constructed from each of the three

1 Chapter 6 details a proposal for the inclusion of tracker information at L1 for the CMS
detector during the HL-LHC era.
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muon detector systems. The CSC and DT systems first identify track segments

from hit information in their respective stations. These segments are then sent

to a track finder system which uses pattern recognition algorithms to identify

muon candidates and make a preliminary measurement of their momenta. Hits

from the RPCs are directly sent to a pattern comparator to identify muon can-

didates. The regional track finders just described then send muon candidates to

a global muon trigger which merges the lists, and after removing any duplicate

objects, outputs muon objects to the global trigger.

The final step of the L1 trigger is the global trigger which makes the official

accept/reject decision. The triggers are a set of quality and momentum require-

ments on each object that are applied to the final list of physics objects that were

sent from the calorimeters and muon systems. If the data is accepted, the signal

is sent to readout the whole CMS detector and forward the data to the HLT for

the next stage of the decision.

Data acquisition system

The L1 trigger, as mentioned earlier, is designed to reduce the event rate to

100 kHz. The raw signals from the entire CMS detector must be readout at this

rate. There are about 55 million channels in the detector, which get condensed

to an output data rate of about 100 Gbps. Front-end systems store data continu-

ously in 40 MHz pipelined buffers [44]. Upon arrival of the L1 accept decision,

data are sent from the buffers to the data acquisition system. From there, all

data for an event is combined into a complete event which is then sent to the

event filter farm of the HLT.
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High-level trigger

After passing the L1 trigger, an event is processed by the HLT using algorithms

similar to those of the offline processing. The HLT processing occurs on approx-

imately 13,000 CPU cores. The HLT can take up to about 175 ms to process a

single event. The event filters of the HLT reconstruct physics objects from the

raw detector data. Then, the selection is applied as a sequence of steps. If at

any point, the physics objects do not pass the selection of that step, the process-

ing stops. Accepted events are then transferred for offline reconstruction and

storage.
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CHAPTER 4

RECONSTRUCTION OF PHYSICS OBJECTS

General information about event reconstruction is presented first in Sec. 4.1.

Charged particle track reconstruction and vertex identification are detailed in

Sec. 4.2 and Sec. 4.3, respectively. Then additional details about the reconstruc-

tion of each of the physics objects used in the Mono-h analysis, namely photons,

jets, and pmiss
T , are described in more detail in Secs. 4.4, 4.5, and 4.6.

4.1 Event reconstruction

Both data and simulated events undergo the same event reconstruction. In the

case of simulated events, GEANT4 [56] first models the CMS detector response

to generated particle physics signals. The data (and simulated) signals from the

CMS detector are then reconstructed into physics objects. The reconstruction is

handled by the particle-flow (PF) algorithm [57] which combines information

from all CMS subdetectors to perform a global event reconstruction.

Particle-flow is a heuristic algorithm that generates a list of stable particles

(PF candidates), namely protons, electrons, muons, and charged and neutral

hadrons. Photon energy is obtained from ECAL measurements. The energy of

electrons is made from a combination of the ECAL cluster measurement, the

electron momentum from the tracker, and the energy sum of all bremsstrahlung

photons spatially compatible with the electron track. Muon energy is deter-

mined from the curvature of the muon track. Charged hadron energy is deter-

mined from the momentum measured in the tracker and the matching ECAL

and HCAL energy deposits. Neutral hadron energy is obtained solely from the
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ECAL and HCAL energies.

4.2 Charged particle track reconstruction

In the LHC collision environment, charged particle track reconstruction is ex-

tremely important. Currently, the CMS detector has approximately 2,000 tracks

per event. Charged particles leave distinctive hits in the CMS tracker (described

in Sec. 3.2.3). Since charged particles curl in a magnetic field, the particles have a

helical trajectory in the detector. Reconstructing quickly and accurately the tra-

jectories from the hits is accomplished through dedicated software algorithms.

The track reconstruction occurs as a sequence of steps [58]: (i) hit reconstruction,

(ii) seed generation, (iii) track finding, (iv) track fitting, and finally (v) selection.

First, hits are reconstructed in the pixel and strip detectors. In the pixel de-

tector, any pixel above its single pixel threshold are read out, others are zero-

suppressed. Pixel clusters are formed by adjacent above-threshold pixels. The

cluster position is found from a charge-weighted average of the individual pixel

positions. In the strip detector, a strip is accepted if its charge exceeds five times

the channel noise, or if the strip and one of its neighbors exceed twice the chan-

nel noise. Strips with charge three times the noise level act as seeds. Neigh-

boring strips above threshold are added to form a cluster. A charge-weighted

average is used to extract the hit position of the cluster. These positions are then

translated to the global coordinate system, taking into account the alignment

measurements of the tracker.

An iterative tracking procedure [58] is used to reconstruct the trajectories.

The first iteration produces tracks that are the easiest to find (ie. prompt tracks
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with relatively large pT). Hits associated with these tracks are removed for sub-

sequent iterations. This reduces some of the combinatorial complexity of find-

ing more difficult tracks (for example, displaced tracks or tracks with missing

hits or low pT).

In each iteration, seeds (initial track candidates) are found first using three

hits with three-dimensional positions. Five track parameters are needed to de-

scribe a charged particle’s helical trajectory: pT, η, the angle at the point of clos-

est approach φ0, the z position at closest at closest approach z0, and the x-y dis-

tance at closest approach or impact parameter d0. Seeds give an initial estimate

of these track parameters and uncertainties.

Track finding is based on the Kalman filter method [59–61]. Using the ini-

tial track parameter estimate, tracks are projected to successive detector layers.

Multiple scattering and energy loss are considered in the estimation of the tra-

jectory to the next layer. In each layer, the algorithm looks for compatible hits

within a small search window. Tracks are built up by adding a hit from succes-

sive detector layers. At each layer, the track parameters are updated.

The final track fitting takes into account the information from all collected

hits and gives the final and best estimate of the track parameters. A Kalman

filter and smoother are used to extract the final trajectories. Starting with the in-

nermost hits, the track parameters are again estimated and iteratively corrected

by each successive hit. After a track is built, the parameters are smoothed by

applying the same process working backwards towards the beam line.

In the track fitting stage, a Runge-Kutta propagator [62] is used to extrapo-

late the trajectory. This takes into effect the material interactions and inhomoge-
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neous magnetic field. The non-perfect helical trajectory is estimated over many

small steps to improve the accuracy of the model. This method is also used later

to estimate the point of closest approach for the final track.

This method can produce a large number of reconstructed tracks that are

not associated with a charged particle. Applying selection requirements on the

number of hits, quality of the track, and compatibility with a vertex can reduce

significantly these spurious tracks.

4.3 Vertex reconstruction

Charged particle tracks are used to reconstruct interaction vertices in collision

events. A vertex is made from a collection of tracks that appear to originate

from the same z position. The fit of the clustered tracks is then used to extract

the exact position of the vertex. The z coordinate of the reconstructed vertices

distinguishes particles from the hard interaction and those from pileup interac-

tions.

The h + DM signature is tricky for vertexing because neither photons or pmiss
T

produce tracks and selecting an incorrect vertex can reduce the mass resolution.

However, if the reconstructed vertex is within 1 cm of the true vertex, the mass

resolution is dominated by the photon energy resolution. The reconstructed

vertex with the largest value of the physics-object p2T is taken to be the primary

pp interaction vertex (PV). The efficiency to find the PV within 1 cm of the true

vertex, for the signal simulated samples, is roughly 70%. In the SM h → γγ

analysis [63], a boosted decision tree is used to select the vertex, however this

has only modest gains in vertexing efficiency, and is not used in the Mono-h
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analysis since the pmiss
T is calculated with respect to the largest p2T vertex.

To ensure a quality vertex, additional selection criteria are applied. Con-

sistency between the PV and interaction point is enforced by requiring the z

position of the vertex be less than 24 cm, and the distance from the interaction

point in the x-y plane be less than 2 cm. Also, the number of degrees of freedom

of the vertex is required to be greater than four.

4.4 Photon reconstruction

As mentioned earlier, photons are useful particles for observing the Higgs bo-

son and for searching for new physics because of the excellent resolution of the

ECAL in the CMS detector. Reconstruction of photon objects is of particular

importance for this analysis. Photons are reconstructed [64] from their energy

deposits in the ECAL which are generally spread over several crystals. Due to

interactions with material in the region from the beam axis to the ECAL, pho-

tons can convert to electrons, and electrons often emit bremsstrahlung photons.

Photons and electrons are practically indistinguishable in the ECAL, therefore

their reconstruction in the ECAL proceeds exactly the same. Electrons are later

distinguished from photons if there are tracks in the silicon tracker that point to

an ECAL cluster.

The PF algorithm makes clusters of ECAL crystals using the highest energy

crystal as a seed and collecting all immediate neighbor crystals with energies

well above the electronic noise levels. Completed clusters with energy greater

than 4 GeV are then used to build superclusters (clusters of clusters). Superclus-

ters are small in the η direction, but extended in the φ direction to account for
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the azimuthal bending of charged particles in the strong magnetic field. These

superclusters should contain the majority of the energy from the photon and

any conversions. If the energy of the supercluster is larger than 10 GeV a PF

photon candidate is seeded [57].

Mass in the rest frame of the particle is determined by its energy and mo-

mentum, quantities that are conserved during a decay. The invariant mass of a

system of particles is computed by

m =
√∑

E2 − ||
∑

~p ||2 (4.1)

and reconstructs the mass of the mother particle in a decay. In the case of this

signal, the diphoton invariant mass mγγ is used to estimate the Higgs boson

mass and is calculated by

mγγ =
√

2pT1pT2(1− cos θ12), (4.2)

which depends on the pT of the leading and subleading photon and the angle θ12

between the two photons. Accurate photon energy is therefore a necessary com-

ponent in the accuracy of the mass distribution. Several corrections are applied

to achieve the best energy measurement. Adjustments to the cluster energy

correct for individual ECAL channel calibrations [65] and transparency losses.

During data taking, the ECAL crystal transparency can vary due to radiation

and annealing. The transparency is monitored by measuring each channel’s re-

sponse to laser light injected approximately every 30 minutes. Corresponding

corrections are applied per channel during the event processing.

The energy resolution of each cluster also depends on the variation of the

shower containment in the cluster. For photons that shower before reaching the

ECAL, the cluster energy can vary based on the amount of energy absorbed be-

fore the ECAL, how much of the shower energy is clustered, and any cluster
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Figure 4.1: Distribution of R9 for photons that have converted before the ECAL
and those that have not [64].

positioning on intermodule voids or off-pointing crystals. The R9 of a photon

supercluster is the energy in a 5×5 grid of crystals centered around the most en-

ergetic crystal divided by the supercluster energy. Photons that convert before

the ECAL have a wider energy distribution and consequently a broader R9 dis-

tribution. Therefore, R9 is particularly useful in distinguishing converted and

unconverted photons as shown in Fig. 4.1. Corrections for cluster energy are

extracted from a multivariate regression technique that is applied as function of

energy, η, and R9.

Finally, after all of the above corrections, there is an additional fine tuning

of the energy calibration using comparisons of observed and simulated Z → ee

events. In an enriched Z → ee sample, electrons are reconstructed as photons

by simply using only ECAL information. The dielectron invariant mass of data

and simulated events are compared. The data photon energies are scaled (by

less than 1%) to match simulation. Additionally, the energy of simulated events
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Figure 4.2: Sketch of the effect of scaling (left) and smearing (right) on mass.

is smeared (by less than 2%) to match the resolution of the data. This smearing

is likely needed because of a slight underestimation of the amount of material in

the detector prior to the ECAL. A sketch of these corrections is shown in Fig. 4.2.

After all corrections, the final dielectron invariant mass around the Z boson peak

has excellent agreement between data and simulated events as demonstrated in

Fig. 4.3.

Since the photon identification was optimized for the Mono-h search, the

details on the selection are given later in Section 5.3. However, it is useful to de-

fine here several photon-related variables that will go into photon identification

criteria in the trigger and ultimate event selection. Identifying photons from

candidate objects is based on several variables detailed below:

• R9: As mentioned earlier, this is the ECAL energy in a 5×5 grid of crystals

centered around the most energetic crystal divided by the supercluster en-

ergy. This is useful in distinguishing converted and unconverted photons.
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Figure 4.3: Mass distribution of Z→ ee events in data and simulated events with
all corrections applied for electrons in the barrel (left) and endcap (right) [66].

• H/E: The ratio of hadronic-to-electromagnetic calorimeter energy deposits

of the photon candidate. More precisely, this is the ratio of energy in

HCAL towers directly behind the supercluster, divided by the superclus-

ter energy. A photon will primarily deposit all of its energy in the ECAL

and therefore this ratio should be relatively small.

• σηη: The standard deviation of a single crystal η within a 5 × 5 grid,

weighted by the ratio of the crystal’s energy to the supercluster energy.

This is effective at describing the spread of the photon cluster. A larger σηη

is indicative of a jet, since photons or electrons will generally deposit all of

their energy in one or two crystals in η.

• ICh: The charged-hadron isolation is computed from a sum of track pT

associated with the PV and within a cone of ∆R =
√

(∆η)2 + (∆φ)2 < 0.3

of the photon candidate.

• INeu: The neutral-hadron isolation is computed from a sum of neutral-

hadron pT within a cone of ∆R < 0.3 of the photon candidate.
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• Iγ : The photon isolation is computed from a sum of photon pT within a

cone of ∆R < 0.3 of the photon candidate.

The isolation variables employ footprint removal, so that the effect of the photon

candidate is minimized in the summations. In each event, pileup interactions

can produce additional objects which can fall within the isolation cone of the

photon. These objects then contribute their pT to the isolation sums mentioned

above. The isolation variables are therefore corrected by the mean pT density of

each event to mitigate the effect of pileup [67].

4.5 Jet reconstruction

Collisions at the LHC, unsurprisingly, primarily produce quarks and gluons.

These are not observable on their own because of color confinement, however,

they do create collimated showers of hadrons. Collections, or jets, of charged

and neutral hadrons produce tracks and calorimeter deposits. Jets are recon-

structed by clustering the PF candidates in an event using the anti-kT algo-

rithm [68] with a distance parameter R of 0.4 as implemented in FASTJET [69].

In the anti-kT algorithm generally conical jets are formed using a distance met-

ric between particles which is determined by their 1/p2T and physical separation.

Particles with a distance greater thanR from each other are clustered separately.

Jet momentum is calculated as the vector sum of all particle momenta clus-

tered in the jet. Jets, like all other objects reconstructed in the CMS detector,

need to be calibrated in order to have the correct energy scale. Energy correc-

tions are essentially a scaling of the jet momentum that is dependent on pT, η,

and jet flavor. Jet energy corrections, composed of both energy scale and energy
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resolution corrections, are applied to all jets to correct for energy coming from

pileup events, detector response, and residual data-simulation discrepancies.

The procedure for 13 TeV data taking and its performance are akin to that of the

8 TeV data taking period, which is detailed in Ref. [70].

Mismeasured high-pT jets can produce a ~p miss
T that is aligned in the same

direction as the jet. Therefore, jets are used in the Mono-h analysis as a way to

clean events with possibly mismeasured pmiss
T . All jets with pT > 50 GeV and

that fall with |η| < 4.7 are used in the Mono-h analysis if they pass a loose set

of selection requirements. The selection is based on the fraction and number of

charged, neutral, and electromagnetic constituents in the jet, and designed to

remove jets originating from calorimeter noise. A description of the criteria and

efficiency for the 2015 data set is found in Ref. [71]. The criteria for the 2016 data

set is comparable. The selection is roughly 98% efficient at identifying jets in an

enriched dijet data set. In a minimum-bias sample, the jet background rejection

is greater than 90%.

4.6 Missing transverse momentum reconstruction

The missing transverse momentum vector (~p miss
T ), with magnitude pmiss

T , is the

negative vector sum of the pT of all PF candidates in a pp collision event as

depicted in Fig. 4.4. Because pmiss
T is inferred from the pT of the physics objects

in an event, it is highly dependent on the reconstruction of these objects. The

CMS Collaboration has several algorithms used to estimate pmiss
T [72]. The one

used in this analysis does not solely rely on the original PF jet pT in the ~p miss
T

calculation. Instead, the jets’ pT in the ~p miss
T calculation are corrected by their jet
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Figure 4.4: Illustration of object momentum and the resulting ~p miss
T in the trans-

verse plane for a signal-like event where two photon objects point right and
the vector ~uT denotes the vector sum of all other particles reconstructed in the
event.

energy corrections [70] as described in the previous section. The ~p miss
T becomes:

~p miss
T = PF ~p miss

T −
∑
jets

( ~pT
corr
,jet − ~pT,jet). (4.3)

In general, anomalous large pmiss
T in an event can be caused by uninterest-

ing causes like detector noise, cosmic rays, and beam-halo particles. Events of

these nature are not well-modeled in simulation. Filters that use timing, pulse-

shape and topological information are applied to remove these events from the

data set. The filters identify better than 85% of spurious high-pmiss
T events with

a mistagging rate less than 0.1%. More information about these filters can be

found in Ref. [72].

The reconstructed ~p miss
T of the data has a sinusoidal modulation in the φ com-

ponent, visible in Fig. 4.5. Possible causes of the modulation include anisotropic

detector responses, inactive calorimeter cells, detector misalignment, and/or

the displacement of the beam spot. It has also been noted that the modulation

increases roughly linearly with the pileup. The Mono-h analysis depends on an

accurate estimate of the ~p miss
T direction. To reduce the amplitude of the φ modu-

lation, the origin of the coordinate in the transverse momentum plane is shifted

as a function of PF particle species and η. The corrected φ component and pmiss
T
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magnitude are shown for data in Fig. 4.5 and for simulation in Fig. 4.6.
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CHAPTER 5

MONO-H(γγ) ANALYSIS

A search for particle dark matter particles produced in association with a

Higgs boson decaying to two photons is presented here. Two benchmark mod-

els that yield this signal were previously described in Sec. 2.5. The primary

sources of background events are discussed in Sec. 5.1. Then in Sec. 5.2 the ob-

served data set is presented. Photon identification, optimization of the event se-

lection, and the ultimate event selection criteria are described in Sec. 5.3, Sec. 5.4,

and Sec. 5.5, respectively. The estimation of the background, which is primarily

extrapolated from the data, is detailed in Sec. 5.7. A discussion of the system-

atic uncertainties affecting the analysis are presented in Sec. 5.8. The statistical

treatment of the data is detailed in Sec. 5.9. Section 5.10 shows the results of the

Mono-h search including the interpretation in terms of the benchmark signal

models. Section 5.11 summarizes a similar search at ATLAS. Finally, a summary

of the analysis is presented in Sec. 5.12.

5.1 Background sources

This search looks for a final state that is composed of two photons and a mo-

mentum imbalance registered as pmiss
T . The final state of the h + DM signal has

many standard model background sources. These backgrounds fall into two

categories: resonant background from events where there is a SM Higgs boson

that decays to two photons, and nonresonant backgrounds. The nonresonant

sources are expected to have a larger contribution to the total background, while

the resonant backgrounds are in some cases irreducible.
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Figure 5.1: Feynman diagrams at LO for SM h production via ggh (upper left),
VBF (upper right), tth (lower left), and Vh (lower right).

5.1.1 Resonant backgrounds

There are four prominent Higgs boson production mechanisms at the LHC: i.

gluon-gluon fusion (ggh), ii. vector boson fusion (VBF), iii. associated produc-

tion with top quarks (tth), and iv. associated production with a vector boson

(Vh) where the vector boson is either a Z or W boson. Example leading or-

der diagrams for each of these production mechanisms are shown in Fig. 5.1.

Of these production mechanism, the SM Vh production is an irreducible back-

ground for this analysis if Z → νν. The others can appear signal-like if they

have large misreconstructed pmiss
T .

Monte Carlo (MC) simulated samples of SM h production are generated at

next-to-leading order (NLO) using MADGRAPH5 aMC@NLO v2.2.2 [33]. As in

the signal samples, the decay of the Higgs boson is simulated by PYTHIA using
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the CUETP8M1 underlying event tune parameter set [73]. The parton distribu-

tion functions (PDFs) are taken from the NNPDF3.0 set [74]. The predicted SM

cross sections are calculated at NLO by the LHC Higgs Cross Section working

group for each production mechanism [75]. The SM h cross sections are sum-

marized in Table 5.1.

Table 5.1: Theoretical SM Higgs boson production cross sections [75].

Production mode Cross section [ pb]

ggh 48.58
VBF 3.782
tth 0.5071
Vh 2.257

The resonant background simulated samples, in addition to being used for

optimizing the event selection, are used in the background yield estimation.

This is described in more detail in Sec. 5.7.1. In contrast, the nonresonant back-

grounds, described next, although also used to choose the optimal event selec-

tion, are not used in the background estimation. Instead, the nonresonant dis-

tribution is taken from the observed data. This process is detailed in Sec. 5.7.2.

5.1.2 Nonresonant backgrounds

The dominant nonresonant backgrounds for this analysis are events with real or

mismeasured pmiss
T and two photons that happen to have an invariant mass close

to the mass of the SM Higgs boson. The largest contribution to the nonresonant

background are γγ events followed by γ + jet and QCD multijet events.

Two real photons can primarily be produced by either quark-antiquark an-

nihilation (Born processes) or gluon-gluon fusion (box processes). These pro-
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Figure 5.2: Born (left), box (center), and bremsstrahlung (right) processes of non-
resonant diphoton production.

duction mechanisms are shown in Fig. 5.2. The simulated γγ event sample is

generated at LO with SHERPA v2.2.2 [76]. In γ + jet and multijet events, a final

state jet is reconstructed as a photon. These samples are modeled at LO with

PYTHIA.

Additional nonresonant backgrounds arise from various electroweak pro-

cesses. These include: single top, tt, W boson, or Z boson production in associ-

ation with one or two photons. Drell-Yan (DY) production where the Z boson

decays to pairs of electrons or muons can also be misidentified as an event with

two photons. The DY and electroweak backgrounds are generated at NLO with

MADGRAPH5 aMC@NLO v2.3.0.

5.2 Observed data set

The search for h + DM is performed on pp collision data at a center-of-mass

energy
√

s = 13 TeV and a bunch spacing of 25 ns. The data are collected at the

CMS detector in 2015 and 2016. The 2015 data set correspond to an integrated

luminosity of 2.2 fb−1. The 2016 data set correspond to an integrated luminosity

of 35.9 fb−1. The data included in the analysis fulfill all quality criteria for all of

the subcomponents of the CMS detector.
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Figure 5.3: Average number of vertices in the 2016 data set [41].

This thesis will focus primarily on the analysis of the 2016 data [29,77], which

is more sensitive to DM signals because of the increased size of the data set.

The 2015 analysis [28, 78], which is part of the first CMS paper on h + DM, is

described briefly in Appendix A. It is included to show an alternative way of

doing the background estimation and signal extraction.

During the 2016 run, the average pileup was 27 simultaneous pp events at

the CMS experiment. This is shown in the number of vertices per event in

Fig. 5.3. Minimum-bias collision events generated with PYTHIA are added to

the simulated samples to mimic the effects of pileup. This generation of over-

lapping pp collisions is necessary, but does not completely agree with the ob-

served pileup distribution. Therefore, the simulated samples are reweighted to

match the number of vertices distribution observed in the data.

The data that is stored and processed in this analysis are selected by the

Level-1 and High-Level Triggers. In general, if an event with a photon passes

the L1 trigger requirements, local ECAL information about the seed photon is

unpacked by the HLT. The HLT reads the information in a rectangle of ∆η ×

∆φ = 0.14 × 0.4 around the L1 seed. The HLT then runs a clustering algorithm
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on this particular segment of interest and decides if the events are accepted.

For both the 2015 and 2016 data set, similar triggers are used to select the

data. The primary difference being that the 2016 trigger has a slightly looser

mass requirement than that of the 2015 trigger. At L1, a diphoton trigger is used

that has transverse energy thresholds of 22 and 15 GeV for the pT leading and

subleading photons. At HLT, these thresholds are raised to 30 and 18 GeV, re-

spectively. The events are filtered into two categories based on their R9 values

and based on if they fall in the barrel (EB) or endcap (EE). Loose photon iden-

tification criteria 1 based on the cluster shower shape, isolation requirements,

and a selection on the ratio of hadronic-to-electromagnetic energy deposits are

applied on the candidate photons. The 2015 (2016) trigger selection at HLT has

an additional requirement that the diphoton invariant mass mγγ is greater than

95 (90) GeV. Full HLT selection requirements for the 2016 trigger are given in

Table 5.2. The effect of the trigger is also modeled and applied to the simulated

samples.

Table 5.2: Trigger selection requirements for the 2016 trigger.

H/E σηη R9 Iγ ICh

EB; R9 > 0.85 < 0.12 – > 0.5 – –
EB; R9 ≤ 0.85 < 0.12 < 0.015 > 0.5 < (6.0 + 0.012pT) < (6.0 + 0.002pT)
EE; R9 > 0.90 < 0.1 – > 0.8 – –
EE; R9 ≤ 0.90 < 0.1 < 0.035 > 0.8 < (6.0 + 0.012pT) < (6.0 + 0.002pT)

Other trigger requirements
mγγ > 90 GeV HLT seeded pT > 30 GeV HLT unseeded pT > 18 GeV

The efficiency for the data to pass the trigger selection is computed using the

tag-and-probe method [79]. The tag-and-probe method is a generic way to mea-

sure efficiency by exploiting diobject resonances, in the case here the dielectron

invariant mass peak in a Z → ee resonance is utilized. The “tag” object has a

1 Reminder, photon identification variables are defined in Sec. 4.4.
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Figure 5.4: Level-1 (left) and high-level (right) trigger efficiency as a function of
pT for leading (black) and subleading (red) photons in the 2015 trigger [80].

set of very tight identification requirements applied (the misidentification rate

of the tag should be less than 1%). The other object, the “probe”, is selected

by pairing these objects with the tags such that the invariant mass is consistent

with a Z→ ee resonance. The efficiency is calculated from the number of probes

passing the desired criteria divided by the total number of probes. Generally

the number of events in each case is extracted by fitting the resonance peak.

The trigger efficiency, extracted using the tag-and-probe method, as a func-

tion of photon pT is shown for the 2015 data set in Fig. 5.4 [80]. Similar perfor-

mance is observed for the 2016 data set. The observed efficiency is 98%, and the

efficiency reaches the plateau at about 40 GeV for the seeded leg.

As already hinted, data selected with a single electron or photon are also

used in this analysis. This data set is used for estimating the aforementioned

trigger efficiency and for evaluating scale factors between data and simulation

that will be detailed later. This “Single Electron” data set passes a trigger with a

27 GeV electron pT threshold. The electron falls in η < 2.1 and passes other tight

identification criteria.
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5.3 Photon identification

The photons that enter the Mono-h analysis are required to fall within the fidu-

cial range of the ECAL (|η| < 2.5) excluding the gap between 1.44 < |η| < 1.57.

A loose selection, detailed in Table 5.3, is applied to identify photons for the

Mono-h analysis. This selection has an estimated 90% efficiency for identifying

photons, while having an 82% background-rejection rate.

Table 5.3: Loose working point selection for barrel and endcap photon identifi-
cation. A conversion-safe electron veto is also applied in both regions.

Variable Barrel selection Endcap selection
H/E < 0.0597 < 0.0481
σηη < 0.01031 < 0.03013
ICh [GeV] < 1.295 < 1.011
INeu [GeV] < 10.910 + 0.0148pT < 5.931 + 0.0163pT

+ 0.000017p2T + 0.000014p2T
(if ∆R > 0.3) Iγ [GeV] < 3.630 + 0.0047pT < 6.641 + 0.0034pT

In addition to these criteria, a conversion-safe electron veto is applied to re-

ject only prompt electrons. This means any event is vetoed if it contains charged

particles that have a hit in the inner most layer of the pixel detector that is un-

matched to a conversion vertex that points to the photon cluster. This selec-

tion helps to reduce the Drell-Yan background contribution, while maintaining

a practically 100% efficiency for signal events.

The dependency on the ∆R in the photon isolation is a unique component

for this analysis that was added to optimize the photon identification for signals

with Lorentz-boosted topologies. For signal models with high-mass mediators,

the Higgs boson gets a momentum boost. When the boosted Higgs boson de-

cays, the outgoing photons are produced collinearly and hit the ECAL close to

each other. Consequently, the ∆R difference between the two photons is small,
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Figure 5.5: The ∆R of the two photons for select signal points (left), and the
efficiency of the Z′-2HDM signals to pass the selection on each variable of the
photon identification as a function of mZ′ (right).

as seen in Fig. 5.5 (left). When the photons overlap in this way, there are large

contributions from one photon to the photon isolation sum of the other, this

causes the photon identification efficiency to drop. For the Z′-2HDM, this is

seen in high mZ′ signals, as shown in Fig. 5.5 (right). In order to maintain effi-

ciency to signals with such topologies, the requirements on Iγ are not applied

for photons that fall within ∆R < 0.3 of each other.

A tag-and-probe method, described earlier for the trigger efficiency mea-

surement, is also used here to understand any potential difference in photon

identification efficiency between data and simulated events. The identification

selection is applied to the Single Electron data set (mentioned in Sec. 5.2). The

efficiency for data and simulated events to pass the criteria is shown in Fig. 5.6.

Also shown is the ratio of data and simulated event efficiency. The difference in

these efficiencies, shown in Fig. 5.7 are taken as scale factors that are applied to

the simulated events.
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Figure 5.7: Scale factors (left) and uncertainties on the scale factors (right) for
the photon identification.
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5.4 Selection optimization

The criteria for event selection was optimized using signal and background

simulated events. The Punzi significance [81] is a frequentist definition of sig-

nal sensitivity and was maximized to find the optimal selection criteria for the

analysis. The Punzi significance S is calculated for the number of standard de-

viations wanted for detection (a) using the signal selection efficiency ε and the

number of background events B. The significance is defined as:

S =
ε

(a/2 +
√

B)
. (5.1)

Setting a = 5, the Punzi significance is studied for the variables: pT1/mγγ ,

pT2/mγγ , pmiss
T , and pTγγ . Note, that pT1/mγγ and pT2/mγγ are used instead of

pT1 and pT2, respectively, since these better preserve the shape of the mγγ distri-

bution which is ultimately used for the background estimation.

Two dimensional scans of Punzi significance for various selection criteria

are shown in Fig. 5.8. The optimal selection for the high-pmiss
T region was chosen

based on studies of the Z′-2HDM signal withmA = 300 GeV andmZ′ = 600 GeV.

The low-pmiss
T region selection was optimized using the baryonic Z′ model with

mDM = 1 GeV and mZ′ = 10 GeV. These were the lightest mass points available

at the time and offered the softest pmiss
T spectra for each model.

5.5 Event Selection

Preselected photons are required to pass general event preselection criteria,

summarized in Tab. 5.4. The events are then split into a high-pmiss
T category
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Figure 5.8: Scans of Punzi significance for the baryonic Z′ model.

(pmiss
T ≥ 130 GeV) and a low-pmiss

T category (50 < pmiss
T < 130 GeV). The kine-

matic selection applied, chosen by the optimized selection mentioned above, is

shown in Table 5.5. Additionally, events are rejected if they have three or more

jets each with pT above 30 GeV to reject multijet backgrounds.

Two topological requirements are also applied. A misreconstructed high pT

jet can cause a large amount of nearly collinear pmiss
T . To protect against events

of this nature, events are removed if there are highly energetic jets collinear to
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Table 5.4: Event preselection requirements.

Variable Selection criteria
pT1 > 30 GeV
pT2 > 20 GeV
pT1/mγγ > 0.33
pT2/mγγ > 0.25
mγγ ≥ 100,≤ 300 GeV

Table 5.5: Kinematic requirements for the low- and high-pmiss
T categories.

Variable Low-pmiss
T category High-pmiss

T category
pmiss
T > 50 GeV, < 130 GeV ≥ 130 GeV
pT1/mγγ > 0.45 > 0.5
pT2/mγγ > 0.25 > 0.25
pTγγ > 75 GeV > 90 GeV

the ~p miss
T by requiring that min |∆φ(~pjet, ~p

miss
T )| be greater than 0.5 for any jet

with pT above 50 GeV. Additionally, because it is expected for the signal that

the ~p miss
T is back-to-back with the Higgs boson, events must pass the selection

|∆φ(~pγγ, ~p
miss
T )| > 2.1.

5.6 Data-simulation comparison

To understand the performance of the data and how well it is modeled by the

simulation, it is useful to compare the data with simulated events. The con-

tribution from the simulation is summed for all background processes. In all

of the distributions, the total number of simulated events are scaled to match

the integral of the data. With selection applied on pT1/mγγ , pT2/mγγ , pTγγ , and

the veto on number of jets, distributions for the photon η, φ, and pT are shown

in Fig. 5.9, Fig. 5.10, and Fig. 5.11, respectively. Additionally, distributions are

shown for pTγγ and mγγ in Fig. 5.12. It is also useful to look at the topological
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Figure 5.9: The η of the leading (left) and subleading (right) photon in data and
simulation after selection on pT1/mγγ , pT2/mγγ , pTγγ , and the veto on number
of jets. The simulated events are scaled to match the integral of the data.

variables used in the analysis. The min |∆φ(~pjet, ~p
miss
T )| is shown in Fig. 5.13 and

the |∆φ(~pγγ, ~p
miss
T )| is shown in Fig. 5.14 with all other selection applied. For all

of the abovementioned variables, the observed and simulated data have nearly

identical distributions.

Likewise, after all other selection are applied, the pmiss
T distribution is com-

pared between the data and simulation in Fig. 5.15. Very good agreement is

seen between the data set and the simulation. This is useful only as a validation

that the data is well understood, since the nonresonant component of the back-

ground, which makes up the majority of the background, is estimated directly

from the data.
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Figure 5.10: The φ of the leading (left) and subleading (right) photon in data and
simulation after selection on pT1/mγγ , pT2/mγγ , pTγγ , and the veto on number
of jets. The simulated events are scaled to match the integral of the data.
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Figure 5.11: The pT of the leading (left) and subleading (right) photon in data
and simulation after selection on pT1/mγγ , pT2/mγγ , pTγγ , and the veto on num-
ber of jets. The simulated events are scaled to match the integral of the data.
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Figure 5.12: The pTγγ (left) and mγγ (right) photon in data and simulation af-
ter selection on pT1/mγγ , pT2/mγγ , pTγγ , and the veto on number of jets. The
simulated events are scaled to match the integral of the data.
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Figure 5.13: The min |∆φ(~pjet, ~p
miss
T )| in data and simulation for the low-pmiss

T

(left) and high-pmiss
T (right) after all selection except for the selection on this vari-

able. The simulated events are scaled to match the integral of the data.
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Figure 5.14: The |∆φ(~pγγ, ~p
miss
T )| in data and simulation for the low-pmiss

T (left)
and high-pmiss

T (right) after all selection except for the selection on this variable.
The simulated events are scaled to match the integral of the data.
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Figure 5.15: The pmiss
T distribution in data and simulation after all selection is

applied. Events with pmiss
T below 50 GeV are not used in the analysis. The signals

are shown with a cross section of 1 pb. The simulated events are scaled to match
the integral of the data.
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5.7 Background estimation and signal extraction

In order to extract an estimation of the background and signal contributions,

a narrow resonance search is preformed. This method is similar to that of the

SM Higgs boson diphoton analysis [63]. After applying all event selection, the

diphoton invariant mass mγγ between 105 and 180 GeV is fit with a probability

density function (pdf) that is composed of signal and background shapes. The

background pdf is composed of a resonant component (described in Sec. 5.7.1)

and a nonresonant component (described in Sec. 5.7.2). The signal pdf and sig-

nal extraction are detailed in Sec. 5.7.3.

5.7.1 Resonant background pdf

The resonant background arises from the production of SM Higgs bosons de-

caying to two photons. This background contribution creates a peak in the mγγ

distribution. Both the signal and resonant backgrounds have a peak around

mγγ = 125 GeV, as shown in Fig. 5.16. Therefore, any signal observed will be

a peak in mγγ on top of the resonant background peak. The contribution to the

peak from the SM h → γγ backgrounds is estimated with simulated events. A

mass distribution template taken from the simulated events is scaled to the SM

Higgs boson production cross section at NLO. This template is included as a

resonant component in the final background pdf.
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Figure 5.16: Shape of the mγγ distribution for the SM Vh background (left) and
for the Z′-2HDM signal (right) in simulated events in both the low-pmiss

T (red)
and high-pmiss

T (blue) categories.

5.7.2 Nonresonant background pdf

The nonresonant background is mostly due to pp→ γγ events and electroweak

processes. Instead of estimating these contributions from the simulated events,

the nonresonant background is estimated using the observed data. The dipho-

ton mγγ distribution in the data is fit, in each pmiss
T category, with an analytic

function that is used to model the nonresonant background. The true functional

form of the background is obviously unknown, so the parametric model must

be flexible enough to describe a variety of potential underlying functions. Also,

using an incorrect model can lead to biases in the measured signal yield and ar-

tificially modify the sensitivity of the analysis. Three functions, commonly used

in dijet [82] and diphoton [83] resonance searches, are considered as possible

models for the nonresonant background pdf. The analytic functions considered
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Figure 5.17: Example of the power law fit to the mγγ distribution for one of the
pseudo-experiments for the low-pmiss

T (left) and high-pmiss
T (right) categories.

are:

• Power law: ax−b where a and b are free parameters

• Exponential times power law: ax−be−c with free parameters a, b, and c

• Dijet: p0(1−x)p1
xp2+p3 log(x) where x = m/

√
s and p0, p1, p2, p3 are free parameters

A detailed bias study is performed to choose which analytic function to

use in the background estimation. A template of the mγγ shape is built from

simulated nonresonant events. This template is used to generate 1000 pseudo-

experiments for each pmiss
T category. For each pseudo-experiment, the number

of events generated is equal to the number of events observed in data in that

category. The resulting mγγ distribution for each pseudo-experiment is fit with

each of the analytic functions considered. An example of a fit for one of the

pseudo-experiments is shown in Fig. 5.17. The same exercise is also repeated

injecting a potential signal contribution.

The pull of the pseudo-experiment is defined as the difference in the number

of simulated events NMC and those predicted by the fit function Nfit divided by
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Figure 5.18: Pull of the fits for the power law function in the low-pmiss
T (left) and

high-pmiss
T (right) categories.

the statistical uncertainties of the fit σfit:

pull =
Nfit −NMC

σfit
. (5.2)

For each analytic function tested, the pull of each pseudo-experiment is calcu-

lated. The distribution of pulls for the power law function is shown in Fig. 5.18.

The bias (the median of the pulls) is shown for each of the analytic functions

considered in Fig. 5.19. As seen there, the power law has the smallest bias. It is

also the simplest of the functions considered. For these reasons, it is chosen as

the background model.

If the bias is five times smaller than the statistical uncertainty in the num-

ber of fitted events, any potential bias from the choice of background model is

considered negligible. This criteria is also satisfied for the power law function,

therefore any systematic uncertainty in the bias from the chosen background fit

function is neglected in this analysis.
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Figure 5.19: Bias for both the low-pmiss
T (closed points) and high-pmiss

T (open
points) fit with the three functions: power law (green), exponential times power
law (blue), and dijet function (red).

5.7.3 Signal extraction

The signal pdf is the mγγ shape taken from the simulated signal samples

weighted to the theoretical production cross section. The signal shape is domi-

nated by the detector resolution and reconstruction response in the ECAL, there-

fore the shape is smeared as mentioned in Sec. 4.4. The signal shape for the

Z′-2HDM signal is shown in Fig. 5.20.

To extract the signal yields, the mγγ distribution observed in the data is fit

with a signal plus background pdf. The background pdf is composed of the res-

onant and nonresonant background pdfs mentioned above. The background-

only template for both pmiss
T categories is shown in Fig. 5.21. An explanation of

the maximum-likelihood fit and how the signal strength is estimated is given

later in Sec. 5.9.
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Figure 5.21: The background-only fit of themγγ distribution in the low-pmiss
T (left)

and high-pmiss
T (right) categories. The fit is preformed with the sum of a power

law function (dashed black) to describe the nonresonant background contribu-
tion, and a resonant shape (dashed red) taken from the simulation to account
for the SM h → γγ contribution. The sum of these nonresonant and resonant
shapes (solid blue) is used to estimate the total background in this analysis.
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5.8 Systematic uncertainties

This section details the systematic uncertainties related to the Mono-h search.

The systematic uncertainties can be split into theoretical and experimental

sources of uncertainty. Additionally, the uncertainties can be separated between

those that affect the overall expected yields and those that can change the ex-

pected shape. The uncertainties are summarized in Tab. 5.6.

Table 5.6: Systematic uncertainties affecting the resonant backgrounds. Uncer-
tainties denoted with an asterisk are also applied to the signal.

Change in yield or shape
Theoretical sources

PDF 2–4%
Renorm. and fact. scale 0.3–9%
Higgs boson branching fraction * 1.73%
Cross section (ggh) 20%

Experimental sources
Integrated luminosity * 2.5%
Trigger efficiency * 1.0%
Photon identification efficiency * 2.0%
Photon energy scale * Shape
pmiss
T energy scale (Vh and tth) * 0.5%
pmiss
T mismeasurement (ggh and VBF) 50%

∆φ selection efficiency (ggh and VBF) 1–4%

Theoretical uncertainties change the theoretical production cross section of

the Higgs boson. Uncertainty in the underlying parton distribution function

(PDF) are addressed using the recommendations of the PDF4LHC group [84].

The uncertainties arising from the renormalization and factorization scale are

taken into effect using the recommendations from the LHC Higgs Cross Sec-

tion working group [5]. These theoretical uncertainties modify the expected SM

h → γγ yield by 0.3 to 9.0%. The Higgs boson branching fraction has a 1.73%

systematic uncertainty [5] primarily originating from uncertainties on input pa-
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rameters (like quark masses) in the calculation of the Higgs boson width. Based

on the CMS measurement of the differential Higgs boson production cross sec-

tion [85] for events with diphoton pT above 70 GeV, an additional 20% uncer-

tainty is included on the ggh cross section.

Several experimental sources of systematic uncertainties affect the Mono-h

analysis. In general, these affect how well simulated samples model the data,

and are therefore only relevant to simulated samples used in the signal extrac-

tion. An uncertainty of 2.5% is applied to the normalization of simulated sam-

ples to account for the uncertainty in the integrated luminosity measurement of

the 2016 data set [86]. The trigger efficiency is measured for observed events as

detailed in Sec. 5.2. The difference in trigger efficiency between observed and

simulated events is taken as a systematic uncertainty of 1% [85]. Similarly, the

difference in photon identification efficiency for observed and simulated events

(shown earlier in Fig. 5.6) is taken as a 2% systematic uncertainty.

As mentioned in Sec. 4.4, the photon energy scale is corrected using Z → ee

events. The uncertainty on the overall photon energy scale is primarily related

to differences between electrons and photons. So it is evaluated by comparing

Z → ee events and γγ events with mγγ ≈ 90 GeV. The resulting difference of

±0.5% is applied as a shift in the mγγ peak, as shown in Fig. 5.22. The variation

of the mγγ shape is included for the signal and resonant background templates

in the final fit.

There are several systematic uncertainties in this analysis related to the use

of the pmiss
T . Since ~p miss

T is calculated from the vector sum of all other physics ob-

jects, the uncertainties on the energy and resolution of these objects affects the

value of pmiss
T . Jet, photon, electron, muon, and tau energies can all modify the
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Figure 5.22: The nominal signal mγγ shape (blue) and the mγγ shape scaled up
(red) and down (black).

pmiss
T . The corresponding uncertainty is calculated by shifting the reconstructed

pT of each object within the momentum scale and resolution uncertainties of

that object and recalculating the pmiss
T of the event [72]. Since this analysis does

not rely on the shape of the pmiss
T distribution, the change in the pmiss

T distribution

only changes the efficiency of events to pass the pmiss
T selection. The largest dif-

ference in efficiencies is less than 0.5% and is taken as a systematic uncertainty

on the normalization of simulated samples that have have true pmiss
T (ie. signal

samples, Vh and tth samples). This is completely negligible in the results. For

simplicity, it is not included when the h → γγ analysis is combined with other

Mono-h analyses with different decay channels.

On the other hand, for simulated samples that do not have real sources of

pmiss
T (i.e. the ggh and VBF samples), the fraction of events in the tail of the pmiss

T

region is not well understood. This uncertainty is quantified in a γ + jet control
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Figure 5.23: A comparison of the pmiss
T distribution (left) of ggh simulated events

(red hatched) in the standard analysis and γ + jet simulated events (green) in
the control region. Also shown is the pmiss

T distribution of data and simulation
in the γ + jet control region (right).

region, which has a similar pmiss
T distribution to the SM Higgs boson events as

shown in Fig. 5.23 (left). The pmiss
T distribution of observed and simulated events

in the γ + jet control region is shown in Fig. 5.23 (right). In the control region,

the efficiency for data and simulated events to pass the pmiss
T selection is com-

pared. The 50% efficiency difference is applied as a systematic uncertainty on

the normalization of the ggh and VBF samples. While this may seem like a large

uncertainty, there are so few events with high pmiss
T for these samples, that this

has little overall effect on the analysis.

In events with low pmiss
T , the φ component of the pmiss

T is not well defined. A

systematic uncertainty is assigned to account for any difference between data

and simulation of the topological pmiss
T variables. These variables are compared

in a Z → ee control region as shown in Fig. 5.24. The difference in efficiencies

between data and simulation selection for these variables is 1% and 4%. These

are taken as systematic uncertainties on the simulated events with mismeasured
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Figure 5.24: The |∆φ(~pγγ, ~p
miss
T )| (left) and min |∆φ(~pjet, ~p

miss
T )| (right) for ob-

served and simulated events in a Z → ee control region. Other electroweak
backgrounds are included in the simulation, but DY is the only visible contrib-
utor in this region.

pmiss
T (i.e. the ggh and VBF samples).

These systematic uncertainties, summarized in Tab. 5.6, do not include any

systematic uncertainty on the nonresonant background. The nonresonant back-

ground is extracted from an analytic function fit to the data. As mentioned in

Sec. 5.7.2, because the bias in the nonresonant background estimation is five

times less than the statistical uncertainty in the number of fitted events, any

bias is completely negligible and is therefore not included as a systematic un-

certainty. It is also useful to note that the whole analysis is statistically limited.

The systematic uncertainties, just described, have very little effect on the search

results.

5.9 Statistical analysis

Results in particle physics are generally presented as limits on the signal

strength modifier µ which scales the overall rate of a potential signal. For ex-
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ample, µ = 0 corresponds to the background-only hypothesis, while µ = 1

corresponds to exactly the amount of signal predicted. For the signal extraction

of this analysis, a simultaneous unbinned maximum-likelihood fit is performed

for the low-pmiss
T and high-pmiss

T categories. Sec. 5.9.1 details the fit strategy, while

Sec. 5.9.2 explains how this in turn is used to set upper limits on the signal

production cross section. Finally, the statistical combination of multiple Higgs

boson decay channels is described in Sec. 5.9.3.

5.9.1 Maximum-likelihood fit

A maximum-likelihood fit is used in this analysis to extract the signal strength

modifier µ. Maximizing the likelihood function is simply a way to find the

values of the model parameters, in this case µ and the nuisance parameters θ,

that maximize the agreement between the predicted model and the observed

data. The model is constructed with the pdfs fs(x) and fb(x) of observable x

and the expected event rates S and B for the signal and background, respec-

tively. In this analysis, the observable is the diphoton invariant mass mγγ . As

mentioned in Sec. 5.7, the signal pdf fs(x) is taken from simulated signal events.

The background pdf fb(x) is a sum of a continuous distribution extracted from

data modeling the nonresonant contributions and a resonant contribution taken

from simulated h→ γγ events.

The exact likelihood function [87] is given by:

L(data|µ, θ) = Poisson(data|µs+ b) · ρ(θ|θ̃) (5.3)

where data represents the experimental observation and θ are nuisance param-

eters. In an unbinned likelihood for n observed events, the probability of ob-
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serving the data distribution given the signal strength and nuisance parameters

is given by the Poisson pdf:

Poisson(data|µs+ b) =
1

n

∏
i

(µSfs(xi) +Bfb(xi)) · e−(µS+B). (5.4)

Maximizing this likelihood function gives the value of µ that offers the best

agreement between this model and the data.

However, the predictions for both the signal and background yields prior

to looking at the data are subject to uncertainties. The systematic uncertain-

ties, described in Sec. 5.8 and summarized in Tab. 5.6, are represented by the

set of nuisance parameters θ in the likelihood. Systematic uncertainties are han-

dled by the additional pdfs ρ(θ|θ̃) in the likelihood, where θ̃ is the best estimate

of the nuisance. In this analysis, only the photon scale uncertainty modifies

the expected shape of the signal and resonant background distributions, and is

therefore included in the fit as a variation of the model. All other uncertain-

ties affect the normalization only and are represented as log-normal pdfs in the

likelihood. The full background pdf and the signal plus background pdf before

the maximum-likelihood fit (“prefit”) are compared with the signal plus back-

ground pdf after the maximum-likelihood fit (“postfit”) in Fig. 5.25.

5.9.2 Exclusion limit calculation

The expected and observed yields are used to calculate an upper limit on the

production cross section of h + DM production via the two benchmark signal

models. Upper limits are computed [87] at 95% confidence level ( CL) using a

profile likelihood ratio and the modified frequentist criterion [88, 89].

The compatibility of the data with the background-only and signal plus
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Figure 5.25: Signal plus background pdf prefit (pink) and postfit (purple
dashed) for the low-pmiss

T (left) and high-pmiss
T (right) categories. The signal plus

background pdf postfit is comparable to the total background pdf prefit (blue).
The signal pdf is shown for the Z′-2HDM signal with mZ′ = 600 GeV and
mA = 300 GeV.

background hypotheses is evaluated with the profile likelihood ratio q̃µ test

statistic [90]:

q̃µ = −2 ln
L(data|µ, θ̂µ)

L(data|µ̂, θ̂)
. (5.5)

The µ̂ and θ̂ are the global estimators (values that maximize the likelihood),

while θ̂µ is the conditional estimator of θ for a given a value of µ and the data.

Higher values of q̃µ correspond to a larger compatibility between the data and

the µ. The value of µ̂ is constrained to 0 ≤ µ̂ ≤ µ. Values of µ̂ < 0 would result

in unphysical negative signal rates and the µ̂ ≤ µ constraint yields a one-sided

confidence limit so that upward data fluctuations will not exclude signals with

strength µ.

Instead of finding just the µ that has the global maximum likelihood, several

values of µ are scanned over. The observed q̃obsµ is evaluated for each value

of µ. Likewise, the estimators θ̂obsµ are extracted from the maximum-likelihood

92



fit, as described in Sec. 5.9.1, for each µ tried. Using these estimators, the pdfs

f(q̃µ|µ, θ̂obsµ ) are constructed 2 for both the µ = 0 background-only and µ > 0

signal plus background hypotheses. The p-value (probability of observing q̃µ ≥

q̃obsµ ) under the signal plus background hypothesis is then given by:

ps+b =

∫ ∞
q̃obsµ

f(q̃µ|µ, θ̂obsµ )dq̃µ (5.6)

while the p-value for the background-only hypothesis is evaluated as:

pb =

∫ ∞
q̃obs0

f(q̃µ|0, θ̂obs0 )dq̃µ. (5.7)

The ratio of these probabilities

CLs(µ) =
ps+b
pb

(5.8)

is a modified frequentist criterion [88,89] that is used to put confidence limits on

signal production. When CLs(µ) ≤ α, the signal strength µ is excluded at a 1−α

confidence level. To extract observed 95% CL upper limits on signal significance

(µ95% CL), the value of µ is adjusted until CLs ≤ 0.05. Since µ95% CL is interpreted

as σ95% CL/σth, for each point in the parameter space of a signal model, values of

µ95% CL ≤ 1 exclude, at 95% CL, the signal with production cross section σ95% CL

at least σth at that point.

Expected limits are a way to characterize the sensitivity of the search to a

potential signal and are constructed in a similar way as the observed limits.

Background-only pseudo-experiments are used instead of the observed data to

evaluate the CLs statistic and µ95% CL. The expected exclusion values are ex-

tracted from the cumulative probability distribution of the µ95% CL. The median

2 These pdfs are either constructed using pseudo-experiments or with an asymptotic approx-
imation [90] where the pdf is approximated by a χ2 distribution with one degree of freedom.
The asymptotic approximation agrees with full limits made from pseudo-experiments to better
than a few percent as shown in Fig. 5.26.

93



 [GeV]Z'm
0 500 1000 1500 2000

 h
) 

[p
b]

χχ 
→

 Z
' 

→
(p

p 
σ

1−10

1

10

 1 s.d. on expected±Shaded band: 
Solid (dashed) lines: observed (expected) 95% CL

 = 1 GeV
DM

 = 1, m
DM

 = 0.25, g
q

Baryonic Z', Dirac DM, g

Asymptotic limit

Full CL

CMS Preliminary

Figure 5.26: Comparison of upper limits on the baryonic Z′ signal between the
full CL generated by pseudo-experiments and the asymptotic approximation.

expected limit is the value of µ95% CL when the cumulative probability reaches

50% and corresponds to the median value with which a nonzero µ is rejected

assuming the background-only hypothesis. Similarly, the plus (minus) one and

two standard deviation bands are the µ95% CL values where the cumulative dis-

tribution reaches 84% (16%) and 97.5% (2.5%), respectively.

5.9.3 Combination with other Higgs boson decay channels

The h → γγ decay channel, while unique in its ability to probe low-pmiss
T dark

matter signatures, is not the only Higgs boson decay channel that has sensitivity

to these DM models. To improve the search power of the analysis, it is useful to

do a statistical combination with other Higgs boson decay channels.

The h decay channels are combined using a joint likelihood function which
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is simultaneously fit for all channels. The joint likelihood is given by:

L(data|µ, θcomb) =
∏

channel

L(data|µ, θchannel). (5.9)

Here the µ is the same across all h decay channels, while the rates expected

for each channel assumes the Higgs boson branching fraction predicted by the

SM [5]. Exclusion limits are produced as described in Sec. 5.9.2 using this likeli-

hood function in the profile likelihood ratio.

Theoretical uncertainties and the uncertainty on the integrated luminosity

are assumed to be 100% correlated between the channels. Other uncertainties

mentioned in Sec. 5.8 are unique to the h → γγ channel. The results presented

here will primarily focus on the statistical combination with the h → ττ decay

channel for the 2016 data set [29]. A combination between the h → γγ and

h → bb decay channels is completed for the 2015 data set [28]. Additionally,

a combination of the the 2016 analysis results for the five Higgs boson decay

channels: γγ, ττ , bb̄, ZZ, and WW is presented in Ref. [32].

5.10 Results

Although not used directly in making exclusion limits, it is useful to look at the

number of events with mγγ near the Higgs boson mass. The expected number

of background events is estimated from the signal plus background fit shown

in Fig. 5.25. These are compared with the number of observed events in the mγγ

range of 122–128 GeV in Table 5.7. An example event display of one of the six

observed events in the high-pmiss
T category is shown in Fig. 5.27.

As evident in Table 5.7, in the low-pmiss
T category, there is a slight excess in
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Figure 5.27: Event display for one event observed in the high-pmiss
T signal region.

ECAL (HCAL) energy deposits are shown in red (blue) and the ~p miss
T is shown

in purple.

Table 5.7: Expected background yields and observed numbers of events in the
mγγ range of 122–128 GeV are shown for the low- and high-pmiss

T categories.
The nonresonant background is estimated from the analytic function fit to data.
The SM Higgs boson background is presented separately for the irreducible Vh
production and for the other production modes. The statistical and systematic
uncertainties are listed.

Expected background Low-pmiss
T category High-pmiss

T category
SM h→ γγ (Vh) 2.9± 0.1 (stat)± 0.2 (syst) 1.26± 0.05 (stat)± 0.09 (syst)
SM h→ γγ (ggh, tth, VBF) 5.3± 0.3 (stat)± 1.2 (syst) 0.11± 0.01 (stat)± 0.01 (syst)
Nonresonant background 125± 11 (stat) 4.5± 2.1 (stat)
Total background 133± 11 (stat)± 1 (syst) 5.9± 2.1 (stat)± 0.1 (syst)
Observed events 159 6

the number of events observed around mγγ = 125 GeV. If the low-pmiss
T category

is taken alone, this excess has a local significance of 2.0 assuming that the SM

Higgs boson significance is 1. The excess has negligible impact on the upper

limits on the two benchmark signal models, because the limits are completely

driven by the high-pmiss
T category.
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Expected signal yields as well as signal efficiencies in both the low- and high-

pmiss
T categories for select points of the benchmark signal models are shown in

Table 5.8. The observed results are interpreted in the context of the Z′-2HDM

and baryonic Z′ signal models in Sec. 5.10.1 and Sec. 5.10.2. A comparison with

direct detection experiments is presented in Sec. 5.10.3.

Table 5.8: The expected signal yields and the product of acceptance and effi-
ciency (Aε) for the two benchmark models. The Z′-2HDM signal is shown for
the parameters mA = 300 GeV and mZ′ = 1000 GeV. The baryonic Z′ signal
assumes the parameters mDM = 1 GeV and mZ′ = 100 GeV.

Signal Low-pmiss
T High-pmiss

T

Z′-2HDM
Expected yield 0.1± 0.4 4.5± 0.6
Aε [%] 0.1 42.6

Baryonic Z′

Expected yield 14.7± 6.7 13.8± 6.4
Aε [%] 6.4 6.0

5.10.1 Z′-2HDM interpretation

The results presented above are interpreted in the context of the Z′-2HDM

benchmark, which is described earlier in Sec. 2.5.1. Fully-simulated samples

are only available for select mass points of the signal model. An interpolation

procedure is performed to extract smooth continuous limits.

The mγγ distribution is not dependent on mZ′ or mA and therefore the shape

remains the same for all mass points of the Z′-2HDM signal. However, the num-

ber of events expected, which depends on the cross section and efficiency for

the signal to pass all selection, can vary for each signal point. Specifically, be-

cause the signal mass points have different pmiss
T distributions, they have differ-

ent selection efficiencies. The efficiencies for the fully-simulated mass points are
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shown in Fig. 5.28 in each of the pmiss
T categories. For each signal, the number of

events expected is given by Nevents = σthLAε.

In order to interpolate between the fully-simulated points, the two-

dimensional efficiencies of Fig. 5.28 were fit with a first order polynomial func-

tion of the form: p0 + p1mZ′ + p2mA + p3mZ′mA where p0,1,2,3 are free parameters.

The signal normalization that is actually used in the fit is given by the parame-

terized number of events expected for each signal point. Upper exclusion limits

are extracted using the method detailed in Sec. 5.9.2. A comparison of the lim-

its from the fully-simulated samples and the interpolated method are shown

in Fig. 5.29. Agreement within one standard deviation between the methods is

observed.

For the Z′-2HDM with mA = 300 GeV, the upper limits on the production

cross section as a function of mZ′ are shown in Fig. 5.30. The two-dimensional

upper limits on the signal significance (σ95% CL/σth) are shown in Fig. 5.31 (left).

For the mA = 300 GeV signals, the h → γγ channel excludes Z′ masses from

550 GeV to 860 GeV at 95% CL .

The statistical combination of the h → γγ decay channel with four other

Higgs boson decay channels [32]: h → bb, h → ττ , h → WW, and h → ZZ im-

proves the overall sensitivity of Mono-h searches. With this combination, Mono-

h searches exclude much larger regions of phase space as shown in Fig. 5.31

(right). For the mA = 300 GeV signals, the combined Mono-h analysis excludes

Z′ masses from 550 GeV to 3100 GeV. Above 800 GeV, the sensitivity is entirely

due to the h→ bb channel [30]. However, below this, the results are completely

driven by the h→ γγ channel. This is more evident in Fig. 5.32.
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Figure 5.28: The Aε for the Z′-2HDM fully-simulated samples in the low-pmiss
T

(left) and high-pmiss
T (right) regions as a function of mZ′ and mA.
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Finally, the combined Mono-h results are also interpreted in the two-

dimensional plane of mZ′ and tan β. The ratio of vacuum expectation values

tan β does not affect the kinematic distributions, therefore the results are rein-

terpreted to provide exclusion curves on this parameter as well. The 95% CL

exclusion is shown in Fig. 5.33.
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Figure 5.34: The Aε for the baryonic Z′ model in the low-pmiss
T (left) and high-pmiss

T

(right) regions as a function of mZ′ and mDM.

5.10.2 Baryonic Z′ interpretation

The results of the search are also interpreted in the context of the baryonic Z′

model, described earlier in Sec. 2.5.2. Fully-simulated samples are only avail-

able for select mass points in the parameter space of the model, so smooth ex-

clusion limits are achieved by interpolating between the masses. This is exactly

the same procedure that is done for the interpolation in the Z′-2HDM interpreta-

tion. The efficiency is parameterized and used to scale the expected signal yield

for each mass point. Resulting efficiency for the baryonic Z′ signal in the low-

and high-pmiss
T categories is shown in Fig. 5.34.

Exclusion limits are then extracted for each signal mass point. For the bary-

onic Z′ model with mDM = 1 GeV, upper limits on the production cross section

as a function of mZ′ are shown in Fig. 5.35. The two-dimensional upper limits

on the signal significance are shown in Fig. 5.36 (left). For mDM = 1 GeV, The

h → γγ channel alone excludes Z′ masses up to 574 GeV. The results for the

statistical combination of h → γγ, h → ττ , h → bb, h → WW, and h → ZZ are

shown in Fig. 5.36 (right). The combined exclusion is primarily driven by the

h → bb sensitivity, however, again the h → γγ channel offers added sensitivity
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Figure 5.36: Observed 95% CL upper limits on the baryonic Z′ signal strength
for the h → γγ (left) and the combined Mono-h channels (right). The observed
(expected) two-dimensional exclusion curves are shown with thick red (dashed
black) lines. The plus and minus one standard deviation expected exclusion
curves are also shown as thin black lines. The region below the lines is excluded.

in the low mass regions. This can be seen in Fig. 5.37. The combined Mono-h

analyses, for mDM = 1 GeV exclude Z′ masses up to 1600 GeV at 95% CL.

103



500 1000 1500 2000
 [GeV]Z'm

2−10

1−10

1

10

210

310

thσ/σ

h(combination) )bh(b

σ1±h(combination) )ττh(

σ2±h(combination) )γγh(

h(ZZ) h(WW)

CMS
Baryonic Z', Dirac DM

 = 1 GeVχ = 1, mχ = 0.25, g
q

g

 (13 TeV)-135.9 fb

Solid (dashed) lines: observed (expected) 95% CL

Figure 5.37: Expected and observed 95% CL upper limits on baryonic Z′ signal
significance are shown for each Higgs boson decay channel (h → γγ in olive
green) and their combined exclusion (black).

5.10.3 Comparison with direct detection results

In order to compare collider dark matter search results with direct detection

experiments, the ATLAS-CMS Dark Matter Forum [16] proposed several s-

channel simplified DM models. In this context, the upper limits on the baryonic

Z′ model can be reinterpreted. In the model considered here, Dirac DM particles

couple to a vector mediator, which in turn couples to the SM quarks. A single

point in the parameter space of the model is determined by four variables: the

DM particle mass mDM, the mediator mass mmed, the mediator-DM coupling

gDM, and the universal mediator-quark coupling gq. Based on the recommen-

dations of Ref. [17], the couplings for this analysis are fixed to gDM = 1.0 and

gq = 0.25.

The results for the baryonic Z′ are interpreted in the spin-independent (SI)
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cross section σSI for DM scattering off of a nucleus. For a given point in the

s-channel simplified model, the value of σSI is given by the equation [17]:

σSI =
f 2(gq)g

2
DMµ

2
nDM

πm4
med

, (5.10)

where µ2
nDM is the reduced mass of the DM-nucleon system and f(gq) is the

mediator-nucleon coupling, which is dependent on gq. For the vector-mediated

case shown here, the mediator-nucleon coupling f(gq) = 3gq.

The resulting 90% CL limits on σSI are shown in Fig. 5.38. Also shown in

the same plot are the exclusion limits from CDMSLite [91], LUX [92], XENON-

1T [93, 94], PandaX-II [95, 96], CRESST-II [97], and CDEX-10 [98]. Beyond what

is accessible in direct detection experiments, the h→ γγ channel alone excludes

dark matter masses between 1 and 2 GeV. The combined Mono-h limits are

more stringent than those of the direct detection experiments for dark matter

masses between 1 and 5 GeV.

5.11 Related ATLAS search

The ATLAS Collaboration also has a search for Mono-h in the h → γγ decay

channel [27]. Although the details of the search strategy are different, the re-

sults are comparable to the analysis presented here. The analysis selects events

that have two high momentum photons that pass a tight identification. Events

with mγγ in the range of 105 to 160 GeV are split into several categories based

primarily on their pTγγ and pmiss
T significance (pmiss

T /
√∑

pT). Much like the anal-

ysis presented here, a maximum-likelihood fit to the mγγ distribution in each

category is employed to extract the signal and background estimates. The CMS
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Figure 5.38: The 90% CL exclusion limits on the DM-nucleon SI scattering cross
section as a function of mDM. Results obtained in this analysis are compared
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(pink) are shown in the upper plot while the combined Mono-h results (black)
are shown in the lower plot.
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Figure 5.39: ATLAS expected and observed 95% CL exclusion limits on the pre-
dicted signal cross section for the Z′-2HDM (left) and baryonic Z′ (right) inter-
pretations [27].

and ATLAS Mono-h searches in the h → γγ channel produce similar exclu-

sions limits on DM production. In the Z′-2HDM interpretation, for a Z′ mass

of 1000 GeV and a DM mass of 100 GeV, pseudoscalar A masses are excluded

below 280 GeV. Additionally, for a DM mass of 1 GeV, baryonic Z′ masses are

excluded up to 850 GeV. The ATLAS two-dimensional 95% CL exclusion limits

for the Z′-2HDM and baryonic Z′ interpretations are shown in Fig. 5.39.

5.12 Summary

A search for dark matter particles produced in association with a Higgs boson

is performed. The analysis focuses on the case where the Higgs boson decays

to two photons, although statistical combinations with other decay channels is

also done. The analysis is based on 35.9 fb−1 of
√

s = 13 TeV pp collision data

collected with the CMS detector during 2016. An alternative search strategy

(presented in Appendix A) is performed on 2.2 fb−1 of data collected in 2015.

The analysis is performed by selecting pp collision events with two pho-
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tons using a customized photon identification. After passing kinematic require-

ments, the remaining events are split into a low- and high-pmiss
T category. The

observed diphoton invariant mass is then fit with a signal plus background tem-

plate. The signal strength extracted from the fit is used to set 95% CL exclusion

limits on dark matter production for the two benchmark signal models.

For the Z′-two-Higgs-doublet model, with an intermediate pseudoscalar of

mass mA = 300 GeV and with dark matter mass mDM = 100 GeV, signals for Z′

masses from 550 GeV to 860 GeV are excluded with the h → γγ channel alone.

Additionally, for the baryonic Z′ channel, with mDM = 1 GeV, the h→ γγ chan-

nel excludes Z′ masses up to 574 GeV. Statistically combining the h→ γγ results

with searches performed with other Higgs boson decay channels is a powerful

tool to enhance the search power of the results from any channel alone. This is

exploited in the results presented here. The interpretation of the results include

an extrapolation to limits on spin-independent cross section for dark matter-

nucleon interaction, which facilitates comparison, albeit model-dependent, be-

tween the collider DM searches and direct detection experimental results.
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CHAPTER 6

FUTURE CMS UPGRADES

The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is planned

for 2025. It is designed to increase the peak luminosity to about 7.5 ×

1034 cm−2 s−1 and aims to achieve an integrated luminosity of 3000 fb−1 [99].

This HL-LHC era will yield an average pileup between 140 and 200, as com-

pared with the average of 27 pileup delivered by the current LHC (as shown

earlier in Fig. 5.3). In order to maintain its sensitivity to physics searches, such

as the Mono-h search just presented, in these denser collisions, the CMS detector

will need to undergo several upgrades.

6.1 Upgrade plans for CMS

To handle this novel and challenging environment, and to deal with signifi-

cant radiation damage from years of operation, the CMS detector will undergo

several upgrades to its subdetectors, as detailed in Ref. [100]. In the so-called

“Phase-II” upgrade, the endcaps of the calorimeters will be replaced with higher

granularity detectors. In the forward region of the detector, additional muon

chambers will be added to ensure needed redundancy in coverage. Addition-

ally, the tracker detector will need to be completely replaced. Both the pixel

and silicon strip detector are being redesigned based on knowledge of the cur-

rent system to improve granularity by a factor of four [101]. A new minimum-

ionizing particle timing detector layer, which would be located directly outside

the tracker system, is also proposed [102] to improve vertexing in this chal-

lenging environment. Additionally, to mitigate the overwhelming number of

particles produced during such high pileup scenarios, charged particle tracking
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Figure 6.1: Correlated hits (stubs) in closely-spaced sensors enables rejection of
low-pT signals. The green shows the acceptance window where pT is greater
than 2 GeV.

will be added to the Level-1 (L1) trigger system. The following sections in this

chapter will focus on a proposed L1 tracking implementation.

Although the inner (pixel) tracker will also be replaced, it is the outer tracker

that will be read out for the L1 trigger. The added precision from the pixel detec-

tor is not needed and the pixel modules cannot be read out fast enough for L1.

In contrast, the outer tracker will be designed with a unique feature to reduce

the amount of data to be read out. The outer tracker will be composed of “pT

modules” that provide pT discrimination at the level of the front-end electron-

ics. By correlating signals in closely-spaced sensors, a coarse pT measurement

is available. Correlated hits (“stubs”) with pT > 2 GeV are read out and sent to

the L1 trigger. Figure 6.1 shows a sketch of the concept of these modules. Since

most minimum-bias events have low pT tracks, the use of stubs provides a data

reduction by about a factor of 10 at the tracker front-end.

The upgraded tracker will be made of a cylindrical barrel portion and two

endcap disks, with a layout as shown in Fig. 6.2. The outer tracker will consist
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Figure 6.2: One quarter of the proposed tilted-barrel geometry for the Phase
II outer tracker. The tracker consists of pixel layers (not shown) and an outer
tracker of PS (blue) and 2S (red) modules.

PS module

Accurate z 
coordinate 

2S module

Coarse z coordinate 

Figure 6.3: Sketches of the PS (left) and 2S (right) modules for the Phase II
tracker.

of about 14,000 modules of two types of sensors: pixel-strip (PS) modules and

strip-strip (2S) modules. The PS (2S) modules make up the inner (outer) regions

of the detector as shown in blue (red) in Fig. 6.2. Sketches of the PS and 2S

sensors are shown in Fig. 6.3. The PS sensors are made of a layer of pixels

(with dimensions 1.55 mm × 100µm) and a layer of silicon strips (of dimension

2.5 cm × 100µm), thus providing accurate z coordinate measurements. The 2S

sensors have two layers of silicon strips that are 5 cm × 90µm, which yields a

coarser z positioning.
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Figure 6.4: A 136 pileup event in CMS from a special run in 2017.

6.2 L1 tracking introduction

The HL-LHC will provide an extremely dense track environment, as shown in

Fig. 6.4. At a pileup of 140, it is expected that there will be about 10,000 stubs

with pT > 2 GeV in the outer tracker. To maintain an optimal physics program

at the HL-LHC, the aim is to keep trigger object thresholds as low as possi-

ble, ideally close to those achieved in the current CMS program. Using solely

calorimeter and muon chamber information (as done in the current L1 trigger),

pT thresholds alone no longer provide sufficient discrimination between inter-

esting and uninteresting physics events. Expected data rates at various thresh-

olds for muon object triggers with and without charged particle tracking are

shown in Fig. 6.5. It is clear that merely increasing the thresholds stops having

discriminating power for the L1 trigger. Achieving low thresholds while keep-

ing a manageable trigger rate necessitates including charged particle tracking at

L1 (a “track-trigger”).

Including particle tracks from the silicon tracker improves lepton identifi-

cation and momentum measurements. Additionally, L1 tracking will provide

track isolation and vertex identification for hadronic triggers. In the HL-LHC,
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Figure 6.5: Metrics for evaluating muon trigger performance for standard
muons (red) compared with muons including tracking (black). In the left plot,
efficiency for muons to pass a 20 GeV threshold as a function of the muon pT is
shown. Trigger rate as a function of the trigger threshold is shown in the right
plot.

vertices will have an average spacing of 1 mm at a pileup of 200. Therefore the

z0 resolution of the L1 tracking should be on this order to provide discrimina-

tion between vertices. Additional information about improvements to various

triggers by including track information is shown in Refs. [100, 103].

Another demand on the L1 tracking system is the time budget [103]. The

overall L1 latency is determined by the available buffer. For Phase II, the CMS

detector, based on the size of the hardware buffers, will have 12µs to make

the L1 trigger decisions. Of this, 5µs is allotted for the track-trigger, since the

tracks will need to be correlated with other physics objects in time to make the

trigger decision. Budgeting about 1µs for the stubs to be read into the track-

trigger system from the tracker front-end, this leaves 4µs for the track finding

algorithm.

Currently the fastest CMS track finding occurs on CPUs in the HLT, where

the HLT decision is made in≈ 175 ms [55]. Finding tracks in 4µs is a completely

new challenge. Recently, three approaches have been developed for finding
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tracks in hardware for the Phase II detector. The rest of this chapter will focus

on the tracklet approach [104–107] which is a road-search algorithm that runs

on commercially available field-programmable gate array (FPGA) technology.

A second approach, the TMTT approach [108], which also runs on an FPGA,

uses a Hough transform and then a Kalman fit to find tracks. Finally, the third

approach, the Associative Memory approach [109], is designed to hold thou-

sands of track patterns for quick matching on a custom ASIC chip. Based on a

review of demonstrators of the three approaches, a solely FPGA approach [110]

is favored for the final system.

6.3 Tracklet approach

The tracklet approach uses a road-search algorithm to make charged particle

tracks. An overview of the algorithm for this is given in Sec. 6.3.1. Emulation

performance results are shown in Sec. 6.3.2. To meet the latency and through-

put demands, the firmware implementation is finely partitioned. Section 6.3.3

details how this algorithm works in the hardware. Section 6.3.4 shows the setup

and results of a demonstrator system and Sec. 6.3.5 details the latency of the ap-

proach. Finally, Sec. 6.3.6 gives some estimates on the needs of the final system

and the ongoing prototyping of the hardware.

6.3.1 Algorithm

The tracklet algorithm, which is detailed below, is also depicted in Fig. 6.6.
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Figure 6.6: Sketch of the road-search algorithm: (left) pairs of stubs (red) in ad-
jacent layers are combined to form a tracklet, (center) trajectory of the tracklet is
projected to other layers, (right) stubs close to the projection (green) are selected
as matches and the final track parameters are calculated using all associated
stubs.

Seeding

The approach begins by forming track seeds (tracklets) from pairs of stubs in

adjacent barrel layers or endcap disks. A tracklet is the algorithm’s initial es-

timate of track parameters. A track in the x-y plane, sketched in Fig. 6.7, is a

segment of a circle made by the two stubs in adjacent layers and the interaction

point. A track, as mentioned before, is defined by the parameters: pT, η, z0, and

the azimuth angle at the closest approach φ0. Because of the assumption that

the track originates from the interaction point, the impact parameter d0 is not

included here, but it can be included in the final fit 1.

For use in this algorithm, the track parameters of interest are ρ, t, z0, and φ0.

The radius of curvature ρ is a proxy for the particle’s momentum. Using the

equations of the motion for a charged particle curving in a magnetic field B, the

track parameter pT is given by pT = 0.3Bρ. The parameter t is related to η by

the relation t = 1
2
(eη − e−η) = sinh η.

1 A proposed extension to the tracklet algorithm allows for triplet seeds that do not rely on
the interaction point. This allows for a non-zero d0 and can be used to find displaced tracks [111,
112].
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The calculations of the track parameters arise from the geometry of a helical

trajectory. The exact helix solution for two points (r1,φ1,z1) and (r2,φ2,z2) is taken

from the geometry of Fig. 6.7. The radius of curvature ρ of the track is given by:

ρ−1 =
2

∆
sin(φ2 − φ1) (6.1)

where ∆ =
√
r21 + r22 − 2r1r2 cos(φ2 − φ1) is the distance between the two points

in r-φ plane. The parameter t, the tangent of the dip angle (π
2

minus the angle of

the trajectory with respect to the z axis), is evaluated by:

t =
z2 − z1

2ρ(φ2 − φ1)
. (6.2)

The φ0 track parameter is calculated by:

φ0 = φ1 − sin−1
r1
2ρ
. (6.3)

And finally, the z0 parameter is calculated by:

z0 = z1 − tρβ = z1 − (z2 − z1)
φ0 − φ1

φ2 − φ1

(6.4)

where the turning angle β = 2 sin−1 r
2ρ

. In this way, the parameters ρ (proxy for

pT), t (proxy for η), z0, and φ0 are all accessible solely based on the geometric

relations.

Some work is needed to simplify these calculations for quick processing on

an FPGA. In the above calculations, anywhere sines or arcsines occur, they are

approximated by Taylor expansions. In most cases, only the first term in the

expansion is non-negligible. Additionally, the inversion of t to t−1, which would

be a resource-expensive operation, is instead stored in a look-up table (LUT) in

the firmware. In a LUT, binned t values are used as a read address for a memory

filled with their corresponding t−1 values.
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Figure 6.7: A track (pink dashed) in the x-y plane is assumed to be a segment of
a circle originating from the interaction point (IP) and intersecting stubs at radii
r1 and r2.

The above parameters uniquely define a tracklet for each pair of stubs. Can-

didate tracklets are rejected if they have pT < 2 GeV or do not fall within

|z0| < 15 cm. The tracklet already offers a good approximation of the final track

parameters. This is shown in a comparison of the resolutions of the track pa-

rameters for the tracklet and final track in Fig. 6.8.

Seeding occurs for multiple combinations of layers to provide good cover-

age and redundancy over the entire η range of the of the detector as shown

in Fig. 6.9. The algorithm is currently implemented for seeding pairs between

layers 1+2, 3+4, 5+6, and between disks 1+2, and 3+4. Additionally, to recover

track finding efficiency in the overlap region where a particle can pass through

the barrel and disks, there are two overlap seedings: seeding from layer 1 and

disk 1 and seeding from layer 2 and disk 1.

117



 [%]
T

)/p
T

(pσ
-20 -15 -10 -5 0 5 10 15 20

T
ra

ck
s

0

0.05

0.1

0.15

0.2

0.25

0.3

CMS Phase-2 Simulation

 (PU=0)±µ
 < 10 GeV

T
2 < p

| < 2.5η|

 Tracklet

 Full track

) [mrad]
0

φ(σ
-5 -4 -3 -2 -1 0 1 2 3 4 5

T
ra

ck
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
CMS Phase-2 Simulation

 (PU=0)±µ
 < 10 GeV

T
2 < p

| < 2.5η|

 Tracklet

 Full track

]-3) [10η(σ
-40 -30 -20 -10 0 10 20 30 40

T
ra

ck
s

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22

CMS Phase-2 Simulation

 (PU=0)±µ
 < 10 GeV

T
2 < p

| < 2.5η|

 Tracklet

 Full track

) [cm]
0

(zσ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

T
ra

ck
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

CMS Phase-2 Simulation

 (PU=0)±µ
 < 10 GeV

T
2 < p

| < 2.5η|

 Tracklet

 Full track

Figure 6.8: Resolution of the final track fit parameters (dashed blue) compared
with tracklet parameters (solid black). Resolution comparisons are shown for
pT (upper left), φ0 (upper right), η (lower left), and z0 (lower right).

Match finding

Using the track parameters of the tracklet, the track is projected to other layers

and disks. The track parameters are projected to an average radius (average z

position) for each barrel layer (endcap disk). More precise values of the projec-
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This plot is based on emulation of the firmware.  It shows the efficiency 
versus eta depending on which layers are used to create the tracklet.  It 
demonstrates where we have coverage and redundancy for different 
tracklet seedings.  The sample is single muon gun with Pt>10 GeV. The 
dip in eff around eta=0 for the barrel layer 5+6 tracklet is mostly likely 
due to poorer pointing resolution of tracklet since it is formed from two 
layers of silicon with just strips (i.e. no pixels).  Poor pointing around 
eta=0 may lead to incorrect association to virtual module boundary at 
eta=0. We are investigating ways to mitigate this. 
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Figure 6.9: Efficiency for finding a single muon track for the seeding layer/disk
combinations as a function of η [100].

tion’s φproj and zproj are then given by:

φproj = φ̄proj + ∆r
∂φ

∂r

zproj = z̄proj + ∆r
∂z

∂r

(6.5)

where φ̄proj and z̄proj are the projections to the nominal radius and ∆r is the

radial position with respect to the nominal radius. The derivatives ∂φ
∂r

and ∂z
∂r

,

which define how much the φ are z position changes in the tracker layout, are

evaluated for each layer/disk and used to correct the average position. For the

disk region, the same calculations are done expect that z is replaced by r (and

vice versa) in the equations above.

The projection of the track occurs both inwards and outwards (i.e. to and

from the interaction point) simultaneously. Using predetermined search win-

dows, the algorithm searches for stubs in these other layers that are consistent

with the original track’s parameters. Matched stubs, along with the difference

between the projected tracklet’s position and the stub position, are stored as a

track candidate.

119



Track fitting

A linearized χ2 fit is performed using all of the stubs in the candidate tracks,

i.e. the stubs used to make the tracklet and the matched stubs are all used for

the final fit. The measured φ and z (or r) positions of the track on the i layer

(or disk) are labeled as fmi . Comparing the measured positions with the track

projection fi(~η) the χ2 is defined as:

χ2 =
∑
ij

(fi(~η)− fmi )V −1ij (fj(~η)− fmj ) (6.6)

where Vij is the ij element of the diagonal matrix of the variances σ2
ij . The

projection fi(~η) can be expanded around the seed parameters ~η giving fi(~η) =

fi(η̄) + ∆~η ∂fi
∂~η

. This expansion is substituted into the χ2 equation. To find the

best estimate of track parameters, the χ2 is minimized.

From the minimized χ2 equation, a linear expression is extracted for ∆η (how

the track parameters should be updated given a set of residuals ∆fm with re-

spect to the seed track). The value of ∆η is calculated by:

∆η = (DTV −1D)−1DTV −1∆fm (6.7)

where Dik = ∂fi
∂ηk

. By precalculating (DTV −1D)−1DTV −1 and storing this in a

LUT, the expression for ∆η can be easily computed on an FPGA. The final track

parameters are calculated by correcting the original tracklet parameters by ∆η.

Seeding, as mentioned above, can occur multiple times per track in order to

keep the track finding efficiency high. Duplicated tracks need to be removed

from the final track collection. This is accomplished by comparing the found

tracks in pairs, and comparing their number of individual and shared stubs. As

shown in Fig. 6.10, the duplicate removal step ensures that for a single track
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Figure 6.10: Number of tracks found per single muon event before (black) and
after (red) the removal of duplicate tracks.

event a single track is found. This helps with the output track rate and is a

necessary step in the tracklet algorithm.

6.3.2 Emulation performance results

Several metrics are important for evaluating the performance of the tracklet al-

gorithm. The track finding efficiency and track parameter resolutions are of

primary importance. These metrics need to be evaluated for various different

physics events (e.g. muon and tt events) and for several different pileup scenar-

ios. These are evaluated for simulated events in an integer-based emulation of

the algorithm. In the emulation, all calculations are done in integer quantities,

as in the firmware implementation. Therefore, these studies provide an accurate

estimate of the final system performance.

The efficiency for finding tracks for single lepton events as a function of pT

and η are shown in Fig. 6.11. As expected, the electron efficiency is slightly

worse because of kinks in their tracks due to multiple scattering. Efficiency and
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resolutions for denser events, eg. tt events with pileup, are shown in Fig. 6.12.

It is seen that efficiency remains high for the various pileup scenarios. The z0

resolution is shown for a pileup of 200, the densest environment expected at

the HL-LHC. In this case, the z0 resolution is comparable to 1 mm, the average

separation of vertices at 200 pileup, and therefore has a good enough resolution

for the L1 trigger. Finally, since all output tracks will go into making the trigger

decision, it is important to have a good understanding of the output rate. This

can be seen in Fig. 6.10. For a single muon event, the tracklet approach finds

exactly one track 99% of the time.

Since the algorithm operates at a fixed latency, there is only a fixed amount of

time to continue to process the inputs for each step of the algorithm. Therefore,
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events with many tracks in a single φ sector can be truncated during processing.

In all of the performance plots, the results include the effect of truncation. How-

ever, the effects of truncation are small primarily because: (i) the algorithm is

highly parallelized, as will be described in the following section, so seldom are

there too many inputs that the algorithm does not have enough time to process

these events, and (ii) different seeding combinations provide additional redun-

dancy that can recover tracks that are lost.

These plots show that the tracklet algorithm has high track finding efficiency,

while meeting the track parameter resolution needs and other demands of the

L1 trigger. Additionally, several failure scenarios have been studied in detail

and are presented in Ref. [113]. The loss of a full layer, for example, does not

have a drastic effect on the tracklet algorithm because the seeding redundancy

helps maintain a high performance even in this case.

6.3.3 Hardware Implementation

As was shown in Sec. 6.3.1, the tracklet algorithm involves only a few calcula-

tions. Derivatives (for example, how the track parameters change as a function

of the matched stubs’ residuals) are precomputed and stored in look-up tables

for quick retrieval during running. Most of the challenges in this algorithm arise

from the large amount of data coming in, which necessitates large partitioning

of the data for effective parallel processing.

The main parallelization is the division of the detector into sectors in the r-

φ plane. The current project uses nine φ sectors, to match with the DTC (read

out) regions of the tracker. There is some data duplication on the boundaries of
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Figure 6.13: Sector boundaries in the r-φ plane. Three φ sectors, including the
regions of duplication between them are shown in shaded blue and green.

these sectors, so that any pT > 2 GeV track will be located fully within a sector.

This removes the need for neighboring sector communication. The hourglass-

shaped sectors that have these data duplication regions are shown in Fig. 6.13.

Further φ partitioning within the algorithm makes for more efficient processing

and is described in more detail later.

To allow for more time to do the track finding, the whole nine φ sector system

is replicated n times using a round-robin time-multiplexing approach. Each

independent time-multiplexed system receives a new event every n × 25 ns (n

times the expected bunch spacing at the HL-LHC). The choice of n is determined

by a balance of the needed processing power and the cost. Reasonable choices

for the full system are n = 12 or n = 18. The current implementation of the

firmware assumes n = 12, meaning a new event is received every 300 ns.

In order to implement the tracklet algorithm on an FPGA, the algorithm is

setup as a series of processing steps [105, 106]. All processing steps follow a
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Figure 6.14: Sketch of the virtual module partitioning. Inner (outer) layers in
the tracklet seed are split into 24 (16) VMs.

similar format where the input is read from memories filled by a previous step

and the output is written to another set of memories. As soon as a new event

arrives, the next step in the chain will start processing the previous event. This

effectively pipelines the algorithm, so that at any time, each processing step is

running on a different event. The following paragraphs describe more about

each processing step (names in italics).

Stub organization dominate the first few steps of the algorithm. Incoming

stubs are sorted by layer or disk in the Layer Router. The stubs are further sub-

divided into smaller units in φ and z (“virtual modules” or VMs) by the VM

Router. Fig. 6.14 shows the VM partitioning of the system.

The largest combinatoric challenges occur at tracklet formation and match

finding. With an average pileup of 140, there are about 80-180 stubs in each

layer per φ sector. This would yield up to approximately 30,000 candidate track-

lets per seeding combination. It is unfeasible and unnecessary to try all of these

combinations since many will not make pT > 2 GeV tracks. The VM partition-

ing, in addition to enabling parallelization of the processing for these steps, also

125



eliminates the need to try all stub pairs in the sector. These VMs are chosen such

that a pT > 2 GeV track could span only a limited set of valid VM combinations

between consecutive layers. This reduces the combinations of stub pairs needed

to be looped over to make tracklets.

Pairs of stubs are selected as candidate tracklets in the Tracklet Engine. Based

on the VM partitioning, the number of possible tracklets per VM pair is reduced

to 8 on average. Next, in the Tracklet Calculator, the tracklet parameters for each

pair of stubs is calculated. From the tracklet parameters, projections to all other

layers and disks are made. The Projection Router routes the projections based on

which VM they project into on each layer.

In the Match Engine, the projections and stubs are matched by VM. As be-

fore, only certain VM combinations are consistent with pT > 2 GeV tracks.

The projection-stub difference in positions between the two are calculated in the

Match Calculator. All stubs matching the trajectory (including the original track-

let stubs) are included in the χ2 fit, and the final track parameters are extracted

in the Track Fit. Finally duplicated tracks are removed during the Duplicate Re-

moval module.

6.3.4 Hardware demonstrator

Since finding tracks in the dense environment of the HL-LHC is challenging,

and because finding tracks in 4µs is a completely new challenge, the CMS Col-

laboration requested that a hardware system be set up that can demonstrate the

track finding algorithm is actually feasible within these constraints. The main

goals of the demonstrator were to: (i) implement the full track finding algorithm
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in firmware (ii) achieve bit-to-bit compatibility with integer emulation to make

performance estimates, (iii) measure the track finding latency, and (iv) estimate

the resource usage of the full project based on the implementation in current

technology. All of these goals were achieved by the demonstrator system de-

scribed in this section.

At the time of the demonstrator, the partitioning of the system was slightly

different than the current implementation. The detector was split into 28 φ sec-

tors (“original” sectors are also shown in Fig. 6.13). Because the of the finer

detector partitioning, a lower time-multiplexing factor (n = 6) was achievable.

However, the original sectors did not include any overlap between their nearest

neighbor. A pT > 2 GeV track would span at most two φ sectors, so communi-

cation between the original sector and its two nearest neighbors was necessary.

A system hardware demonstrator was set up for this full scale testing of the

firmware implementation. The demonstrator test stand is one slice of the time-

multiplexed system and it includes three φ sector processing boards: one for

the central φ sector, and one for each of its nearest neighbors. One additional

processing board has the duplicate function of sending stubs into the sector

processors and receiving the final output tracks. A schematic of this set up is

shown in Fig. 6.15.

This demonstrator system is made of four µTCA blades [114], called CTP7

boards [115]. The CTP7s were developed for the current CMS L1 trigger. Each

board consists of a Xilinx Virtex-7 (XC7VX690T) FPGA [116] and a Xilinx Zynq-

7000 system on chip [117] processor for configuration of the main FPGA and

outside communication. An AMC13 [118] card provides a central clock distri-

bution that synchronizes the CTP7 boards. An 8b/10b encoding and 10 Gbps
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Figure 6.15: Overview (left) and image (right) of the tracklet demonstrator sys-
tem. In the hardware, the stub source and track sink are one board. Estimated
data transfer rates between each board are also shown on the schematic.

links are used for inter-board communication. Although the final system (dis-

cussed in more detail in Sec. 6.3.6) will use newer FPGA technology, this is a

proxy for a slice of the final system.

The full tracklet algorithm, including all processing steps and transmission

of data, is implemented in the firmware running on the demonstrator system.

Two complete implementations – one for a half of the barrel (+z) and one for a

quarter of the barrel plus the forward endcaps – were used to demonstrate the

algorithm for the full η range of the CMS detector.

The demonstrator system achieved excellent agreement with the integer em-

ulation as shown in Fig. 6.16. For single muon events, the firmware and emu-

lation final tracks were in 100% agreement. Final tracks in dense tt plus 200

pileup events agreed to better than 99%. These results instill confidence that the

firmware is well-understood and behaving as expected. The integer emulation

models well the firmware and can therefore be used to evaluate the performance

of the system. The latency measured on the demonstrator system and projec-
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Figure 6.16: Comparison of the hardware (red) and emulation (black) track pT
in pileup 200 tt events for the barrel (left) and forward region (right) implemen-
tations.

tions for a full system are detailed in Sec. 6.3.5 and Sec. 6.3.6, respectively. This

hardware demonstrator system shows that the tracklet algorithm can be imple-

mented and achieves necessary performance goals for the L1 track finding.

Since the time of this test stand, several updates and improvements to the

tracklet algorithm have been implemented. The main updates since the demon-

strator are:

• The virtual modules are reconfigured so that they cover the full length

in z (r) for the barrel (endcaps) but are thinner in φ. This reduces the

combinatorics in the Tracklet Engines and Match Engines and improves

the track finding efficiency in dense jet environments. This has minimal

effect on the resource usage of the algorithm.

• The φ sector definition is changed, and now includes hourglass-shaped

areas of duplicated data to remove the need for neighbor sector commu-

nication (thus removing the associated latency). The larger sector requires

more processing though, and the time-multiplexing factor has to at least

double for each processing step (currently n = 12 instead of n = 6).
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• The baseline CMS tracker detector geometry is also changed. It is expected

to have tilted (in η) modules in the inner barrel (layers 1, 2, and 3) as shown

earlier in Fig. 6.2. The tracklet algorithm underwent minor calculation

adjustments to compensate for this change.

A future hardware demonstrator, using track finding board prototypes (dis-

cussed later) will include all of these changes.

6.3.5 System latency

Because each of the processing steps of the tracklet algorithm operates at a fixed

latency, it is straight forward to model the overall latency of the system. Ta-

ble 6.1 gives the breakdown of the latency per processing step.

The “step latency” refers to the time it takes from the first piece of data into

each step to the first data out. It is the intrinsic overhead of the calculations

of that processing step. In Table 6.1 it is listed in both clock cycles (CLK) and

in nanoseconds, assuming that the FPGA is running at 240 MHz (the achieved

clock speed of the demonstrator). The additional “processing time” is the time

allotted for the step to output the remaining outputs before the next event starts.

The length of the processing time is determined by the time-multiplexing factor

n×25 ns. For the demonstrator system n = 6, so a new event arrives every 150 ns

therefore each step finishes its previous bunch crossing processing at 150 ns.

Several processing steps also involve data transfer over links. For example,

the stubs must be sent into the track finding system, and the final tracks must be

sent out to the L1 correlator. In the demonstrator, neighbor sector communica-
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Table 6.1: The latency model for the hardware system is shown. For each step,
the processing time and latency is given. For steps involving data transfer, the
link latency is given.

Step Proc. Step Step Link Step
time latency latency delay total
(ns) (CLK) (ns) (ns) (ns)

Input link 0.0 1 4.2 316.7 320.8
Layer Router 150.0 1 4.2 — 154.2
VM Router 150.0 4 16.7 — 166.7
Tracklet Engine 150.0 5 20.8 — 170.8
Tracklet Calculation 150.0 43 179.2 — 329.2
Projection Transceiver 150.0 13 54.2 316.7 520.8
Projection Router 150.0 5 20.8 — 170.8
Match Engine 150.0 6 25.0 — 175.0
Match Calculator 150.0 16 66.7 — 216.7
Match Transceiver 150.0 12 50.0 316.7 516.7
Track Fit 150.0 26 108.3 — 258.3
Duplicate Removal 0.0 6 25.0 — 25.0
Output Link 0.0 1 4.2 316.7 320.8
Total 1500.0 139 579.2 1266.7 3345.8

tion is needed to send projections to neighbor φ sectors and send matched stubs

back to the original sector. The streaming of the data is handled by a priority

encoder so there is very little overhead. However, based on measurements of

8b/10b encoding on 10 Gbps links of the demonstrator system (which uses 15 m

cables) there is a 316.7 ns delay between sending and receiving data. This adds

an intrinsic latency of about 1µs to the system (“link delay” in Table 6.1).

Taken all together, the overall latency of the project can be modeled. From

Table 6.1 it is seen that the first track out for each event will take 3345.8 ns. The

last track out, by design, will not appear beyond 150 ns after that.

By implementing the tracklet algorithm on the hardware demonstrator de-

scribed before, the latency can be measured on a real system as well. The track

source/sink board has a counter which starts when the data starts being sent out
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of the system and finishes when the tracks start being received on the board.

Based on this, the measured latency of the system is 800 clock cycles, which

translates to 3333 ns. The measured latency agrees within three clock cycles or

0.4% with the modeled latency. The measured (and modeled) latency is already

below the goal of 4µs for L1 tracks.

Several modifications to the latency are expected based on updates to the

project since the time of the demonstrator (updates mentioned in the previous

section). The largest changes with respect to the latency are the removal of the

Projection Transceiver and Match Transceiver steps and the increase in the time-

multiplexing factor to compensate for the increased data rates in each sector.

Additionally, the link latency will be reduced because of improved link speed

and protocol. For example, 64b/66b rather than 8b/10b encoding is now possi-

ble. The expected latency of the tracklet algorithm with these changes is shown

in Table 6.2. The expected latency is under 3µs with these changes which is well

within the latency budget available. The exact optimization of the algorithm in

terms of the hourglass sector configuration is still under investigation.

6.3.6 Projections for the full system

The full L1 track system will look like the system shown in Fig. 6.17. Data will

be read off the tracker by the DTC. The stubs will then be sent to the track finder

system. There will be n time-multiplex (TMUX) copies of the track finding sys-

tem. Each copy has a sector processing board per φ sector. The output tracks

are sent to the trigger correlator where tracks are correlated with trigger objects

from the calorimeters and muon systems. Optical links between the DTC and
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Table 6.2: The estimated latency without sector-to-sector communication and
with a time-multiplexing factor of 12. Same clock speed (240 MHz) as the
demonstrator is assumed.

Step Proc. Step Step Link Step
time latency latency delay total
(ns) (CLK) (ns) (ns) (ns)

Input link 0.0 1 4.2 150.0 154.2
VM Router 300.0 4 16.7 - 316.7
Tracklet Engine 300.0 5 20.8 - 320.8
Tracklet Calculation 300.0 43 179.2 - 479.2
Projection Router 300.0 5 20.8 - 320.8
Match Engine 300.0 6 25.0 - 325.0
Match Calculator 300.0 16 66.7 - 366.7
Track Fit 300.0 26 108.3 - 408.3
Duplicate Removal 0.0 6 25.0 - 25.0
Output Link 0.0 1 4.2 150.0 154.2
Total 2100.0 113 470.8 300.0 2870.8
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Figure 6.17: Sketch of the proposed L1 tracking system.

track finder boards need to be operated at 25 Gbps to be able to read all of the

data from the outer tracker in time.

Prototypes of the sector processing boards are currently under design. The

printed circuit board (PCB) will ultimately be an ATCA [119] blade with an
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Table 6.3: The top line shows estimated FPGA resource needs for a full φ sector.
The following lines show the fraction of the resource needs in a Virtex-7 and
Virtex Ultrascale+ FPGAs.

LUT Logic LUT Memory BRAM DSP
Full sector 279733 151191 2721.5 1818
Virtex-7 690T 65% 87% 185% 51%
VU3P 32% 81% 85% 80%
VU5P 21% 53% 58% 52%
VU7P 16% 40% 42% 40%
VU9P 11% 27% 28% 27%
VU11P 10% 27% 29% 20%
VU13P 7% 20% 22% 15%

FGPA on a mezzanine card. The boards will have a system on chip proces-

sor that can be used for slow control and communication with the main FPGA.

And the ATCA boards will have many high speed links (16 or 25 Gbps) to re-

ceive data from the DTC and send tracks to the trigger correlator. In each ATCA

shelf, an AMC13 board (as described in the demonstrator system) will be used

for clock distribution and communication with the LHC.

Based on the need for 25 Gbps links and based on resource estimates for the

algorithm (shown in Table 6.3), the processing will need to happen on a Vir-

tex Ultrascale+ FPGA [120]. The estimated resource utilization for a φ sector is

based on the usage as reported by Xilinx’s Vivado Design Suite for the demon-

strator implementation of a half φ sector (the +z region of a φ sector).

As a precursor to the prototype, a custom µTCA PCB was designed to start

development on the firmware for Ultrascale FPGAs and to test the use of high-

speed (≥ 10 Gbps) links. A cartoon schematic of the so-called YUGE (“Your

Ultrascale Gigabit Evaluation”) board is shown in Fig. 6.18. Also shown is a

photo of the YUGE board in the lab.
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Figure 6.18: Sketch of YUGE components (left) and photo of the YUGE (right).

The YUGE has a ball-grid array that is pin-compatible with several FPGAs.

Two YUGE boards have been stuffed with Kintex Ultrascale 115 (KU115) FP-

GAs. These FPGAs have enough resources to fit a full φ sector project, however

they can only operate links at 16 Gbps. Two other YUGE boards have Virtex Ul-

trascale 080 (VU080) FPGAs, which do not enough resources for the full tracklet

algorithm, but can run links at 25 Gbps. A comparison of the resources on each

of these FPGAs is given in Table 6.4. Also shown are the resources of a Virtex Ul-

trascale+ 7 (VU7P) FPGA which is also pin-compatible, because it is a feasible

chip for the final system (capable of operating links at 25 Gbps and has suffi-

cient resources for the implementation of the algorithm). The VU7P is recently

available for purchase.
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Table 6.4: Number of links (and their speed) and other resources available on
each FPGA that is or will be used on the YUGE board.

Device Available links DSP BRAM (Mb) DRAM (Mb)
KU115 64 @ 16.3 Gbps 5520 75.9 18.36
VU080 32 @ 16.3 Gbps, 672 50.0 3.96

32 @ 28.2 Gbps
VU7P 76 @ 28.2 Gbps 4560 50.6 24.10

Several other features of the YUGE board are notable. A preassembled En-

clustra Mars ZX2 [121] is attached to the YUGE. The Enclustra module is com-

posed of a Zynq 7020 [117] system on chip, which is a small FPGA and dual

ARM processing cores (running CPUs). The Zynq provides the primary inter-

face from the outside to the main FPGA. Additionally, the Enclustra module

has 512 Mb of memory for the operating system and any applications running

on the Zynq. Ethernet access is available for outside communication with the

YUGE board. Also as a µTCA board, the YUGE has a black plane that can trans-

mit data between boards in the same crate.

In order to test different commercial link options, there are several differ-

ent link interfaces on the YUGE board. Firefly links [122] are available in both

copper and optical link forms. Copper links are rated up to 28 Gbps the speed

limit for the VU080 transceiver banks. Optical Firefly links can be run up to

14 Gbps. The Firefly transceivers on the PCB have 12 TX (output) and 12 RX (in-

put) ports. This allows for highly parallelized data transmission. A second set

of link transceivers on the YUGE board are QSFP transceivers [123]. These links

are also available in copper or optical form and are capable of 28 Gbps trans-

mission. QSFP transceivers have 4 TX and 4 RX ports. Additionally, data can be

transmitted via the rear transmission module on the back edge of the PCB. This

is a way to quickly communicate with other PCBs in the same crate.
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Figure 6.19: Example scan for a QSFP copper link running at 25 Gbps.

In order to evaluate the integrity of the different link options, bit error ratio

tests were performed [124]. By sending known data sequences through the links

many times, it is possible to evaluate the number of errors received during trans-

mission. An eye-diagram is a plot of the number of errors as a function of unit

time and voltage. The center of the eye-diagram is the nominal operation of the

links, so an eye-diagram with a large open area means that the link has very low

bit-flip errors during the majority of operation. An example eye-diagram for the

YUGE board is shown for a copper QSFP link operating at 25 Gbps in Fig. 6.19.

Eye-diagrams are used to choose optimal parameters for the transceivers, and

prove that all on-board link options function well even at high speeds.

The YUGE board was the CMS experiment’s first custom PCB to demon-

strate 25 Gbps links are feasible. This is an important achievement for imple-

menting high speed links. The ATCA prototype, that will be produced within

the year, will make use of these links as well. The full system will be com-

posed of around 170 track finding boards that each have high speed links to

read incoming data quickly and Ultrascale+ FPGAs to do the majority of the

processing. There is an ongoing effort in synchronizing the design between the
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track finding and DTC boards. Mezzanine cards with the main FPGA allow for

the flexibility of using the ATCA base for multiple PCBs in the final system.

6.4 Summary

The HL-LHC will have an average of 200 simultaneous pp collisions. In order to

maintain physics performance while keeping data rates manageable, CMS will

need charged particle tracking at the L1 trigger level. Tracking for this system

will need to be completed on dedicated hardware within 4µs.

The tracklet algorithm is a road-search approach to charged particle track

finding and reconstruction that is implemented on commercially available FP-

GAs. Pairs of hits in adjacent layers are used to estimate initial track parame-

ters. The track is projected to other layers of the tracker to look for matching

hits. A χ2 fit is used to correct the original estimate and extract the final track

parameters. Partitioning in φ and time-multiplexing allow for efficient parallel

processing to handle the combinatorics inherent in the HL-LHC environment.

Performance estimates for the tracklet algorithm are promising. The tracklet

algorithm has high track finding efficiency for various different physics events

and pileup scenarios. The resolution of the track parameters meets the demands

of the L1 trigger. And it has been demonstrated that track finding is feasible in

under 4µs, thus meeting the latency demands on the system. Based on estimates

from the current implementation of the tracklet algorithm, the final track find-

ing system will be composed of Ultrascale+ FPGAs on ATCA boards. Optical

links operating at 25 Gbps will transfer data from the tracker to the track-finder.

Prototypes of these boards are expected this year.
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CHAPTER 7

CONCLUSION

This thesis has presented the results of a search for dark matter particles pro-

duced in association with a Higgs boson decaying to two photons. The analysis

uses proton-proton collision data collected at a center-of-mass energy of 13 TeV

at the CMS detector at the CERN Large Hadron Collider. The data taken in 2015

and 2016 correspond to an integrated luminosity of 2.2 and 35.9 fb−1.

Selected collision events with two photons are split into categories based

on their transverse momentum imbalance. A maximum-likelihood fit to the

diphoton invariant mass is used to extract the signal significance and place 95%

confidence level exclusion limits. For a Z′-two-Higgs-doublet-model, signals

with a pseudoscalar mA = 300 GeV and with dark matter mass at or below

100 GeV are excluded for Z′ masses from 550 to 860 GeV. For a baryonic Z′ signal

with mDM = 1 GeV this search excludes Z′ masses up to 574 GeV. These results

are also extrapolated to exclusion limits on spin-independent cross section for

dark matter-nucleon interaction which are more stringent than direct detection

experiments’ for dark matter masses between 1 and 2 GeV.

An FPGA-based proposal for charged particle track reconstruction is also

presented. To cope with the high pileup environment at the High-Luminosity

LHC, tracking will need to be included at the hardware trigger level. The track-

let approach is a road-search algorithm that utilizes massive data partitioning to

accomplish track finding and reconstruction in under 4µs. The performance of

a hardware demonstrator of the tracklet system convinced the CMS experiment

to pursue an all FPGA (rather than ASIC) approach for the final system, and the

prototype hardware is being developed.
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APPENDIX A

ALTERNATIVE MONO-H SEARCH APPROACH

This section briefly summarizes the Mono-h analysis approach that was pre-

formed on the 2015 data set. It is useful as a discussion of an alternative back-

ground estimation method. As mentioned earlier, the trigger was almost iden-

tical in 2015 and 2016, and most of the photon identification and event selection

criteria are similar to that of the 2016 analysis. The specific details of the 2015

analysis can be found in Ref. [28] with some additional information about selec-

tion detailed in Ref. [78].

For this search, a “cut-and-count” method was chosen that uses an “ABCD”

estimation of the background. In the case of this analysis, a signal region (D) is

defined as the region with events that have 120 GeV < mγγ < 130 GeV and pmiss
T

above the threshold of 105 GeV. The signal-free control regions are then used to

estimate the nonresonant background in the signal region. The regions can be

seen in the illustration in Fig. A.1. The resonant background estimation is taken

from simulation, as done in the 2016 analysis.

Provided the two variables used to setup the ABCD regions are uncorrelated

(they were to less than 10%), then the number of background events in the signal

region can be estimated from the number of events in the sidebands by ND =

αNA where α = NC/NB. To make this procedure more robust, the transfer factor

α was derived from a fit to the mγγ distribution in the sideband region:

α =

∫
C
f(mγγ) dmγγ∫

B
f(mγγ) dmγγ

. (A.1)

Several analytic functions were fit to the observed mγγ distribution in the

low-pmiss
T region. A power law function was chosen as the final estimate based
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Figure A.1: Sketch of the ABCD regions in the 2015 analysis. The D region
(shown in blue) is the signal region. The A, B, and C regions are used to extract
the nonresonant background contribution to D.
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Figure A.2: Fit to the mγγ distribution in the low-pmiss
T control region in data

collected at CMS in 2015. The fit is used to evaluate the transfer factor α.

on a bias study similar to that of the 2016 analysis (described in Sec. 5.7.2).

Within the uncertainties, α is independent of the pmiss
T threshold and is consistent

between data and simulation. The fit in the low-pmiss
T region of the mγγ distribu-

tion of the 2015 data set is shown in Fig. A.2. This fit yielded a transfer factor

α = 0.190± 0.035 (stat).

In the 2015 data set, there were two events observed in the mγγ sidebands
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Figure A.3: Upper limits on Z′-2HDM cross section (left) and signal signifi-
cance (right) extracted from the results of the ABCD method with the 2015 data
set [28].

with pmiss
T > 105 GeV. Based on this, it was expected that there would be

0.38 ± 0.08 (stat) nonresonant background events in the signal region. Zero

events were observed in the signal region. Therefore upper limits were made

on the Z′-2HDM cross section, as shown in Fig. A.3.

This method has comparable sensitivity to dark matter signals as that of the

fit method used in the 2016 analysis. This can be seen in the comparison of the

exclusion limits shown in Fig. A.4. However, the 2015 data set was so statis-

tically limited, that there were not enough events to preform a fit of the mγγ

distribution in the high-pmiss
T region so this “cut-and-count” approach was cho-

sen instead. The increase in the statistical power of the 2016 data set allowed

the use of the fit to the mγγ distribution. The use of the full fit also allows the

low-pmiss
T region to be used as a signal region, making the approach more model

independent. However, the search strategy detailed in this Appendix is very

effective for probing specific models.
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