
A Unified Platform for Data Driven Web Applictions with
Automatic Client-Server Partitioning

Fan Yang1, Nitin Gupta1, Nicholas Gerner1, Xin Qi1, Alan Demers1, Johannes Gehrke1,
Jayavel Shanmugasundaram2

1 Cornell University 2 Yahoo!
Ithaca, NY Santa Clara, CA

{yangf, niting, nsg7, qixin, ademers, johannes}@cs.cornell.edu,
jaishan@yahoo-inc.com

ABSTRACT
Data-driven web applications are usually structured in three
tiers with different programming models at each tier. This
division forces developers to manually partition application
functionality across the tiers, resulting in complex logic, sub-
optimal partitioning, and expensive re-partitioning of appli-
cations.

In this paper, we introduce a unified platform for auto-
matic partitioning of data-driven web applications. Our ap-
proach is based on Hilda [25, 13], a high-level declarative
programming language with a unified data and program-
ming model for all the layers of the application. Based on
run-time properties of the application, Hilda’s run time sys-
tem automatically partitions the application between the
tiers to improve response time while adhering to memory
or processing constraints at the clients. We evaluate our
methodology with traces from a real application and with
TPC-W, and our results show that automatic partitioning
outperforms manual partitioning without the associated de-
velopment overhead.

1. INTRODUCTION
An important class of applications is data-driven web ap-

plications, i.e., web applications that run on top of a back-
end database system. Examples of such applications are b2c
portals such as online shopping sites and online auctions,
and various b2b portals. Data-driven web applications are
usually structured in three tiers: a database system that
stores persistent data as the lowest tier, an application server
that contains most of the application logic as the middle-tier,
and the client web browser that contains some client-specific
application logic and presentation as the top tier (see Fig-
ure 1).

Current development platforms use different programming
models at each tier. For example, server side application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Figure 1: Tiers in a Data-Driven Web Application

development frameworks such as J2EE and Enterprise Java
Beans (EJBs) wrap relational data as Java objects. PHP
and ASP.NET bridge the difference between the data model
at the lowest tier and the middle tier in similar ways. The
top tier usually uses a different programming model, such
as AJAX or FLASH [1], which allows the developer to build
rich clients. The difference in programming model between
the different tiers forces the developer to decide manually
how to partition application functionality across the tiers,
and to implement functionality at each tier separately using
different programming languages and models.

Exposing the boundaries between tiers to the programmer
in this way has four significant drawbacks.

Increased Development Time. Having different pro-
gramming models in different tiers makes it hard to develop,
maintain, and optimize applications, as the developer must
manually bridge the differences between the individual mod-
els (for example, the relational model, EJBs, and HTML
forms).

Complex Logic due to Partitioning. Partitioning ap-
plication logic across the tiers requires complex logic to syn-
chronize the state of the application. For example, in order
to enable partial updates (a well known strategy in AJAX
[2]), data can be cached at the client side. However, client-
side caching can allow content shown in the browser to be-
come outdated due to concurrent updates to the application
state from different users. Such application-level conflicts
are difficult to detect, and existing systems do not provide
automatic support for conflict detection.

Suboptimal Partitioning. Since the decision of how to
partition the application is left to the developer (who may
have little data on which to base her decisions), the resulting
division of the application may be be suboptimal in terms

1

of system performance.
Expensive Re-Partitioning. Once a partitioning of the

application has been implemented, moving functionality be-
tween layers is complex. For example, consider an applica-
tion that allows a user to sort on a column of a table: this
may initially be implemented in the application server as
an SQL order by query issued over a relational database.
If the developer later decides to move sorting to the client
side to improve responsiveness, the sort functionality must
be reimplemented in a different programming model such as
JavaScript.

In this paper, we introduce a unified platform for auto-
matic partitioning of data-driven web applications. Our ap-
proach is based on Hilda, a high-level declarative program-
ming language with a unified data and programming model
for all layers of the application [25]. In particular, we show
in this paper how to automatically partition a Hilda ap-
plication between the client and middle tier based on run-
time behavior of the application — all of this completely
transparent to the developer. Our way of partitioning auto-
matically synchronizes state between client and server with-
out the developer having to write any additional code to
achieve this. A web applcation developer thus can focus
on the core application logic without worrying about the
parititioning of the application or changes to the parition.
The Hilda system is available as open-source software at
http://www.cs.cornell.edu/database/hilda.

In summary, this paper makes the following contributions.

• We have developed a run-time environment for Hilda
that allows us to automatically partition a data-driven
web application dynamically between client and mid-
dle tier in a way that is completely transparent to the
developer. (Section 2)

• We model client-middle tier partitioning as an opti-
mization problem. The resulting problem is NP-hard
with the client side space constraint, but we give an ap-
proximation algorithm that is provably within a factor
of three of the optimal solution of the problem. (Sec-
tion 3)

• We show how we can use trace data to instantiate the
optimization model and how to derive practical deci-
sions about client-middle tier partitioning. In a thor-
ough experimental evaluation using a technical bench-
mark and a real application, we show the efficacy of
our techniques. (Section 4)

We discuss related work in Section 5, and we conclude in
Section 6.

2. AUTOMATIC CLIENT-SERVER PARTI-
TIONING

2.1 Hilda Overview
Hilda is a high-level declarative language designed for de-

veloping data-driven web applications [25]. It is based on
UML [5] and the relational data model [18]. Instead of us-
ing different data models and languages for different layers of
the application stack, Hilda presents a unified programming
model for all layers (see Figure1).

First, Hilda is based on UML [5], a well-accepted model-
ing framework. Hilda’s main construct are AUnits, which

correspond to UML classes. The local state of an AUnit
corresponds to UML class attributes. As classes can have
operations, AUnits can have Activators. With data and as-
sociated operations, the Hilda programming model is state-
based in that a Hilda programmer specifies what operations
are allowable in a given state of the program. The main dif-
ference from the traditional use of UML is that the object
creation and operations are specified declaratively1, which
enables the Hilda compiler to automatically perform various
optimizations without burdening the user with performance
issues.

Second, Hilda uses a single data model - the relational
model - to represent the state of all parts of the applica-
tion, including the database, application logic and the client.
This eliminates the impedance mismatch problem and also
enables the application logic to be specified declaratively us-
ing SQL. The choice of the relational model also allows for
a practical and efficient implementation since most existing
database systems are relational.

Third, Hilda logically separates server and client state to
enable highly concurrent execution. The server maintains
the current state of the application, and each client sees
a (possibly out-of-date) version of it locally. Whenever a
client wants to perform an update operation, it checks with
the server to see if this operation is still valid in the current
system state (to avoid application conflicts). Notice that
this separation between client and server state is only con-
ceptual. The real separation can be different and should be
done by the Hilda compiler or runtime environment based
on certain optimization criterion, e.g., sanity checks can be
pushed to client side to save bandwidth and round trip time.

Fourth, Hilda models the application logic and associated
control flow as a hierarchy. This decision is based on our ex-
perience in developing data-driven web applications: since
navigation can be very complex, and since the operations
that a user can perform at any time depend on complex
conditions that have to be satisfied by the current state of
the user’s session, we need a way to cleanly specify these
preconditions. Hilda specifies preconditions hierarchically;
this helps the programmer to think in high-level abstrac-
tions which are then further broken down into smaller steps
further down in the hierarchy. Hilda’s hierarchical struc-
ture also enables encapsulation as the hierarchy naturally
limits the scope of the data access of an object. Hilda’s
control flow goes along the same hierarchy. It is like struc-
tured programming, with a tree-like execution structure. It
is powerful enough to capture complex graph control flows,
but makes the specification of operations more structured
and confined to small parts of the code.

Fifth, Hilda uses inheritance to separate application logic
from web site structure. Specifically, application developers
can derive a web site AUnit by inheriting from the corre-
sponding application logic AUnit. The use of inheritance
for this purpose has two advantages: (1) the same struc-
tured programming model can be used for both application
logic and web site structure, and (2) the same application
logic can be reused for multiple web site structures.

Finally, Hilda provides a HTML-based presentation con-
struct called a PUnit (Presentation Unit), which is associ-
ated with an AUnit and describes how the content of the

1This is also the main reason we use different names for oth-
erwise standard object-oriented concepts, so that declarative
and non-declarative constructs are easily distinguished.

2

AUnit is to be presented. PUnits ensure a clear separation
of application logic from presentation because they deal only
with presentation issues like page layout, font size and back-
ground color, while AUnits deal only with application logic
and web site structure.

2.2 Design Details
Hilda models application logic using building blocks called

AUnits (for Application Units), analogous to UML classes.
Each AUnit models a functional component of the applica-
tion, and encapsulates the operations and the data associ-
ated with a web page, subpage or a frame of a webpages.
The AUnit is a single-entry single-exit programming con-
struct that is associated with an (optional) input schema
and an (optional) output schema. The input and output
schemas are both relational schemas. Given an AUnit, one
or more instances of the AUnit can be created. Each in-
stance of an AUnit takes in an input conforming to the in-
put schema of the AUnit and returns an output conforming
to its output schema. The act of creating an instance of
an AUnit is called activation, and the act of destroying an
instance of an AUnit is called deactivation.

There are three types of AUnits: Basic AUnits, User-
Defined AUnits and External AUnits. Basic AUnits are pre-
defined by the system and provide functionality to interact
with end users. For example, an instance of the ShowRow
AUnit shows the attribute values of the input(a single row)
to the user and returns no output. Similarly, an instance of
the GetRow Basic AUnit returns a row of values entered by
a user; it takes in no input and returns a single row as an
output. Other Basic AUnits for other common interaction
tasks are defined similarly.

A User-Defined AUnit corresponds to a functional compo-
nent in the system. Just as components can have subcompo-
nents, each instance of a User-Defined AUnit also contains
zero or more instances of child (User-Defined or Basic) AU-
nits, which are called child AUnit instances. AUnits (like
sub-components) can be reused in more than one place. The
definition of a User-Defined AUnit contains the application
logic of activating and deactivating child AUnit instances,
preparing input for child AUnit instances, updating local
state and processing output of child AUnit instances and
it’s own input and output schemas.

External AUnits are used to express small parts of the
application logic that do not lend themselves to declarative
specification. For example, if an application requires the
use of a max-flow min-cut algorithm, it will be awkward to
program this using SQL (even though it can theoretically be
done with order-based functions and recursion in SQL’99).
External AUnits support the same API as other AUnits, but
are specified in an imperative language such as Java. Since
most data manipulation can be specified declaratively, we
expect only a small part of the code to be written using
External AUnits; in fact, applications such as CMS do not
need External AUnits at all.

One AUnit in the hilda program is designated as the root
AUnit, which intuitively corresponds to the “main” function
in a program. A new instance of the root AUnit is activated
each time a new user connects to the Hilda application, and
this instance is deactivated when the user disconnects.

Rendering logic is defined for every AUnit to specify the
visual appearance of the AUnit at the client. Just as com-
ponents can have subcomponents, AUnits can form parent-

Figure 2: A part of the AUnit hierarchy that models the Course

Management System

child relationships, resulting in a hierarchical structure as
shown in Figure 2. Each AUnit takes input data from its
parent AUnit, and returns output data back to the parent.
An AUnit contains activators which control activation of
instances of its child AUnits. Each activator specifies the
following information: (i) the child AUnit of which it cre-
ates instances; (ii) an activation condition, which defines
when and how instances of the child AUnit should be ac-
tivated; (iii) an activation ID that uniquely identifies each
child AUnit instance, (iv) input data for instances of the
child AUnit; and (v) the operations triggered by the out-
puts of the child AUnit instances. An activator can activate
multiple instances of the same child AUnit that are identified
by their ID, which serves as the primary key to distinguish
between instances of the same child AUnit. The KEY of an
instance is then defined as the concatenation of its ID with
the IDs of its ancestor AUnit instances. In Hilda, the ac-
tivation conditions and various operations for the business
logic are specified as SQL queries.
Example: A Course Management System. Figure 2
shows part of the AUnit hierarchy for a Course Manage-
ment System we developed at Cornell that is currently being
used by over 2000 students. The CMS AUnit represents the
application, and contains AUnits for faculty, students and
system administrators, which are modeled by child AUnits
Faculty, Student and Sys Admin, respectively. A faculty
member can view students, add and remove staff, edit as-
signments and perform other course related operations, each
of which is implemented as a child of the Faculty AUnit. For
example, the StaffList AUnit encapsulates the data corre-
sponding to the list of staff members associated with the
current course. This AUnit allows the faculty member to
view and update, in a browser, the complete list of staff
members. The ID of a Faculty AUnit instance is the fac-
ulty’s NetID; the ID of a FacultyCourse AUnit instance is
the name of the course; its KEY is a tuple consisting of the
course ID and the faculty’s NetID. The activation condition
for Faculty is that the current user logs in as a course faculty
member.

The hierarchical structure formed by AUnits models the
hierarchical structure of a website (Figure 2). The leaf level
AUnits represent basic components such as HTML forms
that allow user interaction. For example, the Navigation Bar
AUnit represents a form containing options, one of which
can be selected by a user. One of the AUnits in a Hilda
program is designated as the root AUnit, which intuitively
corresponds to the “main” function in a program. For ex-
ample, the CMS AUnit is the root AUnit of the application
in Figure 2. A new instance of this root AUnit is activated
each time a new user connects to the application, and this
instance is deactivated when the user disconnects. The pro-

3

Figure 3: Activation tree and the corresponding webpage

Figure 4: Activation tree and the corresponding webpage after

selecting editing staff

gram then recursively activates children of the root AUnit
and constructs a tree of AUnit instances. The system main-
tains this activation tree for each user session. At any time,
the activation tree represents the part of the application
currently available to users through a web browser.

When a user performs an operation, such as submitting a
form, the leaf level AUnit corresponding to that operation
returns data to its parent, which then performs operations
to update the application state, and/or returns data to its
parent, and so forth. AUnit instances can only get data
and return data to their parents, which follows the similar
data flow for function invocations. After the return chain
terminates, a new activation tree is constructed by reevalu-
ating every activation condition based on the updated state.
Please notice that reconstructing the whole activation tree
after each return chain terminates is the semantic of the ex-
ecution model. The real implementation can optimizes the
process by skipping reevaluate irrelevant part of the tree and
will not build the whole tree from scratch.

In Hilda, a web application is no longer considered as a
connected graph of individual web pages that allows users
to navigate from any page to any other page. Instead, ex-
ecution of a web application is modelled as a sequence of
transitions from one activation tree to another. The tran-
sition is triggered by users’ interaction and each activation
tree corresponds to a webpage shown to the user and the
operations the users can perform on that page.
CMS example: Consider a case in the CMS, when a user
logs in as course faculty and come to a course page. Figure
3 shows the current activation and the page in the browser.
Each activated AUnit instance corresponds to a sub-page of
the content shown in the browser. NavigationBar 1 corre-
sponds to the navigation bar at the top of the page, and
NavigationBar 2 corresponds to the one at the left. Then
she wants to view and edit the list of staff members in cur-
rent course and select that option from the navigation bar.
NavigationBar 2 returns the selected option to its parent

Figure 5: System Architecture

Figure 6: Activation tree with different partitions

FacultyCourse and updated the local state2 of its parent.
When return chain finished (in this case, the chain only has
one step), the new activation tree is constructed based on
the updated state. One StaffList instance will be activated
based on its activation condition. Figure 4 shows the re-
sulting activation tree and its appearance in a web browser.
Again if the user wants to view the student list for this course
and choose ”Student” from the navigation bar, the Naviga-
tionBar 2 AUnit instance returns to the FacultyCourse in-
stance and updates the state, which then deactivates the
StaffList instance and activates a new instance of the Stu-
dentList AUnit. The webpage gets updated and will show
students information.

2.3 Run time system
The Hilda run time systems, for both the server and the

client, are evaluation engines for Hilda programs. They ex-
ecute the application logic specified in a program by main-
taining the activation trees, and maintain consistency be-
tween the client and server states. We use RTSS to refer to
the run time system residing at the server, and RTSC for
the system residing at the client. The RTSS is a Java servlet
running in some application server (such as JBOSS or We-
blogic), and has connections to the back end database. It
communicates with the RTSC. The RTSC runs as ”sticky”
applet which resides in the secondary cache of the client,
and is available for quick loading by the browsers [15].

Based on the semantics of Hilda, the RTSS and RTSC
coordinate with each other to maintain the activation tree.
An AUnit instance is activated when its activation condition
is satisfied and is deactivated when the conditions fails to be
satisfied. The location (client or server) where an instance
is activated is not predefined by the application developer;
instead, it is determined and can be changed at run time by

2We omit the details of local state of AUnit here, which are
also expressed tables. In this case, we have a CurrentChoice
table which keep track of which option users selected. Please
refer to [25] for more details

4

the run time system.
The RTSC caches local data at the client. It uses this

data to generate webpages dynamically (e.g. student info
list), and to store a user’s temporary input (e.g. items in
a shopping cart). This temporary data is stored in main
memory, and reused by the RTSC. The RTSC contacts the
RTSS to check for updates to its input data. The system
imposes an upper bound on how out-of-date the client state
can be by periodically contacting the server using heartbeat
messages. To avoid sending the cached data back and forth
between the client and the server, the RTSS maintains a
copy of the data sent to each client. On receiving an update
request, the server checks for updates to the client input
data, and responds with only the updated data. To limit
the amount of server-side data required for each client ses-
sion, the developer can specify a maximum life span for the
data in the server cache, as well as the heartbeat frequency
of the client. Our cache consistency strategy is similar to
a detection based approach for transactional client server
caching [11, 24, 17], although the system allows for the in-
tegration of other strategies in the future.

Client-server partitioning is done based on the activation
profile of an application. The activation profile specifies
which AUnit instances, identified by their unique key, should
be activated in the client. When the run time system ac-
tivates an instance of some AUnit, it refers to the configu-
ration profile to determine whether the RTSS or the RTSC
should activate the instance. The activation profile is gen-
erated automatically, based on the observed workload of the
system. We discuss activation profile generation in the next
section.
CMS example: Figure 6, shows two different partitions of
the same activation tree. In the first case, we keep the com-
plete activation tree at the server side, while in the second
case, we keep part of it at the client side. The main draw-
back of running everything at the server side is that the
client must contact the server for every operation the user
performs. The server then resends the entire refreshed page
in HTML format to the client. However, if the navigation
bar and Stafflist instances are executed at the client, the
run time system can cache the data needed by them. Then,
if the user adds or removes staff, the list of staff members
is updated locally in the client, and the server is contacted
only when the Submit button is clicked by the user. Only
after this step are the updates in the staff list sent to the
server, which updates the database. Note that the client
already has all the data and code for the new staff list, un-
less it has been updated by other users — which is detected
by the run time synchronization algorithm. This allows the
RTSC to create HTML at the client without waiting for the
server to respond. Other parts of the page, such as naviga-
tion bars, are normally unaffected by the transmitted data,
and therefore keep their place in the page.

Maintaining AUnit instances at the client can therefore
result in better system response time and a better user ex-
perience. This can also be seen from our experiments, dis-
cussed in Section 4. Similar caching logic for partial updat-
ing of pages can be implemented in frameworks like AJAX
only by extensive client side coding. In our framework, such
partitions are automatic.

3. MODEL OF CLIENT-SERVER PARTITION-
ING

In this section, we present a cost model for client-server
partitioning. We first define the problem and formulate it
as an optimization problem. We show that the problem is
NP-hard. We then give an algorithm that approximates the
optimum partition, and prove a bound on the approximation
error.

3.1 Partitioning Philosophy
A plausible method of solving the client-server partition-

ing problem would be partition at the granularity of AUnit
definitions; i.e., to partition the set of AUnit definitions into
two sets, one corresponding to AUnits whose instances will
run on the server, and the other corresponding to AUnits
whose instances will run on the client. Such method does
not capture the fact that different instances of the same
AUnit may require very different amounts of computation
and data transfer. For example, in the Course Management
System, the EditCourse AUnit provides the functionality
for course staff to edit courses. The amount course-related
data, such as the number of students enrolled, the number of
assignments, etc., can differ substantially between courses.
We may want to ship the data and computation to the client
for small courses while keeping big courses at the server side
to save bandwidth. This motivates our decision to group
similar instances together, profile their execution and then
partition programs at the level of AUnit instances based on
the profiles.

Different types of clients can have very different comput-
ing and storage resources. For example, moving computing
and data to a powerful desktop client may be desirable, while
doing the same for a PDA client may adversely affect its re-
sponse time. This motivates us to partition the application
based on the types of clients. We make the assumption
that the cost associated with a partition is independent of
the load on the server. So the partitions corresponding to
different client do not interfere with each other on the per-
formance. We assume the load on the server can be reduced
using existing load-balancing techniques and improving the
scalability of the system are out of the scope of the paper.
The solutions for each client type thus obtained can be com-
bined to yield an overall optimal solution for the application.
Therefore, we describe the cost model only for a single client
type.

3.2 Terminology
Recall that Hilda models an application in a hierarchical

manner, where each AUnit contains other AUnits. Let aid
be a unique identifier associated with each AUnit definition.
Then, we define the class graph of a Hilda program P as:

Definition 1: ClassGraph(P) = (V, E) where V = {v|v is
an AUnit definition in P}, and E = {(v, w)|v, w ∈ V and w
is a child AUnit of v} ¦

For a valid Hilda program, the class graph must be a DAG.
However, instances of an AUnit may be activated for differ-
ent keys. These instances can be uniquely identified by the
pair (aid, key), where key corresponds to the set of evidence
that leads to the activation of a given AUnit instance. This
leads us to the definition of the key tree of a given Hilda
program P :

Definition 2: KeyTree(P) = (V, E) where V = {(aid, key)|
aid is the identifier of some AUnit definition in P}, and

5

E = {(v, w)|v, w ∈ V and w.aid corresponds to a child AU-
nit of the AUnit corresponding to v.aid} ¦

Note that each AUnit corresponds to a different key, where
the key includes the key of the AUnit’s parent node. There-
fore, an instance of any AUnit, except the root, is activated
by exactly one parent. Thus the key tree must be a tree.
Note that the class graph of a Hilda program is effectively
an aggregated version of the key tree, obtained by merg-
ing nodes that have the same aid. In order to estimate
the response time of a system, we require for each node of
a key tree, various annotations such as the expected time
for processing the AUnit instance and expected data to be
processed for that instance. We next define an annotation
function for the key tree of a Hilda program P as:

Definition 3: The annotation function A (P) : V → R4 for
the key tree (V, E) of a hilda program P is a function that
maps each node v of the key tree onto a 4-tuple, where the
fields correspond to the following: the probability pv that a
randomly chosen activation over the space of all executions
of P is on the AUnit that v is associated with; the expected
time tv for processing queries of the node, the expected sum
dv of the size of input and output data, and the expected
number lv of connections established by this node between
the client and the server, respectively. By the definition of
the probabilities pv we also have

∑
v

pv = 1.

. ¦
We describe here the partitioning of a Hilda program into

the client part and the server part, at the granularity of its
key tree. Whether an AUnit instance is activated and evalu-
ated at the client or the server depends on how the partition-
ing is done. Let ζ : V ∈ KeyTree(P) → {client, server} be
a function specifying where AUnit instances in the key tree
of program P are located. Then, we define a parameter α,
which expresses the proportion blowup in computation time
between the client and the server, as:

α =
tu

tv
where ζ(u) = server and ζ(v) = client.

The data size of any given AUnit instance is assumed to be
independent of ζ. This is because the input and output data
of any instance remains the same, regardless of whether the
instance is located at the server or the client. The partition
of a hilda program P , then, is defined by a cut C as:

Definition 4: Partition(P) ≡ C = (Gs, Gc) a cut in the
tree KeyTree(P) = (V, E) s.t. Gs and Gc are disjoint, Gs

is connected, the root node belongs to Gs, and Vs ∪Vc = V .
¦

In this definition, Gs = (Vs, Es) is the part that runs
on the server and Gc = (Vc, Ec) is the part that runs on
the client, i.e. an AUnit instance a will be activated and
maintained at client side iff ∃v ∈ Vc 3 a.key = v.key. We
denote the set of edges between the two sides of the partition
by Ecut = E − (Es ∪ Ec).

3.3 Cost Model
We now define our cost model. In this paper, our goal is

to optimize the average response time for users. Optimizing

other goals, such as system throughput, would involve a
similar analysis but a different cost model. We leave this
as future work. Recall that we assume that the key trees
corresponding to different types of clients are independent
of each other, and do not affect the cost model for any given
tree. We therefore consider the key tree for only a single
type of client.

Given the key tree KeyTree(P) = (V, E) of a program
P , the annotation function A, and the cut C = (Gs, Gc)
that partitions the tree into server and client subgraphs, we
define the expected user response time as:

costC(P) =
∑

v∈KeyTree(P)

pv × tC
v

The time to perform AUnit instance processing, given a
partition, includes the time to process the AUnit instance
at the client (return queries and later reactivation queries),
the time to send query results to and from the server and
the time to process the queries at the server:

tC
v = tclient

v + tdata
v + tserver

v

where tclient
v is the expected time for processing v at the

client, tdata is the expected time for sending result sets to
and from the server, including the time for preparation of the
data, and tserver

v is the expected time for processing queries
at the server. Based on our earlier assumption that the time
to process an AUnit instance at the client is proportional to
the time to process the same instance at the server, and
assuming that the data transmission time for transferring a
result set between client and server is proportional to the
size of that result set, we have:

tclient
v =

{
0 if ζ(v) = server
α× tv if ζ(v) = client

tserver
v =

{
tv if ζ(v) = server
0 if ζ(v) = client

We also have

tdata
v =

{
γ × dv + L× lv + dv/β if ∃u s.t. (u, v) ∈ Ecut

0 otherwise

Here, the data transmission cost tdata
v consists of three parts:

the expected time for preparing the data to transfer, ex-
pected overhead of the handshaking process for establishing
TCP connections, and the expected time for transferring the
data. We assume that the expected time for preparing and
transferring data is proportional to the expected amount of
data transferred, with proportionality constants γ and β, re-
spectively. L is the expected overhead for the handshaking
process(initial round trip time), which allows us to take into
account the number of connections.

These definitions yield the following optimization problem
to choose a cut C for a program P :

arg min
C

costC(P)

We define an additional constraint to take into account
client memory limitations. Let MC(T), the memory usage
at the client given the cut C, be given by:

6

MC(P) =
∑

v∈KeyTree(P),ζ(v)=client

mv

where mv is the maximum memory that is used by any query
of the AUnit instance v. Then, if M̂ is the maximum mem-
ory available for the application at the client, we have the
constraint MC(T) ≤ M̂ .

Before presenting our solution for the problem, we want
to justify several simplification we made in our cost model.
First, we ignore the cost at server side for synchronization
and processing heart beat messages. Because it is done asyn-
chronous to users’ actions and do not noticeably affect users’
respond time. Second, we don’t consider the cost for trans-
ferring the run time system and Hilda code to the client side.
They are implemented as sticky applet and can be reloaded
from the client machine after the first time. Last, the web
browser rendering time would be the same across different
partitioning scenarios and we don’t include it in the cost
model.

3.4 Solution For Partitioning
The problem of finding an optimal partition with con-

straints for a given key tree can be proven to be NP-hard.
Theorem 1: The Hilda client/server partitioning prob-

lem is NP-hard.
Proof: We can prove this theorem by a reduction from

the well-known 0-1 Knapsack problem, which is NP-hard.
Consider a Knapsack problem instance with n items, each

having a profit pi and a weight wi (i = 1, 2, . . . , n). The goal
is to find a subset of items with their total weight no more
than a given bound W , and their total profit maximized.
We can construct the following instance of the client/server
partitioning problem: the key tree will contain n + 1 items,
n of which are leaves, and correspond to the n items in the
Knapsack problem; the memory cost for node i being on the
client side is wi, and the client-side memory bound is W ;
the computing cost for node i being on the server side is pi,
and the computing costs for client side are all 0; the data
transfer cost are all 0.

The client/server partitioning problem is minimizing the
sum of server-side computing costs for nodes at server side,
which is equivalent to maximizing the sum of server-side
computing costs for nodes at client side. It is then obvi-
ous that solving the client/server partitioning problem in-
stance is equivalent to solving the Knapsack problem in-
stance. Therefore the Hilda client/server paritioning prob-
lem is NP-hard.

Therefore, we design an approximation algorithm, which
guarantees to give a result which is within three times of
the optimal in the worst case. The technique we use is Ran-
domized Rounding[20]: we first formulate the problem as
an Integer Programming (IP) porblem, relax it to a Linear
Programming (LP) problem, solve it, and use a randomized
algorithm, similar to that in [14], to round the solution to
an integral one that is not much worse.

Given a key tree KeyTree(P) = (V, E), for every node
v ∈ V , we define a variable xv and for every edge e ∈ E,
we define a variable ye. The optimal partition problem for
a given Hilda program P , with the annotation function A
can then be formulated as the following IP problem:

Min
∑

v∈V

xv ∗ s(v) +
∑

v∈V

(1− xv) ∗ c(v) +
∑

e∈E

ye ∗ n(e)

subject to:

xroot = 1 root is the root of KT
xv1 ≥ xv2 ∀e(v1, v2) ∈ E
ye ≥ xv1 − xv2 ∀e(v1, v2) ∈ E∑
v∈V

(1− xv) ∗M(v) ≤ M̂

xv ∈ {0, 1} ∀v ∈ V
ye ∈ {0, 1} ∀e ∈ E

For each node v ∈ V and edge e = (u, v) ∈ Ecut,

c(v) = α× tv is the computing cost at client side
s(v) = tv is the computing cost at server side
M(v) = mv is the memory cost at client side
n(e) = (1/β + γ)× dv + L× lv is the data transfer cost

The optimal solution for above integer programming will
give us an optimal partition c = (Gs, Gc), Ecut in the fol-
lowing way:

xv =

{
0 if v ∈ Vs

1 if v ∈ Vc
and ye =

{
0 if e 6∈ Ecut

1 if e ∈ Ecut

We can relax the above problem, by allowing xv ∈ [0, 1]
and ye ∈ [0, 1], and get an LP problem that is solvable in
polynomial time, with solution X∗. We can then round each
x∗v to 0 or 1 with a threshold uniformly randomly chosen
from [1/3, 2/3]. This special rounding technique guarantees
that the objective function and constraints are still within a
reasonable bound. The following algorithm find a number t
so we can round each xv to 0 if xv ≤ t and to 1 if if xv > t

1: RoundingCut:
Input: (KT, C, S, N, M)
{KT is the key tree, C, S, N, M are the client cost,
server cost, bandwidth cost, main memory cost for
each node and edge in KT}
Output: c {estimated optimal partition on KT}

2: Construct the linear programming problem as
mentioned above on (KT, C, S, N, M)

3: Solve the linear programming problem and get
optimal solutions (X, Y) where X[v] gives the op-
timal solution for variable xv and Y [e] gives the
optimal solution for variable ye

4: Xoptimal ← NULL
5: min ← 0
6: for all t in X do
7: construct X’ where X’[v] = 0 if if xv ≤ t and

and X’[v] = 1 if xv > t
8: construct Y’ where Y’[e] = X’[v] - X’[w] and

e=(v,w) optimal ← evaluate minimizing func-
tion on X’ and Y’

9: if min ≤ optimal then
10: min ← optimal
11: Xoptimal = X’
12: end if
13: end for
14: Construct c based on Xoptimal according to the

method mentioned above

Theorem 2: The approximated solution produced by
RoundingCut algorithm is at most 3 times as much as the
optimal partition solution. The p, m under the approxi-
mated solution are at most 3 times as much as p̂, m̂.

Proof: If all the variables xv(v ∈ V) and ye(e ∈ E)
are constrained to be 0 or 1, then the integer programming

7

will give the optimal solution to the partition problem. By
relaxing the variables to take real values in [0, 1], we get a
linear program, whose solution gives a lower bound to the
value of the optimal partition. So we only need to construct
an integral solution that has value within a constant factor
of the optimal solution to the linear program.

Consider the following randomized rounding algorithm:

• Solve the LP optimally, and denote the optimal solu-
tion to it as x∗v(v ∈ V) and y∗e (e ∈ E).

• Generate t uniformly at random from [1
3
, 2

3
].

• For all v ∈ V s.t. x∗v ≥ t, put v at the server side, and
the remaining nodes are at the client side.

If we were doing the rounding with t chosen uniformly at
random from [0, 1], the expected solution will satisfy all the
constraints and have the value as the LP optimal. How-
ever each particular rounded solution might not have the
optimal value, and to be worse, it might also violate the
memory constraints. We want to show that there exists one
rounded solution, which simultaneously have the following
two properties:

• The value is within a constant factor of the optimal
solution.

• The memory bound is violated at most by a constant
factor.

Let us denote the rounded variables by x̄v and ȳe, which
are random variables depending on t.

Claim: The following inequalities hold for the random-
ized rounding algorithm:

• ∑
v∈V

(1− x̄v) ∗M(v) ≤ 3M̂

• ∑
v∈V

x̄v ∗ s(v) ≤ 3
∑

v∈V

x∗v ∗ s(v)

• ∑
v∈V

(1− x̄v) ∗ c(v) ≤ 3
∑

v∈V

(1− x∗v) ∗ c(v)

• E[
∑

e∈E

ȳe ∗ n(e)] ≤ 3
∑

e∈E

y∗e ∗ n(e)

Here E[·] means expectation.
Proof: We will prove the first, the second, and the

fourth inequalities. The proof of the third one is the same
as the second.

Let set C = {v ∈ V |x̄v = 0}. For any node v ∈ C,
x∗v < t ≤ 2

3
, i.e., 3(1− x∗v) ≥ 1. Then we have

∑
v∈V

(1− x̄v) ∗M(v) ≤
∑
v∈C

(1− x̄v) ∗M(v)

=
∑
v∈C

M(v)

≤
∑
v∈C

3(1− x∗v) ∗M(v)

≤
∑
v∈V

3(1− x∗v) ∗M(v)

≤ 3M̂

Let set S = {v ∈ V |x̄v = 1}. For any node v ∈ S,
x∗v ≥ t ≥ 1

3
. Then we have

∑
v∈V

x̄v ∗ s(v) ≤
∑
v∈S

x̄v ∗ s(v)

=
∑
v∈S

s(v)

≤
∑
v∈S

3x∗v ∗ s(v)

≤ 3
∑
v∈V

x∗v ∗ s(v)

Now let us prove the last inequality. It is easy to see that
y∗e = x∗v1 − x∗v2(∀e = (v1, v2)). So ȳe = 1, i.e., edge e is
included in the cut, iff x∗v2 < t ≤ x∗v1 . Since t is uniformly
picked from [1/3, 2/3], the probability for t to fall into the

range (x∗v2 , x∗v1] is at most
x∗v1

−x∗v2
2/3−1/3

, which is 3y∗e . Then the

inequality follows.
From the above claim, we know that the first three in-

equalities are satisfied absolutely, and only the last one is
about expectation. Therefore all the possible rounded re-
sults of the algorithm can at most violate the first two con-
straints by a factor of 3, they will also be within factor of 3
of the optimal value on the first two parts of the objective
function. The property of expectation implies that there
exists at least one particular rounded solution that satisfies
the last inequality. That solution is the one that is guaran-
teed to be simultaneously within factor 3 from the optimal
solution and the bounding constraint.

Note that the theoretical bound given here is a worst-
case bound. In practice, we found that the response time
obtained using our algorithm is very close to the optimal
response time for the applications that we considered in our
experimental evaluation.

4. EXPERIMENTAL EVALUATION
In this section, we first describe the setup for the experi-

ments we performed to evaluate the performance our Hilda
system(Section 4.1). We then compare the performance of a
Hilda and a J2EE implementations of a real world applica-
tion (CMS) and a technical benchmark (TPC-W). These
comparisons show the benefits of automatic client-server
partitioning (Section 4.2).

4.1 Experimental Setup
We first discuss how we estimate the annotation of a key

tree using a trace of the running application. We then de-
scribe how we apply the result of the optimization problem
to achieve a partition of the application, and we give an
overview of the physical setup for the experiments.

4.1.1 Parameter Estimation
A trace consists of a sequence of AUnit activations, along

with meta data for the time, data and number of connections
associated with each activation.

Definition 5: Let P be a Hilda program. A trace Trace(P) =
〈(i, vi, ti, di, li, t

γ
i)|1 ≤ i ≤ n〉 of P is a sequence of five-tuples

called events. The number i is the sequence number of the
event, vi = (aid, key) uniquely identifies an AUnit instance
in P , ti is the time taken to process the queries in this in-
stance, di is sum of the size of the input and output data

8

for the instance, li is the number of connections established
between the client and the server, and tγ

i is the time spent
to prepare the data by this instance. ¦

Given the above definition, the annotation function of the
keytree of program P can be estimated through an aggre-
gated version of the trace. Since multiple events in the
trace may be associated with the same node v of the key
tree, we can estimate the value of v’s annotation by count-
ing and aggregating the trace data for each node. More
precisely, we estimate the annotation function for a node
v ∈ KeyTree(P) as follows. Let A (v) = (p, t, d, l). Then

we can estimate (p, t, d, l) with (p̂, t̂, d̂, l̂) as follows:

p̂ =
|{i|∃(i, v′, t′, d′, l′, t′′) ∈ Trace(P)}|

n
,

t̂ =

∑{t|∃(i′, t, d′, l′, t′′) ∈ Trace(P)}
p× n

,

d̂ =

∑{d|∃(i′, t′, d, l′, t′′) ∈ Trace(P)}
p× n

,

l̂ =

∑{l|∃(i′, t′, d′, l, t′′) ∈ Trace(P)}
p× n

.

The other parameters for optimization were specified ac-
cording to the physical setup. We ran the experiments on
the PlanetLab network. Given that only powerful desktop
clients are used in PlanetLab, we assumed that the client
and the server have similar computing power. Therefore,
we set parameter α = 1, and no bound was imposed for the
memory available at the client. The bandwidth (β) of the
network was roughly 300KB, and the round trip time L was
approximated as 10ms. We could also have estimated these
parameters automatically at runtime; this is left as future
work. We also estimated γ as follows:

γ =
1

n

∑

i≤n

tγ
i

di
.

4.1.2 Partitioning Logic
The client-server partitioning for a program P is done at

the granularity of key trees. Given a cut C = (Gs, Gc) in
the key tree, we ship the data of the AUnit instances in Vc to
the client. However, note that our constructed annotation
function assumes that the future workload is very similar to
the one seen before. In practice, the future workload can
contain AUnit instances that have never been encountered
before. Therefore, the partitioning is also done at the class
graph level, using nodes from the class graph as represen-
tatives for instances not yet seen in the trace. For unseen
instances, we will position the instance based on the com-
puted partitions for the class graph.

4.1.3 Physical Setup
We illustrate the benefits of Hilda using a Course Man-

agement System and an Online Book Store application that
is based on the TPC-W benchmark. We compare respon-
siveness of the system (a.k.a. average users’ response time)
of a Hilda implementation and a J2EE implementation of
the two applications. The applications were deployed in a
JBOSS application server setup on a 2.66Ghz machine hav-
ing 4GB of RAM, and used MS SQL 2005 as the backend
database management server. The client simulators were
deployed on the PlanetLab network, and included the Hilda
RTSC.

Operation Description Number
O1 View CMS homepage 24994
O2 View course management 244

system summary
O3 Add/remove courses 18
O4 View course property 219

page(as instructor)
O5 View course property 83

page(as admin)
O6 Edit course property 91
O7 View course 7912

homepage(as student)
O8 View course 1858

homepage(as instructor) 1858
O9 View student list page 9
O10 View add students page 133
O11 Add/edit students 867
O12 Drop students 48
O13 Update students final grades 25
O14 View adding assignment page 158
O15 View editing assignment page 841
O16 view assignment list 846
O17 View assignment details 20923
O18 Editing assignment 497
O19 View adding category page 205
O20 View edit category schema page 120
O21 View edit category content page 150
O22 Add/remove/edit columns 103

in category schema
O23 Add/remove/edit 16

rows of category content

Table 1: Operations in the CMS Application

We measured the response time for each operation, i.e.
the time taken to submit a request, process it at the server/-
client and receive the resulting page from the server. There-
fore, this measure includes the time spent on the server to
process the request, the time spent at the client and the
network transmission time. However, we did not take into
account the time taken by the web browsers to render the
resulting HTML pages. Also, in order to reduce the error
due to the erratic nature of the PlanetLab network, the ex-
periments were conducted twice. The values we present in
the next section are therefore averages over two runs of the
simulation.

4.2 Experimental Results
We now present experimental results from two applica-

tions: a CMS and an Online Book Store.

4.2.1 Course Management System
Our first experiments were performed on CMS, a Course

Management System developed at the Cornell Computer
Science Department which is currently in use by more than
2000 students, staff and faculty [6]. The original version
of CMS was developed using traditional application devel-
opment tools such as J2EE/EJB, JavaScript and HTML,
while a new version has been developed using Hilda.

The J2EE version of the CMS was developed by experi-
enced programmers, and therefore included extensive client-
server partitioning that was done manually. Most of the
client-side application logic was implemented using Javascript,
and thus allowed updating the webpages dynamically. For
example, features such as sorting tables based on selected
column values, showing or hiding portions of a web page,
and caching users’ input temporarily in the browser were

9

System Average Response Average Data
Time(ms) Transmission(KB)

J2EE 278.80 17.99
Server Only 312.64 19.09
Client Server 270.01 12.74

Table 2: CMS: Response Time and Data Transmission

already implemented at the client side.
To calculate the average response time, we emulated the

operations performed on the CMS in one semester. A us-
age log consisting of 60000 operations was collected from the
J2EE version of the system, along with the necessary param-
eters. Table 1 lists the operations that the users performed.
The first three thousand operations from this log were used
as a trace to construct the annotation function, which was
then used to calculate a partition for the application. The
rest of the operations where then tested based on the calcu-
lated partition. The average response time shown in Table
2 does not include the time to collect the trace. Table 2 also
presents the performance measure of the application when
it is deployed at the server without any partitioning.

It is evident from Table 2 that the Hilda version of CMS
with automatic partitioning is comparable to the J2EE ver-
sion in average response time. The automatically parti-
tioned version, however, reduces the average data trans-
ferred between the client and the server by roughly 30%.

Figure 8 shows the average data transfer for each opera-
tion. Owing to the fact that caching user input at the client
reduces the amount of data transferred between the client
and the server, operations such as O3, O11, O12, O13, O14,
O19, O22, O23 that involve updates result in comparatively
less data transfer. For example, consider O3 – after the
system administrator creates a new course, the page is re-
freshed with a new list of courses. However, if the AUnit for
the course list gets pushed to the client, the page generated
at client side is able use locally cached data.

The J2EE version of the CMS allows a web browser to
cache webpages for later visit, at the page level, while the
Hilda run time system caches data at the AUnit (subpage)
level. For example, a navigation bar that is present on most
pages includes the list of available courses, and contains the
assignment and category list corresponding to each course.
After partitioning, the Hilda run time system keeps the AU-
nit instances for the navigation bar at the client, including
the data and the logic to generate HTML segments for nav-
igation bars. Such partial updating yields benefits in the
response time for the operations O1, O7, O8, O16, O17,
O19, O20. The Hilda run time system also makes sure that
the data for a navigation bar (list of assignments, courses
and categories) is up to date, by periodically checking with
the server for any changes.

Bad design decisions may sometime result in suboptimal
performance. In the J2EE version of the CMS, the logic
for users to sort tables based on different columns is always
pushed to the client. However, all pages in the system are
assembled dynamically, and the Javascript generated on the
fly is embedded in the HTML pages. This Javascript makes
the size of pages with sortable tables very large (600K on
average). It increases the network transmission time and
results in poor response time even compared to the Hilda
version without any partitions (Figure 7: O10, O11, O12
and O13).

4.2.2 Online Book Store

Figure 7: Average Response Time for Different Operations in

CMS

Figure 8: Average Amount of Data Transmitted for Different

Operations in CMS

The TPC-W [9] benchmark specifies an online book shop
application as the test case for evaluating application server
performance. In this application, users can register, view
book details, manage their shopping carts and check out,
while managers can add new book details into their inven-
tory. We implemented the application using both J2EE and
Hilda, and evaluated the average response time of the two
systems using a trace synthesized according to the specifi-
cations in the benchmark. In the J2EE version, we did not
implement any application logic at the client side except for
the basic HTML presentations. We took the first 5 per-
cent of the workload as training set for the system to collect
statistics, and then measured the response time after the
application ran with the computed optimal partition for the
Hilda version with partitioning enabled.

Table 4, Figure 9 and Figure 10 show the average response
time and the average data transmission for each operation of
the application, in the J2EE version and the Hilda versions
with and without automatic partitioning. The Hilda system
benefits from activating instances of shopping cart AUnit at
the client side. A user can add the book she viewed (O5)
into the shopping cart (O6) and view the details at a later
time (O7), possibly before checkout. The shopping cart and
the details about the books in the shopping cart are cached
along with the AUnit instance, which make the add to the
cart (O6) and view detail (O7) operations locally executable,
resulting in a much better response time.

10

Operation Description Number
O1 View website homepage 118
O2 Register as new user 999
O3 Add a book to product list 2098
O4 Register an author of a book 970
O5 View book details 1542
O6 Add a book into shopping cart 4593
O7 View shopping cart details 814
O8 View checkout page 918
O9 Checkout 1799
O10 View order status 920

Table 3: Operations in TCP-W Online Bookstore Applica-
tion

System Average Response Average Data
Time(ms) Transmission(KB)

J2EE 221.80 21.7
Server Only 231.88 21.9
Client Server 143.48 3.3

Table 4: Average Response Time and Data Transmission for
TPC-W

5. RELATED WORK
In recent years, many programming models and frame-

works [10, 4, 8, 7, 12] have been proposed for designing and
developing web applications. A few of these frameworks also
propose a high level programming model to develop appli-
cation logic for different tiers of an application. Hilda takes
the further step of automating the process of client-server
partitioning using a quantitative approach.

Caching data and query results at clients is a concept that
has been studied in relational and object-oriented database
systems. Work in this area has focused on Transactional
Client-Server Cache Consistency [11, 24, 17], a technique
that evaluates part of a transaction at the client by shipping
it the required data. This work is concerned with guarantee-
ing the ACID properties of a transaction, and proposes many
different approaches such as the Avoidance Based Approach
(Adaptive CallBack Locking) and the Detection Based Ap-
proach (Adaptive Optimistic Concurrency Control). How-
ever, the work assumes a predefined partition of transactions
across the server and the client, and thus is complementary
to what Hilda achieves.

Hybrid Shipping Architectures have been proposed to run
queries in a distributed setting [21, 22]. The motivation be-
hind these systems is that data shipping (query execution
at clients) and query shipping (query execution at servers)

Figure 9: Average Response Yime for Different Operations in

TPC-W

Figure 10: Average Amount of Data Transmitted for Different

Operations in TPC-W

can be done together. However, these architectures only
consider the partitioning of a single read-only query. They
decompose each query into operators such as join, scan and
display etc. and then distribute these operations across dif-
ferent sites, taking into account the parallelism and commu-
nication costs. They use standard optimization techniques
to achieve this. Our goal, on the other hand, is to partition
queries in one transaction across the server and the client
and to cache data for multiple queries.

Another related area of research is Mobile Code, which
aims at transforming a centralized program into a distributed
architecture and utilizing resources in distributed systems
[16, 23, 3, 19]. The system in [16] takes the binary code of
a program and distributes the components and the proce-
dures among a cluster in order to optimize the communica-
tion cost. Wang et al. address the problem of partitioning
programs in the context of mobile devices [23]. They repre-
sent a program in the form of a Task Control Flow Graph
(TCFG), i.e. a directed graph, where each node represents
a task, and each edge represents data transfer between the
tasks. Their cost model includes computation time, commu-
nication time, scheduling time, and data registration time.
They formulate the optimization problem as a parameter-
ized min-cut/max-flow problem, where common parameters
include buffer size, input size, command-line options, etc.
The Abacus system [3] consists of a programming model
and a run-time system. The proposed programming model
encourages the programmer to develop data-intensive appli-
cations using small, functionally independent components
or objects. The run time system automates the placement
of the objects in data-intensive applications and file systems
among the nodes of a cluster. The J-Orchestra[19] system
partitions Java applications into distributed ones using Java
RMI. By rewriting the code using Java RMI, their system
can distribute components which share data in memory and
thus result in finer granularity for partitioning. However,
none of this work consider the concepts of consistency and
conflicts for the cached table data between client and server
sides. Another drawback is that the language model used
by all of this work is not declarative, and therefore the effi-
cacy of the system is limited by how programmers code the
components and the procedures.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced a unified platform for data

11

driven web applications. The platform is based on Hilda,
a high level declarative language that allows dynamic par-
titioning of the web application between the client and the
server in a manner that is completely transparent to the de-
veloper. This automatic partitioning helps in avoiding man-
ual application partitioning decisions, which can be ad hoc
and suboptimal. Based on the observed workload, the Hilda
run time system determines a client-server partition of the
application, which is close to the optimal partition, using
a quantitative method. We also illustrated the benefits of
Hilda and automatic client-server partitioning by compar-
ing it with J2EE, using two web applications — a Course
Management System with a real workload and an Online
Book Store with a benchmark workload. We showed that
the performance of the CMS is comparable for both Hilda
and J2EE, and that Hilda gains on the amount of data trans-
ferred between the client and the server.The TPC-W bench-
marked Online Book Store illustrated a 35 percent improve-
ment in response time for Hilda over a J2EE implementation
of the same.

The current Hilda optimization model treats each user
operation independently, but does not take into account the
client side operations performed by the users. Interesting
techniques such as asynchronous prefetching and anticipat-
ing user actions to prefetch data are not supported. The op-
timization goal currently focuses only on improving a user’s
experience and the system’s response time. It would be in-
teresting to consider other goals for optimization, such as
system throughput by automating load balancing at server
side.

7. REFERENCES
[1] Adobe flash.

http://en.wikipedia.org/wiki/Macromedia Flash.

[2] Asynchronous javascript and xml.
http://en.wikipedia.org/wiki/Ajax (programming).

[3] K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson.
Dynamic function placement for data-intensive cluster
computing. In USENIX 2000 Annual Technical
Conference, San Diego, CA, June 2000., pages
307–322, 2000.

[4] A. Bongio, S. Ceri, P. Fraternali, and A. Maurino.
Modeling data entry and operations in webml. In The
World Wide Web and Databases (WebDB, Selected
Papers), pages 201–214, 2000.

[5] G. Booch et al. The Unified Modeling Language User
Guide,The Addison-Wesley Object Technology Series.
Addison Wesley, 1998.

[6] C. Botev et al. Supporting workflow in a course
management system. In Proc. SIGCSE, 2005.

[7] M. Brambilla and others. Declarative specification of
web applications exploiting web services and
workflows. In Proc. SIGMOD, pages 909–910, 2004.

[8] S. Ceri, P. Fraternali, and A. Bongio. Web modeling
language (webml): a modeling language for designing
web sites. In Proc. the ninth International World
Wide Web Conference, 2000.

[9] T. W. Commerce. Tpc benchmark
http://www.tpc.org/tpcw/.

[10] E. Cooper, S. Lindley, P. Wadler, and J. Yallop.
Links: Web programming without tiers. In Submitted
to ESOP 2007.

[11] M. J. Franklin, M. J. Carey, and M. Livny.
Transactional client-server cache consistency:
alternatives and performance. ACM Trans. Database
Syst., 22(3), 1997.

[12] P. Fraternali. Tools and approaches for developing
data-intensive web applications: A survey. ACM
Computing Surveys, 31(3):227–263, 1999.

[13] N. Gerner, F. Yang, A. Demers, J. Gehrke,
M. Riedewald, and J. Shanmugasundaram. Automatic
clientserver partitioning of data driven web
applications. In Proc. SIGMOD, 2006.

[14] A. Hayrapetyan, D. Kempe, M. Pál, and Z. Svitkina.
Unbalanced graph cuts. In European Symposium on
Algorithms (ESA), Mallorca, Spain, 2005.

[15] http://java.sun.com/j2se/1.4.2/docs
/guide/plugin/developer guide/applet caching.html.

[16] G. C. Hunt and M. L. Scott. The coign automatic
distributed partitioning system. In Operating Systems
Design and Implementation, pages 187–200, 1999.

[17] M. Ozsu, K. Voruganti, and R. Unrau. An
asynchronous avoidance-based cache consistency
algorithm for client caching dbmss, 1998.

[18] R. Ramakrishnan and J. Gehrke. Database
Management Systems. McGraw-Hill, 3 edition, 2003.

[19] E. Tilevich and Y. Smaragdakis. J-orchestra:
Automatic java application partitioning. European
Conference on Object-Oriented Programming
(ECOOP), Malaga, June 2002.

[20] V. V. Vazirani. Approximation Algorithms.
Springer-Verlag, Berlin, 2001.

[21] K. Voruganti, M. T. Ozsu, and R. C. Unrau. An
adaptive hybrid server architecture for client caching
ODBMSs. In The VLDB Journal, pages 150–161,
1999.

[22] K. Voruganti, M. T. Özsu, and R. C. Unrau. An
adaptive data-shipping architecture for client caching
data management systems. Distrib. Parallel
Databases, 15(2):137–177, 2004.

[23] C. Wang and Z. Li. Parametric analysis for adaptive
computation offloading. In PLDI ’04: Proceedings of
the ACM SIGPLAN 2004 conference on Programming
language design and implementation, 2004.

[24] K. Wu, P. fei Chuang, and D. J. Lilja. An active
data-aware cache consistency protocol for
highly-scalable data-shipping dbms architectures. In
CF ’04: Proceedings of the 1st conference on
Computing frontiers, 2004.

[25] F. Yang et al. Hilda: A high-level language for
data-driven web applications. In Proc. ICDE, 2006.

12

