
KAT + B!
Niels Bjørn Bugge Grathwohl

Department of Computer Science (DIKU),
University of Copenhagen,

Copenhagen, DK

Dexter Kozen
Computer Science Department,

Cornell University,
Ithaca, NY

Konstantinos Mamouras
Computer Science Department,

Cornell University,
Ithaca, NY

Abstract—It is known that certain program transformations
require a small amount of mutable state, a feature not explicitly
provided by Kleene algebra with tests (KAT). In this paper we
show how to axiomatically extend KAT with this extra feature
in the form of mutable tests. The extension is conservative and is
formulated as a general commutative coproduct construction. We
give several results on deductive completeness and complexity of
the system, as well as some examples of its use.

I. INTRODUCTION

Kleene algebra with tests (KAT) is a propositional equa-
tional system that combines Kleene algebra (KA) with
Boolean algebra. It has been shown to be an effective tool
for many low-level program analysis and verification tasks
involving communication protocols, safety analysis, source-
to-source program transformation, concurrency control, and
compiler optimization [1–7]. A notable recent success is its
adoption as a basis for NetKAT, a foundation for software-
defined networks (SDN) [8].

One advantage of KAT is that it allows a clean separation
of the theory of the domain of computation from the program
restructuring operations. The former typically involves first-
order reasoning, whereas the latter is typically propositional.
It is often advantageous to separate the two, because the theory
of the domain of computation may be highly undecidable.
With KAT, one typically isolates the needed properties of the
domain as premises in a Horn formula

s1 = t1 ∧ · · · ∧ sn = tn → s = t,

where the conclusion s = t expresses a more complicated
equivalence between (say) an unoptimized or unannotated ver-
sion of a program and its optimized or annotated version. The
premises are verified once and for all using the properties of
the domain, and the conclusion is then verified propositionally
in KAT under those assumptions.

Certain premises that arise frequently in practice can be
incorporated as part of the theory using a technique known
as elimination of hypotheses, in which Horn formulas with
premises of a certain form can be reduced to the equational
theory without loss of efficiency [3, 9, 10]. However, there are a
few useful ones that cannot. In particular, it is known that there
are certain program transformations that cannot be effected
in pure KAT, but require extra structure. Two paradigmatic
examples are the Böhm–Jacopini theorem [11] (see also [12–
16]) and the folklore result that all while programs can be
transformed to a program with a single while loop [17, 18].

The Böhm–Jacopini theorem states that every deterministic
flowchart can be written as a while program. The construction
is normally done at the first-order level and introduces auxil-
iary variables to remember values across computations. It has
been shown that the construction is not possible without some
kind of auxiliary structure of this type [12, 19, 20].

Akin to the Böhm–Jacopini theorem, and often erroneously
conflated with it, is the folklore theorem that every while
program can be written with a single while loop. Like the
proof of the Böhm–Jacopini theorem, the proofs of [18, 21],
as reported in [17], are normally done at the first-order level
and use auxiliary variables. It was a commonly held belief that
this result had no purely propositional proof [17], but a partial
refutation of this view was given in [6] using a construction
that foreshadows the construction of this paper.

One can carry out these constructions in an uninterpreted
first-order version of KAT called schematic KAT (SKAT)
[1, 22], but as SKAT is undecidable in general [23], one would
prefer a less radical extension.

In this paper we investigate the minimal amount of struc-
ture that suffices to perform these transformations and show
how to incorporate it in KAT without sacrificing deductive
completeness or decidability. Our main results are:
• We show how to extend KAT with a set of independent

mutable tests. The construction is done axiomatically
with generators and additional equational axioms. We
formulate the construction as a general commutative
coproduct construction that satisfies a certain universality
property. The generators are abstract setters of the form
b! and b! and testers b? and b? for a test symbol b. We can
think of these intuitively as operations that set and test the
value of a Boolean variable, although we do not introduce
any explicit notion of storage or variable assignment.

• We prove a representation theorem (Theorem 2.4) for the
commutative coproduct of an arbitrary KAT K and a
finite relation algebra, namely that it is isomorphic to
a certain matrix algebra over K.

• As a corollary to the representation theorem, we show
that the extension is conservative; that is, an arbitrary
KAT K can be augmented with mutable tests without
affecting the theory of K. This is captured formally by a
general property of the commutative coproduct, namely
injectivity. It is not known whether the coproduct of KATs
is injective in general, but we show that it is injective if at
least one of the two cofactors is a finite relation algebra,

which is the case in our application.
• We show that the free mutable test algebra on generators
bi, 1 ≤ i ≤ n, is isomorphic to the full binary relation
algebra on 2n states. We also characterize the primitive
operations in terms of a tensor product of n copies of a
2-state system. We show that the equational theory of this
algebra is PSPACE-complete, thus no easier or harder to
decide than KAT.

• We show that the equational theory of an arbitrary
KAT K augmented with mutable tests is axiomatically
reducible to the theory of K. In particular, the free KAT,
augmented with mutable tests, is completely axiomatized
by the KAT axioms plus the axioms for mutable tests.

• We show that the equational theory of KAT with mutable
tests is EXPSPACE-complete.

• We demonstrate that the program transformations men-
tioned above, namely the Böhm–Jacopini theorem and
the folklore result about while programs, can be carried
out in KAT with mutable tests.

This paper is organized as follows. In §II we briefly review
KA and KAT and introduce the theory of mutable tests, and
prove that the free mutable test algebra on n generators is
isomorphic to the full binary relation algebra on a set of size
2n. We also introduce the commutative coproduct construction
and prove our representation theorem for the commutative co-
product of an arbitrary KAT K and a finite relation algebra. In
§III we prove our main completeness and complexity results.
In §IV we apply the theory to give an axiomatic treatment of
two applications involving program transformations. In §V we
present conclusions and open problems.

Omitted proofs can be found in the appendix.

II. KAT AND MUTABLE TESTS

A. KA and KAT

A Kleene algebra (K,+, ·,∗ , 0, 1) is an idempotent semir-
ing with an iteration operator ∗ satisfying

1 + pp∗ = p∗ q + pr ≤ r → p∗q ≤ r
1 + p∗p = p∗ q + rp ≤ r → qp∗ ≤ r

where ≤ refers to the natural partial order on K. Standard
models include the family of regular sets over a finite alphabet,
the family of binary relations on a set, and the family of n×n
matrices over another Kleene algebra, as well as other more
unusual interpretations used in shortest path algorithms and
computational geometry.

The following are some typical KA identities:

(p∗q)∗p∗ = (p+ q)∗ (1)

p(qp)∗ = (pq)∗p (2)

p∗ = (pn)∗(1 + p+ · · ·+ pn−1). (3)

All KA operations are monotone with respect to ≤.
A Kleene algebra with tests (KAT) is a Kleene algebra with

an embedded Boolean subalgebra. That is, it is a two-sorted
structure (K,B,+, ·,∗ , , 0, 1) such that

• (K,+, ·,∗ , 0, 1) is a Kleene algebra,
• (B,+, ·, , 0, 1) is a Boolean algebra, and
• B as a semiring is a subalgebra of K.

The Boolean complementation operator is defined only on
B. Elements of B are called tests. The letters p, q, r, s denote
arbitrary elements of K and a, b, c denote tests. The operators
+, ·, 0, 1 each play two roles: applied to arbitrary elements of
K, they refer to nondeterministic choice, composition, fail,
and skip, respectively; and applied to tests, they take on the
additional meaning of Boolean disjunction, conjunction, fal-
sity, and truth, respectively. These two usages do not conflict;
for example, sequential testing of b and c is the same as testing
their conjunction.

Conventional imperative programming constructs and Hoare
partial correctness assertions can be encoded, and proposi-
tional Hoare logic is subsumed. The deductive completeness
and complexity results for KA and KAT [9, 24, 25] say that
the axioms are complete for the equational theory of standard
language and relational models and that the equational theory
is decidable in PSPACE.

See [6] for a more thorough introduction.

B. Mutable Tests

Let Tn = {t1, . . . , tn} be a set of primitive test symbols.
Consider a set of primitive actions {t!, t! | t ∈ Tn} (note that
t! = t!). We write t? for the test t to emphasize the distinction
between t? and t!. Let Fn be the free KAT over primitive
actions {t!, t! | t ∈ Tn} and primitive tests Tn modulo the
following equations:

(i) t!t? = t!
(ii) t?t! = t?

(iii) t!t! = t!
(iv) s!t! = t!s!, provided s 6= t.
(v) s!t? = t?s!, provided s 6∈ {t, t}.

Intuitively, axiom (i) says that the action t! makes a subsequent
test t? true, (ii) says that if t? is already true, then the action t!
is redundant, (iii) says that setting a value overrides a previous
such action on the same value, and (iv) and (v) say that actions
and tests on different values are independent.

The theory B! refers to the equational consequences of (i)–
(v) along with the axioms of KAT on terms over Tn. Two
immediate such consequences are

(vi) t!t! = t!
(vii) t!t? = 0.

An atom of Tn is a sequence s1s2 · · · sn, where each si
is either ti or ti. Atoms are denoted α, β, The set of
atoms is denoted At. We write α ≤ t if t appears in α. Let
α[t] denote the atom α if α ≤ t and α with t replaced by
t if α ≤ t. Each atom α = s1 · · · sn determines a complete
test α? = s1?s2? · · · sn? ∈ Fn and a complete assignment
α! = s1!s2! · · · sn! ∈ Fn. The following are elementary

2

consequences of B!:

t? =
∑
α≤t

α?α! t! =
∑
α

α?α[t]! (4)

α!α? = α! α?α! = α? α!β! = β! α?β? = 0 if α 6= β.
(5)

C. Mutable Tests and Binary Relations

The following theorem characterizes the free B! algebra Fn.
The theorem shows that B! is sound in the sense that the free
model does not trivialize to the one-element algebra.

Theorem 2.1: The algebra Fn is isomorphic to the full
binary relation algebra on a set of size 2n.

Proof: The set At is of size 2n. Consider the algebra
of binary relations on At. This algebra is isomorphic to
Mat(At,2), the KAT of At × At matrices over the two-
element KAT with the usual Boolean matrix operations. We
will construct an isomorphism hn : Fn → Mat(At,2).

For the generators, let hn(t?) and hn(t!) be At×At matrices
with components

hn(t?)αβ =

{
1 if β = α ≤ t
0 otherwise,

hn(t!)αβ =

{
1 if β = α[t]
0 otherwise.

One can show without difficulty that the axioms (i)–(v) of B!
are satisfied under the interpretation hn. For example, for (ii),

(hn(t?)hn(t!))αβ =
∑
γ

hn(t?)αγhn(t!)γβ = hn(t?)ααhn(t!)αβ

=

{
1 if α ≤ t and β = α[t]
0 otherwise

=

{
1 if α ≤ t and β = α

0 otherwise

= hn(t?)αβ .

Since Fn is the free B! algebra on generators Tn, hn extends
uniquely to a KAT homomorphism hn : Fn → Mat(At,2).
Under this extension, hn(α?β!) is the matrix with 1 in location
αβ and 0 elsewhere. As every matrix in Mat(At,2) is a sum
of such matrices, hn is surjective.

We wish also to show that hn is injective. To do this, we
show that every element of Fn is a sum of elements of the form
α?β!. This is true for primitive tests t? and primitive actions
t! by (4). The constants 1 and 0 are equivalent to

∑
α α?α!

and the empty sum, respectively.
For sums, the conclusion is trivial. For products, we observe

using (5) that α?β!γ?δ! = 0 if β 6= γ and α?β!β?δ! = α?δ!.
By distributivity, this allows the product of two sums of
elements of the form α?β! to be reduced to a sum of the same
form. For ∗, any element of the form e∗ where e is a sum of
elements of the form α?β! is equivalent to 1+e+e2+· · ·+em
for some m, since At is finite.

Now if A ⊆ At2, then hn(
∑
αβ∈A α?β!) is the matrix with

1 in locations αβ ∈ A and 0 elsewhere. Thus if A,B ⊆ At2

and hn(
∑
αβ∈A α?β!) = hn(

∑
αβ∈B α?β!), then A = B,

therefore
∑
αβ∈A α?β! =

∑
αβ∈B α?β!.

There are some interesting facts about Fn that are worth
observing, although we will not need them in the sequel. We
can express the state set At as the tensor product of n copies
of 2, one copy for each t ∈ Tn. The structure F1 is the algebra
Mat(2,2) of 2× 2 matrices. The matrices hn(t?) and hn(t!)
are Kronecker products

h1(t?)⊗
⊗
s6=t

I h1(t!)⊗
⊗
s6=t

I

where h1(t?) and h1(t!) are the matrices[
1 0
0 0

] [
1 0
1 0

]
respectively, where the first row and column correspond to
index t and the second to index t, and I is the 2× 2 identity
matrix. Matrix multiplication in Fn satisfies

(A1 ⊗ · · · ⊗An)(B1 ⊗ · · · ⊗Bn) = A1B1 ⊗ · · · ⊗AnBn,

which can be regarded as an independence condition on the n
components. Every matrix in Fn can be expressed as a sum of
Kronecker products of 2×2 matrices with exactly one nonzero
entry corresponding to expressions of the form α?β!.

D. The Commutative Coproduct

Let K and F be KATs. The commutative coproduct of K
and F is the usual coproduct (direct sum) of K and F modulo
commutativity conditions {ps = sp | p ∈ K, s ∈ F} that
say that elements of K and F commute multiplicatively. The
commutativity conditions model the idea that operations in K
and F are independent of each other.

The usual coproduct K⊕F comes equipped with canonical
injections iK : K → K ⊕ F and iF : F → K ⊕ F , although
these “injections” need not be injective.1 The coproduct is said
to be injective if iK and iF are injective.

Injectivity is important because it means the extension of an
algebra K with extra features F is conservative in the sense
that it does not introduce any new equations. The coproduct
of KATs is not known to be injective in general; however,
we shall show that if F is a finite relation algebra, then the
coproduct and commutative coproduct are injective.

Our proof relies on an explicit coproduct construction from
universal algebra that holds for any variety or quasivariety V
(class of algebras defined by universally quantified equations
or equational implications) over any signature Σ. We briefly
review the construction here.

Let TK be the set of Σ-terms over K. The identity function
K → K extends uniquely to a canonical homomorphism
TK → K. The diagram of K, denoted ∆K , is the kernel
of this homomorphism; this is the set of equations between
Σ-terms over K that hold in K. It follows from general
considerations of universal algebra that TK/∆K

∼= K, where
T/E denotes the quotient of T modulo the V -congruence
generated by equations E; that is, the smallest Σ-congruence

1For example, Zm ⊕ Zn
∼= Zgcd(m,n) in the category of commutative

rings.

3

on T containing E and closed under the equations and
equational implications defining V .

Now let TK,F denote the set of mixed Σ-terms over the
disjoint union of the carriers of K and F . The coproduct is

K ⊕ F = TK,F /(∆K ∪∆F).

The canonical injection iK : K → K⊕F is obtained from the
identity embedding TK → TK,F reduced modulo ∆K on the
left and ∆K∪∆F on the right; the map is well-defined on ∆K-
classes since ∆K refines ∆K∪∆F . This construction satisfies
the usual universality property for coproducts, namely that for
any pair of homomorphisms k : K → H and f : F → H ,
there is a unique homomorphism 〈k, f〉 : K ⊕ F → H such
that k = 〈k, f〉 ◦ iK and f = 〈k, f〉 ◦ iF .

Now let K and F be KATs, and let D be the set of
commutativity conditions

D = {ps = sp | p ∈ K, s ∈ F}

on K ⊕F . (This is actually an abuse of notation; it would be
more accurate to say

D = {iK(p)iF (s) = iF (s)iK(p) | p ∈ K, s ∈ F}.)

The commutative coproduct is the quotient (K⊕F)/D. Com-
posed with the canonical map [·] : K ⊕ F → (K ⊕ F)/D,
iK and iF inject K and F , respectively, into (K⊕F)/D. The
following universality property is satisfied:

Lemma 2.2: For any pair of homomorphisms k : K → H
and f : F → H such that

∀p ∈ K ∀s ∈ F k(p)f(s) = f(s)k(p), (6)

there is a unique universal arrow 〈k, f〉D : (K ⊕ F)/D → H
such that k = 〈k, f〉D ◦[·] ◦ iK and f = 〈k, f〉D ◦[·] ◦ iF .

K ⊕ FK F

(K ⊕ F)/D

H

iK

k

iF

f

[·]
〈k, f〉

〈k, f〉D

Fig. 1: Universality property of the commutative coproduct

Proof: Property (6) implies that D refines the kernel of
〈k, f〉 : K ⊕ F → H , therefore 〈k, f〉 factors uniquely as
〈k, f〉D ◦ [·], as shown in Fig. 1.

Our main results depend on the following key lemma.

Lemma 2.3: Let K and F be KATs. If F is finite, then
every element of (K⊕F)/D can be expressed as a finite sum∑
s∈F pss, where ps ∈ K.

Remark. The lemma is not true in general without the
assumption of finiteness. For example, it can be shown that
the commutative coproduct of two copies of the free KA on
one generator does not satisfy the lemma.

Proof: The lemma is certainly true of individual elements
of K and F . We show that the property is preserved under the
KAT operations. The cases of + and · are quite easy, using
commutativity and distributivity.

The only difficult case is that of ∗. We wish to show
that (

∑
s∈F pss)

∗ is equivalent to a finite sum of the form∑
t∈F qtt. Let Σ = {as | s ∈ F} be a finite alphabet with

one letter for each element of F , and let RegΣ be the free
KA on generators Σ. Consider the following homomorphisms
generated by the indicated actions on Σ:

f : Σ∗ → F g : RegΣ → K ⊕ F h : RegΣ → K

f(as) = s g(as) = pss h(as) = ps.

For each t ∈ F , the set f−1(t) = {x ∈ Σ∗ | f(x) = t}
is a regular set, as it is the set accepted by the deterministic
finite automaton with states F , start state 1, accept state t, and
transitions δ(s, a) = s · f(a). It is easily shown by induction
that for all x ∈ Σ∗, δ(s, x) = s · f(x). Thus the automaton
accepts x exactly when t = δ(1, x) = f(x), that is, when
x ∈ f−1(t).

Let A be the F × F transition matrix of this automaton:
Ast =

∑
sr=t ar. Then (A∗)st represents the set of strings x

such that s · f(x) = t. Moreover,

(
∑
s∈F

as)∗ =
∑
t∈F

(A∗)1t (7)

since every string is accepted at some state t.
Let M be the F×F diagonal matrix with diagonal elements

Mss = s and off-diagonal elements Mst = 0 for s 6= t. The
homomorphisms g and h lift to F × F matrices over RegΣ

with

g(A)st =
∑
sr=t

prr h(A)st =
∑
sr=t

pr.

Then for any s, t ∈ F ,

(M · g(A))st =
∑
r

Msrg(A)rt = Mssg(A)st = s
∑
sr=t

prr

=
∑
sr=t

prsr =
∑
sr=t

prt = h(A)stMtt

=
∑
r

h(A)srMrt = (h(A) ·M)st.

Since s, t were arbitrary, M · g(A) = h(A) · M . By the
bisimulation rule of KA [24, Proposition 4],

M · g(A∗) = M · g(A)∗ = h(A)∗ ·M = h(A∗) ·M,

thus for all s, t ∈ F ,

sg(A∗)st = Mssg(A∗)st =
∑
r∈F

Msrg(A∗)rt = (M · g(A∗))st

= (h(A∗) ·M)st =
∑
r∈F

h(A∗)srMrt

= h(A∗)stMtt = h(A∗)stt.

In particular, setting s = 1 and summing over t ∈ F ,∑
t∈F

g(A∗)1t =
∑
t∈F

h(A∗)1tt. (8)

4

Using (7) and (8),

(
∑
s∈F

pss)∗ = (
∑
s∈F

g(as))∗ = g((
∑
s∈F

as)∗) = g(
∑
t∈F

(A∗)1t)

=
∑
t∈F

g(A∗)1t =
∑
t∈F

h(A∗)1tt.

Setting qt =
∑
t∈F h(A∗)1t, we have expressed (

∑
s∈F pss)

∗
in the desired form.

Theorem 2.4: If K is a KAT and F is the full relation
algebra on a finite set S, then (K ⊕ F)/D ∼= Mat(S,K).

Proof: For p ∈ K, let k(p) ∈ Mat(S,K) be the S × S
diagonal matrix with p on the main diagonal and 0 elsewhere.
For s ∈ F , let f(s) be the standard representation of the
binary relation s as an S × S Boolean matrix. The maps
k : K → Mat(S,K) and f : F → Mat(S,K) are injective
KAT homomorphisms and embed K and F isomorphically
in Mat(S,K). The image of F under f is Mat(S,2), a
subalgebra of Mat(S,K). By the universality property for
coproducts, we have that 〈k, f〉 : K ⊕F → Mat(S,K) and k
and f factor as k = 〈k, f〉 ◦ iK and f = 〈k, f〉 ◦ iF .

Moreover, because k(p) is a diagonal matrix for p ∈ K and
f(s) is a Boolean matrix for s ∈ F , the commutativity con-
ditions D are satisfied in the sense that k(p)f(s) = f(s)k(p),
thus Lemma 2.2 applies and we have a KAT homomorphism
〈k, f〉D : (K ⊕ F)/D → Mat(S,K). That this homomor-
phism is an isomorphism follows from Lemma 2.3 by the same
argument as in Lemma 2.1. The construction is illustrated in
Fig. 2.

K ⊕ FK F

(K ⊕ F)/D

∼= Mat(S,K)

iK

k

iF

f

〈k, f〉

Fig. 2: Matrix representation of the commutative coproduct

Corollary 2.5: If K is a KAT and F is any relation algebra
on a finite set S, then (K⊕F)/D is isomorphic to a subalgebra
of Mat(S,K).

Proof: Compose an embedding of F into the full relation
algebra on S with the map f of Theorem 2.4.

The following corollary says that the extension of an arbi-
trary KAT with mutable tests is conservative.

Corollary 2.6: If K is a KAT and F is any relation algebra
on a finite set S, then the commutative coproduct (K⊕F)/D
is injective.

Proof: The maps k = 〈k, f〉 ◦ iK : K → Mat(S,K) and
f = 〈k, f〉 ◦ iF : F → Mat(S,K) are injective. By Theorem
2.4, (K ⊕ F)/D ∼= Mat(S,K), and k and f compose with
this isomorphism to give the canonical injections from K and
F , respectively, to (K ⊕ F)/D.

III. COMPLETENESS AND COMPLEXITY

In §II, we showed that an arbitrary KAT K can be conser-
vatively extended with a small amount of state in the form of

a finite set of mutable tests and their corresponding mutation
actions. As shown in Theorem 2.4, the resulting algebra is
isomorphic to Mat(At,K), where At is the set of atoms of
the free Boolean algebra generated by the mutable tests.

In this section we prove three results. First, the KAT
axioms along with the axioms B! for mutable tests and the
commutativity conditions D are complete for the equational
theory of (K ⊕ Fn)/D relative to the equational theory of
K. This is quite a strong result in the sense that it holds for
an arbitrary KAT K, regardless of its nature. In particular,
for the special case in which K is the free KAT on some set
of generators, the model (K ⊕ Fn)/D is the free KAT with
mutable tests Tn. Most of the work for this result has already
been done in §II.

The second result is that the equational theory B! is com-
plete for PSPACE. This complexity class is characterized by
alternating polynomial-time Turing machines; see [26].

The third result is that the equational theory of a free KAT
augmented with mutable tests is complete for EXPSPACE,
deterministic exponential space. This result is quite surprising,
as both KAT and B! separately are complete for PSPACE, yet
their combination is exponentially more complex in the worst
case.

A. Completeness

Let K be an arbitrary KAT. Let KAT+B! denote the
deductive system consisting of the axioms of KAT, the axioms
for mutable tests B!, and the commutativity conditions D
over a language of KAT terms with primitive action and test
symbols interpreted in K as well as a set of mutable tests Tn.
Let ∆K be the diagram of K.

Theorem 3.1: The axioms KAT+B!+∆K are complete for
the equational theory of (K ⊕ Fn)/D. In other words, the
axioms KAT+B! are complete for the equational theory of
(K ⊕ Fn)/D relative to the equational theory of K.

Proof: Let e1 and e2 be expressions denoting elements
of (K ⊕ Fn)/D. By Theorem 2.1 and Lemma 2.3, we have

KAT+B!+∆K ` e1 =
∑

α,β∈At

pαβα?β!

KAT+B!+∆K ` e2 =
∑

α,β∈At

qαβα?β!.

If (K ⊕ Fn)/D � e1 = e2, we have under the canonical
interpretation 〈k, i〉 that the matrices 〈k, i〉(e1) and 〈k, i〉(e2)
are equal, thus for all α, β ∈ At,

pαβ = 〈k, i〉(e1)αβ = 〈k, i〉(e2)αβ = qαβ ,

and conversely.
Corollary 3.2: The axioms KAT+B! are complete for the

equational theory of (K ⊕ Fn)/D, where K is the free KAT
on some set of generators.

5

B. Complexity

Theorem 3.3: The equational theory B! is PSPACE-
complete.

Remark. We note that neither the upper nor the lower bound
follows from previous results. The upper bound does not
follow from results on elimination of hypotheses [3, 9, 10], as
axioms (i) and (ii) can be eliminated by these results, but not
the others.

Proof: We first show that the problem of deciding α?β! ≤
e, where α, β ∈ At, is in PSPACE. We give an alternating
polynomial-time algorithm that operates inductively on the
structure of e.

To decide α?β! ≤ t? or α?β! ≤ t!, using (4) we can ask
whether α = β ≤ t or β = α[t], respectively.

For addition, we have α?β! ≤ e1 + e2 iff α?β! ≤ e1

or α?β! ≤ e2. We nondeterministically choose one of these
alternatives and check it recursively.

For multiplication, we have α?β! ≤ e1e2 iff there exists γ
such that α?γ! ≤ e1 and γ?β! ≤ e2. We guess γ nondetermin-
istically using existential branching and check both conditions
recursively using universal branching.

Finally, to check α?β! ≤ e∗, by Theorem 2.1 it suffices
to check that α?β! ≤ ek for some 0 ≤ k < 2n. We guess
k nondeterministically using existential branching. To check
α?β! ≤ ek, we guess γ nondeterministically using existential
branching, and for each such γ, we check recursively using
universal branching that α?γ! ≤ ebk/2c and γ?β! ≤ edk/2e.

To decide the equational theory in PSPACE, we note that
e1 ≤ e2 if for all α, β ∈ At, if α?β! ≤ e1, then α?β! ≤ e2.
The α and β can be chosen universally and the implication
α?β! ≤ e1 ⇒ α?β! ≤ e2 checked in PSPACE.

To show PSPACE-hardness, we encode the membership
problem for deterministic linear-bounded automata, a well
known PSPACE-complete problem. Let M be a deterministic
linear-bounded automaton with states Q and tape alphabet Γ.
Let x = x1 · · ·xn be an input string of length n over M ’s
input alphabet. For a ∈ Γ, q ∈ Q, and 0 ≤ i ≤ n + 1,
introduce mutable tests P ai and Qqi with the following intuitive
meanings:

P ai = the symbol currently occupying tape cell i is a,
Qqi = the machine is currently in state q scanning tape cell i.

The operation of the machine is governed by a transition
function δ : Q × Γ → Q × Γ × {+1,−1}. Intuitively, the
transition δ(p, a) = (q, b, d) means, “When in state p scanning
symbol a, print b on that cell, move the head in direction
d, and enter state q.” For each such transition, consider the
expressions

P ai ?Qpi ?P
a
i !Qpi !P

b
i !Qqi+d! (9)

for all i. The part P ai ?Qpi ? tests whether the machine is
currently scanning a on cell i in state p. If so, P ai !Qpi !P

b
i !Qqi+d!

effects the transition to the new configuration as dictated by
the transition function δ. The truth values of variables not
mentioned do not change.

Assume that the input is delimited by left and right end-
markers ` and a, that M starts in its start state s scanning
the left endmarker `, that M never overwrites the endmarkers,
and that before accepting, M erases its tape by writing a blank
symbol xy on all tape cells except for the endmarkers, moves
its head all the way to the left, and enters state t. The start
and accept configurations are atoms

start = Qs0 P
`
0 P

x1
1 P x2

2 · · ·P xn
n Pan+1 U

accept = Qt0 P
`
0 P

xy
1 P

xy
2 · · ·P xy

n P
a
n+1 V

where U and V are the negations of the remaining variables.
Let e be the sum of all expressions (9). Then M accepts x if
and only if start?accept! ≤ e∗.

Let K be the free KAT on some set of generators. As shown
in Corollary 3.2, the equational theory of (K ⊕ Fn)/D is
completely axiomatized by KAT+B!.

Theorem 3.4: The set of equational consequences of
KAT+B! (that is, the equational theory of a free KAT aug-
mented with mutable tests) is EXPSPACE-complete.

Proof: Let K be the free KAT on generators Σ and B
augmented with mutable tests Tn. The tests B are ordinary
KAT tests and are not mutable. For the upper bound, to decide
whether e1 ≤ e2, first replace each primitive symbol in e1 and
e2 with an At × At matrix as defined in the proof of Theo-
rem 2.4. This gives a pair of expressions over Mat(At,K).
Now using the construction of Kleene’s theorem, construct
nondeterministic finite automata M1 and M2 from these two
expressions. These are nondeterministic automata on guarded
strings over Σ ∪ B [27] with exponentially many states. We
wish to know whether there exists a string α?xβ! ≤ e1

such that α?xβ! 6≤ e2, where x is a guarded string over
Σ ∪ B. This is equivalent to asking whether there exists a
guarded string accepted by M1 but not by M2, where the start
and accept states are chosen appropriately to encode α? and
β!. We nondeterministically guess such a string x letter by
letter and a path through M1, simultaneously keeping track
of all states M2 could be in at any time. This requires only
exponential space. We have found such an x if at any time
M1 is in an accept state but the set of states M2 could be in
does not contain an accept state. The algorithm can be made
deterministic by Savitch’s theorem.

For the corresponding lower bound, we encode the member-
ship problem for exponential-space bounded Turing machines.
Given such a machine M and an input x of length n, we use
n mutable tests to construct an integer counter that can count
up to 2n − 1, as illustrated in Fig. 3. We use the counter
as a “yardstick” to construct an expression e simulating a
nondeterministic automaton that accepts all strings that are not
valid computation histories of M on input x. The automaton
decides nondeterministically where to look for an incorrect
move of M . It remembers a few symbols of the input string,
then starts the counter. With each iteration of the counter, it
skips over an input symbol (not shown in Fig. 3). In this way it
can compare symbols a distance 2n apart to check whether the
transition rules of M are followed. The expression e generates

6

t0!; t1!; · · · ; tn−1!;
while t0? + t1? + · · ·+ tn−1? {

if t0? then t0!;
else if t1? then t0!; t1!;
else if t2? then t0!; t1!; t2!;
else . . .
else if tn−1? then t0!; t1!; · · · ; tn−2!; tn−1!;
else skip;

}

Fig. 3: A counter

all strings iff M does not accept x. This construction is quite
standard (see for example [26, 28, 29]), so we omit further
details.

IV. APPLICATIONS

A. The Böhm-Jacopini Theorem

A well-studied problem in program schematology is that of
transforming unstructured flowgraphs to structured form. An
early seminal result is the Böhm–Jacopini theorem [11], which
states that any deterministic flowchart program is equivalent to
a deterministic while program. This theorem has reappeared
in many contexts and has been reproved by many different
methods [12–16].

Like most early work in program schematology, the Böhm–
Jacopini theorem is usually formulated at the first-order level.
This allows auxiliary individual or Boolean variables to be
introduced to preserve information across computations. This
is an essential ingredient of the Böhm–Jacopini construction,
and they asked whether it was strictly necessary. This question
was answered affirmatively by Ashcroft and Manna [12] and
Kosaraju [19].

In [20], a purely propositional account of this negative result
was given. A class of automata called strictly deterministic au-
tomata was presented, an abstraction of deterministic flowchart
schemes. The three-state strictly deterministic automaton of
Fig. 4 was shown not to be equivalent to any deterministic
while program, where the αi are mutually exclusive and
exhaustive tests and the pij are primitive actions.

halt

0

1 2

α
1
p 0

1

α2p02
α0

α2p12

α0p10

α1

α
0 p

2
0

α1p21

α2

Fig. 4: A strictly deterministic automaton not equivalent to any while
program

With strictly deterministic automata, Boolean values are
provided by the environment in the form of an input string

consisting of an infinite sequence of atoms, and the program
responds with actions, including halting or failing. This is the
correct propositional semantics: it allows all possible interpre-
tations of the actions that could cause tests to become true
or false. Two strictly deterministic automata are considered
equivalent if they generate the same set of finite guarded
strings (see [20] for formal definitions and details).

The Böhm–Jacopini theorem is true in the presence of
mutable tests. The technique is well known, so rather than give
a general account, we illustrate with the strictly deterministic
automaton of Fig. 4. We introduce mutable tests t0, t1, and t2,
which serve as program counters. An equivalent deterministic
while program with mutable tests is shown in Fig. 5. The

t0!; t1!; t2!; //start state is 0
while true {

if t0? then
t0!; if α1 then p01; t1!; else if α2 then p02; t2!; else halt;

else if t1? then
t1!; if α2 then p12; t2!; else if α0 then p10; t0!; else halt;

else //must be t2
t2!; if α0 then p20; t0!; else if α1 then p21; t1!; else halt;

}

Fig. 5: A while program with mutable tests equivalent to Fig. 4

major difference here is that the mutable tests are under the
control of the program instead of the environment.

We have not given the formal definition of the set of guarded
strings generated by a strictly deterministic automaton with
mutable tests, but under the appropriate definition, it can be
shown that this while program and the strictly deterministic
automaton of Fig. 4 generate the same set of guarded strings.

B. A Folk Theorem

In this section we illustrate how KAT+B! can be used in
practice. We will show, reasoning equationally in KAT+B!,
a classical result of program schematology: Every while pro-
gram can be simulated by a while program with at most one
while loop, assuming that we allow extra Boolean variables.
Many of the proofs are long sequences of simple equational
inferences and are not very interesting in themselves, so we
relegate them to an appendix.

We work with a programming language that has atomic
programs (written a, b, . . .), the constant programs skip and
fail, atomic tests, as well as the constructs: sequential com-
position f ; g, conditional test if p then f else g, and iteration
while p do f . These constructs are modeled in KAT as follows:

skip = 1 fail = 0 f ; g = fg

if e then f else g = ef + eg while e do f = (ef)∗e

There is a semantic justification for these translations, using
the standard relation-theoretic semantics for the input-output
behavior of while programs. Intuitively, to show the result
we introduce extra Boolean variables that encode the control
structure of the program. These variables are modeled in
KAT+B! using mutable tests t1, t2, . . ., which are taken to

7

be disjoint from any mutable tests that might already appear
in the program.

Commutativity axioms: KAT+B! has axioms that say that
primitive actions commute with the mutable test symbols, that
is, t?a = at? and t!a = at!. Moreover, we assume t!p = pt!
and t!p = pt! for every atomic KAT test p. The equations
t?p = pt? are already axioms of KAT (tests commute). The
following claims establish that using the axioms of KAT+B!
more commutativity equations can be shown.

Claim 4.1: If the mutable test symbols t, t do not appear
in the KAT+B! test term p, then we have that t!p = pt! and
t!p = pt!.

Claim 4.2: If the mutable test symbols t, t do not appear
in the KAT+B! term f , then t?f = ft? and t!f = ft!.

The theorem that follows is a normal form theorem, from
which the result we want to show follows immediately.
Working in a bottom-up fashion, every while program term
is brought in the normal form. That the transformed program
in normal form is equivalent to the original one is shown in
KAT+B!.

Theorem 4.3: For any while program f , there are while-free
u, p, ϕ and a finite collection t1, . . . , tk of extra mutable tests
such that f ; z = u; while p doϕ; z, where z = t1!; . . . ; tk!.

Proof: In the normal form given above, the pre-
computation u, the while-guard p, and the while-body ϕ may
involve the extra mutable test symbols t1, . . . , tk, t1, . . . , tk.
These symbols do not appear in f . The post-computation
z = t1!; . . . ; tk “zeroes out” all the extra mutable Boolean
variables. Its rôle is in some sense to simply project out this
extra finite state. The proof proceeds by induction on the
structure of the while program term f .

Base case: Suppose that f is a while-free program term,
and let t be a fresh mutable test symbol. Intuitively, t? holds
if f has not been executed yet, and t? holds when f has been
executed. Reasoning in KAT+B!:

Claim 4.4: f ; z = t!; while t? do (f ; t!); z, where z = t!.
Induction step: From the induction hypothesis, we can

bring the programs f and g in normal form so that f ; z =
u; while p doϕ; z and g; z = v; while q doψ; z, where z sets to
zero all the mutable tests that appear in the transformations of
f and g. For the cases of a conditional test if e then f else g and
composition f ; g, we introduce a fresh mutable test symbol t.

Conditional: We handle the case if e then f else g. Intu-
itively, the Boolean variable corresponding to the symbol t
records the branch to be taked. So, t? holds when f should be
executed, and t? holds when g should be executed. Reasoning
in KAT+B!:

Claim 4.5: The program (if e then f else g); z; t! is equal to

if e then (t!;u) else (t!; v);
while ((t? ∧ p) ∨ (t? ∧ q)) do (if t? thenϕ elseψ);
z; t!.

Sequential composition: We handle the case f ; g. Intuitively,
the Boolean variable t records the current position of execu-
tion. So, t? holds when we are executing f , and t? when we
are executing g.

Claim 4.6: The program f ; g; z; t! is provably equal to

t!;u;
while (t? ∨ (t? ∧ q)) do

if t? then (if p thenϕ else (z; t!; v)) elseψ;
z; t!.

Loop: It remains to handle the case of the while loop
while e do f . First, we observe that

Claim 4.7: while e do f ; z = while e do (f ; z); z.
Using the above claim, we can bring the program in a more
convenient form:

Claim 4.8: The program (while e do f); z is provably equal
to

if e then
(
u; while (e+ p) do

if p thenϕ else (z;u)
)

; z.

But we already know how to transform conditional statements.
So, we apply that transformation to bring the term in the
desired normal form.

V. CONCLUSION

We have shown how to axiomatically extend Kleene algebra
with tests with a finite amount of mutable state. This extra
feature allows certain program transformations to be effected
at the propositional level without passing to a full first-
order system. The extension is conservative and deductively
complete relative to the theory of the underlying algebra. The
full theory is decidable and complete for EXPSPACE. We have
given a representation theorem of the free models in terms of
matrices.

An intriguing open problem is whether the coproduct of two
KATs is injective. We have shown that it is if one of the two
cofactors is a relation algebra on a finite set.

ACKNOWLEDGMENT

Thanks to Bob Constable, Nate Foster, Fritz Henglein, Mark
Reitblatt, Ross Tate, and Laure Thompson for valuable con-
versations and insights. The DIKU-affiliated author expresses
his thanks to the Department of Computer Science at Cornell
University for hosting him in the Fall 2013 and to the Danish
Council for Independent Research for financial support for
this work under Project 11-106278, “Kleene Meets Church
(KMC): Regular Expressions and Types.”

REFERENCES

[1] A. Angus and D. Kozen, “Kleene algebra with tests and program
schematology,” Computer Science Department, Cornell University, Tech.
Rep. TR2001-1844, July 2001.

[2] A. Barth and D. Kozen, “Equational verification of cache blocking in
LU decomposition using Kleene algebra with tests,” Computer Science
Department, Cornell University, Tech. Rep. TR2002-1865, June 2002.

[3] E. Cohen, “Hypotheses in Kleene algebra,”
Bellcore, Tech. Rep. TM-ARH-023814, 1993,
http://citeseer.nj.nec.com/1688.html.

[4] ——, “Lazy caching in Kleene algebra,” 1994,
http://citeseer.nj.nec.com/22581.html.

[5] ——, “Using Kleene algebra to reason about concurrency control,”
Telcordia, Morristown, N.J., Tech. Rep., 1994.

8

[6] D. Kozen, “Kleene algebra with tests,” Transactions on Programming
Languages and Systems, vol. 19, no. 3, pp. 427–443, May 1997.

[7] D. Kozen and M.-C. Patron, “Certification of compiler optimizations
using Kleene algebra with tests,” in Proc. 1st Int. Conf. Computational
Logic (CL2000), ser. Lecture Notes in Artificial Intelligence, J. Lloyd,
V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M.
Pereira, Y. Sagiv, and P. J. Stuckey, Eds., vol. 1861. London: Springer-
Verlag, July 2000, pp. 568–582.

[8] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” Computing and Information Science, Cornell University,
Tech. Rep. http://hdl.handle.net/1813/34445, October 2013, POPL 2014,
to appear.

[9] D. Kozen and F. Smith, “Kleene algebra with tests: Completeness and
decidability,” in Proc. 10th Int. Workshop Computer Science Logic
(CSL’96), ser. Lecture Notes in Computer Science, D. van Dalen and
M. Bezem, Eds., vol. 1258. Utrecht, The Netherlands: Springer-Verlag,
September 1996, pp. 244–259.

[10] C. Hardin and D. Kozen, “On the elimination of hypotheses in Kleene
algebra with tests,” Computer Science Department, Cornell University,
Tech. Rep. TR2002-1879, October 2002.

[11] C. Böhm and G. Jacopini, “Flow diagrams, Turing machines and
languages with only two formation rules,” Communications of the ACM,
pp. 366–371, May 1966.

[12] E. Ashcroft and Z. Manna, “The translation of goto programs into while
programs,” in Proceedings of IFIP Congress 71, C. Freiman, J. Griffith,
and J. Rosenfeld, Eds., vol. 1. North-Holland, 1972, pp. 250–255.

[13] G. Oulsnam, “Unraveling unstructured programs,” The Computer Jour-
nal, vol. 25, no. 3, pp. 379–387, 1982.

[14] W. Peterson, T. Kasami, and N. Tokura, “On the capabilities of while,
repeat, and exit statements,” Comm. Assoc. Comput. Mach., vol. 16,
no. 8, pp. 503–512, 1973.

[15] L. Ramshaw, “Eliminating goto’s while preserving program structure,”
Journal of the ACM, vol. 35, no. 4, pp. 893–920, 1988.

[16] M. Williams and H. Ossher, “Conversion of unstructured flow diagrams
into structured form,” The Computer Journal, vol. 21, no. 2, pp. 161–
167, 1978.

[17] D. Harel, “On folk theorems,” Comm. Assoc. Comput. Mach., vol. 23,
no. 7, pp. 379–389, July 1980.

[18] G. Mirkowska, “Algorithmic logic and its applications,” Ph.D. disserta-
tion, University of Warsaw, 1972, in Polish.

[19] S. R. Kosaraju, “Analysis of structured programs,” in Proc. 5th ACM
Symp. Theory of Computing (STOC’73). New York, NY, USA: ACM,
1973, pp. 240–252.

[20] D. Kozen and W.-L. D. Tseng, “The Böhm-Jacopini theorem is false,
propositionally,” in Proc. 9th Int. Conf. Mathematics of Program Con-
struction (MPC’08), ser. Lecture Notes in Computer Science, P. Aude-
baud and C. Paulin-Mohring, Eds., vol. 5133. Springer, July 2008, pp.
177–192.

[21] K. Hirose and M. Oya, “General theory of flowcharts,” Comment. Math.
Univ. St. Pauli, vol. 21, no. 2, pp. 55–71, 1972.

[22] D. Kozen, “Some results in dynamic model theory,” Science of Computer
Programming, vol. 51, no. 1–2, pp. 3–22, May 2004, special issue:
Mathematics of Program Construction (MPC 2002). Eerke Boiten and
Bernhard Möller (eds.).

[23] ——, “Halting and equivalence of schemes over recursive theories,”
Computer Science Department, Cornell University, Tech. Rep. TR2002-
1881, October 2002.

[24] ——, “A completeness theorem for Kleene algebras and the algebra of
regular events,” Infor. and Comput., vol. 110, no. 2, pp. 366–390, May
1994.

[25] E. Cohen, D. Kozen, and F. Smith, “The complexity of Kleene algebra
with tests,” Computer Science Department, Cornell University, Tech.
Rep. TR96-1598, July 1996.

[26] D. Kozen, Theory of Computation. New York: Springer, 2006.
[27] ——, “Automata on guarded strings and applications,” Matématica

Contemporânea, vol. 24, pp. 117–139, 2003.
[28] J. Ferrante and C. Rackoff, The computational complexity of logical

theories, ser. Lecture Notes in Mathematics. Springer-Verlag, 1979,
vol. 718.

[29] L. J. Stockmeyer and A. R. Meyer, “Word problems requiring exponen-
tial time,” in Proc. 5th Symp. Theory of Computing. New York: ACM,
1973, pp. 1–9.

APPENDIX

Proof of Claim 4.1: By induction on p. If p is an atomic
KAT test, then the claim follows directly from axioms. The
cases of the constants 0 and 1 are trivial. If p is a mutable
test s?, then by our assumption we have that s 6= t, t and
therefore t!s? = s?t! and t!s? = s?t! are axioms of B!. For
the induction step, consider the case p+ q:

t!(p+ q) = t!p+ t!q = pt! + qt! = (p+ q)t!
t!(p+ q) = t!pq = pt!q = pqt! = (p+ q)t!

The case pq is similar. For the case of p, the equation t!p = pt!
follows from the induction hypothesis for p. Similarly, t!p =
t!p = pt! = pt!.

Proof of Claim 4.2: We only show the part involving t!,
for t? the proof is essentially the same. We argue by induction
on the structure of f . If f is a test, then the result follows
from Claim 4.1. If f is an atomic program a, then from the
stipulated axioms we have that t!a = at!. For composition and
choice we have using the induction hypothesis: t!fg = ft!g =
fgt!, and

t!(f + g) = t!f + t!g = ft! + gt! = (f + g)t!.

It remains to show that t!f∗ = f∗t!. By virtue of the
bisimulation rule, it suffices to see that t!f = ft!, which is
the induction hypothesis.

Proof of Claim 4.4: First, we unravel the expression
(f?ft!)∗ twice and observe that

(t?ft!)∗ = 1 + t?ft!(t?ft!)∗

= 1 + t?ft!(1 + t?ft!(t?ft!)∗)
= 1 + t?ft! + t?ft!t?ft!(t?ft!)∗

= 1 + t?ft!,

because t!t? = t!t?t? = 0. So, we conclude that

RHS = t!(t?ft!)∗t?t!
= t!(1 + t?ft!)t?
= t!t? + t!t?ft!t?,

which is equal to t!ft! = ft!t! = ft! = f ; z, since t was
chosen to be fresh (Claim 4.2).

Proof of Claim 4.5: The while-free pre-computation in
the normal form translation is equal to et!u+ et!v. The guard
of the while loop is t?p+ t?q, and the body is t?ϕ+ t?ψ. So,

((t? ∧ p) ∨ (t? ∧ q)); (if t? thenϕ elseψ) =
(t?p+ t?q)(t?ϕ+ t?ψ) =
t?pϕ+ t?qψ.

The negation of the guard of the loop is ¬(t?p+ t?q) = (t? +
p)(t? + q) = t?q + t?p+ pq.

First, we claim that t?(t?pϕ)∗ = t?(pϕ)∗. Since t? ≤ 1 and
∗ is monotone, we have that (t?pϕ)∗ ≤ (pϕ)∗, and therefore

9

t?(t?pϕ)∗ ≤ t?(pϕ)∗. In order to show that t?(pϕ)∗ ≤
t?(t?pϕ)∗, it suffices to see that t? ≤ t?(t?pϕ)∗, and that

t?(t?pϕ)∗pϕ = t?(1 + (t?pϕ)∗t?pϕ)pϕ

= t?pϕ+ t?(t?pϕ)∗t?pϕpϕ
= t?t?pϕ+ t?(t?pϕ)∗t?t?pϕpϕ
= t?t?pϕ+ t?(t?pϕ)∗t?pϕt?pϕ
= t?(1 + (t?pϕ)∗t?pϕ)t?pϕ

= t?(t?pϕ)∗t?pϕ ≤ t?(t?pϕ)∗.

Now, we want to show that t?(t?pϕ+ t?qψ)∗ = t?(t?pϕ)∗.
By monotonicity of ∗, the right-hand side is less than or equal
to the left-hand side. For the other part, we need to show that

t?(t?pϕ)∗(t?pϕ+ t?qψ) =

t?t?(t?pϕ)∗(t?pϕ+ t?qψ) = [prev. claim]

t?t?(pϕ)∗(t?pϕ+ t?qψ) = [t not in p, ϕ]

t?(pϕ)∗t?(t?pϕ+ t?qψ) =

t?(pϕ)∗t?pϕ = [prev. claim]

t?(t?pϕ)∗t?pϕ,

which is ≤ t?(t?pϕ)∗.
Let W abbreviate the entire while loop of the normal form

translation. We have already seen that

W = (t?pϕ+ t?qψ)∗(t?q + t?p+ pq)

and therefore

t?W = t?(t?pϕ)∗(t?q + t?p+ pq)

= t?(pϕ)∗(t?q + t?p+ pq)

= (pϕ)∗t?(t?q + t?p+ pq)

= (pϕ)∗(t?p+ t?pq)

= (pϕ)∗t?p,

because t?pq ≤ t?p. So, we have

eRHS = e(et!u+ et!v)Wzt!
= et!uWzt!
= et!t?uWzt!
= et!ut?Wzt!

= et!u(pϕ)∗t?pzt!
= eu(pϕ)∗pzt!,

which is equal to efzt! by the induction hypothesis. Similarly,
it can be shown eRHS = egzt!. We thus conclude that

RHS = (e+ e)RHS
= eRHS + eRHS
= efzt! + egzt!
= (ef + eg)zt!,

which is equal to (if e then f else g); z; t!, namely the left-hand
size of the equation we wanted to show.

Proof of Claim 4.6: The negation of the guard of the
while loop is ¬(t?+ t?q) = t?(t?+q) = t?q. The body of the
loop is equal to t?(pϕ+pzt!v)+ t?ψ = t?pϕ+ t?pzt!v+ t?ψ.
So, the Fisher-Ladner encoding of the while loop is

[(t? + t?q)(t?pϕ+ t?pzt!v + t?ψ)]∗t?q =

[t?pϕ+ t?pzt!v + t?qψ]∗t?q =

(A+ t?qψ)∗t?q =

A∗(t?qψA∗)∗t?q,

where we put A = t?pϕ+ t?pzt!v.
From t?A = t?(t?pϕ + t?pzt!v) = 0 ≤ t? we obtain that

t?A∗ ≤ t?. Moreover, t? ≤ t?A and hence t?A∗ = t?. It
follows that t?qψA∗ = qψt?A∗ = qψt?. Now, we claim that
(qψt?)∗t? = t?(qψ)∗. The inequality (qψt?)∗t? ≤ t?(qψ)∗
follows from monotonicity of ∗. For the inequality t?(qψ)∗ ≤
(qψt?)∗t? we need to show that

(qψt?)∗t?qψ = (qψt?)∗qψt?
= (qψt?)∗qψt?t?,

which is ≤ (qψt?)∗t?. We have thus shown that the while
loop is equal to A∗(qψt?)∗t?q = A∗t?(qψ)∗q.

Now, we focus on simplifying the expression t?A∗t? =
t?(t?pϕ + t?pzt!v)∗t?. First, we observe that unfolding
(t?pzt!v)∗ twice gives us the equation

(t?pzt!v)∗ = 1 + t?pzt!v.

Moreover, t?(t?pϕ)∗ = t?(1+t?pϕ(t?pϕ)∗) = t?. Therefore,
using the denesting rule, we obtain that t?A∗t? is provably
equal to

t?(t?pϕ)∗(t?pzt!v(t?pϕ)∗)∗t? =

t?(t?pϕ)∗(t?pzt!vt?(t?pϕ)∗)∗t? =

t?(t?pϕ)∗(t?pzt!vt?)∗t? =

t?(t?pϕ)∗(t?pzt!v)∗t? =

t?(t?pϕ)∗(1 + t?pzt!v)t? =

t?(t?pϕ)∗t? + t?(t?pϕ)∗t?pzt!vt? =

t?(t?pϕ)∗t?pzt!vt? =

t?(pϕ)∗pzt!v.

Finally, we can work on the right-hand side of the equation
we want to establish:

RHS = t!uA∗t?(qψ)∗qzt!
= t!ut?A∗t?(qψ)∗qzt!
= t!ut?(pϕ)∗pzt!v(qψ)∗qzt!
= u(pϕ)∗pzv(qψ)∗qzt!,

which is equal by the induction hypothesis to fzgzt! =
fgzzt! = f ; g; z; t!.

Proof of Claim 4.7: The left-hand side is equal to
(ef)∗ez, and the right-hand side equal to (efz)∗ez. It suffices
to show that (ef)∗z = (efz)∗z.

(efz)∗z ≤ (ef)∗z ⇐= efz(ef)∗z ≤ (ef)∗z,

10

which holds because efz(ef)∗z = ef(ef)∗zz ≤ (ef)∗z.
Now, we observe that (efz)∗z = z(efz)∗ by the bisimulation
rule, because efzz = zefz (both are equal to efz). So,

(ef)∗z ≤ (efz)∗z ⇐= ef(efz)∗z ≤ (efz)∗z,

which holds because ef(efz)∗z = ef(efz)∗zz =
efz(efz)∗z ≤ (efz)∗z.

Proof of Claim 4.8: The above program is equal to

ez + eu[(e+ p)(pϕ+ pzu)]∗(e+ p)z =

ez + eu[epϕ+ epzu+ pϕ]∗epz =

ez + eu(pϕ+ epzu)∗epz,

because epϕ ≤ pϕ. Using the denesting rule (1) and then the
sliding rule (2), we see that this is equal to

ez + eu(pϕ)∗(epzu(pϕ)∗)∗epz =

ez + eu(pϕ)∗(pzeu(pϕ)∗)∗epz =

ez + (eu(pϕ)∗pz)∗eu(pϕ)∗epzz =

ez + (efz)∗eu(pϕ)∗pzez =

ez + (efz)∗(efz)ez =

(1 + (efz)∗(efz))ez,

which is equal to (efz)∗ez = while e do (f ; z); z =
(while e do f); z.

11

