MAIZE GENETICS COOPERATION

NEWS LETTER

10

March 4, 1936

Department of Plant Breeding Cornell University Ithaca, N. Y.

Val. 10

MAIZE GENETICS COÖPERATION Department of Plant Breeding cornell university ithaca, new york

March 4, 1936

To Maize Geneticists :-

This letter contains information from many sources, arranged under the following heads:-

- I. Collective publication of linkages.
- II. General news items. Includes notes on linkage without data, lists of seed stocks, etc.
- III. Linkage data.
- IV. Seed stocks received, and those propagated in the Cooperation garden at Ithaca.
- V. Tests of inbred strains for disease resistance.
- VI. Special notices.

Most of these reports are given almost verbatim but are not put in quotation marks because in numerous instances they have been somewhat abbreviated and sometimes the phraseology has been changed (without, I trust, a change in meaning). Statements enclosed in brackets,[], are gratuitous comments by your secretary.

I. <u>Collective Publication of Papers on "Linkage in Maize"</u> Perhaps the most important matter presented in this news letter relates to the collective publication of separately headed and signed articles on linkage (see news letters of March 6 and November 30, 1935).

The response from cooperators has been wholly favorable and several have indicated their readiness to contribute to such a series of papers.

Dr. Hanson, representative for the natural sciences of the Rockefeller Foundation, has written as follows;

"Regarding your request to use a small part of the fund for the publication of brief papers in Genetics, since this seems to you to be merely using a somewhat different mechanism than you originally contemplated for putting this maize material before the geneticists interested, the Foundation will have no objection to a small portion of the funds being used for that purpose.

With kind regards, I am

Cordially yours,

(Signed) Frank Blair Hanson"

Dr. Dunn, editor in chief of Genetics, with reference to our proposal, says:

"I see no danger in this so long as we adhere to the basic rule for publication in GENETICS -- i.e. soundness, significance and permanent value of the material printed, and so long as we are just as free to accept or refuse such papers as any others. I think the publication of such material should differ as little as possible from other papers published; that is, it should not form a separate department of the journal which would constitute a special privilege and might bring resentment from other groups. I think we shall be able to make satisfactory arrangements and suggest that when ready, you send in some sample copy which we can use as the basis for settling form, etc. We go to press on February 15th (May Number) and thereafter on the first of each odd numbered month. If an arrangement is made, copy can be printed in two months (plus about five days) from receipt of mss. Sincerely yours,

(Signed) L. C. Dunn"

See also suggestions by Jones (news letter March 6, 1935, pp. 19, 20).

Of course, we should not expect to receive preferential treatment from Genetics, and could not expect our papers to be accepted unless they meet the standards set for that periodical. I am anxious to try the plan this spring. It is obvious that we cannot get material ready for the May issue of Genetics. The July issue goes to press May 1 (I assume from Dunn's letter), and manuscripts should be in the editor's hands some time before that. I ask, therefore, that you send such material as you desire to include to reach me not later than March 31.

Manuscripts should be typed and ready for publication without change. When new genes are involved, a short, concise description of the characters differentiated by them might well be included. Well known genes should not require such treatment. Tables should be presented in summary form. Different cultures involving the same kind of data should not be listed separately unless that is essential in order to demonstrate significant differences between them. Of course Fp and backcross data for coupling and repulsion must be entered separately in the tables. A single frequency distribution may often be displayed in the text to better advantage than in a table. Tables of data should be accompanied by such discussion only as is essential to make clear any points not obvious from an examination of the tabular data themselves, or as is necessary to indicate the relation of the reported observations to other linkage tests, etc. The tabular arrangement and headings used in the Linkage Summary are convenient and I, naturally, think them good.

No limit can be set now to the length of the individual contributions, but, unless a very considerable amount of date are presented, individual papers might well be kept to not over one or two pages of printed matter, and it is my hope that some may be not more than half that long.

II. General News Items

Maize Genetic Cooperation, Ithaca, N. Y. -1. D. G. Langham, formerly of the State College, Ames, Iowa, and now a graduate student in genetics at Cornell, is to serve as assistant in the Maize Cooperation work.

2. Several glossies received from Hadjinov were crossed last summer with standard glossies and the seedling progenies have been grown and noted this winter. Pollinations were made by John Shafer and seedling tests by D. G. Langham. These tests indicate that:-

Hadjinov's glossy 3 = gl4 " " 6 = gl6 " " 10 = gl3.

Hadjinov's glossy 5 gave normal seedlings in crosses with glossies 1, 2, 3, 4, 6, 7, 9; with gl3 it gave seedlings normal in appearance but which exhibited the behavior of glossies in holding sprayed water; it was not tested with glossies 5 and 8. Hadjinov's glossy 7 gave normal seedlings in crosses with glossies 1, 3, 4, 6, but has not been tested with glossies 2, 5, 8, 9. Hadjinov's glossy 8 has not been adequately tested.

In the records of Cooperation cultures, I find these notes by Rhoades:- "Hadjinov's 3 is possibly the same as gl3 since it is linked with su", and "Sprague reports that Hadjinov's 10 is allelomorphic to Stadler's glc".

Cornell University, Ithaca, N. Y. -

Page 57, table 18. Gl₁ Ij, second line, read ll not 1.1 per cent.

It will be helpful to all of us to have any other corrections called to my attention, so please send them on and observe my excellent imitation of pleasure.

2. To get for chemical studies material of the several plant color types with as uniform a genetic background as possible, I have tested the germination of seed samples stored in my cases for seven years. A brown plant, al B Pl, was crossed with a dilute sun red, Al b pl, inbred strain, and a brown from F2 of this cross was backcrossed to the same inbred strain. Ears of the several color types of F2 of this backcross were tested. Four ears of purple, Al B Pl, averaged 4% germination, while 14 cars including some of each of the other color types, namely, sun red, dilute purple, dilute sun rcd, brown and green, averaged 95% germination. The observed difference between purple and the other color types is interesting, but probably without significance.

The seedlings of all color types, however, gave striking evidence of the effect of age. Normally the primary roots of germinating seeds show before the plumules do and grow more rapidly for some time. In most lots of this old seed the plumules showed before the primary roots did, and in one lot that germinated 100% no primary roots were visible at any time, but secondary roots started after the plumule was one-half inch or more long. Moreover, many seedlings died after being potted in good soil. Of seedlings from lots ripened last summer, tho germinated two weeks later, and planted in the same soil, none have died and the lot as a whole is now (a month after planting) two or three times the size of those from old seed. This is so similar to Randolph's results in germinating seed and growing seedlings from kernels subjected to high temperatures while dormant as to make the problem seem worth further study.

R. A. Emerson

3. Quantitative studies on the frequency of chromosome doubling in corn seedlings treated at different temperatures for varying periods of time indicate that 20, 40, and 80 minute treatments at 36°, 38°, 40° and 42° C are effective in producing a markedly increased frequency of tetraploid sectors in the roottips and stem-tips, more mutant sectors being produced in the roots than in the stems of the same treatment. Negative results were obtained from a study of the persistence in the mature plants of tetraploid sectors induced by heat treatment of the germinating seed. Over 300 plants were included in the experiment and no tetraploid cars or ears with tetraploid sectors, as determined by applying pollen from tetraploid plants to the treated plant and noting the set of seed, were obtained.

4. Heat treatments of diploid corn, barley and einkorn in early embryogeny and in the seedling stage induced an increased frequency of segregating mutant seedling types differing from the normal either in growth habit or morphology or in the amount of chlorophyll development.

5. Inbred stocks of tetraploid maize after four generations of selfing have good vigor, reasonably good uniformity, and in some cases an increase in fertility over the original parental tetraploid stock. Tetraploid strains of commercial yellow corn are being tested in cooperative bio-chemical and animal assay experiments to determine their vitamin A potency. Since the tetraploid yellow maize endosperm has six doses of Y rather than three as in the normal diploid yellow corn the vitamin A potency may be twice as great in the former as in the latter.

6. The tolerance of dormant seed to heat treatment varied with the moisture content of the seed. Corn and barley seed with 24 per cent moisture was killed with one 30-minute treatment at 100° C. With a reduction of moisture content to 9 per cent the seed was not injured by a 30-minute treatment at 100° C, but after 60 minutes germination was only 30 per cent, and after 2 hours only 10 per cent of the seed germinated. Seeds with 5 per cent moisture germinated perfectly after 2 hours treatment at 100° C, but were killed after 30 minutes at 115° C. Seeds with 2 per cent moisture, the reduction in moisture content being accomplished by drying approximately 3 weeks at 60° C, germinated well after 30 minutes at 115° C, but only 10 per cent germinated after 60 minutes, and 30 minutes at 130° C killed all of the seed. The corn seedlings from the sub-lethal dosages at the different moisture contents were weak and chlorotic, many failing to survive, but the development of normal green color was not similarly altered in the barley seedlings.

7. In further studies on the B-type chromosomes in maize the number in individual plants has been increased to 32-35, with no marked decrease in plant vigor but with an appreciable decrease in fertility among these extremely high numbered B-type plants. Both Florida and Durango teosinte occasionally have Btype chromosomes which are morphologically identical with those in maize, and exhibit the same synaptic behavior and breeding relationships. Plants of Florida teosinte with 5 B-type chromosomes and plants of Durango with as many as 10-12 have been obtained by inter-crossing plants with lower numbers. From an extensive survey of chromosome morphology in various stocks of maize and teosinte, primarily for the purpose of determining the origin of the B-type chromosomes, an extremely wide variation in prophase morphology in different stocks has been noted; maize stocks with as many as 13-14 sizable knobs and others with as few as 1 or 2 have been discovered, also Durango and Florida teosinte stocks with very few and other stocks with numerous knobs. However, a careful search for a chromosome arm in these diverse stocks similar to or identical with the B-chromosome has been fruitless thus far. This suggests that the B-chromosome may be a composite of several parts from different regions of the same or different A-chromosomes.

L. F. Randolph

8. Mosaic plants in part heterozygous and in part homozygous for a chromosome 5 deficiency. - Breakage in the spindle fiber insertion region of chromosome 5 resulted in two chromosomes, one a deficient rod-shaped chromosome and the other its reciprocal, a ring-shaped chromosome, each with an insertion region, the two equivalent genomically to one chromosome 5 (McClintock, Proc. Nat. Acad. Sci., 1932). Two such cases were described. In one case, known as the large deficiency large ring, the ring involved approximately one-sixth of the length of the chromosome, including the locus of Bml. In the other case, called the small deficiency small ring, the ring involved about one-twentieth of the length of the chromosome and also included the locus of Bm₁.

It has been found that the small deficiency can function through the eggs without the small ring being present also. Pollen having the large deficiency plus the large ring-shaped chromosome (the full genomic complement for chromosome 5) can function as well as normal pollen with an intact chromosome 5. When two such gametes fuse, an individual having the small deficient chromosome, the large deficient chromosome and the large ring-shaped chromosome is produced. As stated in the above publication, loss of the ring-shaped chromosome occurs in some mitotic divisions. In the plants resulting from the described cross, the nuclei and thus cells which arise after such a loss of the ring chromosome will be homozygous deficient for the amount of chromosome represented by the length of the small deficiency. Such plants should

be therefore, a mosaic of heterozygous and homozygous deficient tissue if cells whose nuclei have undergone the loss of the ring chromosome can continue to propagate themselves. It was known that the heterozygous deficient tissues do not vary noticeably from non-deficient tissues. If, in these plants, the homozygous deficient tissue is viable and if the homozygous deficiency alters the structure of the cell, streaks of altered tissue should be detectable. Streaks of altered tissue were very obvious in the leaves of such plants. A histological study of the nature of the alterations is being conducted by Mrs. Lucy Abbe. From the appearance of the homozygous deficient tissue it is probable that such tissue would be inviable if not surrounded by normal tissue. The original "double-deficient" plants were obtained by crossing plants having a normal chromosome 5 with bm1, a deficient chromosome 5 with no lucus for Bm1 and the ring chromosome carrying Bm1. The "double-deficient" plants were all Bm1 except one plant which was variegated for Bm1 and bm1. The introduction of the bm1 locus of the normal chromosome 5 into the deficient chromosome is believed to have occurred as the result of a non-homologous crossover between the normal and deficient chromosomes with a resulting shift in the position of the deficiency (as described by Stadler in the Amer. Nat., 1934).

9. Several inversions, two involving sections of chromosome 9 and one involving a section of the long arm of chromosome 4, have been detected and isolated by Miss Creighton and myself. One of the inversions on chromosome 9 should eliminate single cross-overs within the short arm of this chromosome, although the tests have not been completed.

10. Disjunction studies on interchanges have shown that sister spindle fiber regions do not separate in I, that crossingover between the spindle fiber and the break is followed by disjunction of homologous spindle fiber regions, that the passage of two homologous spindle fiber regions to the same pole in I is increased when the crossing-over is decreased, and that whether 4 or 6 types of spores will be formed and their proportions depend upon the relative distances between the spindle fiber regions and the breaks coupled with crossing-over in these regions. Barbara McClintock

11. Data from crosses of Florida teosinte with maize, backcrossed to maize, showed little or no crossing over in the short arm of chromosome 9, but between wx and v_1 , there was from 6.4% (Creighton) to 40% (Allen) of crossing over.

Sylvia M. Allen and Harriet B. Creighton

12. An inbred strain of yellow dent corn, which, after having been selfed for nine generations, has been propogated by sibcrossing or mass pollination for three years, has given rise to two striking mutations, namely, yellow to white endosperm and normal stature to a slender dwarf type. All the white endosperm kernels germinate prematurely.

R. G. Wiggans

University of Minnesota, St. Paul, Minn. -

1. I have been studying an abnormal tassel type that I propose to call ramose tassel. It gives some variation in ear type. Some strains show crooked rows and generally a few sterile male florets on the tip of the ear. In other cases the upper half of the ear is divided somewhat like ramose-1. In crosses, however, either of these types can be separated from ral with considerable accuracy. Linkage studies of ramose tassel were made last year using F2 data from crosses with representative genes of the ten groups. It is linked with nal crl and py in group 3 [py is in group 6]. It has occurred to me that this may be the same factor or an allelomorph of ra2 reported by Brink but not published. [Brink's linkage data (Linkage Summary, pp. 41, 42) give al-ra2 51% and ra2-Rg 34% recombination]

2. I note your statement [Linkage Summary, p. 12] that floury is difficult to classify in many stocks. I have had no difficulty except where some of the virescent seedlings were concerned. I classify commonly over a ground glass with light underneath.

H. K. Hayes.

U. S. Dept. of Agric., Cereal Crops & Diseases, Ames, Iowa -1. A branched ear was observed in F2 (1923) of the station strain of Reid's Yellow Dent. It appears similar in all respects to the one described by Kempton as branched silkless, bd, and was reported by Rhoades (Maize letter, November 24, 1934) to be allelomorphic to that gene. F2 data involving bd with two other genes show it to belong to group 7. [The data (see III, below) seem to place bd to the right of ij, near Bn1. Hadjinov's data (Linkage Summary, p. 57) give about 36% recombination between his bd and Bn1. His bd has not been tested with either Bryan's or Kempton's.]

2. A character similar to Brunson's cuzcoid was found in F2 of the variety Krug in 1934. It tasseled very late but produced no ear shoots. It had about 50% more nodes than normal corn. It apparently is controlled by a single recessive gene.

A. A. Bryan

3. The study of the factor interaction of a_1 and Dt has been continued (see maize letter of November 24, 1934). On the basis of rather extensive counts the ratio of the average number of dots on seeds of $a_1 a_1 a_1$ Dt Dt dt to the average number of dots on seeds of $a_1 a_1 a_1$ Dt Dt dt constitution is 3:2. The ratio for seeds of $a_1 a_1 a_1$ Dt dt dt to $a_1 a_1^p a_1^p$ Dt dt dt constitution is 3:1. Since in the comparisons the Dt gene is held constant while the dosage of a_1 varies, it is apparent that the effect of increasing the dosage of recessive a_1 , as indicated by the average number of dots, is an arithmetic one. In reciprocal crosses between two closely related lines ($a_1 a_1$ dt dt x $a_1 a_1$ Dt Dt) the ratio of the average number of dots on seeds of Dt Dt dt to seeds of Dt dt dt constitution was 4:1. Some data have also been obtained on the number of spots of Dt Dt Dt constitution. These data indicate that the effect of increasing the dosage of Dt may be geometric.

4. Further study with the chromosome 5 fragment (see maize letter of November 24, 1934) has placed the following genes in the long arm of chromosome 5: v_2 , ys, pr, v_{12} , v_3 , and bt. The loci of a_2 and bm_1 are in the short arm of chromosome 5. The fragment chromosome, which is composed of the short arm of chromosome 5 and has a terminal insertion region, occasionally passes through the pollen. In the progeny of a selfed fragment plant there occurred an individual with the normal complement of 20 chromosomes plus two fragment chromosomes. In genetic constitution and appearance this 22 chromosome plant was identical with the secondary trisome found several years ago in which the single supernumerary chromosome was composed of two short arms of chromosome 5. Plants having a single fragment chromosome were studied at pachytene. As reported before, the fragment pairs with the two normal chromosomes 5 in approximately half the cells. It was occasionally observed in those cells where the fragment was unpaired that the terminal insertion region presented the appearance of being split. This observation may have some theoretical importance since some of the prevalent theories of meiosis assume that the reason the spindle fiber region undergoes a reductional division in the first meiotic anaphase is that the division of the insertion region is delayed to a late prophase stage while the split of the chromosome thread occurs in the early prophase stages.

5. An inbred strain gave in F2 approximately 65% luteus seedlings (again see maize letter of November 24, 1934). The

genetic constitution of this line was $\frac{sp +}{+1}$ with about 2 per cent

crossing over between the sp and l loci. These two genes have been linked with factors in chromosome 10. They are very close to g1 and give about 20 per cent of recombinations with R. The luteus gene is designated as 1g and the small pollen gene as sp2. Seed available.

6. A triploid individual occurred in a cross of gl₁ x wsz. The constitution of the triploid was Gl₁ Gl₁ gl₁ Wsz wsz wsz which suggests that the diploid number of chromosomes was contributed by the pollen parent.

7. During the harvesting of the fields in the Iowa Corn Yield Test several ears were found which had, to the writer, the appearance of triploid ears. Root tip counts of the progeny substantiated this hunch.

8. Half the plants in a small F1 progeny of an R-g-li stock x Florida teosinte had narrow leaves, an unusual type of chlorophyll striping, and brown midribs. Neither of the parents showed this character. It seems possible that we have here a case of factor interaction between Zea and Euchlaena genes. Several crosses were made between the R-g-li stock and Florida teosinte and only one of the F1 progenies showed this new character.

9. In the progeny of a plant trisomic for chromosome 6 there occurred an individual with 20 chromosomes plus a fragment composed of the long arm of chromosome 6. The insertion region is apparently terminal. Studies of the disjunction of the two normal chromosomes 6 and the fragment, utilizing the technic of McClintock in studying the number of nucleoli in the quartets of microspores, showed that in 2.4% of the cases the fragment chromosome went to one pole and the two normal chromosomes to the other pole. In the remaining cases the two normal chromosomes underwent disjunction.

10. Studies of some of the Iowa inbred lines showed that in those inbreds which are poor pollen producers there was a considerable number of unpaired chromosomes at Metaphase I. These unpaired chromosomes undoubtedly cause some of the sterility found in these lines. Fertile inbred lines showed fewer univalent chromosomes. In the "sterile" inbreds the pairing pachytene was perfect and the unpaired homologous chromosomes showed at diakinesis an orientation to each other because of this earlier association.

11. In a selfed line homozygous for all the dominant aleurone factors there occurred seeds with colorless areas of varying size (Anderson had a similar character several years ago. He called it "Bald" aleurone.) The explanation for the appearance of colorless areas in this line is due to the failure of formation of the aleurone layer.

12. New stocks:

Tp-gl1-v5-ra a1-lg2 Dt aj-na-tsu Dt pr-bmj-a2 (probably)

13. Studies with PVV and sm indicate that intensity of salmon color in silks depends upon amount of variegation on the ear. The silks have a uniform color, not variegated.

14. Golden-1, g1, though not identifiable by external appearance, can be classified accurately in the seedling stage by cutting off the seedling stalk just above the ground. Golden-1 seedlings have a distinct golden color in cross section while nongolden ones are clearly green.

M. M. Rhoades

Agr'l Experiment Station, New Haven, Conn. -

1. We are informed by Eyster that his opaque-3 is the same as our of. [Eyster reported of in chrom. 9].

2. A maternal stripe has been obtained from a series of Sweepstakes inbreds. It is more vigorous than those obtained by Demerec and Anderson.

3. The dwarf reported in maize letter of November 24, 1934 is not d1. It segregates well and is viable but never produces an ear or even pollen at New Haven. Seed available.

4. The adherent reported in the same news letter is not ady. Viability good.

5. Seed of a stock of trisomic chromosome 4 is available.

5. Seed of a stock of fillowing $\frac{o_2 + +}{+gl_1}$ gave recombination per-

centages as follows:- $o_2 - gl_1 27$, $o_2 - ij 37$. Another F₂, 323 seedlings, of $\frac{o_2 + f_1}{f_2}$ gave 22% crossing-

over. Backcross data, 453 plants, give 17% crossing-over between o2 and ra1. These data indicate that o2 is to the left of V5.

7. We apparently have two complementary factor pairs for and the other It (intensifier). I have only one stock of Y4 Y4 it it, but It is carried by several white stocks, in fact, all so far tested except one a-tester. It might be an allelomorph of A. F1 seed of the cross Y4 Y4 it it x y4 y4 It It is all yellow. The F2 ears segregate fairly well into a 9:7 ratio for yellow and white, showing several intensities of yellow. I do not think the stock of Y4 Y4 it it is the same as Y7. It is

much lighter in color and shows segregation well only in very flinty corneous stocks. The intensifier stocks, y4 y4 It It, also intensify the yellow color of Y1.

W. Ralph Singleton

University of Florida, Gainesville, Fla. -

1. A few years ago an inbred ear segregated sharply (3:1) full yellow and pale yellow endosperm. The pale seeds produced almost 100% white seedlings and the others produced nearly all green seedlings. Brunson reported something similar, I think. 2. A first year inbred ear of Cuban Yellow Flint segregated sharply red and green seedlings and a range of intensity of yellow endosperm. The seeds were arranged in order of endosperm color and the darker 3/4 planted separately from the lighter 1/4. On this classification crossovers with anthocyanin were about 20%. The stock was grown through two more generations with selection of cars giving lesser crossing over and the crossovers reduced to about 10%. The reduction was attributed to selection for sharper segregation and more accurate classification of endosperm color. The anthocyanin difference was indicated at the R locus by outcrosses to Cornell aleurone testers.

Fred H. Hull

Calif	ornia I	nstitute of Technol	ogy, Pasadena, Calif	
br. 1, 3,	1. Dat 2. Sum 9 and	a on striate and in mary of map position 10. Part of this in	ns of interchanges in chromosomes s a repetition of what I sent last	
y 0002 •	Chr L ord N E N	om. 1 - eft of P. An undesc er T-P-sr with 6% c ear P, order uncert setween P and br 1- ear br 1-3d, 1-7b, setween br and bm2	ribed 1-6 interchange gave the rossing over between T and P. ain, 1-2b, 1-9c. 3a, 1-5b, 1-5c, 1-9a. 1-7c, 1-9b, 1-10a. 1-5a, 1-4, 1-7d.	
	Chr H N 1-3 H	om. 3 - Between a and na 2- Gearer ts4 1-3a, 2- Probably beyond ts4 d. Beyond ts4 (27.2%)	3d, 3-5c, 3-5b. 3b, 3-7a, 3-8a, 3-9a, 3-10a, 3-10b but order uncertain 3-10a, 2-3c, 3-7b.	
	<u>Chr</u> 1-9a 1-9b 1-9c 2-9a 2-9b 3-9a 4-9a	om. 9 - all tested % crossing over 9.2 35.4 12.7 30.7 7.5 3.6 25.1	are beyond waxy. <u>No. of backcross plants</u> 239 505 237 505 628 608 426 (2 groups	
	4-9b 6-9a 6-9b	3.1 9.5 3.7	of data 31.0 and 11.0) 193 610 731	

8-92)	35.0	141	l (data ir- regular)
9-10) abor fri an	ut 3.5 (estime om combined wx d T-R interval	ted T s)	,
1-10 $2-10$ $3-10$ $3-10$ $6-10$ $8-10$ $8-10$ $8-10$ $9-10$	Chrom. 10 % c 0a 0a 0b 0c 0b 0b (near g 0 (Right	- crossing over 15.0 6.2 15.4 20.0 7.0 9.7 17.0 14.7 22.8 1, order uncer of R)	ver with golden-1 <u>No. of p</u> 13 80 48 328 344 344 310 535	l (left of g _l) lants 7 1 2 7 2 7 2 5
3. 2. Comb: 2-	Summary o ined data Near B 2 Between B 7b, 2-9b. Far right Near v4 Beyond v4	f map location of Clokey and -6b, 2-9a. and v_{4} 1-2b of B but not 2-4a, 2-4b, 2- 2-4c (v_{4} - '	ns of interchange Anderson. , 2-3c, 2-8, 2-3 yet tested with -5b, 2-7a, 2-7b. I = 35. E. G.	es on chromosome d, 2-10, 2-4d, v ₄ 2-7c. Anderson
Universi l. tina and modifier but in F	ty of Buen In Garrap from Boli giving mo Mottled x Mottled x 2 some col	os Aires, Buen ata corn from via, spotted a ttled aleuron a and c test r testers gi- corless kernel	nos Aires, Argen the Province of aleurone is due e. ers gives self c ves mottled F ₁ , s appear. The m	tina - Salta in Argen- to a dominant r olor odifier is inde-
pendent The r mo pr x r	from pr an difier is mr pr ga	d from a and designated Mr we Mott Mott Whit	c but seems to b . The backcross led purple 66 led red 59 e <u>126</u> 251	e linked with r. : r Mr Pr/r mr
p. 15) b pled", w with it 2. varietie	[Mr has h but the sto hich is ci Six "glos es. They a	been used by K bek has been 1 ther an allel ssics" were ob are designated	vakan for midrib ost. Seeds sent omorph of r or v tained from self temporarily by	(Linkage Summary, look like "stip- ery closely linked cd Amargo and other the following sym-
DOTR:	g133a g133b g134a	Same as gl ₂ Different fro From sample o (Jujuy, Arg and gl ₂ .	m gl _l , gl ₂ , gl ₃ , f floury corn fr entina), differe	and gl33a. om Humahuaca ent from gl1

Į

From a yellow flint; being tested with other g134b glossies.

From the Amargo variety; different from gl2. g134c 3. A barren-stalk type was found in the stock of gl34c.

4. A liguleless stock was found in Amargo corn. A planting of 100 selfed seeds gave 56 green and 28 lethal white leaf base seedlings. Of the normal green plants that lived to the age of three months, 28 had normal and 20 had liguleless leaves. This is at present designated 1g34a.

5. A selfed plant of Amargo produced, from 50 seeds, 22 normal plants and 7 dwarf plants with bifid leaves and the midrib prolonged into a conspicuous awn, like the flowering glume of Aveneac. The character is called aristifolia and its genetic symbol is given as af. The aristifolia character is not known in grasses, so far as I am aware, except in a small genus of Mexican grasses (Jouvea), the taxonomic position of which is uncertain.

6. Lazy, la34a, appeared in the progeny of a selfed plant of the variety, "Maiz Canario de 8 filas", which consisted of 47 normal and 15 lazy plants. Has been crossed with su glz. 7. Siamensis, sn, is a recessive character of variable ex-

pression obtained from an Amargo strain. Of the double seedlings, the "paracite twin" aborts early in some instances, leaving normal appearing individuals. A homozygous strain of sn exhibited the following types:

Seedlings with marked duplications - 12

Seedlings with different abnormalities - 32

1. Seedling normal ---

8. Male steriles: A male sterile, mszza, from a strain of maize from Tabacol (Salta, Argentina) gives a sharp 3:1 segregation. Another, ms34a, from Humahuaca (Jujuy, Argentina) is linked with aleurone color. The stock is segregating for R r. 9. Tassel seed, ts34a, has been found in a yellow flint

from San Luis, Argentina.

10. Germless seeds, gm33a, from a selfed car of Piamontes, a flint corn, had 112 normal and 30 germless kernels.

11. Silky, si33a, came from the same Piamontes strains. S. Horovitz

Instituto Agronomico de Campinas, Sao Paulo, Brazil -

Attention is called to a bulletin from Brazil: Effcitos da primeira autofecundacao em tres variedades de milho. Technical bulletin #19, p. 19, with 37 photographic illustrations (five colored plates). Published in Portuguese with an abstract in English, as follows:

"The Genetics Department of the Instituto Agronomico started in 1932 a large maize breeding project based on the production of pure lines to be used for hybrid seed production. Over 3000 vigorous plants of 3 main commercial varieties were sclf-fertilized and part of the seeds of 1812 selected inbred ears was planted out for further selfing. In this paper the author describes some of the more prominent variations found among the selfed ears and also in the progenies. Most of these off-types are compared with similar variations worked out by American geneticists. The variations described here are: (1) premature germination of the seeds on the ears; 2) several cases of defective endosperm; 3) endosperm color (yellow-white); 4) mealy endosperm; 5) Aleurone colors; 6) Pericarp colors; 7) white seedlings; 8) yellow seedlings; 9) zebra striped seedlings; 10) virescent seedlings; 11) pale green seedlings; 12) zebra striped leaves; 13) several kinds of striped leaves; 14) oily spots; 15) several kinds of dwarfs; 16) narrow leaves; 17) crinkly leaves; 18) ramosa (?); 19) rolled leaves; 20) ragged (?); 21) branched ear; 22) several kinds of abnormal sex distribution: male and female plants, extreme cases of 'tassel-seed', etc. -- It is the author's intention to exchange seeds of his genetic material with American geneticists in order that some of the supposed new variations may be conveniently worked out and their genes be located in the maize linkage groups".

C. A. Krug

University of Zagreb, Jugoslavia -

1. Attention is called to a recent paper dealing with the inheritance of number of kernel rows in maize (Tavčar, Alois -Beitrag zur Vererbung der Kornreihenanzahl an Maiskolben. Zeitschrift für Züchtung, Pflanzenzuchtung, 20: 364-376. 1935). A 4-rowed type is described and its genotype is assumed to be Rw1 Rw1. Crosses of 4-rowed with 8-rowed forms exhibit monohybrid F2 and backcross ratios. To the genes differentiating these two forms are assigned the symbols Rwp rw2. 4-row = Rw1 Rw1 rw2 rw2; 8-row = Rw1 Rw1 Rw2 Rw2. Rw1 and Rw2 are inherited independently of each other and of P and Y1. [Since, on the author's assumption, Rw, is homozygous in both the 4-rowed and 8-rowed types used in these crosses, no evidence is presented for the independence of Rw_1 from Rw_2 , P and Y_1 . Of course Rw_1 could be used as a symbol for the residual genotype of a 4-rowed form, but there seems no more need for such a symbol here than in many other cases .

2. Four-rowed ears have two rows of kernels on either side of the cob, the two pairs of rows being separated by smooth areas (rachis without paleae). It is necessary to distinguish between palea and rachis color as well as between these and pericarp color, all of which belong to the P allelomorphic series. Ten genotypes have been found, as follows:

Genotype (with A)	Pericarp color	Palea	Rachis color
prrr	red	red	red
prrw	11	11	white
Prwr	11	white	red
PIWW	II	11	white
Pwrr	colorless	red	red
Pwrw	11	н	white
Pwwr	11	white	red
Баам	11	Ħ	white
porr	orange	red	red
POWW	11	white	white

An account of this series will probably be published in Zeitschrift fur induktive Abstammungs - u. Vererbungslehre. A. Tavčar

John Innes Horticultural Institution, Merton Park, London -1. There is pronounced indication of linkage between a gene for fasciated ear and white endosperm.

2. In a cross between fasciated-cherry-japonica and golden, the majority of the F_1 plants were not-golden not-fasciated but were japonica. F2 segregation was normal for the first genes but gave 89 japonica in a total of 189 plants. When japonica was crossed with dwarf-3 all F1 plants were green, not japonica.

3. In a cross between a line with coloured aleurone and rr lines, four alleles of R could be distinguished by their different effects on aleurone colour. Otherwise the plants were of the constitution AA CC bb Pl Pl. At least one of the R alleles involved seems to be a cherry allele. Two alleles were the normals, at present designated R and r. A third may be identical with the allele recently discovered by Rhoades, and designated here r[!]. The fourth is a very weak dominant called R[!]. The four heterozygotes when selfed gave

Rr	25% col	Lourl	ess	
Rr!	35%	11		
R'r	50%	#1		
RITI	mostly	66%,	in	one
	case	75%	cold	ourles

It seems possible to obtain colourless R' homozygotes by selection of modifiers. The ratios 63:1 after selfing and 1:7 after backcrossing seem to indicate the presence of at least three complementary recessive modifiers.

4. The intensity of alcurone colour in the crosses mentioned under (3) depends upon two complementary modifiers giving 9 deep to 7 pale after selfing.

5. A large set of data was analysed with the help of efficient statistical methods in order to see how many ratios were disturbed by linked genes for pollen tube competition. Indications of such competition have been found in connection with the following segregations:

purple-1 and brittle-1 (see 6 below)Briegerdeep and pale aleurone"yellow-white endospermTidburydeep-pale yellow endosperm"c and shTseng.

6. The distance between pr_1 and bt_1 has been found to be

17.5%. The gametophyte factor ga_2 is located between pr_1 and bt_1 about 12.8 units from pr_1 and 4.7 units from bt_1 . The amount of elimination in Ga/ga heterozygotes has been found to vary and has been studied in both types of heterozygotes, i.e.

Pr1 Ga2 Bt1 and Pr1 ga2 Bt1

pri gaz bti pri Gaz bti

The data vary round the means 5%, 15% and 40% instead of the expected 50%.

7. Random pollination of unprotected plants has been found to be of rare occurrence in the experimental plots both at Berlin and Merton. Selfing predominated if unrelated lines which, however, flowered nearly simultaneously, were interplanted. Random pollination was found only if the plants were nearly identical in composition. 8. Experiments on earliness and yield were started in order to find types well suited to the English climate. A number of varieties were tested in randomised blocks. The plants were sown in three lots. The variation within each lot was very small. plants sown on April 17th and planted out in May were far the slowest, those sown on May 21st and planted out on June 14th were quicker and needed about two weeks less. Plants sown in the field on June 5th gained another seven days. The differences between the varieties were partly very significant. I am convinced that part of the failure in the cultivation of maize in Northern Europe is due to the fact that the seeds are sown too early and kept too long in pots.

9. A fairly large coupling F2 of C Sh/c sh and I Sh/C sh has been produced (9053 grains in the first and 7226 in the second case) to see whether there is any significant difference between the recombination values. All the data from the individual ears as well as the totals form a homogeneous sample around the common mean of 5.1%. A backcross for C Sh/c sh gave 4.3% in 6648. The difference between all F2's and the backcrosses is just over twice the error. Experiments will be made to test reciprocal backcrosses.

F. G. Brieger

Honan University, Kaifeng, Honan, China -

1. A white waxy strain of maize from the province of Szechuan was crossed to al y Pl, white seeded of course. The Fl's were all yellow seeded. F2 gave 146 yellow and 87 white, a case of complementary factors. Linkage tests are in progress.

2. From selfed strains of corn collected from Honan Province, one ear was found to have prematurely germinated seeds that seem to be linked with y. On selfing again one ear was found to have 159 yellow and 59 white seeds. All the white seeds had germinated on the cob. This may be a case of complete linkage. Progress is being made to ascertain this.

H. W. Li

III. <u>Linkage Data</u> 1. Four-point tests, group 2. I. W. Clokey

$\frac{+}{\lg_1}\frac{+}{\lg_2}\frac{+}{\lg_2}\frac{+}{\lg_1}\frac$

0	1	2	3	1-2	1-3	2-3	1-2-3		
124 186	40 29	55 42	101 83	1 10	15 11	13 16	1 5		
310	69	97	184	11	26	29	6	=	732
	9.4%	13.3%	25.1%	1.5%	3.6%	4.0%	0.8%		
	lg	1-g12	15.3%, gl	2-B 19	.6% B-	V4 33.	5%		

2. Trisomic and backcross tests, group 2, involving albescent, liguleless-1, and yellow endosperm. H. S. Perry Fo data from the cross of #2 trisome carrying lg₁ x al

show	that	al	is	in	chromosome	5.
------	------	----	----	----	------------	----

+ +	+ 1g1	al +	al lg1				lg ₁	al	
81	61.	14	0	=	156		39	9	
490	42	47	0	==	579	-	7	8	
	Total				735		,	- 8.3	

The suggestion of close linkage between al and lg1 seems to be confirmed by a diploid F2 progeny, as follows: % 0/2 1g7 al $+ lg_1$ al + al lg_1 + + $43 \quad 0 = 195$ 22.]. 26.2 ----101 51 Per cent crossing over < 15. F_2 progenies involving Y_x and al have indicated close linkage between these two genes. Backcross counts confirm this linkage, as follows: Not vellow Yellow Al al Al al 186 0 0 169 Two seedlings from seeds with yellow endosperm and one from non-yellow, are still too small to classify. 3. Two-point tests, group 7. A. A. Bryan Y XY XV X Xy XY 53 = 1379 - 43% 39 = 1379 - 39% 249 = 1379 - 16%254 804 268 Gl RS Bd 252 42 282 Ij RS 806 CS 1030 58 Ij Gli [All three genes involved in the same Fo cultures.] 4. Three-point tests, group 7. 1-2 1 0 18 13 148 133 Tp 281 VE gly 23 11 113 104 34 217 3.3% 21.4% 337 423 760 3 1 4 =1015 I. W. Clokey ra gl1 ij 0.4% 70 44 24 41 2 0 114 65 2 =2721 A. C. Fraser 4.2% 2.4% 0.1% 1259 1281 2540 + + v5 ray gly 57 40 1585 1537 153 36 143 102 3122 189 245 <u>in +</u> + gl_l 97, =3653 A. C. Fraser 2.7% 5.2% 6.7% 5. Four-point test, group 7. I. W. Clokey T3 - 7a + + ++ ral gl ij 25 40 2 2 16 5 17 210 222 1, 1 0 = 53918 55 0 432 0.2% 0.2% 4.1% 12.1% 3.3% 3.5%, raj-gl 4.3%, glj-ij 12.4% T-ray Normal and semisterile (T) plants considered separately: Normal - T-ral 5.4%, ral-gll 5.8%, gll-ij 13.6% Semisterile - " 1.2%, " 2.5%, " 11.1%. " 11.1%. The large difference in per cent of crossing over in the

two cases is unexplained.

6. Three-point test, group 10. V. Rhoades 0 1 2 1-2 108 107 74 68 20 16 9 8 $\frac{Rp + +}{+ g_1 R}$ 215 142 36 17 = 410 34.6% 8.8% 4.1% 7. Linkage Data for Chocolate, group 2. (?) Ch V4 CB 71 66 42 76 255 42% Burnham I have some later material of the same sort for more data. With a2 [Chrom. 5] I had only F2 material (furnished by Clokey, segregating also for c, r), but it gives absolutely no indication of linkage. Chas. Burnham. Some miscellaneous linkage data with Ch are all negative. The earlier indication of linkage with T5-7c is washed out with further data. E. G. Anderson. [See discussion in Linkage Summary, p. 51.] IV. Seed Stocks Received 1. M. M. Rhoades, Ames, Iowa:- Stocks involving Eyster's Y2. 2. H. K. Hayes, St. Paul, Minn.:- v21 (chrom. 8). [Records Genetics Soc. Amer. No. 4, 1935. Abstract.] 3. J. H. Kempton, Washington, D.C.:- Annual teosinte from Lake Ratuna in Southern Guatemala. 4. M. T. Jenkins, Washington, D.C .:la su <u>Tu tu</u> glz Homozygous A1 C R a2 bt bv pr (This bt stock gives good field germination.) Same as above, but segregating V_2 v_2 . Homozygous A7 C R A2 bt bv pr $\frac{\text{fr}_2 \text{ gl}_1 \text{ ij fr}_1}{+ + + \text{fr}_1} \times \text{fr}_2 \text{ gl}_1 \text{ ij fr}_1$ $\frac{\text{fr}_2 \text{gl}_1 \text{ ij fr}_1}{\text{fr}_2 + + +} \text{ x fr}_2 \text{gl}_1 \text{ ij fr}_1$ 5. W. Ralph Singleton, New Haven, Conn .:-Y4 Y4 it it y4 y4 It It yu yu It It x Yu Yu it it. 6. S. Horowitz, Buenos Aires, Argentina:sul glz Y x laz4a g133a g133b 1g34a $\frac{r}{r} + \frac{Mr}{g_1} + \frac{Pr}{r} \times r g_1 mr (R-tester)$ af 34a sn 7. Queensland Agricultural High School and College, Gatton, Australia:-

Ten packages of seed, labeled I - X [no letter].

S. Ithaca, N. Y. Stocks grown by Maize Genetics Coopera-Pollinations by John Shafer:tion. Inbred strains. Selfed or sib-crossed ears of all the inbred strains in disease resistance test (see V, below), except 070-34, which did not germinate. Glossies 1, 2, 3, 4, 6, 7, 9; gl₅, no germination, glg too late to ripen. Hadjinov's glossies 3, 5, 6, 7, 10 (H3 = gl4, H6 = gl6, H10 = gl3, see II above); H8, all normal seedlings, supposed to be +/gl but some certainly homozygous normal. Hadjinov's Rs1, rs2, at, bd, cr3, bs?, vb (variable brachytic). Perry's Yx and yx, in various combinations with Y1 y1, Pl pl, Al al. Brunson's pale yellow endosperm. Wiggans' brittle stalk. Segregating cultures from W1 w1 x A1 b Pl py su. Plant colors: - A1 B Pl, a1 P B Pl, a1 B pl, a1 b Pl, aj b pl. Tester stocks :-Group 1. - P-p f1 bm2, P-p br f1 bm2, P-p br f1 an1, psr anl bm2, P-pgsl bm2, p as. Group 2. - lg1 gl2 B b v4, lg1 gl2 ts1, sb, al. Group 3. - al nal tsu, dls, dlm, a Rg. Group 4. - la su Tu tu glz. Group 5. - ys1 bm1 pr1 v2, A2 a2 bt bv pr1, bm1 bt pr], bv pr] v2. Group 6. - Y1 Pl sm py, Y1 pl (zg3?), po y. Group 7. - v5 ra1 gl1, ra1 gl1 ij, v5 gl1 Bu1. Group 8. - j1, msg. Group 9. - c sh wx v1, yg2 c sh wx. Group 10.- nl₁ g₁ R, r zb5, d7, li g₁ Rr. Multiple testers:ts2 bm2 lg1 b su1 A1 na1 cr1 pr1 y1 pl in j1 C Rg. bm2 lg1 b A1 su1 pr1 y1 pl In Bn1 j1 c Rg. PVV A7 su pr7 y7 in c sh wx Rg. A1 A2 Pr pr C-sh-wx g1-R-r. Ay Ap B-lgy Y-y-Pl Su-su-Tu-tu. Other stocks previously listed are, for the most part, still available. New seed stocks listed under general news items (II) in this letter but which have not been sent for the Cooperation collection, should be received as long as possible before planting time (May 15). V. Tests of Inbred Strains for Disease Resistance Last spring seed of five inbreds furnished by Professor

Last spring seed of five inbreds furnished by Professor Hayes and eight by Professor Wiggans were sent to eight cooperators in various parts of this country. All these strains were supposed to be more or less resistant to smut. Some of them were shown to be less smut resistant than expected, several proved very

susceptible to bacterial wilt (Stewart's disease) and a few susceptible to rust.

1. Smut.

I have attempted to present a summary of the observations on smut in tabular form, below:-

				Per	cent sr	nutted	plants	5
- 071		NO	S+		Mor-	New	Tth-	
1934		NO.	Doul	Aroa	town	Uavan	202	ATTOP-
culture		years	Paul	Ames,	town,	naven,	aca,	AVCL
NO.	Variety	selled	Minn.	la.	w.va.	conn.	N.Y.	age
554	Golden Bantam	7	10.4	0	0	36.4	0	9.4
542	Northwestern	9	6.0	5.0	0	0	4.0	3.0
	Dent							
070-34	Minnesota 13	5	0			0		-
5283	Rustler	5	10.3	0	0	0	4.0	2.9
085-34	Bustler	6	0	0	0	0	0	0
206	Leaming	9	0	0	3.0	0	2.0	1.0
208	II.S.204	13	6.5	17.1	30.0	93.7	67.0	42.9
200	Bloody Butcher	. 11	31.6	8.5	0	18.7	4.0	12.6
210	Oil Dent	9	14.3	3.8	3.0	7.1	2.0	6.0
210	West Branch	ig i	7.5	0	0	14.3	0	4.4
212	Silver King	14	31.0	2.3	0	21.1	0	10.9
212	Onondaga	12	92.9	42.9	0	15.4	0	30.2
(1)	White Dent	and the	,,			- ,		
274	Dutton's Flint	; 12	0	3.0	0	0	0	0.6

Minnesota cultures grown under smut-epidemic conditions. Longfellow variety had 65.6% smut. H. K. Hayes.

Iowa season excellent for testing smut resistance; smut infection in general was one of the heaviest in several years. A. A. Bryan.

West Virginia check variety showed 75-80% smut. C. Burnham.

Notes of smut infection -

Line C86-34, no smut reported; 214, little smut at Ames, Ia. only; 206, light smut at Morgantown, W. Va. and Ithaca, N.Y.; S283, light smut at St. Paul, Minn. and Ithaca, N.Y. only; S42, light smut at St. Paul, Morgantown, and Ithaca; 211, some smut at St. Paul and New Haven.

Line 20%, showed medium to high percentages of smut infection in most tests; at Morgantown, New Haven, and Ithaca, smut with one exception limited to light tassel infection, but at Ames five ears were smutted.

Lines 212 and 213, showed heavy ear-smut infection in some tests.

Line C70-34, little to no germination in all tests.

2. Rust.

Pasadena, Calif. Little smut in 1935, none on strains in test. Lines 208 and 211 very badly rusted; 209 moderately badly rusted; 210, 212, and 213 lightly rusted; 206 and 214 free from rust and easily the most desirable for this locality. E. G. Anderson. Ithaca, N. Y. Lines S42 and 211 some rust; 208 much rust, but too late to injure plants very seriously. There is some rust present every year at Ithaca, but it usually comes too late to be a serious disease. During two widely separated seasons, however, when rust had been introduced inadvertently with seedlings transplanted from the greenhouse early in summer, a very severe epidemic occurred. Many of the more susceptible stocks were killed before flowering time. If conditions should arise by which early infection were brought about, rust would be our most serious disease. R. A. Emerson.

New Haven, Conn. "Apparently one of our inbreds, Connecticut 2, an inbred out of the Whipple variety of sweet corn, is completely susceptible to rust. We had no rust here during the years that we were inbreeding Whipples from 1925 to 1928. Sometime later, I think in 1929 or 1930, we noticed considerable rust on this one inbred. Aside from rust Connecticut 2 has proved to be our best Whipple inbred and the one we are using in a great many crosses. It is used as the pollen parent and is never damaged so much that it will not make sufficient pollen. It always makes a good crop of seed when planted early. Last year the Eastern States Farmers' Exchange at Springfield, Mass. planted about an acre of Connecticut 2 for increase. They planted this late in order to avoid contamination from the pollen of sweet corn growing near by. This field of Connecticut 2 was so badly damaged that it did not make a single ear. I am doing some convergent improvement on this inbred and using Rhoades method of inoculating the seedlings so I can get a similar inbred resistant to wilt." Of the inbreds in the cooperative test the only one seriously affected by rust was 208 in which about 80% of the leaf area was covered by rust pustules. Somewhat susceptible strains were, in order of susceptibility: 211, 30%; 209, 20%; 206, 213, and S283, 10%, the latter had a few scattered pustules on the leaves of all the plants, W. Ralph Singleton.

3. Bacterial blight (Stewart's disease).

Morgantown, W. Va. Lines S54 and 209 very susceptible to wilt; C86 and S42 poor plants, wilt (?) susceptible. Chas. Burnham.

Washington, D.C. At Arlington Farm, resistance to bacterial wilt is of much greater importance than smut resistance. We seem to have universally heavy infections of wilt and susceptible lines are almost completely wiped out. Such was the case this season. Dr. Wiggans' lines 206, 208, and 210 were outstandingly the most resistant. Merle T. Jenkins.

4. Lodging.

Washington, D.C. Lines 206, 208, and 210 looked better than everything else until late in the season. In the heavy storm we had in September, 206 and 210 lodged somewhat, whereas 208 remained erect. Merle T. Jenkins.

Morgantown, W. Va. Lines S283 and 211 no lodging; 206, 208, and 214 some lodging; 210 and 212 badly lodged. Chas.Burnham.

Ames, Iowa. Lodging recorded by grade: 1 = little or none, and 5 very much lodging. Roots and stalks noted separately to determine whether lodging due to weak roots or weak stalks.

Lodging grade				Lodging grade			
Line	Roots	Stalks	Line	Roots	Stalks		
206	3	3	213	2	4		
200	3	2	214	2	2-1/2		
200	2-1/2	3-1/2	s42	2	2		
210	3-1/2	2-1/2	S54	2	3		
210	2-1/2	2	S283	2	2		
212	3	3	C86-34	2	1		
646	-	-		A. A. Br	yan.		

5. Firing.

6. Ear notes.

Ames. Line 209, top leaves burned badly just prior to A. A. Bryan. tasseling. St. Paul. Line 213, some firing; 209, upper leaves rath-

H. K. Hayes. er heavily fired.

1	Ames.				
Line 554 542 5283 C86-34 206	<u>Seed set</u> poor fair fair fair good	Quality poor good good fair fair	Line 209 210 211 212 213	<u>Seed set</u> excellent good good poor fair	<u>Quality</u> fair good good fair poor
208	good	fair	214	very poor A. A. Bi	poor ryan.

St. Paul. Line 211, rather undesirable ears at harvest. H. K. Hayes.

Ithaca.

Ears	Line	Ears
good	209	good
good	210	poor
good	211	good
fair	212	good
fair	213	fair
poor	214	good
	Ears good good fair fair poor	EarsLinegood209good210good211fair212fair213poor214

Obviously these inbreds differ widely in ability to produce sound and well filled ears at Ames and Ithaca. R. A. Emerson.

7. Summary.

The lines most generally resistant to smut are, in order of greatest resistance:- C86-34, 214, 206, S283, S42, 211. Line 208 showed the highest percentage of smut, but in most instances the infection was light and in the tassel only.

In rust susceptibility, line 208 showed the most infec-tion, 209 and 211 much rust, and 206, 210, 212, 213, S42, and S293 some rust.

Bacterial blight was most injurious to lines S54, 209, C86, and S42. Lines 206, 208, and 210 were most resistant. At both Ames and St. Paul, line 209 showed bad firing.

In set of seed, quality of ear, amount of lodging, there was little uniformity.

The following comments are of interest:-

Line 211, "excellent". A. A. Bryan, Ames. Under Arlington Farm conditions, I don't think there is any question but that 208 is by far the best line of the whole lot. M. T. Jenkins. [Lines 206 and 210 were good except for lodging.]

The starred lines [206, 208, 211, 214] I consider good enough for use in crosses with genetic testers. C. R. Burnham.

My choice of these lines would be about as follows, starting with the best: 214, 206, 210, 213, 211, 208, 212. E. G. Anderson.

Line 208, very nice strain, vigorous. Lines S42, S283, 206, 210, 211, 212, 214, desirable types. C86-34 fair, 209 and 213 undesirable. H. K. Hayes.

From all these comments, it would seem that lines 206, 210, 211, 214 have rather wide adaptability and that, where rust and smut are not troublesome, line 208 may prove satisfactory. Sprague, however, reports that at Columbia, Mo., none of the lines have value.

8. Some cooperators have indicated a willingness to test these lines further and to include some of their own. Any of you, whether or not you helped in the test in 1935, who are willing to conduct a test in 1936, will be furnished seed in so far as it is available or can be obtained. If any of you have other inbred strains, thought to be highly resistant to diseases and which might be adapted to a relatively wide range of climatic conditions, I shall be glad to arrange for tests. We shall probably be unable, however, to handle any large number of strains.

VI. Special Notices

1. Manuscripts for inclusion in the proposed collective publication of papers on Linkage in Maize must reach me not later than March 31. (See I, above). Some of the data included in this news letter might well form the basis of short papers.

2. New seed stocks should be received at an early date - certainly by May 1 - so that plans can be made for their multiplication in the Cooperation garden.

3. Those having disease resistant inbred strains of possibly wide adaptability which they desire to have tested this year should indicate the fact at once and send seed by April 1. Those willing to cooperate in making the tests will please communicate with me at once.

Secretary