MAIZE GENETICS COOPERATION

NEWS LETTER

10

March 4, 1936

Department of Plant Breeding Cornell University

Ithaca, \mathbb{N}. Y .

TO Maize Geneticists:-
This letter contains information from many sources, arranged under the following heads:-
I. Collective publication of linkages.
II. General news items. Includes notes on linkage
without data, lists of seed stocks, etc.
III. Linkage data.
IV. Seed stocks received, and those propagated in
the Cooperation garden at Ithaca.
V . Tests of inbred strains for disease resistance.
VI. Special notices.

Most of these reports are given almost verbatim but are not put in quotation marks because in numerous instances they have been somewhat abbreviated and sometimes the phraseology has been changed (without, I trust, a change in meaning). Statements enclosed in brackets, [], are gratuitous comments by your secretary.
I. Collective Publication of Papers on "Linkage in Maize" Perhaps the most important matter presented in this news letter relates to the collective publication of separately headed and signed articles on linkage (see news letters of March 6 and November 30, 1935).

The response from cooperators has been wholly favorable and several have indicated their readiness to contribute to such a series of papers.

Dr. Hanson, representative for the natural sciences of the Rockefeller Foundation, has written as follows:
"Regarding your request to use a small part of the
fund for the publication of brief papers in Genetics,
since this seems to you to be merely using a somewhat
different mechanism than you originally contemplated
for putting this maize material before the geneticists interested, the Foundation will have no objection to a small portion of the funds being used for that purpose. With kind regards, I am

> Cordially yours,
(Signed) Frank Blair Hanson"

Dr. Dunn, editor in chief of Genetics, with reference to our proposal, says:
"I see no danger in this so long as we adhere to the basic rule for publication in GENETICS -- i.e. soundness, significance and permanent value of the material printed, and so long as we are just as free to accept or refuse such papers as any others. I think the publication of such material should differ as little as possible from other papers published; that is, it should not form a separate department of the journal which would constitute a special privilege and might bring resentment from other groups. I think we shall be able to make satisfactory arrangements and suggest that when ready, you send in some sample copy which we can use as the basis for settling form, etc. We go to press on February 15 th (May Number) and thereafter on the first of each odd numbered month. If an arrangement is made, copy can be printed in two months (plus about five days) from receipt of mss. Sincerely yours,

See also suggestions by Jones (news letter March 6, 1935, pp. 19, 20).

Of course, we should not expect to reccive preferential treatment from Genctics, and could not expect our papers to be accepted unless they meet the standards set for that periodical. I am anxious to try the plan this spring. It is obvious that we cannot get material ready for the May issue of Genetics. The July issue goos to press May 1 (I assume from Dunn's letter), and manuscripts should be in the editor's hands some time before that. I ask, therefore, that you send such material as you desire to include to reach me not later than March 31.

Manuscripts should be typed and ready for publication without change. When new genes are involved, a short, concise description of the characters differentiated by them might well be included. Well known genes should not require such treatment. Tables should be presented in summary form. Difforent cultures involving the same kind of data should not be listed separately unless that is essential in ordor to demonstrate significant differences betweon thom. Of course F_{2} and backcross data for coupling and repulsion must be entered separatcly in the tables. A singlo frequency distribution may often be displayed in the text to better advantage than in a table. Tables of data should be accompanied by such discussion only as is essential to mako clear any points not obvious from an examination of the tabular data themselves, or as is necessary to indicate tho relation of the reported observations to other linkage tosts, ctc. The tabular arrangement and headings used in the Linkage Surmary are convenient and I, naturally, think them good.

No limit can be set now to the length of the individual contributions, but, unless a very considerable amount of date are presented, individual papers might well bo kent to not over onc or two pages of printed mattor, and it is my hope that some may be not more than half that long.

II. General News Items

Maize Genetic Cooperation, Ithaca, N. Y. assistant in the Maize Cooperation work.
2. Several glossies received from Hadjinov were crossed
last summer with standard glossies and the seedling progenies have been grown and noted this winter. Pollinations were made by John Shafer and seedling tests by D. G. Langham.

These tests indicate that:-

$$
\begin{array}{ccc}
\text { Hadjinov's glossy }_{\pi} 11 & = & 6 \\
" 11 & =816 \\
" 10 & =813 .
\end{array}
$$

Hadjinov's glossy 5 gave normal seedlings in crosses with glossies $1,2,3,4,6,7,9 ;$ with gl3 it gave seedlings normal in appearance but which exhibited the behavior of glossies in holding sprayed water; it was not tested with glossies 5 and 8. Hadjinov's glossy 7 gave normal seedlings in crosses with glossies 1, 3, 4, 6, but has not been tested with glossies 2, 5, 8, 9. Hadjinov's glossy 8 has not been adequately tested.

In the records of Cooperation cultures, I find these notes by Rhoades:- "Hadjinov's 3 is possibly the same as glz since it is linked with su", and "Sprague reports that Hadjinov's 10 is allelomorphic to Stadier's glc".

Cornell University, Ithaca, N. Y. -

1. Corrections to the linkage summary (Cornell Memoir 180):-

Page 13. Delote the gllo (see news lotter November 24, 1934). We missed this in proof reading.

Page 25. Tho stock of Demorec's w4 having been lost, W4 was assigned to a white scedling found by Lindstrom to belong to group 4 (see Linkage Summary, p. 46).

Pago 57, table 18. Glı $I j$, second Iinc, read 11 not 1.1 per cent.

It will be helpful to all of us to havo any other corrections called to my attention, so ploase sond them on and observe my excellent imitation of pleasure.
2. To get for chomical studios material of the several
plant color types with as uniform a genetic background as possible, I have tested the germination of seed samples stored in my cascs for seven years. A brown plant, al BPl, was crossed with a dilute sun red, $A_{1} b \mathrm{pl}$, inbrod strain, and a brown from F_{2} of this cross was backcrossed to the same inbred strain. Ears of the several color types of F_{2} of this backcross wore testod. Four ears of purple, Al B Pl, avoraged 4\% gormination, while 14 cars including some of cach of the other color types, namoly, sun red, dilutc purple, dilute sun red, brown and green, averaged 95\% germination. The obscrved difference between purple and the
other color types is interesting, but probably without significance.

The seedings of all color types, however, gave striking evidence of the effect of age. Normally the primary roots of germinating seeds show before the plumules do and grow more rapidly for some time. In most lots of this old seed the plumules showed before the primary roots did, and in one lot that germinated 100% no primary roots were visible at any time, but secondary roots started after the plumule was one-half inch or more long. Moreover, many seedlings died after being potted in good soil. of seedlings from lots ripened last summer, tho germinated two weeks later, and planted in the same soil, none have died and the lot as a whole is now (a month after planting) two or three times the size of those from old secd. This is so similar to Randolph's results in germinating seed and growing seedlings from kernels subjected to high temperatures while dormant as to make the problem seen worth further study.

R. A. Emerson

3. Quantitative studies on the frequency of chromosome doubling in corn secdlings troated at different temperaturos for varying periods of time indicate that 20, 40, and 80 minute treatments at 360,380 , 400 and 420 C arc offcotive in producing a markedly increased frequency of tetraploid sectors in the roottips and stom-tips, more mutant sectors bcing produced in the roots than in the stoms of the same treatment. Negativo results werc obtained from a study of the persistence in the mature plants of tetraploid sectors induced by heat treatment of the germinating secd. Over 300 plants werc included in the experiment and no totraploid cars or ears with tetraploid sectors, as determined by applying pollen from tetraploid plants to the treated plant and noting the set of sced, were obtained.
4. Heat treatmonts of diploid corn, barley and einkorn in early onbryogeny and in tho seedling stage induced an increasod frcquency of segregating mutant scedling typos differing from the normal either in growth habit or morphology or in the amount of chlorophyll developmont.
5. Inbred stocks of totraploid maize after four generations of selfing have good vigor, reasonably good uniformity, and in some cases an increasc in fertility over the original parental totraploid stock. Tctraploid strains of commercial ycllow corn arc being tosted in cooporative bionchomical and animal assay experiments to dotorminc their vitamin A potency. Since the tetraploid yollow maizo cndosperm has six doses of Y rather than three as in tho normal diploid yellow corn the vitamin A potency may bo twico as great in the former as in the lattor.
6. The toleranco of dormant seed to hoat treatment variod with the moisture contont of the seed. Corn and barley seod with 24 per cent moisture was killed with one 30 -minute treatment at $100^{\circ} \mathrm{C}$. With a reduction of moisture content to 9 per cont the sced was not injured by a 30 -minutc treatment at 1000 C , but after 50 minutes germination was only 30 por cont, and aftor 2 hours only 10 per cont of the seed germinated. Scods with 5 per cont moisture germinated perfectly after 2 hours treatmont at 1000 C , but were killed after 30 minutes at $115^{\circ} \mathrm{C}$. Seeds with 2 per cent moisture, the reduction in moisture content being accomplished by drying approximately 3 weeks at $60^{\circ} \mathrm{C}$, germinated well after 30
minutes at $115^{\circ} \mathrm{C}$, but only 10 per cent germinated after 60 min utes, and 30 minutes at 130° C killed all of the seed. The corn seeding's from the sub-lethal dosages at the different moisture contents were weak and chlorotic, many failing to survive, but the development of normal green color was not similarly altered in the barley seedlings.
7. In further studies on the B-type chromosomes in maize the number in individual plants has been increased to 32-35, with no marked decrease in plant vigor but with an appreciable decrease in fertility arnong these extremely high numbered B-type plants. Both Florida and Durango teosinte occasionally have Btype chromosomes which are morphologically identical with those in maize, and exhibit the same synaptic behavior and breeding relationships. Plants of Florida teosinte with 5 B-type chromosomes and plants of Durango with as many as $10-1$? have been obtained by inter-crossins plants with lower numbers. From an extensive survey of chromosome morphology in various stocks of maize and teosinte, primarily for the purpose of determining the origin of the B-type chromosomes, an extremely wide variation in prophase morphology in different stocks has been noted; maize stocks with as many as 13-14 sizable knobs and others with as few as 1 or 2 have beon discovered, also Durango and Florida teosinte stocks with very $f e w$ and other stocks with numerous knobs. However, a careful search for a chronosome arm in these diverso stocks similar to or identical with the B-chronosome has been fruitloss thus far. This suggests that the B-chromosome may bo a composite of several parts from different regions of the same or different A-chromosomes.

I. F. Randolph

8. Mosaic plants in part heterozygous and in part homozygous for a chrorosome 5 deficiency. - Breakage in tho spindle fiber insertion region of chromosoinc 5 resulted in two chromosomos, one a deficient rod-shaped chromosome and tho other its rociprocal, a ring-shapod chromosone, each with an insertion region, the two equivalent genomically to one chromosome 5 (INClintock, Proc. Nat. Acad. Sci., 1932). Two such cases were described. In one case, known as the large doficiency largo ring, the ring involved approximately one-sixth of the length of the chromosome, including the locus of Bml. In the other casc, callod the small doficioncy small ring, the ring involved about one-twenticth of tice longth of the chromosome and also included the locus of Bm_{1}.

It has boon found that the small deficiency can function through the eggs without the small ring boing presont also. Pollen having the large deficioncy plus the large ring-shaped chromosome (the full genomic complenent for chromosome 5) can function as well as normal pollon with an intact chromosome 5. Then two such gametes fuse, an individual having the small deficiont chromosome, tho large deficient chromosome and the large ring-shaped chromosome is produced. As stated in the above publication, loss of the ring-shaped chromosome occurs in some mitotic divisions. In the plants resulting from the described cross, the nucloi and thus cells which arise after such a loss of the ring chromosome will be homozygous deficient for the arnount of chromosome represented by the longth of the small deficiency. Such plants should
be therefore, a mosaic of heterozygous and homozygous deficient tissue if cells whose nuclei have undergone the loss of the ring chromosome can continue to propagate thernselves. It was known that the heterozygous deficient tissues do not vary noticeably from non-deficient tissues. If, in these plants, the homozygous deficient tissue is viable and if the homozygous deficiency alters the structure of the cell, streaks of altered tissue should be detectable. Streaks of altered tissue were vory obvious in the leaves of such plants. A histological study of the nature of the alterations is being conducted by Mrs. Lucy Abbe. From the appearance of the homozygous deficient tissue it is probable that such tissue would be inviable if not surrounded by normal tissue. The original "double-deficient" plants were obtained by crossing plants having a normal chromosome 5 with bmy, a deficicnt chromosome 5 with no lucus for $B m y$ and the ring chromosome carrying Bmy. The "double-deficient" plants were all Bmy except one plant which was variegated for Bray and bmy. The introduction of the bmy loous of the normal chromosome 5 into the deficiont chromosome is belicved to have occurred as the result of a non-homologous crossover between the normal and deficient chromosomes with a resulting shift in the position of the deficioncy (as described by Stadler in the Amer. Nat., 1934).
9. Several inversions, two involving sections of chromosome 9 and one involving a section of the long arm of chromosome 4 , have been detected and isolated by Niss Croighton and mysclf. One of the inversions on chromosome 9 should climinate single cross-overs within the short arm of this chromosome, although the tests have not been completed.
10. Disjunction studies on interchanges have shown that sistor spindle fiber regions do not separatc in I, that crossingover between the spindle fiber and the break is followed by disjunction of homologous spindle fiber regions, that the passage of two homologous spindle fiber regions to the same pole in I is incroased whon the crossing-over is decreased, and that whether 4 or 6 types of spores will be formed and their proportions dopend upon the relative distances between the spindle fiber regions and the breaks coupled with crossing-over in these rogions.
11. Data from crosses of Florida teosintc with maizc, backcrossed to maize, showed little or no crossing over in the short arm of chromosome 9 , but between $w x$ and v_{I}, there was from 6.4% (Creighton) to 40% (Allon) of crossing avor. Sylvia M. Allen and Harriet B. Creighton
12. An inbred strain of yellow dont corn, which, after having been selfed for nine generations, has beon propogated by sibcrossing or mass pollination for three years, has given rise to two striking mutations, namely, yellow to whitc endosperm and normal stature to a slondor dwarf type. All the white endosporm kornels germinate prematurely.

> R. G. Wiggans

University of Minnosota, St. Paul, Minn. -

1. I have been studying an abnormal tassel type that I propose to call ramose tassel. It gives some variation in car type. Some strains show crooked rows and generally a fow sterile male
florets on the tip of the ear. In other cases the upper half of the ear is divided somewhat like ranose-1. In crosses, however, either of these types can be separated from ral with considerable accuracy. Iinkage studies of ramose tassel were made last year using F2 data from crosses with representative genes of the ten groups. It is linked with nal ory and py in group 3 [py is in group 6]. It has occurred to me that this may be the same factor or an allelomorph of raz reported by Brink but not published. [Brink's Iinkage data (Iinkage Summary, pp. 41, 42) give al-raz 51% and ra $-\mathrm{Rg} 34 \%$ recombination $]$
2. I note your statement [Linkage Summary, p. 12] that floury is difficult to classify in many stocks. I have had no difficulty except where some of the virescent seedlings were concerned. I classify commonly over a ground glass with light undernea.th.

> H. K. Hayes.
U. S. Dept. of Agric., Cereal Crops \& Diseases, Arnes, Iowa 1. A branched car was observed in Fz (1923) of the station strain of Reid's Yellow Dent. It appears similar in all respects to the one described by Kempton as branched silkless, bd, and was reported by Rhoades (Maize letter, November 24, 1934) to be allelonorphic to that gene. F2 data involving bd with two other genes show it to belong to group 7. [The data (sec III, below) seem to place bd to the right of ij, near BnI. Hadjinov's data (Iinkage Sumnary, p. 57) give about 36% recombination between his bd and Bn_{1}. His bd has not beon tosted with oither Bryan's or Kempton's.]
2. A character similar to Brunson's cuzcoid was found in F2 of the variety Krug in 1934. It tasselod vory late but producod no car shoots. It had about 50% more nodos than normal corn. It apparently is controlled by a single recessive gene.
A. A. Bryan
3. The study of tho factor interaction of a_{1} and $D t$ has been continued (see maize lettor of November 24, 1934). On the basis of rather extonsive counts the ratio of the average number of dots on sceds of $a_{1} a_{1} a_{1}$ Dt Dt dt to the avorage number of dots on seeds of al al al Dt Dt dt constitution is 3:2. The ratio for seeds of al $a_{1} a_{1} D t$ dt dt to al $a_{1} p a_{1} p$ Dt dt dt constitution is $3: 1$. Since in the comparisons the Dt genc is hold constant while the dosage of al varies, it is apparent that the offect of increasing tic dosage of recessive al, as indicatod by the avorage number of dots, is an arithmotic one. In reciprocal crosscs between two closely related lines (a1 $a_{1} d t d t \quad x \quad a_{1} a_{1}$ Dt Dt) the ratio of the average number of dots on soeds of Dt Dt dt to sceds of Dt dt dt constitution was 4:1. Some data have also been obtainod on tho numbor of spots of Dt Dt Dt constitution. Thesc data indicato that the effect of increasing the dosage of Dt may be geometric.
4. Furthor study with the chromosone 5 fragmont (see maize letter of November 24, 1934) has placed the following genes in tho long arm of chromosome 5: v_{2}, ys, pr, v_{12}, v_{3}, and bt. Tho loci of a_{2} and bm_{1} are in the short arm of chromosome 5. The fragment chromosome, which is composed of the short arm of chromosome 5 and has a terminal insortion region, occasionally passes
through the pollen. In the progeny of a selfed fragment plant there occurred an individual with the normal complement of 20 chromosomes plus two fragment chromosomes. In genetic constitution and appearance this 22 chromosome plant was identical with the secondary trisome found several years ago in which the single supernumerary chromosome was composed of two short arms of chromosome 5. Plants having a single fragnent chromosome were studied at pachytene. As reported before, the fragment pairs with the two normal chromosomes 5 in approximately half the cells. It was occasionally observed in those cells where the fragment was unpaired that the terminal insertion region presented the appearance of being split. This observation may have some theoretical importance since some of the prevalent theories of meiosis assume that the reason the spindle fiber region undergoes a reductional division in the first meiotic anaphase is that the division of the insertion region is delayed to a late prophase stage while the split of the chromosome thread occurs in the early prophasc stages.
5. An inbred strain gave in $F 2$ approximately 65% luteus secdings (again see maize letter of Novomber 24, 1934). The genotic constitution of this line was $\frac{s p+1}{+1}$ with about 2 per cent crossing over between the sp and l loci. These two genes have been linked with factors in chromosome 10 . Thoy are very close to 81 and give about 20 por cent of recombinations with R. The lutous gone is designated as $I g$ and the small pollon gone as sp2. Sced available.
6. A triploid individual occurred in a cross of $\mathrm{gl}_{1} \mathrm{x}$ ws 3 . The constitution of the triploid was $\mathrm{Gl}_{1} \mathrm{Gl}_{1} \mathrm{Sl}_{1}$ Ws Ws_{3} wis 3 which suggests that the diploid number of chromosomes was contributed by the pollon parent.
7. During the harvesting of the ficlds in the Iowa Corn Yield Test several ears were found which had, to the writer, the appoarance of triploid cars. Root tip counts of the progony substantiated this hunch.
8. Half the plants in a small F_{1} progeny of an R-g-li stock x Florida toosinte had narrow leaves, an unusual typo of chlorophyll striping, and brown midribs. Neither of the parents showed this character. It secms possible that we have here a case of factor interaction botwoen Zea and Euchlacna gencs. Several. crosses were made betwoon the R-g-li stock and Florida teosinte and only onc of tho F_{I} progonies showed this now character.
9. In the progeny of a plant trisomic for chromosome 6 thore occurred an individual with 20 chronosomes plus a fragmont composed of tho long arm of chromosome 6. Tho insortion region is apparently torminal. Studies of the disjunction of the two normal chromosomes 6 and the fragmont, utilizing the technic of McClintock in studying the number of nucleoli in the quartcts of microspores, showed that in 2.4% of the casos the fragment chromosome went to one pole and the two normal chromosomos to the othor pole. In tho remaining cases the two normal chromosomes underwent disjunetion.
10. Studies of some of the Iowa inbred lines showed that in those inoreds which are poor pollon producers there was a considerable number of unpaired chromosomes at Metaphase I. These unpaircd chromosomes undoubtedly cause some of the sterility
found in these lines. Fertile inbred lines showed fewer univalent chromosomes. In the "sterile" inbreds the pairing pachytene was perfect and the unpaired homologous chromosomes showed at diakinesis an orientation to each other because of this earlier association.
11. In a selfed line homozygous for all the dominant aleurone factors there occurred seeds with colorless areas of varying size (Anderson had a similar character several years ago. He called it "Bald" aleurone.) The explanation for the appearance of colorless areas in this line is due to the failure of formation of the aleurone layer.
12. New stocks:

$$
\begin{aligned}
& T p-g 1_{1}-v_{5}-r a \\
& \mathrm{a}_{1}-\mathrm{Ig}_{2} \mathrm{Dt} \\
& \mathrm{a}_{1}-\mathrm{na}_{2}-\mathrm{ts} 4 \mathrm{Dt} \\
& \text { pr-bm1-a2 (probably) }
\end{aligned}
$$

13. Studies with PVV and sm indicate that intensity of salmon color in silks depends upon amount of variegation on the ear. The silks have a uniform color, not variegated.
14. Golden-1, gl, though not identiliable by external appearance, can be classified accurately in the seedling stage by cutting off the seedling stalk just above the ground. Golden-1 seedlings have a distinct golden color in cross section while nongolden ones are clearly green.

M. M. Rhoades

Agr ${ }^{11}$ Experiment Station, New Haven, Conm. -

1. We are informed by Eyster that his opaque- 3 is the same as our on . Eyster reported o_{3}, in chrom. $\bar{y} /$
2. A maternal stripe has been obtained from a series of Sweepstakes inbreds. It is more vigorous than those obtained by Demerec and Anderson.
3. The dwarf reported in maize letter of November 24, 1934 is not d_{1}. It segregates well and is viable but never produces an ear or even pollen at New Haven. Seed available.
4. The adherent reported in the same news letter is not ady. Viability good.
5. Seed of a stock of trisomic chromosome 4 is available.
 centages as follows:- $\mathrm{o}_{2}-\mathrm{E}_{1} 1$ 27, o_{2} - ij 37 .

$$
\text { Another } F_{2}, 323 \text { seedlings, of } \frac{0_{2}+}{+g_{1}} \text { gavo } 22 \% \text { crossing- }
$$

over. Backeross data, 453 plants, give 17% orossing-over botween o_{2} and $r a_{1}$. These date, indicate that o_{2} is to the left of v_{5}.
7. We apparontly have two complementary factor pairs for yellow endosperm. I have tentatively designated ono of thom Y_{4} and the other It (intensifier). I have only one stock of $\mathrm{Y}_{4} \mathrm{Y}_{4}$ it it, but It is carried by several white stocks, in fact, all so far tested except one autester. It might be an allolomorph of A. FI seed of the cross $Y_{4} Y_{4}$ it it $X \quad Y_{4} y_{4}$ It It is all yellow. The F_{2} ears segregate fairly well into a $9: 7$ ratio for yellow and white, showing several intensities of yollow. I do not think the stock of $Y_{4} Y_{4}$ it it is the same as Y_{1}. It is
much lighter in color and shows segregation well only in very flinty corneous stocks. The intensifier stocks, y4 y4 It It, also intensify the yellow color of Y_{I}.

W. Ralph Singleton

University of Florida, Gainesville, Fla. -
(ul1 1. A few years ago an inbred ear segregated sharply (3:1) almost 100\% white seedlings and the others produced nearly all greon seedings. Brunson reported something similar, I think. 2. A first year inbred ear of Cuban Yellow Flint segregated sharply red and green seedlings and a range of intensity of yellow ondosperm. The seeds were arranged in order of endosperm color and the darker $3 / 4$ planted soparately from the lighter $1 / 4$. On this classification crossovers with anthocyanin were about 20%. The stock was grown through two more generations with selection of cars giving lossor crossing over and the crossovers reduced to about 10\%. The reduction was attributed to solection for sharper segregation and more accurate classification of endosperm color. The anthocyanin difference was indicatod at the R locus by outcrosses to Corncll aleurone tosters.

Fred H. Hull
California Institute of Technology, Pasadena, Calif. -

1. Data on striate and interchanges place sr betweon P and br.
2. Summary of map positions of interchanges in chromosomes 1, 3, 9 and 10. Part of this is a repetition of what I sent last year.

Chrom. $\frac{1}{\text { Left of }}{ }^{-}$
order $\mathrm{T}-\mathrm{P}-\mathrm{sx}$ with 6% crossing over betweon T and P . Near P, order uncertain, $1-2 b, 1-9 c$. Between P and br 1-3a, 1-5b, 1-5c, 1-9a. Near br 1-3d, 1-7b, 1-7c, 1-9b, 1-1.0a. Between br and bm2 1-5a, 1-4, 1-7d.

Chrorm. 3 -

Between a and na $2-3 \mathrm{a}, 3-5 \mathrm{c}, 3-5 \mathrm{~b}$. Nearer ts 4 1-3a, 2-3b, 3-7a, 3-8a, 3-9a, 3-10a, 3-10b. Probably beyond ts 4 but order uncertain 3-10a, $2-3 \mathrm{c}$, $1-3 \mathrm{~d}$.

Beyond $\mathrm{ts}_{4}(27.2 \%)$ 3-7b.
Chrom. 9-all tested are beyond waxy.

$1-9 a$	Ocrossing over
$1-9 b$	9.2
$1-9 c$	12.7
$2-9 a$	30.7
$2-9 b$	7.5
$3-9 a$	3.6
$4-9 a$	25.1
$4-9 b$	3.1
$6-9 a$	9.5
$6-9 b$	3.7

No. of backcross plants
505
237
505
628
608
426 (2 groups of data 31.0 and 11.6)

193
610
731

$8-9 b$	35.0
$9-10$	about 3.5 (estimated from combined $w-T$ and $T-R$ intervals)

Chron. 10 -crossing over with golden-1 (left of G1)
$1-10 \mathrm{a}$
2-10
$3-10 a$
$\begin{array}{rr}3-10 a & 15.4 \\ 3-10 \mathrm{~b} & 20.0 \\ 3-10 \mathrm{c} & 7.0\end{array}$
$6-10$
$8-10 a$
$8-10 b$
8-10c 22.8
$4-10 \mathrm{~b}$ (near 51 , order uncertain)
9-10 (Right of R)
3. Summary of map locations of interchanges on chromosome 2. Combined data of Clokey and Anderson.

Near B 2-6b, 2-9a.
Between B and $v 4$ i-2b, $2-3 c, 2-8,2-3 d, 2-10,2-4 a$, $2-7 b, 2-9 b$.

Far right of B but not yet tested with $V_{4} \quad 2-7 c$.
Near vi $2-4 a, 2-4 b, 2-5 b, 2-7 a, 2-7 b$.
Beyond $\mathrm{v}_{4} \quad 2-4 \mathrm{c}\left(\mathrm{v}_{4}-\mathrm{T}=35\right)$.

> E. G. Anderson

University of Bueno Aires, Buenos Aires, Argentina -

1. In Garrapata corn from the Province of Salta in Amgentina and from Bolivia, spotted aleurone is due to a dominant I modifier giving mottled aleurone.

Mottled x a and c testers gives self color
Mottled X r testers gives mottled F_{I},
but in F_{2} some colorless kernels appear. The modifier is independent from pr and from a and c but seems to be linked with r. The r modifier is designated Mr . The backcross: $\mathrm{I} \mathrm{Mr} \mathrm{Pr} / \mathrm{m} \mathrm{mr}$ pr x r mr pr gave

Mottled purple	66
Mottled red	59
White	$\underline{126}$
	$\mathbf{2 5 1}$

[Mr has been used by Kvakan for midrib (Linkage Summary, p. 15) but the stock has bon lost. Seeds sent look like "stipplod", which is cither an allolomorph of r or very closely linked with it?
2. Six "glossies" were obtained from select Amargo and other varieties. They are designated temporarily by the following symboils:
glia Same as gl_{2}
gl $33 b$ Different from $g 1_{1}, g_{2}, g_{3}$, and $g_{3} l_{3}$.
gli34a From sample of floury corn from Humahuaca (Jujuy, Argentina), different from gl_{1} and gl_{2}
g134b From a yellow flint; being tested with other glossies.
gl34c From the Arargo variety; different from gl_{2}.
3. A barren-stalk type was found in the stock of g134c.
4. A liguleless stock was found in Amargo corn. A planting
of 100 selfed seeds gave 56 green and 28 lethal white leaf base seedlings. Of the normal green plants that lived to the age of three months, 28 had normal and 20 had liguleless leaves. This is at present designated 1834a.
5. A selfed plant of Amargo produced, from 50 seeds, 22 normal plants and 7 dwarf plants with bifid leaves and the midrib prolonged into a conspicuous awn, like the flowering glume of Aveneac. The character is called aristifolia and its genctic symbol is given as af. The aristifolia character is not known in grasses, so far as I am aware, except in a small genus of Mexican grasses (Jouvea), the taxonomic position of which is uncertain.
6. Lazy, la.34a, appeared in tho progeny of a selfed plant of the varicty, "Kaiz Canario de 8 filas", which consisted of 47 normal and 15 lazy plants. Has been crossed with su glz.
7. Siamonsis, $s n$, is a recessive charactor of variablo exprossion obtained from an Anargo strain. Of tho double seodings, the "paracito twin" aborts carly in some instances, leaving normal appoaring individuals. A homozygous strain of sn exhibited. the following typos:

$$
\begin{aligned}
& \text { Secdlings with markod duplications }-12 \\
& \text { Seedlings with different abnormalitios }-32 \\
& \text { Seedling normal } \quad \text { I. }
\end{aligned}
$$

\%. Male steriles: A male sterile, ms_{33}, from a strain of maizo from Tabacol (Salta, Argentina) givos a sharp 3:1 segregation. Another, ms 34 , from Hunahuaca (Jujuy, Argentina) is linked with alcurone color. The stock is segregating for R r.
9. Tasscl seed, ${ }^{t s} 34$ a, has been found in a yollow flint from San Luis, Argentina.
10. Germiess scods, gm33a, from a selfed car of Pianontés, a flint corn, had 112 normal and 30 germless kornels.
11. Silky, si $33 a$, came from the same Piamontés strains. S. Horovitz

Instituto Agronomico de Campinas, Sao Paulo, Brazil -
Attontion is called to a bulletin from Brazil: Effcitos da primeira autofecundacao em tres variedades de milho. Tochnical bullctin \#19, p. 19, with 37 photographic illustrations (five colored plates). Published in Portuguese with an abstract in English, as follows:
"The Genetics Department of the Instituto Agronomico started in 1932 a largo maize breeding project based on the production of pure linos to be used for hybrid seod production. Over 3000 vigorous plants of 3 main commercial varicties wero solf-fertilizod and part of tho seods of 1812 selected inbred ears was planted out for further selfing. In this paper the author describes some of the more prominent variations found arnong the selfed cars and also in the progenios. Most of thesc off-typos arc compared with similar variations worked out by American geneticists. The variations described here are: (1) premature germination of the sceds on the cars; 2) several casos
of defective endosperm; 3) endosperm color (yellow-white); 4) mealy endosperm; 5) Aleurone colors; 6) Pericarp colors; 7) white seedlings; 8) yellow seedlings; 9) zebra striped seedlings; 10) virescent seedlings; 11) pale green seedlings; 12) zebra striped leaves; 13) several kinds of striped leaves; 14) oily spots; 15) several kinds of dwarfs; 16) narrow leaves; 17) crinkly leaves; 18) ramosa (?); 19) rolled leaves; 20) ragged (?) ; 21) branched ear; 22) several kinds of abnormal sex distribution: male and $f e-$ male plants, extreme cases of 'tassel-seed', etc. -- It is the author's intention to exchange seeds of his genetic material with American geneticists in order that some of the supposed new variations may be conveniently worked out and their genes be located in the maize linkage groups".
C. A. Krug

University of Zagreb, Jugoslavia -

1. Attention is called to a recent paper dealing with the inheritance of number of kernel rows in maize (Tavčar, Alois Beitrag zur Vererbung der Kornreihenanzahl an Maiskolben. Zeitschrift fur Züchtung, Pflanzenzuchtung, 20: 354-376. 1935). A 4 -rowed type is described and its genotype is assumed to be RwI Rw_{1}. Crosses of 4 -rowed with 8 -rowed forms exhibit monohybrid F_{2} and backcross ratios. To the genes differentiating these two forms are assigned the symbols $R w_{2} r w_{2}$. 4-row $=R w_{1} R w_{1} r w_{2} r w_{2}$; 8 -row $=R w_{1} R w_{1} R w_{2} R w_{2} . \mathrm{Rw}_{1}$ and $R w_{2}$ are inherited independently of each other and of P and Y_{1}^{1}. [Since, on the author's assumption, Rw 1 is homozygous in both the 4 rowed and S-rowed types used in these crosses, no evidence is presented for the independence of $R w_{1}$ from $R w_{2}, P$ and Y_{1}. Of course $R w_{1}$ could be used a.s a symbol for the residual genotype of a rowed form, but there seems no more need for such a symbol here than in many other cases $]$
2. Four-rowed ears have two rows of kernels on either side of the cob, the two pairs of rows being separated by smooth areas (rachis without palcac). It is necessary to distinguish between palea and rachis color as well as between these and pericarp color, all of which bolong to the P allelomorphic series. Ten genotypes have been found, as follows:

Genotype (with A)	Poricarp color	Palea color	Rachis color
prrr	red	rod	red
Prrw	1	"	white
Prwr	"	white	red
PTWV	"	"	white
Pwrr	colorless	red	rod
Pwrw	I	11	white
PWWY	"	whitc	red
PWWW	${ }^{\prime \prime}$	"	white
Porr	orange	red	red
Poww	1	white	white

An account of this series will probably be published in Zeitschrift fur induktive Abstammungs - u. Vorerbungslehre.
A. Tavçar
$\frac{\text { John Innes Horticultural Institution, Merton Park, London }}{\text { I. There is pronounced indication of linkage between a }}$ gene for fasciated ear and white endosperm. the majority of the F_{1} plants were not-golden not-fasciated but were japonica. F? segregation was normal for the first genes but gave 89 japonica in a total of 189 plants. When japonica was crossed with dwarf-3 all FI plants were green, not japonica. 3. In a cross between a line with coloured aleurone and rr lines, four alleles of R could be distinguished by their different effects on aleurone colour. Otherwise the plants were of the constitution AA CC bD PI PI. At least one of the R alleles involved seems to be a cherry allele. Two alleles were the normals, at present designated R and r. A third may be identical with the allele recently discovered by Rhoades, and designated here r^{\prime}. The fourth is a very weak dominant called R^{\prime}. The four heterozygotes when selfed gave

$$
\begin{array}{ll}
\mathrm{Re} & 25 \% \text { colourless } \\
\operatorname{Rr}: & 35 \% \\
R^{\prime} & 50 \% \\
R^{\prime} r^{\prime} & \text { mostly } 66 \% \text {, in one } \\
& \text { case } 75 \% \text { colourless }
\end{array}
$$

It seems possible to obtain colourless R^{\prime} homozygotes by sclection of modifiors. The ratios 63:1 aftor selfing and $1: 7$ after backerossing seem to indicate the presence of at least three complementary recessive modifiers.
4. The intensity of aleurone colour in the crosses mentioned under (3) depends upon two complementary modifiers giving 9 decp to 7 pale after selfing.
5. A large set of deta was analysed with the help of efficient statistical methods in order to see how many ratios were disturbed by linked gones for pollon tube competition. Indications of such competition have been found in connection with the following segrogations:
purple-1 and brittle-1 (see 6 below) Brioger
deep and pale aleurone yollow-white endosporm deep-pale yellow endosporm c and $s h$

Tidbury Tseng.
6. The distance botween pr_{1} and bt_{1} has boon found to be 17. 5%. The gametophyte fector gaz is located botween pr_{1} and ${ }^{b t_{1}}$ about 12.8 units from pr_{1} and 4.7 units from bt_{1}. The amount of climination in $\mathrm{Ga} / \mathrm{ga}$ heterozygotes has been found to vary and has boen studied in both types of heterozygotos, i.e.

$$
\frac{\mathrm{Pr}_{1} \mathrm{Ga}_{2} \mathrm{Bt}_{1}}{\mathrm{pr}_{1} \mathrm{ga}_{2} \mathrm{bt}_{1}} \text { and } \frac{\mathrm{Pr}_{1} \mathrm{ga}_{2} \mathrm{Bt}_{1}}{\mathrm{pr}_{1} \mathrm{Ga}_{2} \mathrm{bt}_{1}}
$$

The data vary round the moans $5 \%, 15 \%$ and 40% instead of the expocted 50\%.
7. Random pollination of unprotected plants has beon found to be of rare occurrence in the experimental plots both at Borlin and Morton. Sclfing predominated if unrelatcd lines which, howovor, flowored ncarly simultaneously, were interplanted. Random pollination was found only if the plants wore nearly idontical in composition.
8. Experiments on earliness and yield were started in order to find types well suited to the English climate. A number of varieties were tested in randomised blocks. The plants were sown in three lots. The variation within each lot was very small. plants sown on April 17th and planted out in May were far the slowest, those sown on May 21st and planted out on June 14 th were quicker and needed about two weeks less. Plants sown in the field on June 5 th gained another seven days. The differences between the varieties were partly very significant. I am convinced that part of the failure in the cultivation of maize in Northern Europe is due to the fact that the seeds are sown too early and kept too long in pots.
9. A fairly large coupling $F 2$ of $C \mathrm{Sh} / \mathrm{C}$ sh and I Sh / C sh has been produced (9053 grains in the first and 7226 in the second case) to see whether there is any significant difference between the recombination values. All the data from the individual ears as well as the totals form a homogeneous sample around the cormon mean of 5.1%. A backcross for $\mathrm{C} \mathrm{Sh} / \mathrm{c}$ sh gave 4.3% in 6548 . The difference between all F_{2}^{\prime} 's and the backcrosses is just over twice the error. Experiments will be made to test reciprocal backcrosses.
F. G. Brieger

Honan University, Kaifeng, Honan, China -

1. A white waxy strain of maize from the province of szechuan was crossed to al y PI, white seeded of course. The $\mathrm{F}_{1}{ }^{\prime}$ s were all yellow seeded. F2 gave 146 yellow and 87 white, a case of complementary factors. Linkage tests are in progress.
2. From selfed strains of corn collected from Honan Province, one ear was found to have prematurely germinated seeds that seem to be linked with y. On selfing again one ear was found to have 159 yellow and 59 white seeds. All the white seeds had germinated on the cob. This may be a case of complete linkage. Progress is being made to ascertain this.
H. W. Li
III. Linkage Data
3. Four-point tests, group 2. I. T. Clokey

$$
\frac{+\quad+++}{\lg _{1} \mathrm{gl}_{2} \mathrm{~B} \mathrm{v}_{4}}
$$

2. Trisomic and backeross tests, group 2, involving albescent, liguleless-1, and yollow endosperm. H. S. Perry F_{2} data from the cross of $4{ }^{2} 2$ trisome carrying $1_{g_{1}} \times$ al show that al is in chromosome 2.

The suggestion of close linkage between al and lg_{1} seers to be confirmed by a diploid F2 progeny, as follows:
$++$
101

$$
+l_{1}
$$

al +
a. $\lg _{1}$
$\%$
$1 \mathrm{~g}_{1}$
26.2
\% 1
22.1

$$
\text { Per cent crossing over }<15 \text {. }
$$

F2 progenies involving Y_{X} and al have indicated close linkage between these two genes. Backcross counts confirm this linkage, as follows:

$$
\begin{array}{cccc}
\text { Yellow } & \text { Not yellow } \\
\text { AI } & \text { a. } & \text { AI } & \text { al } \\
186 & 0 & 0 & 169
\end{array}
$$

Two seedlings from seeds with yellow endosperm and one from non-yellow, are still too small to classify. 3. Two-point tests, group 7. A. A. Bryan

[All three genes involved in the same F_{2} cultures.]
4. Three-point tests, group 7 .

5. Four-point test, group 7. I. W. Clokey

Normal and semisterile (T) plants considered separately:
 The large difference in per cent of crossing over in the two cases is unexplained.
6. Three-point test, group 10. V. Rhoades

$\mathrm{Rp}+\mathrm{t}$	108107	74.68	$20 \quad 16$	
+ g1 R		34.6%	8.8%	4.1\%

7. Linkage Data for Chocolate, group 2. (?)
$\begin{array}{lllllllll}\text { Ch } & V_{4} & C B & 71 & 66 & 42 & 76 & 255 & 42 \%\end{array}$
I have some later material of the same sort for more data.
With a2 [Chrom. 51 I had only F_{2} material (furnished by Clokey, segregating also for c, r), but it gives absolutely no indication of linkage. Chas. Burnham.

Some miscellaneous linkage data with Ch are all negative. The earlier indication of linkage with $T 5-7 C$ is washed out with further data. E. G. Anderson.
[See discussion in Linkage Surmary, p. 51.]
IV. Seed Stocks Received

1. M. M. Rhoades, Anes, Iowa:- Stocks involving Eyster's Y_{2}.
2. H. K. Hayes, St. Paul, Kinn.:- v2l (chrom. 8).
[Records Genetics Soc. Amer. No. 4, 1935. Abstract.]
3. J. H. Kempton, Washington, D.C.:- Annual teosinte from Lake Ratuna in Southern Guatemala.
4. M. T. Jenkins, Washington, D.C.:-
la. su $\frac{\mathrm{Tu}}{\mathrm{tu}} \mathrm{tu} \mathrm{S}_{3}$
Homozygous $A_{1} C R a_{2}$ bt bv pr (This bt stock gives good field germination.)

Same as above, but segregating $\mathrm{V}_{2} \mathrm{~V}_{2}$.
Homozygous $A_{1} \subset R A_{2}$ bt Dv pr
$\frac{\mathrm{fr}_{2} \mathrm{gl}_{1} \mathrm{ij} \mathrm{fr}_{1}}{+\quad \mathrm{f}+\mathrm{fr}_{1}} \times \mathrm{fr}_{2} \mathrm{gl}_{1}$ ij fr_{1}
$\frac{\mathrm{fr}_{2} \mathrm{gl}_{1} \text { ij } \mathrm{fr}_{1}}{\mathrm{fr}_{2}++\operatorname{fr}} \times \mathrm{fl}_{2} \mathrm{l}_{1}$ ij fr_{1}
5. W. Ralph Singleton, New Haven, Conn.:-
$\mathrm{Y}_{4} \mathrm{Y}_{4}$ it it
$\mathrm{y}_{4} \mathrm{y} 4 \mathrm{It}$ It
$\mathrm{y}_{4} \mathrm{y} \mathrm{y}_{4}$ It It $\mathrm{X} \quad \mathrm{Y}_{4} \quad \mathrm{Y}_{4}$ it it.
6. S. Horowitz, Buenos Aires, Argentina:$\mathrm{su}_{1} \mathrm{gl}_{3} \mathrm{Y}$ x la34a
g133a
gl 133 a
1934 a
$\frac{r+M r}{r} \mathrm{~g}_{1}+\underset{+}{+} \times r g_{1} m r$ (R-tester)
af 34 a
sn
7. Queensland Agricultural High School and College, Gatton, Australia:-

Ten packages of seed, labeled I-X [no letter].
§. Ithaca, N. Y. Stocks grown by Maize Genetics Cooperation. Pollinations by John Shafer:-

Inbred strains. Selfed or sib-crossed ears of all the inbred strains in disease resistance test (see V, below), except c70-34, which did not germinate.

Glossies $1,2,3,4,6,7,9 ; 915$, no germination, glo too late to ripen. Hadjinov's glossies 3, 5, 6, 7, $10(\mathrm{H} 3=$ g14, $\mathrm{H} 6=\mathrm{gl} 6, \mathrm{HlO}=\mathrm{gl} 3$, see II above); H8, all normal seedlings, supposed to be $+/$ gl but some certainly homozygous normal.

Hadjinov's RsI, rsz, at, bd, cr3, bs?, vb (variable brachytic).

Perry's $Y x$ and $y x$, in various combinations with $Y_{1} Y_{1}$, Pl pl, Al al.

Brunson's pale yellow endosperm.
Wiggans ${ }^{\text { }}$ brittle stalk.
Segregating cultures from $W_{1} W_{1} \quad x A_{1} b P I$ py su.
Plant colors:- $A_{1} B P 1, a_{1}{ }^{p} B P 1, a_{1} B p l_{1}, a_{1} b P I$,
al b pl.
Tester stocks:-
Group 1. - p-p $f_{1} b m_{2}, p-p$ br $f_{1} b m_{2}, p-p$ br f_{1} an n_{1}, p sr an am_{2}, $\mathrm{P}-\mathrm{p} \mathrm{gs}_{1} \mathrm{bm}_{2}$, p as.

Group 2. - $\lg _{1} \mathrm{gl}_{2} \mathrm{~B}$ b $\mathrm{V}_{4}, \lg _{1_{1}} \mathrm{gl}_{2} \mathrm{ts}_{1}, \mathrm{sb}$, al.
Group 3. - $\mathrm{a}_{1} \mathrm{na}_{1} \mathrm{ts}_{4}, \mathrm{~d}_{1} \mathrm{~s}, \mathrm{~d}_{1}^{\mathrm{m}}$, a Rg .
Group 4. - la su Tu tu glz.
Group 5. - ysi bral pry $\mathrm{v}_{2}, \mathrm{~A}_{2} \mathrm{a}_{2}$ bt $\mathrm{bv} \mathrm{pr}_{1}$, bmı bt
prl, bv $\mathrm{pr}_{1} \mathrm{v}_{2}$.
Group 6. - Y_{1} Pl sm py, Y_{1} pl (zGz?), po y.
Group 7. - v_{5} ral gl_{1}, $\mathrm{ra}_{1} \mathrm{gl}_{1}$ ij, $\mathrm{v}_{5} g \mathrm{gl}_{1} \mathrm{Bu}_{1}$.
Group 8. - j_{1}, ms δ.
Group 9. - c sh wx $\mathrm{V}_{1}, \mathrm{yg}_{2} \mathrm{c} \operatorname{sh} \mathrm{wx}$.
Group 10.- $n l_{1} g_{1} R, r b_{5}, d_{7}$, li $G_{1} \mathrm{Rr}$.
Multiple testers:-
ts_{2} bm lg_{1} b sul A_{1} na 1 or $\mathrm{mr}_{1} \mathrm{y}_{1} \mathrm{pl}$ in j_{1} C R^{6}.
bm2 $\mathrm{lgl}_{1} \mathrm{~b} \mathrm{~A}_{1}$ sul pri yl pl in Bnl j_{1} c Rg.
PVV A_{1} su $\mathrm{pr}_{1} \mathrm{y}_{1}$ in c sh $w \mathrm{R}$ R.
$A_{1} A_{2}$ Pr pr C-Sh-wx $g_{1}-R-r$.
$A_{1} A_{2} B-g_{1} Y-y-P 1$ Su-Su-Tu-tu.
Other stocks previously listed are, for the most part, still available.

New seed stocks listed under general news items (II) in this letter but which have not been sent for the Cooperation collection, should be received as long as possible before planting time (May 15).

V. Tests of Inbred Strains for Disease Resistance

Last spring seed of five inbreds furnished by Professor Hayes and eight by Professor Wiggans were sent to eight cooperators in various parts of this country. All these strains were supposed to be more or less resistant to smut. Some of them were shown to be less smut resistant than expected, several proved very
susceptible to bacterial wilt (Stewart's disease) and a few susceptible to rust.

1. Smut. on srout in tabular form, below:-

1934 culture
$\frac{\text { NO. }}{\substack{\text { S54 } \\ 542}}$

> Dent 554
542

070-34
5283 C85-34
206 Leaming
208 U.S. 204
209 Bloody Butcher
$210 \quad 0 i l$ Dent
211 West Branch
212 Silver King
213 Onondaga
White Dent
214
No. St.

Per cent smutted plants MOTNo. St. gan- New Ithyears Paul Arnes, town, Haven, aca, Aver-

Ithaca, N. I. Lines 542 and 211 some rust; 208 much rust, but too late to injure plants very seriously. There is some rust present every year at Ithaca, but it usually comes too late to be a serious disease. During two widely separated seasons, however, when rust had been introduced inadvertently with seedings transplanted from the greenhouse early in surnner, a very severe epidemic occurred. Nany of the more susceptible stocks were killed before flowering time. If conditions should arise by which early infection were brought about, rust would be our most serious disease. R. A. Emerson.

New Haven, Conn. "Apparently one of our inbreds, Connecticut 2, an inbred out of the Whipple variety of sweet corn, is completely susceptible to rust. We had no rust here during the years that we were inbreeding Whipples from 1925 to 1928. Sometime later, I think in 1929 or 1930, we noticed considerable rust on this one inbred. Aside from rust connecticut 2 has proved to be our best Whipple inbred and the one we are using in a great many crosses. It is used as the pollen parent and is never damaged so much that it will not make sufficient pollen. It always makes a good crop of seed when planted early. Last year the Eastern States Farmers' Exohange at Springfield, Mass, planted about an acre of Connecticut 2 for increase. They planted this late in order to avoid contamination from the pollen of sweet corn growing near by. This field of Connecticut 2 was so badly damaged that it did not make a single ear. I am doing some convergent improvement on this inbred and using Rhoades method of inoculating the seedlings so I can get a similar inbred resistant to wilt." of the inbreds in the cooperative test the only one seriously affected by rust was 208 in which about 80% of the leaf area was covered by rust pustules. Somewhat susceptible strains were, in order of suscoptibility: 211, 30\%; 209, 20\%; 206, 213, and S283, 10%, the latter had a few scattered pustules on the leaves of all the plants. W. Ralph Singleton.
3. Bacterial blight (Stewart's disease). Morgantown, W. Va. Lines 554 and 209 very susceptible to wilt; C86 and S42 poor plants, wilt (?) susceptible. Chas. Burnham.

Washington, D.C. At Arlington Farm, resistance to bacterial wilt is of much greater importance than smut resistance. We seem to have universally heavy infections of wilt and susceptible lines are almost completely wiped out. Such was the case this season. Dr. Wiggans' lines 206, 208, and 210 were outstandingly the most resistant. Merle \mathbb{T}. Jenkins.
4. Lodging.

Washington, D.C. Lines 206, 208, and 210 looked better than everything else until late in the season. In the heavy storm we had in September, 206 and 210 lodged somewhat, whereas 208 remained erect. Merle T. Jenkins.

Morgantown, \mathbb{W}. Va. Lines S 283 and 211 no lodging; 206, 208, and 214 some lodging; 210 and 212 badly lodged. Chas. Burnham.

Ames, Iowa. Lodging recorded by grade: $1=$ little or none, and 5 very much lodging. Roots and stalks noted separately to determine whether lodging due to weak roots or weak stalks.

Line	Lodgi	$\begin{gathered} \text { grade } \\ \text { Stalks } \end{gathered}$
		3
$\begin{aligned} & 206 \\ & 208 \end{aligned}$		
209	2-1/2	3-1/2
210	$3-1 / 2$	2-1/2
211	2-1/2	
212	3	3

\quad Line
213
214
542
554
5283
$C 86-34$

Lodging grade $\frac{\text { Roots }}{2} \frac{\text { Stalks }}{4}$ $\begin{array}{ll}2 & 2-1 / 2 \\ 2 & 2 \\ 2 & 3 \\ 2 & 2 \\ 2 & 1 \\ 2 & \end{array}$
A. A. Bryan.
5. Firing.

Ames. Line 209, top leaves burned badly just prior to tasseling. A. A. Bryan.

St. Paul. Line 213, some firing; 209, upper leaves rather heavily fired. H. K. Hayes.
6. Ear notes. Ames.

| Line | Seed set | Quality | | Iine | | Seed set |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Quality

St. Paul. Line 2ll, rather undesirable ears at harvest. H. K. Hayes. Ithaca.

Line	Ears	Line	Ears
S 54	good	209	good
542	good	210	poor
5283	good	211	good
C86-34	fair	212	good
206	fair	213	fair
208	poor	214	good

Obviously these inbreds differ widely in ability to produce sound and well filled ears at Ames and Ithaca. R. A. Emerson.
7. Summary

The lines most generally resistant to smut are, in order of greatest resistance:- $\mathbf{C} 86-34,214,206,5283,542,211$. Line 208 showed the highest percentage of smut, but in most instances the infection was light and in the tassel only.

In rust susceptibility, line 208 showed the most infection, 209 and 211 much rust, and $206,210,212,213,542$, and S293 some rust.

Bacterial blight was most injurious to lines 554,209 , C86, and 542 . Lines 206,208 , and 210 were most resistant.

At both Ames and St. Paul, line 209 showed bad firing.
In set of seed, quality of ear, amount of lodging, there was little uniformity.

The following comments are of interest:Line 211, "excellent". A. A. Bryan, Ames.
Under Arlington Farm conditions, I don't think there is any question but that 208 is by far the best line of the whole lot. M. T. Jenkins. [Iines 206 and 210 were good except for lodging.]

The starred lines $[206,208,211,214]$ I consider good enough for use in crosses with genetic testers. C. R. Burnham.

My choice of these lines would be about as follows, starting with the best: $214,206,210,213$, 211, 208, 212. E. G. Anderson. Line 208, very nice strain, vigorous. Lines 542 , S283, 206, 210, 211, 212, 214, desirable types. C86-34 fair, 209 and 213 undesirable. H. K. Hayes.

From all these comments, it would seem that lines 206 , 210, 211, 214 have rather wide adaptability and that, where rust and smut are not troublesome, line 208 may prove satisfactory. Sprague, however, reports that at Columbia, Mo., none of the lines have value.
8. Some cooperators have indicated a willingness to test these lines further and to include some of their own. Any of you, whether or not you helped in the test in 1935, who are willing to conduct a test in 1936, will be furnished seed in so far as it is available or can be obtained. If any of you have other inbred strains, thought to be highly resistant to diseases and which might be adapted to a relatively wide range of climatic conditions, I shall be glad to arrange for tests. We shall probably be unable, however, to handle any large number of strains.

VI. Special Notices

1. Manuscripts for inclusion in the proposed collective publication of papers on Linkage in Maize must reach me not later than March 31. (See I, above). Some of the data included in this news letter might well form the basis of short papers.
2. New seed stocks should be received at an early date certainly by May 1 - so that plans can be made for their multiplication in the cooperation garden.
3. Those having discase resistant inbred strains of possibly wide adaptability which they desire to have tested this year should indicate the fact at once and send seed by April l. Those willing to cooperate in making the tests will please communicatc with me at once.
R. A. Emerson,

Secretary

