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This thesis presents a study of the dynamics and applications of a high 

frequency micromechanical (MEMS) resonator.  Mechanical systems, which have 

been scaled in dimension to the micron scale, show promise for replacing electrical 

resonant systems, which have larger physical size and lower performance.  MEMS 

resonators can also be integrated into a chip containing conventional field effect 

transistors.  A process incorporating both frequency dependent resonant systems as 

well as analog and digital electronics will enable all hardware in a communication 

architecture to be placed on a single silicon chip. 

In this study, a micron-sized circular membrane, suspended in the middle and 

clamped on the periphery, forms the basis of the resonant mechanical system.  A small 

degree of curvature is fabricated into the resonator, which serves to stiffen the device 

and hence increase the frequency range.  A microheater, defined in proximity to the 

resonator, is used to induce motion in the membrane.  The frequency dependent 

response of the membrane is then detected through either interferometric or 

piezoresistive techniques.   

Resistive actuation and detection allow the membrane and actuators to be 

fabricated into a single plane of silicon, facilitating integration of the complete MEMS 

system.  It is demonstrated how both the resonators and transducers can be 

implemented into two CMOS processes.  Both designs incorporate the mechanical 



 

 

system as well as the solid-state electronics for output signal detection into a single 

fabrication process. 

Finally, the dynamics of the MEMS resonator, both in the linear and non-linear 

regime, are explored.  The micron-sized mechanical system is demonstrated to 

perform several types of signal processing that are critical for wireless communication 

architectures.  These studies shed new light on how the nonlinear dynamics of these 

systems may be characterized and harnessed for new applications. 
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1 Introduction 

 

1.1 Micro/Nano Mechanical Systems 

 

Much research has been focused on using well-developed and commonplace 

integrated circuit (IC) fabrication techniques to create micro-miniaturized mechanical 

devices made out of materials such as silicon, silicon-oxide, silicon-nitride and various 

metals.  Such components can be implemented as sensors, switches, actuators, valves, 

and gears and offer tremendous advantages in size, cost, and power consumption over 

their macro-scaled counterparts.  These devices are typically fabricated out of or onto 

a semiconductor substrate which may also contain solid state electronics to interface 

with the MEMS device enabling large scale system integration. 

Recently, radio-frequency microelectromechanical systems (RF MEMS) have 

been developed which can manipulate or produce electrical signals in communication 

systems by implementing MEMS as frequency and phase determining elements within 

the mechanical domain.  MEMS signal processing is made possible by scaling laws 

that shorten the time of mechanical response and increase the resonant frequency of 

micron-size mechanical structures into the MHz or GHz range.  By converting 

electrical signals into mechanical motion and leveraging linear and nonlinear resonant 

properties, MEMS can be used to change the characteristics of an incident signal, or 

even selectively generate a new signal.  Tailoring the geometry of the 

micromechanical devices tunes the characteristic response of the resonator to cover the 

many frequency bands used in modern communications, leading to a broad range of 

applications. 

The draw to use RF MEMS imparts from several significant performance 

advantages over their electrical counterparts. Low material damping and minimal 
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nonlinear effects reduce signal distortion and permit very narrow band performance.  

Additionally, their small physical dimensions and ability to be integrated along side 

solid-state ICs are advantageous for eliminating components such as III-V mixers, 

quartz crystal oscillators, and off-chip filters, enabling significant scaling in modern 

communication systems.  Integration of RF MEMS resonators, sensors, and 

electronics that share the same silicon substrate yields a complete single die package 

rather than discrete components with a variety of process technologies and packages.  

Merging electrical and mechanical components into one process is a critical step 

toward the realization of a complete radio-on-chip product which will be applicable to 

modern portable communication handsets. 

The focus of this research is to develop a MEMS resonator and corresponding 

transduction electronics, which would be ideal for radio-on-chip based applications, 

and to demonstrate the functionality of using MEMS as the critical building blocks of 

wireless communication architectures.  To be commercially viable, this MEMS device 

must be able to be integrated into a conventional CMOS environment, while at the 

same time occupy minimal physical space, consume less power and demonstrate 

superior performance when compared to conventional components. 

This thesis presents research on a complimentary-metal-on-oxide (CMOS) 

process compatible, high frequency, shell-type, MEMS resonator, which uses resistive 

transduction to thermally couple MHz-range electrical signals into the mechanical 

resonator and to subsequently convert high frequency mechanical motion back into an 

electrical signal.  The RF resonator is demonstrated to replace fundamental 

components in a heterodyne receiver such as high frequency and intermediate 

frequency filters, wide-band mixers, and low phase noise voltage controlled oscillators 

[1,2].  Based on these components an actual FM heterodyne MEMS radio is 

implemented.  To discuss and quantify the component’s performance, the nonlinear 
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behavior of the MEMS system is measured and modeled.  Finally, several methods are 

presented to integrate the shell-type resonator and its corresponding transduction 

electronics into a standard CMOS fabrication process, which is a fundamental step in 

the development of a complete radio-on-chip package [3]. 

 

1.2 Historical Perspective on Micromechanics 

 

The concept of a moving silicon microstructure which can be controlled by 

electrical signals has been experimentally pursued for almost 40 years.  In 1967 

Nathanson et al. at Westinghouse conceived the idea of a resonant cantilever transistor 

gate electrode (figure 1-1).  The 100 µm long cantilever was controlled with 

electrostatic forces and its corresponding motion modulated the gate capacitance of a 

field effect transistor, enabling electrical readout of the 5 kHz, Q = 500 mechanical 

motion [1].  In 1979, IBM, using conventional IC photolithography, fabricated a beam 

of silicon that could be used as an electrostaticly controlled mechanical relay or switch 

on the micron scale [5].  These two discoveries were paramount for establishing 

interest in micromechanics.  The 80s and 90s saw the co-development of silicon 

processing for integrated circuits (ICs) and MEMS technology.  MEMS switches and 

phase shifters were designed specifically for microwave applications [6].  Commercial 

development concentrated on low frequency MEMS as pressure sensors, 

accelerometers and temperature sensors for automotive applications and micro mirrors 

for projection.    In the early 90s, MEMS varactors and inductors began to be 

developed in research labs, and finally in the late 90s and early 2000s 

micromechanical resonators for RF communications began to emerge [7, 8].  In 2002, 

Agilent revealed its high-Q FBAR filter complete with chip-scale packaging, and 

presently there are several startup companies (Discera, Si-Clocks, Silicon Time, 
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Harmonic Devices) working toward implementing resonant RF micromechanics into 

modern communication architectures. 

 

 

 

 

 

 

 

Figure 1-1:  The resonant cantilever transistor gate electrode 
widely regarded to be the first MEMS device.  Reproduced 
from [4] ©1967 IEEE. 
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1.3 Types of RF Micromechanical Resonators 

 

There are two main classes of micromechanical resonators that have resonant 

frequencies capable of reaching the MHz or GHz range (necessary for mechanical 

signal processing): flexural and extensional resonators.  Flexural resonators, 

previously demonstrated in [9, 10] are thin film geometries with one or more 

anchoring points in which vibrations are primarily characterized by bending modes.  A 

cantilever, more or less the micron-sized equivalent of a swimming pool diving board, 

is a beam with one fixed end and one free end.  The fundamental mode of vibration is 

characterized by out-of-plain beam deflection at the free end.  A doubly clamped beam 

on the other hand has two anchor points and, in the fundamental mode, has an out-of-

plain displacement maximum half way between the anchors.  Recent research [11,12] 

has focused on mushroom type flexural resonators, which are thin film circular disks 

supported by a central oxide pillar.  Quality factors of flexural resonators have been 

demonstrated to be as large as 200,000 [13,14], opening the door for applications 

requiring extremely sensitive measurements. 

Generally speaking, this class of resonator is relatively easy to produce.  The 

microresonators are primarily fabricated out of a thin structural film which can be 

patterned and subsequently exposed to a selective chemical etch to remove sacrificial 

material below a beam or disk, creating a suspended structure. 

Flexural resonators have numerous advantages.  First, they are low mass and 

can therefore be configured to be sensitive to external perturbations such as 

temperature, pressure, and added mass [15,16].  Second, their frequency is defined by 

both the lateral dimensions of the resonator as well as by the spring constant, which is 

the bending modulus (usually on the order of a few N/m) of the material, allowing 

macroscopic and microscopic tuning of resonator frequency.  Finally, flexural 
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resonators typically have large mechanical displacements, facilitating motion 

detection. 

A second, relatively new type of resonator is the extensional mode resonator, 

otherwise known as a bulk acoustic wave (BAW) resonator.  Vibrations are 

characterized by either in-plain expansion of a plate resonator [17,18], or expansion 

through the film thickness [19,20].  The resonant frequency of the in-plain BAW 

resonator is determined by the lateral dimensions and the 2-D extensional modulus, 

which depends primarily on the Young’s modulus of the material. 

BAW resonators offer the advantage of having high quality factors, high 

resonant frequencies, and low transduction losses, but require very narrow gaps 

surrounding the resonator to produce detectable displacement.  BAW devices from 

companies such as Agilent and Infineon already established themselves in cell phones 

as duplexers and front end filters.  The FBAR duplexer, by January 2005, had already 

captured more than 70 percent of the CDMA phone segment [21, 22]. 

The subject of this research is a hybrid design between the flexural and 

extensional resonators.  The resonator is a circular membrane which is supported by 

an infinitely clamped periphery [23].  A slight degree of curvature in the membrane 

causes the device to resemble the basin of a steel drum rather than the membrane of a 

timpany drum.  This curvature makes resistance to out-of-plane mechanical 

displacement a function of both bending and extensional resistance.  This design 

allows the shell resonator to achieve high membrane displacement to facilitate motion 

detection, while also, due to the added stiffness from the curvature, increases the 

resonant frequency over traditional flexural resonators. 
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1.4 Resonant Mechanical Analysis 

 

The behavior of a micromechanical resonator is modeled as a damped, driven 

harmonic oscillator.  The micromechanical structure in figure 1-2 (a doubly clamped 

paddle oscillator) is identical to a simple mass-spring system (figure 1-3) where the 

force pulling the suspended mass back towards the equilibrium position is provided by 

the stiffness of the material.  In extensional mode resonators the spring constant is 

determined by the elongation resistance (the Young’s modulus) in the resonator mass, 

while in flexural resonators, the spring is represented by the bending resistance of a 

membrane. 

The mass-spring mechanical system is governed by a linear differential 

equation that balances forces according to Newton’s 2nd law.  The forces acting on the 

mass are the external driving force, F(t), the restoring force proportional to the 

displacement, and the damping force proportional to the speed: 

 

 
)(2

2
tFkxdt

dxcdt
xdm =++ . 1-1

 
 

An analogous system that obeys a similar differential equation is the inductor-

capacitor-resistor (LCR) tank circuit, 

 

 
)(/2

2
tVCqdt

dqRdt
qdL =++ , 1-2

 
 

where charge (q) is the electrical equivalent of the mechanical displacement around 

the equilibrium position (x), the inductance (L) is related to the mass (m), the 
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resistance (R) is the damping or loss coefficient (c), and the capacitance (C) is 

inversely related to the mass-spring system spring constant, (k).  

Proceeding with the mechanical model, dividing out the mass and writing c= 

ωom / Q and k = ωo
2*m, 1-1 becomes 

 

 m
tFxdt

dx
Qdt

xd
o

o )(2
2

2
=++ ω

ω
. 1-3

 
 

An arbitrary sinusoidal driving force can be written as )cos( ∆+tFo ω .  Using Euler's 

identity, tite ti ωωω sincos += , F(t) can then be expressed in complex notation as 
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where the driving force is the real part of F(t).  We can then guess a solution to 1-3 of 

the form tjextx ωˆ)( = , where the displacement is the real part of x(t).  Substituting the 

complex expressions for x(t) and F(t) into 1-3, we evaluate the derivatives and get 
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Solving for x̂ , we find the response of the system to be 
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Thus the magnitude of the displacement is related to the product of the force ( F̂ ) and 

the factor 
)(

1ˆ
22

Q
j

m
S

o
o

ωω
ωω +−

= .  To isolate the real and imaginary parts of this 

scaling factor we multiply both the numerator and denominator by the complex 

conjugate: 
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The square magnitude of equation 1-8 is the amplitude of Ŝ ; therefore if θρ jeS =ˆ ,   

1-6 can be rewritten as the following 
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Recalling that ( )jwtextx ˆRe)( =  and therefore )cos()( θωρ +∆+= tFtx o , the 

absolute amplitude of displacement is ρFo,, where ρ is plotted in figure 1-4.  When the 

driving frequency, ω, matches the characteristic frequency of the resonator, ωo, the 

mechanical displacement is enhanced by the factor Q and large amplitude motion 
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occurs.  If the damping term were not included in (1-1), the response at ω = ωo would 

be infinite; however, any damping exerted on the resonator will limit the on resonance 

amplitude of vibration. 

The phase angle added by the resonator, which is the time delay between the 

driving force and the mechanical response, is given by 
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Since )cos()( θωρ +∆+= tFtx o , the phase lag of the resonant circuit is simply added 

onto the lag of the driving signal. 

Plotting θ vs. ω in figure 1-5, we find that at driving frequencies much below 

ωo, the response of the mass is in-phase with the driving force.  On resonance the 

drive and the mechanical amplitude are 90˚ out of phase, while at frequencies much 

higher than ωo the response lags the driver by 180˚.  Thus the phase of the mechanical 

motion in relation to the input varies depending on the instantaneous frequency of 

operation (ω).  This significance will be put into context in section 5.7. 
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Figure 1-3:  Mass – damper – spring system. 

Figure 1-2:  Scanning electron image of a doubly clamped, 
silicon nitride paddle oscillator fabricated using a two step 
lithography process to minimize overhang undercut. 
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Figure 1-4:  Frequency dependent amplitude response of a 
driven and damped simple-harmonic oscillator (Q = 50). 
Both amplitude and frequency are normalized. 
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Figure 1-5:  Frequency dependent phase response of a driven 
and damped simple-harmonic oscillator with a (Q = 50). 
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1.5 High Frequency Actuation 

 

1.5.1 Electrostatic 

 

There are four principle methods for transforming electrical energy carried by 

a voltage signal to mechanical energy in a RF MEMS resonator.  Electrostatic 

actuators, the most common energy conversion method, rely on the force, 
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between two charged plates, where Q is the charge on each plate, C0 is the capacitance 

and d0 is the gap distance between the two plates [24, 25].  Many of the first and 

current MEMS resonators, such as comb drives [26], doubly clamped beams [27], and 

BAW resonators [28], function through electrostatic actuation.  Typically, one plate 

corresponds to the freely suspended MEMS resonator and the second plate in 

anchored to the substrate.  When a voltage difference is applied across the two plates, 

the suspended plate will be drawn towards the fixed plate. 

The equation of motion follows the form of (1-1) replacing F(t) with an 

electrostatic driving force, 
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where A is the area of the plate and ε is the dielectric permittivity.  The driving force 

can be rewritten as 
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Since x/ 0d  is a very small quantity, 

1-13

 can be linearized using the binomial 

expansion.  Additionally, Vin has both an AC and DC component and is written as: 
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Substituting a linearized 1-13 and 1-14 into 1-12 and solving for the x, we find the 

displacement of the electrostatic resonator behaves as 
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where k’ is the DC tunable spring constant, 
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Electrostatic actuation is advantageous in that it is independent of material 

properties, it is very effective at high frequencies, and the large impedance reduces 

power consumption.  However, there are numerous disadvantages that electrostatic 

actuation must overcome.  Significant nonlinearities (to be discussed more in section 

6.2) are inherent to the driving force.  Both nanometer sized gaps (which present 

significant fabrication challenges) as well as large DC voltages (often over 100 volts) 
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are required to produce sufficient driving forces and detectable motion [29].  

Additionally, significant electrostatic fields generated in the transducer can be 

influenced by outside forces and can couple with the MEMS motion detection 

mechanism.  Finally, due to the capacitive nature of the actuation method, the input 

impedance is very high.  Consequently, in order to interface a MEMS filter with a 

standard 50 Ω network, a lossy and bulky matching network is required if substantial 

signal reflection from the impedance mismatch is to be avoided. 

 

1.5.2 Piezoelectric 

 

A second commonly used method of electromechanical transduction relies on 

the piezoelectric effect to convert voltage into displacement.  In piezoelectric 

materials, free carriers are generated when the material is subjected to mechanical 

stress.  Lead zirconate titanate (PZT) and quartz are the most commonly used 

materials that demonstrate this property.  Although piezoelectric actuators are most 

common to static MEMS sensors, high frequency BAW resonators commonly use a 

thin film of AlN to produce a driving force.  MEMS devices can also be subjected to 

inertial stimulation by placing samples on a piezoelectric quartz crystal, thus directly 

coupling the device to mechanical vibrations in the crystal.  On the macroscale 

perspective, quartz crystal oscillators and surface acoustic wave (SAW) filters rely on 

the piezoelectric effect for transduction.  The use of piezoelectric materials in MEMS 

is limited by sensitivity to film quality and the accuracy of processing parameters, 

making reliability difficult.  In addition, currently no piezoelectric film option exists in 

standard IC processes, complicating attempts at integration. 
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1.5.3 Lorentz 

 

A seldom employed but interesting method of actuating a MEMS resonator is 

through the use of magnetomotive forces [30].  Displacement is induced by sending 

current through a device placed in a strong magnetic field.  According to the Lorentz 

force law, a force perpendicular to the velocity of the charge and to the magnetic field 

will be exerted on the device, causing mechanical deflection.  Conveniently, detection 

of the motion is enabled by monitoring the EMF induced along the current path.  To 

its disadvantage, Lorentz force transduction requires large magnetic fields (~8 T) and 

cryogenic temperatures in order to be effective, rendering integration and practical 

applications impossible. 

 

1.5.4 Thermal 

 

The final method for inducing mechanical motion with an electrical signal is 

via thermal effects.  Commonly, thermal actuation is associated with low frequency or 

static actuators for use in MEMS structures such as optical switches [31], optical 

mirrors [32], micro grippers for microassembly [33], MEMS RF switches [34], as well 

as in some tunable capacitors [35] and inductors.  In larger structures, long thermal 

diffusion time constants limit the effectiveness of this method to low frequency 

devices.  However, as the dimensions of resonators are scaled down to achieve higher 

frequencies, the thermal diffusion time constants likewise scale, creating a regime 

where purely thermal excitation can excite high frequency resonant vibrations. 

 Mechanical displacement can be induced in a MEMS device by bimorph 

thermal expansion [36], which exists between different types of materials.  For 

example, a mechanical resonator may be fabricated out of a standard semiconductor 
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material.  A second material, most commonly a metal, with a significantly different 

thermal expansion coefficient, is deposited on top of the semiconductor.  Current is 

passed through the device and Joule heat is dissipated by the internal resistance of the 

two materials.  Since there is a differential expansion coefficient between the top and 

the bottom film, any expansion in the device will produce out-of-plane deflection.  

This actuation method has a significant disadvantage for high frequency resonators in 

that metallization of the structure dramatically increases intrinsic losses, reducing the 

efficiency of the structure. 

In previous research by Keith Aubin [37], high frequency intensity modulation 

of laser light was- employed to excite three-dimensional MEMS structures.  This work 

was significant because is showed that thermally induced stresses in slightly curved 

silicon or polysilicon structures are able to produce out-of-plane motion without a 

bimorph effect.  Second, it demonstrated that the thermal time constant of some 

MEMS resonators is short enough to induce MHz mechanical oscillations.  This 

method of actuation, termed optical drive, focuses an internally modulated 417 nm 

diode laser onto a micromechanical resonator located inside a high vacuum chamber.  

The approximately 1 x 1 µm2 laser focal volume produces a local temperature 

gradient, causing thermal expansion, that in turn generates a stress profile within the 

membrane.  In a perfectly flat device, a stress gradient will cause virtually no out-of-

plane deflection; however, for a membrane with a slight degree curvature, stress 

generated in the device layer will be relieved through out-of-plane deflection. 

The process of heat diffusion out of the resonator can be modeled by a one 

dimensional heat equation, 
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with time constant, 
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where κ is the thermal conductivity, c is the heat capacity, R is the radius of a 2D 

plate, and n = 2.4 is the root of a Bessel function J0(µ(0))=0.  Due to the micron-size 

radius of the device, the cooling rate, 1/λn, is on the order of microseconds, allowing 

high frequency modulation of the dissipated power to excite standing wave resonant 

vibrations in the micromechanical structure. 

 

1.6 High Frequency Detection 

 

1.6.1 Electrostatic 

 

One of the most common methods for detecting the mechanical motion of a 

MEMS device is by monitoring the capacitive characteristics of the electromechanical 

resonator.  A micromechanical resonator can be configured to have a capacitive output 

port, i.e. the resonator membrane forms one non-stationary side of the capacitor and 

the substrate or adjacent structure forms the static side of the capacitive output port.  

The current flowing through the MEMS capacitor is 
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Since at resonance the gap is varying with time, equation 1-19 becomes 
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which, following the notation of (1-13, 1-14) and again linearizing x/ 0d , can be 

written as 
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Thus, by measuring the displacement current produced by the vibrating resonator, the 

characteristics of the mechanical motion can be determined.  When monitoring the 

current, the MEMS resonator can be viewed as a two-port system where vibrations are 

induced and measured on separate actuators.  Like the electrostatic actuator, 

displacement current detection has disadvantages due to its capacitive (high 

impedance) nature, its susceptibility to electrostatic cross-talk, its nonlinear 

dependence on d0, and the necessity for small gaps. 

The electrostatic MEMS resonator can also be implemented as a one-port 

system, where motion is both induced and sensed with the same capacitive transducer.  

Substituting x from (1-15) into (1-21) and solving for the impedance, Z(ω)=v/i, we 

find  
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where ωo is the resonant frequency and ωAR is defined as the antiresonant frequency 

with 
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ωω .  Depending on the frequency of stimulation, the 

impedance of the actuator will vary, enabling detection of the resonant motion.  

Equation 1-22 is plotted in figure 1-6 where ωo and ωAR are located at the minimum 

and maximum points.  This one port method has numerous disadvantages [38] in 

addition to the previously mentioned electrostatic hurtles.  First, a transresistance 

circuit is required in order to detect the output signal.  Second, the presence of ωAR 

distorts the measured signal and by shifting the resonance alters the passband and 

complicates the measurement process. 
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Figure 1-6:  Calculated input impedance for an electrostatic 
transducer covering half of a 30 µm dome resonator.  Gap 
spacing is 200 nm. 
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1.6.2 Interferometric Detection 

 

High-speed optical sensing of micromechanical motion has been previously 

demonstrated and developed by Carr [39].  The resonators used in this thesis are 

similar to previous optically detected resonators in that they are suspended over a 

substrate wafer.  The resulting cavity created by the air gap separating the membrane 

from the wafer forms a Fabry Perot cavity.  Incident light will establish a standing 

wave interference pattern based on the film stack parameters.  The theory to predict 

the intensity of the reflected, adsorbed, and transmitted wave has been well 

established, but a particularly eloquent summary can be found in the thesis of Keith 

Aubin [37].  Figure 1-7 displays the theoretically predicted interference pattern 

produced by the dome cavity in response to a 633 nm HeNe CW laser focused onto 

the surface of the membrane.  We chose the thickness of the sacrificial oxide based on 

the maximum of the derivative of the reflected light pattern.  Any change in the 

sacrificial gap (i.e. resonator vibrations) will be translated to the intensity of the 

reflected signal.  The amplitude modulated light reflected from the device surface is 

then detected by a high speed New Focus 1601 1 GHz bandwidth photodetector.  With 

this method, fluctuations in the voltage output signal from the photodetector are a 

representation of the resonator’s mechanical vibrational amplitude. 
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Figure 1-7:  Calculated normalized reflection pattern for both 
633 nm HeNe red laser and 415 nm diode blue laser produced 
by a film stack of 200 nm thick polysilicon over an air gap, all 
over a silicon wafer. 
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1.6.3 Piezoresistive Detection 

 

Another common way of detecting the motion of integrated sensors is to use 

the piezoresistive effect, present in many semiconductors and metals, to transduce 

mechanical deformation.  Piezoresistive sensors have been commonly employed in 

MEMS strain gauges such as accelerometers [40] and pressure torque or displacement 

sensors [41].  Piezoresistive cantilevers have also been used in place of conventional 

optical measurement techniques for Atomic Force Microscopy (AFM) applications 

[42] to measure the low-frequency resonant motion of a cantilever. 

Piezoresistivity is the linear coupling of mechanical stress and electrical 

resistivity that is seen in semiconducting materials such as silicon, germanium, 

diamond and some thin-film metals.  It is quantified as a change in the ratio of an 

electric field component to a current density component in the same direction [43].  

The effect can be described completely by a set of equations relating the electric field 

(E), current density,(i) and stress components (T) in each crystallographic direction.  

When considering a single dimension (l) a simplified expression can be used: 
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where R is the material resistivity under zero stress, E/i is the resistivity under tension 

l
lT ∆= , and G is the piezoresistive coefficient.  Thus 
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and through 1-23 and 1-24 we find that the piezoresistive coefficient relates the 

fractional change in resistivity to the fractional change in elongation. 
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The constant, G, commonly called the gauge factor, is an intrinsic property of a 

material and is dependent on crystallographic orientation. 

Piezoresistive detection has also been used for measurement of high frequency 

resonant motion [44]; however, experiments were performed using heterodyne 

detection, where the transducer mixed the output RF voltage to DC.  The magnitude of 

the DC output voltage is then a relative indicator of the maximum resonant amplitude.  

This method removes frequency information from the output signal, which reduces 

parasitic effects; however it makes feedback and filtering systems nearly impossible to 

implement.  
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2 The Shell-Type, High Frequency, Micromechanical Resonator 

 

The majority of this thesis is devoted to a new, self-aligning, MEMS geometry 

which has been termed the “dome resonator”.  The dome resonator is unique because 

it is created using a very simple fabrication process, lending its usefulness to IC-

MEMS integration while maintaining high performance characterized by a high 

resonant frequency, low damping, and small nonlinear effects. 

 

2.1 Fabrication 

 

The dome shaped resonator takes form on a polysilicon-on-insulator wafer 

(figure 2-1 a).  A utility grade 100 mm single side polished silicon wafer is used as the 

structural base of the device.  Next, a film of either LPCVD SiO2 or PECVD SiO2 is 

deposited on the wafer.  Wet LPCVD SiO2 is the preferred method since it is much 

more dense, and therefore suitable for subsequent high temperature processing.  The 

thickness of this film is not critical for the operation of the dome resonator, although it 

should be larger than the maximum resonator deflection (less than 10 nm) and, if using 

interferometric detection, should be tuned to achieve maximum signal reflection.  A 

thickness of approximately 1.5 µm was used for the majority of this research.  The 

final deposition step is a high quality LPCVD polysilicon film used to form the 

mechanical resonator.  The film is deposited at 570 ˚C at a pressure of 150 mTorr with 

150 sccm SiH4 gas mixture.  Initially this process yields an amorphous silicon film 

which can have significant tensile stress.  Deposition rates for this process are on 

average 3 nm/min, which, for a commonly used 200 nm thick film, means a SiH4 gas 

flow time of 70 min.  Immediately following the amorphous silicon film deposition, a 

high temperature anneal in a N2 environment forms grains in the silicon film and 
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diminishes the film stress.  Removing the wafers after a one hour anneal results in a 

virtually stress-free polysilicon film.  An anneal time of 1.5 hours produces a film with 

significant compressive stress.  After annealing the wafer for 1.5 hours at 1150º C, the 

200 nm polysilicon film is measured using a Flexus F2320 to have a compressive 

stress of ~300 MPa, calculated from the change in the curvature of the wafer due to 

the presence of the polysilicon film on one side. 

To define the central hole of the dome resonator, a basic 1-step lithography 

process is used (figure  2-1 b).  The wafer is first primed with either HMDS vapor or 

spin on P-20.  Next, a g-line (436 nm) sensitive resist such as Shipley 1813 or an i-line 

(365 nm) resist such as OIR 620.07 or SPM955-0.7 is spun on the wafer to a thickness 

between 0.5 µm and 1 µm and then softbaked at 115 ˚C for 90 seconds.  

Photolithography is performed using an i-line GCA Autostep AS200.  A detailed 

description of the Autostep program is given in Appendix A.  Following exposure, the 

wafer is again baked at 115 ˚C for 90 seconds and then developed using MIF-300 

either manually or with an automated Hamatech wafer handler for 60 to 90 seconds.   

Defining the 2-3 µm diameter “etch hole” in the polysilicon device layer 

permits a wet chemical etchant to access the underlying sacrificial oxide.  Following 

resist lithography, a reactive ion etch is used to selectively remove the exposed 

polysilicon from the hole.  Two plasma chemistries can be used at this point.  A 

chlorine based plasma in a Plasma-Therm 720 allows high selectivity to the 

photoresist mask as well as to the oxide underneath the poly.  When the PT720 is not 

operational, an anisotropic silicon etch using CF4 plasma in a Plasma-Therm 72 is 

used, which is slower and much less selective to oxide and photoresist.  Following 

definition of the etch hole, the photoresist is stripped from the wafer in a heated 

Shipley 1165 resist bath.   
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The final step in fabrication of the dome resonator is removal of the oxide 

below the polysilicon film with a hydrofluoric acid etch.  For example, to create a 30 

µm diameter dome, the wafer is dipped in a 49% hydrofluoric acid bath for 10 

minutes.  This removes the oxide in a radial direction from the etch hole, leaving a 

suspended circular membrane.  Although this is the quickest method, using buffered 

oxide etch instead of 49% HF will result in a more controlled and precise radial etch.  

The wafer is moved from the HF bath, to a water bath, then directly to an ethanol bath.  

Ethanol has much lower surface energy, preventing unintentional adhesion (stiction) 

between the membrane and the substrate due to capillary forces and surface tension. 

The final suspended dome resonator is shown in figure 2-2.  The resulting 

membrane has non-zero curvature due to the large compressive stress incorporated 

into the device layer through the high temperature annealing process.  When the 

sacrificial silicon dioxide is released through the etch hole, the in-plane poly film 

stress produces out-of-plane buckling, forming a shallow shell.  The vertical projection 

can be estimated by counting the interferometric Newton rings as seen in figure 2-2 b.  

A 200 nm thick membrane, 30 µm in diameter with 300 MPa of compressive film 

stress projects approximately 1 µm out-of-plane at the apex of the dome. 

The out-of-plane component in the curvature significantly increases the 

resonant frequency over a two dimensional structure.  The natural frequency of a flat 

annulus clamped on the periphery and free in the center is predicted [45] to be 
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where h is the polysilicon thickness, R is the in-plain radial projection of the plate, E is 

Young’s modulus, ρ is the material density, υ is Poisson’s Ratio, and β is a 
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geometrical constant.  Shallow shell theory [46] is used to derive 2-2, which accounts 

for the extra rigidity provided by the dome’s out of plain projection 
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where χ is the radius of curvature of the dome.  The increased stiffness allows large 

diameter structures to achieve significantly higher frequencies.  Simulation results are 

shown in figure 2-3, illustrating the effect of radial projection and curvature on the 

resonant frequency of a shallow shell.  As evident in the plot, very high frequencies 

can be achieved by simultaneously increasing the vertical projection and decreasing 

the lateral dimension. 

The experimental frequency spectrum of the aforementioned 30 µm diameter 

dome is pictured in figure 2-4.  Multiple modes of the resonator, ranging between 8 

and 26 MHz, are easily excited in the shell membrane.  Both numerical simulations 

and experiments were performed to characterize the shape of the resonant modes.  A 

simulation using ANSYS is pictured in figure 2-5 showing the first 6 modes of the 

resonator.  The resonant modes are discriminated by the number of radial and 

circumferential nodes in the membrane standing wave.  Modes with only radial nodal 

lines (e.g. γ02) are referred to as axisymmetric modes, and modes with both 

circumferential and radial nodal lines (e.g. γ21) are non-axisymmetric modes. The 

modes of vibration were also experimentally characterized based on the relative phase 

and amplitude of the membrane displacement.  Figure 2-6 shows three resonant modes 

of the 30 µm diameter dome at 10, 14 and 17 MHz.  The MEMS resonator is subjected 

to resistive stimulation to provide stable excitation.  The response of the membrane is 

then systematically sampled by rastering a 1 x 1 µm2 pixel size interferometric 
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detection method across the surface.  The relative phase and amplitude of motion can 

then be reconstructed in a 3D plot.  Both the 12.7 and 14.7 MHz modes are γ0X 

axisymmetric modes, having no circumferential nodes.  The phase picture indicates 

that this is a high order mode with multiple radial nodes; however, the interferometric 

detection method is sensitive to the membrane curvature, producing artificial phase 

inversions in the radial direction.  Thus it is impossible to experimentally tell how 

many circumferential nodes are present.  The 17.7 MHz mode is an example of a 

mixed mode. 

Inevitable fabrication irregularities across the surface of a wafer result in 

variations on the order of 0.1% in the frequency of dome resonators.  Nonuniformities 

are produced from variations in the local film stress, film thickness, release etch 

timing, and photolithography process, as well as from polysilicon material defects.  

Such variations should be addressed before undertaking high-volume manufacturing; 

however, most of these parameters can be precisely controlled with precision 

manufacturing tools.  Additionally, individual resonator tuning can be enabled by 

controlling the stress state of the membrane, which will be discussed in section 5.6. 
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Figure 2-1 a-d): Diagram displaying fabrication process to 
make dome resonator and resistive actuator.  e,f) illustrates 
fabrication modifications to incorporate an implanted 
piezoresistor which can be utilized for either driving or 
detection. 
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a) 
b) 

Figure 2-2 a): SEM image of a 30 µm diameter shell type 
resonator.  Image taken at a 45º angle to illustrate curvature. 
b) Optical micrograph of similar resonator.  Newton 
interference rings spaced at λ/2 provide an estimate of 1 µm 
vertical projection. 
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Figure 2-3:  Numerical calculation of resonant frequency 
dependence on membrane diameter and curvature.  Young’s 
modulus (E) = 150 x 109 Pascal, film thickness (h) = 200 x 10-

9 m, density (ρ) = 2328 kg/m3, Poisson’s ratio (ν) = 0.22.   
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Figure 2-4:  Experimental frequency spectrum of a 30 µm 
diameter dome resonator, illustrating its multiple modes of 
vibration.  Resonator excited by resistor and detected by 
interferometer.  Spectrum could be viewed as a fingerprint 
[58], (i.e. identification mechanism) which, due to fabrication 
variances and high Q-factor, will be unique for each device. 

Figure 2-5:  ANSYS FEM model of first 6 mode shapes of 
dome resonator.  Reproduced from [47]. 
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Figure 2-6:  Experimental mode shapes of 12.7, 14.7, 17.8 MHz modes in 
dome resonator.  The membrane is excited with a metallic resistor. 
Interferometric detection method is rastered across the surface to for 2D map 
of amplitude and phase. 
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2.2 Higher Frequencies 

 

A significant advantage of MEMS systems is that by scaling down the 

geometry of the mechanical resonators and hence, scaling the mass of the resonant 

system, the resonant frequency can be increased.  This allows mechanical signal 

processing to be performed in a wide variety of established communication bands.  

For example, MEMS resonators could be scaled in size to serve bands such as 900 or 

1900 MHz used by PCS cellular phones, 125 KHz, 13.56 MHz, and 900 MHz bands 

allocated for radio frequency identification (RFID) tags, or 88-108 MHz for FM radio.  

To reach higher frequencies than those provided by the aforementioned 30 µm 

device, we scale both the lateral dimension as well as the vertical projection of the 

shell.  Scaling the projection of the resonator corresponds to decreasing R in equation 

2-1 and 2-2.  A 3 µm diameter device was fabricated and exhibited a fundamental 

frequency at 260 MHz with a Q of 2,500.  A higher order mode of vibration at 460 

MHz (figure 2-7) was also detected in this resonator.  Dramatic scaling into the 

nanometer size scale presented numerous difficulties.  Small vertical displacements 

coupled with a diminished physical size makes motion detection impossible given the 

sensitivity of our current method of detection. 

The other approach for scaling the frequency is to increase the curvature of the 

resonator, in turn increasing the stiffness.  Figure 2-8 numerically demonstrates how, 

by scaling curvature up to that of a hemisphere, the resonant frequency can be 

enhanced while preserving the footprint and thus the “detectability” of a structure.  

Figure 2-10 illustrates one concept for producing a hemispherical resonator.  A 

hemispherical preform is made by placing a glass microsphere into a hole etched in 

the substrate.  The wafer is then coated with a PECVD polysilicon film to form an 

effective substrate that can withstand HF acid.  A sacrificial layer of SiO2 is deposited 
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over the wafer followed by a structural layer of polysilicon.  The SiO2 was then 

removed through an etch hole to form the suspended, curved membrane (figure 2-10).  

Unfortunately, interferometric detection could not detect motion in the convex curved 

structure.  One possible explanation is that the spring constant was increased to the 

extent that resonant motion was undetectable.  Additionally, the curved surface tended 

to deflect and disperse focused laser light, creating complications in detecting the 

modulation that is superimposed on the reflected beam.  Future designs should focus 

on a concave structure which would dip into the surface rather than project out from 

surface.  This alternative would create a lensing effect for the incident light beam 

rather than deflecting the beam.  Our standard method of interferometric detection is 

obviously not the optimal method and should be replaced by capacitive or 

piezoresistive detection. 

Figure 2-7:  Experimental response from a 3 µm diameter flat 
membrane: Fundamental mode at 260 MHz with a Q = 2,500, 
highest detectable mode at 460 MHz 
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Figure 2-8:  The frequency advantage provided by 
hemispherical curvature.  Simulation parameters given in 
figure 2-3. 
 

Figure 2-9:  Fabrication process for the hemispherical 
resonator picture in figure 15.
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Figure 2-10:  SEM image of hemispherical polysilicon 
resonator fabricated using 2.5 µm diameter glass sphere 
preforms. 
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2.3 Damping 

 

Another significant advantage of using microscaled silicon resonators is the 

very high quality factors (Q) that can be achieved.  The Q of the resonator is measured 

as fo/∆f, where ∆f is the full width at half maximum power of the Lorentzian response 

and fo is the center frequency of the response.  From an energy perspective, Q is E/∆E 

where E is the stored vibrational energy and ∆E is the energy lost per cycle of 

vibration.  The Q of the 30 µm dome’s 12.7 MHz mode was measured to be 5,000, the 

14.7 MHz was 3,700 and the 17.76 MHz was 15,000.  For comparison, the Q of an on-

chip LC tank circuit would be about 10 to 100 due to substantial electrical resistance 

and parasitic capacitive effects.  For RF applications, the Q of the filter is one of the 

most important characteristics, governing the selectivity of the element and the ability 

to suppress signals outside of the frequency band of interest.  Additionally, since the 

amplitude on resonance is increased by the Q of the resonator, a higher Q will reduce 

the power consumption and improve the conversion loss of the system. 

All experiments on the dome resonator were performed in a custom built 

vacuum chamber at a pressure of 10-6
 Torr, thus eliminating viscous damping effects 

that would substantially increase losses in the mechanical system. For a resonator 

operating in vacuum, vibrational energy is dissipated through several mechanisms 

[48].  Losses are experienced through mechanical dissipation such as acoustic 

coupling to the support structure (clamping loss), through intrinsic internal friction 

primarily dominated by thermoelastic dissipation (TED) [49], and through extrinsic 

crystallographic defects and disorder in the film [50]. 

TED is generally contributed to heat flow between regions of alternating stress, 

causing power dissipation.  It is most pronounced when the period of cyclic stress is 
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comparable to the thermal time constant of the heat flow.  The magnitude of this 

damping has been previously characterized [50, 52] for cantilever beams as: 
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Here α is the coefficient of thermal expansion, cp is the specific heat capacity, and T is 

the temperature.  Since there is no width dependence in (2-3), it may be a reasonable 

assumption that a dome is essentially a wide cantilever and TED losses would be on 

the same order of magnitude.  From equation (2-3) the Q factor limited by TED losses 

is approximately 3.5x105, an order magnitude higher than the Qs obtained 

experimentally – indicating that dissipation in the dome is not primarily dominated by 

internal friction. 

One disadvantage of the dome shaped resonator design is that uniform 

clamping around the periphery may be a significant source of energy loss.  Although 

the as-fabricated dome had similar Q factors to mushroom resonators of similar 

dimensions, the intrinsic Q of the mushroom was limited by crystallographic defects 
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and surface dissipation [13].  Due to the small area of clamping in the mushrooms, Qs 

on the order of 105
 could be attained through laser annealing treatments.  Analytical 

simulations performed on the dome resonators, however, determined that surface 

acoustic waves produced from the mechanical motion and carried to the substrate were 

the most significant source of energy loss [53].  In fact, anchor coupling losses 

increase exponentially with increasing frequency.  Simulations which modeled both 

surface and bulk acoustic waves being perfectly transmitted from the resonator to the 

surrounding film produced a Q of 2,600 for a 14.5 MHz mode and a Q of 2,267 for a 

19.1 MHz mode in a 30 µm dome.  These Qs were about 50 % lower than Qs obtained 

experimentally for similar modes indicating that the substrate may not be a perfectly 

absorbing boundary; however this substantiates the claim that losses in the dome 

resonators are clearly dominated by clamping losses. 

One way to reduce effect of clamping losses and improve the dome Q is to 

focus acoustic energy back into the resonator by designing a reflecting mesa 

surrounding the dome.  The surface acoustic wave is reflected from the abrupt change 

in impedance between the semiconductor and the air gap and will form either a 

constructive or destructive interference pattern.  Simulations indicate that a mesa 

surrounding the resonator at a distance of 0.25 λ, 1.25 λ, and 1.75 λ will form a 

constructive interference pattern, which traps energy inside the system and improves 

the Q by several factors. 

Figure 2-11 illustrates two mesa-isolated domes, one with an infinite width 

trench and one with a finite width trench.  The outlines of the trenches are defined in a 

second step of photolithography after the dome resonator is released.  Once the resist 

is developed, a short Bosch silicon ICP etch is used to penetrate the device layer, 

followed by a ICP oxide etch and finally a longer Bosch silicon etch to excavate 

approximately 13 µm into the silicon substrate.  The experimental results and 
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theoretical predictions for the 104 MHz mode of a 5.3 µm diameter mesa dome are 

seen in figure 2-12.  Multiple-sized mesas were tested which, for a given mode of 

oscillation and SAW wavelength, will form different interference patterns.  A periodic 

pattern can be clearly seen where there are Q improvements at 0.75, 1.25, 1.75 Rmesa/ 

λSAW. 

When the mechanical resonators are not operated in a vacuum of less than 

several mTorr, air damping becomes the ultimate limiting factor.  Viscous drag and 

possible squeeze film damping between the resonator and the substrate reduce the Q 

by several orders of magnitude.  Figure 2-13 demonstrates 14 MHz resonant vibrations 

with a Q < 100 for a 30 µm dome in atmosphere. 
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Figure 2-11:  Dome mesa built to reflect acoustic wave energy 
back into resonator structure. 

a) 

b) 
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Figure 2-12:  Simulation and experimental data from mesa 
dome. 

Figure 2-13:  Resonance of 30 µm diameter dome resonator at 
atmospheric pressure. 
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3 Integrated Resistive Transduction 

 

Transduction, the process of converting an electrical signal to mechanical 

motion and mechanical motion back to an electrical signal, is one of the most 

challenging aspects of RF MEMS.  As previously discussed, thermal actuation is a 

highly effective energy conversion mechanism.  This section focuses on the 

integration of thermal drive and piezoresistive detection into the dome shaped 

resonators, in essence, leading to resistive coupling into and out of the microresonator.  

Resistive coupling offers several advantages over electrostatic transduction: the 

actuators are broadband and can be impedance matched to the network, their 

performance does not depend on nanometer scaled gaps surrounding the resonator, 

and the impact on the resonator quality factor is minimized.  Finally, both resistive 

transducers can be fabricated within the polysilicon membrane allowing a resonator to 

be implemented into a single plane of silicon and defined immediately next to a field 

effect transistor in a CMOS processes. 

 

3.1 Resistive Actuation 

 

Previous methods for performing high frequency thermal actuation made use 

of intensity modulated lasers that were focused onto the MEMS device.  While this 

was an excellent tool for experimental analysis of any device on a wafer, it is hardly a 

compact method of transduction.  Additionally, the long path distance (often several 

feet) between the laser source and the MEMS device translates any vibrational 

instability of the optics into frequency and amplitude noise in the resonator, 

complicating reproduction of sensitive measurements.   
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An alternative method for locally dissipating heat into a microresonator is to 

locate a microheater in direct proximity to the resonant membrane.  Figure 3-1 

pictures a thin film metallic resistor which has been lithographically defined on the 

surface of the resonator.  By applying a voltage across the microheater, an electrical 

current is passed through a material and the material's resistivity causes power 

dissipation in the form of Joule heat.  Since the metallic resistor is in direct thermal 

contact with the polysilicon film, heat is directly transferred into the microresonator.  

Through the thermal expansion of the polysilicon film, these local temperature 

variations produce local stress variations.  The incremental film stress is then relieved 

by out-of-plane deformation of the membrane.  Figure 3-2 illustrates a finite element 

analysis performed with ANSYS where 20 µW of heat is dissipated from the resistor 

into the film, producing a local change in temperature of less that 0.1 K and a vertical 

deflection of 0.0055 nm.  As previously described in section 1.5.4, short thermal time 

constants in the MEMS system allow AC signals to be applied to the microheater that 

will excite standing waves in the resonator and thus enable a frequency selective 

response to the incident electrical signal. 

The robust structure of the shell type resonator allows the resistor to be defined 

after the hydrofluoric acid etch, allowing metals to be used that are not compatible 

with HF acid.  After the HF etch is used to define the cavity dimension of the 

resonator (figure 2-1 c), the wafer is again coated with photoresist for a second level 

of lithography.  LOR 10-A is first spun on the wafer followed by a photosensitive 

layer of Shipley 1813.  A second layer of optical lithography defines the areas that will 

be metalized.  The resist is developed and the wafer is placed in an e-gun metal 

evaporator.  First, an adhesion layer of 4.8 nm of titanium is evaporated followed by a 

layer of gold.  A 70x3 µm2 gold resistor that is 20 nm thick had a resistance of 95 Ω, 

while a 40 nm thick resistor was 45 Ω. 
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The location of the resistor on the resonator was carefully chosen for a number 

of reasons.  First, the microheater can be positioned on the membrane to selectively 

excite a particular mode.  This is advantageous for a multi-moded device causing the 

resonator to be preferential to a pre-determined mode of excitation.  Secondly, 

locating the resistor at a point of maximum deflection induces significant damping in 

the structure due to viscous drag between free electrons and motions of the ions in the 

metal as they follow the mechanical oscillations (electron-phonon dissipation) [54].  

Placing the resistor completely off the device (figure 3-3) allows the resonator to 

preserve its intrinsic quality factor.  For example, in the 30 µm diameter domes, a 

resistor located immediately adjacent to the etch hole produced a 17 MHz peak with a 

Q of 2,000, a resistor located just touching the periphery produced a 17 MHz peak 

with a Q of 10,000 and a resistor in-between the previous, produced a 17 MHz 

resonance with a Q of 5,500.  The ability to effectively drive the device with the 

resistor located completely off the resonator also demonstrates that this method of 

actuation is indeed thermally induced and not produced from a bimorph or capacitive 

effect.  The disadvantage of locating the resistor off the device is that, by locating the 

point of maximum temperature variations off the device, the effectiveness of the drive 

is reduced.  Thus, in resistive drive, there is a tradeoff between the Q and the drive 

efficiency. 

To facilitate electrical testing, each end of the resistor is connected to 300 µm x 

300 µm metal pads.  The chip is mounted on a ceramic dual-inline pin (DIP) package 

(figure 3-5) and aluminum wirebonds are made between the bonding pads and the gold 

leads of the ceramic package.  To allow sample interchanging, the ceramic package is 

mounted on a plastic DIP holder which is anchored to a Teflon plug sitting in a custom 

built vacuum chamber.  Coax wire leads soldered to the DIP holder pass through the 

Teflon plug and are connected to a RF con-flat electrical feedthrough to allow 
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connections to 50 Ω driving electronics such as a spectrum/network analyzer or RF 

power amplifiers. 

The electrical signal applied to the resistor can be described as: 
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where V magnitude of the RF voltage, and VDC is the DC bias on the driving signal.  

The power dissipated by the resistor is 
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where R is the resistance of the microheater.  Since the response of the resonator is 

frequency dependent, the higher frequencies are filtered out and the force from the 

resistive actuator driving at a particular mode of resonance (fo) can be described as 
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where Vo  is the amplitude of the driving signal at (fo), and ∆T and ∆ε is the local 

change in temperature and stress. 

The dependence of Equation 3-3 on DC biasing is demonstrated 

experimentally in figure 3-4 where the relative S21 S-parameter (the magnitude of the 

photodetector output signal, divided by Vo from the network analyzer) is plotted versus 

Vo for several DC voltages.  To make this measurement, the fundamental frequency 

was recorded at a particular DC bias and AC drive magnitude sufficiently low enough 
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to keep the resonator in the linear regime.  The analyzer was then switched to network 

mode where a S21 power sweep could be performed at the previous CW frequency.  

Since DC bias shifts the frequency slightly, each curve is measured at a different 

center frequency.  For low AC amplitudes, figure 3-4 shows the expected increase in 

the resonator vibrational amplitude in response to an increase of the DC bias of the 

driving signal.  This dependence illustrates how DC bias can be used to control the 

gain of the MEMS system.  S21 is seen to be constant for low AC amplitudes until the 

output no longer linearly follows the input and compression sets in due to nonlinearity.  

For high DC biases, compression is seen at lower RF drive amplitudes because the AC 

* DC drive force is larger.  Thus, a wider input dynamic range can be obtained at 

lower DC biases, indicating the tradeoff between dynamic range and insertion loss. 

In figure 3-4, a 200 mV DC bias translates to a S21 of –28 dB in the linear 

regime.  This is of course only a relative measurement because S21 is a direct function 

of the incident HeNe laser power and the x-y position of the beam.  By optimizing the 

position or changing the detection power, these curves can be vertically shifted in 

either direction. 
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a) 

b) 

Figure 3-1:  a) Optical DIC and b) SEM image of 30 µm 
dome resonator and gold heater. 
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10 µm
resistor

Temperature (˚K) 

Side view 

Top view 

Figure 3-2:  FEM simulation of temperature variations and 
static displacement induced by applying a thermal flux of 10 
µW dissipated in a 3 µm wide strip on the polysilicon shell 
resonator.  The periphery of the shell is constrained to be 
room temperature.  A temperature increase of 0.036 K and DC 
vertical deflection (not pictured to scale) of 0.006 nm is 
produced in the membrane. k = 150 W/mK, ν = 0.22, E = 165 
GPa , ρ = 2330 kg/m3, and α = 2.6x10-6 /K. 
 

Figure 3-3:  SEM image of dome and gold micro-heater 
located adjacent to resonator.   
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Figure 3-4:  Dome substrate wirebonded to ceramic DIP 
holder and mounted in the vacuum chamber. 
 

Figure 3-5:  S21 S-parameter (which includes the efficiency of 
the photodetector and detection optics) of the thermal actuator 
+ resonator sampled at the maximum amplitude of the 12.7 
MHz resonant mode.  DC bias on the network analyzer drive 
signal is (from lowest to highest) 75 mV, 100 mV, 150 mV, 
and 200 mV.  Dashed line represents constant mechanical 
amplitude of 2.5 mV from the photodetector. 
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3.2 Resistive Detection 

 

While most of the experiments in this work were carried out using 

interferometric detection due to its experimental ease of use, high signal to noise ratio, 

and near zero cross-talk, a much more compact and stable method of high frequency 

motion detection was needed for integration purposes.  Detection of capacitive 

displacement current is a possible alternative; however, in order to be implemented 

with the dome resonator, top and bottom electrodes with nm size gap spacing would 

need to be implemented, significantly complicating fabrication.  A second possibility, 

which would interface well with the system, is piezoresistive detection.  Knowing that 

doped polysilicon has piezoresistive properties, we can implement a strain sensitive 

transducer directly into the polysilicon film resonator, yielding a stable and integrated 

transduction layout. 

To define the piezoresistor, several additional microfabrication steps are 

inserted into the process described in figure 2-1.  Following the definition of the etch 

hole, a second layer of photolithography is used to define the area of the polysilicon 

that will be doped to form the piezoresistive strip (figure 3-6).  A 70 x 3 µm2 area of 

implantation is positioned in the membrane to be sensitive to modes such as γ01 and γ11 

described in figure 2-5.  The implanted strip connects two 300 x 300 µm2 implanted 

pads for probe access.  Using a thick resist as a mask, the film stack was subjected to a 

boron ion implantation performed at Ion Implantation Services with a dose of 5x1015 

cm-2 and an energy of 5keV.  The resulting shallow implant creates an asymmetrical 

piezoresistive region through the polysilicon film thickness.  After the resist mask is 

removed, subsequent rapid thermal annealing (RTA) at 900 ˚C for 30 seconds 

activates the boron and limits diffusion of the active species.  A spreading resistance 
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profile (figure 3-8 a) shows active boron concentration varying between 1x1020 cm-3 

and 1x1017 cm-3 through the 180 nm polysilicon film. 

The asymmetrical profile allows for a change in resistance to develop in 

response to transverse vibrations, characterized by expansion in the top half and 

compression in the bottom half of the film, whereas uniform doping through the film 

would lead to cancellation of the net change in resistance in response to flexure.  Since 

the gauge factor, ( )( )l
l

R
RG ∆

∆=  (where l is the length of the piezoresistor), of 

polysilicon varies with doping concentration (figure 3-7), the difference in the gauge 

factor between the top and bottom sections of the film determines the overall 

sensitivity to membrane stress. 

The dose, energy, and activation anneal were critical to a successful 

piezoresistor sensor.  To further understand the impact of these parameters, four doses 

1x1013, 1x1014, 1x1014 and 5x1014 cm-2, all implanted at 5 keV, were tested.  The first 

two doses were too low and produced very high value resistors with negligible voltage 

modulation.  The 1x1014 and 5x1014 doses produced resistive values between 5 and 10 

kΩ, which fell in the optimal piezoresistive region.  The annealing time and 

temperature were critical as well.  In using RTA, which heated the chip to activation 

temperatures in a few seconds, it was found that an anneal time of 10 seconds at 

1100˚C successfully activated the implanted region; however the process caused 

diffusion of the active species through the thickness of the film canceling the 

piezoresistive effect (figure 3-8 b).  A more effective anneal was performed at 900 ˚C 

for 30 seconds, which activated the boron and reduced diffusion. 

In future work, it is suggested that a sacrificial layer of oxide be deposited on 

top of the polysilicon resonator prior to the ion implantation.  This additional step 

would reduce the need for an extremely low accelerating voltage by allowing the 
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majority of the implanted species to remain in the sacrificial material, while only a 

small profile would diffuse into the top part of the polysilicon film. 

Following implantation and activation, the chip was placed in a HF bath to 

define the shell type resonator.  To define the driving resistor, the previous 

metallization lift-off process was used, differing only in that the 300 µm x 300 µm 

implanted pads were also covered with metal to allow the piezoresistor to be probed.   

In the microresonator, the implanted polysilicon resistor monitors the high 

displacement resonant motion.  Membrane deflection produces a corresponding strain 

in the shell membrane, which is converted by the piezoresistive effect of the doped 

polysilicon strip into a proportional fractional change in resistance.  In a half-

Wheatstone bridge configuration, a change in resistance in one of the two resistors 

will produce corresponding variations in the voltage at the center of the bridge.  Strain 

developed in the resonator along the piezoresistive strip is on the order of 10-5, which, 

for a differential gauge factor of ~10, a bridge bias of 10V, and resistor value of 4 kΩ, 

should produce an AC output signal of about 1 mV. 

Initial resonator testing was performed using DC probes (rated to 10 GHz) in a 

Desert Cryogenics vacuum probe station at room temperature and a pressure of 10-5 

torr.  The network analyzer RF drive was biased with 200 mV and applied to the 50 Ω 

microheater input (figure 3-11).  The half bridge output transducer was biased with ±5 

V and a third probe connected the middle of the bridge to the 50 Ω input of a network 

analyzer.  The resulting resonator spectrum of this configuration is shown in figure 3-9 

a,b.  In the polar plot (figure 3-9 b), the peak of the resonance has a magnitude of 10 

µV and is offset from the origin due to coupling (crosstalk) between the drive and 

detection, producing a non-Lorentzian peak. 

By subtracting the background crosstalk vector and thus shifting figure 3-9 b to 

the origin, we can reconstruct the Lorentzian shape (figure 3-10) from figure 3-9 a.  



 

55 

Crosstalk between the microheater and the piezoresistor was found to be on the order 

of –80 dB and was dominated by capacitive coupling rather than thermal coupling 

within the resonator itself.  Since the resistivity of the piezoresistor is also influenced 

by the membrane temperature, it was expected that thermal drive would have 

significant coupling to the output transducer.  The primary method of coupling was 

determined by changing the DC bias on the driving signal.  By increasing the 

microheater bias, both the power dissipated and the thermal driving force were 

increased; thus if cross-talk was thermal in nature, both the noise floor and the 

resonator response should increase.  However, a change in the DC voltage only 

produced a change in the resonator response, indicating that the local temperature field 

was small enough that coupling between the input and output transducers was not 

thermal in nature and was probably dominated by electrostatic fields between the large 

bonding pads or probes.  

A disadvantage of directly coupling the Wheatstone bridge to the spectrum 

analyzer is the loss of signal due to voltage division between the implanted resistors 

and the 50 Ω spectrum analyzer input.  For example, with a 10 kΩ piezoresistor, a 

100x signal division takes place at the input of the spectrum analyzer.  A high 

impedance buffer amplifier placed directly on the piezoresistive bridge output reduces 

voltage division and eliminates parasitic capacitances associated with probes and 

cabling.  An Analog Devices AD8079 high-speed buffer with a gain of 2 and a 10 MΩ 

and 1.5 pF input resistance and capacitance was used.  The op-amp was soldered to an 

AD8079 prototyping board (figure 3-12, 3-13) and the resonator chip was then taped 

to the same PC board.  Wirebonds were made to the bonding pads of the metal heater 

and piezoresistor.  The opposite end of the wirebonds were then carefully attached to 

the prototyping board using indium solder.  Gold ribbon wirebonds were used to avoid 

large capacitive effects caused by the native oxide present on aluminum wires. 
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Figure 3-10 overlays the Lorentzian waveform produced by the same resonator 

and -20 dBm RF drive, only now wirebonded to the amplifier prototyping board.  It 

can be seen that the response is now almost 2 orders of magnitude larger than when 

the resonator was not coupled to the high impedance amplifier.  The background noise 

vector is substantially larger, which is attributed to coupling between the unshielded 

gold ribbon wirebonds.  The insertion loss is now approximately -30 dB, which can be 

further reduced by optimizing the gauge factor and the implantation depth, dose, 

energy, and activation anneal. 

 

GOLD µ-
HEATER 

IMPLANTED 
PIEZO-
RESISTOR 

10 µm 50˚ TILT

Figure 3-6:  SEM image of a shell-type RF MEMS resonator 
with integrated resistive transducers.  The white outer ring 
produced from secondary electron effects defines the 
circumference of the membrane. A 30 nm thick metal resistor 
and an implanted p-type resistor form the input/output 
transducers. Image obtained using a mix of in-lens secondary 
detector and in-lens energy selective backscatter detector on a 
Carl Zeiss Ultra 55. 
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Figure 3-7:  Gauge factor of polysilicon.  Reproduced from 
reference [55] 



 

58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8:  Carrier concentration profile of ion implanted 
polysilicon region, post RTA. Both are profiles are 
determined by a spreading resistance analysis performed by 
Solecon Laboratories.  a) dose: 5x1015 /cm2, energy: 5 keV, 
anneal: 900º C @ 30 sec  b) dose: 5x1015 /cm2, energy: 5 keV, 
anneal:1100º C @ 30 sec.   
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Figure 3-9:  a) Square root magnitude of voltage detected by 
spectrum analyzer from piezoresitive half-Wheatstone bridge. 
b) Real and imaginary component of voltage over 
corresponding frequency range. 
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Figure 3-10:  The Lorentzian response of one membrane 
mode preferentially excited and detected by resistive 
transducers both uncoupled (a) and coupled (b) to an 
operational amplifier. The background cross-talk vector 
indicated by the gray dot in figure 3-9.  b is subtracted out of 
both data sets.  Microheater drive signal: –20 dB with 250 mV 
bias, 10 V piezoresistor bridge bias. 
 

Figure 3-11:  Electrical signal path of the resistively 
transduced MEMS resonator. 

-5V 

+5V 

vRF 

vout 

Dome 
resonator

Implanted  
piezoresistor 

50Ω Au 
resistor 

AD8079 
+ 
- 

0.996 0.998 1.000 1.002 1.004 1.006
1E-3

0.01

0.1

1

A
m

pl
itu

de
 (m

V)

f/fo

a) 

b) 



 

61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF 

Figure 3-12:  Prototyping board for AD8079 amplifier with 
dome substrate taped to board and electrically inserted 
between the SMA input and the amplifier input pin.  Red and 
Black wires are BNC connectors for biasing, ±5 V for piezo 
bridge, and ±5 V for AD8079.  Gold ribbon wires are 
wirebonded to resonator bonding pads for ±5 V, gnd, vin, and 
vout and then soldered to prototype board.  Board is then 
placed in a vacuum probe station and connected to SMA 
connectors within the vacuum environment. 

OP output 

Dome Resonator 
input 

Figure 3-13:  Electrical schematic of AC and DC network for 
amplifier and resonator.   
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3.3 DC Heating Frequency Control and Temperature Effects 

 

Similar to the process by which electrostatic drive can provide for frequency 

tunability of a resonator through a DC bias (equation 1-15), thermal drive can change 

the resonator spring constant with the DC level of the driving signal.  We previously 

observed that heat, incident on a slightly curved structure, will change the local stress 

of the structure.  Slow varying or steady state power dissipation (i.e. that produced 

from the DC bias on the driving resistor) affects the average spring constant in the 

resonator, effectively tuning the natural frequency.  Depending on the location of the 

resistor and the mode of oscillation, DC effects either increased or decreased (through 

stiffening and softening the spring constant, respectively) the resonant frequency of 

the device.  The aforementioned 30 µm dome exhibited up to a 2 Hz/µW dependence 

on the incident power.  Such sensitivity to static or low frequency thermal effects is 

one of the primary disadvantages associated with optical transduction and a significant 

benefit of resistive transduction.  Since most flexural resonators have a finite degree of 

curvature from residual stress in the film, interference effects produced by the 

resonator, the varying gap, and the substrate make these membranes position sensitive 

to incident light.  Movement of the laser focal spot across the surface of the membrane 

causes changes in the amount of absorbed heat, thus altering the vibrational spectrum 

and illustrating how instabilities in the optical path translate to frequency and 

amplitude instability in the resonator.  Since resistive coupling is integrated into the 

device, the thermo-vibration instability associated with the transduction elements is 

eliminated. 

Ambient temperature was shown to have a significant effect on the membrane 

and transduction elements.  Temperature similarly impacts the frequency of the 

resonator by changing the overall film stress or by changing the transducer resistivity 
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and affecting power dissipation into the device.  For the resistively transduced 

resonator, a temperature coefficient of approximately 2 kHz/ºC was measured.  The 

tools necessary to measure the coefficient of the membrane or the membrane + heater 

independently were not available at the time; however, speculation suggests that the 

implanted piezoresistor is responsible for the large temperature coefficient since the 

semiconductor’s free carrier density depends exponentially on temperature.  A 

temperature coefficient in piezoresistive sensors is ordinarily compensated for by 

implementing the sensor into a Wheatstone bridge, where all resistors have the same 

thermal coefficient, thus the current through the bridge will change without affecting 

the output voltage.  However, a change in current will alter the power dissipated by the 

resistor leading to a frequency shift in the resonator.  Thus a balanced bridge will not 

be able to compensate for any change in temperature.  To compensate for temperature, 

a proportional to absolute temperature (PTAT) circuit could be used to bias the driving 

signal of the resonator and compensate for the temperature coefficient of the system. 
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4 CMOS Integration of MEMS Resonators 

 

4.1 Introduction 

 

In the previous sections, it was demonstrated how a micromechanical resonator 

can be inserted into an electrical signal path to allow the resonator to perform 

frequency dependent operations on the incident signal.  Resistive coupling was also 

successfully implemented as an actuation and detection method that can be completely 

integrated into the plane of a MEMS resonator, enabling compact and stable 

transduction with minimal geometrical restrictions.  This integrated design proves to 

be a valuable step towards merging solid-state electronics with micromechanical 

resonators. 

The ability to integrate MEMS – capable of high fidelity signal processing – 

with CMOS amplifiers and digital logic, offers significant advantages.  Integrating 

MEMS as filters, mixers, and oscillators alongside solid-state field effect devices will 

allow a complete radio architecture to be implemented into a single silicon chip less 

that 1 x 1 mm2, dramatically down scaling the dimension of wireless communication 

hardware, permitting new applications, and reducing manufacturing costs.  

Applications which would benefit from MEMS and CMOS electronics in a single chip 

package include cell-phone transceiver architectures, wireless medical sensors [56], 

smart dust sensors [57], radio frequency identification (RFID) tags [58], and phased 

array radar. 

There are several fabrication processes currently commercially available for 

MEMS integration.  Polymumps is a 3 layer polysilicon micromachining process 

where all three layers are 500 nm thick (too thick for most flexural resonators) with no 

option for on chip field effect devices.  The SUMMiT fabrication process from Sandia 



 

65 

National Lab is a similar process with structural films ranging between 0.8 µm and 

2.25 µm, also with no CMOS integration. 

This next section presents research focused on the integration of 

micromechanical resonators and their corresponding detection electronics into a 

standard CMOS fabrication processes that makes no compromises for incorporating 

free standing MEMS structures into a layout.  While many groups have claimed that 

their devices are “CMOS compatible,” this claim is most often derived from the fact 

that their geometries are silicon or polysilicon based and thus “must” be able to be 

integrated into a conventional process.  However, little thought is actually placed on 

how the device and corresponding transducers will actually fit into a CMOS process 

flow and the effects of standard fabrication steps on device performance. 

 

4.2 3D-SOI 

 

To substantiate the claim of CMOS compatibility, two different fabrication 

technologies that are or will be available to digital and RF integrated circuit designers 

are used to integrate CMOS and MEMS.  All CAD was designed within the Cadence 

Design System environment and all circuit simulations were performed using 

documented specifications provided by the design house for the Cadence Spectre or 

SpectreS environment.   The first process described is a three dimensional silicon-on-

insulator (3D SOI) run geared toward increasing the density of standard planar CMOS.  

The 3D SOI process, available from MIT Lincoln Labs, is unique in that it combines 

three independent SOI CMOS levels into a single wafer stack.  Figure 4-1 illustrates 

the cross-sectional view, where SOI wafer 1 is the structural base and tier 1 of 

electronics.  To form tier 2, the handle of SOI wafer 2 is removed and the wafer is 

inverted and oxide bonded to wafer 1.  Tier 3 is created in a similar method, by again 
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removing the silicon handle, inverting the remaining wafer and bonding it to tier 2.  

Tungsten plugs then electrically connect tier 1 to tier 2, and tier 2 to tier 3. 

This process is particularly advantageous to us because it facilitates easy post 

processing by leaving the active parts of tier 3, which will form the suspended 

membrane, very close to the surface.  Figure 4-2 illustrates how the basic structure of 

an inverted SOI transistor is used to integrate a circular resonator into the 3D SOI 

process.  In the SOI transistor, a 40 nm thick silicon island forms the active part of the 

field effect device, containing the doped source and drain as well as the channel 

region.  The channel is controlled by a 200 nm thick doped polysilicon gate which is 

isolated from the silicon island by a 4.8 nm gate oxide.  If we extend the polysilicon 

gate layer (Poly_C) over the island (figure 4-2 b) we begin to see how a resonator may 

be implemented.  By predefining an etch hole (figure 4-2 c) into the poly membrane, a 

subsequent wet etch can be used to remove the overlaying and underlying oxide 

surrounding the poly.  After receiving the die from MIT-LL, the membrane area is 

exposed by performing lithography on the 3D SOI die to define the resonator 

circumference in a layer of resist or chrome.  A subsequent wet oxide etch will start 

from the top of the cap oxide, expose the top surface of the resonator, and continue 

through the etch hole to allow undercutting of the resonator.  The resist or chrome 

mask prevents the wet etch from releasing any part of the wafer other than the 

bondpads and the resonator.  Poly_B (on tier 2) is defined below the resonator to 

provide a wet etch stop and a reflective surface to make possible interferometric 

detection.  The resonant spectrum of a 40 µm flat membrane, integrated into the 3D 

SOI process and then released with the aforementioned process, is shown in figure 

4-3. 

To implement an integrated resistive actuator, a 6.876 x 75.8 µm2 strip of 

silicon island, doped with either CBN n-channel body implant or CAPN 1x1019 cm-3 
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n-type island implant, is defined across the surface of the resonator (figure 4-4).  It is 

standard practice to form a polysilicon silicide to improve ohmic contact between the 

first metal layer and the gate electrode.  Since all areas of polysilicon will be shorted 

together due to the thin metallic layer on the bottom surface, the silicon island resistor 

is particularly advantageous because it is electrically isolated from the polysilicon 

membrane via the gate oxide.  In the design rules, it is prohibited to dope the silicon 

island without doping the above polysilicon (with NSD n+ degenerate implant); 

however we ignore the rule and leave the polysilicon undoped in case there is a gate 

oxide short, which is highly probable in such a large area.  The fact that there is no 

polysilicon silicide block in this fabrication process eliminates the idea of using a NSD 

doped strip of polysilicon as an implanted resistor; however a silicide block will be 

available in the next generation of 3D SOI.  Metal 1 contacts to the active island 

resistors, which must run through a via in the poly membrane, are located at more than 

twice the membrane radius away from the etch hole to prevent any contact with the 

HF etchant.  Bonding pads, which interface to the resonator driving and detection 

electronics are implemented as large doped Si-island sheets.  This allows the wet 

etchant to expose the bonding pads when the resonator is released, without affecting 

the conductivity.  If conventional metallic pads were used, the HF would most likely 

react with the exposed metal and create unreliable and unpredictable contacts.  

Piezoresistive displacement sensors are implemented in similar fashion to the 

resitive actuator.  On the opposite side of the resonator, a silicon island resistor is 

defined across the surface of the resonator and a second, equal dimension, resistor is 

placed adjacent to the dome.  Since the doped silicon is piezoresistive, we can 

implement a full Wheatstone bridge and generate a voltage signal at the center of the 

bridge proportional to the membrane displacement.  The silicon island is particularly 

advantageous for piezoresistive detection, because it is located in the top half of the 
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resonator film, thus experiencing only net compression or expansion in response to 

resonant motion, maximizing the output signal. 

A SOI CMOS based differential amplifier is located on tier 1 to provide 

maximum isolation between the mechanical resonator and the detection electronics.  

The three-tier system could allow us to minimize the overall footprint of the resonator 

and amplifier by allowing vertical integration; however for simplicity we chose to 

locate the amplifier away from under the resonator.  A basic differential amplifier and 

voltage follower (figure 4-5) are used to boost the signal directly from the Wheatstone 

bridge.  M0, the n-type SOI transistor, is the non-inverting input and is connected to 

two 11 kΩ static silicon island resistors.  The gate of M1 is the inverting input and is 

connected to the middle of the bridge between the 11 kΩ static resistor and the 

variable pizeoresistor on the membrane.  P-type SOI transistors M2 and M3 complete 

the design of the active current mirror differential amplifier.  These transistors are 

optimized to provide maximum gain when the DC bias on the input of M0 and M1 is 

Vdd/2, allowing the bottom Wheatstone bridge to be at ground.  M6 is an active current 

source whose current is defined by the biasing network of M9 and M4. Finally, M5 

and M10 form a voltage buffer reducing the output voltage and impedance.  A 

Cadence Spectre simulation of the differential amplifier is pictured in figure 4-6 

showing about 40 dB of gain with a 3 dB gain roll-off point at 70 MHz. 
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Figure 4-1:  Cross-sectional view of wafer stack in 3D-SOI 
process.  
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Figure 4-2:  Method for using film structure for standard SOI-
FET transistor to implement a MEMS membrane and 
transducer. 

Step 2 – Define a large plain of gate level polysilicon. 

Step 3 – Pre-define etch hole within poly geometry.  Post processing uses HF to 
release polysilicon membrane.  Silicon island remains as resistive transducer. 

   Step 1 – Use inverted tier3 SOI transistor 
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Figure 4-3:  Resonant vibration of a laser driven, laser 
detected 40 µm diameter membrane resonator predefined in 
the 3D SOI process.  Two types of membranes were released 
and tested.  Membranes composed of just the polysilicon gate 
layer produced Q’s ranging between 5000 and 8000 
depending on the mode of vibration.  “Sandwich” membranes 
with a large sheet of thin silicon island separated from the 
poly gate by the gate oxide had more heavily damped 
vibrations with Q’s between 1500 and 2500. 
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Figure 4-4:  Two layouts for incorporating a dome membrane 
into 3D SOI process 
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Figure 4-6:  Simulated response from amplifier in figure 4-5. 
1 µV input signal biased with Vdd/2 DC bias.  

Figure 4-5:  Differential to single ended SOI FET electronics 
to amplify signal out of Wheatstone bridge. 
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4.3 IBM BICMOS 

 

The second fabrication process which was utilized to combine resonant 

structures with solid state electronics was an IBM 0.18 micron SiGe BiCMOS 7WL 

fabrication run geared toward high frequency (ft = 40 GHz) RF electronics.  Although 

this run was never fabricated, the design techniques to incorporate a resonator into this 

process could be applied to a wide variety of CMOS runs. 

Like the 3D-SOI process, the gate layer polysilicon film of the IBM process 

was used to form the structural layer of the MEMS resonator.  In the Cadence layout 

(figure 4-7) a large area of polysilicon (PC) with a predefined etch-hole can be 

observed.  The field of poly is defined over an isolation trench of 300 nm of thermally 

grown SiO2 (LOCOS), which provides lateral isolation between the source and drain 

of adjacent transistors.  From figure 4-8 it is also noticed that 600 nm of oxide above 

the polysilicon isolates the gate from the above interconnect layers.  This allows a 200 

nm poly structural layer to be defined and suspended when the surrounding oxide 

layers are removed. 

Gaining access to the resonator is particularly challenging, since there are 7 

layers of metal in this process, and about 12 µm of low temperature oxide to provide 

interconnect isolation.  We use a 4 µm thick top metal layer (MA), normally 

designated for bonding pads, to serve as a mask for post processing.  Aadditionally we 

refrain from placing M1 – M6 above the resonator (figure 4-8).  This way, MA can be 

used to mask a RIE etch which will remove the oxide only above the poly membrane.  

The thick MA layer will prevent the RIE etch from removing any other parts of the 

chip which contain interconnects and active devices.  A disk of M1 metal is placed 

above the resonator to provide a RIE etch stop.  The M1 metal can then be removed 
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with a wet etch, and a subsequent HF etch will free the resonator from the surrounding 

oxide. 

Implementing the resonator transduction electronics is relatively 

straightforward since the PC gate layer can be doped and is thus inherently resistive.  

The poly gate in this process also has a silicide covering the top surface that will make 

the entire membrane electrically connected unless we define a silicide prevention 

mask.  Layer OP is used to prevent silicide formation on a doped section of 

polysilicon membrane creating a resistive strip located on the periphery of the 

resonator.  This resistive strip forms the integrated microheater actuator.  In this 

process, capacitive displacement detection was used although, in retrospect, 

piezoresistive detection may have been easier to implement.   A ground plane was 

inserted through the middle of the resonator by placing two areas of silicide protection 

with a grounded strip between them.  The half of the circular resonator not occupied 

by the resistive actuator is left coated with silicide, forming the conductive top half of 

the output capacitor.  The bottom half of the capacitor is formed by the doped n-well 

region.  Both capacitor plates are then directly connected to the M1 interconnect layer 

which has a short lead to the first transistor in the transimpedance amplifier (figure 

4-10).  The significance of this distance is illustrated in figure 4-9.  Any parasitic 

capacitance the output may experience serves to form a voltage divider at high 

frequencies and will thus dramatically decrease the output signal.  This is part of the 

justification for integrating the MEMS resonator within the CMOS process 

immediately adjacent to the input transistor, rather than placing a separate 

microfabricated MEMS wafer mounted on top of the CMOS package.  All of the 

critical parts of the design – the isolation oxide, doped polysilicon, metal mask etc. – 

are standard within a CMOS process; thus this design is a template for implementing 

suspended resonators into a wide variety of integrated circuit processes. 
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A transimpedance amplifier is used to convert the displacement current 

(equation 1-21) from the output capacitor into a voltage.  The overall schematic is 

shown in figure 4-11.  A basic differential amplifier with an output voltage buffer and 

positive feedback is used.  Transistors TP330, TP331, TN332, TN333 make up the 

differential amplifier while TP331 is the active current source.  RPC2 controls the 

current through TN330 which regulates Vgs of both TN330 and TP331, setting the 

current through the differential amplifier.  TN337 and TN334 form a voltage follower 

amplifying stage which reduces the high impedance of the differential amplifier and 

the DC voltage on the output, increasing the head room of the amplifier while 

additionally providing Miller compensation.  RRR0 is the feedback resistor setting the 

gain of the amplifier.  The resistive network RPC0 and RPC1 correctly balances the 

left differential input.  The output from the amplifier and the input to the resonator are 

directly routed to a set of bond pads on the top of the wafer enabling wafer level 

probing of the integrated MEMS and CMOS electronics. 
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Figure 4-7:  Method for integrating MEMS resonator and 
transducers into IBM BiCMOS process flow. 
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Figure 4-8:  Cross sectional view of IBM BiCMOS process 
configured to implement resonator.  Metal interconnect layers 
are configured to allow post processing access to the 
membrane. 
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Figure 4-9:  At RF frequencies, any parasitic capacitance 
between the resonator and the load resistance forms a path to 
ground and causes signal loss.  By locating the first transistor 
of the transimpedance amplifier immediately next to the 
resonator, this voltage division is minimized. 
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Figure 4-10:  Overall layout of resonator and TIA in BiCMOS 
process. 
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Figure 4-11:  IBM BiCMOS TIA amplifier schematic with 
device critical dimensions. 
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5 Micromechanical Radio Frequency Signal Processing 

 

Up to this point we have discussed the characteristics of the frequency 

dependent response of the shell type oscillator as well as how the collective 

transducers and resonator may be inserted into an electrical signal path to perform 

frequency dependent operations.  We now discuss how signal operations enabled by 

the MEMS resonator system can work to benefit a RF communication system. 

 

5.1 The Basic RF Communication Architecture 

 

The fundamental attribute of a communication system is the ability to 

selectively sample a certain frequency bandwidth and then to demodulate the 

information that is received within the channel.  In principle, this can be accomplished 

with a filter to select the frequency range of interest from the antenna signal, followed 

by a demodulation circuit operating at the frequency of the communication band.  This 

architecture is seldom used for three reasons.  First, the requirement for the selectivity 

(Q) of the front-end filter is unrealistically high.  Second, demodulation at high 

frequencies is power consuming, expensive, and sometimes altogether impossible.  

Last, it is cumbersome for this architecture to change the frequency band of interest. 

In 1918, Edwin Armstrong proposed the heterodyne receiver, which now 

forms the basis of the majority of modern RF communication architectures.  The basic 

principle of a heterodyne receiver is to use one or more frequency translation stages to 

ease component specification requirements, allow band tuning, and permit 

demodulation to operate at lower frequencies.  A basic heterodyne setup is shown in 

figure 5-1.  The antenna converts electromagnetic energy to an electrical signal.  The 

front end filter selects the particular communication band (i.e. from 88 to 108 MHz for 
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FM radio) and the signal is subsequently amplified by a LNA.  A nonlinear element 

then multiplies the RF spectrum with a signal from a local oscillator, producing a 

signal at combintorial frequencies of ωRF ± ωLO.  A second band pass filter is used to 

select the downconverted frequency, ωIF = ωRF - ωLO.  The fact that this filter is 

centered at a much lower frequency allows it to have a much higher Q and thus be able 

to select a narrow band channel within the broader communication band.  In this 

configuration, the frequency of the local oscillator can be tuned to choose the 

particular channel within the band.  The heterodyne process can then be performed a 

second time to further refine channel selection. 

A more detailed example of a CDMA PCS cellular phone heterodyne 

transciever architecture is shown in figure 5-2.  A single stage heterodyne architecture 

is used and frequency division duplexing separates the broadcast and receive signals.  

This figure illustrates some of the difficulties associated with this architecture, namely 

the large number of discrete components required.  Numerous channel selecting band-

pass filters must be separated from silicon electronics because the required high 

quality factors can only be provided by SAW or ceramic filters rather than on-chip 

inductor-capacitor tuned circuits.  The quartz crystal is again a discrete package 

because of its large size and CMOS incompatibility.  Finally, even mixers, which need 

to operate in the GHz (or multi-GHz for 3G networks), need to be on separate chips 

that use expensive GaAs or InP HBT technologies to operate at high frequencies.  In 

fact, just the mixer in figure 5-3 costs $1.21.  The final package with all the 

components can be seen in the circuitry of a PCS cellular phone in figure 5-3.  The 

area circled in red is the RF transceiver section of the phone, while the area in blue is 

mostly CMOS circuitry for electronics.  In red, we can see several quartz crystals, 

SAW filters, a ceramic filter and several chips - altogether taking up around half of the 

space - presenting significant barriers in terms of manufacturing costs and 
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miniaturization.  CMOS integrated MEMS resonators offer the possibility to integrate 

the functionality of these low-Q, discrete components as part of a high-Q based radio-

on-chip implementation.  In this section we will discuss how the micromechanical 

resonator with resistive transduction can serve as a filter, mixer, and oscillator for use 

in a heterodyne architecture. 

 

 

 

 

 

 
Figure 5-1:  Block diagram of heterodyne receiver used for 
conversion between high-frequency and baseband signals. 



 

85 

 

 

 

 

Figure 5-2:  A commercial version of a CDMA PCS 
heterodyne architecture.  Regions in gray represent single chip 
integrated circuits which can purchased from manufacturers. 
Reproduced from www.rfmd.com. 

Figure 5-3:  Electronics in an actual CMDA PCS cellular 
phone.  Red circle illustrates RF communication section. 
Blue circle incloses logic and memory electronics. 
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5.2 MEMS Filter 

 

To first order, the mechanical resonator acts as a RF pass-band filter, 

responding with high amplitude motion on resonance and low deflection off 

resonance.  As opposed to their low-Q electrical equivalents, the high-Q mechanical 

passband offers steep filter skirts, which enable rejection of close lying signals.  

MEMS resonators in this research are perfectly suited for IF channel selection because 

of their relatively low frequency and their very high Q or frequency selectivity.  

Scaling the mass and curvature may enable flexural resonators to reach frequencies 

suitable for front end filters for GHz communication bands; however, most likely, this 

regime will be serviced by BAW MEMS resonators. 

In certain cases, the bandwidth of the mechanical passband may be too low for 

the application.  For example, in the FM spectrum, each radio channel has a width of 

about 30 kHz, but a Q = 5,000, 100 MHz resonator has a bandwidth of 20 kHz and a Q 

= 10,000 IF MEMS filter at 10 MHz has a bandwidth of only 1 kHz.  Since the 

mechanical passband is narrower than the data bandwidth, information is lost.  This 

problem can be remedied in two ways.  First, the metallic driving resistor, when 

located on the resonator, will decrease the resonator Q and open up the bandwidth.  

However, this reduces the slope of the filter side skirts and diminishes the attenuation 

of close lying neighboring signals.  Furthermore, as discussed in section 3.1, adding 

metallic damping increases the insertion loss of the system. 

A second way to increase the bandwidth is to stitch multiple resonators 

together to form an effective band.  This process preserves the steep slope of the side 

skirt while extending the bandwidth.  Resistive transduction is very conducive to 

overlapping multiple resonator bands as illustrated in Figure 5-4.  An incident RF 

signal can be applied to a set of resonators and each resonator can be either fabricated 
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or controlled by the DC bias to be tuned to a slightly different frequency and overlap 

Lorentzian responses.  The mechanical response would be detected by a piezoresistor 

and the individual response voltages would be summed together with an OP amplifier.  

This concept will hopefully be the subject of future work.  An alternative approach 

taken by Zalalutidnov et. al.[12] is to couple resonators together in a large array, 

which will form a large acoustic passband when excited because of small differences 

in a large number of coupling structures. 

 

 

 

 

Figure 5-4:  Concept for multiple order MEMS bandpass 
filter. 
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5.3 MEMS Mixer 

 

The thermal representation of the transduction mechanism offers several 

inherent advantages. It reduces parasitic cross-talk between input and output signal 

paths and requires only microwatts of an input signal power to produce detectable 

mechanical motion. Additionally, signal processing based on intrinsic nonlinearity of 

the thermal response is possible. The fact that the range of the mechanical motion is 

proportional to the local temperature increase, ∆T, and hence to the square of the 

applied RF signal, provides the possibility for implementation as a broadband mixer. 

When two voltage signals are linearly superimposed on the microheater, the 

resistor inherently acts as a signal multiplier, analogous to a RF mixer in a heterodyne 

receiver.  The driving signal, VRF, to the resistor can be represented as the sum of two 

sinusoids: 

 

 
).sin()sin( 2211 tVtVVV DCRF ωω ++=

 
5-1

 
 

Since the metal strip is in direct thermal contact with the microresonator film, the local 

temperature around the strip is directly proportional to the power dissipated by the 

resistor.  We may say that temperature, and thus the driving force, follow the square of 

the voltage: 
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Expanding (5-2) reveals, among others terms, sum and difference driving frequency 

components at, ω1 ± ω2. 
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If the frequencies of the applied signals are chosen such that f1 - f2 matches the 

fundamental frequency (fo) of the dome then appreciable mechanical motion can be 

observed.  This enables the combinatory component to be detected through the 

amplitude of the mechanical vibrations while other frequency terms in the expansion, 

which satisfy 1/f << τresonator and 1/f >> τresonator, are filtered out.  In this way, the 

microheater acts as a frequency converter while the resonator performs intermediate 

frequency (IF) filtering.  Equation 5-3 illustrates that the driving force provided by the 

resistive mixer is DC bias independent and thus can produce an IF response in the 

resonator with no DC voltage on the RF or local oscillator (LO) drive signal. 

Figure 5-5 a shows the experimental schematic used to study the 

micromechanical mixer-filter.  Two CW signals from laboratory signal generators are 

applied to a highly linear power combiner.  In the mixer setup, f1 is the RF carrier 

frequency (fc) in the GHz range, and f2 is the LO frequency, fLO, specifically chosen 

such that fc - fLO = fo.  The subsequent superposition is applied to the microresistor, 

which heterodynes fc through the aforementioned process.  The now translated RF 

energy thermally excites a 12.7 MHz resonant mode in the dome resonator and can be 

detected through the high-Q mechanical passband. 

An ideal RF mixer has a broadband input frequency response, exhibiting a zero 

reflection coefficient to any input signal.  From the frequency dependent input 

impedance for an electrostatically actuated parallel plate resonator (equation 1-22 and 

figure 1-6) we can see that the expression is minimized at the resonant frequency of 

the mechanical oscillator; however, the input impedance can be very large for off-

resonance driving signals.  This presents a problem from two standpoints.  First, due 
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to the large out-of-band reflection coefficients, the input frequency range is strictly 

limited to that of the resonator frequency, eliminating the possibility of down-

conversion from a high carrier frequency.  Secondly, in order to interface with a RF 50 

Ω network, an impedance matching network is needed to transform the high resonator 

input impedance to that of the input network.  This addition causes unwanted power 

consumption in the low Q passive components and again limits the range of the 

frequency response of the actuator. 

The resistive thermal actuator has the advantage that the dimensions of the 

resistor can be tailored such that its purely resistive impedance matches that of the 

input network (50 Ω); a maximum signal transfer match will then occur for any 

frequency of interest.  As a result, input carrier frequencies may encompass a large 

range, not limited to the bandpass range of an input tuned network or resonator 

response.  The microresistor used in this study is configured to be 70 µm x 3 µm x 20 

nm, which presents a 45 Ω input impedance.  Figure 5-6 gives the S11 reflection 

coefficient of the thermal actuator.  Over a 3 GHz range, a nearly constant S11 

amplitude of –25 dB is maintained, which translates into equal driving magnitudes 

over the span.  Figure 5-7 demonstrates an input mixing range up to 1.5 GHz [23].  In 

our test setup the upper range was limited by parasitic capacitance and inductance 

associated with the vacuum test chamber and chipset. 
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Figure 5-5:  Diagram of the micromechanical mixer-filter 
setup where two tones at f1 and f2 are applied to the resistor to 
generate a mechanical response in the resonator at the 
combinatorial frequency f1 – f2.  b) Schematic of a heterodyne 
receiver.  Circled area indicates the circuit analogy of the 
MEMS mixer-filter presented in (a). 
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Figure 5-6:  S11 reflection coefficient of the 45 Ω resistive 
actuator. 
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Figure 5-7:  a) Output response of MEMS mixer at the 
intermediate frequency fLO  - fRF  = fo over a 1.5 GHz range of 
input LO and RF frequencies.  Variations in the peak 
amplitude are the result of an attenuated RF drive signal 
caused by partial reflection from test chamber and bonding pad 
paracitics in the multiple resonator and bonding pad test chip. 
Good agreement is found between the S11 input reflection 
measurement of a single 50 Ω MEMS and a 50 Ω resistor. 
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5.4 MEMS RF Radio Receiver 

 

To demonstrate the potential of the resistor/dome transduction method, a 

heterodyne FM receiver was built and tested using the MEMS device as a one-step 

down conversion mixer and IF filter.  The setup is described in figure 5-8.  The local 

FM station spectrum was received by an antenna and amplified.  Using a linear power 

splitter, the FM spectrum was superimposed on a tunable reference local oscillator and 

applied to the microheater.  In order to listen to 91.7 MHz (Ithaca WICB) we chose 

the local oscillator to be 

 

 
MHzMHzf oLO 48.7727.91 =−= πω

 
5-4

 
 

centering the 100 kHz bandwidth of the FM radio station in the vicinity of the 

resonance of the dome.  The mechanical response of the dome resonator (the IF signal) 

was detected interfermetrically and the photodetector signal was applied to a spectrum 

analyzer for demodulation.  Demodulation of the FM signal can be performed in one 

of two ways.  First, direct frequency demodulation can be used; however, since the 

passband (Q=3,000) of the dome resonator is much narrower than the bandwidth of 

the radio station, considerable information is lost, and only distorted audio can be 

discerned, even with fine tuning of the LO.  To overcome this problem, the LO is 

slightly detuned and the slope of the mechanical resonance passband is used to convert 

FM modulation to AM modulation, which is subsequently demodulated.  The 

mechanical passband could also be widened by placing the actuation resistor in a 

position where larger dissipation in the metal would occur, deliberately decreasing the 

device Q. 
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Figure 5-8:  Block diagram of the MEMS FM radio receiver. 
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5.5 MEMS Oscillator 

 

By applying the signal that is proportional to displacement signal from the 

output transducer as feedback onto the input transducer, the micromechanical dome 

resonator can function as a stable frequency source.  Figure 5-9 shows a schematic for 

this mode of operation, which was employed with both laser detection and 

piezoresitive detection.  In the interferometer case, the photodetector signal, 

representing the mechanical motion of the resonator, is first amplified by about 50 dB, 

depending on the intensity of the detection laser.  To select one of the resonator modes 

of vibration and to provide adjustable in-loop phase, the feedback signal is filtered by 

either a Telonic Berkeley Inc. or a Lorch Microwave, low-Q, tunable band pass 

element.  By inserting these filters into the feedback loop, they contribute their own 

frequency dependent phase shift (i.e. figure 1-5), thus allowing the phase at a 

particular frequency to be varied by changing the filter center frequency.  A DC bias 

less than 1 V is superimposed on the feedback signal and subsequently applied to the 

driving resistor.  Limit-cycle oscillations at the free-running frequency, fFR, will grow 

out of the unstable equilibrium point of the system when the feedback network is 

tuned to provide a gain greater than 1 with a phase shift of an integer multiple of 2π 

(called the Barkhausen Criterion).  The feedback phase does not necessarily need to be 

an integer multiple; however the in-phase component must be larger than the out-of-

phase component.  

Feedback in the harmonic oscillator can be modeled with a non-conservative 

coupled set of equations: 
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where d/Г is the feedback gain, and the differential equation in (5-6) accommodates 

for phase tuning in the controller   Since we know the solution will be of the form 
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we can use the harmonic balance method and disregard the higher order harmonics, to 

solve for the frequency, ω, the amplitude, R, of the limit cycle oscillation.   
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And the coefficients A and B are given by 
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The amplitude of the limit cycle oscillation is either determined by the 

nonlinearity of the mechanical resonator or limited by the voltage range of the 

sustaining amplifier.  To achieve the best performance, we saturate the output of the 
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amplifiers with a feedback driving signal that will keep the resonator out of the 

strongly non-linear vibration regime. 

The highest frequency resonator that was successfully placed in a laser 

detection feedback loop was a 5 µm radius plate with a mode at 115 MHz (figure 

5-10).  To measure the temporal stability of the frequency generator, a frequency 

counter was connected to the output of the resonator and the standard deviation δf of 

the center frequency variations was measured.  Short-term stability, δf/f ~ 1.5 ppm 

(figure 5-11 a), was demonstrated at 14.5 MHz for the 30 µm resonator.  Phase noise 

(figure 5-11 b) of the same mode was measured to be -80 dBc/Hz at a 1 kHz offset. 

Our measurements indicate that the value of the phase noise was determined by the 

high noise floor of the detection and sustaining circuitry.  Phase noise measurements 

performed using interferometric detection are extremely difficult due to the DC 

heating effects which cause frequency instability which will artificially increase the 

phase noise of the resonator. 

Feedback was also placed between piezoresistive detection and resistive drive 

to achieve self-sustaining oscillations.  Long-term frequency stability was much more 

reliable in this case because DC heating effects, usually present from the HeNe laser, 

were removed from the system.  Since the Wheatstone Bridge and integrated amplifier 

provide a sufficient signal to noise ratio of the resonator at 10 MHz, we can detect the 

mechanical motion at the frequency of vibration, as opposed to heterodyne detection 

[44], which allows the resonator to lock onto its own mechanical motion via the 

feedback loop.  Feedback is provided outside the vacuum chamber by means of a 

MATEC tuned receiver, again allowing control of loop phase and amplitude.  

Mechanical oscillation at 9.8 MHz was achieved with approximately 20 dB of loop 

gain (not including the preamplifier gain) and is pictured in figure 5-12.  The spectrum 

was measured with a 10 Hz resolution bandwidth using an Agilent 4396B spectrum 
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analyzer after the feedback gain.  To convert this to a 1 Hz resolution bandwidth (to 

conform with measurement standards) 10 dB was subtracted from each point to 

compensate for averaging across a 10 Hz bandwidth, except for the peak point where 

an average power measurement would not apply.  With a 1 Hz bandwidth, the phase 

noise at 5 kHz away from the carrier is about -70 dB below the carrier (dBc), much 

higher than standard quartz crystal oscillators at 10 MHz that routinely achieve better 

than -120 dBc/Hz phase noise at a similar frequency offset.  However, when we turn 

off the resonator (by decreasing the bridge bias point to 0 V) the noise floor remains at 

the -70 dB figure.  Evidently, the unshielded gold bonding wires used to connect the 

resonator to the OP amplifier and power supplies are particularly susceptible to 

electrostatic coupling effects that define the noise floor of the system.  Thus, since the 

noise floor was determined by the feedback loop, phase noise measurements of the 

MEMS oscillator could not be carried out until further integration is completed. 
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Figure 5-9:  Schematic of feedback network of the dome 
oscillator   
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Figure 5-10:  Experimental spectrum of dome oscillations 
with interferometer detected feedback.  
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Figure 5-11:  Short term stability (a) and  phase noise (b) in a 
30 µm dome oscillator. 
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Figure 5-12:  Feedback spectrum from piezoresistive 
oscillator sampled after the tuned feedback amplifier. 
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5.6 Voltage Controlled MEMS Oscillator 

 

The resonant frequency, fo, of the dome oscillator can be tuned by changing the 

amount of heat dissipated into the polysilicon film.  As discussed in section 3.3, 

steady-state heat, imposed either by the HeNe detection laser or by a DC bias on the 

thermal actuator, will cause a change in resonator stiffness, changing the natural 

frequency of the shell resonator.  Depending on the location of the heat source and the 

sensitivity of the effective spring constant of a shell resonant mode to thermal 

expansion, the frequency of oscillation can be tuned.  In (Figure 5-13) a tuning range 

of 0.35% over a 1V change in DC bias is shown for a dome resonator placed in a 

feedback loop. 

Frequency modulation of the oscillator’s free running frequency can be 

achieved by applying a baseband AC signal that, with its proportional slow varying 

heat dissipation, will alter the resonator’s fundamental frequency.  The low-frequency 

bias causes fo to change, creating a carrier frequency, fFR, which is modulated at the 

rate of the baseband signal on the heating mechanism.  The depth of the modulation 

superimposed on the carrier is defined by the Hz/Volt transfer function of the actuator 

and resonator mode.  To eliminate adder circuitry and achieve better isolation between 

the baseband signal and the carrier signal, the baseband signal can be applied to a 

second resistive actuator (figure 5-14).  Using this setup, frequency modulation of a 26 

MHz carrier by a 30 kHz baseband signal was demonstrated with a modulation depth 

of 15 kHz.  A spectrum analyzer with a high video bandwidth, centered on the carrier 

frequency, was used to demodulate the carrier. 
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Figure 5-13:  Frequency tuning of a dome oscillator (feedback 
amplitude = 380mV).  One resistor is used to close the 
feedback loop while a 2nd resistor alters stress in the shell 
through an applied DC bias, changing fo. 

Figure 5-14:  SEM image of the dome resonator and actuator.  
Circular charged ring shows the lateral dimension of the 30 
µm diameter shell-type resonator.  Two gold resistors are 
defined vertically along the periphery of the resonator, 
forming two electrically isolated actuators. 
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5.7 Phase Tunable MEMS Emitter 

 

It is well known that a weakly non-linear self-oscillatory system can be 

synchronized to a periodic force superimposed on the system, provided that the natural 

frequency and the perturbation frequency are not far apart [59].  In the 17th century, 

the Dutch scientist Huygens, while bed-ridden by an illness, noticed that the periodic 

motion of pendulums in two wall mounted clocks became synchronized if the clocks 

were hung close to each other. He postulated that mechanical vibrations were coupled 

through the wall which drove the clocks into synchronization.  In the early 1920s and 

30s the Dutch engineer, Van der Pol, found that vacuum tube circuits had stable limit 

cycle oscillations due to their nonlinear negative resistance. When these circuits were 

driven with a signal whose frequency is near that of the limit cycle, the resulting 

periodic response shifts its frequency to that of the driving signal. That is to say, the 

circuit becomes entrained or locked to the driving signal. 

Previous research by Zalalutdinov et. al. [60] demonstrated that limit cycle 

oscillations (in the absence of external forcing) in a micromechanical resonator could 

be locked in frequency and phase to a small perturbation or pilot signal, fpilot, which 

was superimposed on the resonator via a modulated laser.  Following this work, this 

section demonstrates injection locking of the MEMS oscillator with a thermally 

induced pilot signal applied to the microheater (figure 5-16).  A map showing the 

regions of capture and loss of entrainment of the dome oscillator is shown in figure 

5-15.  To create this plot, positive feedback is applied to one resistor, causing self-

generation at frequency fFR.  A pilot signal, used to entrain the oscillator, is then 

applied to a second resistor on a completely isolated signal path.  The pilot signal is 

swept in frequency to establish the region where the mechanical oscillator is entrained.  

Within the region of entrainment, the resonator oscillations take on the frequency 
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stability of the pilot signal.  Hysteretic behavior can be seen between the points where 

lock is lost (the pull out frequency) on the upward pilot sweep and where lock is 

resumed on the downward sweep.  The perturbation is then incremented in amplitude, 

which serves to broaden the entrainment region.  

Following Van der Pol, Adler [61] developed a theory in a similar resonating 

electrical circuit that has been extensively used [62, 63] to study non-linear behavior.  

Adler considered a LCR tank circuit under feedback to which an injected signal could 

be added.  He found that the behavior of the system under feedback and injection 

could be described by 
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where α is the phase difference between the injected signal and the free-running 

signal, and thus dα/dt is the beat frequency between fpilot and fFR.  Since we are 

interested in the case where the resonator is locked to the pilot, dα/dt=0, the phase 

difference under synchronization is 
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This can be qualitatively seen in figure 5-17 where the amplitude and phase 

response of a conceptual oscillator from equation 1-1 is illustrated.  When the 

resonator is oscillating at its fundamental frequency (fFR = fo)(the red line) the 

mechanical response will be  phase shifted by α = -90º with respect to the pilot signal.  

When an injected signal is detuned by some amount (the green line) and the system is 
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still in lock, the phase of the mechanical vibrations is now going to be either lagging 

or leading the phase of the impressed signal. 

Phase tuning was also demonstrated in the MEMS resonator.  By detuning the 

pilot signal superimposed on a resonator away from the unperturbed membrane 

resonant frequency, a phase difference is produced between the tank feedback and the 

pilot signal that, just as in Adler’s case, is related to the difference between fo and fpilot.  

This is interesting; however, phase lag is produced at the expense of changing the pilot 

frequency, which is a cumbersome requirement.  Alternatively, phase lag in the 

entrained MEMS resonator is induced by detuning the fundamental frequency of the 

resonator, fo, with a DC bias.  Changing fo moves the entrainment “V” relative to the 

pilot signal instead of the opposite situation that was used to measure the entrainment 

map.  As illustrated in figure 5-17 b, to maintain frequency synchronization, the phase 

of the mechanical vibrations changes according to the phase-frequency function of the 

resonator.  This phase change can be measured between the pilot signal and the self-

generation feedback signal.  Thus, a phase difference can be obtained by simply 

changing the magnitude of the voltage impressed on the oscillator rather than by 

requiring a complex method of changing the pilot signal frequency.  Furthermore, by 

changing fo and not fpilot, the output phase can be tuned while fFR remains unchanged.  

Figure 5-18 demonstrates that the total phase shift between fFR and fpilot was controlled 

by as much as 200°.  Beyond this region of DC bias tuning, the region of the 

entrainment V is shifted to the extent that the oscillator will lose the lock on the pilot 

signal, and the entrained condition required to produce the phase differential will 

collapse, producing quasiperiodic motion.  Higher phase differentials could be 

produced with stronger pilot signals; however, more robust actuators will be needed 

since gold resistors of this dimension will melt when subjected to much more than 1 V 

DC. 
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A voltage controlled phase tunable emitter would be valuable for several 

applications.  Since there is tunable phase lag between the input (pilot signal) and the 

output (oscillator output), the system can be used to delay incoming signals.  MEMS 

have been employed for such a purpose before [64]; however, these operate on the 

principle of using MEMS switches to insert delay producing transmission lines, which 

offers only discrete phase adjustments and can be very space consuming. 

The entrained oscillator can also produce a phase modulated carrier signal for 

use in communication systems.  Phase modulation is demonstrated by superimposing a 

baseband AC signal onto the pilot resistor while the resonator is self-generating and 

entrained by the pilot signal.  Figure 5-19 demonstrates the experimental schematic.  

The right microheater applies positive feedback from the photodetector while the left 

microheater is used to entrain the resonator with the pilot as well as supply an AC 

baseband signal.  The time varying baseband signal, through the additional heat 

dissipated in the resistive actuator, pulls the natural mechanical frequency across the 

pilot frequency.  Detuning the resonator causes a time varying phase difference 

between the pilot signal and the feedback signal that is proportional to the time 

varying baseband amplitude.  The phase modulated carrier signal can be sampled from 

the oscillator feedback with an I/Q demodulator.  Phase modulation of a 26 MHz 

carrier by a 20 kHz baseband signal was demonstrated with a modulation depth of 

160˚ (figure 5-20). 
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Figure 5-16:  Region of entrainment of a self-generating 
mechanical oscillator (feedback = 380mV RMS, pilot DC bias 
= 700mV).  Hysteresis is shown between the upward and 
downward sweeps of the pilot signal.           
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Figure 5-17:  a) Phase lag corresponding to pilot signals at two 
separate frequencies.  b) Phase lag produced from fixed pilot 
and tuning the natural frequency of resonance. 
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entrained oscillator as fo is detuned by DC bias (feedback = 
380mV RMS, pilot = -10dBm, fpilot = fFR =26.79 MHz). 
 

Figure 5-19:  Setup for MEMS phase shifter and modulator. 
The right resistor is used in the feedback loop and the left 
resistor is used for the pilot signal and baseband signal. 
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Figure 5-20:  PM speed versus PM depth for a 26 MHz, 
injection locked MEMS resonator.  Red and Black lines 
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6 Nonlinear Dynamics of MEMS Resonators 

 

6.1 Non-Linear Effects in Communications 

 

We have studied applications of the MEMS resonator in both the linear and 

non-linear regime, but it is also necessary to understand how the mechanical resonator 

behaves under strong excitation and what effect this will have on our mechanical 

circuit elements.  By adopting a “black box” approach, the nonlinearity of any device 

can be expressed in terms of a polynomial dependence [65]: 
 

 
K++++= 3

3
2

210 INININOUT UUUU αααα , 6-1
 

 

where UIN and UOUT  are input and output signals respectively. RF devices that exhibit 

a substantial cubic term, α3, are prone to a phenomenon known as 3rd order 

intermodulation (IM3).  When two strong out-of-band interferers are applied to the 

input of such a device at frequencies f1=fc+∆f and f2=fc+2∆f, the cubic power 

component, α3, will produce a term, UIM3, overlapping with UIN.  Substituting UIN = 

Ui(sin(ω+∆ω)+sin(ω+2∆ω)) into (6-1), we find, among other terms, a third order 

term: 
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The presence of IM3 can greatly deteriorate the performance of the device by 

folding strong out-of-band interferers into the band, which is a primary concern in the 

design of RF mixers, filters, and amplifiers.  
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6.2 Resonator Non-Linear Effects 

 

We will show that our thermal mixer can be viewed, in terms of (6-1), as ideal 

since its output signal—a temperature, further converted into a force—is an exactly 

quadratic function of the applied voltage.  In other words, for realistic input power 

ranges, the nonlinearities of the metal-film resistor are negligible; however under the 

presence of large excitation forces, the mechanical mixer-filter (the dome resonator) 

can exhibit nonlinear behavior. 

The response of a mechanical resonator to a strong sinusoidal excitation can be 

calculated using Duffing’s equation [66], 
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which takes into account a nonlinear term β in the resonator spring constant and where 

x is the displacement around the equilibrium position of the membrane.  The presence 

of β distorts the resonance curve of the dome at large driving amplitudes (figure 6-1, 

6-2) and thus can produce a significant α3 term in (6-1). Since our mixer and filter are 

inseparable, we must characterize the nonlinearity of the entire device, i.e., mixer-

filter combination. 

Typically, the magnitude of β is quantified by solving (6-3) to determine the 

relationship between the amplitude of oscillation and the deviation from the resonant 

frequency in the linear regime.  However, in the case of MEMS, we do not have a 

precise method for determining the absolute amplitude of the mechanical vibrations.  

To estimate the displacement of the resonator, the modulation of the reflectivity of the 

built-in Fabry-Perot interferometer, as a function of the gap, can be calibrated to the 

mechanical motion by using large displacement MEMS structures [67].  For 
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displacements larger than λ/4, the reflectance signal will depart from its sinusoidal 

shape and take on a frequency-doubling characteristic due to movement through 

interferometric fringes.  This allows a fit of the photodetector signal to obtain the 

value of the mechanical motion.  We can use the calibrated laser power (2.25 mW) to 

measure the modulation of the reflectivity at the apex of the shell resonator and 

estimate a mechanical amplitude of 1 nm produced by a –10 dBm resistive driving 

signal.  The shallow curvature of the device enables us to ensure that the linear portion 

of the sinusoidal interferometric reflectance pattern (also the region of deepest 

modulation) occurs at the unperturbed gap distance by scanning the detection laser (λ 

= 633nm) across the resonator to optimize for the largest magnitude AC signal.  The 

peak-to-peak range of motion is less than 1 % of the λ/2 reflection pattern period; 

therefore the photodetector representation of the mechanical motion can be 

approximated as linear. 

An alternate method to quantify the severity of nonlinearities, which does not 

require information about mechanical amplitude, is to analyze effects, such as IM3, 

produced by the presence of a 3rd order term. To quantify IM3, a special parameter, the 

third order intercept point (IIP3), is widely used. IIP3 is essentially an input power, 

PIIP3, that interfering signals at frequencies f1 and f2 would have to impose in order to 

produce an output signal at a carrier frequency, fc, that would be as large as the result 

of applying the same PIIP3 power input directly at a carrier frequency.  Later we will 

show that IM3 caused by the resonator can be predicted by solving a modified version 

of (6-3). 

IM3 in micromechanical structures has been previously measured for 

electrostatic force based resonators.  Navid et. al. [68], find an IIP3 at ∆f = 200 kHz of 

–3 dBm for a fo = 10 MHz clamped-clamped beam micromechanical resonator 

implemented as a frequency filter.  They find that the electrostatic actuator is the 
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primary source of intermodulation distortion due to the inverse relationship between 

the parallel plate capacitance and the gap spacing and is limited by the trade-off 

between linearity and series motion resistance.  To reduce the motional resistance of 

the capacitive actuator without impacting the linearity of the device, the electrode gaps 

could be filled with a high-κ dielectric material [69] but this would affect the 

mechanical quality factor.  Kaajakari et. al. [70] also examine capacitively induced 

non-linearities and similarly conclude that, due to distortion in the motional current in 

an electrostatic MEMS actuator, even linear vibrations can result in harmonic 

distortion. 

Figure 6-3 demonstrates the experimental setup for measuring IIP3 in our 

MEMS mixer-filter.  Three signals (fLO, f1, and f2) from external signal sources are 

linearly superimposed with a power combiner (IIP3 > 50 dB).  The local oscillator 

(fLO) in the mixer implementation is a 60 MHz, 0 dB signal.  The carrier frequency, fc, 

in the setup is fo + fLO, which, for a 12.7 MHz mode in the dome resonator, is chosen 

to be 72.7 MHz.  The test signals (f1 and f2) are located at fc + ∆f and fc + 2∆f 

respectively.  The signal is then applied to the microheater and IM3 products are 

produced at fo. 

Intermodulation was measured at offsets (∆f) between 20 kHz and 500 kHz.  

Beyond 500 kHz, mechanical attenuation outside the passband of the resonator 

reduces the magnitude of the interferers and produces very little intermodulation.  

Figure 6-4 plots the output response of the fundamental driving signal, as well as the 

3rd order effects of the two-tone test in relation to the input power.  Since the laser 

interferometer is used to detect the mechanical motion, and these measurements are 

very sensitive to any frequency changes, great care is taken to ensure measurement 

accuracy.  First the x-y position of the laser is optimized for the largest signal on the 

resonator.  Second, the fundamental frequency measurement is performed, followed 
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immediately by the interferer measurements.  To check for consistency, the 

fundamental frequency measurement is repeated to ensure that the data lie on the same 

points, ensuring that the resonant frequency has not changed during the course of the 

experiment. 

Output power, which is defined by the measurement system, is given in units 

of dB where the reference level is arbitrary.  As expected from the bandpass nature of 

the mechanical response, the IM3 strength is greater for in-band interferers than for 

out-of-band interferers.  A ∆f of 20 kHz produced an IIP3 of +22 dBm while a ∆f of 

200 kHz produced a +35 dBm IIP3.   

In order to determine the origin of the nonlinearity, the dome resonators were 

thermally driven into the nonlinear regime using a 415 nm wavelength modulated 

diode laser as well as through the electrical resistor.  Figure 6-5 shows the output 

response of the dome resonator as a function of the input drive power for the same 

12.7 MHz dome resonator mode.  A network analyzer directly measures the driving 

power to the resistor; however, the dissipated power of the laser drive is determined by 

the gain in the diode laser controller, and thus the response can be arbitrarily translated 

along the horizontal axis in figure 6-5.  In general, the laser drive generates larger 

resonator amplitudes for a given dissipated power because the beam is focused 

directly on the dome and the position of the laser focus spot is optimized to obtain the 

largest signal.  The resistor is located off the resonator, which minimizes damping due 

to the metallic film on the resonator but reduces the coupling of the thermal drive.  At 

an output power of –57 dB, the mechanical amplitude produced by both the resistor 

drive and the laser drive starts to compress, indicating that the onset of nonlinearity is 

due to large mechanical displacement in the resonator, while higher order 

nonlinearities in the resistive drive are negligible. 

Data from figure 3-4 also suggest that nonlinearities are determined by the 
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resonator.  For a constant Vo, the system response may be in either the linear or 

nonlinear regime, depending on the DC bias.    A given Vo that produces a linear 

response in the resistor + resonator may result in a driving force, Vo * VDC, which 

generates a nonlinear output signal, indicating mechanically determined nonlinearities. 

In addition, for each DC bias curve in figure 3-4, the 1 dB compression point occurs at 

the same output amplitude of approximately 2.5 mV from the photodetector as well as 

at the same Vo * VDC driving force of ~ 0.25 mW. 

For vertical mechanical amplitude of 10 nm at the dome apex (corresponding 

to 0 dBm resistive drive in figure 6-5) we calculate an in-plane strain of 0.003% in the 

membrane.  This deformation in the resonator is well within the linear elastic regime 

of the polysilicon film [71] and is unlikely to contribute to nonlinear behavior.  

Instead, nonlinearities are most likely geometrically produced through displacement-

induced changes in the spring constant of the resonator.  Figure 6-6 qualitatively 

illustrates how geometrical nonlinearities are induced in the resonator.  Vibrations due 

to low excitation forces will only see one regime, where the spring constant is 

determined primarily by the one type of material spring constant.  Geometrical 

nonlinearities are produced when high amplitude vibrations experience multiple 

displacement regimes where the spring constant is determined by either bending 

resistance or flexural rigidity, illustrating the spring constant’s x dependence in 

equation 6-3.  

 

 

 

 

 

 



 

117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.0005 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
-0.003

-0.002

-0.001

0.000

0.001

 

im
ag

in
ar

y

real

b) a) 

17.715 17.730 17.745 17.760

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ph
ot

od
et

ec
to

r O
ut

pu
t (

a.
u.

)

Drive Frequency (MHz)

Figure 6-1:  Nonlinear amplitude response (a) and nyquist plot 
(b) of a 30 µm resistively driven dome resonator. 
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Figure 6-2:  Experimental response curves from 30 µm dome 
resonator in response to varying RF power levels.  As 
excitation voltage is increased, the response becomes more 
nonlinear – apparent in the backbending curvature.  The 15 
MHz softening curve in a) is measured by sweeping driving 
frequency from low to high.  The same device is measured in 
b) but where the stimulus is swept from high to low.     
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Figure 6-3:  IM3 experimental setup for the micromechanical mixer-
filter.  Two tones, offset from the carrier frequency by ∆f and 2∆f, 
along with a local oscillator signal, are superimposed on the resistor. 
A 3rd order intermodulation product at the resonant frequency of the 
dome, fo = 12.7 MHz is subsequently produced in the mechanical 
vibrations. 

Figure 6-4:  IM3 experimental data from the MEMS mixer-filter 
showing the output response (with an arbitrary reference level) 
of the resonator at fo = 12.7 MHz in response to a fundamental 
tone (a) and two off resonance tones spaced from the carrier 
frequency (72.7 MHz) by ∆f = 20 kHz & 50 kHz (b). 
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Figure 6-6:  Conceptual diagram illustrating the spring 
constant’s dependence on displacement for a nonlinear 
hardening mode of vibration.  Resonator stiffness at 
displacement (a) is primarily determined by the bending 
resistance where as (b) is determined more by the flexural 
rigidity. 
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6.3 Analytical Model for Intermodulation 

 

Because the nonlinearities in transduction are due to the mechanical resonator, 

we seek to understand how the dynamics of the resonator can produce the IM3 

product.  We start by modeling the micromechanical filter under out-of-band interferer 

excitation with a variant of the weakly nonlinear Duffing equation:  
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The right hand side of (6-4) is the forcing function provided by the resistive 

drive after frequency translation has been performed in the resistor, ε scales damping 

and nonlinearity as small perturbations to the linear oscillator, and β > 0 for a 

softening spring.  We need to take the nonlinear term to be small so that, when the 

perturbation method is used, the system will be easy to solve in closed form when ε = 

0.  If the nonlinear term was not O(ε), the starting solution would involve elliptic 

functions which would be much harder to work with.  We also take the damping term 

to be small so that when ε = 0, the system is structurally unstable and the perturbation 

term can have a significant effect on the dynamics.  Similarly, if the damping term was 

not O(ε), then our starting solution would be of the form )sin( te kt ω− , and the decay 

term would stop forcing terms from being resonance terms, thus preventing the 

isolation of secular terms and rending the solution method useless. 

Perturbation theory is applied to (6-4) in order to gain insight into how the 

driving terms interact with the βx3 nonlinear restoring force to produce a response at 

frequency ωo. First, we expand the solution to (6-1) in the form of a power series in ε, 
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Substituting (6-5) into (6-4) and grouping terms according to powers of ε, while 

neglecting terms of order ε2 and higher, we obtain: 
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The solution to (6-6) is: 
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where R and θ are constants to be determined.  Substituting (6-8) into (6-7) results in a 

myriad of resonant and non-resonant terms.  To eliminate secular terms, we set the 

coefficients of the resonant terms, sin(ωot) and cos(ωot), to be zero.  Eliminating θ 

through use of the identity sin2 θ + cos2 θ = 1, we obtain a relation between R, the 

magnitude of the resonator response at ωo, and the various parameters.  This 

expression may be simplified by first solving for β and then neglecting all but the 
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lowest order terms in ∆ω (since ∆ω is assumed to be small compared to ωo).  Solving 

for R, the expression becomes: 
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The full Macsyma command set to reach this solution is included in Appendix 

B.  From the approximate solution (6-9) we see that through 3rd order nonlinearities 

present in the mechanical resonator, two appropriately spaced interfering signals will 

produce an interfering tone on resonance that will grow at a cubic rate, F1
2F2, when 

compared to a tone at the fundamental frequency.  Equation 6-9 also implies that 

intermodulation will substantially decrease as the interfering tones are offset from ωo, 

which is experimentally demonstrated in figure 6-7.  Finally, R is a decreasing 

function of the fundamental frequency, indicating that as we move to higher resonator 

frequencies, the magnitude of the intermodulation will decrease. 

To further substantiate (6-9), we specifically examine the relationship between 

F1 and R as well as between F2 and R.  Figure 6-7 shows two sets of experimental data 

from the IM3 setup measuring the magnitude of the 3rd order intermodulation at ωo.  In 

the first set (figure 6-7 a ) the power of the 1st interferer, F1sin(ωo + ∆ω)t, is held 

constant, while sweeping the power of the 2nd interferer, F2sin(ωo + 2∆ω)t.  As 

expected from (6-9), figure 6-7 indicates that log(R)/log(F2)=1.  The second 

experiment (figure 6-7 b) sweeps the power of the 1st interferer (F1) and maintains a 

constant amplitude 2nd interferer.  Again, following (6-9), log(R)/log(F1)=2. 
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Figure 6-7: Magnitude of the resonator amplitude measured at 
the fundamental frequency, fo = 12.7 MHz, in response to two 
interferers, where a) the magnitude of F1 is 0 dBm and the 
magnitude of F1 is indicated by the x-axis. 
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7 Conclusion 

 

High frequency MEMS resonators have demonstrated outstanding performance 

as frequency-determining elements for communication systems.  Featuring quality 

factors of Q > 10,000 and occupying real estate less than 50 x 50 µm2, 

micromechanical devices are capable of revolutionizing radio frequency signal 

processing by replacing off-chip components with MEMS filters, oscillators, and 

mixers.  Microminiaturized mechanical components offer significant advantages over 

macro-scaled electrical components in terms of linearity, cost, size, and power 

consumption; however they commonly suffer from the need for highly specialized 

fabrication steps to realize their physical form.  Critically defined gaps, novel 

materials, and non-planar geometries represent significant barriers for integrating 

micromechanical resonant structures and their transduction elements into a CMOS 

environment. 

This thesis presents a high frequency, shell-type, micromechanical resonator 

with integrated electrical-mechanical transduction, which is demonstrated to perform 

RF signal processing within the MHz and GHz range.  Mechanical motion of a 

polysilicon thin-film plate or shell-type resonator is produced by the effects of heat 

transferred by a resistive microheater to the suspended structure.  Detection of the 

resonant motion is enabled through an implanted piezoresistive active region.  Thus, 

microresistors couple energy into and out-of the microresonator.  Resistive coupling 

offers several advantages over electrostatic transduction: the actuators are broadband 

and can be impedance matched to the network, and their performance does not depend 

on nanometer scaled gaps surrounding the resonator.  Thermal transduction is 

demonstrated to consume very low power as well as to preserve the intrinsic high 

quality factor of the micromechanical resonator.  The high Q-factor allows narrow 
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frequency band selectivity and highly linear signal manipulation to be performed 

within the mechanical domain. 

Since both the resonator and the resistive transducers can be fabricated within 

a polysilicon membrane, it is demonstrated how MEMS systems can be implemented 

into a single plane of silicon and defined immediately next to a field effect transistor in 

two CMOS processes.  This thesis lays the groundwork for how a CMOS process can 

be designed to accommodate MEMS systems.  It will be the subject of future research 

to determine how processing intricacies will affect the performance of the integrated 

MEMS resonator and CMOS electronics and to arrive at an optimized design for 

MEMS resonators in an IC environment. 
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Appendix A: Autostep 200 Setup Parameters 

 

The following is a description of a setup program on the Autostep 200 5x stepper 

which will control the parameters of exposure for a program named “demo” 

To perform a first level lithography process, only pass P1 would be run (i.e., exec p1).  

To perform a second level lithography process, one would use the mapping pass to 

perform fine wafer alignment and then apply the corrections to the p1 pass.  The 

command to expose the second level would be: map demo\map, p1 

 
Program name: demo 
Tolerance: 3 
Scale Corrections: none 
Orthogonality: none 
Leveler Batch Size: 1 
Wafer Diameter: 100 
x step size: 12.7 
       count: 8 allows you to input # of columns 
y step size: 12.7 
       count: 8 
Translate origin: none 
Standard keys: y 
Right Key offset: None Ideally, the GCA keys should be located 
  in the center of the die; if they are not, 
  you will need to calculate the key offset. 
Epi Shift: None 
 
Pass Name P1 
Use Local Alignment: N Exposure pass does not monitor DFAS 
   keys 
Exposure: 0.7 
Exposure Scale Factor: 1 
Focus Offset: 0 Sometimes needed for thick resist or film 
Microscope offset: 0 
Enable Match: Y Uses DFAS marks on mask to fine align 
   mask to stepper column.  Only works if 
   DFAS marks are on CAD (and on mask) 
AWA Param File Name: ORNL4 Only input if Match is Enabled 
Pass Shift: None 
Reticle Bar Code: - Automatically loads proper mask 
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Masking Aperture Setting:  
     FX=FY=RX=RY: 12.5 Reduces mask field exposure 
Reticle Alignment Offset: None 
Reticle Alignment Mark Phase:  N 
Reticle Transmission: N 
A-RRAY or P-LUG A Allows you to subtract column and row 
                 R: 1-8 eliminate row 1-8 
                 C: 8 eliminate row 1-8 in column 8 
 P Inserts die into blank exposure field 
 D enter anytime to see die map on screen 
 
Pass Name Map 
Use Local Alignment: Y Local alignment process uses map pass to 
   look at DFAS marks on wafer to perform 
   fine registration to the first level of 
   lithography 
Expose mapping pass: N Want to monitor die first before exposing 
Use two point align: Y 
                  rot tol: 2 
                  cont with map: Y 
# align/die: 1 
Local Align mark offset: -- Where DFAS mark is on wafer (in mm) 
 
 
 
 
 
Monitor Mapping Corr: Y 
Map every Nth wafer: 1 
A-RRAY or P-LUG P Enter in 5 die on wafer at different 
   locations 
Save changes: Y 
Purge: Y 

X 
DFAS 
 X= -1.0 mm
 Y=  0 

GCA key 
X=0 
Y=0 
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Appendix B:  Macsyma code to solve ODE (6-4) 

 
(c1)                        foo(any):=any$ 
dummy function to zap abs value signs in sqrt later on  
(c2)                    depends([x,x0,x1],t)$ 
(c3) diff(x,t,2)+w0^2*x+e*c*diff(x,t)+e*beta*x^3=f1*sin((w0+dw)*t)+f2*sin((w0+2*dw)*t)$ 
(c4)                      %,x=x0+e*x1,diff$ 
(c5)                       taylor(%,e,0,1)$ 
C:\Macsyma2\library1\combin.fas being loaded. 
(c6)            for i:0 thru 1 do eq[i]:coeff(%,e,i)$ 
(c7)                            eq[0]$ 
(c8)                            eq[1]$ 
(c9)                       ode(eq[0],x0,t)$ 
C:\Macsyma2\ode\ode.fas being loaded. 
C:\Macsyma2\ode\odeaux.fas being loaded. 
C:\Macsyma2\ode\ode2.fas being loaded. 
Is  w0  zero or nonzero? N; 
C:\Macsyma2\library1\trgred.fas being loaded. 
C:\Macsyma2\library1\binoml.fas being loaded. 
(c10)                   x0soln:%,%k1=b,%k2=a$ 
(c11)                       eq[1],%,diff$ 
(c12)               expand(trigreduce(expand(%)))$ 
(c13)          [coeff(%,sin(w0*t)),coeff(%,cos(w0*t))]$ 
(c14)                        ratsimp(%)$ 
(c15)            [num(part(%,1,1)),num(part(%,2,1))]$ 
(c16)               temp1:%,a=r*cos(h),b=r*sin(h)$ 
(c17)           part(%,1)*cos(h)-part(%,2)*sin(h)*dw$ 
(c18)                         expand(%)$ 
(c19)                        trigsimp(%)$ 
C:\Macsyma2\share\trigsimp.fas being loaded. 
(c20)                     temp2:solve(%,r)$ 
(c21)                         factor(%)$ 
(c22)       part(temp1,1)*sin(h)+part(temp1,2)*cos(h)*dw$ 
(c23)                         expand(%)$ 
(c24)                     temp3:trigsimp(%)$ 
(c25)                         factor(%)$ 
(c26)                 temp4:solve(temp2,cos(h))$ 
(c27)                 temp5:solve(temp3,sin(h))$ 
(c28)                sin(h)^2+cos(h)^2-1,%,temp4$ 
(c29)                        RATSIMP(%)$ 
(c30)                          NUM(%)$ 
(c31)                         EXPAND(%)$ 
(c32)                     temp6: FACTOR(%)$ 
(c33)                      solve(%,beta^2)$ 
(c34)                      taylor(%,r,0,2)$ 
(c35)                       solve(%,r^2)$ 
(c36)                         factor(%)$ 
(c37)                          sqrt(%)$ 
(c38)                     subst(foo,abs,%)$ 
(c39)                           ev(%)$ 
(c40)                     subst(w0,w0+dw,%)$ 
(c41)                    subst(w0,2*w0+dw,%)$ 
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(c42) D41; 
                                       2 
                              3 beta f1  f2 
(d42)                    [r = -------------] 
                                     3   4 
                              16 c dw  w0 
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