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The overall objective of the current research is the development of a computa-

tionally efficient, conceptually simple, easy-to-use method providing loss esti-

mates and other performance metrics for structural systems subjected to seismic

loads. The method is based on (1) a novel probabilistic site-specific seismolog-

ical model, (2) an efficient algorithm for calculating response statistics and (3)

probabilistic models for life-cycle structural performance.

The proposed seismic-hazard model uses earthquake records at the site of

interest and the specific barrier seismological model to provide a more realis-

tic representation of site seismic hazard. The information provided by records

and the specific barrier model is aggregated in a Bayesian framework and used

subsequently to simulate ground-motion samples as a function of the moment

magnitude m and source-to-site distance r. Structural response statistics to

simulated ground acceleration records are obtained by a novel efficient, non-

intrusive method that resembles the Monte Carlo approach. Like Monte-Carlo,

the method calculates structural responses to samples of the ground-motion

process. Unlike Monte-Carlo, which uses a large number of samples selected

at random, the proposed method uses a small number of samples selected in

an optimal way. The efficiency of the proposed method allows calculation of

distributions, rather than just mean values, for downtime cost, damage, and

other metrics. Probability distributions can be used in insurance applications to



calculate premiums to cover cost of damage. They are also essential tools for as-

sessing tail risk, a quantity which accounts for low-probability events with high

impact, used for transferring risk to reinsurance markets. These capabilities are

particularly important when dealing with extreme events. Numerical results

are presented for linear and non-linear systems. Life-cycle scenarios for seismic

events are simulated and used to estimate life-cycle cost and damage.
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CHAPTER 1

INTRODUCTION

Performance-based seismic design philosophy provides a rational balance

between, safety, economy and functionality, by explicitly considering perfor-

mance objectives which define acceptable damage levels for a structural system

subjected to earthquakes of specified intensities. Designs based on a single per-

formance criteria could lead to unsatisfactory results. For example, if the ob-

jective of the design is safety alone, then the functionality requirements might

not be fulfilled and the economic interests of the owner might not be served.

If the design objective is the structure remaining operational irrespective of the

ground motion intensity, the resulting design might be costly and unacceptable

for most structural system.

Practical implementation of performance-based seismic design can be

achieved by reaching four main objectives: (1) development of novel proba-

bilistic models for site-specific seismic hazard based on all available information

and capable of capturing accurately essential features of seismic loads; (2) de-

velopment of highly efficient, non-intrusive, accurate and conceptually simple

methods for calculating response statistics for linear and non-linear structural

systems subjected to seismic loads consistent with the hazard models; (3) critical

overview and improvement of current methods used in earthquake engineering

in vulnerability analyses and (4) estimation of probability distributions, rather

than only mean values, for response, life-cycle damage, cost, downtime and

other performance measures. This study aims to provide new methodologies

to reach these goals and show improvements of the current practice in proba-

bilistic seismic hazard analysis. The current work is structured in four chapters,
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which treat the four objectives set to reach the goal of this study.

Chapter 2, A site-specific seismological model for probabilistic seismic hazard as-

sessment, develops a seismological model which provides a more realistic char-

acterization of site seismic hazard. The proposed model is a statistical update of

a seismological model based on the specific barrier model with actual ground-

motion site records. The information provided by records and the specific bar-

rier model are aggregated in a Bayesian framework and used subsequently to

simulate ground-motion samples as a function of the moment magnitudem and

source-to-site distance r.

Chapter 3, Stochastic reduced order models (SROM), proposes a novel,

conceptually-simple, computationally-efficient method, as an alternative to

Monte Carlo. Like Monte-Carlo, stochastic reduced order models are con-

structed using random samples of the ground motion process, but which are

selected in an optimal way and are not equally likely. The construction of the

SROM involves two main steps. First, a range of ground motion samples is

selected based on some heuristic arguments. Secondly, probabilities of the se-

lected records are obtained by solving an optimization problem. The SROMs are

used to calculate accurately response statistics for linear and non-linear struc-

tural systems subjected to seismic ground-motion samples. The performance of

the stochastic reduced order models is shown to be remarkable.

Chapter 4, Limitations of current approaches and improvements, discusses the

limitations of current intensity measures and methods used in earthquake en-

gineering. Spectral values and peak ground acceleration are commonly used as

intensity measures of seismic ground motions in fragility-curves calculations. It

is shown that scalar intensity measures may lead to unsatisfactory results, when
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they are used to characterize ground motions. Fragility curves are probabili-

ties that responses of structures exceed specified critical limits when subjected

to earthquakes of given intensity measures. Since fragility curves are popular

elements used in performance-based seismic design, a new method for calcu-

lating fragility curves is proposed. The new method is based on selecting sets

of ground motion records from large datasets by using stochastic reduced order

models.

Chapter 5, Structural performance by fragility surface for simple systems under

non-Gaussian input, proposes a vector-valued intensity measure with compo-

nents moment magnitude m and source-to-site distance r to characterize seis-

mic ground motions. Fragility surfaces represent probability that the structural

response exceeds a limit state when subjected to an earthquake with (m, r).

Fragility surfaces are proposed to characterize the seismic performance of struc-

tures, as alternatives to fragility curves. Fragility surfaces are based on response

analyses and may be computationally expensive. Therefore, SROMs are pro-

posed as an efficient and accurate method to calculate fragility surfaces. A

framework for calculating probability distribution functions for life-cycle esti-

mates of structures subjected to seismic loading is proposed. Several metrics

which can evaluate the seismic-performance of structures are calculated based

on heuristic cost and damage models.

3



CHAPTER 2

A SITE-SPECIFIC SEISMOLOGICAL MODEL FOR PROBABILISTIC

SEISMIC HAZARD ASSESSMENT

2.1 Introduction

Earthquakes can have a catastrophic impact on human lives, economy and en-

vironment. The main goal of earthquake engineering is the development of

structures that experience limited damage under moderate seismic events and

do not collapse under large events. To achieve this goal, the input character-

ized by the seismic ground-accelerations, needs to be characterized accurately,

particularly when dealing with large events. Such a characterization cannot be

obtained solely from data due to the small number of large seismic records at

individual sites. Three options are available to enrich the set of records at a site:

(1) use data from sites similar to that of interest and scale them to desired in-

tensities (data-based seismic hazard), (2) calibrate probabilistic models for the

ground acceleration process to actual records available at a site and view the

samples of these models as likely ground accelerations (probability-based seis-

mic hazard), and (3) use the information from site seismic records to calibrate

seismological models based on geophysical considerations (physics-based seis-

mic hazard). A comprehensive classification of the seismological models in the

literature is presented in [16].

Data-based seismic hazard. Douglas [15] used empirical arguments to select

ground-acceleration records. It is popular to select ground-motion records to

match a response target acceleration spectrum conditional on the spectral ac-

celeration amplitude at a period of interest [5]. Computational methods for
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the conditional spectrum were described in [52] and an efficient selection algo-

rithm was proposed in [42]. A similar approach is introduced in [54], in which

a methodology was proposed to select records from a database by matching

a target spectral displacement value. The selected seismic records were then

scaled to obtain ground motions of various intensities. This procedure is of

questionable value since it only changes the amplitude of the motion, but not

its frequency content [30, 44].

Probability-based seismic hazard. Postulated mathematical models are cali-

brated to actual records and used to produce artificial records. For example,

Zentner and Poirion [76] developed a model to produce ground-acceleration

samples using the Karhunen-Loève (K-L) expansion. They estimated the

marginal distribution and the second-order properties of the random variables

in the K-L expansion using seismic records. Even though this model can be used

to produce any number of records, the K-L expansion captures only the second

moment properties of the seismic ground-acceleration records used in the cal-

ibration. [58] used other models for ground-acceleration simulation. They as-

sumed a log-normal distribution for the P and S pulses in the time domain to

model the non-stationary character and use empirical ground motion predic-

tion models to produce a realistic Fourier spectrum for the frequency content

of the ground-acceleration process. In a related approach [65], artificial records

are used to enrich the existent ground-acceleration records database. They pro-

duced synthetic seismic records to enrich the dataset of ground motion records

selected empirically from a global dataset. Records selected from large datasets,

as done in [5] and [54] may not necessarily be representative for a particular site.

Physics-based seismic hazard. Physical models incorporating seismological
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characteristics of earthquakes are calibrated to ground-acceleration records usu-

ally obtained over broad regions. The specific barrier model (SBM) [55, 56] is a

seismic-source model, which has been calibrated to regional data, e.g. Eastern

U.S., and was put forward as part of a seismological model in [37]. The SBM’s

calibration to the NGA dataset was further confirmed in [18]. The seismolog-

ical model with SBM describes the frequency content of ground motions and

its scaling with magnitude, source-to-site distance and site classification. The

model delivers information about the frequency content of the ground motion

in the form of a power spectral density function. The model with SBM provides

generic site amplification functions for rock and soil sites and does not capture

detailed seismic properties at particular sites. A recent study introduces a more

general form of the SBM, which shows how to incorporate additional source

characteristics in the model [38, 39].

The main goal of this chapter is to develop a seismological model which

can produce any number of ground-motion samples that are consistent with

seismological models and the records at a site. We will use all the available

information, that is, a seismological model to account for the physics in the

seismic phenomenon, and available records at a specified site to capture features

of ground accelerations specific to that site. This information will be aggregated

in a Bayesian framework. The site data consists of all site earthquake-records

and earthquake statistics. The seismological model used is built on the basis of

the SBM [37]. The model is statistically updated by using site-specific seismic

records. Our previous efforts to update the model were presented in [59, 60].

The newly proposed model is used to calculate statistics for intensity measures,

such as the peak ground acceleration and the spectral response accelerations,

and generate synthetic records by employing Monte Carlo simulations.
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2.2 Site Data

Site data used for the statistical update of the seismological model consists of

earthquake records and earthquake statistics at the site of interest. Records at

a site are obtained from the Incorporated Research Institutions for Seismology

(IRIS), which provides time series of earthquakes recorded at stations located

throughout the United States.
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Figure 2.1: Seismic activity matrix for the USC in Los Angeles.

The United States Geological Survey (USGS) provides the mean annual rate

of earthquake occurrence for every zip code in the United States. The rates

λj are calculated as a function of the vector (m, r)j for a specified range of

m. They are obtained by using various models that account for the uncer-

tainty in the seismic sources [19] and consider all seismic sources in a circu-

lar area of radius R centered at the site under consideration. By normaliz-

ing these rates, we can construct a two-dimensional histogram, which repre-

sents the probabilities of occurrence of earthquakes characterized by (m, r)j , i.e.

pj = P[(M,R) = (m, r)j] = λj/
∑

i λi. This two-dimensional histogram is re-

ferred to as the seismic activity matrix. It defines the multinomial probability

mass function for the two-dimensional discrete random vector (M,R), whereM
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is a random variable for the moment magnitude and R is the random variable

for the source-to-site distance. We will refer to each point of the matrix with

coordinates (m, r)j as cell j with probability pj , j = 1, ..., N , where N is the total

number of cells.

2.2.1 Site Data for Numerical Example

University of Southern California (USC) in Los Angeles is chosen as an example

to show numerical results for the model proposed. Table 2.1 provides the mo-

ment magnitude m and the source-to-site distance r, for all 21 seismic ground

motion records available from IRIS at the USC station.

Records 11 and 12, are aftershocks of the main earthquake 10. However, we

view them as all the other records in the table, that is, independent samples of

the stochastic process describing the seismic ground accelerations at the USC.

This assumption is reasonable since each event is initiated in a slightly different

location and the seismic waves travel on different paths from the source to the

site. The use of earthquakes aftershocks is also common in the development of

attenuation models. It has been observed [1] that including the aftershock in

the analysis increases the number of low-magnitude events and the variability

in the dataset, which, in our case, helps accurately capture site characteristics in

the spectral density model.

Figure 2.1 shows the seismic activity matrix for the USC site. We select an

area of radius R = 240 km to construct the seismic activity matrix, but custom

radii can be used depending on the user’s need.
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Table 2.1: Earthquake Records

Record m r [km] Lat. Long. Date

1 5.2 145 35.15 -119.10 05/28/1993

2 5.0 181 34.03 -116.32 08/21/1993

3 5.0 46 34.38 -118.56 01/18/1994

4 5.3 55 34.38 -118.71 01/19/1994

5 5.4 41 34.31 -118.58 01/29/1994

6 5.3 28 34.23 -118.47 03/20/1994

7 5.0 111 34.19 -117.10 04/06/1994

8 5.3 176 34.27 -116.40 06/16/1994

9 5.0 185 33.90 -116.29 05/07/1995

10 7.1 196 34.59 -116.29 10/16/1999

11 5.8 198 34.68 -116.27 10/16/1999

12 5.7 193 34.44 -116.28 10/16/1999

13 5.0 196 34.86 -116.25 10/22/1999

14 5.3 127 34.29 -116.41 02/10/2001

15 5.1 173 33.51 -116.95 10/31/2001

16 5.2 136 34.31 -116.51 02/22/2003

17 5.1 190 32.22 -117.92 06/15/2004

18 5.1 154 35.39 -116.85 09/29/2004

19 5.5 49 33.95 -117.76 07/29/2008

20 5.1 193 34.81 -116.42 12/06/2008

21 5.5 179 33.42 -116.49 07/07/2010

* Table contains information about the earthquakes

recorded at University of Southern California between

1993 and 2010: moment magnitude m, source-to-site

distance r, location by geographical coordinates, i.e.,

latitude and longitude, and date of event.

2.3 Seismological Model

We have selected the SBM-based seismological model [37] to characterize the

physics of our model since the SBM is a physically consistent earthquake-source
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model that can account for any source complexity and source-site geometry.

In addition, the SBM is applicable both in the near-fault and far-field regions.

Our objective is to statistically update this seismological model with records

available at a particular site.

2.3.1 The Specific Barrier Model

The SBM is a seismic-source model constructed by using physical approaches

and has been calibrated to large sets of regional ground acceleration records

consistent with certain tectonic characteristics. The SBM, as part of a seismo-

logical model [37], gives the power spectral density function g(f ;m, r) for the

seismic ground acceleration process as a function of frequency f . It depends on

the moment magnitude m, the source-to-site distance r and other parameters

related to the soil conditions and the type of tectonic region. We consider only

dependence on (m, r) which is sufficient when dealing with a single site, if we

consider that the soil conditions and tectonic regime are fixed.

The positive one-sided spectral density function as derived from the seismo-

logical model with the SBM has the form

g(f ;m, r) =
1

2πτf
|a(f ;m, r)|2, f ≥ 0 (2.1)

where τf is the duration of the earthquake,

a(f ;m, r) = cS(f ;m,∆σL)F (f)Q(f ; r)G(f), (2.2)

is the Fourier amplitude spectrum, in which c is a scaling factor, S(f ;m) is

the source spectrum, F (f) is a high-frequency diminution function, Q(f ; r) is

a wave-path attenuation function and G(f) is a function which accounts for the
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site response and local soil properties. Technical details on this seismological

model can be found in [55, 56, 37]. We will refer to the spectral density in (2.1)

as the SBM spectral density.

2.3.2 Surrogate Model

The SBM spectral density function in (2.1) is available in an algorithmic form

and can be calculated for each cell (m, r)j, j = 1, ..., N , of the seismic activity

matrix. Since our goal is to update statistically this model by using seismic

records, we need a parametric model for g(f ; (m, r)j). For simplicity we use the

notation gj(f) := g(f ; (m, r)j), j = 1, ..., N .

The singular value decomposition method [13] is used to construct a para-

metric model for gj(f). The spectral density functions for all cells N are ar-

ranged in a matrix G with dimension nf ×N , where nf is the number of equally

spaced discrete frequencies, selected in the frequency range of gj(f), i.e. [0, f ]

where a cut-off frequency f = 30 rad/s is used. The limit value of 30 rad/s cho-

sen for the range of frequencies is sufficiently large for earthquake engineers’

interests, but the spectral density model is not limited to this value. The singu-

lar value decomposition of G is

G = USV T =

d
∑

k=1

sk(ukv
T
k ) (2.3)

whereU and V are nf×nf andN×N orthogonal matrices, respectively. Notation

V T stands for the transpose of matrix V . Vectors uk and vk are the k-th columns

of matrices U and V , respectively. They are called singular vectors of G. Matrix

S is a nf × N matrix with zero off-diagonal elements. The diagonal elements

of S, sk = Sk,k, k = 1, ..., d = min(nf , N) are called the singular values of G.
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It is common to arrange sk in descending order. Each j-th column of G is the

spectral density gj(f) in cell j.
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Figure 2.2: Singular values sk, k = 1, ..., 10.

Figure 2.2 shows the first ten singular values of G. Since over 90% of the

contribution in the spectral density function is concentrated in just the first two

singular modes, an approximation of G can be obtained by truncation, i.e., we

approximate G by

G0 =

d0
∑

k=1

sk(ukv
T
k ), (2.4)

where d0 < d. However, G0 may not be satisfactory for some cells j. For ex-

ample, the solid and dashed lines in Figure 2.3 are the spectral densities in (2.1)

and its approximation in (2.4) with d0 = 3 for cell (m = 5, r = 100 km).

Therefore, we will use all d = 601 modes in the representation of gj(f), so

that we have

gj(f) = s1φ1,j(f) + s2φ2,j(f) +
d
∑

k=3

skφk,j(f) =
3
∑

i=1

ϕi,j(f), (2.5)

where the k-th singular mode of G in cell j, φk,j(f), is the j-th column of the ma-

trix ukv
T
k . The latter equality holds with the notation ϕi,j(f) = siφi,j(f), i = 1, 2
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Figure 2.3: Target (solid line) and approximate by the first 3 singular
modes (dashed line) power spectral density functions for cells
(m, r)j = (5, 100 km).

and ϕ3,j(f) =
∑d

k=3 skφk,j(f), referred to as basis functions of gj(f). The ba-

sis ϕ3,j(f) is a cumulative function of all the high-order singular modes. The

representation in (2.5) is identical with (2.3), but written in a different form to

be used in the following development. Figure 2.4 shows the basis functions

ϕi,j(f), i = 1, 2, 3 for cells (m, r)j = (5, 100 km) and (m, r)j = (8, 200 km), re-

spectively. A computer script which delivers the basis functions ϕi,j(f) is avail-

able in the electronic supplement to this article.
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Figure 2.4: Spectral density modes ϕi,j(f), i = 1, 2, 3 for (a) (m = 5, r =
100 km) and (b) (m = 8, r = 200 km).
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2.3.3 Stochastic Surrogate Model

The construction of the stochastic surrogate model involves the following three

steps. First, the modes ϕi,j(f) of the spectral density in (2.5) are weighed by

random coefficients Θi, i = 1, 2, 3. Second, we calibrate the probability distri-

bution of the random coefficients Θi, i = 1, 2, 3 to ground motion records in a

Bayesian framework. Third, the model in (2.6) with posterior distributions of

Θi, updated with site data, is used to sample spectral densities which capture

seismic characteristics at the site of interest.

As previously stated, our objective is to update statistically the spectral den-

sity in (2.1) by using records of a single site. To reach this goal, the model in (2.5)

is rewritten in the form

g̃j(f ; Θ) =
3
∑

i=1

Θiϕi,j(f), (2.6)

where {Θi, i = 1, 2, 3} are scale factors for the modes in (2.5) and g̃j(f ; Θ) is the

stochastic version of the surrogate model gj(f). We assume that {Θi, i = 1, 2, 3}

are independent random variables which must satisfy the following conditions:

(a) function g̃j(f ; Θ) must be positive, since, by definition, the spectral density

is as a Fourier transform of the correlation function [33] and (b) g̃j(f ; Θ) should

be centered around the spectral density produced by the seismological model

with SBM since the proposed model is just a perturbation of the original one

due to records at a single site. We select the range Ψ of the random vector

Θ = [Θ1,Θ2,Θ3] to be as large as possible such that: (a) the spectral density

function exists, that is, g̃j(f ; θ) ≥ 0, ∀f ≥ 0, ∀j = 1, ..., N and ∀θ = [θ1, θ2, θ3] ∈ Ψ,

and (b) the mean of the parametric model in (2.6) is the SBM spectral density,

that is, E[g̃j(f ; Θ)] = gj(f), which holds if E[Θ] = 1, where 1 = [1, 1, 1].
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For some cells, the condition (a) is satisfied only if Ψ is a small vicinity of 1.

For example, in cell (m, r)j = (5, 100 km) with the modes shown in the left panel

of Figure 2.4,
∑3

i=2 ϕi,j(f) ≃ −ϕ1,j at low frequencies. We denote by C = {j :

∃ f ∈ [0, f ∗] s.t.
∑3

i=1Θiϕi,j(f) < 0} the set of cells for which g̃j(f ; Θ) is negative

in a range [0, f ∗], with f ∗ > 0 selected to assure a sufficiently large range Ψ. For

the cells in C we modify the representation in (2.6) as follows

g̃j(f ; Θ) = 1C

(

1f≤f∗ g̃
∗
j (f ; Θ) + 1f>f∗

3
∑

i=1

Θiϕi,j(f)

)

+ 1C

(

3
∑

i=1

Θiϕi,j(f)

)

,

(2.7)

where C denotes the complement set of C, g̃∗j (f ; Θ) is an approximation of

g̃j(f ; Θ) on [0, f ∗] and 1 denotes the indicator function. The spectral density

in (2.7) is used in our analysis.

We select Hermite polynomials to construct g̃∗j (f ; Θ) with the constraint

g̃∗j (f ; Θ) ≥ 0 for ∀f ∈ [0, f ∗], since they provide a piece-wise monotonically

increasing function to which we can impose boundary conditions at 0 and f ∗,

respectively. For a partition Π : 0 = f1 < f2... < fnf
= f ∗ on the interval

[0, f ∗], the function g̃∗j (f ; Θ) in each subinterval [fi, fi+1] is an increasing cubic

polynomial of the form

g̃∗j (f ; Θ) = giH1(f) + gi+1H2(f) + g′iH3(f) + g′i+1H4(f), (2.8)

where {gi = g̃j(fi; Θ), i = 1, 2, ..., nf}, g′i = (dg̃(f ; Θ)/df)|fi and nf is the number

of discrete frequencies. Functions Hk(f) are the first four Hermit polynomials.

We impose two boundary conditions, that is, (B1) g̃∗j (f ; Θ) = g̃j(f ; Θ), and (B2)

dg̃∗j (f ; Θ)/df = dg̃j(f ; Θ)/df , at f = 0 and f = f ∗. Figure 2.5 shows the approx-

imation of the SBM spectral density g̃∗j (f ; θ = 1) of g̃j(f ; θ = 1) for f ≤ f ∗, for

cell (m, r)j = (5, 100 km) and f ∗ = 9 rad/s.
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f ∗ = 9 rad/s.

Since g̃∗j (f ; Θ) is a polynomial in f , function g̃∗j (f ; Θ) is also linear in Θ, i.e.,

g̃∗j (f ; Θ) =

3
∑

i=1

Θiϕ
∗
i,j(f), 0 ≤ f ≤ f ∗ (2.9)

where ϕ∗
i,j(f) are the corresponding modes of g̃∗j (f ; Θ) on [0, f ∗]. More details

about the approximation and the numerical algorithm for the interpolation can

be found in [20].

2.4 Bayesian Analysis

The stochastic surrogate model in equation (2.7) and the records at the USC site

in Table 2.1 are combined within a Bayesian framework to obtain a statistically-

updated model for the spectral density. Bayes’ theorem states that the posterior

density p(θ|X(t)) of the unknown parameters θ = [θ1, θ2, θ3] ∈ Ψ is

p(θ|X(t)) ∝ f(θ)l(X(t)|θ) (2.10)

where f(θ) is the postulated prior density for Θ and l(X(t)|θ) is the likelihood

function, which accounts for the significance of the observed data X(t) in the
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distribution of Θ [25]. The prior distribution for Θ may influence significantly

the result if the number of records at a single site is small. The prior distribution

is usually selected to reflect experts’ opinions or historical data. In the current

study we only use a non-informative uniform prior, which assumes that all val-

ues of Θ in the range Ψ are equally likely before the update. Numerical results

are shown for the records in Table 2.1 for the USC.

2.4.1 Prior-Posterior Analysis

Let Xj(t) be the strong motion part of the ground acceleration process in cell j.

The strong motion part of the earthquake is the part of the record in which most

of its energy is released. A quantitative definition of the strong motion part

in terms of the Arias intensity is given in [71]. Following common approaches

adopted in [77] (Chap.7), [48] (Sect. 3.2) and [63], we assume that Xj(t) is a

zero-mean, stationary, Gaussian process with one-sided power spectral density

g̃j(f ; Θ). The discrete version of Xj(t) is denoted by Yj = [Xj(t1), ..., Xj(tnt
)] ∼

N(0, Cj(Θ)), where t1 = 0 ≤ tu ≤ tnt
= τf , u = 1, ..., nt, τf is the duration of

the process Xj(t) and N(0, Cj(Θ)) denotes the multivariate normal distribution

with zero mean 0 and covariance matrix Cj(Θ). A number n of independent

samples of Xj(t) yield n independent record samples {yj,i} i = 1, ..., n of Yj .

Under this assumption, the logarithmic likelihood function as given by Gelman

et al. in [25] (Sect. 3.6) calculated with records from the j − th cell of the seismic

activity matrix has the form

log(l(yj |θ)) ∝− n

2
log(|Cj(θ)|)−

1

2

n
∑

i=1

yTj,iCj(θ)
−1yj,i, (2.11)
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where |Cj(θ)| is the determinant of the covariance matrix Cj(θ) and yj =

{yj,i, i = 1, ..., n} denotes the set of samples from Yj . The components of the

covariance matrix are calculated using the inverse Fourier transform of the ap-

proximate spectral density as described by [33] in (Sect. 3.6):

cju,v(Θ) := cj(tu − tv; Θ) =

nf
∑

h=1

g̃j(fh; Θ) cos(fh(tu − tv))∆f . (2.12)

Using equations (2.7) and (2.9) in (2.12), the covariance matrix takes the form

Cj(Θ) =
3
∑

k=1

Θk

(

1CQ
(j,k) + 1CO

(j,k)
)

, (2.13)

where Q(j,k) and O(j,k) are deterministic matrices with components

q(j,k)u,v := q(j,k)(tu − tv) =

nf
∑

h=1

(

1fh≤f∗ϕ
∗
k,j(fh) + 1fh>f∗ϕk,j(fh)

)

cos(fh(tu − tv))∆f

(2.14)

o(j,k)u,v := o(j,k)(tu − tv) =

nf
∑

h=1

ϕk,j(fh) cos(fh(tu − tv))∆f, (2.15)

respectively, and f0 = 0 ≤ fh ≤ fnf
= f, h = 1, ..., nf are discrete frequencies

equally spaced at ∆f = 0.02 rad/s with a cut-off frequency f = 30 rad/s.

A computer code which calculates the posterior distribution p(θ|X(t)) for

custom prior distributions f(θ) is available in the electronic supplement to this

article.

2.4.2 Model Properties

The results in this section show that the proposed model for the spectral den-

sity deviates from the SBM spectral density model by capturing information

from the records at a single site. We show analytically and numerically that the
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posterior version of the power spectral density converges to the SBM spectral

density if seismic ground-acceleration records are samples from the SBM spec-

tral density and the sample size goes to infinity.

One-cell Seismic Activity Matrix.

For an arbitrary cell j of the seismic activity matrix we will use n independent

samples of the Gaussian process with power spectral density gj(f) given in (2.5),

i.e., yj,i ∼ N(0, Cj(1)), i = 1, ..., n to update the posterior density p(θ|yj). Note

that the covariance matrix Cj(1) is calculated with the SBM spectral density

since gj(f) = g̃j(f ; θ = 1).

The convergence theorem in [25] in Chap. 4 states that under some regularity

conditions (notably θ0 ∈ Ψ, but not on the boundary of Ψ), as the number of

samples n → ∞, the posterior distribution p(θ|yj) of Θ approaches normality

with mean θ0 and variance (nJ(θ0))
−1, where θ0 is the value that minimizes the

Kullback-Leibler information in Eq. (2.18) and J is the Fisher information in Eq.

(2.16). A rigorous proof of this theorem is provided in [47].

The Fisher information for the case of a vector of unknown parameters is a

square matrix J = {Juv} of dimension equal to the length of the vector Θ and

whose elements are calculated as

Juv(Θ) = E

[(

∂ log(l(yj|Θ))

∂θu

)(

∂ log(l(yj|Θ))

∂θv

)]

, u, v = 1, 2, 3 (2.16)

in which the factors under the expectation operator are independent of each

other since the likelihood function l(yj |Θ) is linearly dependent on Θ and the

random vector Θ has independent components. Thus, the Fisher information
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can be written as Juv = ρuρv with

ρα = E

[

∂ log(l(yj|Θ))

∂θα

]

= −n
2
E
[

tr
(

Cj(Θ)−1Ω(j,α)
)

− yTj,1Cj(Θ)−1Ω(j,α)Cj(Θ)−1yj,1
]

,

(2.17)

where Ω(j,α) = 1CQ
(j,α) + 1CO

(j,α) and α = 1, 2, 3. In equation (2.17) we used

two properties from linear algebra, that is, for a parametric matrix A(α) with

parameter α, ∂A−1

∂α
= −A−1 ∂A

∂α
A−1 and ∂(det(A))

∂α
= det(A)tr

(

A−1 ∂A
∂α

)

, where det

and tr denote the determinant and the trace of a matrix, respectively.

The Kullback-Leibler information measures the similarity between the like-

lihood function and the true distribution f(yj) of the ground-acceleration sam-

ples yj . It is calculated as

H(Θ) = E

[

log

(

f(yj)

l(yj|Θ)

)]

∝ E

[

log

(

|Cj(1)|−
n
2 exp{−n

2
yTj,1Cj(1)

−1yj,1}
|Cj(Θ)|−n

2 exp{−n
2
yTj,1Cj(Θ)−1yj,1}

)]

,

(2.18)

since yj,i are independent, identically distributed samples of Yj ∼ N(0, Cj(1)).

The Kullback-Leibler information is non-negative and its minimum is reached

when H(θ) = 0 for θ0 = 1 [46].

Finally, according to the convergence theorem, the posterior density for Θ|yj , at

the limit n→ ∞, is

Θ|yj ∼ N
(

1, lim
n→∞

(nJ(1))−1
)

(2.19)

where J(1) is calculated as shown in equation (2.16) and

lim
n→∞

(nJ(1))−1 = lim
n→∞

1

n













ρ21 ρ1ρ2 ρ1ρ2

ρ2ρ1 ρ22 ρ2ρ3

ρ3ρ1 ρ3ρ2 ρ23













−1

. (2.20)
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Figure 2.6: Marginal prior density f(θi) vs. marginal posterior density
p(θi|yj∗), i = 1, 2, 3 updated with (a) n = 500, (b) n = 5000
and (c) n = 50000 samples generated from the SBM spectral
density.

Thus, the posterior of Θ converges to the target 1 when a single cell j is updated

with n → ∞ samples generated from the SBM spectral density since all terms

ρα, α = 1, 2, 3 depend linearly on n.

Figure 2.6 shows the prior densities f(θ) and the posterior marginal densities

p(θ|yj∗) of Θ = [Θ1,Θ2,Θ3] calculated for an increasing number n = 500, n =

5000 and n = 50000 of samples yj∗, in cell j∗ with (m, r)j∗ = (8, 200 km). We use a

uniform prior density on Θ as f(θ) with a range Ψ = [0.55, 1.45]×[0.4, 1.6]×[0, 2].

The posterior probability density concentrates around the mean 1 as the

number of samples n increases. For a better image of the convergence, Figure

2.7 shows the 95% confidence intervals for the power spectral density g̃j∗(f ; Θ)

for increasing number of samples.

Multiple-cell Seismic Activity Matrix.

We show that the posterior model converges to the target SBM spectral density

when samples from all cells of the seismic activity matrix are used in the anal-
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Figure 2.7: 95% confidence intervals for the power spectral density in cell
(m, r)j∗ = (8, 200 km) updated with (a) n = 500 and (b) n =
50000 samples of Yj∗ ∼ N(0, Cj∗(1)).

ysis. A number nj of independent samples yj,i ∼ N(0, Cj(1)) with i = 1, ..., nj

are used in each cell j = 1 · · ·N . The total number of samples in the statistical

update is n =
∑N

j=1 nj . For all cells of the seismic activity matrix with positive

probability pj > 0,

lim
n→∞

nj
n

= pj, (2.21)

as n→ ∞ and, implicitly, nj → ∞.

The Fisher information and the Kullback-Leibler information are calculated as

before. The components of the Fisher information Juv = ρuρv have the form

ρα = E

[

∂ log(l(y|Θ))

∂θα

∣

∣

∣

∣

Θ = θ

]

= −
N
∑

j=1

nj
2
E
[

tr
(

Cj(Θ)−1Ω(j,α)
)]

−
N
∑

j=1

nj
2
E
[

yTj,1Cj(Θ)−1Ω(j,α)Cj(Θ)−1yj,1
]

, (2.22)

where

log(l(y|Θ)) ∝− n

2
log(|Cj(Θ)|)− 1

2

N
∑

j=1

nj
∑

i=1

yTj,iCj(Θ)−1yj,i (2.23)

and y = {yj,i, i = 1, ..., nj, j = 1, ..., N} contains all samples of Yj for all cells j.
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Taking the limit n→ ∞, equation(2.22) becomes

ρα = −1

2
lim
n→∞

n

N
∑

j=1

1(pj>0)pj

(

E
[

tr
(

Cj(Θ)−1Ω(j,α)
)

+ yTj,1Cj(Θ)−1Ω(j,α)Cj(Θ)−1yj,1
]

)

(2.24)

where α = 1, 2, 3. Consequently, at limit the covariance matrix converges to zero

as shown in (2.20). The minimum value for the Kullback-Leibler information is

also reached at θ0 = 1. We conclude that the posterior Θ|y converges to the unit

vector 1, that is, the posterior spectral density converges to the SBM spectral

density, as the number of samples increases to infinity.
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Figure 2.8: 95% confidence intervals for the power spectral density in cell
(m, r)j = (5, 100 km) updated with (a) n = 500 and (b) n =
50000 samples of Yj∗ ∼ N(0, Cj∗(1)).

Due to the high computational effort required to show this result numeri-

cally, we perform calculations for a hypothetical seismic activity matrix with

two cells (m, r)j = (5.4, 240 km) and (m, r)j∗ = (8, 200 km). Only records from

cell j∗ are used in the statistical update.

The convergence results for marginal densities of Θ and the spectral den-

sity for cell j∗ are identical with the ones shown in Figure 2.6 and Figure 2.7,
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respectively. Figure 2.8 shows the 95% confidence intervals for the marginal

posterior densities of Θ in cell (m, r)j = (5.4, 240 km). As expected, the spectral

density model converges to the target SBM spectral density in any cell as long

as the samples used for the statistical update are generated from the SBM den-

sity, since Θ is defined as a global parameter for all cells of the seismic activity

matrix.
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Figure 2.9: Marginal prior density f(θi) vs. marginal posterior density
p(θi|yj∗), i = 1, 2, 3 updated with n = 21 records from the USC.

Figure 2.9 shows the uniform prior and the posterior marginal densities of Θ

for the statistically-updated model with the records from the USC site, summa-

rized in Table 2.1. The tendency of these densities to converge to a fixed value

is very weak in this case due to the small number of samples used in the analy-

sis. The convergence results shown for the two cells in Figure 2.7 and Figure 2.8

are independent on the choice of the prior density f(θ), θ ∈ Ψ due to the large

number of samples used in the statistical update. For the analysis with the 21

records in Table 2.1 we chose again a non-informative uniform prior on Θ with

a range Ψ = [0.74, 1.26]× [0.68, 1.32]× [0.67, 1.33].

Figure 2.10 shows the 95% confidence intervals for the spectral density func-

tion in cell (m, r)j∗ = (8, 200 km) calculated with the prior density of theta f(θ)

in (a) and with the posterior model p(θ|y) statistically updated with the n = 21
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records from the USC in (b). The difference between the two confidence inter-

vals is hardly noticeable due to the small number of records. However, for a

fixed frequency f = 10 rad/s we can see a significant difference in the distri-

butions of gj∗(f = 10;Θ) shown as histograms for the prior and the posterior

distributions of Θ, respectively. The differences in the distributions of the prior

and posterior models for the spectral densities is an evidence on how the local

data affect the frequency of the ground motion at a site.
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Figure 2.10: 95% confidence intervals for the power spectral density
gj∗(f ; Θ) with (a) f(θ) and (b) p(θ|yj∗) updated with n = 21
records from the USC and the corresponding histograms of
g̃j∗(f = 10;Θ).

2.5 Seismic Hazard Analysis

Two intensity measures IM of the seismic ground acceleration are commonly

calculated in probabilistic seismic hazard analysis: the peak ground acceleration

(IM = PGA) and the response spectral acceleration (IM = PSa). Two methods

are employed to calculate statistics for the PGA and the PSa: crossing theory

described by Grigoriu [69] in (Sect. 7.3) and Monte Carlo simulations. Crossing
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theory has a simple form for Gaussian processes as shown in the Appendix.

Numerical results are shown for cell (m, r)j∗ = (8, 200 km) for different posterior

distributions on Θ, statistically updated with samples simulated from the SBM

spectral density and the ground accelerations recorded at the USC, respectively.

2.5.1 Peak Ground Acceleration

Let D = [−x, x] be a safe set and let Xj(t) be the ground-acceleration process

in cell j. The mean rate at which Xj(t) exits D, referred to as the mean D-

outcrossing rate, has the expression

ηj(x; Θ) =
σ̇(Θ)

πσj(Θ)
exp

{

− x2

2σj(Θ)

}

, (2.25)

where σ̇j(Θ) and σj(Θ) are the standard deviations for Ẋj(t) and Xj(t), respec-

tively. They are calculated using the spectral density model in (2.7) as

σj(Θ) =

(

∫ f

0

g̃j(f ; Θ)df

)1/2

(2.26)

σ̇j(Θ) =

(

∫ f

0

f 2g̃j(f ; Θ)df

)1/2

. (2.27)

The probability that the PGA of Xj(t), with duration τj , exceeds a level x > 0

can be approximated by

FPGAj
(x; Θ) = P( max

0≤t≤τj
{|Xj(t)|} > x|Θ) ≃ 1− exp{−ηj(x; Θ)τj}. (2.28)

For all our calculations we assume a duration of the strong motion part of τj =

10 s for all cells j. The probability density function of the PGA for cell j may

also be calculated, by integrating out the random vector Θ

fPGAj
(x) =

d(exp{ηj(x|θ)τj})
dx

p(θ|yj), (2.29)
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Figure 2.11: 95% confidence intervals for the PGA mean crossing rates
ηj∗(x; Θ) in cell j∗ for (a) n = 500 and (b) n = 50000 samples
generated from the SBM spectral density g̃j∗(f ; 1).

where p(θ|yj) is the posterior density of Θ as calculated in (2.10) using indepen-

dent samples yj of the process Yj = [Xj(t1), ..., Xj(tnt
)].

Figures 2.11 and 2.12 show the 95% confidence intervals for the crossing rates

ηj∗(x; Θ) and the tail distribution functions FPGAj∗
(x; Θ) for the peak ground

accelerations in cell j∗, for the posterior density of Θ updated with n = 500 and

n = 50000 samples generated from the SBM spectral density, respectively (see

Figure 2.6).
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Figure 2.12: 95% confidence intervals for the PGA tail distribution func-
tion F PGAj∗

(x; Θ) in cell j∗ for (a) n = 500 and (b) n = 50000
samples generated from the SBM spectral density g̃j∗(f ; 1).
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The statistics in Figure 2.11 and Figure 2.12 show that ηj∗(x; Θ) and

F PGAj∗
(x; Θ) converge to the target mean crossing rates and the tail distribu-

tion function calculated with the target SBM spectral density, as the number n

of samples, generated from the SBM spectral density, increases. Figure 2.13 il-

lustrates the evolution of the probability density function of PGA, fPGAj∗
(x), for

increasing number of samples n. The tails of the density are lighter for increas-

ing n. Similar statistics are shown again for cell j∗ in Figure 2.14 for the posterior

density of Θ updated with all the records available at the USC site. Due to the

small number of records, the confidence intervals are wide but a minor shift in

the density of the PGA can be noticed.
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Figure 2.13: Probability density functions fPGAj∗
(x) in cell j∗ for n = 0,

n = 50, n = 500 and n = 5000 samples generated from the
SBM spectral density g̃j∗(f ; 1).

Figure 2.15(a) shows the mean for the 95% peak ground acceleration per-

centile, that is, the value PGA0.95,j for which P(PGAj ≤ PGA0.95,j|Θ) = 0.95

for all cells j = 1, 2, ..., N . Figure 2.15(b) shows a section through the graph in

(a), which illustrates the 95% confidence intervals and the mean of PGA0.95 for

a fixed r = 200 km.

Figures 2.16 (a) and (b) illustrate the 95% confidence intervals and the mean
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Figure 2.14: 95% confidence intervals for (a) PGA mean crossing rates
ηj∗(x; Θ), (b) the PGA tail distribution F PGAj∗

(x; Θ) and (c) the
PGA probability density fPGAj∗

(x) for the prior and the pos-
terior spectral density g̃j∗(f ; Θ) update with n = 21 records
from the USC.
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Figure 2.15: (a) Mean values for PGA0.95 calculated for all cells j of the
seismic activity matrix; (b) Mean and the 95% confidence in-
tervals for PGA0.95 for fixed r = 200 km.

of PGA0.95 for a fixed moment magnitude m = 8 in linear and logarithmic

scales, respectively.
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Figure 2.16: Mean and the 95% confidence intervals of the quantile
PGA0.95 for fixedm = 8 in (a) linear and (b) logarithmic scales.

2.5.2 Response Spectral Acceleration

The spectral response is calculated using a single-degree-of-freedom (SDOF)

system subjected to the ground-acceleration process Xj(t) in cell j

Z̈j(t) + 2ωζŻj(t) + ω2Zj(t) = Xj(t) (2.30)

where Zj(t) is the displacement process of the SDOF system with natural fre-

quency ω and damping ratio ζ . We define the pseudo-spectral acceleration as

PSa(ω; ζ) = ω2 max
0≤t≤τj

{|Zj(t;ω, ζ)|}. (2.31)

The probability

P (PSa(ω; ζ) > x) = P

(

max
0≤t≤τj

{|Zj(t)|} >
x

ω2

)

. (2.32)

can be obtained by following the procedure used for PGA. The probability of

exceedance of the PSa can be approximated by

F PSaj(x; Θ) = P

(

max
0≤t≤τj

{|Zj(t)|} >
x

ω2

)

≃ 1− exp
{

−ηZj

( x

ω2
; Θ
)

τj

}

, (2.33)
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Figure 2.17: 95% confidence intervals for the PSa mean crossing rates
ηPSaj∗ (x; Θ) in cell j∗ for (a) n = 500 and (b) n = 50000 samples
generated from the SBM spectral density g̃j∗(f ; 1).

where

ηZ,j(z; Θ) =
σ̇Z,j(Θ)

πσZ,j(Θ)
exp

{

− z2

2σZ,j(Θ)2

}

(2.34)

is the mean crossing rate for the displacement process Zj(t) with z = x/ω2 and

σ̇Z,j and σZ,j are the standard deviations for the displacement Zj(t) and the ve-

locity Żj(t) processes and can be obtained by (2.26) and (2.27), respectively, with

gZ,j(f ; Θ) = |hZ(f)|2g̃j(f ; Θ), (2.35)

in place of g̃j(f ; Θ). The function

|hZ(f)| =
1/ω2

[

(1− (f/ω)2)2 + (2ζω)2
]1/2

(2.36)

is the transfer function between Xj(t) and Zj(t). The mean crossing rates can

also be expressed in terms of acceleration if we use the change of variable

z = x/ω2, and we denote it by ηPSaj(x; Θ). The probability density function

fPSaj(x) of PSa can be calculated as shown in equation (2.29) by replacing the

tail distribution F PGAj
(x; Θ) with F PSaj(x; Θ) in (2.33).

Figures 2.17 and 2.18 show the 95% confidence intervals for the mean cross-

ing rates ηPSaj(x; Θ) and the tail distribution functions F PSaj(x; Θ) for the
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Figure 2.18: 95% confidence intervals for the PSa tail distribution function
F PSaj∗ (x; Θ) in cell j∗ for (a) n = 500 and (b) n = 50000 gener-
ated from the SBM spectral density g̃j∗(f ; 1).

pseudo-spectral acceleration PSa(ω; ζ) calculated at ω = 2π rad/s for ζ = 10%.

The two figures show how the 95% confidence intervals for ηPSaj (x; Θ) and

F PSaj(x; Θ), in cell j∗, narrow down as n = 500 and n = 50000 SBM-samples

are used to calculate the posterior of Θ, respectively (see Figure 2.6).
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Figure 2.19: 95% confidence intervals for (a) PSa mean crossing rates
ηPSaj∗ (x; Θ), (b) the PSa tail distribution F PSaj∗ (x; Θ) for cell j∗

and (c) the PSa probability density fPSaj∗ (x), for the prior and
the posterior spectral density g̃j∗(f ; Θ) update with n = 21
records from the USC.

Similar statistics for the same parameters ω and ζ are calculated for the spec-

tral acceleration at cell j∗ and shown in Figure 2.19 for the posterior of Θ up-

dated with the 21 records in Table 2.1. As in the case of the PGA, the confidence
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intervals for these statistics on the PSa are wide for the model statistically up-

dated with the actual records due to the small number of records available.
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Figure 2.20: (a) Mean values for PSa0.95 calculated for all cells j of the seis-
mic activity matrix; (b) Mean and the 95% confidence intervals
of PSa0.95 for fixed r = 200 km.

Figure 2.20 (a) shows the mean of the 95% response spectral acceleration

percentile, that is, the value PSa0.95,j such that P(PSaj(ω; ζ) ≤ PSa0.95,j|Θ) =

0.95 for all cells j = 1, 2, ..., N . Figure 2.20 (b) is a section through the graph n

(a) for a fixed r = 200 km. Figures 2.21 (a) and (b) show a section through the

graph in Figure 2.20, for a fixed m = 8 and the corresponding 95% confidence

intervals for the PSa0.95, in linear and logarithmic scales, respectively.

2.5.3 PSHA Example

The mean annual rates ν(x) at which an intensity measure IM exceeds a value

x constitutes one of the main outputs of the traditional probabilistic seismic

hazard analysis (PSHA). It has the expression

ν(x) =

N
∑

j=1

λjP(IM > x|(m, r)j)pj, (2.37)
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Figure 2.21: Mean and the 95% confidence intervals of the quantile PSa0.95
for fixed m = 8 in (a) linear and (b) logarithmic scales.

where N is the total number of cells in the seismic activity matrix and λj and

pj are the mean annual rate and the probability of occurrence of an earth-

quakes characterized by (m, r)j [2]. In classical PSHA, the probability P(IM >

x|(m, r)j) is calculated by assuming that the logarithm of IM is normally dis-

tributed with mean ln(IM) and standard deviation σln(IM) obtained from a

ground motion prediction model for given (m, r)j [7]. For the numerical ex-

ample of the classical PSHA, we use the ground motion prediction model de-

veloped by [12] to calculate the parameters (ln(IM), σln(IM)) for the distribution

of ln(IM).
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Figure 2.22: Hazard curves for (a) PSa(T = 1s; ζ = 5%) and (b) PSa(T =
0.5s; ζ = 5%).
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In our approach, in which we use the statistically-updated spectral density,

the mean annual rate ν(x) is calculated by rewriting equation (2.37) as

ν(x) =

N
∑

j=1

λjpj

∫

Ψ

F IMj
(x; Θ)dΘ, (2.38)

where F IM(x; Θ) is the tail distribution function for the intensity measure IM ,

as it was calculated in (2.28) and (2.33) directly from data and the seismological

model with SBM. No additional assumption on the distribution of the inten-

sity measure is required in this approach. Graphical representations of ν(x) are

known as hazard curves. Figure 2.22 shows the hazard curves calculated by

using the classical PSHA and the proposed model before and after statistically

updating it with the records from the USC site the intensity measure IM (a)

PSa(T = 1s; ζ = 5%) and (b)PSa(T = 0.5s; ζ = 5%). Differences are noticed be-

tween the hazard curves for the proposed model before and after the statistical

update, but they can be continuously updated as more records become available

at the site.

2.5.4 Deaggregation of (M,R)

The goal of this section is to find a collection of cells for which an intensity

measure IM exceeds a threshold x. We refer to the conditional probability

P {(M,R) = (m, r)j |IM ≥ x; Θ} =
P {IM ≥ x|(M,R) = (m, r)j; Θ} pj

P {IM ≥ x|Θ} , (2.39)

as the deaggregation of (M,R), where the probability pj = P {(M,R) = (m, r)j}

is the probability of cell j as given by the seismic activity matrix and IM is the

intensity measure. Deaggregation of (M,R) represents the probability that an

earthquake with magnitude m and source-to-site distance r occurs, under the

condition IM ≥ x [53, 11].
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Figure 2.23: Means for the joint conditional random vectors (a)
(M,R)|PGA > 0.02 g and (b) (M,R)|PGA > 0.20 g.

Figure 4.6 shows the conditional probability in equation (2.39) for IM =

PGA and levels (a) x = 0.02 g and (b) x = 0.20 g.

From the definition in (2.39), the conditional probability P {(M,R) = (m, r)j|IM ≥ x; Θ}

converges to pj in the seismic activity matrix, as the threshold of the IM , x→ 0.

Figure 2.24 shows the discrete mean and the 95% confidence intervals’ bounds

for the marginal densities P {M = m|IM ≥ x} and P {R = r|IM ≥ x}, given a

PGA > 0.20 g.

The deaggregation gives information about the types of seismic sources

which are likely to produce ground motions with IM > x. This measure solves

at some extent the limitation of the model to statistically update the spectral

density in (2.7) with the records available at a single site irrespective of their

producing seismic sources.
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Figure 2.24: Marginal distributions of (a) (M = m|PGA > 0.20 g) and (b)
(R = r|PGA > 0.20 g).

2.5.5 Ground Motion Simulation

Monte-Carlo simulation is used to produce samples at the USC site after the

spectral density model has been statistically updated with the records at a sin-

gle site. The following algorithm is used to generate samples of the ground-

acceleration process at the USC site.

Step 1: Select n samples (m, r)(k), k = 1, ..., n from the multinomial distribution

of (M,R) given by the seismic activity matrix;

Step 2: Count the number of occurrences of each cell, i.e.,

nj =
n
∑

k=1

1{(m, r)(k) = (m, r)j}, (2.40)

where n =
∑N

j=1 nj and N is the number of cells (m, r)j in the seismic

activity matrix;

Step 3: Generate nj samples θ(k) = [θ
(k)
1 , θ

(k)
2 , θ

(k)
3 ], k = 1, ..., nj of Θ from the

posterior density p(θ|y) and calculate the corresponding spectral density

g̃j(f ; θ
(k)) for each cell j = 1, 2, ..., N ;
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Step 4: Generate samples of the ground-acceleration process Xj(t) for each

sample θ(k) in each cell j with nj > 0 by using the spectral representation

method described in [33] in (Sect. 3.6), i.e.

xj(t) =

nf
∑

i=1

σj,i(Ai sin(fit) +Bi cos(fit)) (2.41)

where Ai, Bi ∼ N(0, 1), f0 = 0 < f1 < ... < fnf
= f , and σ2

j,i =
∫ fi
fi−1

g̃j(f ; θ
(k))df .

We note that the stationary samples {xj(t)} in equation (2.41) can be modu-

lated to describe approximately the non-stationary character of ground motions,

i.e., sample xj(t) becomes h(t)xj(t), where h(t) > 0 is a deterministic modulation

function defined over the earthquake duration [77]. Features and limitations of

non-stationary models obtained in this manner are discussed in [35].

An estimator for the cumulative distribution for the PGA using Monte-Carlo

simulations is

F̃PGA(x) = P(PGA > x) =
1

n

N
∑

j=1

nj
∑

i=1

1{ max
0≤t≤τj

(|xj,i(t)|) > x}, (2.42)

where τj is the duration of the process Xj(t) samples. The probability density

function is then equal to

f̃PGA(x) =
d
(

1− F̃PGA(x)
)

dx
. (2.43)

Figure 2.25(a) shows the analytical average PGA probability density func-

tion at the USC site, calculated by crossing rates, and the approximate one esti-

mated by using the samples produced. The average analytical density fPGAj
for

the entire site is calculated from equation (2.29) by integrating (m, r)j out. The

approximate density estimator from the Monte Carlo samples is given in (2.43)
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and it is represented as a histogram.

Similarly, the analytical and the numerical density functions for the PSa(ω; ζ)

are calculated and plotted in Figure 2.25(b) for ω = 2π and ζ = 10%. The esti-

mator for the distribution function for the spectral acceleration is

F̃ PSa(ω;ζ)(x) = P(PSa(ω; ζ) > x) =
1

n

N
∑

j=1

nj
∑

i=1

1{ max
0≤t≤τj,i

(|z̈j,i(t;ω, ζ)| > x)},

(2.44)

where z̈j,i(t;ω, ζ) is a sample of the acceleration process Z̈j(t;ω, ζ) defined by

(2.30). For the numerical calculation of these statistics, n = 10000 ground-

motion samples were generated.
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Figure 2.25: The average probability density function calculated by mean
crossing rates (dashed line) and by simulation (histogram) for
(a) PGA and (b) PSa at the USC site.

2.6 Conclusions

A statistically-updated version of the specific barrier model (SBM) which ac-

counts for all the hazard information available at a site was developed. A

stochastic parametric model of the SBM spectral density function was proposed
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using the singular value decomposition method. Updating the random un-

known parameters in a Bayesian framework with the site ground-acceleration

records, the posterior versions of the SBM spectral density were obtained. The

statistically-updated model provides probability distributions of the up-to-date,

site-specific spectral-density functions. It was shown that the model converges

to the spectral density of site ground accelerations, e.g., the SBM if the ground

records are produced by this model. Moreover, the distribution of the unknown

parameters approaches a Gaussian distribution with specified mean and covari-

ance matrices. Numerical examples which use ground-motion records gener-

ated using the SBM spectral density, showed that the confidence interval of the

spectral densities converges to the SBM spectral density as the number of sam-

ples in the analysis increases.

The posterior model for the spectral densities at University of Southern Cal-

ifornia in Los Angeles is obtained by statistically updating the SBM with all

ground-acceleration records available at that site. The crossing theory for the

ground-acceleration process is used to calculate statistics on the peak ground

acceleration and the spectral acceleration. The methodology proposed allows

the calculation of all quantities considered in the classical probabilistic seismic

hazard analysis, e.g. probability of exceedance, quantiles of specified intensity

measures etc. In addition, the probability distribution of all these quantities is

also known. A Monte Carlo simulation algorithm is proposed for generating

samples of the ground acceleration process at a site.
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2.7 Data and Resources

The seismograms used in this study were recorded at the University of Southern

California station and they were downloaded from the database provided by

the Incorporated Research Institutions for Seismology (IRIS) at www.iris.edu.

The dataset was downloaded using the MATLAB script provided by IRIS

at http://www.iris.edu/dms/nodes/dmc/software/downloads/irisfetch.m/,

last accessed in August 2013. The mean annual rates of earthquake occur-

rences for Los Angeles were obtained by using the 2009 Earthquake Prob-

ability Mapping tool available through the United States Geological Survey

website https://geohazards.usgs.gov/eqprob/2009/index.php, last accessed

in August 2013.
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CHAPTER 3

STOCHASTIC REDUCED ORDER MODELS (SROM)

3.1 Introduction

Calculation of response statistics of structures subjected to seismic loads is an

essential tool in performance-based seismic design. Monte Carlo is the only

general and reliable method to calculate these types of statistics. However, the

method is computationally impractical for realistic structural systems since it in-

volves repeated deterministic dynamic analyses for randomly selected samples

of seismic load processes. Repeated response analyses for complex structural

systems may be costly, which makes Monte Carlo method computationally ex-

pensive and therefore impractical.

The framework of linear/nonlinear random vibration is also inadequate for

constructing fragility surfaces. Classical theory of linear random vibration pro-

vides efficient tools for calculating the first two response moments for linear

systems. Unless the input is Gaussian or the output can be assumed to be Gaus-

sian, the first two response moments are insufficient for calculating fragilities

([33], Sect. 7.2). This is a significant limitation since structural systems behave

nonlinearly under strong seismic loads.

The main goal of this chapter is to propose a novel, conceptually simple, ac-

curate, non-intrusive, computationally efficient method for calculating response

statistics for structures subjected to seismic loads. The method is based on

stochastic reduced order models (SROMs) [28], i.e. stochastic processes that

have a finite number of samples selected in an optimal manner from the samples
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of the target process. Like Monte Carlo simulation, the method uses samples of

seismic load processes to characterize structural response and is non-intrusive

in the sense that its construction uses deterministic solutions that can be ob-

tained with available software. However, the proposed method uses a small

number of load samples selected in an optimal manner. In contrast, Monte

Carlo simulation uses a large number of samples selected at random. The use

of optimally selected samples allows one to reduce the number of simulations

required by the Monte Carlo method by one or two orders of magnitude while

retaining accuracy. The method has been originally developed for dynamic re-

sponse [29]. Recently, it has been shown that for static problems the SROM-

based method can be improved significantly [31]. Preliminary studies indicate

that similar improvements will provide accurate solutions for random vibration

problems [32]. Optimization algorithms have been developed for constructing

SROMs for random random vectors [28, 74].

3.2 Stochastic Reduced Order Models

This chapter proposes a model which can capture essential properties of ran-

dom variables, vectors and random functions with just a few of their samples.

The method is an alternative to Monte Carlo and it is useful for solving effi-

ciently differential equations with random coefficients or random input.
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3.2.1 SROM for random variables

We consider a real-valued random variable X with a Gamma distribution

F (x), x > 0 with shape and scale parameters parameters a = 2 and b = 0.5.

The set {xi, i = 1, ..., n} is composed of n samples of X . We construct a model

X̃ with ñ << n independent samples {x̃k, k = 1, ..., ñ} of X with weights

{pk, i = 1, ..., ñ} such that
∑ñ

k=1 pk = 1. The pairs (x̃k, pk) define a stochastic

reduced order model X̃ for the random variable X . We select samples x̃k of X

at random and we choose their corresponding weights pk such that X and X̃

have similar statistics. In other words, we approximate the distribution of X

with a discrete distribution with a given finite number of atoms x̃k, k = 1, ..., ñ

and weights pk.

Our goal is to find an optimal vector popt = (poptk , k = 1, ..., ñ) of p = (pk, k =

1, ..., ñ) for the set of samples {x̃k, k = 1, ..., ñ} which minimizes the differences

between the probability laws of X and X̃ , measured by the following metric

h(p) = e1h1(p) + e2h2(p), (3.1)

where h1(p) =
∑nq

q=1wq(µ(q)− µ̃(q))2 measures the differences between the mo-

ments µ(q) and µ̃(q) of up to order q of X and X̃ , respectively and h2(p) =
∫

(F (x) − F̃ (x))2dx measures the differences between the cumulative distribu-

tions F (x) and F̃ (x) of X and X̃ , respectively, where nq is the number of mo-

ments considered. Coefficients wq are relative weights between moments and

e1, e2 > 0 are some weights which measure the relative contribution of each

component in the objective function h(p). The moments of order q > 0 and the
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distribution for the real-valued variable X are calculated as

µ(r) = E[Xr] (3.2)

F (x) = P(X ≤ x), (3.3)

where x > 0 is the argument of function F (x). The same statistics for the SROM

X̃ are evaluated as follows:

µ̃(q) = E[X̃q] =
ñ
∑

k=1

pkx̃
q
k (3.4)

F̃ (x) = P(X̃ ≤ x) =
ñ
∑

k=1

pk1{x̃k ≤ x}, (3.5)

where 1 denotes the indicator function.

Numerical results are shown for ñ = 10, wq = 1, q = 1, ..., nq = 5 and various

values of e1 and e2. Figure 3.1 shows the actual moments and cumulative dis-

tribution function for the Gamma random variable X and the SROM X̃ when

only the first nq = 5 moments are considered in the optimization, i.e., e1 = 1 and

e2 = 0. The SROM-estimated moments are within an error of 0.24% of the real

moments of X , while the mean error between the distribution functions F and

F̃ is 4.5%. Figure 3.2 shows the estimated moments and distribution function

of X by SROM for the case e1 = 0 and e2 = 1. In this case only the distribu-

tion is considered in the objective function h(p) and the error in the estimated

moments are up to 53.46%. The heavy-dotted line in Figure 3.3 (a) shows the

SROM-estimated first 5 moments of X . These approximate first 5 moments of

X delivered by SROM with ñ = 10 samples for e1 = 1 and e2 = 1 are in an

error less than 1%. In contrast, Monte Carlo estimates based on the same length

as that of X̃can be inaccurate, as illustrated by the one hundred thin lines rep-

resenting estimates of the first 5 moments of X corresponding to 100 sets of 10

independent samples of X each. The heavy-dotted lines in Figure 3.3 (b) show
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Figure 3.1: (a) Moments and (b) cumulative distribution functions of a
Gamma random variable for X (solid blue line) and X̃ (red
dashed line) for e1 = 1 and e2 = 0.
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Figure 3.2: (a) Moments and (b) distribution functions of a Gamma ran-
dom variable for X (solid blue line) and X̃ (red dashed line)
for e1 = 0 and e2 = 1.

the SROM estimated and the exact distribution functions ofX . The approximate

distribution function of X delivered by SROM with ñ = 10 samples for e1 = 1

and e2 = 1 is in an error less than 3%. Similarly, Monte Carlo estimates based

on the same length as that of X̃ estimate inaccurately the distributions shown

by the 100 thin lines, each corresponding to a set of 10 independent samples of

X each.
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Figure 3.3: Estimates of (a) the first 5 moments and (b) cumulative distri-
bution functions of a Gamma random variable

3.2.2 SROM for stochastic processes

The same method described above can be applied to stochastic processes with

direct applications in earthquake engineering. SROMs can be developed for the

seismic ground motion acceleration processes.

A new, highly-efficient method is proposed for calculating response statis-

tics. The method is based on stochastic reduced order models (SROMs) and can

be viewed as a smart Monte Carlo simulation. The following are the basic steps

of the proposed SROM-based method for calculating response statistics.

The stochastic reduced order model is defined directly for the samples of the

input process X(t). Any number ñ of samples {x̃k(t), k = 1, ...., ñ} of X(t) and

probabilities {pk ≥ 0, k = 1, ..., ñ} such that
∑ñ

k=1 pk = 1 define a stochastic

reduced order model. We denote the SROM as X̃(t) = {(x̃k, pk), k = 1, ..., ñ}.

It has been shown [28] that it is possible to find a selection of {(x̃k(t), pk), k =

1, ...., ñ} such that X(t) and X̃(t) have similar probability laws in terms of cu-

mulative distributions, moments and correlations for ñ << n.
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We are looking for a SROM X̃(t) with a range {x̃k(t), k = 1, ...., ñ} of inde-

pendent samples ofX(t), a relatively small ñ. Our objective is to find an optimal

vector popt = (poptk , k = 1, ..., ñ) that minimizes the discrepancies between the

probability laws of X(t) and X̃(t). We obtain popt by solving an optimization

problem with an objective function which measures differences between vari-

ous statistics ofX(t) and X̃(t). It is suggested in [28] to use an objective function

of the form

h(p) =

3
∑

i=1

eihi(p), (3.6)

where h1(p), h2(p), h3(p) measure the differences between the moments of or-

der q, distributions and correlation functions of X(t) and X̃(t), respectively,

where (ei ≥ 0, i = 1, 2, 3) are some weights and p = (pk, k = 1, ..., ñ).

Statistics of both X(t) and X̃(t) may be estimated from their samples. Thus,

the moments of order q are

µ(t; q) = E[Xq(t)] =
1

n

n
∑

i=1

xqi (t), (3.7)

µ̃(t; q) =

ñ
∑

k=1

pkx̃
q
k(t), (3.8)

the marginal distributions are

F (x; t) = P(X(t) ≤ x) =
1

n

n
∑

i=1

1 {xi(t) ≤ x} , (3.9)

F̃ (x; t) =
ñ
∑

k=1

pk1 {x̃k(t) ≤ x} , j = 1, ..., nF (3.10)
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and, finally, the correlation functions can be calculated as

ρ(t, s) = E[(X(t)− µ(t, 1))(X(s)− µ(s, 1))] (3.11)

=
1

n− 1

n
∑

i=1

(xi(t)− µ(t, 1))(xi(s)− µ(s, 1))

ρ̃(t, s) =
ñ
∑

k=1

pk(x̃k(t)− µ̃(t, 1))(x̃k(s)− µ̃(s, 1)). (3.12)

Components of the objective function in Eq.(3.6) are calculated using the statis-

tics estimated above.

h1(p) = max
0≤t≤τ

{

nq
∑

q=1

wµ(t, q) |µ(t; q)− µ̃(t; q)|
}

(3.13)

h2(p) = max
0≤t≤τ

{
∫ ∫

wF (x, t)
∣

∣

∣F (x; t)− F̃ (x; t)
∣

∣

∣ dxdt

}

(3.14)

h3(p) = max
0≤t,s≤τ

{
∫ ∫

wρ(t, s) |ρ(t, s)− ρ̃(t, s)| dtds
}

, (3.15)

wherewµ, wF , wΣ ≥ 0 are weighing functions. Minimizing the objective function

in Eq. (3.6) results in obtaining the vector popt. The optimization problem is re-

peated for a number of independent sets of ñ samples of X(t), {x̃k, k = 1, ..., ñ}

and the minimum value of h(popt) indicates the optimum solution popt. Note

that this is a sub-optimal solution since it involves an iterative procedure re-

peated for a specified number of times.

3.3 Problem Definition

An application in earthquake engineering is developed to show the efficiency

of the SROMs for stochastic processes. We assume X(t) to be a real-valued

stochastic process which represents the ground motion acceleration process. In

addition to the construction of the SROM, we will also show the advantages of

using SROM in response analyses
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3.3.1 Ground-Acceleration Process

We use a physical seismological model, called the specific barrier model [37],

to describe the probability law of the ground acceleration process X(t). The

strong-motion part of the ground motion acceleration at a site located at a dis-

tance r from a seismic source producing earthquakes of magnitudes m is as-

sumed to be a zero-mean, stationary, Gaussian process X(t) with one-sided

spectral density g(ν;m, r). The spectral density and the duration of the process

tf are given by the specific barrier model [37] and are depend on (m, r). Figure

5.1 shows an example of the one-sided spectral density for (m, r) = (7.5, 100 km)
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Figure 3.4: Power spectral density for (m, r) = (7.5, 100 km).
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3.3.2 Dynamic Systems

We will use three simple linear and non-linear models for the structural models.

The vector process Y (t) satisfies equations

Linear: MŸ (t) + CẎ (t) +KY (t) = −M1X(t) (3.16)

Duffing: MŸ (t) + CẎ (t) +K(Y (t) + ǫY 3(t)) = −M1X(t) (3.17)

Bouc-Wen: MŸ (t) + CẎ (t) +K(ξ1Y (t) + (1− ξ1)W (t)) = −M1X(t) (3.18)

Ẇ (t) = ξ2Ẏ (t)− ξ3|Ẏ (t)||W (t)|ξ5−1W (t)− ξ4Ẏ (t)|W (t)|ξ5,

for the linear, Duffing and Bouc-Wen dynamic systems, where M , C and K are

the mass, the damping and the stiffness matrices, 1 is a (N, 1) unit vector and

ǫ, ξ1, ..., ξ5 are parameters for the nonlinear systems. For N = 1, M , C and K

are scalars and we use the notations ν20 = K/M and 2ζν0 = C/M . We use

ν0 = 2π rad/s, ζ = 0.02, ǫ = 20 and [ξ1, ..., ξ5] = [0.5, 0.5, 15,−2.5, 1] for the

numerical results. Figure 3.5 (a) shows the behavior of the linear and the Duffing

oscillators, while Figure 3.5 (b) shows the hysteretic behavior of a Bouc-Wen

oscillator subjected to a sample of X(t).
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Figure 3.5: Restoring force vs. displacement for (a) linear and Duffing os-
cillators, and (b) Bouc-Wen oscillator.
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For the 2DOF systems we use the previous non-linear parameters and we

assume a shear-beam model with masses, stiffnesses and damping coefficients:

M1 = 103 kg, M2 = 0.75 × 103 kg,K1 = 90 kN/m,K2 = 65 kN/m,C1 =

0.25 kN.s/m,C2 = 0.55 kN.s/m.

3.4 Solution by Stochastic Reduced Order Models

We develop a SROM X̃(t) for the stochastic process X(t). The stochastic pro-

cess X̃(t) of X(t) is defined by ñ independent samples {x1(t), ..., xñ(t)} of X(t).

Samples {xk(t), k = 1, ..., ñ} are usually not equally likely and the probabilities

p = {pk, k = 1, ..., ñ} with
∑ñ

k=1 pk = 1 define completely the probability law

of X̃(t). The set of probabilities is obtained by minimizing the objective func-

tion defined in Eq. 3.6. The marginal distribution F (x) the moments of order

q µ(q) and the correlation function ρ(τ) for the ground motion process X(t) are

defined by

F (x) =

∫ x

−∞

φ(u)du (3.19)

µ(q) =

∫ ∞

−∞

xqφ(x)dx (3.20)

ρ(τ) = E[Y (t), Y (t+ τ)] =

∫ ν

0

g(ν;m, r) cos(ντ)dν, (3.21)

where φ(x) = (2πσ2)−0.5 exp{−x2/(2σ2)} is the probability density function for

the zero-mean normal distribution with variance σ2 =
∫ ν

0
g(ν;m, r)dν and ν is

the cut-off frequency for the spectral density function g(ν;m, r). The the mo-

ments of order q, the marginal density and the correlation function for process

Ỹ (t) are defined as shown in Eqs. (3.8), (3.10) and (3.12), respectively. Figure 3.6

shows the target marginal distribution F (x) and the marginal F̃ (x; t) calculated
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for ñ = 20 samples and averaged over time. Figure 3.7 (a) shows the moments

µ(q) and µ̃(q; t), q = 1, ..., nq = 5, averaged over time, and Figure 3.7 (b) shows

the correlation functions ρ(τ) and ρ̃(τ) for the first 10 s.
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Figure 3.6: Average cumulative distribution function for the stationary
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3.4.1 Response Analysis

Let Y (t) = {Y1(t), .., YN(t)} be the relative displacement of a N-degree-of-

freedom system subjected to the ground acceleration X(t), as shown in Eqs.

(3.16)-(3.18). We calculate the displacement response Y (t) for single-degree-of-

freedom (SDOF, N = 1) and two-degree-of-freedom (2DOF, N = 2) systems.

We calculate response statistics on Y (t) using both Monte-Carlo (MC) sim-

ulations and SROM in order to show the efficiency of the proposed method

without loss of accuracy. We will calculate the probabilities that the maximum

displacement of the SDOF systems and that the maximum inter-storey drift of

the 2DOF systems exceed a critical value x0, that is,

SDOF: Pf (x0) = P

(

max
0≤t≤tf

|Y (t)| > x0

)

(3.22)

2DOF: Pf (x0) = P

(

max
0≤t≤tf

|Y2(t)− Y1(t)| > x0

)

. (3.23)

Numerical evaluation of equation (3.22) using the MC and SROM methods

is done as follows:

MC: PMC
f (x0) =

1

n

n
∑

k=1

P

(

max
0≤t≤tf

|xk(t)| > x0

)

(3.24)

SROM: P SROM
f (x0) =

ñ
∑

k=1

pkP

(

max
0≤t≤tf

|xk(t)| > x0

)

, ñ << n, (3.25)

where ñ is the number of samples {(xk, pk), k = 1, ..., ñ} used to construct the

range of the SROM X̃(t) and n is the number of samples of X(t) used in the

Monte Carlo analysis. Usually n >> ñ. For each sample yk(t), the displace-

ment response xk(t) is calculated by solving the differential equations (3.16-

3.18). Probabilities that the response exceeds a critical value x0, i.e., PMC
f (x0)

and P SROM
f (x0) are calculated for the SDOF and the 2DOF systems described,
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by using n = 10000 samples for the MC method and ñ = 20, 50, 100 samples for

SROM. Resulting probabilities of failure are shown in Fig. 3.8-3.13.
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Figure 3.8: SDOF linear system - MC analysis with n = 1000 vs. SROM
analysis with (a) ñ = 20, (b) ñ = 50, (c) ñ = 100 non-stationary
samples
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Figure 3.9: SDOF Duffing system - MC analysis with n = 1000 vs. SROM
analysis with (a) ñ = 20, (b) ñ = 50, (c) ñ = 100 non-stationary
samples

The relative error between the probabilities of failure calculated using the MC

and the SROM methods is defined as

err =

∫

(|P SROM
f (x0)− PMC

f (x0)|dx0)
∫

PMC
f (x0)dx0

× 100 (3.26)

and it is calculated for all systems considered and summarized in Table 3.1.

The relative error between the probabilities of failure calculated using the Monte

Carlo and the stochastic reduced order models methods decreases as the num-

ber of samples ñ in the SROM range increases. The improvement in the results
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Figure 3.10: SDOF Bouc-Wen system - MC analysis with n = 1000 vs.
SROM analysis with (a) ñ = 20, (b) ñ = 50, (c) ñ = 100 non-
stationary samples
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Figure 3.11: 2DOF linear system - MC analysis with n = 1000 vs. SROM
analysis with (a) ñ = 20, (b) ñ = 50, (c) ñ = 100 non-stationary
samples
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Figure 3.12: 2DOF Duffing system - MC analysis with n = 1000 vs. SROM
analysis with (a) ñ = 20, (b) ñ = 50, (c) ñ = 100 non-stationary
samples
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Figure 3.13: 2DOF Bouc-Wen system - MC analysis with n = 1000 vs.
SROM analysis with (a) ñ = 20, (b) ñ = 50, (c) ñ = 100 non-
stationary samples

Table 3.1: Relative errors

System 20 samples 50 samples 100 samples

SDOF linear 14.29 5.50 5.31

SDOF Duffing 10.78 6.46 5.95

SDOF Bouc-Wen 13.22 4.99 4.86

2DOF linear 6.02 5.62 4.89

2DOF Duffing 3.82 7.28 5.59

2DOF Bouc-Wen 6.14 3.14 3.56

obtained by increasing the number of samples from ñ = 50 to ñ = 100 is in-

significant. We can conclude that the new method is highly efficient and with

less effort we can produce approximate results that are within a relative error of

3− 8% from the Monte-Carlo results.
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3.5 Conclusions

A new, highly efficient method has been proposed to calculate response statis-

tics for structural systems subjected to seismic loads. The method is based on the

stochastic reduced order models that can be viewed as a smart Monte Carlo sim-

ulation. Unlike the Monte Carlo method which uses a large number of samples

selected at random, the new method uses a much smaller number of samples

that are selected in optimal manner. The method is implemented to calculate

probabilities of failure for linear and nonlinear, single-degree-of-freedom and

multiple- degree-of-freedom systems subjected to earthquakes characterized by

a selected moment magnitude and source-to-site distance . The SROM estimates

of failure probabilities match satisfactorily the Monte-Carlo estimates of these

probabilities although they are based on a small number of seismic ground ac-

celeration samples.
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CHAPTER 4

LIMITATION OF CURRENT APPROACHES AND IMPROVEMENTS

4.1 Introduction

Fragility curves are plots of probabilities that structural systems enter specified

damage states as functions of measures of seismic ground intensity, e.g., peak

ground acceleration [45, 66] or selected ordinate(s) of response spectra [23, 49].

They are commonly used in performance-based seismic design of structural

and non-structural systems to assess their performance under seismic loads.

The construction of fragility curves requires large numbers of ground accelera-

tion records particularly when dealing with highly reliable structures. Since the

number of ground motions is rather small even in highly seismic regions, meth-

ods have been proposed to overcome the shortage of available site records.

The methods for calculating fragility curves use various procedures for aug-

menting site records. These methods can be divided in three groups. The first

class of methods for calculating fragility curves, known as multiple stripes anal-

ysis [50, 6], uses selected ground motion records from a large datasets, e.g.,

the PEER NGA Database, recorded at various sites. The records are selected

to match the response spectrum conditioned on some target spectral ordinate

[54, 9] and then used to calculate probabilities of exceeding specified damage

states [50, 51]. In [5, 42], the response acceleration spectrum used is conditioned

on a given value of the spectral acceleration PSatarget(T0; ζ0) at a period of inter-

est T0 and damping ratio ζ0. The conditioning spectral ordinate PSatarget(T0; ζ0)

corresponds to a certain exceedance probability at a given site. We will refer

to this method as conditional-spectrum ground-motion selection method (CS-
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GMS).

The second class of methods, known as incremental dynamic analysis (IDA),

involves repeated scaling of the same set of available seismic ground motions

to increasing intensity measures until the specified damage state is reached

[73, 75, 26]. Scaling ground motions is conceptually simple and, therefore, at-

tractive, but it may lead to unsatisfactory results since scaling does not change

the frequency content. Thus, ground motions used to construct fragilities have

the same frequency content irrespective of their intensity, an assumption that is

at variance with observations [30, 44].

Finally, the third class of methods is less used in practice, but used in this

chapter as a reference result to compare the performance of the first two meth-

ods. The method involves repeated dynamic analyses for either all available

records in a dataset or large number of artificial ground motion records pro-

duced by Monte Carlo simulations. Usually, postulated probabilistic and/or

physical models calibrated to actual seismic records [76, 37] are used to pro-

duce artificial ground acceleration records. The usefulness of the method de-

pends on the quality of the ground motion models and the set of available site

records used for model calibration. One of these methods uses a seismologi-

cal model based on the specific barrier model [37] and site records to update

the seismic ground acceleration process at a site, depending on moment magni-

tude m and site-to-source distance r [62]. Another method which uses artificial

ground-motion records to enrich an existent dataset of ground-motion records

is presented also in [65].

This chapter has two main objectives: (1) show limitations of current meth-

ods for fragility analysis and (2) propose an improved alternative for calculat-
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ing fragility curves similar to the first class of methods (CS-GMS), also based

selecting ground motion records from large datasets. Important drawbacks of

fragility curves are due to the characterization of ground motions by a single

intensity measure parameter, which may provide unsatisfactory results [44].

Moreover, the methods used for fragility-curves calculations have their own

limitations. Scaling ground motion records only changes the amplitudes of

ground motions and not their frequency content. Also, current practices se-

lect ground motion records based on the response of linear single-degree-of-

freedom oscillators, even though they are used for further analyses of non-

linear or multi-degree-of-freedom systems. Since fragility curves are tradition-

ally used as a common tool in performance-based seismic design, we will pro-

pose calculating fragility curves using multiple stripes analysis based on a novel

method for selection of ground motion records. The proposed method is based

on stochastic reduced order models (SROM) and selects records based on the

probability law of the ground motion process rather than the response of single-

degree-of-freedom systems.

The first part of this chapter shows numerical examples which point out lim-

itations of using scalar intensity measures for fragility analysis. Then, fragility

curves as functions of spectral acceleration are calculated using the multiple

stripes analysis (CS-GMS) and incremental dynamic analyses(IDA) and com-

pared with the third class of methods, i.e. the reference method, based on all

ground motion records available. The second part of the paper presents a new

method for calculating fragility curve. The method is similar with the multiple

stripes analysis but uses ground motions selected by SROM. We will refer to

this method as SROM-based ground motion selection method (SROM-GMS).
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4.2 Problem Definition

For the purpose of this paper we will construct fragility curves for linear and

non-linear structural systems subjected to simulated and actual records from

PEER NGA database. Governing equations of the systems and full description

of the ground-motion datasets are presented in this section.

4.2.1 Structural systems

Let X(t) = [X(1)(t), X(2)(t), ..., X(NDOF )(t)]T be the relative displacement process

of a NDOF -degree-of-freedom systems subjected to the ground acceleration pro-

cess Z(t). Then the process X(t) satisfies Eq. (4.1) for a linear system

MẌ(t) + CẊ(t) +KX(t) = −M1Z(t) (4.1)

and the differential Eq. (4.2) for a Bouc-Wen non-linear system

MẌ(t) + CẊ(t) +K(ρX(t) + (1− ρ)W (t)) = −M1Z(t), (4.2)

where

Ẇ (i)(t) = aẊ(i)(t)− b|Ẋ(i)(t)||W (i)(t)|n−1W (i)(t)− cẊ(i)(t)|W (i)(t)|n (4.3)

andM,C,K are the mass, the damping and the stiffness matrices, 1 is a (NDOF×

1) unit vector, ρ, a, b, c, n are the non-linear parameters and X(i) and W (i) are the

relative and hysteresis displacement of degree of freedom i = 1, 2, ..., NDOF .

For the case of single-degree-of-freedom (SDOF) systems, i.e., NDOF = 1, we

use the following notations T 2
0 = 4π4M/K and 4πζ0/T0 = C/M . Numerical

results are shown for a linear SDOF system and a Bouc-Wen system with T0 =

1 s, ζ0 = 5%.
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We will also consider one two-degree-of-freedom linear system (2DOF), i.e.,

NDOF = 2 and one 2DOF Bouc-Wen system. We use a shear-beam model to

calculate the mass, stiffness and damping matrices

M =







M1 0

0 M2






, K =







K1 +K2 −K2

−K2 K2







C =







C1 + C2 −C2

−C2 C2






, (4.4)

where M1 = 103 kg, M2 = 750 kg, K1 = 245 kN/m, K2 = 35 kN/m, C1 =

0.63 kNs/m, C2 = 1.45 kNs/m for the linear and the Bouc-Wen 2DOF systems.

The parameters of the systems are chosen such that the first modal period and

damping ratios to be similar to the ones of the linear SDOF system, i.e., T0 ≃ 1 s

and ζ0 ≃ 5%. The non-linear parameters for both SDOF and 2DOF Bouc-Wen

systems are ρ = 0.5, a = 0.5, b = 15, c = −2.5, n = 1.
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Figure 4.1: 2DOF linear system - displacement of the first degree-of-
freedom and first-mode contribution.

The 2DOF linear system is chosen such that both modes of vibration have

comparable contributions. Figure 4.1 shows the displacement of the first degree-

63



of-freedom and the corresponding first-mode contribution in the response.

4.2.2 Ground motion datasets

We use two datasets of ground motions in this study: (1) a dataset with N =

5000 artificial ground motion samples and (2) the PEER dataset, composed of

a collection of approximately N = 3500 ground-motion records from 147 earth-

quakes. We will use the artificial ground-motion dataset for showing limitations

of the current methods used in practice and the PEER dataset to validate a newly

proposed ground-motion-selection method.

For the artificial dataset, we assume that the ground motion process Z(t) is

a zero-mean, non-stationary, Gaussian process defined by

Z(t) = f(t)Y (t), 0 ≤ t ≤ τ, (4.5)

where τ is the total duration of the ground motion,

f(t) = αtβ exp{−γt} (4.6)

is a deterministic modulation function, in which α, β, γ are constants and Y (t)

is a zero-mean, stationary, Gaussian process with one-sided spectral density

g(ν;m, r), ν ≥ 0 depending on the moment magnitude m and the source-to-

site distance r. The spectral density function g(ν;m, r), the sample duration τ

and constants α, β, γ are results of the specific barrier model [37]. The specific

barrier model is a source model, as part of a seismological model, which gives

the spectral density function of Z(t) in (4.5) as a function of (m, r), tectonic prop-

erties and soil conditions. We use (m = 6.85, r = 8 km), a inter-plate tectonic

regime and a shear velocity in the top 30 m of soil of v30 = 620 m/s for which
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τ = 14.3 s and α = 0.2787, β = 1.2531 and γ = 0.1663, to construct the artificial

samples in the dataset.

Figure 4.2 shows the spectral density g(ν;m = 6.85, r = 8 km) and a sample

of the process Z(t) with the corresponding modulation function f(t), respec-

tively.
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Figure 4.2: (a) One-sided spectral density g(ν;m = 6.85, r = 8 km); (b)
Sample of the ground motion process Z(t) and corresponding
modulation function f(t).

4.3 Limitations of Current Methods for Fragility Analysis

Limitations of current methods for fragility analyses are due to (1) the use of

scalar intensity measures to characterize the ground motion process and (2)

the scaling of ground motion records and the heuristic methods for selecting

records.
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4.3.1 Scalar Ground-Motion Intensity Measures

Intensity measures currently used for constructing fragility curves quantify

properties of seismic ground acceleration records by, e.g., peak ground accel-

eration (PGA) or ordinate(s) of response acceleration spectra (PSa). Conceptual

simplicity is the main features of these seismic intensity measures. A notable

drawback is the lack of uniqueness, i.e., ground motions with rather different

features may have similar intensity measures. Fragilities corresponding to mo-

tions with similar intensity measures may differ significantly, particularly when

dealing with nonlinear structures.

Let {Zk(t)}, k = 1, . . . , m, be competing probabilistic models for the seis-

mic ground acceleration at a site. These models are assumed to be station-

ary, mean-square-differentiable Gaussian processes with mean zero, one-sided

spectral density gk(ν), ν ≥ 0, and duration τ . We show that these processes

can have the same intensity measures but very different spectral properties so

that systems subjected to these models can have rather different responses and,

therefore, different fragilities. These observations imply that (1) the probabilis-

tic models {Zk(t)} are indistinguishable if current intensity measures are used

for model selection and (2) the fragility for a nonlinear system may be inaccu-

rate if, e.g., Z1(t) provides a realistic representation of site seismicity and Z2(t)

with the same intensity measure as Z1(t) but significantly different frequency

content are used to construct fragilities. These statements are supported by the

following theoretical considerations and numerical illustrations.

The distribution Fk(z) = P
(

max0≤t≤τ |Zk(t)| ≤ z
)

, z > 0, of the peak ground
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acceleration max0≤t≤τ |Zk(t)| under model Zk(t) can be approximated by

Fk(z) ≃ exp
{

− νk(z) τ
}

= exp

{

− σ̇k τ

π σk
exp

(

− z2

2 σ2
k

)}

, (4.7)

where σ2
k =

∫∞

0
gk(ν) dν and σ̇2

k =
∫∞

0
ν2 gk(ν) dν denote the variances of Zk(t)

and Żk(t). This distribution can be used to calculate the mean, the mode,

and any other statistics of max0≤t≤τ |Zk(t)|. The density fk(z) = dFk(z)/dz of

max0≤t≤τ |Zk(t)| has the expression

fk(z) ≃
σ̇k τ z

π σ3
k

exp

{

− σ̇k τ

π σk
exp

(

− z2

2 σ2
k

)

− z2

2 σ2
k

}

. (4.8)

Since in our setting the peak ground acceleration max0≤t≤τ |Zk(t)| is a random

variable, we use as intensity measure the mode of fk(z), i.e., the value of z that

maximizes this density. This is not a standard definition. One can use, for ex-

ample, the expectation or quantiles of max0≤t≤τ |Zk(t)|.

Similar considerations apply if ordinates of response spectra are used as

intensity measures. These ordinates are maxima max0≤t≤τ |Rk(t)| of responses

Rk(t) of linear oscillators with selected natural frequencies and damping ratios

that are subjected to the ground acceleration models {Zk(t)}. The responseRk(t)

can be the displacement, the velocity or the acceleration of the linear oscillator

in Eq. (4.1). The steady-state displacements of the oscillator to ground motions

{Zk(t)} are stationary Gaussian processes with mean zero and spectral density

gr,k(ν) = |hk(ν, ζ)|2 gk(ν), ν > 0, where hk(ν, ζ) denotes the oscillator frequency

response function. The ordinates of the displacement spectra are the modes

of the density of maximum absolute response. This density has the functional

form in Eq. 4.8 with σk and σ̇k given by the formulas following this equation in

which gk(ν) is replaced with gr,k = |hk(ν, ζ)|2 gk(ν) for the selected a period T0

and damping ratio ζ0, as they were defined in Eq. (4.1).
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Figure 4.3 shows spectral densities of three ground motion processes in-

dexed by k = 1, 2, 3 for Los Angeles that correspond to different moment mag-

nitudes m and site-to-source distances r. These spectral densities are provided
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Figure 4.3: Power spectral density for (m, r)k=1 = (7.5, 100 km),
(m, r)k=2 = (5.4, 30 km), (m, r)k=3 = (8, 210 km)

by a seismological model [37]. According to this model, the strong motion part

of ground motion acceleration time histories are samples of stationary Gaus-

sian processes with zero mean and spectral densities shown in this figure. The

frequency contents of the three processes differ significantly. Yet, the modes of

the densities of peak ground accelerations max0≤t≤τ |Zk(t)| and response max-

ima max0≤t≤τ |Rk(t)|, τ = 10 s, may coincide. For example, the modes of peak

ground accelerations max0≤t≤τ |Zk(t)| coincide for processes indexed by k = 1

and k = 2 coincide, as shown in the left panel of Fig. 4.4. Panel (b) of this fig-

ure shows probabilities that maximum response of a Bouc-Wen oscillator whose

displacement is the solution of the differential equation (4.2) exceeds a limit dis-

placement xcr, that is

Pf(xcr) = P{max
0≤t≤τ

|Xk(t)| > xcr}, (4.9)

where Xk(t) satisfies Eqs. (4.2). The probabilities in Fig. 4.4(b) correspond to

the ground motion processes Z1(t) and Z2(t). The differences between these
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Figure 4.4: PGA probability density function for k = 1, 2 (left panel) and
Pf (xcr) using motions from models k = 1, 2 (right panel)

probabilities are significant although the ground motions Z1(t) and Z2(t) are

indistinguishable if characterized by their peak ground accelerations.

The use of ordinates of response spectra as measures of seismic intensity can

also be unsatisfactory. Figure 4.5 (a) shows the densities of max0≤t≤τ |Rk(t)| for
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Figure 4.5: PSa probability density function for k = 2, 3 (left panel) and
Pf (xcr) using motions from models k = 2, 3 (right panel)

T0 = 1 s and ζ0 = 5% under the ground motion processes Z2(t) and Z3(t). The

modes of the densities of these responses coincide. Yet, the performance of the

Bouc-Wen oscillator measured by the probability of exceeding limit displace-
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ments xcr differ significantly, as illustrated by Fig. 4.5(b).

4.3.2 Fragility Curves

Our goal in this section is to calculate and compare fragility curves for the sys-

tems presented in Eqs. (4.1) and (4.2) using three classes of methods: (I) the

multiple stripes analysis by ground-motion selection using the conditional spec-

trum (CS-GMS), (II) the incremental dynamic analysis (IDA) and (III) reference

method whish uses all records available in the dataset. We define failure as

the exceedance of a critical value δcr of an engineering design parameter (EDP).

For the SDOF systems, the EDP is defined as the maximum displacement, i.e.

EDPi = max0≤t≤τ |xi(t;T0, ζ0)|. For the 2DOF systems, the EDP is defined as

the maximum inter-storey drift EDPi = max0≤t≤τ |x(1)i (t;T0, ζ0) − x
(2)
i (t;T0, ζ0)|,

where xi(t) = [x
(1)
i (t) x

(2)
i (t)]. In this section we use the artificial ground-motion

dataset.

Each method is presented one at a time and algorithms for calculating

fragility curves are proposed for each of them in the section belows.

(I) Fragility by Conditional-Spectrum Ground Motion Selection (CS-GMS)

Fragility calculations using this method involve two parts (1) ground motion

selection of records to match a response acceleration spectrum conditional on a

given level of the spectral acceleration PSa∗(T0, ζ0) and (2) calculation of prob-

abilities of exceedance for multiple values of PSa∗(T0, ζ0).
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Ground Motion Selection by Conditional Spectrum We can regard the re-

sponse acceleration spectrum PSatarget(T, ζ0) as a stochastic process with argu-

ment the period T and a parameter the damping ration ζ0. The aim of ground

motion selection process is to choose a set of ground motions from a large

database, that match the second moment properties of the target acceleration

spectrum PSatarget(T, ζ0)|PSa∗(T0, ζ0), conditioned on a spectral acceleration or-

dinate PSa∗(T0, ζ0) at a period of interest T0 and damping ratio ζ0. The value

PSa∗(T0, ζ0) may be obtained from codes of practice or probabilistic seismic haz-

ard analyses.

The method for selecting ground motions used in this study is introduced in

[52, 42]. A brief description of the method for calculating the target spectrum

and selecting the ground motion samples is presented in the following three

steps.

Step 1: For a given probability of exceedance of a spectral acceleration,

we can calculate a spectral ordinate PSa∗(T0, ζ0) from probabilistic seismic

hazard analysis. Furthermore, conditional on the value PSa∗(T0, ζ0) of the

spectral acceleration, we can calculate the joint distribution of the random

vector (M,R, ǫ(T0)), where M is the moment magnitude, R is the source-

to-site distance. Coordinate ǫ(T0) is a standard normally-distributed ran-

dom variable which accounts for the number of standard deviations be-

tween the logarithmic spectral acceleration of an observed record and

the mean logarithmic spectral acceleration of a ground motion predic-

tion model (GMPM) [7]. A ground motion prediction model is a statis-

tical model, i.e., a regression model, which provides estimates of intensity

measures given the moment magnitude, and source-to-site distance. The
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calculations for finding the joint distribution and the marginal distribu-

tions of M , R and ǫ(T0)) is also known as deaggregation [11, 53]. The distri-

butions of these three parameters (M,R, ǫ(T0)) may be obtained from the

interactive deaggregation tool available on the United States Geological

Survey’s (USGS) website [72]. Finally, we can calculate the mean value of

the moment magnitude m = E[M ] and the mean source-to-site distance

r = E[R] which may cause a value of the spectral ordinate PSa∗(T0, ζ0) at

a site of interest.

Figure 4.6 shows the results of the deaggregation for Los Angeles, for a

shear velocity v30 = 620 m/s in the top 30 m of soil, and a probability

of exceedance of PSa∗(T0, ζ0) of 2% in 50 years for T0 = 1 s and ζ0 = 5%

[72]. Each bar in the deaggregation plot represents the contribution of each

combination of (M,R) to exceed PSa∗(T0, ζ0).

Step 2: Use (m, r) in a ground motion prediction model (GMPM) to calcu-

late the mean and the standard deviation of the logarithmic response spec-

trum µlnPSa(T,m, r) and σlnPSa(T ), respectively. The Campbell-Bozorgnia

GMPM [12] was used for these calculations, but an approach on incorpo-

rating multiple GMPMs is presented in [52].

Then, under the assumption that the spectral acceleration values are log-

normally distributed, the target response spectrum’s mean and standard

deviation are calculated [5]

µlnPSatarget(T,ζ0)|PSa∗(T0,ζ0) = µlnPSa(T,m, r) + ρ(T, T0)ǫσlnPSa(T ) (4.10)

σlnPSatarget(T,ζ0)|PSa∗(T0,ζ0) = σlnPSa(T )
√

1− ρ2(T, T0), (4.11)

where ρ(T, T0) is the correlation between ǫ(T0) and ǫ(T ) and is calculated

empirically in [8] and [10].
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Figure 4.6: Snapshot from the USGS’ deaggregation tool results for Los
Angeles.

Step 3: Calculate the acceleration spectra for each record in the database,

i.e., PSai(T, ζ0). Select a number ñ of records such that the differences

between the mean and the standard deviation of the selected records’

logarithmic response acceleration spectra and the mean and the stan-

dard deviation of the logarithmic target response acceleration spectrum

PSatarget(T, ζ0)|PSa∗(T0, ζ0) are minimized.

Supporting software for the construction of the conditional spectrum and

the ground motion selection is available at [36] and it was used for the selection

of ground motion records in this paper.

Based on the deaggregation results shown in Fig. 4.6, on the value

PSa∗(1s; 5%) = 0.65g and a probability of exceeding PSa∗(1s; 5%) of 2% in 50
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years, ñ = 40 records are selected from the database with N = 5000 samples

of the process Z(t). The scaled versions of the response spectra PSai(T, ζ0) for

the selected records are shown in Fig. (4.7). Figure (4.8) shows the means and
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the standard deviations of the target lnPSatarget(T, ζ0)|PSa∗(T0, ζ0) and the es-

timated spectrum from the selected ground motions. Figures 4.7 and 4.8) were
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obtained using the software available on [36].

74



Fragility curves calculations This method is presented in [50] and the goal is

to calculate fragility curves as functions of PSa∗(T0, ζ0). In the current example

we use nbin = 36 values for the conditioning value PSa∗j(T0, ζ0), j = 1, ..., nbin

corresponding to all values of exceeding probabilities available on the USGS

website, that is, 1%, 2%, 5%, 10%, 20%, 50% in 21, 30, 50, 75, 100 and 200 years,

respectively. We select sets of ñ records for each value PSa∗j(T0; ζ0), to match

the response acceleration spectrum lnPSatarget(T, ζ0)|PSa∗(T0, ζ0) as shown in

the previous algorithm. The following steps are then used to calculate fragility

curves.

Step 1: Select zi,j(t), i = 1, ..., ñ, j = 1, 2, ..., nbin records for each

PSa∗j(T0, ζ0) and calculate the response EDPi,j using Eqs. (4.1) and (4.2).

Step 2: Fit a log-normal distribution for each set of ñ EDPi,j, with a cu-

mulative distribution function P(EDP ≤ ξ) = Fj(ξ;µj, σj), where µj and

σj are the mean and the standard deviation of the log-normal distribution,

estimated from the data EDPi,j .

Step 3: Approximate the probability of failure by

Pf
(

PSa∗j(T0, ζ0); δcr
)

= 1− Fj(δcr;µj, σj). (4.12)

Fragility by Incremental Dynamic Analysis (IDA)

We assume that ñ records zi(t), i = 1, ..., ñ are available at a site or have been

selected by heuristic approaches. In the current example we select them by

using the ground motion selection procedure presented before for a probability

of 2% in 50 years. The scaled acceleration response spectra of these selected

motions are shown in Fig. 4.7.
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Step 1: Calculate the pseudo-spectral acceleration PSai(T0; ζ0) for each

zi(t), i = 1, ..., ñ and scale each record by its PSai(T0; ζ0), i.e., z∗i (t) =

zi(t)/PSai(T0; ζ0), i = 1, ..., ñ.

Step 2: Multiply each record by increasing values ξ > 0 so that all records

have the same pseudo-spectral acceleration level ξ.

Step 3: Calculate the response of the systems in Eqs. (4.1)

and (4.2) EDP ∗
i (ξ) to the scaled ground motion samples z∗i (t) =

ξzi(t)/PSai(T0; ζ0), i = 1, ..., ñ.

Step 4: Estimate the probability of failure as

Pf(ξ; δcr) =
1

ñ

ñ
∑

i=1

1{EDP ∗
i (ξ) > δcr}. (4.13)

Fragility by Using All Records Available (MC)

The method presented in this section uses all N samples zi(t), i = 1, ..., N of

the ground motion process Z(t) in the dataset. The results in this approach

are regarded as the reference for the comparison with the other methods. The

following algorithm is used to construct the reference fragility curves.

Step 1: Calculate the spectral acceleration of each record, i.e.,PSai(T0, ζ0)

for sample zi(t) of Z(t).

Step 2: Divide the set of records in nbin disjoint bins Ψk, k = 1, ..., nbin ac-

cording to their response acceleration spectra PSai(T0, ζ0). The number

of bins is equal to the number of spectral acceleration values PSa∗(T0, ζ0)

used for the calculation of the fragility curves using the GMS-CS method.

Bins Ψk are constructed as a Voronoi tessellation {Ψk} = {zi : ‖PSai −
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PSa∗k‖ ≤ ‖PSai − PSa∗l ‖, k 6= l}, where k, l = 1, ..., nbin and PSa∗k cor-

respond to the response spectral accelerations used for calculating the

fragility curves with the GMS-CS method. Ordinates PSa∗k are the nu-

clei of the Voronoi partitions Ψk. All spectral values PSai, PSa
∗
k, PSa

∗
l

are calculated at period T0 and for damping ratio ζ0, but the notation was

dropped for convenience. Figure 4.9 shows an example of the Voronoi

cells for nbin = 11, where the black circles represent the spectral acceler-

ation values for each record in the dataset and the solid lines mark the

boundaries between each cell.
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Figure 4.9: Spectral acceleration values PSai(T0, ζ0) for all ground motions
in the dataset

Step 3: CalculateEDPi for each record zi(t) in Ψk. Estimate the probability

of failure by

Pf(PSa
∗
k; δcr) =

1

nk

nk
∑

i=1

1{EDPi > δcr|zi(t) ∈ Ψk}, (4.14)

where PSa∗k is the center of the Voronoi cell Ψk and nk is the number of

samples in Ψk.

The accuracy of the method increases as the number of samples N increases.
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4.3.3 Numerical Results

Fragility curves are calculated using the classes of methods shown above for

the structural systems presented in Eqs. (4.1) and (4.2). Results are shown and

compared in the following figures. Fragility curves calculated with all three

methods are obtained for the same values of the response acceleration spectral

ordinates PSa∗j(T0, ζ0), as defined previously. The reference results are obtained

by using all samplesN in the dataset. The IDA method uses only ñ = 40 records

which are scaled to have common increasing response spectral accelerations

PSa∗j(T0, ζ0). In the case of CS-GMS method we use nbin sets of ñ = 40 records

to match the response acceleration spectrum conditioned on PSa∗j(T0, ζ0). The

number of points on the fragility curves is equal to the number of exceeding

probabilities available on the USGS’ deaggregation tool, which define the val-

ues PSa∗j(T0, ζ0).

Figures 4.10 and 4.11 show fragility curves defined as P(EDP >

δcr|PSa(T0, ζ0)), where δcr = 2.5 × 10−3 is the critical value for the engineering

design parameter EDP for the systems described previously.

Figures 4.10 (a) and (b) show fragility curves for the linear systems. All three

methods estimate accurately the fragility for the SDOF linear system (Figure

4.10 (a)), which hast the analytical form Pf(ξ; δcr) = 1 {ξ > 4δcrπ
2/T 2

0 } ≃ 1

{ξ > 0.1} [44]. The IDA and CS-GMS methods fail to produce comparable re-

sults with the ones obtained by using all records in the cases of the linear 2DOF

system shown in Figure (b). The two modes of vibration have comparable dis-

tributions in the total response of the 2DOF system and, therefore, the response

significantly different than the one of a linear SDOF. The results of the three

methods are different of each other for the non-linear systems. Even though the
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Figure 4.10: Fragility curves for (a) linear SDOF and (b) linear 2DOF sys-
tems
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Figure 4.11: Fragility curves for (a) Bouc-Wen SDOF and (b) Bouc-Wen
2DOF systems

fragility curves calculated by the reference method and ground motion selec-

tion seem similar in Figure 4.11, the differences are significant. For example, in

the case of the SDOF Bouc-Wen, for a fixed value of the PSa(T0; ζ0) = 0.06 g the

probabilities of failure in the Monte-Carlo and ground motion selection meth-

ods are approximately 30% and 3%, respectively.
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4.4 Fragility Curves by SROM-based Ground Motion Selection

A new methodology is proposed for calculating fragility curves using exclu-

sively actual ground motion records. Ideally, one would calculate fragility

curves by using all records available in a dataset, but the procedure would

be computationally expensive. Current methods select a limited number of

records from large datasets using heuristic methods. The most common method

is based on conditional spectrum (CS-GMS) and was presented in the previous

section. Unlike The CS-GMS method, which selects ground motion samples by

matching a target response spectrum, the methodology proposed selects sam-

ples representative for the entire dataset available.

Numerical examples for the ground-motion selection method proposed are

shown using the PEER NGA dataset in order to show explicitly how the method

can be applied for real records.

4.4.1 Modified PEER NGA Dataset

The methodology proposed selects ground-motion records from a large dataset

considering estimates of the probability law of the ground-motion process,

rather than just looking at response-spectra values. Large databases, such as

PEER NGA, are composed of thousands of ground-motion records zoi (t) with

different durations, frequency contents and intensities. This large variation

of parameters among the records makes unreasonable the assumption that all

records are samples of the same ground-motion process.

We propose the following, rather, ad-hoc method to modify the original
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samples such that the assumption that they are samples of the same process

is reasonable. We assume that the strong motion part of zoi (t) has duration

τi, i = 1, ..., N and is the sample of a stationary process, where N is the total

number of records in the dataset. Under this assumption, we can define zi(t)

with duration τ = maxi(τi) for each zoi (t) by connecting the strong motion part

of zoi (t) multiple times until it reaches the duration τ , without changing either

its intensity or frequency content.
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Figure 4.12: (a) Original record from PEER (b) Modified record from PEER

The process of obtaining zi(t) for each zoi (t) is illustrated in Figure 4.12. In

part (a) a sample of a record in PEER is shown and its strong-motion part is

marked in red. The length of the strong motion part of these records is defined

in terms of Arias intensity, i.e. Ii =
∫

zoi (t)dt. In this case we consider the length

of the strong motion part of zoi (t) to be between 20%Ii and 80%Ii as shown in

Figure 4.13.

Figure 4.12 (b) shows the resulting zi(t) obtained by attaching the strong

motion part in (a) repeatedly until the duration τ = 20 s is obtained.

In order to facilitate the calculation of fragility curves as functions of spectral

acceleration PSa∗k, we split the records zoi (t), 0 ≤ t ≤ τi i = 1, ..., n in bins Ψj
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Figure 4.13: Arias intensity and 20% and 80% limits

by using a Voronoi tessellation as done for the reference method previously. A

partition {Ψk} = {zoi (t) : ‖PSai − PSa∗k‖ ≤ ‖PSai − PSa∗l ‖, k 6= l}, where

k, l = 1, ..., nbin and PSai is the response spectral acceleration at at period T0

and for damping ratio ζ0 for record zoi (t). Ordinates PSa∗k are the nuclei of the

Voronoi partitions Ψk. All spectral values are calculated at period T0 and for

damping ratio ζ0. Further more, we assume that samples zi(t) corresponding to

records in each cell Ψk are samples of the same stationary process. We denote

by nk the number of record in cell k, such that
∑

k nk = n.

4.4.2 Ground motion selection by stochastic reduced order

models

We propose an alternative to selecting ground motion records based on the con-

ditional spectrum [50, 5]. The proposed method selects records based on the

probability law of the ground motion records in a dataset, and not on the spec-

tral response values. It was shown in the previous section that selecting mo-

tions by looking at spectral values of the response of single-degree-of-freedom
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systems may lead to unsatisfactory results for multi-degree-of-freedom or non-

linear systems. The method proposed assures that the records selected are

consistent with the probabilistic characteristics of all records available in the

dataset.

Stochastic Reduced Order Models (SROM)

The new method proposed for selecting ground-motion records uses stochastic

reduced order models (SROM) [28]. SROM are built with random samples from

the dataset selected in an optimal manner. We will use the modified dataset

for the selection of ground motions, that is, stationary samples with the same

duration.

We assume that records zi(t), i = 1, ..., nj in bin j, that is, the pseudo-spectral

accelerations PSai(T0, ζ)0) of their original images zoi (t) belong to the cell Ψj ,

are samples of the same process Zj(t). The goal is to select a small number ñ

of records zi(t) representative for the process Zj(t). For simplicity we will drop

index j. A stochastic process Z̃(t) with ñ samples {z̃k(t), k = 1, ..., ñ} of Z(t)

which are weighed by some weights {pk(t), k = 1, ..., ñ} such that
∑ñ

k=1 pk =

1 is called a stochastic reduced order model of Z(t). The samples and their

probabilities {z̃k(t), pk} define completely the probability law of Z̃(t).

To construct Z̃(t) we select at specified number ñ of samples of Z(t) and

calculate the differences between probability laws of Z(t) and Z̃(t). The set of

ñ samples and their probabilities that minimizes these discrepancies define the

SROM of Z(t). We define the metric

e(p) = θ1e1(p) + θ2e2(p) + θ3e3(p) (4.15)
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where (1) function e1(p) defines the differences between q-th oder moments

µ̃(q;p) = E[Z̃(t)] and µ(q) = E[Z(t)]; (2) function e2(p) defines the differences

between the marginal distributions F̃ (x;p) = P[Z̃(t) ≤ x] and F (x) = P[Z(t) ≤

x]; (3) function e3(p) defines the differences between the correlation functions

ρ̃(τ ;p) = E[Z̃(t)Z̃(t+τ)] and ρ(τ) = E[Z(t)Z(t+τ)] of Z̃(t) and Z(t), respectively

and (4) coefficients θi, i = 1, 2, 3 are some weights which define the relative im-

portance of e1, e2 and e3. Functions µ̃(q;p), F̃ (x;p) and ρ̃(τ ;p) are estimated

from the samples of the SROM, i.e. {z̃k(t), pk}. Functions µ(q), F (x) and ρ(τ)

related to the probability law of Z(t) are estimated from all samples available.

For each set of ñ independent samples of Z(t), a vector p is calculated to

minimize the objective function e(p). The selection is repeated for a specified

number of times and the samples and probabilities {z̃opti , popti } for which the

minimum value of e(popt) is obtained are used in the dynamic analysis. The

solution of the SROM selection {z̃opti , popti }, i = 1, ..., ñ is a sub-optimal solution

since the selection is performed for a specified number of times. An optimal

solution could be obtained if the objective function e(p) was calculated for all

combinations of ñ independent samples of Z(t) in cell j.

Fragility calculation (SROM-GMS)

The algorithm for calculating fragility curves using the SROM-based ground

motion selection is similar to the CS-GMS method presented previously. The

only difference relates to the way the ground motions are selected.

Fragility curves calculations The algorithm is presented below for each bin j.
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Step 1: Select zoptk (t), k = 1, ..., ñ from bin j and calculate their correspond-

ing probabilities poptk (t), k = 1, ..., ñ.

Step 2: Perform the dynamic analysis for each ground motion zok corre-

sponding to each sample zoptk (t), k = 1, ..., ñ selected by SROM. Calculate

the corresponding engineer design parameters EDPk.

Step 3: Estimate the probability of failure by

Pf(PSaj; δcr) =

ñ
∑

k=1

1{EDPk > δcr}poptk , (4.16)

where PSaj is the mean response spectral acceleration of the records in

bin j.

Note that even though the method uses just the strong motion part to select

the ground motion records from the dataset, we use the corresponding original

records for the dynamic analyses.

To validate this newly proposed method, we calculate the fragility curves

for the two systems driven by the Eqs. 4.1 and 4.2. Results are calculated us-

ing three methods, that is, the reference method and the two methods based on

ground motion selection using conditional spectrum (CS-GMS) and stochastic

reduced order models (SROM-GMS), respectively. We used all N record in the

MC analysis, and equal number of records for the other two methods. For the

conditional spectrum selection (CS-GMS) method we used ñ = 30 records se-

lected for 15 distinct values the intensity measure PSa(T0, ζ0), totaling a number

of 450 redords. For the SROM selection method we split the records in nbin = 15

bins and we selected ñ = 30 records from each of them.

Figure 4.14(a) shows the fragility curves for the SDOF linear system calcu-

lated by all three methods. All methods agree with the analytical result, which
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is a step function 1{ξ > 0.1}, as indicated previously. Figure 4.14(b) shows

fragility curves for the SDOF Bouc-Wen system. The method proposed matches

very well the results provided by the MC method. For the method based on

conditional spectrum, we calculated three different fragility curves for different

sets of PSa(T0, ζ0) values. All three CS-GMS fragility curves are different than

each other and do not match the MC results.
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Figure 4.14: Fragility curves for (a) Linear SDOF system and (b) Bouc-Wen
SDOF system

4.5 Conclusions

Fragility curves are graphical representations of probabilities that the response

of systems exceed critical values, under ground accelerations of specified inten-

sity measures. Two aspects of seismic response of structural systems have been

investigated in this paper.

The first relates to limitations to current approaches used in fragility anal-

ysis. It was shown that the characterization of seismic ground intensity by

peak ground acceleration and ordinates of response spectra provides insuffi-

cient details about the time histories of ground shaking for constructing accu-
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rate fragilities. Probabilities of structures exceeding limit responses subjected

to ground motions with the same peak ground accelerations or response spec-

tral ordinates can differ significantly. Fragility curves are calculated by ground

motion selection using a target response spectrum and by incremental dynamic

analysis and are compared with fragility curves calculated by using all ground

motion records available. Both methods produce accurate fragility curves for

the single-degree-of-freedom linear systems but they fail to produce consistent

fragility curves for multi-degree-of-freedom and non-linear systems.

The second part of this chapter proposes a novel method for selecting

ground motion records for dynamic analysis. The new method is based on

stochastic reduced order models (SROM). Unlike the selection method based on

the conditional spectrum, the SROM-based method selects records in an optimal

way such that they match the probability law of the ground motion process,

rather than matching a response spectrum. Fragility curves calculated using

records selected in this manner give satisfactory results for non-linear systems

and consistent with fragility curves calculated using all records available.
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CHAPTER 5

STRUCTURAL PERFORMANCE BY FRAGILITY SURFACES FOR SIMPLE

SYSTEMS UNDER NON-GAUSSIAN INPUT

5.1 Introduction

Seismic fragility is commonly used to measure seismic performance of struc-

tures and estimates the probability of reaching or exceeding different states of

damage for a given level of ground shaking [40]. Fragility curves are graphical

representations of seismic fragility and they describe the relationship between

earthquake hazard and the structural response. Traditionally, fragility curves

are used in performance seismic design as functions of scalar seismic intensity

measures. Peak ground acceleration [40, 67, 64, 14, 21, 66] and pseudo-spectral

acceleration [23, 49, 17, 51, 44] are among the most widely-used intensity mea-

sures in fragility analysis.

Generally, fragility curves are constructed by scaling ground motion records

and by selecting samples of ground motions for increasing intensity levels from

existing databases. The most popular approach, known as incremental dynamic

analysis, involves repeated scaling of seismic ground motions to increasing in-

tensity measures until the specified damage state is reached [73, 75, 26]. The

other method for calculating fragility curves, known as multiple stripes analy-

sis [50, 6], uses selected ground motion records from a large dataset consistent

with the level of a spectral value of the response [54, 5]. The log-normal cumula-

tive distribution function is commonly used as a parametric model for fragility

curves [68, 4, 41]. This model is also adopted by the Federal Emergency Man-

agement Agency (FEMA) through ATC-58 [57, 3]. Various methods have been
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proposed to estimate the parameters of the log-normal distribution from data

[45, 6].

Constructing fragility curves may be attractively simple, but they have lim-

itations. Recent studies have shown that fragilities viewed as functions of a

scalar seismic iinensity measure ca be unsatisfactory. It was shown in [34]

that response statistics calculated for a nonlinear system subjected to different

ground motion processes, indistinguishable with respect to their peak ground

accelerations or by ordinates of response spectra, can yield significant dif-

ferences. Moreover, scaling ground motions is conceptually simple but may

yield unsatisfactory fragilities [44] for certain nonlinear systems. Scaling only

changes the intensity of the ground motions, and the ground motions used to

construct fragilities have the same frequency content irrespective of their inten-

sity [30]. Alternative vector-valued seismic intensity measures were proposed

in [9, 7, 70]. Plots of seismic fragilities calculated for ground motions charac-

terized by two or more intensity measures are called fragility surfaces. Fragility

surfaces provide the same information as fragility curves, that is, they are graph-

ical representations of seismic fragilities, but are calculated as functions of two-

dimensional vector-valued intensity measures [22]. For example, fragility sur-

faces have been constructed as functions of the peak ground displacement and

peak ground acceleration [65], or spectral displacement ordinates at two distinct

periods [24].

In the first part of this chapter, we propose a vector intensity measure with

components the moment magnitude m and source-to-site distance r for fragility

analysis [44]. The analysis is performed for ground motion records character-

ized by (m, r). Since the number of available records at a site is insufficient to
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calculate values of the fragility surface at each (m, r) coordinate, we use simu-

lated ground motion records. A regional seismological model which uses the

specific barrier model [37] allows the simulation of ground motion samples as

a function of (m, r). A Bayesian method was proposed in [62] to update the

model with site records, in order to allow simulation of site-specific ground mo-

tion samples. Calculating fragility surfaces is computationally expensive, since

it is based on response analyses of structures subjected to seismic ground mo-

tions characterized by various values of (m, r). To overcome this drawback, we

propose efficient methods for calculating fragility surfaces based on stochastic

reduced order models [61, 28]. The stochastic reduced order model (SROM)

resembles the Monte-Carlo method. Like Monte-Carlo, the method calculates

structural responses to samples of the ground-motion process. Unlike Monte-

Carlo, which uses a large number of samples selected at random, the proposed

method uses a small number of samples selected in an optimal way. Similarly to

the method adopted by the ATC-58 in which a log-normal distribution function

is adopted as a model for fragility curves, a parametric bi-variate log-normal

cumulative distribution function is used as a parametric model for fragility sur-

faces. Fragility surfaces are essential tools in performance-based seismic design

and are used to estimate the life-cycle damage and cost of structures subjected

to seismic loads.

The second part of this study proposes a framework for estimating proba-

bility distributions of metrics which characterize the performance of structures

under seismic loads. Metrics such as life-cycle cost and downtime are used to

evaluate the life-cycle performance of structures. Distributions of these metrics

are obtained by Monte Carlo simulations of seismic hazard scenarios for the

life-cycle of the structure. Parametric models are assumed for the cost functions
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and a damage model constructed as a regenerative processes under several as-

sumptions are used in the development of this framework.

Numerical results are presented for fragility surfaces calculated for simple

linear and non-linear systems at a site in Southern California. The seismic per-

formance of systems is assessed through cost and damage estimates calculated

by using simulated life-cycle scenarios. The method proposed allows the calcu-

lation of distribution of life-cycle estimates rather than just mean values, which

gives important information used by governmental agencies, decision makers,

(re)insurance industry etc.

5.2 Problem Definition

Our goal is to calculate life-cycle estimates for structures subjected to seismic

loads. The seismic ground motion is assumed to be a stochastic process and

linear and non-linear structural models are used to illustrate the methodology

proposed for the evaluation of seismic performance of structures.

5.2.1 Seismic ground motion

We define the seismic ground motion records at a site, produced by a seismic

event with magnitude m and source-to-site distance r as samples of a stochastic

processA(t). Statistics of actual ground motion records show that strong ground

motion part of the seismic ground acceleration records has kurtosis coefficient

greater than 4 [43]. Since the kurtosis coefficient for Gaussian processes is 3,

we assume that the ground motion process A(t) is a zero-mean, non-stationary,
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non-Gaussian process given by

A(t) = h(t)Z(t), 0 ≤ t ≤ tf , (5.1)

where tf is the duration of the record,

h(t) = αtβ exp{−γt} (5.2)

is a deterministic envelop function with constant parameters α, β and γ. The

process Z(t) is a zero-mean, stationary, non-Gaussian process with marginal

distribution FZ(z) = P(Z(t) ≤ z) , ∀0 ≤ t ≤ tf . It is assumed that the marginal

density of Z(t) is Student’s t, defined by

fZ(x) =
Γ(n+1

2
)

Γ(n
2
)σ
√
πn

(

1 +
1

n

(

x− µ

σ

)2
)−n+1

2

(5.3)

is the probability density function for the Student’s t distribution T (µ, σ, n) with

mean µ, variance nσ2/(n − 2) and n degrees of freedom. The three parameters

µ, σ and n of this distribution are estimated from the (m, r)-dependent second

moment properties and the kurtosis estimated from data.
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Figure 5.1: Power spectral density for (m, r) = (5.8, 50 km) and (m, r) =
(7.6, 150 km).

The second-order moment properties of process Z(t) are given by the one-

sided spectral density function g(ν;m, r). Function g(ν;m, r) is given by the
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specific barrier model [37] and depends on the parameters (m, r). Constants

α, β, γ and the duration tf in Eqs. (5.1) and (5.2) are also outputs of the spe-

cific barrier model. Figure 5.1 shows the power spectral density functions for

(m, r) = (5.8, 50 km) and (m, r) = (7.6, 150 km), respectively. Important differ-

ences in the frequency content of the two processes are noticed as parameters

(m, r) change. An average value of 5.67 for the kurtosis coefficient has been es-

timated by the United States Geological Survey estimated for ground motion

records for a class-B soil, i.e., general rock with a shear velocity v30 = 620m/s in

the top 30m of soil [43].

We propose to generate samples of the process Z(t) by using a monotonic

memoryless transformation model ([27], Section 3.1) of the form

Z(t) = F−1
Z ◦ Φ(G(t)) (5.4)

where (1) F−1
Z denotes the inverse of the marginal distribution function FZ , (2)

Φ(x) =
∫ x

−∞
φ(y)dy is the standard Gaussian marginal distribution, with the

probability density φ(x) =
(√

2π
)−1

exp{−x2/2} and (3) G(t) is the zero-mean,

unit-variance, stationary Gaussian image of Z(t) with spectral density function

g(ν;m, r)/σ2, where σ2 =
∫∞

0
g(ν;m, r)dν. The approximation that the spectral

density of G(t) is just a scaled version of g(ν;m, r) is based on the observation

that the differences between the correlation in the non-Gaussian space and the

corresponding on the Gaussian space are not significant for a broad range of

values ([27], Section 3.1). Note that processes Z(t) and G(t) depend on (m, r),

but the indication of (m, r) is not carried along for the simplicity of notation.

Let ZG(t) be the Gaussian image of Z(t) with the same second-order mo-

ment properties given by g(ν;m, r). Even though processes Z(t) and ZG(t)

have the same second-order moment properties, the differences provided by
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considering the kurtosis from data in Z(t) may be significant. Figure 5.2(a)

shows a samples of Z(t) and its correspondence in the Gaussian space ZG(t)

for (m, r) = (5.8, 50 km). Higher peaks are present in the Z(t) sample, which are

consistent with the tail distributions of Z(t) and ZG(t) shown in Figure 5.2(b).
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Figure 5.2: (a) Comparison between a sample z(t) from the Student’s t dis-
tributed process and its Gaussian image, (b) Marginal distribu-
tion functions for process Z(t) and its Gaussian image G(t).

Further more, we calculate the mean crossing rates ηZ(z) and ηG(z) at which

processes |Z(t)| and |ZG(t)| exceed value z, respectively ([69], Section 7.3).

ηZ(z) =
σ̇

2πσ
exp

{

−1

2

[

Φ−1 ◦ FZ(z)
]

}

(5.5)

ηG(z) = 2
σ̇

σ
√
2π
φ
( z

σ

)

, (5.6)

where σ2 =
∫

ν≥0
g(ν;m, r)dν and σ̇2 =

∫

ν≥0
ν2g(ν;m, r)dν are the variances for

processes ZG(t) and dZG(t)/dt, respectively. Figure 5.3 shows the mean crossing

rates ηZ(z) and ηG(z) for processes Z(t) and ZG(t), respectively, for (m, r) =

(5.8, 50 km). The graph indicates that the two processes have almost identical

rates of crossing low values of z, but the mean crossing rate of process Z(t) is

higher as z increases, which is explains the high peaks shown in Figure 5.2(a).
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Figure 5.3: Mean crossing rates for processes the Student’s t-distributed
process Z(t) and its Gauss imageG(t), for (m, r) = (5.8, 50 km).

Finally, Figure 5.4 shows two samples of the ground motion process A(t) in

Eq. (5.1) for the two spectral densities shown in Figure 5.1.
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Figure 5.4: Samples of the ground motion process A(t) for (a) (m, r) =
(5.8, 50 km) and (b) (m, r) = (7.6, 150 km).

5.2.2 Structural systems

Let X(t) be the relative displacement of a single-degree-of-freedom system sub-

jected to the seismic ground acceleration A(t). For the linear and the Bouc-Wen
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systems, X(t) satisfies the following equations respectively:

Ẍ(t) + 2ζ0ν0Ẋ(T ) + ν20X(t) = −A(t) (5.7)

Ẍ(t) + 2ζ0ν0Ẋ(T ) + ν20(ρX(t) + (1− ρ)W (t)) = −A(t)

Ẇ (t) = γẊ(t)− α|Ẋ(t)||W (t)|n−1W (t)− βẊ(t)|W (t)|n, (5.8)

where ν0, ζ0, ρ, α, β, γ, n are system parameters and W (t) in Eq. (5.8) is

the hysteretic displacement. Numerical results are shown for ν0 = 2π rad/s,

ζ0 = 0.02, ρ = 0.15, α = 0.001, β = 2, γ = 4 and n = 1. Note that for ρ = 1, the

Bouc-Wen system becomes identical with the linear system.

The behaviors of the two systems in Eqs. (5.7) and (5.8) are shown in Figures

5.5 (a) and (b), in which the restoring force ν20X(t) and the hysteretic restoring

force ν20W (t) are plotted for a sample a(t) of A(t).
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Figure 5.5: Dynamic behavior (backbone curve) for (a) the linear and (b)
the Bouc-Wen structural systems subjected to a sample of A(t).
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5.3 Fragility Surfaces

Fragility surfaces Pf(m, r) are graphical representations of probabilities

Pf(m, r) = P

(

max0≤t≤tf |X(t)| > xcr
)

that a structural response X(t) reaches

or exceeds a critical limit under a seismic ground motion A(t) corresponding

to moment magnitude m and source-to-site distance r. Monte-Carlo (MC) is the

only general method for calculating response statistics. The following algorithm

can be used to calculate fragility surfaces for a structural system.

(1) Generate N samples ai(t), i = 1, ..., N of the seismic ground motion pro-

cess A(t) in Eq. (5.1) for fixed (m, r);

(2) Calculate samples of response xi(t), i = 1, ..., N for the structural system

in Eq. (5.7) or (5.8) subjected to ai(t);

(3) Calculate the value of the fragility surface at coordinates (m, r) for a spec-

ified critical limit for the displacement xcr

Pf (m, r) =
1

N

N
∑

i=1

1{ max
0≤t≤tf

|xi(t)| > xcr}, (5.9)

where 1 is the indicator function, i.e. 1{x > x0} = 1 if x > x0 and zero

otherwise.

The algorithm described above gives a method to construct fragility surfaces for

the maximum displacement of a simple single-degree-of-freedom system. The

same procedure is applicable to any other system for any desired engineering

design parameter (e.g. inter-storey drift, angle of rotation etc.). Figures 5.6 (a)-

(d) show fragility surfaces calculated for the Bouc-Wen system in Eq.(5.8) for

increasing demand xcr = {0.5, 1, 2, 8} cm.
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Figure 5.6: Evolution of fragility surfaces with increasing demand:
(a)xcr = 0.5 cm, (b)xcr = 1 cm, (c)xcr = 2 cm, (d)xcr = 8 cm.

Monte-Carlo simulation usually requires a large number N of samples for

the analysis. Since fragility surfaces are calculated by response analyses, their

construction could be computationally expensive for complex structural sys-

tems. A more efficient, accurate method to calculate fragility surfaces is pre-

sented in the next section.

5.3.1 Fragility surfaces by stochastic reduced order models

A new, highly efficient and non-intrusive method based on stochastic reduced

order models (SROM) [28] is proposed for calculating response statistics. The
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stochastic reduced order model can be viewed as a smart Monte Carlo method.

Like Monte Carlo, the method uses random samples of the seismic ground mo-

tion process to characterize the structural response. Unlike Monte-Carlo, which

uses a large number N of samples at random, SROM uses only a small number

of samples Ñ << N selected in an optimal way.

Our goal is to construct SROMs for the process A(t) for each (m, r) and use

them to calculate fragility surfaces. A stochastic reduced order model Ã(t) for

A(t) is a stochastic process with Ñ samples {ai(t), i = 1, ..., Ñ} of A(t). Usually

the samples of Ã(t) are not equally likely and are weighed by some probabilities

p = {pi ≥ 0, i = 1, ..., Ñ} such that
∑Ñ

i=1 pi = 1. The pairs of samples and their

probabilities (ai(t), pi) define completely the probability law of Ã(t).

To construct Ã(t) we select sets of Ñ samples of A(t) and select their cor-

responding probabilities pi, i = 1, ..., Ñ such that the discrepancy between the

probability laws of A(t) and Ã(t) is minimized. Consider the metric

ϕ(p) = w1ϕ1(p) + w2ϕ2(p) + w3ϕ3(p), (5.10)

where ϕ1, ϕ2, and ϕ3 are functions which account for the differences between

the marginal distributions, the moments and the correlation functions of A(t)

and Ã(t). The weights {wi > 0, i = 1, 2, 3} can be used to focus on certain prop-

erties of the two processes. For each set of Ñ samples we calculate an optimal

probability vector popt of p by minimizing ϕ(p), such that popti > 0, i = 1, ..., Ñ
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and
∑Ñ

i=1 p
opt
i = 1. Functions ϕk(p), k = 1, 2, 3 have the expressions

ϕ1(p) =

∫ ∞

−∞

∫ tf

0

(

F̃ (x, t)− F (x, t)
)2

dtdx, (5.11)

ϕ2(p) =

nq
∑

q=1

∫ tf

0

(µ̃(t; q)− µ(t; q))2 dt, (5.12)

ϕ3(p) =

∫ tf

0

∫ tf

0

(c̃(t, s)− c(t, s))2 dtds, (5.13)

where F̃ (x, t), F (x, t) are marginal distribution functions, µ̃(x, t), µ(x, t) are mo-

ments and c̃(t, s), c(t, s) are correlation functions for Ã(t) and A(t), respectively

and nq is the order of the higher moment considered. Functions F (x, t), µ(x, t)

and c(t, s) can be calculated from samples of A(t) or directly from its distribu-

tion. Properties for the SROM Ã(t) are estimated as follows

F̃ (x, t) = P{Ã(t) ≤ x} =

Ñ
∑

i=1

pi1{ai(t) ≤ x} (5.14)

µ̃(t; q) = E

[

Ã(t)q
]

=

Ñ
∑

i=1

piai(t)
q (5.15)

c̃(t, s) = E

[

Ã(t)Ã(s)
]

=
Ñ
∑

i=1

piai(t)ai(s). (5.16)

The set of Ñ samples which provides the minimum value for the metric ϕ(popt)

defines the SROM Ã(t). The range of Ã(t) is suboptimal because we use a rel-

atively small number of distinct sets of Ñ samples of A(t) to select the samples

for the SROM.

Pf (m, r) =
1

Ñ

Ñ
∑

i=1

pi1{ max
0≤t≤tf

|x̃i(t)| > xcr} (5.17)
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Figure 5.7: Fragility surface for a linear system obtained by (a) MC (n =
1000/cell) and (b) SROM (ñ = 20/cell)
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Figure 5.8: Fragility surface for a Bouc-Wen system obtained by (a) MC
(n = 1000/cell) and (b) SROM (ñ = 20/cell)

5.3.2 Bi-variate log-normal model

Similar to the common approach of using a log-normal cumulative distribution

function as a model for fragility curves, we propose a bi-variate log-normal cu-

mulative distribution function as a model for fragility surfaces.

The bi-variate log-normal distribution function FLN (m, r;µ1, σ1, µ2, σ2, ρ) is

completely defined by its five parameters {µ1, σ1, µ2, σ2, ρ} and has the follow-
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Figure 5.9: Bi-variate log-normal model for the fragility surface for a Bouc-
Wen system obtained by (a) MC and (b) SROM

ing form

FLN(m, r;µ1, σ1, µ2, σ2, ρ) =

∫ m

0

∫ r

0

fLN(ξ, η;µ1, σ1, µ2, σ2, ρ)dξdη, (5.18)

where

fLN(m, r) =
1

2πσ1σ2
√

1− ρ2mr
exp

(

− f ′

2(1− ρ2)

)

(5.19)

f ′ =

(

lnm− µ1

σ1

)2

− 2ρ

(

lnm− µ1

σ1

)(

ln r − µ2

σ2

)

+

(

ln r − µ2

σ2

)2

,

is the the two-dimensional probability density function for the log-normal dis-

tribution.

The fragility surface calculated in Eqs. (5.9) and (5.17) are used to estimate

the values of the bi-variate log-normal distribution parameters. These param-

eters will define the parametric model in Eq.(5.18) for the fragility surface for

any m and r. Figures 5.9 (a) and (b) show the parametric model for the fragility

surfaces calculated for the Bouc-Wen system using MC and SROM methods and

shown in Figure 5.8, respectively.

Table 5.1 summarizes the parameters estimated for the fragility surfaces cal-

culated for the Bouc-Wen system shown in Figure 5.9. The two surfaces fitted to
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Table 5.1: Parameters for the parametric fragility surface for the Bouc-Wen
system

Method µ1 σ1 µ2 σ2 ρ

MC 1.803 0.055 4.979 0.103 -0.997

SROM 1.805 0.046 5.003 0.122 -0.999

the MC and SROM data are essentially the same, since the parameters estimated

for the two differ by at most 16% and the mean average error between the two

surfaces is under 5%.

5.4 Life-cycle Analysis

Life-cycle analysis assesses the impacts of the seismic catastrophe events on dif-

ferent aspects of a structure during its entire life, usually defined as a large time

window τ . In this section we propose a methodology for estimating seismic-

performance metrics of structures, such as damage, downtime and cost. Down-

time is important for insurance companies since they cover, in addition to build-

ing/content damages, losses caused by business interruptions. Our main goal

is to estimate distributions rather than just mean values for these metrics to

characterize structural performance and resilience since they provide superior

resolution. For example, if the repair costs for two structures designed for the

same seismic loads have the same mean but different distributions, the perfor-

mances of these structures are indistinguishable based on the average repair

cost, but can differ significantly if based on the probability that repair cost ex-

ceeds a specified value [34].
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Figure 5.10: Seismic activity matrix for Los Angeles

The United States Geological Survey provides mean annual rates of occur-

rence λm,r for earthquakes with parameters (m, r), at each site in the United

States. We assume that the number of seismic eventsN(τ) during the life-time of

a structure has a Poisson distribution with mean λ =
∑

∀(m,r) λm,r in τ years. We

also define the probability of occurrence of earthquakes with parameters (m, r)

as pm,r = λm,r/λ. The graphical representation of pm,r in coordinates (m, r) is

a two-dimensional histogram and we call it the seismic activity matrix. Figure

5.10 shows an example of a seismic activity matrix for a site in Los Angeles. By

thinning the Poisson process N(τ), the number of seismic events with param-

eters (m, r) is Nm,r(τ) = pm,rλ. Figures 5.14 (a) and (b) show two samples of

the number of events at a Los Angeles site for τ = 100 years and λ = 0.6668

and Figures 5.14 (c) and (d) show the events located on the time scale. Note that

the inter-arrival times between consecutive events are exponentially distributed

with mean 1/λ.
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Figure 5.11: Life-cycle events by (a), (b) the samples of the number of
records with parameters (m, r) for a life time τ = 100 years
and (c), (d) the corresponding magnitudes on the time scale.

5.4.1 Damage Model Description

We define the damage state W (t) of a structure at time t to take values within

range 0 ≤ W (t) ≤ 1, zero representing no-damage state and one representing

failure. The damage function W (t) is defined as a regenerative process with the

following form

W (t) = max



0, d0 +
∑

∀(m,r)

Nm,r(t)
∑

i=1

Dm,r(ti)−
∫ t

0

ξ(s)ds



 , (5.20)

where d0 is the initial damage, Nm,r(t) is the number of seismic events with

parameters (m, r) up to time t, Dm,r(ti) is the level of damage produced by the
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event i-th (m, r) event at time ti and ξ(s) is the damage-recovery rate. For our

framework we assume that damage Dm,r(t) generated by an earthquake with

parameters (m, r) at time t to a structure that is already at damage state W (t) is

Dm,r = ηDP
d
f (m, r;W (t)), (5.21)

where 0 ≤ ηD ≤ 1 is a constant parameter and P d
f (m, r;W (t)) is the fragility sur-

face for a structure at damage state W (t). Fragility surfaces Pf(m, r) calculated

in the previous section in Eqs. (5.9) and (5.17) assume structural properties at

full capacity, i.e. W (t) = 0, ∀t > 0. However, fragility surfaces change for dam-

aged structures. We propose two parametric models for the fragility surfaces

P d
f (m, r;W (t)) under damage level W (t) at time 0 ≤ t ≤ τ .

Model 1 The first model for the fragility surface for a structure under the

damage level W (t) is

P d
f (m, r;W (t)) =

[

Pf(m, r) + (1− Pf(m, r))
(

1− e−ψW (t)
)]1−W (t)η

, (5.22)

where ψ > 0 and η > 0 are some constant parameters. Figure 5.12 shows

fragility surfaces, under Model 1 with parameters ψ = 0.30 and η = 1, for a

damaged structure under three level of damage of 20%, 50% and 80%, respec-

tively.

Model 2 The second model is also a parametric model of the form

P d
f (m, r;W (t)) = FLN(m, r; Θ(Ψ))1−W (t)η (5.23)
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Figure 5.12: Evolution of fragility surfaces with increasing demand: (a)
W (t) = 0.2, (b) W (t) = 0.5, (c) W (t) = 0.8.

where

Θ(Ψ) =

























(1− ψ1W (t))µ1

σ
1−ψ2W (t)
1

(1− ψ3W (t))µ2

σ
1−ψ4W (t)
2

ρψ5

























, (5.24)

where W (t) is the current damage state, F is the bi-variate log-normal cumu-

lative distribution function with parameters (µ1, σ1, µ2, σ2, ρ) estimated in the

previous section and Ψ = {ψi, i = 0, ..., 5} is a vector of scalar parameters. Pa-

rameters for both models are usually estimated from historical data recorded at

past damaging events for various types of structures. Figure 5.13 shows fragility

surfaces, under Model 2 with parameters ψ1 = ψ2 = 0.15, ψ3 = 0.30, ψ4 = 0.93,

ψ5 = 1 and η = 1 for a damaged structure under three level of damage of

20%, 50% and 80%, respectively.

Figure 5.14 (a) shows a sample of the damage process W (t) for which we

assume (1) Model 2 for P d
f (m, r;W (t)) as defined previously, (2) ηD = 0.7, (3)

no-damage state W (t) = 0 can be reached from any damage state W (t) < 1 and

107



50
100

150
5

6

70

0.2

0.4

0.6

0.8

1

m
r

P
f
(m

,r
|W

(t
)
=
0.
2)

(a)

50
100

150
5

6

70

0.2

0.4

0.6

0.8

1

m
r

P
f
(m

,r
|W

(t
)
=
0.
5)

(b)

50
100

150
5

6

70

0.2

0.4

0.6

0.8

1

m
r

P
f
(m

,r
|W

(t
)
=
0.
8)

(c)

Figure 5.13: Evolution of fragility surfaces with increasing demand: (a)
W (t) = 0.2, (b) W (t) = 0.5, (c) W (t) = 0.8.

(4) a constant damage-recovery rate of ξ = 0.25, that is, the full damage state

can be completely recovered in 4 years. For a clearer view, Figure 5.14 (b) shows

a zoomed-in image of part of the sample of W (t) in part (a) of the figure.
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Figure 5.14: Sample of W (t) (a) for τ = 100 years and (b) close-up on part
of the sample in (a).

We define three damage states of interest for the current framework (1) low

damage state forW (t) < 0.2, at which we assume that the building is functional,

(2) moderate damage state for 0.2 ≤ W (t) < 0.8 and (3) severe damage state for

W (t) ≥ 0.8. Note that once failure is reached, no recovery is allowed for that

structure. According to the three damage states defined, downtime is calculated
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as the time interval during which the structure is in moderate or severe dam-

age states. Downtime is an important parameter for insurance markets since,

it represents the business-interruption time for that structure, which could be

covered by insurance.

Formally, we can define the time interval in which the structure is in a dam-

age state larger than a value w ∈ (0, 1) as ∆Tw = [ti, tj ] for whichW (t) ≥ w, ∀t ∈

[ti, tj] and W (ti − ǫ), W (tj + ǫ) < w, ∀ǫ > 0. For example, ∆T0.2 and ∆T0.8 rep-

resent the time intervals in which the structure is under moderate and severe

damage, respectively. Probability distributions of ∆T0.2 and ∆T0.8 are calculated

by Monte-Carlo simulation. Since we assumed that the activities in the building

are interrupted for w > 0.2, then ∆T0.2 is also the downtime.
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Figure 5.15: Histograms for (a) ∆T0.2 and (b) life-cycle times ∆T l−c0.2 .

Figure 5.15 shows histograms of (a) downtime ∆T0.2 and (b) life-cycle down-

time ∆T l−c0.2 , that is, the downtime of a structure during its entire life-time τ . Fig-

ure 5.16 shows the tail distributions for (a) ∆Tw and (b) ∆T l−cw , for w = 0.2, 0.8,

that is, the probability of exceeding a value δt, P(∆Tw > δt) and P(∆T l−cw > δt),

respectively.
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Figure 5.16: Tail distributions for (a) ∆Tw, w = 0.2, 0.8 and (b) life-cycle
times ∆T l−cw , w = 0.2, 0.8.

5.4.2 Cost Model

For the cost associated with loss due to earthquakes we consider just the cost of

repairs, goods lost and insurance claims associated with material losses, down-

time and casualties. The cost Cm,r associated with a seismic event with param-

eters (m, r) is related to the corresponding damage Dm,r. In order to show the

importance of considering the cost distribution rather than the mean values, we

assume two cost functions for Cm,r, that follow a Gamma distribution with the

same mean Dm,r but different parameters ai, bi > 0, i = 1, 2. The cost generated

by an event with (m, r) is governed by the probability density function

fC,i(x;m, r) =
1

Γ(ai)b
ai
i

xai−1e
− x

bi , (5.25)

where Γ is the Gamma function. The two sets of parameters defining the distri-

bution of cost Cm,r are associated with two values of the coefficient of variation

cv,i, i = 1, 2. From the properties of Gamma distribution we can find the values

of the two parameters as ai = 1/c2v,i and bi(m, r) = Dm,r/ai. Figure 5.17 shows

the two probability density functions for the cost random variables Cm,r with

mean Dm,r = 0.5, associated to cv,1 = 0.5 and cv,2 = 2, respectively. The two
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distributions have the same mean, but are essentially different.
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Figure 5.17: Probability density functions for the two models for Cm,r with
the same mean Dm,r = 0.5, and coefficients of variation cv,1 =
0.5 and cv,2 = 2.

The life-cycle cost U(τ) will be calculated as the summation of the costs gen-

erated by each individual event during the life-time τ of the structure

U(τ) =
∑

∀(m,r)

Nm,r(τ)
∑

i=1

C(m,r),i, (5.26)

where C(m,r),i is the cost associated with the i-th event with parameters (m, r).

Figure 5.18 shows the tail distribution for the life-cycle cost, that is, the proba-

bility P(U(τ) > u) that the life-cycle cost U(τ) exceeds a value u.

Even though the cost functions for the eventsCm,r are indistinguishable with

respect to their means, the tail distributions differ significantly. The second

model corresponding to a coefficient of variation cv,2 = 2 leads to a life-cycle

cost with heavier tails. Tail risk is an important instrument for reinsurance mar-

kets which cover the claims of highly unlikely events which generate very large

costs.
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Figure 5.18: Tail distribution function for the life-cycle cost P(U(t) > u).

5.5 Conclusions

This chapter presents a complete framework for the evaluation of seismic per-

formance of structures. This goal was achieved through (1) accurate fragility

analyses of structural systems and (2) probability distribution estimates for met-

rics which describe structural performance. The ground motion process is as-

sumed to be a non-Gaussian stochastic process with second order moment prop-

erties given by a seismological model in the form of a spectral density function

of moment magnitude m and source-to site distance r. A t-student distribution

is chosen for the ground motion process to account for high peaks. Fragility

surfaces in coordinates (m, r) consistent with the ground-motion model are pro-

posed in the current analysis. Stochastic reduced order models are used as an

efficient way to calculate fragility surfaces and results match well fragility sur-

faces produced by Monte Carlo. A bi-variate log-normal distribution is pro-

posed as a fucntional form for fragility surfaces, similar to the model addopted

by ATC-58 for fragility curves.

The second part of the paper develops probabilistic models for damage and
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cost functions used to evaluate life-cycle cost of structural systems. A regenera-

tive model is proposed for damage under a set of assumptions and parametric

models for fragility surfaces for damaged structures are proposed. Life-cycle es-

timates are calculated by Monte Carlo simulations of seismic hazard scenarios

for the entire life of the structure. It is shown that estimating the entire distri-

bution for evaluating seismic performance of structures provides valuable in-

formation which could otherwise be omitted. Two different cost models could

lead to comparable average values of the life-cost but have considerable dis-

crepancies in their tails.
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