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in univariate situations, is applied here to the multivariate trace statistic • 
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Summary 

Many tests for mean differences utilize statistics based on a comparison of 

'hypothesis' and 'residual' sums of squares. The probability distribution of such 

statistics is usually derived under the assumption of normally distributed errors. 

The frequent occurrence of data from non-normal distributions leads one to ask how 

closely the actual distributions involved are approximated by the normal-derived 

counterparts. Permutation theory, which has been used to investigate this question 

in univariate situations, is applied here to the multivariate trace statistic • 

1. Introduction 

Fisher (1935) noted that the random assignment of treatments to experimental 

units, without any distributional assumptions, suffices to provide the distribution 

for an exact test of significance. Pitman (1937) applied Fisher's idea to the 

randomized complete block design and was able to show that normal-derived approxi-

mations served quite well provided adjustments based on the data were incorporated 

into the standard analysis. More recently Box and ~'latson (1962) considered a uni-

variate multiple regression model from a point of view parallel to Fisher's permu-

tation theory approach. They derived the first two moments of W = s0/(S0 + SE) 

(s0 and SE are the hypothesis and error sums of squares, respectively) and noted 

the importance of the independent-variable configuration in determining the agree-

~} Part of a Ph. D. thesis completed at Colorado State University by the senior 
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ment between the moments derived under permutation theory and under normal theory. 

This paper reports a fUrther study of the role of the treatment (independent­

variable) matrix, ~ in determining the agreement between permutation theory and 

normal theory regression analyses. The development is along the lines of Fisher's 

concept of an exact permutation test of significance and uses the methods of Pitman 

and Box and Watson. The model considered here is a generalization of Box and 

Watson's model to a multivariate response. We consider T = tr[~~ + 2Er1J as 

a multivariate generalization of the beta-form of the analysis of variance test 

criterion. The matrices 2H and ~E are the hypothesis and error sums of sq_uares 

and cross products matrices, respectively. The choice of T over other multivariate 

generalizations of s0/(s0 + SE) is justified on bases other than simplicity. 

2. The Permutation Model 

Experimenters freq_uently want to compare the effects of a set of treatments 

to see if they produce different responses from experimental material. An experi-

ment may be run by allocating t treatments to N experimental units. Treatments 

may be unrelated, for instance, varieties of sugar beets, in which case there 

should be more experimental units than treatments. Or the treatments may be re-

lated as are the various factor combinations of a factorial experiment. More 

generally the treatments may represent the application of different levels of 

several stimuli applied to the experimental units. There is no requirement that 

they constitute anything like a complete factorial experiment. 

All of these situations fit within the framework of a multivariate regression 

experiment which requires the observation of two matrices Y(N X q) and X(N X p). ,._, ,...., 

The responses observed on the ith experimental unit for each of q variates are 

recorded in the ith row of Y. ,.... These row elements of Y are vector random variables. 
f'J , 

but a regression experiment req_uires the values of a number of nonrandom variables 
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associated with each experimental unit. The values of these p variables for the 

ith experimental unit are recorded in the 1th row of X. Together, the pair (Y,X) ,...., ,.._,.._, 

contain the observable information that can be used for statistical purposes. 

This type of regression experiment may be regarded from a finite-population 

viewpoint and permutation theory applied to it. Each row of !J say:;{, represents 

a treatment. Although X has N rows, only t s N are distinct. Since each of these 
f'J 

treatments could be applied to any experimental unit, there are t treatment popu-

lations, each of N experimental units, to which inferences can be drawn using 

permutation theory. 

Denote the elements of tbese :populations by Y1 ., i = 1, 2, • u, t, 
N ~J 

j = 11 2, •••, N, and let Y1 = -N1 ~ Y1 .• The experiment yields a response on 
,...., • j=l"" J 

each experimental unit for the treatment applied to that unit, Call these re-

sponses .lij where the subscripts indicate that the it h treatment was applied to 

the jth experimental unit. The Zij 1s are a subset of the lij 's for which the 

identity 

yi. = yi + (y. . .. yi ) ,.., J "-J • ......).J ,..,. • (2.1} 

always holds. The expressions on the right-hand side of (2.1) can be regarded as 

the sum of treatment and residual effects. 

The observed yields are recorded in the matrix Y where p indexes the permu­
~ 

tation of treatments to experimental units. If (Y. ) = XB has a solution for B, 
,.._,).• ~ -

we can write 

Y =XB+R 
...... p '""!'...., ""'P (2.2) 

where X corresponds to the assignment of treatments to experimental units and is 
""P 

obtainable from X by row interchanges. This means that X. = PX where P(N X N) is 
,..._, ,...._,lJ ,....,...,., "--

a permutation matrix (one element of one in each row and column and all other 

elements zero), f.'£= I, and thus _eA = !'£.'~ = !::.'!· Thus (2.2) can also be 
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written as Y = PXB + R • ....p ,....,.._.., ...... p This shows that if the matrix P is changed and the 

treatments applied to different experimental units, lp represents a different 

selection of elements from ~!ij}. 

If ~i.) =~does not have a solution, it is possible to reason heuristically 

that (2.2) should still be applicable. The experimenter includes matrix X in the 

formulation since he feels that it may help explain variation in the values of Y. _, 

It could be used in many ways, but the simplest is to hope that some linear com.. 

bination, say ~ serves as a prediction for !• That is, the relation (2.2) is 

true, but now R is defined by R = Y - X B rather than by the identity (2.1) and 
~P ~P ~p ~~ 

its statistical properties are assumed to depend only slightly on p. 

The absence of treatment effects corresponds to B = o. The class of tests 
"" "' 

based on ~ = ! '!(! '!) -! 'l ( (! '!)"" is the generalized inverse of ! '!) and 
I 

~E = !! - ~H should possess a minimal element of sensitivity to deviations from 

B = o. We consider the statistic - ,.... 

(2.3) 

as a potentially robust candidate for a test of H0: 

(2.3), X and Y occur in a symmetric fashion in T. 

B = 0. In the last form of 

This symmetry forms the basis ,.., """ 

for our subsequent discussion of how normality of X can substitute for normality ..... 

of Y and of the potentially robust character of T relative to other statistics ,...., 

based on !H and 2E• 

In the proposed absence of treatment effects upon which significance is 

calculated, the observed yields constitute a uniformity trial; 

(_!1j} = {!ej} = • • • = (!tj} for all j so that all of the ~P are the same. The 

observed association of treatments with experimental units (and consequently with 

responses) manifests only the random assignment of treatments to experimental 

units. Each other association (allowable by the randomization scheme) of treat. 
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menta with experimental units is equally probable, and no more meaningful than 

that observed. This we emphasize here by noting that the description of the null 

situation under consideration is that B is such that Y ~ PXB + R for all per-
,.,..; ,.,., ,....,...,.., ~ 

missible permutations (P) of the treatment labels. ,..... 

The randomness in the value assumed by T (or any other statistic based on X 

and Y) is a consequence of the random assignment of treatments to experimental 
,-...; 

units. Given Y and X, the probability distribution of T, or certain properties ,..... ,..., 

of this distribution, e.g. its mean and variance, can be evaluated by recourse to 

the original source of the randomness in T, namely that inherent in the random 

assignment of treatments to experimental units. Extensive calculations are re-

quired for evaluating the permutation distribution of T. Following Pitman (1937) 

we approximate the permutation distribution by a beta distribution with the same 

first two moments. 

3· The Permutation Moments of T 

The mean and variance of T when there is no treatment effect, i.e. ~ = Q, 

are evaluated by averaging the values ot T and ~ for each possible association 

of treatments with experimental units. The various associations of treatments 

with experimental units is effected by interchanging rows of the X matrix. This -
can be accomplished algebraically by replacing X in T by PX. Thus the l'andomness 

"' ,...,... 
in T lies in the permissible variation of P. An examination of (2.3) shows that ,.... 

the permutation matrix can be grouped with X or with Y. It is more convenient in ,..,. ...... 

developing the moments of T to group it with !.; i.e. leave the rows of ! fixed and 

permute the rows of Y. 
"' 

Notation will be simplified if we write M = X(X'x)·x', Q1Q = (Y'Y)-, where 
"'-~ ,-..J f"'t.,, 1"'..1 ,...., ,...., ,....., #"tJ,...., 

£1 is q X b, b = rank (~), and let ~ = ~l' •• • 1 ~) ~ !3:.'• Then ~~ ~ "f('f'"fr'£' 
and z'z = (z'z ) = L. Without loss of generality for statistical purposes, we '""' ,_ ~r.....s ..;:;t) 
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ass'Ullle that all variates a.re corrected for variate means 1 that is 1 that j 'z = 0 
~""' ""' 

and j 'X ~ o. The statistic T is now written as 
,_ ..... I"Y 

T = tr[(Y'MY)(y'yrJ = tr['Z 1MZ1 
~~ ~,..,., ,.,.,,-...,...,., 

b b 

= tr[MZZ'J = \ tr[Mz z '] = \ z 1Mz • ~ L ........... a-s L,.,.,~ 
s=l s=l 

3.1. E (T) p 

The expectation of T over its permutation distribution requires only the 

evaluation of E (z z 1 ). Since each diagonal position of z z 1 will be occupied by p ~s-a ,....6.-..e 

a specific z:i(N"l)l times in the Nl permutations of the rows of ~s' 

N 

\ z2 = ~ z'z = ~ • L si N ..... s-a N 
i=l 

E(a diagonal element of z z') = (N-l)! 
-8"-6 N! 

Likewise, 

E(an off-diagonal element of z z') = (N-2)! Lz .z j = 1 [(I:zsi)2 -I:z261J 
,.,.,s-a N! ifj s1 s N(N-1) 

l =----. 
N(N-1) 

Combining the above, 

(,. I 1 1 ( ) 1 ( 1 E~ z ) = - L_ - J .. I = - I - - J) 
s-s N NN N(N-1) ,.., "" N-1 - N "' 

and thus 

E (T) = L tr[ME (z z 1 )] = __E_ tr[M] - b tr[~ = ab , 
P ....., p ,....S"-6 N-1 ~ N(N-1) ""' N-1 

s 

where a= tr[M] = rank (X). It should be noted here that in the fUll rank re-
"" ,..... 
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gression case, a = p and with sufficient observations b = q. When q = 1, this 

result agrees with that of Box and Watson (1962). 

The first step in deriving the permutation variance of T, Varp(T), is to 

expand 1 t in terms of variances and covarie.nces of the variate components from 

b 

Varp(T) = I Varp~~) 
s=l 

The variance terms in the first sum can be derived simply from results given by 

Box and Watson (1962). They obtained Var (z 1MZ) when M = X(X~)-lx', i.e. when p ,..,.,,.....,...,., ,...., ,..._,,....;~ f"J 

X was full rank. They used only the relations Mj = 0, 'W- = M, and tr[M) = p in 
~ r¥ I"'V ""-'~ ~ 

their argument. Since here we have ~ = 0 '!f = ~ and tr[~J = a, their result is 

applicable to Var (z'MZ ) for s = 1, 2, •••, b with p replaced by a: 
P-~ 

Following through details similar to Box and Watson's, we get 

In (3.4) and (3.5), g is the sum of squares of the diagonal elements of M and ...... 
s st l 4 and k22 are multivariable generalizations of Fisher's k stat1stica as given by 

Kendall and Stewart (1963). Subsequently the bracketed expression in (3.5) will 

be denoted by u. 
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Combining (3.4) and (3.5), 

Var (T) = 2ab(N-l-a)(N-l-b) + u[ L ks + L kst] 1 

p (N+l)(N-1)2(N-2) s 4 s~t 22 

and setting the bracketed term equal to K gives 

Var (T) = 2ab(N•l•a)(N-l•b) + uK • 
p (N+l)(N-1)2(N-2) 

Except for a multiplier, u and K are the same function of the matrices X and Y - ..... 
respectively, i.e. uK = cf(X)f(Y). ,.... ~ 

4. Approximate Distribution of ! 

If we define D by 

2ab(N-l-a)(N-l-b) D = uK 1 

(N+l)(N-1)2(N-2) 

equation (3.6) can be written as 

Var {T) = (l+D) 2ab(N-l•a)(N-l-b) • 
p (N+l)(N .. l)2(N-2) 

(4.1) 

(4.2) 

Two-moment agreement between the permutation distribution of T and the beta 

distribution 

xm-1 (l·xt-1 

B(m,n) 

is obtained for m = 5a, n = B(N-l~a) by setting 

5 = (Nb-2){N-l) .. 2D(N-b-l} • 
2(N-l){N-b-l)(l+D) 

(4.3) 

This beta distribution is the normal theory distribution of T for a or b = 1 and 
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D = o. For D = 0 and p and q both at least two, this beta distribution is 

essentially the approximation to the normal theory distribution of T suggested by 

Pillai (1955). The variance form (4.2) and the adjustment factor (4.3) are multi-

variate generalizations of the corresponding quantities from Box and Watson (1962). 

The permutation theory and normal theory distributions will thus be approxi-

mated by the same distribution whenever D = 0. This will happen if either u or K 

is zero. Box and l·latson show that u can be represented as a sum of standardized 

fourth order k-statistics of the same form as K. If either X or Y were normal 

conditional upon the other, then E(D) = 0. 

Thus if either K or u is near zero, the usual normal theory should provide a 

reasonable approximation to permutation theory. The statistic K can be zero by 

every element being zero (which is their expected value under normal theory). Or 

the various addends of K can be cancelling positive and negative values. This 

says the net kurtosis of all the variates is zero. Contrast this to univariate 

analysis where with a single variable, an analogous phenomenon does not exist. 

If there is reason to suspect that K will not be close to zero, then instead 

X can be chosen to make u = 0. The beta form of Hotelling's ~ test for the 

difference between two multivariate means can serve as an illustration of this 

point. If the first sample mean is based on n1 observations and the second on n2, 

we can take 

0 
I"V 

X = 

0 

n~ 
1 

nJJln 
2 

The statistic u is then a constant times N2 +N - 6n1n2• If n1 is taken to be larger 
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than n2, then N2 +N - 6n1n2 = 0 when approximately n1 = 3.7n2 - 1. 

Thus the normal theory distribution of T should provide a satisfactory 

approximation to the permutation distribution of T whenever 

i. The distribution of Y for any X is normal 
,....; "" 

ii. The distribution of X for any Y is normal. ,..... -
iii. The responses Y give K = 0 

""" 

iv. The regressors X give u = 0. 
"' 

Otherwise the approximate beta from (4.3) should be used. 

5· Discussion 

We wish to make two basic points concerning approximations to the percentiles 

of the permutation distribution of T. The first concerns the nature of the sig-

nificance distribution of T when the null hypothesis does not hold and the degree 

tu 1.zhich this distribution can be approximated with the distribution derived under 

normal theory. The second is to identify a characteristic of T which separates it 

from other multivariate test statistics as a likely prospect for a robust test 

statistic. 

We feel that our first point is frequently missed by those who try to equate 

significance and test of hypothesis procedures. Even when the null hypothesis 

fails and perhaps as well the primary alternative in mind, significance is cal-

culated from the permutation distribution of the observed response. However, 

power, the salient value one calculates in the test of hypothesis approach, is 

derived from a set of outcomes which characterize the alternative and cannot be 

constructed from the observed data. The difference between these stands out well 

in the example of the comparison of two treatment means from samples of equal siz.e 

when a strictly additive model holds. If y., j = 1, 2, •••, 2n, is the response 
...... J 

vector of the jth experimental unit in the absence of any treatment and if the 
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differential treatment ef~ect is 2t, the power o~ a mean-di~ference test is ob-,..., 

tained from the set of (~n) differences 

2n 2n 

~ ( Ixrj 
j=l 

- Ikj ,) + 2~ 
j '=1 

j I= j ', r = 1, 2, 

Significance of the same statistic is calculated from the set of (2n) differences 
n 

2n 
1( \ n L...lrj -

j=l 

where m is the number of units receiving treatment 1 which are called just that 
r 

in the rth permutation of labels to the observed responses; m = n only for the 
r 

observed configuration. 

The Neyman-Pearson alternative population and the significance population 

obviously are different. How well the first o~ these is approximated by a normal 

array depends on normal properties of the permuted residual mean differences. 

Whatever normal characteristic these have are carried over and enhanced in the 

significance population by the contributions from the distribution of (2m -n)/n 
r 

since for large n this scaled binomial is well approximated by the normal. 

The importance of this type of distinction lies in a precise evaluation of 

significance when the null hypothesis is not true and the mode of treatment re-

sponse is not strictly additive. The form of the power population then is unknown 

while the significance population still is completely specified. In order for 

percentiles calculated from a normal-derived distribution to serve as an adequate 

approximation for significance probabilities, it is necessary that the test 

statistic have some normal-derived sampling characteristics whether or not the 

null hypothesis is true. The act of randomization by itself does not introduce 

these. 
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Normal-type properties can be introduced into the distribution of the test 

statistic either by "nature" through the responses from the sa.mpling units or 

through the choice of the experimental design. Yates (1964) has endorsed Fisher's 

view (1935) that the former is the source on which we rely for normality. Nor 

would one be inclined to look any further when the observed response is an average 

of responses on several experimental entities drawn randomly from some large popu-

lation. It is at the other extreme of experimental types, when the units form the 

whole population to which inference can be made, when they are contiguous in 

blocks, and when the effect of treatments is a marked stratification of the re-

sponse, that we feel one may question the normal-derived approximations to the 

permutation distribution percentiles. This is particularly true and important to 

consider when treatments convey a strong effect. vfuen the latter is the case, 

there are three avenues open for solving the inference problem. 

(1) One may approximate the distribution of standardized, quadratic, test 

statistics with the beta distribution where the first two moments agree with those 

of the permutation distribution. The justification for this rests largely on the 

study by Pitman (1937) and a scattering of empirical verifications. The results 

are quite good for a univariate response and the only extension for a multivariate 

response (a paired Hotelling•s ~ test) which was investigated up to four moments 

by Arnold (1964), appears to justify the procedure. 

(2) One may evaluate the significance of the observed outcome from the permu-

tation distribution. Complete enumeration is possible only for very small numbers 

of experimental units. Monte Carlo approximations will handle somewhat larger 

types of experiments, but really large numbers and many restrictions appear at the 

present to be out of hand for enumeration or sampling techniques. 

(3) For test statistics in which the only permutation-variable elements 

arise from the product J. 1X, a permutation of the association, Y 1P1X is achieved 
~I'V ,...._;::; 
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either by peri!Dlting the rows of Y or the rows of X. The rows of X can be chosen - ,..... 

to approximate a normal distribution to a given degree in a discrete manner. When 

there are a distinct row vectors in X then one may choose these to fit the cumu-
"-J 

lants or lc-statist1cs of X up to the ath order with those of the normal. ~is ,..., 

method works very well when p is small, say 2, and the range of the rows of X is 

not restricted. It does so however at the expense of efficient use of estimation 

resources when the mean response has a known polynomial form. It may be possible 

to use this approach in experiments of blocked treatment plans. If the loss in 

sensitivity compared to a well balanced design is nominal, such designs would be 

valuable in those situations where a fine degree of approximation to the distri-

bution of the design responses is needed. We are now investigating these problems. 

In the realm of questions about a good test statistic for the multivariate 

analysis of variance we are inclined to rely on the leading statement in (3) to 

justify the choice of T. The statistics which have so far received considerable 

attention, 

all vary under randomization according to the manner in which the product Y1X 
,.., row 

varies. Because !'! and !'! do not vary, e.g. !'"fw''f! = !'!J the elements of the 

inverse matrices in T and A do not vary while those in ~ and c do. The point in 

favor of T is that it is the only statistic which is quadratic in the elements a:r 
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X'Y. I~ either through the rows o~ X or the rows o~ Y the ~irst a k-statietics 
,...., r..; "" ,_ 

o~ y'x agree closely with those o~ the normal, then to a corresponding degree of 
""' "" 

approximation those o~ T ~it the normal-derived distribution o~ T. This closeness 

o~ agreement, a'railable only in statistics which vary as standardized quadratics, 

should give T an advantage in robustness over f..., ~~ and c" 

Re~erences 

Arnold, H, J. (1964), "Permutation support ~or multi variate techniques", 
Biometrika 51:65-70• 

~ 

Box, G. E. P, and Watson, G. s. (1962), "Robustness to non-normality o~ re­
gression tests", Biometrika 1!2= 93-106. 

Fisher, R. A. (1935, 1960), The Design o~ Experiments. First and Seventh 
Editions. Oliver ano Boyd, Edinburgh, 252 p, 

Kendall, M. G. and Stuart, A. (1963}, The Advanced Theory o~ Statistics, Vol. I, 
Second Edition, Gri~~in and Company, London, 433 P: 

Pilla1, K. C, s. (1955), "Some new test criteria in multivariate analysis", Ann. 
math. Statist. 26:117-121. ----- ~ 

Pillai, K. c. s. and Mijares, T. A. ( 1959), "On the moments o~ the trace of a 
matrix and approximations to its distributions", Anll:• math. Statist. ~: 
1135-1140. 

Pitman, E. J. G, (1937), "Signi~icance tests which can be applied to samples 
from any population III. The analysis o~ variance test 11 , Biometrika ?J.,: 
322-335· 

Yates, F. (1964), 11Sir Ronald Fisher and the design o~ experiments", Biometrics 
20:307-321. ,...,.._, 


