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This dissertation utilizes a multi-method approach to investigate the processes underlying 

musical learning and memory. Particular emphasis is placed on schematic processing, musical 

structure, temporal aspects of learning, statistics-based predictive models, efficiency, and the role 

of musical expertise. 

We employed a set of behavioral change detection studies with musician and non-

musician participants to test what is encoded into gist memory upon hearing unfamiliar melodies 

varying in musical structure. These studies demonstrate that listeners abstract a schematic 

representation of the melody that includes tonally and metrically salient tones. In well-structured 

music, change detection performance improves when a musical event does not conform to the 

listener’s schematic expectations. Musical expertise is also shown to benefit change detection, 

especially when the melodies conform to the conventions of Western tonal music. 

In a study examining learning over a period of increasing musical exposure, we used an 

information theoretic approach to capture how the statistical properties of music influence 

listeners’ musical memory. This work highlights how patterns and predictability can facilitate 

musical learning over time. In further investigation of what underlies this learning process, a 

series of neural network studies revealed that a compressed representation arose in the internal 

structure of a computational network as tonal and stylistic information were learned over time. 



 

 

Population sparsity of the SRN’s hidden layer strongly predicted the sophistication of the 

network’s musical output as rated by human listeners.  

Electroencephalography (EEG) methods were utilized to investigate the neural correlates 

of musical learning and memory, and to further explore the notion of increasing efficiency over 

the time-course of learning. These experiments suggest that the listener's implicit internal model 

of musical expectation is gradually developed and made increasingly accurate with repeated 

exposure to initially unfamiliar music. 

Both the computational and EEG experiments illustrate how efficiency accompanies 

successful learning over time. These findings, as well as those from the change detection and 

information theory studies, provide evidence that schemata are formed as the probabilities of 

forthcoming music are gradually learned with increasing experience. Schematic expectations 

dynamically guide perception and influence memory, and generally allow for more efficient 

musical processing. 

 



 iii 

BIOGRAPHICAL SKETCH 
 
 

Kat was born in San Diego, California in 1983. The daughter of two musicians, Nancy 

and Sam Agres, she took an early interest in music. She began playing the cello at age 8, and has 

held a strong passion for music ever since. After cultivating her love of science during high 

school, Kat attended Carnegie Mellon University (CMU) to pursue both psychology and music, 

and was awarded the degree of Bachelor of Humanities and Arts in Cognitive Psychology and 

Cello Performance in 2005. While at CMU, Kat also performed regularly with a rock band 

playing electric cello, worked in the laboratory of Professor Lori Holt for three years, briefly 

studied violin making with a luthier in Cremona, Italy, and became involved with music activism 

and music therapy. In her final year at CMU, Kat was awarded a Presidential Scholarship, as 

well as a yearlong fellowship from the National Institute of Mental Health. In 2006, Kat began 

her graduate studies of music cognition in the Psychology Department of Cornell University, 

where she was granted a Sage Fellowship. Her developing research interests included musical 

learning and memory, change detection, and patterns in neural activity during music listening. 

She was fortunate to be awarded the NIH-funded IMAGINE Training Grant during her fourth 

and fifth years at Cornell. During this fellowship, Kat used electroencephalography (EEG) to 

examine musical memory in the laboratory of Jason Zevin at Weill Cornell Medical College in 

New York City. Her other experimental methodologies included infant research (in the 

laboratory of Michael Goldstein), computational modeling (with Michael Spivey), and 

techniques based on Information Theory (with David Field, as well as Geraint Wiggins and 

Marcus Pearce). Kat is an avid music fan and chamber music performer. She also enjoys 

dancing, traveling, rock climbing, and the visual arts. Her postdoctoral work will be conducted at 

Queen Mary, University of London, in the laboratory of Marcus Pearce. 



 

iv 

 

 

 

 

 

 

 

This dissertation is dedicated to my wonderful family and friends whose love, encouragement, 

and support made this PhD not only possible, but very enjoyable indeed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

v 

ACKNOWLEDGEMENTS 
 
 

I would like to give many thanks to my friends and colleagues in the Psychology 

Department, especially those in the laboratories of David Field and James Cutting. The insight, 

enthusiasm, and driving questions from these individuals led to a richer experience of graduate 

school and the scientific process. Thanks to Michael Hove, with whom many discussions of 

music cognition were shared, and to Hia Datta for many fascinating conversations about EEG 

and the brain, and for her help during late night (and daytime) trouble-shooting sessions. 

In addition, a kind thank you to my collaborators: To Andrew Goldfine (WCMC) for his 

assistance with EEG coding and analysis techniques, to Samer Abdallah (University of London) 

for his brilliant computational contributions to our Information Theory study, and to Jordan 

DeLong, for his help with the second and third SRN studies (and answering many programming 

questions along the way). Also, I appreciate the help of Professor James Booth, for his statistical 

advice concerning my change detection studies, and Christine Lee, for her assistance in making 

stimuli and running participants in the second change detection study. To Geraint Wiggins and 

Marcus Pearce (University of London), my most sincere gratitude for extending the offer to 

collaborate (and host me in London), and for their kindness and invaluable guidance regarding 

our Information Theory project. 

I am indebted to the Cognitive Science Program, and to Morten Christiansen and Julie 

Simons-Lynch, for their support and travel funding, making many conference presentations 

possible. I greatly appreciate having received the Cognitive Science Program’s Summer 

Research Fellowship during 2011, which made simultaneous research at Cornell and WCMC 

feasible. Many thanks also to Barb Finlay, for her brilliant courses, and for her role in awarding



 

vi 

me the NIH IMAGINE grant that opened many doors and enabled my training in neuroscientific 

methods at WCMC. 

Finally, a very warm thanks to my Special Committee: Michael Spivey, for his 

exceptional kindness and support, and for introducing me to computational methods; Jason 

Zevin, for welcoming music cognition research into his lab, providing training on EEG 

techniques, and for sharing his knowledge of auditory perception; Michael Goldstein, for his 

enthusiasm and guidance as I investigated infant experimental psychology; David Pizarro for his 

optimism and support, and for spurring my interest in music and emotion; and David Field, my 

committee chair, for greatly insightful conversations, generous feedback on projects and papers, 

and for his incredible guidance and encouragement through the twists and turns of this PHD. 

The EEG research within this dissertation was funded in part by a grant from the National 

Institute of Health, NIH T32HD05517.



 

vii 

TABLE OF CONTENTS 
 
 
Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii  
Dedication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 
Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v  
Table of Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 
 
1 Introduction  

1.1 Introduction to Musical Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1.1 Short-term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.1.2 Long-term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
1.1.3 Interim Summary of Musical Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

1.2 Domain General Processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
1.2.1 Insight from the Visual Modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
1.2.2 Gist Across Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
1.2.3 The Role of Expertise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

1.3 Schematic Processing in Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
1.3.1 Overview of Musical Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
1.3.2 Schematic Processing as a Guide For Musical Expectation . . . . . . . . . . . 17 
1.3.3 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
1.3.4 Schematic Processing as Perceptual Interference . . . . . . . . . . . . . . . . . . . 21 
1.3.5 Summary of Schematic Processing in Music  . . . . . . . . . . . . . . . . . . . . . . 22 

1.4 Paradigms for Studying Schemata and Musical Memory  . . . . . . . . . . . . . . . . . . 23 
1.4.1 Computational Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
1.4.2 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
1.4.3 Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
 

2 Change Detection, Schematic Processing, and Short-term Memory in Music 
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

2.1.1 Incomplete Memory Representations in Music . . . . . . . . . . . . . . . . . . . .  30 
2.2 Experiment 1:  Musical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

2.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 
2.2.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
2.2.1.2 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
2.2.1.3 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
2.2.1.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

2.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
2.2.2.1 Effects of Melody Type and Musical Expertise  . . . . . . . . . . . . . 39 
2.2.2.2 Signal Detection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 
2.2.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

2.3 Experiment 2: Specific Musical Factors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
2.3.1 Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

2.3.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
2.3.1.2 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



 

viii 

2.3.1.3 Procedure and Apparatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 
2.3.2 Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

2.3.2.1 The Effect of Tonality and Musical Expertise  . . . . . . . . . . . . . . 49 
2.3.2.2 The Effect of Interval  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
2.3.2.3 The Interaction of Rhythm and Position . . . . . . . . . . . . . . . . . . . 51 
2.3.2.4 Same Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
 

3 Population Sparsity over the Musical Learning Trajectory of a Simple Recurrent 
Network 
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

3.1.1 Overview of computational models of music perception . . . . . . . . . . . . . 58 
3.1.2 Compression and Sparse Coding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

3.2 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
3.2.1 Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

3.2.1.1 Network Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
3.2.1.2 Behavioral Study 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
3.2.1.3 Participants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
3.2.1.4 Materials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
3.2.1.5 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

3.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
3.2.2.1 Network Internal Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
3.2.2.2 Behavioral Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 

3.3 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 
3.3.1 Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

3.3.1.1 Network Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
3.3.1.2 Behavioral Study 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 
3.3.1.3 Participants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 
3.3.1.4 Materials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 
3.3.1.5 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 
3.3.2.1 Network Internal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 
3.3.2.2 Behavioral Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

3.4 Experiment 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
3.4.1 Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

3.4.1.1 Network Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 
3.4.1.2 Behavioral Study 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 
3.4.1.3 Participants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 
3.4.1.4 Materials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 
3.4.1.5 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

3.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 
3.4.2.1 Network Internal Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 
3.4.2.2 Behavioral Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

3.5 General Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 
3.6 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

3.6.1 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 



 

ix 

3.6.2 Relative Size of Network Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
3.6.3 Combining Short-term and Long-term Models . . . . . . . . . . . . . . . . . . . . . 84 

 
4 Information Theory and Electroencephalography: An Investigation of Factors 

Contributing to and Reflecting Successful Music Retention in Adult Listeners 
4.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
4.2 Information Theory Behavioral Experiment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

4.2.1 Method   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 
4.2.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 
4.2.1.2 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

4.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
4.2.2.1 Listening Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
4.2.2.2 Test Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

4.2.3 Future Directions of IT Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 
4.3 Bridging Information Theory and EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 
4.4 Electroencephalography (EEG) Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 
4.5 EEG Experiment 1: ERP Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

4.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
4.5.1.1 Participants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
4.5.1.2 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
4.5.1.3 Data Acquisition and Preprocessing . . . . . . . . . . . . . . . . . . . . . . 101 
4.5.1.4 Data Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

4.5.2 Results and Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 
4.6 EEG Experiment 2: Time-Frequency Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . 104 

4.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 
4.6.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 
4.6.1.2 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 
4.6.1.3 Data Acquisition and Preprocessing . . . . . . . . . . . . . . . . . . . . . . 106 
4.6.1.4 Data Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 

4.6.2 Results and Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 
4.7 Conclusions and Future Directions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 
 

5 General Discussion: Prediction as an Efficient and Indispensible Component of  
Musical Learning 
5.1 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

5.1.1 Experience Enables Efficiency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 
5.1.2 Schematic Processing as a Predictive Model . . . . . . . . . . . . . . . . . . . . . . 115 

5.2 Summary of Findings and Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 
 

6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



 

  1 

CHAPTER 1 
 
INTRODUCTION 
 
 
 
1.1 Introduction to Musical Memory 
 

Music provides a fascinating and rich domain for the investigation of human cognition – 

it is found in every culture, shares processing mechanisms with other domains, and has a formal 

structure that can be manipulated and tested. Further, the large range of musical ability found in 

most societies enables researchers to test the effects of expertise on music cognition and auditory 

perception more generally. 

Although ample research within the field of music cognition has investigated memory for 

novel melodies and familiar tunes, there is a gap in knowledge regarding the process of learning 

music. This dissertation explores the process of learning novel melodies, with a focus on musical 

structure, schematic processing, and expectation in music (as assessed via information theory and 

measures of processing efficiency). The role of repeated exposure in encoding increasingly 

robust representations is explored, as well as the ways in which neural activity changes over the 

musical learning trajectory. In addition, learning and memory in music will be compared to other 

domains, especially vision, to highlight domain-general processing mechanisms, and to provide 

further insight into short-term musical memory. 

Many mechanisms influence memory for music, with some weighted more heavily than 

others. Statistical learning, invariance, prediction, change detection, and the hierarchical 

processing of musical structure all impact memory representations. Of these, an emphasis will be 

placed on schematic processing, which is shown to unify various findings and theoretical 

explanations in music cognition. Arguably, schematic processing provides an essential 
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framework for music perception and cognition, underlying auditory grouping, musical 

expectation, perception of melodic and rhythmic structure, and short-term memory. 

 The research within this dissertation utilizes several different methodologies for 

exploring musical learning and memory because every method has its limitations. Behavioral 

psychology, while insightful, can leave one without an understanding of underlying mechanisms. 

Computational approaches to cognition aim to reflect or predict neural processing and/or 

observable behavior. And neural activity that is recorded but not tied to perception or behavior is 

either meaningless or difficult to interpret. A multi-method approach allows for investigation at 

different levels of analysis (from the neural to computational to behavioral level). Compared to 

research relying heavily on one technique, this approach can provide a more global account by 

tying together converging findings and theoretical perspectives across areas. This dissertation 

utilizes behavioral and computational methods, information theory, and electroencephalography 

to explore the fundamental questions of what is learned and encoded in short-term musical 

memory and how. 

 
 
1.1.1 Short-term Memory 
  

Because this dissertation focuses on learning and memory in music, it is imperative to 

provide an overview of short-term and long-term memory in music. This also enables the reader 

to see how my studies fit into the literature. Although a comprehensive review of musical 

memory is beyond the scope of this chapter, a summary of important findings will provide a 

framework for understanding the concepts and mechanisms discussed later.  

Many questions exist in the realm of music and memory:  Do the musical features that are 

initially encoded in memory change over time? Does the memory representation that is formed 
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after hearing a novel melody differ from that of a well-known melody? How do musical 

structure, repeated exposure, and musical training play a role? There is no over-arching theory of 

musical memory, but questions such as these have driven much interest in the area of memory 

for music.  

 In a typical short-term memory (STM) musical memory study, listeners will hear a pair 

of melodies and make a judgment about whether they are the same or different. When the 

melodies are brief, stylistic, not rhythmically complex, in a moderate tempo, and identical in 

terms of absolute pitch save one or two tones, the task is quite easy. When, however, the 

melodies lack conventional musical structure, are more than about two measures long, are 

presented at an extreme tempo, or are transposed (especially to distant musical keys), 

performance can decline dramatically (Halpern & Bartlett, 2010; Dowling, 2008). 

Dowling and collaborators have a series of influential studies on short-term musical 

memory, and some of the early work on this topic proposed a two-component model of memory 

for melodies (Dowling, 1978; 1991). The first component of the theory lies within listeners’ 

knowledge of the musical scale, which he refers to as a perceptual-motor schema. The second is 

the melodic contour of the melody (the pattern of ascending and descending pitch intervals), 

which, he claims, is stored separately and can function independently from memory of the exact 

interval sizes. Dowling maintains that these two components contribute to the reproduction and 

recognition of melodies (Dowling, 1978). According to this model, listeners extract the melodic 

contour upon hearing a melody, but the exact intervals within the melody may not initially be 

encoded (or immediately accessible).  

To test his model, Dowling had musician and non-musician participants listen to 48 sets 

of melodies and respond whether they thought the two melodies of each set had an identical 
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melodic contour (Dowling, 1978). The second (comparison) melody in each set was either a 

Target (transposition with exactly the same contour), “Tonal Answer” lure (a melody with the 

same contour, but different intervals), “Atonal Contour” lure (an atonal melody with the same 

contour, but different intervals), or a Random sequence (randomly selected tones from the 

diatonic scale, and a different contour). All of the participants successfully distinguished the 

Target from the Random sequence, and musicians (but not non-musicians) distinguished the 

Target from the Atonal Contour lure. Both groups, however, performed at chance with regard to 

the Tonal Answer melodies, showing that even musicians are fooled by tonal melodies featuring 

the same contour but different exact intervals. This provides support for the hypothesis that 

contour and interval size are stored separately in memory. Further evidence, he claims, stems 

from the fact that we can still recognize a tune such as Twinkle Twinkle when it is played in a 

minor key (we recognize the contour, despite the fact that some of the intervals are different) 

(Dowling, 1978). 

 In a later study, Dowling (1991) replicated and extended the above results by running an 

experiment that manipulated the delay period between the first and second melody of each test 

set.  A continuous sequence of novel melodies was played, and each melody had either a strong 

sense of tonality, weak tonality, or no tonality (atonal). In the short-delay condition, participants 

were tested on whether the contours of two sequential melodies in the sequence (with a silence of 

11 seconds in between) were the same or different. In the long-delay condition, the melodies 

were not adjacent in the sequence; the delay between comparison melodies (which was an 

average of 39 seconds) was filled with other melodies in the sequence. These intervening 

melodies had different tonalities than the comparison melodies being tested. Dowling found that 

for tonal melodies in the short delay condition, similar tonality (and contour) fooled participants, 
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but that the false alarm rate for Same Contour lures diminished over the longer time period.  

Exact interval changes were more apparent after a longer delay, while contour changes were 

more detectable after the short delay. Therefore, it seems that contour (for tonal melodies) is 

represented initially in short-term memory, but this is gradually supplemented by the encoding of 

exact intervals in long-term memory. Surprisingly, this finding was true of melodies that were 

not repeated more than once. That is, regardless of exposure, the exact intervals encoded in 

memory representations for novel melodies became more stable over time (Dowling, 1991). 

Although these results provide a straightforward, parsimonious account of STM for melodies, 

there may be a few concerns with the experimental design. First, it is possible that the 

intervening melodies of different tonalities altered the memory of tonality for the first melody of 

the comparison set (thus resulting in less reliance on tonality for the comparison). Second, a 

confound of interference is present; the interleaved melodies may have prevented or disrupted 

encoding of the melody’s contour. 

 Other work examining the recognition of transposed melodies has yielded a more 

complex picture than the one above. Lola Cuddy and colleagues have tested recognition of 

transposed melodies while manipulating different musical characteristics (e.g. Cuddy & Cohen, 

1976; Cuddy, Cohen, & Mewhort, 1981). This has yielded the finding that many features can 

affect recognition and musical short-term memory, including “triadic structure, repetition of the 

tonic, leading tone to tonic ending, harmonic cadence (V-I), modulation within the sequence, and 

key-distance of transposition (tritone vs dominant)” (Krumhansl, 1991). Even the exact pattern 

of intervals in a three-note melody accounts for differences in listeners’ recognition performance 

(Cuddy & Cohen, 1976). While this work may account for more variance in listeners’ responses 

than the simpler model by Dowling (1978), it does not provide a holistic view, instead favoring 
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the approach that nearly everything appears to influence short-term musical memory (given such 

a wide range of factors). This type of framework is more complex and difficult to test, and 

several of the findings, such as harmonic cadence and leading tone, could simply be considered 

aspects of the tonal component of Dowling’s model. Also, it would be interesting to test whether 

the impact of specific interval patterns would decrease with longer musical sequences (at which 

point, more Gestalt-like schematic processing might prevail). 

These musical features focus on tonal and harmonic influences on melody recognition, 

but rhythm also has an effect on short-term musical memory (Kidd, Boltz, & Jones, 1984). To 

explore the effect of rhythm on detection of pitch changes in melodies, pairs of 10-note melodies 

with either identical or dissimilar rhythms were played for participants. Listeners were told to 

focus on pitches and ignore the rhythm of the sequences, and respond whether the melodic 

content of the pair was the same or different. The authors speculate that rhythmic context can 

lead attention towards musically salient events within the melody. Rhythm, they argue, can 

prepare the listener for important patterns or relationships between musical events (Kidd, Boltz, 

& Jones, 1984). According to this “temporal expectancy hypothesis”, rhythmic and temporal 

cues are taken to be a sort of priming tool during music perception (because expectations are 

formed or primed), which then affects measures of bias and discriminability, in the Signal 

Detection Theory sense (Kidd, Boltz, & Jones, 1984). This hypothesis was contrasted with the 

possibility that tempo (which was manipulated via slow, medium, and fast presentation rates of 

melodies) affects processing. If this were the case, task performance should improve at the 

slower tempo because this allows for more processing time. The results show that no significant 

differences in performance existed between presentation rates; tempo of the melodies did not 

affect accurate change detection. Evidence was found, however, to support the temporal 
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expectancy hypothesis. When the rhythm of the initial melody was different than that of the 

comparison, listeners were significantly biased to report that the melodies were the same. 

Discriminability (d’) was also affected in that performance was worse; listeners could not 

reliably tell change from same trials. The extent to which performance was degraded depended 

on the amount of temporal uncertainty resulting from the rhythmic context (Kidd, Boltz, & 

Jones, 1984). Therefore, the change in rhythm either influenced the encoding of the melodies 

into memory, or disrupted comparison of the melodies because the melodic representations were 

encoded in terms of both pitch and rhythm in memory. 

The “surface characteristics” of music have been studied far less than pitch and rhythm, 

possibly because musical memory is largely invariant with respect to these properties, but there 

is some evidence that tempo and timbre affect melodic recognition. For example, after hearing a 

novel melody, if the tempo or timbre is altered in a subsequent exposure, measures of explicit 

memory for the melody are impaired (Halpern & Mullensiefen, 2008). Therefore, in short-term 

memory, tempo and timbre may be an important part of the memory representation for a novel 

melody. After more exposure to the melody, however, these characteristics may be less salient in 

long-term memory, as varying them can have little impact on melody recognition (Peretz & 

Zatorre, 2005).  

 
 
1.1.2 Long-term Memory 
 

Long-term memory (LTM) for music can be influenced by familiarity, nameability, and 

episodic and extra-musical associations, adding layers of complexity to the investigation of this 

type of musical memory (Halpern & Bartlett, 2010). In a typical LTM study, listeners will try to 

memorize a set of tunes, and 10-30 minutes later, the participants will be given a recognition test 
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of old and new stimuli. When listeners study familiar tunes, they demonstrate better overall 

performance in the recognition task than a study in which all of the tunes are unfamiliar (Bartlett 

et al, 1995). But when familiar and unfamiliar tunes are both presented in the same listening set, 

performance declines, with false alarm rates increasing dramatically for familiar tunes (that is, 

there seems to be a strong tendency to judge familiar tunes as “old”). Halpern and Bartlett (2010) 

suggest this bias may be due to “subjective familiarity.” When familiar and unfamiliar tunes are 

tested separately, the listener can adopt a different familiarity criterion for well known versus 

unfamiliar tunes. When both types of tunes are tested together, however, it may be much more 

difficult to establish an accurate criterion. 

 Long-term memory for music is predominantly reliant on the melodic interval pattern of 

the music (which encompasses the key and contour of the melody), but, like musical STM, it is 

also influenced by rhythmic structure (Hebert & Peretz, 1997). In a study comparing the effects 

of contour and rhythm on recognition memory, familiar melodic excerpts (melodies that are 

stored in long-term memory) were played for listeners in two conditions: In the melodic 

condition, the interval pattern was kept the same, but all of the notes were isochronous (the same 

duration). In the rhythmic condition, the rhythmic content was preserved, but all of the notes 

were played on a single pitch (Hebert & Peretz, 1997). Better recognition of the familiar 

melodies was attained in the melodic condition, possibly because the melodic structure of the 

melodies was more salient than their rhythmic structure (Hebert & Peretz, 1997). All in all, 

however, the authors come to the intuitive conclusion that the most effective means of accessing 

long-term memory (accurately recognizing melodies) involves the correct combination of 

melodic (pitch) and temporal (rhythmic) information (Hebert & Peretz, 1997). Of course, surface 



 

  9 

features can also be stored in long-term memory, as evinced by our ability to recognize a specific 

rendition or performer (Peretz & Zatorre, 2005). 

 The fact that humans are able to identify a vast number of musical examples suggests that 

most individuals have a huge store of memory representations of familiar music. Peretz and 

colleagues refer to this musical memory corpus as the “musical lexicon” (Peretz, et al, 2009). 

The process of recognizing a tune, they argue, automatically engages a series of processing 

mechanisms that lead to access of the lexicon. First is the access stage, in which “the beginning 

of the music activates a series of potential tune candidates” that are based on the perceptual 

analysis of the pitch and temporal structure of the input. The selection stage reduces the number 

of candidates as more musical information unfolds, until one option emerges as the best fit. 

Lastly, there is also an integration stage, where the melody or phrase is placed within the broader 

musical context of the whole piece (Peretz, Gosselin, Belin, Zatorre, Plailly, & Tillmann, 2009). 

Because the concept of a musical lexicon has recently been introduced to the field, little is 

known about its capacity, but it is assumed to be quite vast. It would be extremely interesting to 

investigate the average storage capacity of the musical lexicon, for musicians and non-musicians, 

and compare this to the average capacity of the linguistic lexicon. 

 

1.1.3 Interim Summary of Musical Memory 

 Empirical findings show that memory for music changes over time.  Immediately upon 

hearing a new melody, the melodic contour and salient rhythmic events will be encoded. When a 

melody with the same contour is played for comparison, the melodies will often mistakenly be 

judged as the same, regardless of musical training. After some time (note that the exact length of 

time warrants investigation), the exact interval pattern is accessible in memory. In well-known 
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melodies, such as those in most individuals’ musical lexicon (e.g., Twinkle Twinkle), the memory 

is invariant with relation to key, tempo, and timbre. In addition, for specific musical pieces that 

are repeatedly heard, absolute features such as tempo and timbre are likely to be stored. 

 One of the primary goals of the research within this dissertation is to fill in the gap of 

knowledge between STM and LTM for music. Many studies have examined memory after initial 

exposure to novel melodies, and some have investigated the nature of memory for well-known 

music, but little work has explored the relationship between the two. Therefore, one of the main 

objectives of this dissertation is to address how memory representations change during the 

learning process as melodies in STM are more robustly encoded over time. 

 

1.2 Domain General Processing 
  
1.2.1 Insight from the Visual Modality 
 

Studies of memory in non-musical domains can both provide a useful comparative 

context for understanding findings in music, but also inspire new directions for investigation. It 

can be especially interesting to examine cognition across modalities to test whether processing 

mechanisms are conserved and reused, or domain specific. Research has historically implied, for 

example, that we have a robust visual and auditory representation of the world. Visual memory 

can be surprisingly detailed and complete (Shepard, 1967), and recent findings continue to 

demonstrate that we have a large memory capacity for visual information (e.g., Brady, Konkle, 

Alvarez, & Oliva, 2008). Similar findings exist in the auditory modality. In the domain of music, 

as discussed earlier, listeners demonstrate a large musical lexicon (Peretz, et al., 2009), and even 

non-musicians are able to recall the absolute pitches of a piece with notable accuracy (Levitin, 

1994). Despite these findings, there is also evidence to the contrary: Bartlett demonstrated 
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decades ago that participants do not retain a verbatim account of speech or prose (Bartlett, 1932), 

and many studies in music perception have revealed listeners’ poor ability to detect changes 

introduced to music (e.g., Halpern & Bartlett, 2010; Snyder, 2000; Dowling & Bartlett, 1981; 

Cuddy, Cohen, & Miller, 1979). Further, auditory recognition memory has been demonstrated to 

be inferior to visual recognition memory for a range of stimuli (Cohen, Horowitz, & Wolfe, 

2009). Even in visual perception, viewers can be surprisingly poor at detecting changes to a 

visual scene, as shown through studies of change blindness (e.g., Simons & Rensink, 2005). 

Extensive work on this topic has helped to clarify this seeming paradox by demonstrating that 

viewers encode an incomplete representation of visual scenes (e.g., Rensink, O’Regan, & Clark, 

1997; Simons & Levin, 1997; Simons & Ambinder, 2005), and instead tend to retain salient 

information and a general semantic understanding, or gist, of the scene (Oliva & Torralba, 2006; 

Oliva, 2005; Wolfe, 1998). Chapter 2 of this dissertation seeks to explore whether the same holds 

true in the auditory domain. 

 

1.2.2 Gist Across Domains 

Comparing memory representations in vision and audition may yield insight into whether 

processing mechanisms are shared across domains (For a review comparing visual and auditory 

change detection, see Snyder & Gregg, 2011). Because the early pathways of vision and audition 

utilize different physiological mechanisms, the most insightful comparison between the 

modalities will be with regard to high-level effects. The roles of saliency and gist memory in 

object and scene perception are of current interest in the vision literature (Oliva & Torralba, 

2006; Oliva, 2005; Bar, 2004; Hollingworth, 2003; Rensink et al., 1997), but these topics have 

not yet received adequate attention in audition (but see Harding, Cooke, & Konig, 2007 for an 
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account of auditory gist). Failure to detect change may be attributed to the changed item(s) 

conforming to the observer’s schema or gist memory of the scene. Here, musical gist is defined 

as a memory representation for schematically consistent tones – a general abstraction that lacks 

full detail of the original stimulus. 

Vision researchers have offered the possibility that viewers primarily encode the general 

schematic attributes of a visual scene upon brief initial viewing (Rensink et al., 1997; Oliva & 

Torralba, 2006). When a visual stimulus is categorized using a high-level semantic label (such as 

“beach at sunset”), the semantic context can both prime object recognition within the scene (Bar, 

2004; Oliva & Torralba, 2007), and cause changes consistent with the schema to go undetected 

while schema-inconsistent changes are more likely to be remembered (Sakamoto & Love, 2004; 

Rensink, 2002). In situations in which schematic processing is compromised, such as the 

presentation of an unusual or scrambled context, change detection performance declines 

(Zimmermann, Schnier, & Lappe, 2010). 

The high-level, semantic label can be thought of as a kind of conceptual gist, and 

interestingly, a distinction has been made in vision between conceptual and perceptual gists that 

may be a useful when applied to auditory perception. As defined by Aude Oliva, a perceptual 

gist is the “structural representation of a scene” that is constructed during perception, while a 

conceptual gist is broader and “includes the semantic information that is inferred while viewing a 

scene or shortly after the scene has disappeared from view” (Oliva, 2005). As one views 

examples of a scene, one gradually learns the statistical regularities of that scene. Within a beach 

scene, for example, one is likely to see sand and waves that are displayed with a particular spatial 

relationship. The greater number of beach scenes viewed, the richer the semantic, conceptual gist 

for “beach”. The two types of gist are connected. A conceptual gist (or schema) may influence 
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perception (and consequently the perceptual gist formed) by directing attention and creating 

expectations about objects that are likely to be present in the scene. And conversely, the 

conceptual gist is created and modified by perceptual experience. In music, higher level 

schematic knowledge is like a conceptual gist that guides perception and expectation of the 

forthcoming music. The abstracted memory formed upon hearing an excerpt is akin to a 

perceptual gist. 

The distinction between perceptual and conceptual gist is also reminiscent of the 

distinction between familiarity and recollection, as outlined by Halpern and Bartlett (2010). That 

is, familiarity is described as a general sense that the music has been heard before, and is devoid 

of extra-musical contextual cues. Recollection is described as a conscious recall of particular 

features and contextual information about music. Recollection therefore contains a component of 

episodic memory, and can be related to Oliva’s perceptual gist. Familiarity, which is an 

abstraction from episodic context, is more akin to semantic memory, and the notion of 

conceptual gist.  

 

1.2.3 The Role of Expertise 

Successful change detection in the visual and auditory modalities can also depend on 

expertise within a particular domain. Evidence shows that experts can more quickly and 

efficiently encode chunks of information in their learned domain than their novice counterparts 

(Chase & Simon, 1973; Werner & Thies, 2000). Expertise seems to provide a high-level, robust 

processing framework that can facilitate pattern recognition and change detection. Therefore, 

trained musicians should demonstrate superior performance in change detection and musical 

memory tasks compared to novices. This question of expertise, as well as gist representations 
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and schematic processing, will be explored in Chapter 2 using a change detection paradigm 

inspired by findings in visual perception. 

 
 
1.3 Schematic Processing in Music 
 
 Dating back to Piaget (1926) and Bartlett (1932), investigations of schematic processing 

have contributed to our understanding of learning and memory. In the auditory modality, the 

research of Alan Bregman, W. Jay Dowling, Lola Cuddy, and others have explored the 

importance of “schema-based mechanisms” and the abstraction of tonal relationships (i.e., 

melodic contour, and the different function of pitches in the musical key) during music 

perception (Bregman, 1990; Cuddy, Cohen, & Mewhort, 1981; Dowling, 1978). Experience 

listening to commonly used musical devices or forms creates the mental framework we use for 

processing music (Gjerdingen, 1988; Lerdahl, 2001), and the underlying schemas are essentially 

a collection of rules that guide listeners’ perception of music by continually creating expectations 

about the forthcoming music (e.g., Krumhansl 1990; Narmour, 1992; Lerdahl & Jackendoff, 

1983; Huron, 2006). Although musicians may have more elaborated schemas, everyone exposed 

to Western classical music has implicitly learned these schemas. Again analogous with visual 

perception, some musical features can be encoded “veridically”, like the particular quality (or 

timbre) of a singer’s voice. Other musical features, such as pitch and rhythm, are not always 

remembered in detail. Rather than encode every feature of novel music, often only an abstraction 

(or gist), based on tonal and rhythmic schemata, is encoded which highlights certain salient 

features and general characteristics of the music (Snyder, 2000). 
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1.3.1 Overview of Musical Schemata 

 Although not always receiving due attention, schema theory has been mentioned in the 

field of music cognition for several decades. In A Classic Turn of Phrase, Gjerdingen (1988) 

gives a brief overview of schema theory and relates schematic processing to music.  He cites 

examples of musical schemata that were explored by the pioneering musicologist, Leonard 

Meyer (although Meyer called them archetypes): the “gap-fill” schema and the “changing-note” 

schema (Gjerdingen, 1988). A gap-fill schema is essentially when a melodic leap is followed by 

an ascending or descending sequence of tones that fills the gap (created by the initial musical 

interval leap). A changing-note schema features two dyads (sets of notes), where the first dyad 

leads away from the tonic pitch, and the second dyad leads back to the tonic. Even musically 

untrained listeners are capable of distilling and identifying these schemata from listening to 

examples containing both types (Gjerdingen, 1988). He later argues that musical schemata are 

made of the specific set of features that create a “style structure”. Style structures, as elaborated 

by Eugene Narmour, are the arrangement of “style forms” (e.g., a melodic triad) into common 

contexts, as specified by their statistical frequency of occurrence. In sum, musical schemata are 

mental frameworks of musical knowledge that are developed from previous experiences with 

style forms in certain musical contexts, and that operate using both bottom-up and top-down 

integrative processes (Gjerdingen, 1988). 

 Previous experience, and the sets of musical expectations that are derived from it, are also 

central to Eugene Narmour’s (1992) work. Narmour describes these expectations as top-down, 

hierarchically organized syntactic schemata. The hierarchical structure is in direct contrast with 

how earlier researchers described the functional organization of schemata (as a web-like network 

of associations). Arguably, this may be attributed to the structure of music itself, which lends 
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itself to hierarchical organization (e.g., Lerdahl and Jackendoff, 1996). In some sense, the entire 

Implication-Realization (I-R) model put forth by Narmour is built around schematic processing.  

The notions of Reversal and Continuation are expectations about how an implied melodic or 

harmonic trajectory will be realized. A Reversal is the expectation that after a large interval 

(equal to or larger than a perfect fifth) occurs, the next note is likely to frame a small interval in 

the opposite registral direction. Continuation occurs when a small interval (e.g., a major second) 

is followed by another small interval moving in the same registral direction (Narmour, 1992). 

When listening to specific musical examples, both of these features of the I-R model act as 

implicit schemata that guide the listener’s syntactic expectations. The beauty of this model is 

that, because of the specific predictions therein, extensive research has been able to test its 

accuracy (several empirical tests will be reviewed later).  

The way in which Fred Lerdahl, an influential music theorist and composer, describes 

schemata in Tonal Pitch Space is reminiscent of Narmour’s views. Schemata, he says, are 

flexible constructs that depend on a convergence of multiple factors, some of which are central, 

and others that are peripheral (Lerdahl, 2001). When central factors converge, the example is 

prototypical of that schema. Lerdahl gives several examples of musical schemata, which seem to 

range from the sub-phrase level to over-arching structural forms, such as the schema for a sonata 

or rondo. To cite one of his examples, consider the form of a musical sentence: First there is a 

musical statement and response, and then there is a continuation that leads into a cadence 

(Lerdahl, 2001). For Lerdahl, then, a schema is a kind of well-used musical device or form, 

recognized by listeners because of their frequency of use, and often familiar to music theory. 

Implicit in Lerdahl’s perspective is that we can define schemata based on the statistical 

frequency of patterns in music. Along these lines, in Music and Memory, Bob Snyder (2000) 
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describes musical schemata as networks of long-term memory associations that are essentially 

amalgamations of the statistical properties of music: semantic frameworks constructed from “the 

commonalities shared by different experiences” (Snyder, 2000). Over time, episodic memories 

gradually form a generalized schematic representation. In other words, specific instances become 

“fuzzy” memories as they blend into the existing schema; specific details are lost, but 

generalizability of the schemata is gained. Lastly, Snyder also suggests that schemata create 

expectations in the listener about how a musical sequence will continue.  

 

1.3.2 Schematic Processing as a Guide For Musical Expectation  

Schemata create a set of expectations in the listener, and research and theory surrounding 

tension/relaxation and melodic expectancy in music have formed a cornerstone of the field of 

music cognition. Melodic expectation, introduced by Leonard Meyer (1956) in his seminal work 

Emotion and Meaning in Music, is simply what a listener anticipates will come next in the 

melody. Meyer posited that an affective state is aroused in the listener when an expectation based 

on the musical context is not met. Researchers speak of tension and relaxation in music to 

describe musical motion – the ebb and flow of implication and realization as the music unfolds – 

and tension ratings are commonly used to assess melodic expectancy. When evaluating 

expectancy, tension ratings measure the degree of expectancy of the most expected event. 

Therefore, if a naive listener is experiencing a modern piece of music for the first time, they may 

not have a schema in place to make sense of what they hear, and they may have little idea of 

what might come next in the music. In this case, low tension ratings would reflect low musical 

expectancy. 
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In one approach to melodic expectation, the actual sequence of tension and relaxation in 

music is considered to be a schema (Bigand, 1993). Using Lerdahl and Jackendoff’s (1983) 

theory as a starting point, the author speculates that metrical structure, grouping structure, and 

tonal hierarchies are combined to evaluate musical tension. The tonal hierarchy, or 

importance/stability among a key’s scale degrees, is gradually learned from extensive exposure 

to Western music. Our implicit learning of this tonal structure develops from the statistical 

distribution of scale degrees and n-grams of scale degrees that exist in Western music 

(Krumhansl, 2000). Grouping structure and metrical structure lead to a time-span reduction of 

the music, which relays the structural importance of musical events (notes, chords, or rests) 

given a context. The time span reduction and tonal hierarchy together form a prolongational 

reduction analysis, which displays the perceived tension and relaxation of events in music as a 

hierarchy. To assess whether the prolongational reduction did in fact correlate with listeners’ 

perception of musical tension, Bigand (1993) tested musicians and non-musicians in two 

experiments, described below.   

Bigand (1993) was primarily concerned with the relative influence of tonal versus 

rhythmic structure (and their possible interaction) on the abstraction of tension/relaxation 

schemata. In the first study, melodies were segmented into melodic fragments (ending at 

different points in the melody) that varied in rhythmic and harmonic structure. The first set of 

melodies had the same melodic contour as the last set, but different implicit harmonies.  Rhythm 

was the same across the sets of melodies, but was manipulated within the set. To measure the 

perceived stability (tension) while listening to the melodies, listeners rated the “completeness” of 

the melody fragments. Bigand argued that if the tonal hierarchy is driving schematic 

representations, ratings should differ between the first set of melodies and the second (which 
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have different implicit tonal structures). Also, if metrical and durational structure impacts 

schematic processing, differences in tension should be found within the sets (which have 

differing rhythms and tone durations). Evidence was found to support both accounts: the 

harmonic structure and metrical structure guided listeners’ abstraction of tension and relaxation 

in the melodies. Specifically, less tension was reported on notes that were tonally stable and had 

longer durations on metrically strong beats. In the second study, Bigand (1993) found that 

musically trained listeners perceived more nuances in melodic expectation than untrained 

listeners, but that both groups abstracted the patterns of tension and release in a similar manner. 

In a different approach to testing melodic expectation, listeners heard part of a musical 

passage from Robert Schumann’s “Du Ring an meinem Finger”, and made predictions about 

what chord would likely follow (Schmuckler, 1989). This was done for 10 positions in the 

musical excerpt using the “probe position” technique. The expectation ratings were significantly 

correlated between listeners, and the “true continuation chords” (those actually next in the 

melodic sequence) were rated with significantly higher expectation than other continuation 

possibilities. These musically trained listeners were therefore fairly consistent in predicting the 

actual next chord in the sequence (Schmuckler, 1989). In the last study of this series, trained 

pianists were asked to perform how they thought unfinished melodic fragments (the same probe 

positions as before) would continue. There was a highly significant correlation between the first 

chord pianists played to continue the sequence (Schmuckler, 1989). This provides compelling 

evidence for the consistency of melodic expectancy across individuals. Schematic 

representations share specific features across listeners that govern similar processing and 

expectation in music. This is what enables a group of listeners to hear a new piece of music and 

have simultaneously elicited emotional reactions to the unfolding harmonies. It would be 
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interesting to test whether a computational neural network would perform similarly to the 

pianists in terms of prediction and melodic continuation. 

 

1.3.3 Invariance 

Temporal and tonal schemata share an important property: invariance. If a listener can 

recognize a song from different performances, the schematic representation of the music in long-

term memory must contain invariant properties (Peretz & Zatorre, 2005). A property displays 

relational invariance when it can be shifted or multiplied by a constant and still be recognized as 

an exemplar of the category. There are two main types of relational invariance in music  – 

temporal (including tempo and rhythmic patterns) and tonal (both relative pitch translations and 

octave equivalence). Changing the tempo of a piece maintains the relationship of durations in the 

music. In other words, tempo invariance means that the same music can be recognized at 

different tempi because one is essentially multiplying all of the note durations by a constant. 

Rhythmic invariance could be considered a subset of temporal invariance, in that rhythms can 

often be recognized when the speed at which they are performed is changed. Tonal invariance 

can be found in the relationships between pitches, such that the notes in a melody, for example, 

can be shifted by an interval (e.g., a major third), and still be recognized as the same melody. 

Listeners demonstrate this sort of perceptual invariance very frequently; we hear the tune 

“Happy Birthday” sung in many different musical keys over the course of our lifetime, and yet 

we always correctly and effortlessly recognize the tune (and could do so even when lyrics are not 

present). A special kind of tonal invariance is octave equivalence (in this case, all of the notes in 

the tune would be shifted an octave). For example, an F# can be recognized at different pitch 

heights (F#s in different registers sound perceptually similar because they have the same chroma, 
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or pitch class). Clearly, invariant properties are important to the listener for recognizing familiar 

music. Relational invariance is also important to musical performers, who often demonstrate the 

ability to play a piece in different tempos and keys. Incidentally, lack of temporal or tonal 

relational invariance means that the learning was not sufficiently general to successfully transfer 

knowledge of one tempo to another, or one key to another (Palmer, 1997). This can often be 

attributed to a lack of variance during exposure. 

 

1.3.4 Schematic Processing as Perceptual Interference 

In novel, uncommon situations, schematic expectations can provide an inappropriate 

framework that leaves the listener frustrated, bored, or confused. For example, when exposed to 

music from another culture that is built on a different scale system, listeners will try to 

cognitively organize the auditory information using their existing schemata. But because this 

framework is not suited to the different interval patterns or harmonic structure, the listener may 

not perceive the underlying structural regularities in the music, or may misremember features of 

the music (Dowling, 1978; also see Frances, 1958). According to Dowling (1978), “…if people 

in our Western European culture hear a melody from some non-Western culture using a non-

Western scale, their reproductions of that melody will use their own Western scale…”. An effect 

of the misuse of schemas on memory will be discussed in Chapter 2. This effect is also apparent 

in non-musical domains. In language, for example, Bartlett showed that participants who read a 

story containing elements they did not understand tended to recall the story’s elements in more 

familiar terms that were in accordance with their schemata (Bartlett, 1932). 

In regard to non-metrical and non-tonal sequences, studies show that information that 

does not fit into a schema is not comprehended as robustly as information that does.  
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Unstructured tonal patterns, which do not quite fit in with a listener’s schema, will be recalled 

less accurately than structured sequences (Deutsch, 1980). There is also evidence that listeners 

are able to tap rhythms that fall into a metrical framework far more accurately than sequences 

that do not (Povel & Essens, 1985). In a study by Patel and colleagues (2005), listeners 

attempting to tap along to a “weakly metrical” sequence after hearing isochronous tones of the 

same meter were able to synchronize to the beat, but were not as accurate as in the strongly 

metrical condition.  Listeners tried to apply their metrical schemata framework, but only with 

limited success.  

 Most often, schemata are indispensably useful for gaining a rich understanding and 

appreciation of music, but at times they can cause information to be misinterpreted or 

misremembered.  This beckons an exploration of the relationship between schematic processing 

mechanisms and memory for music.  

 

1.3.5 Summary of Schematic Processing in Music 

Considering all of these different perspectives on schemata, we can extract (at least) five 

central points: First, schemata result from extensive musical experience, and involve an 

interaction of long-term memory associations and short-term/working memory. Second, 

frequently repeated patterns and musical features, from common cadences to tonality, are likely 

to be extracted. Third, musical schemata (comprising this knowledge of common patterns and 

rules) actively guide listeners’ perception by creating a set of online musical expectations. 

Fourth, schematic processing influences what is encoded into a gist memory representation. And 

lastly, schemata allow for musical invariance, which makes this processing system extremely 

useful and robust. 
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1.4 Paradigms for Studying Schemata and Musical Memory 
 
 The previous sections have largely focused on behavioral approaches to music perception 

and memory, and understanding the function of schemas. Behavioral work is limited, however, 

in explaining how schemas are formed. Computational approaches offer a means of investigating 

the development of schemas, which in turn can lend insight into how novel musical information 

is perceived and encoded in memory. In addition, neuroscientific methods nicely complement 

behavioral and computational research by showing how differential neural processing can 

underlie different behavioral outcomes, and how the brain changes with experience. 

 The following section provides a general overview of the ways in which non-behavioral 

methods can inform our understanding of learning and memory in music. A more comprehensive 

background on computational models, information theory applications, and EEG findings will be 

provided at the beginning of those respective chapters of this dissertation. 

 

1.4.1 Computational Modeling 
 
 It is very fitting to use computational approaches to help explain schematic processing 

and musical memory. Schematic processing is, in a sense, a distributed set of weights (or 

interconnected networks) pertaining to a particular domain or concept. After going through 

extensive training, a network’s internal state reflects a statistical representation of the melodic 

and rhythmic patterns within the music. Once a model’s internal representations are formed, it 

can be tested and compared to human listeners’ performance on expectation and memory tasks. 

When the network is tested on novel input, it applies the statistical patterns it has extracted to the 

new repertoire – this is essentially schematic processing in action. One can also compare the 

learning trajectory of networks that are exposed to very different training corpora (reflecting, for 
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example, music that varies in tonal structure), to model perception of different types of melodic 

sequences. Various approaches have tested the extent to which computational models are able to 

learn music and exercise schematic processing (through measures of expectation and prediction) 

in a manner similar to human listeners. 

Researchers have implemented a range of symbolic and statistical approaches to model 

tonality and key-finding in music (e.g. Griffith, 1994; Mozer, 1994), temporal dynamics and 

rhythmic entrainment (Large & Palmer, 2004; Large & Kolen, 1999), and melodic expectancy 

(Paiement et al., 2009; Pearce & Wiggins, 2004). One of the most successful models in the field, 

called IDyOM for Information Dynamics of Music, is an n-gram model that features a weighted 

combination of higher- and lower-order models (Pearce & Wiggins, 2006). While Narmour 

(1992) claimed that the bottom-up processes of the Implication-Realization model were innate, 

Pearce and Wiggins (2006) argue that bottom-up features (namely, those giving rise to patterns 

of expectancy) can be accounted for from the statistical regularities that the network extracts 

from the input. Indeed, this unsupervised learning model has proven to be one of the most 

successful models of music perception that exists in the literature. For example, in one study, 

after training on a large corpus of folk songs, ballads, and Bach chorales, IDyOM was compared 

to behavioral findings on musical expectancy. Overall, the model performed similarly to human 

listeners, accounting for up to 83% of the variance in continuation ratings of melodies from 

empirical work (Pearce & Wiggins, 2006).  

Modeling provides important converging evidence for how listeners perceive and process 

music. While empirical tests, such as those in Dowling (1978), can provide evidence for what is 

or is not likely to be stored in short-term memory, computational models can address how 

information can be encoded and extracted. More of this type research is needed to provide a 
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greater understanding of how statistical regularities are learned and applied toward novel musical 

examples. It would be interesting and insightful, for example, to train a model on a corpus of 

Western tonal music and then test the network on atonal stimuli. This could shed light on how 

schematic processing influences the memory representation that is formed upon hearing an 

atonal or unstructured melody. 

 

1.4.2 Information Theory 
 

Information theory (IT) was developed by Claude Shannon in the 1940s, and has had far-

reaching impact on everything from linguistics to genetics. IT addresses how much information 

is contained in a message being transmitted or stored. Entropy is a fundamental part of IT, and 

measures the average number of bits required to communicate or store one unit of a message. It 

is a quantification of the amount of uncertainty in predicting the value of the next unit of a 

sequence, and has recently been applied with notable success to the fields of music cognition and 

computational musicology. 

With the previous discussion of melodic expectation in mind, it should be no surprise that 

information theoretic measures are well suited for characterizing listeners’ responses to music. 

Indeed, measures of surprisingness (entropy) have successfully modeled listeners’ expectations 

during music listening (Pearce & Wiggins, 2006). Predictive information, which measures the 

amount of information afforded by the current observation about future observations, has also 

played an important role in models of music information processing (Rohrmeier & Koelsch, 

2012; Pearce & Wiggins, 2004; Abdallah & Plumbley, 2009). Information theory has contributed 

to some of the most successful computational models in the field, such as IDyOM (Pearce & 
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Wiggins, 2004), and has also been effective in predicting which tones will elicit certain event-

related responses in an EEG signal, as described below. 

 
 
1.4.3 Electroencephalography 
 
 Behavioral and computational methods lend insight into how the brain perceives and 

learns music, but neuroscientific methods are clearly needed for a more detailed and complete 

account. Although fMRI boasts fine spatial precision and has been used with increasingly 

frequency to examine brain activity during music listening, the temporal resolution (on the order 

of 1-2 seconds) is limiting for this type of temporal signal. Electroencephalography (EEG), 

however, offers fine temporal resolution (on the order of 1-2 ms), which makes this method very 

well suited for testing musical processing as every tone in a musical sequence is presented. 

 EEG has been used to study affective response in listeners, expectancy violations of 

tonality and harmony, differences in neural processing between musicians and non-musicians, 

and shared processing mechanisms between music and language, such as syntactic and semantic 

processing. Time-frequency approaches have been used, but many more studies have utilized 

methods examining event-related potentials (ERPs). 

 The majority of ERP studies in the area of music perception test some type of violation of 

musical expectation. Researchers have found that when the ending to a musical phrase is 

syntactically inappropriate, an early right anterior negativity (ERAN) occurs, which peaks 200ms 

on average after the unexpected chord (Koelsh & Friederici, 2003). This component is analogous 

to the ELAN in language (in response to syntactic violation of phrase structure), and the 

amplitude of the ERAN depends on the degree of surprise of the musical syntactic violation. The 

ERAN is often followed by a late frontal negative component, the N5, which has a maximum 
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negativity 500-550ms post-onset. This component is believed to reflect the process of integrating 

the current tone or chord into ongoing the musical context (Steinbeis, Koelsch, & Sloboda, 2006; 

Koelsh & Friederici, 2003). The ERAN is more than a simple change detector, and can be 

distinguished from the MMN in the following manner: In studies that present an unexpected 

Neapolitan chord (a major chord built on the lowered 2nd scale degree) on either temporal 

position 3 or 5 of a sequence of five chords, the amplitude of the ERAN is modulated depending 

on the position of the chord (with a greater amplitude for position 5 of the sequence). This 

signifies sensitivity to the degree of structural violation of the unexpected element. The MMN 

does not display this sensitivity; its amplitude is unaffected by chord position (Koelsch, Gunter, 

Schroger, Tervaniemi, Sammler, & Friederici, 2001). The ERAN and N5 components can be 

thought of as neural responses to the violation of listeners’ musical schemata. Interestingly, they 

have been displayed in both musicians and non-musicians, demonstrating that everyday exposure 

to music yields enough implicit knowledge of tonality and harmony to lead to these neural 

signatures of surprise without explicit training. Time-frequency approaches, such as those 

examining coherence and phase synchronization during music listening, can lend additional 

insight into music perception, but an overview of these methods and research findings will be 

reserved for Chapter 4. 

 When music EEG findings are taken together with behavioral and computational findings 

regarding melodic expectation and short-term memory, we can see that schematic processing 

creates a robust set of expectations, largely shared across listeners, that guides music perception 

in real time. In computational models, unexpected musical events are represented as being less 

probable. When human listeners’ expectations are violated, memory for unexpected tones 

improves due to saliency, unless the music lacks predictable structure. These behavioral findings, 
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in turn, are better understood in the context of EEG studies, which demonstrate how the brain 

displays heightened neural response to violations of schematic expectations. 

 
 
1.5 Conclusions 
 
 In sum, although extensive research has examined short-term and long-term musical 

memory, little is known about the processing between these two states (that is, the trajectory of 

musical learning). This dissertation addresses what is likely to be stored in memory upon initial 

hearing of a novel melody, and how this representation becomes more richly detailed with 

exposure. Specifically, the following chapters address: 1) what is likely to be stored in an initial, 

melodic gist memory representation, 2) the effect of schematic processing on learning and 

memory, 3) the role of expertise in musical memory, 4) the trajectory of learning tonal patterns 

in music varying in structure, 5) the information theoretic properties of music that impact 

musical expectation and memory, and 6) changes in neural activity as music is learned over time.  
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CHAPTER 2   

CHANGE DETECTION, SCHEMATIC PROCESSING, AND SHORT-TERM MEMORY 

IN MUSIC 

 

2.1 Introduction 

As discussed in the last chapter, recent research in vision has highlighted the importance 

of semantics, saliency, and gist representations in memory. Although the linguistic equivalent 

has been explored, few studies have investigated schematic short-term memory in the non-

linguistic auditory domain. To this end, music has the advantage that there are relatively large 

differences in the expertise of individuals. We can therefore assess the contribution of expertise 

to the schematic processing of sounds, which is argued here to play a major role in change 

detection.  

The present studies illuminate what is encoded into a gist memory representation by 

testing the degree to which listeners can detect single-tone changes to brief melodies.  

In Experiment 1, musical memory was tested in both musicians and non-musicians using 

melodies varying in musical structure. Experiment 2 utilized a full-factorial design to examine 

several musical parameters, including tonality, pitch interval, metrical position, and note 

duration. The results suggest that listeners form a memory representation for schematically 

consistent tones, which may be referred to as the musical gist. In most cases, trained musicians 

form a more robust gist, and consequently, display greater change detection, than non-musicians. 

Surprisingly, however, schematically inconsistent tones in the initial melody can lead to worse 

change detection in musicians compared to their untrained counterparts. 
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2.1.1 Incomplete Memory Representations in Music  

There exists clear evidence that memory for auditory details is fallible (e.g., Holst & 

Pezdek, 2006), as shown through studies of change deafness (Gregg & Samuel, 2008; 

Eramudugolla, Irvine, McAnally, Martin, & Mattingley, 2005; Vitevitch, 2003) and change 

detection paradigms in music (e.g., Jones, Boltz, & Kidd, 1982; Dowling & Bartlett, 1981; 

Cuddy, Cohen, & Miller, 1979). Work in speech perception and reading comprehension, dating 

back to Bartlett (1932) has provided evidence that listeners and readers do not form a completely 

robust memory representation. Rather, memory performance is fallible, often because recall 

conforms to general, gist-like properties of the stimulus type (for the same reason we are 

susceptible to false alarms in memory tests of word lists). In the non-speech auditory modality, 

change deafness research has demonstrated that change detection is facilitated when attention is 

directed towards the to-be-changed auditory object within the competing auditory scene 

(Eramudugolla et al., 2005). Further, Gregg and Samuel (2009) found that between-category 

changes are detected more frequently than within-category changes to sound objects, providing 

evidence that change detection often relies on high-level, schematic representations. 

As discussed in the last chapter, schematic processing can offer a useful conceptual 

framework with which to understand the process of learning new music and lend insight into 

what is encoded in memory. Although the effect of schematic processing on memory has been 

demonstrated with speech and non-speech auditory objects, more research should examine non-

vocal music, as this domain has the advantage of being a structured temporal sequence that is 

free of explicit semantic content. Whereas language uses an external reference frame to convey 

meaning, music does not, and therefore has the potential to uncover basic processing 

mechanisms of the auditory system. Furthermore, music provides a means of quantifying levels 
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of expertise: individuals with varying years of musical training can be tested to elucidate the 

impact of training on musical memory and change detection. This paper aims to explore whether 

the high-level mechanisms underlying schematic processing and change detection in vision and 

speech extend more broadly to musical memory. 

Several different methods may be employed to assess what is likely encoded in short-

term musical memory. In a study by Welker (1982), participants listened to variations on a 

musical theme (not hearing the prototypical theme itself), and were instructed to abstract the 

“central tendency of all the melodic patterns” they heard. In a subsequent false recognition test, 

participants displayed the most false positives for the prototypical theme, which infers that they 

successfully abstracted the theme’s gist from its variations (Welker, 1982). Gist memory may be 

more directly assessed in trained musicians using methods of recall or reproduction. In a study 

examining the ability to recognize invariant musical structure, professional pianists were asked 

to improvise on a set of melodies (Large, Palmer, & Pollack, 1995). Across pianists, these 

improvisations were largely based on the structurally important melodic and rhythmic events 

from the initial melodies (structurally important as outlined by the hierarchical models of music 

theory, e.g., Lerdahl and Jackendoff, 1983). This provides further evidence that people are able 

to extract, and in this case, reproduce through performance, a musical gist. As an account for 

why listeners abstract this generalized backbone of the music, Large et al (1995) suggest that 

memory often serves the same purpose in music as language, where the global meaning (or gist) 

of the conversation is more important than the underlying details. Across domains, our 

perceptual and memory systems largely function to remember the general semantic information, 

or gist, along with salient details of the percept. 
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Although the concept of an auditory gist has been offered in the literature (e.g., Harding, 

Cooke, & Konig, 2007), little is known about its content and level of detail. Therefore, because 

the term gist has a vague and fuzzy connotation, another goal of this paper is to explicate features 

that contribute to a musical gist, and explore whether variations in the completeness of our 

auditory representations are systematic. Two central hypotheses of the paper are that, firstly, 

schematic processing often dictates what will be encoded in a gist-like memory for novel music, 

and will therefore also lend insight to change detection performance; and secondly, trained 

musicians will be more likely to detect changes in brief, unfamiliar melodies than non-musicians. 

Previous research also suggests that atypical musical contexts, such as melodies lacking in 

typical tonal structure, will hinder change detection, and changes that violate tonality will 

facilitate change detection (Bartlett & Dowling, 1988). 

In sum, the present studies explore whether the high-level mechanisms responsible for 

short-term memory and change detection in vision, especially schematic processing, saliency, 

and expertise, underlie those employed for musical change detection. The following studies 

concentrate on the contributions of these factors on musical change detection by arguing that 

listeners form a schematic, gist-like memory of music that may enhance processing efficiency, 

but at the expense of detail. Experiment 1 tests the impact of musical structure and musical 

expertise on musical change detection.  

 

2.2 Experiment 1:  Musical Structure 
 
Just as the statistical properties of images can dictate how difficult it is to detect a change 

within the image, musical structure can determine music’s memorability. The following study 

addresses the role of musical structure in change detection, while also examining whether 
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musical training creates more robust schemata for processing musical structure, yielding better 

change detection. 

Empirical research motivated by music theory has helped elucidate how listeners 

perceive musical structure. For example, tonality, the relationship between pitches in the musical 

key, provides listeners with a framework for perceptually organizing tones in time. This 

perceptual framework allows for more efficient processing and encoding of Western tonal 

information. Musical events at the top of the hierarchy (that is, structurally stable notes) are more 

likely to be encoded in memory than events low in the hierarchy. After rating the endings of 

musical phrases on a scale of low to high expectancy, listeners were found to subsequently 

remember high-expectancy melodies better than mid- and low-expectancy melodies 

(Schmuckler, 1997). In other words, just as in the visual modality, schematically central events 

(those which are highly predicted) are more strongly encoded than “peripheral” events in the 

domain of music (Schmuckler, 1997).  

In addition to the general schematic framework that contributes to global gist memory 

representations, unexpected events can activate domain-general novelty detection mechanisms 

and be highly memorable. While listening to chord sequences, greater activation is found in a 

distributed network of cortical areas for deviant (out-of-key) chords, showing that unexpected 

events elicit larger brain responses (Koelsch, et al., 2002). We therefore hypothesize that when 

an unexpected, salient event draws the listener’s attention, change detection should be worse 

than when the sound is in the perceptual background. 

The role of tonal structure has been of interest within the field of music cognition for 

many years. In a study by Cuddy, Cohen, and Miller (1979), for example, listeners were asked to 

compare transpositions of melodies consisting of three tones, where the melodies were 
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embedded within diatonic (in the musical key) or non-diatonic (outside the key) contexts, or 

given no additional tonal context. The sequences were either exact transpositions or differed by 

one tone. Change detection suffered when a non-diatonic context was present, and incorrect 

transpositions were not detected as reliably when the altered tone was within the key. This 

provides evidence that tonal structure enables effective schematic processing, and that tone 

changes are more detectable when they violate the surrounding tonal structure. The research did 

not, however, test sequences completely lacking in tonal structure, or examine the effect of 

changing a non-diatonic tone in the initial melody to a diatonic tone in the comparison melody. 

Dowling (1978; 1991) has suggested that in addition to the key and listeners’ tonal 

schemas, short-term musical memory is predominantly influenced by melodic contour (the 

pattern of rising and falling pitches in the melody). Whereas tonal schemas reflect high-level 

(implicit) knowledge about pitch relationships, such as how a major key sounds different than a 

minor key, the melodic contour contains gross information about the shape of the musical phrase.  

This may help create the perceptual framework upon which musical anchors can be placed in 

memory. The present studies therefore always maintain the same contour between melodies. In 

addition, whereas the research of Cuddy, Dowling, Bartlett, and colleagues most often involve 

the comparison of transposed melodies, absolute pitches (not relative pitches) will be used in the 

present experiments for a more direct comparison to studies in visual perception.  

Many music perception studies examine the effect of musical expertise; that is, musicians 

versus non-musicians. Through training and years of performing, musicians acquire very robust 

schemas. Therefore, it is useful to give musicians difficult tasks that strain their schematic 

processing, to determine when the functionality of the schemas breaks down. Testing musicians 

can also be useful because of their ability to perform, recall, or transcribe what they have heard. 
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When musicians are asked to notate musical sequences in perceptual and memory tasks, their 

performance is compromised when less structure is present (Deutsch, 1980; Roberts, 1986), with 

both tonal and temporal structure aiding accurate transcription. 

 The present work further investigates the role of musical structure in perception and 

memory of musicians and non-musicians. In the following study, listeners heard a brief, two-

measure melody followed by a comparison melody that may or may not have contained a 

changed tone. Unlike the studies by Cuddy and colleagues, melodies were not transposed, both 

to more accurately parallel studies of change blindness, and to see how listeners performed when 

all but one small change remained constant. On trials containing a changed tone, the smallest 

interval of change was one semitone, which is at least seven to ten times larger than the threshold 

for hearing differences in pitch (Wier, Jesteadt, & Green, 1977; Tervaniemi, Just, Koelsch, 

Widmann, & Schröger, 2004). Thus, the tones in isolation would never be confused with one 

another. This study was directed at understanding the properties of melodic contexts that prevent 

listeners from hearing these relatively large pitch changes.  

The effects of two factors were explored on the ability to detect changes of a tone within 

a melody. One factor was musical structure, in which some melodies were stylistic and 

conformed to musical conventions, some melodies were non-stylistic, and others were generated 

randomly. When the tonal structure is ambiguous, schematic processing is more difficult, and 

less detail should be encoded in memory.  Thus, when less musical structure that is present, 

change detection performance should decrease. The second factor was musical expertise; the 

performance of non-musicians was compared to professional musicians, with the expectation that 

musicians show superior change detection performance compared to non-musicians. 
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2.2.1 Method 

2.2.1.1 Participants 

Two groups of listeners participated in the experiment: Non-musicians and professional 

musicians. The non-musicians were 15 Cornell undergraduates who volunteered to participate in 

the experiment in exchange for extra credit in a psychology course. They had little musical 

training (average number of years studying an instrument = 2.9 yrs, std = 3.1 yrs).  Of those who 

had once studied music, none of the non-musicians were currently performing.  

The 11 professional musicians were members of the Indianapolis Symphony Orchestra, 

received $20 for their participation, and had extensive musical training and performance 

experience (average = 44.9 yrs, std = 8.6 yrs). 

 

2.2.1.2 Stimuli 

Seventy-two melodies were used in the experiment. They were composed specifically for 

the study and were unfamiliar to the listeners. The melodies were two measures long (in 4/4 

time). The rhythms varied between melodies, but were subject to the constraint that each 

measure includes two quarter notes (long tones) and four eighth notes (short tones). The 

melodies were in the musical key of C, G, D, or F Major. The experiment contained 36 stylistic 

melodies as well as 36 melodies not conforming to traditional rules of Western tonal music, 

including 18 non-stylistic melodies and 18 random melodies. Stylistic melodies conformed to 

normal conventions of Western classical music. Non-stylistic melodies sounded awkward, 

containing strange melodic jumps or unusual tonal progressions. Random melodies were created 

using a random number generator to choose tones in the two octave range beginning with the 

tonic of the key. For example, in the key of C Major, a random number of ‘1’ would correspond 
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to C (262 Hz), ‘2’ to D (294 Hz), ‘3’ to E (330 Hz), and so on. Examples of the three kinds of 

melodies are shown below in Figure 2.1. 

 

   

 

 

 
 
Figure 2.1.  Example stimuli used in Experiment 1. Each stimulus contains a two-measure 
melody, 500ms of white noise, and a comparison two-measure melody.  The melodies are, from 
top to bottom: Stylistic (change condition), non-stylistic (change condition), and random (same 
condition). 
 

 

2.2.1.3 Apparatus 

The melodies were created in Digital Performer 4.5, saved as MIDI (Musical Instrument 

Digital Interface) files, and then converted into .wav files using a MIDI to .wav converter. All of 

the melodies were of a solo piano timbre. Five hundred ms of white noise was inserted between 

the first and second melodies using Cool Edit 2000. The melodies were presented on a Del 

Inspiron laptop using E-Prime software, which randomized the 72 trials and also collected the 

responses. They were delivered to participants through Bose noise-canceling headphones at a 

comfortable listening volume.  
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2.2.1.4 Procedure 
 

Participants read the instructions, and then a brief practice session began to familiarize 

participants with the general procedure. The three melodies in the practice session were different 

from those used in the experiment. The participants then heard the 72 trials of the experiment, 

and their task was to judge whether the two melodies in each trial were the same or different. 

Each trial consisted of a four-second-long melody, 500 ms of white noise, and then another four-

second-long melody. The second melody was either an exact repetition of the first melody (in the 

same condition) or an altered version with one tone changed (in the change condition). There 

were six same trials per melodic condition, yielding a total of 18 same trials. In the remaining 54 

change trials, the interval between the to-be-changed tone in the first melody and the 

corresponding changed tone in the second melody ranged from one semitone (a minor 2nd) to 

seven semitones (a perfect 5th). Within a trial, the rhythm of the two melodies was the same. The 

changed tone never occurred on the very first or very last tone, but could occur anywhere else 

within the two measures. Also, the change always preserved the contour (the pattern of rising 

and falling in pitch) of the original melody. The trials from each melodic condition, including 

same and change trials, were randomized and presented in one listening session. Participants 

were given unlimited time to respond, and upon the participant’s response the next trial began. 

No feedback about performance accuracy was given. Responses were made on a computer 

interface with 6 buttons displayed with ‘1’ labeled absolutely sure same and ‘6' labeled 

absolutely sure different; numbers in between were used to express degrees of certainty. 

Participants were encouraged to use the full range of the scale. 
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2.2.2 Results  
 

A mixed design 3 X 2 X 2 (Melody Type X Change X Musical Expertise) ANOVA was 

performed on the data, with musical expertise as the between-subjects variable, and melody type 

and change as the within-subjects variables. Mean ratings were analyzed to determine the 

participants’ performance; better performance consisted of ratings closer to ‘6’ on change trials 

and ratings closer to ‘1’ on same trials.  

 

2.2.2.1 Effects of Melody Type and Musical Expertise 

The results for change trials are shown in Figure 2.2. There was a significant effect of 

melody type, F(2,48) = 17.78, p < .001, for both professional musicians and non-musicians.  

There was also an effect of musical expertise, with professional musicians outperforming non-

musicians, F(1,24) = 4.85, p < .05. Though professional musicians were more adept than non-

musicians, both groups were able to perform the task, showing a significantly different response 

for change than same stimuli, F(1,24) = 76.30, p < .001. The statistical interaction between 

melody type and musical expertise was significant, F(2,48) = 8.44, p = .001. Non-musicians 

performed poorly on both non-stylistic change trials and random change trials, and a linear 

contrast showed that there was no statistical difference in performance between these conditions 

for non-musicians, F(1,48) = .54, p = .46. Professional musicians, however, performed 

significantly better on random change trials than non-stylistic change trials, F(1,48) = 11.80, p < 

.01. Performance on same trials (Figure 2.2B) clarifies this somewhat counter-intuitive finding. 

For same trials, an interaction was present between musical expertise and melody type 

such that professional musicians were more likely than non-musicians to judge same random 

stimuli as different, F(2,48) = 6.34, p < .01. The professional musicians’ poor performance on 
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random same trials stemmed from a strong bias to report that these trials were changed. 

Consequently, the results were examined in terms of signal detection theory. 

 

 A 

B 

Figure 2.2. Experiment 1 mean responses for non-musicians and professional musicians across 
conditions. (A) Mean responses for change trials by melody type, where responses closer to ‘6’ 
indicate better performance. (B) Mean responses for same trials by melody type, where 
responses closer to ‘1’ indicate better performance.  Error bars represent standard error of the 
mean. 
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In addition, because the response scale included a measure of certainty of response, the 

data were dichotomized into 1-3 responses (responded “same”) and 4-6 responses (responded 

“change”) simply to confirm that participants’ “sureness” did not confound the mean ratings of 

change detection. The dichotomized data do show the same pattern of results as the mean 

response data reported above. This verifies that the above findings were not, for example, due to 

professional musicians displaying more confidence in their responses than non-musicians. As a 

result, the following analyses will continue to use mean response data. 

 

2.2.2.2 Signal Detection Analysis 

As hypothesized, due to their extensive training and performance of classical music, 

professional musicians consistently outperformed non-musicians, F(1, 24) = 4.85, p < .05, with 

the exception of the random same trials, for which they were outperformed by non-musicians. 

Figure 2.3 shows the results of the signal detection analysis. The criterion values are plotted in 

the graph above and the discriminability, d', values are plotted in the graph below. Figure 2.3A 

shows a strong criterion shift for random melodies for the professional musicians, demonstrating 

that they had a large bias to judge random same melodies as different.1 In addition to the main 

effect of melody type, F(2,48) = 11.17, p < .001, there was a significant interaction between 

melody type and musical expertise, F(2,48) = 5.29, p < .01, reflecting a criterion shift. Once this 

criterion shift is taken into account, one can see that professional musicians were more 

                                                
1 Although there were more Change trials than Same trials, there was no significant difference in 
Criterion (response bias) between Musicians and Non-musicians within Stylistic and Non-
stylistic conditions, and no significant difference in Criterion between Stylistic and Non-stylistic 
conditions. The significantly different response bias demonstrated by Musicians for Random 
melodies appears to be due to a psychological bias to report “different” for these trials (note that 
Non-musicians did not share this bias for Random melodies). 
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successful overall in discriminating between same and change trials than non-musicians, F(1,24) 

= 6.99, p = .014. This is apparent in Figure 2.3B, which shows d’, the ability to distinguish 

between same and change trials. There was a main effect of melody type, F(2,48) = 4.64, p = 

.014, with discriminability diminishing with decreased musical structure. The interaction 

between melody type and musical expertise was not significant, F(2,48) = 0.71, p = .499. 
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  A 

 
  B  

   
Figure 2.3. Results of signal detection theory analyses for Experiment 1. (A) Criterion values for 
professional and non-musicians across melody type. (B) Discriminability (d’) values for 
professional and non-musicians across melody type. Error bars represent standard error of the 
mean. 
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2.2.2.3 Summary 

Results confirmed that tonal structure has a considerable effect on listeners’ ability to 

detect relatively large changes in melodies. All participants found the task more difficult when 

the musical structure was less conventional. This verifies the hypothesis that tonality is a strong 

factor in the global processing of melodies; when the tonality was ambiguous in the less well-

structured melodies, performance on the task was impaired. Thus, it appears as though 

knowledge about musical style facilitates memory when the melody is conventional and hinders 

memory when it is unconventional. Musical expertise amplifies this effect, as musicians 

demonstrated better overall performance with stylistic melodies compared to non-stylistic and 

random melodies.2 Musicians’ poor performance with Random Same melodies indicates the 

powerful effect of schematic expectation during music perception: Musicians’ schemata, which 

are more highly developed than those of non-musicians, will be inappropriate when applied to 

Random melodies. 

Schemata help the listener organize and remember a musical percept, and performance 

deteriorates when the listener’s schemas are inappropriate or non-applicable. Although the global 

characteristics of music provide insight into musical memory, examining the specific types of 

changes that go unnoticed can provide a richer account of what is stored in short-term musical 

memory.  

 

 

 

                                                
2 It should be noted that, in regard to the age difference between the professional musicians and 
non-musician undergraduates, research has shown that age and musical experience do not appear 
to interact with respect to musical change detection performance (experience strongly outweighs 
the effect of age) (Dowling, Barlett, Halpern, & Andrews, 2008). 
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2.3 Experiment 2: Specific Musical Factors  

The importance of musical structure to memory and change detection is clear, but most 

often listeners will encounter music with normal (stylistic) structure. To gain a fuller 

understanding of which melodic properties have the greatest impact on musical memory under 

normal listening conditions, different musical characteristics must be thoroughly tested: Music 

research has shown various parameters, such as contour, tonality, and metrical emphasis, to play 

a role in melodic change detection. Some work has examined the effect of temporal parameters 

on the perception of pitch and tonality (Jones, Boltz, & Kidd, 1982), but few studies have 

systematically tested these parameters within one paradigm, which is necessary to assess which 

play the largest role in change detection. If salient musical elements are more likely to be 

encoded in the musical gist, then they should be remembered more accurately, and changes to 

these elements should be detected more reliably. Experiment 2 sought to explore which musical 

characteristics were most salient and reliably encoded.  

This experiment used a complete factorial design with four factors: Tonality, the interval 

of pitch change, the position of pitch change, and rhythm. Also, because musical expertise plays 

a role in how efficiently and effectively music is encoded in memory, two groups were tested:  

Professional musicians and non-musicians. Timbre (the type of instrument playing) and 

dynamics (the loudness of the music) may also affect musical memory, but these factors were not 

manipulated in this experiment.  

To assess the role of tonality in change detection, trials with scale and non-scale tones 

were used. On change trials, a scale tone could be changed to either a different scale tone or a 

non-scale tone, and a non-scale tone could be changed to a scale tone. The prediction is that a 

non-scale tone in the first melody will not likely be encoded in the musical gist and the change to 
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a scale tone will be difficult to detect. In contrast, a change from a scale tone to a non-scale tone 

should be easy to detect, given the violation of the overall tonality in the second melody. Finally, 

changes from one scale tone to another may be very difficult to detect if the gist strongly encodes 

scale membership and less strongly encodes the particular tones in the melodies.  

The interval of pitch change was systematically varied in this experiment and ranged 

from one to four semitones. If the gist of a melody encodes tones, not only in terms of tonality, 

but also in terms of the category of interval change, then the results for minor and major seconds 

(m2 and M2, or one and two semitones) should be similar to one another, and those of minor and 

major thirds  (m3 and M3, or three and four semitones) should be similar to one another.  

Rhythm and metrical position were manipulated to test whether metrical emphasis and 

note duration play an important role in detecting changes. This experiment used two different 

rhythms, as follows, rhythm 1:  | , and rhythm 2: | . 

Either the fourth, fifth, or sixth tone, called position 1, 2, and 3, respectively, could be changed 

within these two rhythms. Examples of the stimuli can be found in Figure 2.4. 

 

 

 
 
Figure 2.4. Examples of change stimuli for Experiment 2. A scale – non-scale trial containing a 
minor third non-scale tone change on the first metrical position of rhythm 1 is shown above. A 
scale – scale trial containing a major third tone change on the first metrical position of rhythm 2 
is depicted beneath. 
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Considering the indication of the relative stress of the different metrical positions (e.g. 

Lerdahl & Jackendoff, 1983), metrically stressed tones were predicted to draw more attention 

and become encoded in the listener’s gist; therefore, changes to the stressed positions of the 

measure should be easier to detect. In particular, position 1 of rhythm 1 (the third beat of the first 

measure) should be particularly strongly encoded, as this position has both the metrical emphasis 

of being on a “strong beat”, and has a long note-duration (a quarter note).  

 

2.3.1 Method 

2.3.1.1 Participants 

Two groups of listeners participated in the experiment: Non-musicians and professional 

musicians. The non-musicians were 20 Cornell undergraduates who volunteered to participate in 

the experiment in exchange for extra credit in a psychology course. They had little musical 

training (average years playing an instrument = 1.6 yrs, std = 1.9 yrs), and none were currently 

playing an instrument. The 16 professional musicians were members of the Indianapolis 

Symphony Orchestra, received $20 for their participation, and had many years of musical 

training and performance experience  (average = 43.9 yrs, std = 7.4 yrs). 

 

2.3.1.2 Stimuli 

Two melodies were composed for each combination of four within-subjects variables 

(rhythm, interval, position, and tonality). All melodies were stylistic and in the musical key of C 

major. As in Experiment 1, each trial contained 2 two-measure long melodies separated by white 

noise, with the same timing. All together, there were 192 Change trials and 96 Same trials. 
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Two rhythms were used as shown:  (quarter-eighth-eighth), and  

(eighth-eighth-quarter). Position refers to the serial position within the melody of the tone that 

was altered on change trials; it was one of the last three positions in the first measure of the 

melody (position 4, 5, or 6). Interval refers to the interval between the to-be-changed tone in the 

first melody and the changed tone in the second melody, which could be either 1, 2, 3, or 4 

semitones (minor 2nd, major 2nd, minor 3rd, or major 3rd, respectively). The change was such that 

the two melodies had the same contour.   

Tonality refers to whether or not the tones were in the key of C major. There were three 

tonality conditions. In scale – scale trials, a scale tone in the first melody was changed to another 

scale tone in the second melody. In scale – non-scale trials, a scale tone in the first melody was 

changed to a non-scale tone in the second melody. And lastly, in non-scale – scale trials, a non-

scale tone in the first melody was changed to a scale tone in the second melody. The last two 

conditions were formed by reversing the order of the two melodies within each trial. 

 

2.3.1.3 Procedure and Apparatus 

The procedure and apparatus were the same as Experiment 1, but because this experiment 

contained many more trials, the experiment was presented in three 15-17 minute blocks that were 

counterbalanced across participants. 

 

2.3.2 Results 

The mixed design of Experiment 2 consisted of four within-subject variables, tonality, 

rhythm, position, and interval, as well as one between-subject factor, musical expertise. Because 

there are only two trials in each variable combination, it is not possible to examine dichotomized 
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data in a meaningful way. Also, the signal detection analysis used in Experiment 1 is not tailored 

for this kind of multi-factorial design, especially because interactions between factors are 

expected.3 Further, an omnibus ANOVA can yield spurious high-order interactions when many 

variables are present; therefore, a regression analysis was performed to determine which factors 

were most important in contributing to the overall pattern of results. The regression analysis 

showed highly significant effects for musical expertise F(1,2582) = 415.41, p < .0001, and 

tonality, F(2,2582) = 307.69, p < .0001. In addition, there was a significant effect of interval, 

F(3,2582) = 3.73, p = .01. There was no effect of rhythm or position, so the subsequent analyses 

collapsed over these variables. Using the factors shown to be significant through the regression 

analysis, a mixed design 3-way ANOVA (2 Tonality X 4 Interval X 2 Musical Expertise) was 

performed. Unless otherwise noted, the statistics reported below are for change trials only, and 

because of the quantity of data, which can inflate small effects, a p-value of .01 was chosen as 

the significance threshold with which to present the following results. 

 

2.3.2.1 The Effect of Tonality and Musical Expertise 

Tonality had a very large effect on the ability to detect changes, F(2, 68) = 152.34, p < 

.001, with changes from a scale to a non-scale tone easiest to detect. The role of musical training 

on the perception of tonality (shown in Figure 2.5) was also of interest. Musical expertise was 

                                                
3 That said, a SDT analysis in which all within-subjects factors were collapsed over tonality was 
run for comparison to Experiment 1, and to confirm the strong effect of tonality. This analysis 
yielded an average D-Prime of 1.47 (musicians) and 0.40 (non-musicians) for trials containing a 
non-scale tone, and 0.56 (musicians) and 0.26 (non-musicians) for trials containing only tones in 
the scale. This included significant main effects of tonality, F(1,34) = 47.08, p < .0001, and 
musical expertise, F(1,34) = 33.02, p < .0001, as well as a significant interaction between these 
two factors, F(1,34) = 25.25, p < .0001. In addition, tonality yielded a significant main effect on 
Criterion, F(1,34) = 234.40, p < .0001. Also, musicians displayed a significant negative bias for 
trials containing a non-scale tone, making the interaction between Musical Expertise and 
Tonality significant for Criterion as well, F(1,34) = 45.55, p < .0001. 
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found to be highly significant, F(1, 34) = 25.13, p < .001, with professional musicians 

outperforming non-musicians. Changes from a scale tone to a different scale tone, and changes 

from a scale tone to a non-scale tone were equally difficult for non-musicians to detect. 

Professional musicians, however, were better at detecting changes from a scale tone to a non-

scale tone rather than to another scale tone. This is reflected in the significant interaction 

between tonality and musical expertise, F(2, 68) = 22.99, p< .001, which was expected due to the 

extensive musical training and experience with tonality that professional musicians acquire (see 

Figure 2.5). 

 
Figure 2.5. The effect of tonality on change detection.  Mean responses (where ‘6’ represents 
“sure of change”) for professional and non-musicians across levels of tonality. Error bars 
represent standard error of the mean. 

 

The interaction between tonality and musical expertise stems from the professional 

musicians’ relatively low mean for the condition in which a scale tone is changed to another 

scale tone. In fact, they performed just slightly above 3.5 (the mid-point of the response range). 

This is a striking finding, as some of these changes are as large as four semitones (a major third), 

which provides additional evidence that listeners employ schematic processing which causes 
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within-scale changes to become less noticeable. Apparently, even highly trained musicians 

encode melodies largely in terms of whether or not the tones are in the key – a tonal gist. 

Consequently, when a scale tone is substituted for another, the change goes undetected 

(assuming the contour of the melody is preserved).  

 

2.3.2.2 The Effect of Interval 

The interval of pitch change also played a significant role in change detection, F(3,102) = 

6.64, p < .001. The interaction between interval and musical expertise was not significant, 

F(3,102) = 1.11, p = .35. As predicted, performance for both groups depended on the interval of 

change. Larger intervals (minor and major thirds) were detected more frequently than smaller 

intervals of change (minor and major seconds). Interestingly, though, changes of a major second, 

not a minor second, were the least detectable, perhaps due to its frequency in Western classical 

music (as there are five major seconds in a musical scale, and only two minor seconds, for 

example). A linear contrast comparing the mean of major seconds to that of minor seconds, 

minor thirds, and major thirds was highly significant, F(1, 102) = 15.22, p < .001.  

 

2.3.2.3 The Interaction of Rhythm and Position 

Although the regression analysis yielded no main effect of rhythm or position, initial 

inspection of the data did suggest an interaction between the factors in terms of metrical and 

durational emphasis. Therefore, a separate ANOVA was performed for rhythm and position. The 

ANOVA collapsed over tonality and interval, yielding a mixed 3-way ANOVA (2 Rhythm X 3 

Position X 2 Musical Expertise). As expected, there was no main effect of rhythm on change 

detection, F(1, 34) = .015, p = .90. There was, however, a main effect of position, F(2, 68) = 
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10.43, p < .001, driven by the interaction between rhythm and position (see Figure 2.6). The 

highly significant interaction between rhythm and position, F(2, 68) = 11.15, p < .001, was due 

to the excellent performance for detecting change on position 1 of rhythm 1. In rhythm 1, the 

first position is a long tone (quarter note), while positions 2 and 3 are short tones (eighth notes). 

In rhythm 2, positions 1 and 2 are short tones, and although position 3 is a long tone, it does not 

occur on a strong beat. A linear contrast yielded significantly better performance (a higher mean 

response) for position 1 of rhythm 1 as compared to all other positions, F(1,68) = 26.36, p < 

.001. Thus, the combination of metrical and durational emphasis appears to facilitate detection of 

a changed tone. 

Figure 2.6. Effect of rhythm and position on change detection.  Mean responses (where ‘6’ 
means “sure of change”) for the variables rhythm and position.  Error bars represent standard 
error of the mean. 
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(there was no interval of change, or a position at which a tone was changed). No effect of rhythm 

or any interactions with rhythm were found to be statistically significant. There was, however, a 

significant effect of tonality, F(1,34) = 14.91, p < .001, with listeners performing worse on 

melodies containing a non-scale tone (they responded with a false positive). Recall that for 

change trials, listeners failed to detect a change in the non-scale – scale tonality condition.  

Because the non-scale tone in the first melody was not included in the listener’s gist of the 

melody, changing this tone to a scale tone in the second melody often went undetected. The same 

effect describes this interesting finding: Listeners failed to encode the non-scale tone of the first 

melody, so that upon listening to the comparison melody, the non-scale tone sounded out of 

place (even though the comparison melody was identical to the first melody). 

 

2.4 Discussion 

The studies discussed above lend insight into the musical equivalent of findings within 

visual perception, and explain the failure to detect change in terms of schematic processing and 

gist memory. A number of interacting parameters were shown to underlie musical change 

detection. Listeners do not encode detailed information about all of the characteristics of music; 

rather, they abstract a gist based on musical schemata. Tonal and metrical structure seem to give 

listeners a template on which to build their gist, and when a lack of musical structure or style is 

present, listeners are worse at encoding features of the music. When the melodies presented in 

Experiment 1 were random or non-stylistic (lacking in tonal structure), both professional 

musicians and non-musicians could not reliably encode features of the music necessary for 

change detection. Further, professional musicians, who are more heavily reliant on using their 

internalized musical schemas, have more difficulty than non-musicians when no tonal structure 
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is present (e.g., the random melodies in Experiment 1). This surprising finding suggests that a 

very elaborated schematic processing framework, when employed inappropriately, can lead to a 

compromised gist of the melody.  

 Experiment 2 investigates what is likely incorporated in memory when normal musical 

structure is present. Predicting the exact content of memory representations for novel music is 

challenging, but this study offers preliminary evidence about what is likely to become encoded in 

a musical gist. When hearing an unfamiliar melody, the listener encodes a general representation 

of the tonality (e.g., the musical key and salient tonal anchors in the melody) and melodic 

contour. Musicians are able to encode a greater level of detail about tonality than non-musicians 

due to their robust schematic processing. Musicians are more likely, for example, to encode a 

non-scale tone in the initial melody and detect whether a non-scale tone was present in the 

comparison melody. Still, pitch information is not encoded for every tone, and changes within a 

comparison melody will often go undetected if they uphold the gist of the tonality established by 

the initial melody (that is, the changed tone is within the key). These findings both replicate and 

extend those of Dowling (1978) and Bartlett and Dowling (1988) by showing that non-scale tone 

changes can create an interesting perceptual dissociation in listeners: A scale tone in the initial 

melody changing to a non-scale tone in the comparison melody is usually very obvious to 

listeners. But when a non-scale tone in the initial melody is changed to scale tone in the 

comparison melody, often no change is detected, especially in non-musician listeners. This is 

striking, because the very same melodies presented in the opposite order (in which the non-scale 

tone is presented in the comparison melody) almost always leads to change detection. 

In addition to stressing the importance of tonal information to gist memory, Experiment 2 

also demonstrates how temporal properties of music guide listeners’ perception and memory. 
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Rhythm and metrical structure can emphasize a group of notes or a passage of music, making 

these sections more probable candidates for inclusion in the gist. As shown in Experiment 2, 

long tone durations that occur on metrically stressed beats (i.e., the downbeat) are more likely to 

be encoded in memory.  

The present studies offer new insight into what is encoded in listeners’ memory upon 

hearing unfamiliar music. The gist representation that is formed may provide an account of why 

listeners will fail at detecting changes to music (a kind of ‘musical change deafness’). This 

research also suggests a number of promising lines for further investigation: How do these 

findings extend to learning longer musical sequences? How does attention mediate these effects? 

What are the neural correlates of musical change detection, and are there, for example, different 

neural signatures for tonal change detection vs. metrical change detection? Also, computational 

modeling has confirmed that patterns and statistical properties of music can be implicitly learned 

through experience (Tillman, Bharucha, & Bigand, 2000), but this method has not yet been 

applied to modeling gist memory for novel music. Computational approaches may yield valuable 

insight by essentially tracing the trajectories of gist representations through state space, and these 

models can be trained to reflect varying amounts of expertise. 

In conclusion, the failure to detect change may be driven by similar perceptual processes 

across modalities. Expertise in a domain can lead to richer memory representations, but even 

then perceivers tend to “offload” processing demands on the stable and often highly predictable 

environment/context by treating the world as an external memory source (O’Regan, 1992; 

Spivey, 2007). This reduces the amount of information being processed and updated, and creates 

a more efficient means of perceiving the world. The lack of continual updating, however, will 

occasionally give rise to phenomena such as change blindness and change deafness. Schematic 
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processing and gist-like memory allow for efficient and flexible processing, within the realm of 

music cognition and across domains more generally. 
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CHAPTER 3  
 
POPULATION SPARSITY OVER THE MUSICAL LEARNING TRAJECTORY OF A  
 
SIMPLE RECURRENT NETWORK 
 
 
 
3.1 Introduction 

 
As discussed in the last two chapters, musical structure and schematic processing play 

fundamental roles in short-term memory for melodies. But how are schemata, structure, and 

musical rules learned over time? The following two chapters look at the trajectory of learning 

with increasing exposure to music. The current chapter focuses on computational approaches to 

this topic, examining a simple recurrent network as it gradually learns the statistical properties 

and tonal structure of music over time. 

Computational models of music have been a useful in describing, clarifying, and 

predicting various aspects of music perception. Many different architectures and learning 

algorithms have been investigated, including supervised and unsupervised learning approaches. 

Supervised models utilize some type of “teacher” in which inputs are paired with desired 

outputs. Although this technique has been successful in modeling behavioral findings, supervised 

learning approaches are often considered to be less ecologically valid models of human cognition 

than unsupervised approaches. In unsupervised learning, the network acquires knowledge solely 

from the input training corpus, learning from differences between its own predictions about the 

input and the actual properties of the corpus. This chapter will primarily focus on Elman’s 

Simple Recurrent Network (SRN) model (Elman, 1990), which was originally developed to 

process and predict the appearance of sequentially ordered stimuli, making the SRN a 

particularly useful model for learning the structure of music. 
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3.1.1 Overview of computational models of music perception 
 

Computational methods have clarified various aspects of human music perception, such 

as the way in which pitch information is processed and perceived by the brain. Self-Organizing 

Map models (SOMs) have been used to distill the statistical regularities of music to find tonal 

centers and map out harmonic relationships (Tillman, Bharucha, & Bigand, 2000; Leman, 1995; 

Page, 1993). Unlike other artificial neural networks, these models use a neighborhood function to 

preserve topological features of the state space of the input (and large models using thousands of 

nodes can display emergent properties of the corpus). In one SOM approach, Marc Leman uses a 

conceptual framework of short-term and long-term memory to assess how tonal centers are 

found in music (Leman, 1995). Given the network’s performance, Leman is able to conclude that 

schemata are formed from long-term exposure to music and guide perception of music in the 

short term (real-time listening). The way in which a model’s structure mirrors the input’s 

structure is of particular interest to the forthcoming discussion on efficient coding and sparse 

representation. 

In another SOM model examining tonal relationships, pitch regularities were learned 

from mere exposure to musical sequences, and a hierarchical organization relating tones, chords, 

and keys was formed (Tillman, Bharucha, & Bigand, 2000). When tested and compared to 

empirical findings in music perception, such as probe tone ratings, the psychological distance 

between keys, and Dowling’s (1978) study (discussed in Chapter 1), the model successfully 

mirrored human performance (Tillman, Bharucha, & Bigand, 2000). This model was able to not 

only extract statistical regularities from tonal input (to learn what Dowling would refer to as 

scale and contour schemata), but also successfully apply the general schematic structure it had 

gleaned from musical exposure to various novel test items. While performing these tests, 
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information about the time course of schematic processing was discovered. First, bottom-up 

activations about tones were sent through the network. This was followed by feedback from 

higher-level representations propagating to lower levels and modulating their activity (the key 

layer influenced the chord layer, which in turn influenced the tone layer) (Tillman, Bharucha, & 

Bigand, 2000). The model therefore provides insight into the mechanisms responsible for 

schematic processing in humans; that is, we can think of tonal and harmonic processing as a 

cascade of information processing from high-level schemata down to low-level expectations.  

Again, the notion of multiple layers of representation emerging within the network’s 

internal structure is very interesting, and highlights these models’ ability to reflect structure in 

the signal. Another model utilizing multiple levels of processing is called IDyOM (Information 

Dynamics of Music; Pearce, 2005). IDyOM is a variable-order Markov model that learns 

information about the sequential structure of music through unsupervised learning. After 

completing training, the model is given a melody, one musical element at a time, and predicts the 

probability of each successive element (e.g., pitch, onset time etc). Like previous work by 

Conklin and Witten (1995), IDyOM utilizes a multiple viewpoint framework that combines a 

long-term model with a short-term model. The long-term component is trained on a large music 

corpus to model the extensive exposure akin to an adult listener with years of experience 

listening to music. The short-term model is acquired during the current listening session, and 

reflects musical expectation based on local structure in the tune. 

 While the above studies compare the model’s performance to previous empirical findings 

on tonal processing and melodic expectancy, the following study is one of very few to compare 

participants’ short-term, gist-like memory representations with a model’s extraction of gist. 

Large Palmer, and Pollack (1995) developed a neural network model with a complex 
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connectionist architecture called RAAM (Recursive Auto-Associative Memory). The model was 

programmed to take musical input and extract its gist by applying rules derived from Lerdahl and 

Jackendoff’s (1996) prolongational reduction analysis. The network learns to parse elements in a 

musical sequence and create a distributed representation of their time-span segmentation (the 

music’s hierarchical structure). After this nested structure is encoded, the network goes through 

“reconstruction” algorithms (data compression) to recreate the elements of structural importance 

of the original sequence (the gist). In an effort to compare the network’s performance on this task 

with human performance, skilled pianists were recruited to perform variations of the corpus of 

melodies through improvisation. The network’s structural reduction of the melodies was in 

accordance with the musicians’ performances, in that the features of greater importance were 

successfully extracted from the melodies (Large, et al., 1995). In sum, the RAAM network and 

behavioral findings show that a computational network can mimic musicians’ extraction of a 

theme (the gist) from a set of variations. 

The last topic of computational study worth mentioning here is composition. 

Composition is a useful means of testing how much musical structure a network has distilled 

after exposure to a training corpus. To this end, Mozer (1994) developed the CONCERT model, 

which was a modified Elman (1990) network. The model was trained using melodic sequences to 

extract the notes in the scale that would be musically appropriate and stylistic for use during 

composition. While ratings of this network were better than compositions chosen from a 

transition table, they still were still notably aesthetically lacking (Mozer, 1994). The model 

employed for the experiments within this chapter is also an Elman network, although one with a 

simpler architecture, which enables more transparent analysis of the internal state of the network. 
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While most studies have concentrated on the success of a network’s end state or ultimate 

compositional ability, the following studies focus on the internal state of the network as it learns. 

Subjects’ ratings of the network’s compositions were collected and examined as a means of 

validating the network’s learning, and diagnostic properties of the network are examined as well, 

such as mean squared error (MSE) and measures of efficient coding.   

 
 

3.1.2 Compression and sparse coding 
 

Compression is a coding strategy in which a minimal number of units represent a 

stimulus. Because these units may be consistently active over time, this representation is not 

necessarily sparse. Sparse distributed coding is a strategy in which a population of nodes 

completely encode a stimulus using the minimum number of active units. Taken to an extreme, 

this strategy is similar to the concept of a ‘Grandmother Cell’ that responds robustly to only one 

stimulus, and thus has a very low average firing rate. This is directly in contrast to a fully 

distributed system where every neuron takes part in encoding every stimulus and fires an average 

of half of the time.  

Sparse coding allows a distributed system to efficiently learn and encode structure in the 

world. The benefits of efficient coding strategies have been reviewed in depth (Field, 1994; 

Olshausen and Field, 2004), but this work will concentrate on two of them. First, as shown in 

studies of neural systems, encoding stimuli using relatively few neurons allows for a complete 

representation without the biological demands of having every neuron fire (Levy & Baxter, 

1996). Therefore, compressed coding will be investigated. Second, this compressed code 

develops in order to efficiently mirror the structure of the signal or stimuli. While there are 
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various approaches to measuring sparse code (for example, see Willmore, Mazer, & Gallant, 

2011), the present studies will focus on population sparsity. 

By examining the architecture of a neural network over its learning trajectory, we can 

investigate how the network’s coding efficiency changes with experience. Given the conventions 

of Western tonality (e.g. common chord progressions), as outlined by music theory, the 

progression of tones obeys rules and patterns. Standard transitions impose order; notes do not 

skip randomly around the musical state space. When a SRN receives this structured musical 

input, it learns how best to efficiently code the information therein. 

The developing internal structure of the network is of prime concern, but of equal 

importance is how the network’s output reflects its internally changing structure. For external 

validation of the network’s ability to produce increasingly stylistic output with training, listeners 

were recruited to rate the sophistication of the network’s novel compositions. This external 

evaluation confirmed the network’s internal measures of population sparsity and learning. 

 
 
3.2 Experiment 1 
 

In this study, we tested how a Simple Recurrent Network learns tonal structure over time, 

with a focus on what internal changes occur in order to produce increasingly sophisticated 

compositions. This experiment explores the relationship between the efficiency of the SRN’s 

hidden layer activations and the ability of the SRN to learn and predict the next note in a musical 

sequence. To elucidate the relationship between sparse population code and the sophistication 

(complexity and style) of the network's compositions, participants rated the novel compositions 

from several points along the learning trajectory. We hypothesized that the population sparsity of 

the network would increase over training, and that subject ratings would similarly increase. 
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3.2.1 Method 
 
3.2.1.1 Network Architecture  
 

Matlab software was used to program and run the SRN. The network was given one note 

at a time during training; it learned musical structure by predicting the next note in the sequence, 

and then compared its prediction with the actual next note in the training melody. The error 

signal (difference between predicted and actual) was then backpropogated through the network.  

    The network was trained on five simple, 8-measure long melodies composed 

specifically for this study (see Figure 3.1). They were monophonic, of a piano timbre, and 

contained no rhythmic variation (all of the tones were quarter notes). Notes were held at equal 

duration in order investigate the probabilistic distribution of tonal relationships during training.  

 

                  
 

     Figure 3.1. Examples of training melodies used as input. 
 

 

The input and output layers of the network consisted of 15 nodes each, while the context 

and hidden layers contained 30 nodes (see Figure 3.2). The format of the input was such that one 

note (which was represented by turning on a corresponding node of the 15 present in the input 

layer) would be presented per timestep. For every timestep, the network predicted the next note 

in the training series, and each epoch of learning was comprised of 32 timesteps. The network 
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randomly selected one of the five training melodies for every epoch. Hidden and output layer 

activations were transformed using a logistic function, 1/(1+e^(-x)), and varied between 0 and 1. 

Because the last note of one training melody is not musically related to the first note of the next 

training melody, the context layer activations were reset after each epoch of training. The 

learning rate of the network was 0.15 and momentum was 0.9 (this term is multiplied by the 

previous weights to compute the current weights). 

Sparsity was measured in the hidden layer of each network by looking at the proportion 

of hidden layer nodes with an activation value greater than .3. These values were averaged over 

six iterations of the network, and were measured at 5, 25, 75, 150, 300 and 450 epochs.  

 

      
 

       Figure 3.2. SRN architecture used in Experiment 1. 
 
 
 
3.2.1.2 Behavioral Study 1 
 

External validation is required to draw any conclusions regarding the relationship 

between increasing sparsity over training and improvement in the quality of the network’s 

compositions. Therefore, listeners rated ten sample compositions from epochs 5, 25, 75, 150, 

300, and 450. These compositions were created by inputting the note ‘Middle C’ at each of these 

benchmark epochs. The network then predicted the next note, which was in turn fed back into the 
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network as input. This method of sequence prediction is a strength of the SRN architecture, and 

has been used primarily to study grammatical aspects of language (Elman, 1991).  

 
 
3.2.1.3 Participants  
 

Twenty Cornell undergraduates volunteered to participate in the experiment for extra 

credit in a psychology class. All participants had normal hearing, and had an average of 6.2 ± 3.7 

years of musical training. 

 
 
3.2.1.4 Materials  

 

After completing a particular number of epochs of training, sixteen notes of the network’s 

compositional output were recorded. Ten examples were recorded from each level of training (5, 

25, 75, 150, 300, or 450 epochs). Each compositional sample was manually transferred from 

Matlab to Finale, a music software program, and converted into .wav sound files. All 

compositions were set to a piano timbre, and rhythm was kept constant (each tone was one 

quarter note in duration). Each trial consisted of a 16-note composition (four-measures in 4/4 

time), and was 8 seconds in duration.  

 
 
3.2.1.5 Procedure  
 

After reading the instructions, a brief practice session consisting of four trials preceded 

the experiment. No feedback was given during the practice or experimental trials; the practice 

session simply functioned to familiarize participants to the types of melodies they would be 

rating. The practice trials were drawn from different points along the learning trajectory, 

including 5, 25, 75, 150, 300, and 450 epochs, and were different from those included in the 
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experiment. The sixty experimental trials were completed without interruption and presented in 

random order using E-Prime software. After listening to each trial, the listener rated the 

composition on a ‘goodness’ scale from 1 to 7, where ‘1’ represented a “poor example of 

classical music” and ‘7’ represented an “excellent example of classical music”. Participants were 

urged to use the whole scale as they found appropriate. The experiment was administered on a 

Dell Inspiron laptop running E-Prime software, and participants wore Bose Noise Canceling 

headphones set to a comfortable listening volume. 

 
 
3.2.2 Results and Discussion 
 
3.2.2.1 Network Internal Structure 
 

By examining the activations of the hidden layer at different stages along the learning 

trajectory, we see that efficiency increases over time. As the network completes more epochs of 

training, the population sparsity increases (that is, the number of active nodes in the hidden layer 

decreases). This trend of increasing compression is shown below in Figure 3.3. 

 

    
 

Figure 3.3. The proportion of active hidden layer nodes (population sparsity) over         
the learning trajectory. 

Sparsity while Training

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500

Epochs of Training

P
r
o

p
o

r
ti

o
n

 A
c
ti

v
e
 H

id
d

e
n

 L
a
y
e
r
 

N
o

d
e
s



 

  67 

 
As shown above, during the early stages of the network’s development, there is a 

dramatic increase in efficiency of the hidden layer representations, as indicated by a reduction in 

the proportion of hidden nodes with activations greater than .3 (note inverted Y axis). Again, 

these values are derived by taking the average over six networks of the proportion of hidden 

activations above .3 (for each training epoch in question). After rapidly distilling structure from 

the training melodies, this decreasing trend begins to plateau around 150 epochs of training.  

 
 

3.2.2.2 Behavioral Results 
 

To assess how well the internal measure of compression corresponds to the sophistication 

of the network’s compositions, we tested whether population sparsity was an informative 

predictor of listeners’ goodness ratings. Indeed, listeners displayed a general preference for 

melodies produced after more epochs of training (see Figure 3.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4. Average of listeners’ goodness ratings over epochs of training. 
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Because the population sparsity measurements and goodness ratings followed roughly the 

same trend over time, population sparsity did prove to be an excellent predictor of how 

sophisticated the melodies sounded to listeners, R2 = .95, F = 84, p < .001. 

 

3.3 Experiment 2 
 

The second experiment examines the same network structure as the first, but utilizes 

more complex input stimuli, many more training epochs, and employs a new sparsity metric. 

Three movements from J.S. Bach's Suite No.1 in G Major for Unaccompanied Violoncello were 

selected for the network’s training input because they are musically complex and sophisticated, 

yet monophonic (there is a single, unaccompanied voice). The Prelude, Allemande, and Courante 

were chosen because they can all be performed at a similar tempo. These pieces are more 

complex than those used in the first experiment because each features different note durations 

and musical themes. 

In addition to musical changes, a new sparsity metric was adopted from single-cell 

recording (Rolls & Tovee, 1995), in which the square of the mean activation for each node is 

divided by the mean of the squares (Figure 3.5). While the metric used in Experiment 1 is mostly 

equivalent, the Rolls sparsity metric is used pervasively in the literature. Both the previous 

population sparsity .3 criterion and the Rolls sparsity metric will be used to assess the efficiency 

of the hidden layer activations in this experiment. 
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Figure 3.5. Equation for Rolls sparsity metric, where n is defined here to be the        
number of hidden layer nodes, and r is the rate activation for each node. 

 
 
 
3.3.1 Method 
 
3.3.1.1 Network Architecture  

 
The same basic SRN architecture from Experiment 1 was used in this study. Because of 

the increased complexity of the musical input, MIDI numbers and note durations were combined 

into the input for each timestep. This was encoded in the input and output by turning on one 

pitch node and one duration node per note. Duration values were represented by sixteen nodes, 

with each node being representative of a note duration ranging from a 16th note to a whole note. 

Due to this increase in complexity of the input (a larger pitch range and rhythmic information), 

the number of nodes in each layer was increased. The input and output layers now consist of 144 

nodes (128 MIDI notes and 16 durations), and the hidden and context layers contain 64 nodes. 

This same network architecture was used for two different training techniques. The 

Normal network was fed a 32-note sequence, randomly selected from one of the movements of 

Bach, for each epoch of training. A second network, the Bigram network, was also trained on 32 

notes per epoch, but the sequence of notes lacked musical structure: After an initial note was 

randomly chosen from one of the movements of Bach, the network’s predictions of the next note 

in the sequence were compared with the actual next note. Then, however, the Bigram network 

skipped to another random note within the musical corpus (thus, the network was only able to 
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learn musical structure via a series of bigrams). This effectively limits the Bigram network's 

predictive capability to the note played immediately prior, thereby reducing the amount of 

structure the network is able to learn. Context layer activations were reset in both the Normal and 

Bigram networks after each training epoch. 

The SRN was run ten times for both network types, and for all 20 of these networks, the 

hidden layer was captured at training epochs 5, 50, 500, 5 thousand, 50 thousand, 500 thousand, 

and 5 million, and the activations were used to measure the population sparsity of the network’s 

internal structure. Also, a 32-note-long composition was created at each of these benchmark 

training epochs. 

 
 
3.3.1.2 Behavioral study 2  
 
3.3.1.3 Participants  
 
Ten Cornell undergraduates volunteered to participate in the experiment for extra credit in a 

psychology class. All participants had normal hearing, and had an average of 2.4 ± 2.7 years of 

musical training.  

 
 
3.3.1.4 Materials  
 

For each level of training tested (5, 50, 500, 5 thousand, 50 thousand, 500 thousand, and 

5 million epochs), ten 32-note compositions were recorded for both the Normal and Bigram 

networks. Each compositional sample was manually transferred from Matlab to Finale and 

converted into a wav sound file. The compositions were all of a piano timbre, and the 

compositions’ rhythmic variation was included. Because of the increased complexity of the 
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musical material, each trial consisted of a 32 tones. Due to some variation in note duration, the 

trials were of slightly different lengths (average length = 12 sec).  

 

3.3.1.5 Procedure  

The same procedural protocol was used as in the first study: After reading the 

instructions, a brief, four-trial practice session preceded the experiment. These practice trials 

included an example from 50, 5k, 500k, and 5m epochs, and were different from any test trials in 

the experiment. A total of 140 test trials were presented, with the 70 trials from the Normal 

network and 70 trials from the Bigram network combined into one large block of trials and 

presented in random order. Listeners rated each composition on a goodness scale from ‘1’ to ‘7’ 

as outlined for the first experiment. The experiment was administered on a Dell Inspiron laptop 

running E-Prime software, and participants wore Bose Noise Canceling headphones set to a 

comfortable listening volume. 

 

3.3.2 Results and Discussion 

3.3.2.1 Network Internal Structure  

As predicted, the internal representations of both networks do become more efficient as 

the network learns structural relationships inherent in the music (see Figure 3.6). This pattern 

continues until roughly 1 million training epochs, even while adopting the alternative Rolls 

(1995) metric of sparsity. 
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Figure 3.6. Rolls sparsity metric over epochs of training for the Normal (blue) and 
Bigram (red) networks. 

 
 
 

The hidden layer of the Normal network displays greater population sparsity than that of 

the Bigram network. In order to shed light on the nature of the hidden layer activations of the 

network while composing, population sparsity was also examined while the network produced 

output. Both networks display an increase in efficiency at 5,000 epochs, but return to a less 

compressed state by 5 million epochs. Though both networks display similar degrees of 

population sparsity, the Bigram network exhibited more compression during composition at 

50,000 and 500,000 epochs (see Figure 3.7). The Bigram network also created simpler melodies 

than those of the Normal network. This is mainly due to the fact that while the Normal network 

is more efficient at encoding the stylistic structure from which it is trained, it has more difficulty 

encoding its own output during composition. The Bigram network does not have this limitation, 

as the structure it learns during training is similar to what it is capable of composing. In addition, 
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the Mean Squared Error (MSE) of both networks decayed quickly and reached a plateau with 

little variation by 30,000 epochs of training. The Bigram network’s MSE was slightly lower than 

that of the Normal network. 

 
 

Figure 3.7. Rolls sparsity metric while composing after increasing exposure to the 
training corpus. 

 
 
 
3.3.2.2 Behavioral Results 
 

Interestingly, the compositions of the Bigram network are better rated by participants than 

those of the Normal network, R2 = .95, F = 19.30, p < .01, as shown below in Figure 3.8. 

 

 

 

 

 

 



 

  74 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.8. Participant mean response over epochs of training for the Normal and 
Bigram networks. 

 
 
 

A comparison was made between the .3 criterion population sparsity measure and the 

Rolls sparsity metric (from training) in predicting the behavioral data. The .3 criterion was not a 

significant predictor of goodness ratings for the Normal network, R2 = .57, F = 3.93, p = .14, but 

was significant for the Bigram network, R2 = .81, F = 12.65, p < .05. The Rolls sparsity metric 

performed similarly: It was not a significant predictor of ratings for the Normal network, R2 = 

.62, F = 4.87, p = .11, but was significant for the Bigram network, R2 = .77, F = 9.99, p = .05. 

 

3.4 Experiment 3 

The Bigram network in Experiment 2 seemed to learn enough about tonal relationships 

through simple bigram information to perform somewhat similarly compared to the Normal 

network in terms of sparsity and Goodness ratings. This led us to question how much 
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information could be gathered from the simple statistical distribution of tones in a corpus. That 

is, when given only unigram information, how well can a network perform (in terms of 

compositions) and how will the hidden layer change over time? To this end, the following study 

examines the performance of a truly random network compared to a normal network.   

Although the Bach corpus of the previous experiment was more ecological and musically 

complex than the simple melodies of Experiment 1, the large octave range and note durations 

(yielding 144-node input/output layers), along with compressive hidden/context layers, yielded 

compositions that were less stylistic than the compositions of Experiment 2. Therefore, the 

following experiment used the same corpus as Experiment 1. Because the first study only 

examined the network to 450 epochs of training, this network was tested up to one million 

epochs. 

When comparing Goodness ratings to both graphs of population sparsity, one can easily 

see that that efficiency during training is generally a better predictor of goodness ratings than 

efficiency during composition (the upward trend shown in goodness ratings is also displayed in 

sparsity during training but not composition). Therefore, only population sparsity during training 

was assessed in this final study. 

 

3.4.1 Method 

3.4.1.1 Network Architecture 

The SRN architecture used in Experiment 1 was also used in this study. That is, the SRN 

had 15 input/output nodes, with a localist representation for each of the 15 notes in the two-

octave range from C4 to C6 (using a C major scale), and 30 hidden/context layer nodes. The 

input melodies were a set of five simple melodies in the key of C, each eight measures (32 
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quarter notes) long. This study therefore also used isochronous tone sequences for training and 

compositional output (only pitch information was encoded, rhythm and note duration were held 

constant). Additionally, the learning rate was .15 and the momentum was .9, just as in 

Experiment 1. 

The SRN was trained in two different ways, resulting in Normal and Random networks. 

Input for the Normal network consisted of the five simple melodies. The Random network was 

trained on a random permutation of melodies from the same corpus (to maintain the same 

distribution of tones in the corpus). During training, a melody was randomly chosen for every 

epoch, where one epoch equals 31 timesteps. In the Random network, a random permutation of 

the chosen melody was created before each training epoch, thereby preserving the distribution of 

pitches in the melody but eliminating the normal transitional probabilities between notes in the 

music. 

Sparsity of the hidden layer activations were observed at epochs 10, 100, 1 thousand, 10 

thousand, 100 thousand, and 1 million epochs of training. To gain the measurement of 

population sparsity using the Rolls sparsity measure as before, the network was run ten separate 

times to each benchmark epoch. At each of these six benchmark epochs, the network’s hidden 

layer activations and weights were recorded, and a 16-note composition was produced. 

 

3.4.1.2 Behavioral study 3  
 
3.4.1.3 Participants  
 

Ten Cornell undergraduates volunteered to participate in the experiment for extra credit 

in a psychology class. All participants had normal hearing. 

 
 



 

  77 

3.4.1.4 Materials  
 

For each level of training tested (10, 100, 1 thousand, 10 thousand, 100 thousand, and 1 

million epochs), ten 16-note compositions were recorded for both the Normal and Random 

networks. Like the previous studies, each composition was manually transferred from Matlab to 

Finale and converted into a wav sound file. The compositions were all isochronous and of a 

piano timbre. The experiment was administered on a Dell Inspiron laptop running E-Prime 

software, and participants wore Bose Noise Canceling headphones set to a comfortable listening 

volume. 

 

3.4.1.5 Procedure  

The same procedural protocol was used as in the previous studies: After reading the 

instructions, a brief, four-trial practice session preceded the experiment. Then a total of 120 test 

trials were presented in the study, with 60 trials from the Normal network and 60 trials from the 

Random network combined into one large block of trials and presented in random order. Like the 

previous studies, listeners rated each composition on a goodness scale from ‘1’ to ‘7’. The 

experiment was administered on a Dell Inspiron laptop running E-Prime software, and 

participants wore Bose Noise Canceling headphones set to a comfortable listening volume. 

 

3.4.2 Results and Discussion 

3.4.2.1 Network Internal Structure 

 To measure compressed coding of the hidden layer, Rolls sparsity was measured at each 

of the benchmark epochs of training. As one would predict, the Normal network’s hidden layer 

activations became increasingly sparse over time. It is interesting to note that the Random 



 

  78 

network, like the Bigram network in Experiment 2, also became significantly more compressed 

over time, although not as much as the Normal network (see Figure 3.9 below). When more 

musical structure is present, the network’s internal structure can be represented more efficiently. 

 
 

Figure 3.9. Rolls sparsity for Normal and Random networks over increasing epochs       
of training. 

 
 
 
 Compressed coding in the Random network can be attributed to the SRN learning the 

statistical probability distribution of tones to which it is exposed. Upon investigation of the 

network’s predictions for the next tone in the sequence during training, the Random network 

appears to nearly always choose the “tonic” tone (a “C” in the key of C Major), which is the 

most statistically frequent tone in the corpus. This is the most consistent and successful means of 

reducing the network’s MSE. Using the hidden layer activations from the six benchmark epochs 

from each network, were also able to make a preliminary examination of lifetime sparsity. If a 

network demonstrates lifetime sparsity, the activations of hidden layer nodes display not only 
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population sparsity, but also selectivity in their response. We found preliminary evidence that the 

Normal network activations were selective to input; the nodes showed evidence of a distributed 

representation over time. This trend was not found for the Random network – a small number of 

nodes were active, but this compressed representation was not distributed over time (the 

activation of most of the nodes stayed close to 0, while a very small number of nodes remained 

consistently active). We cannot definitively say here that the Normal network displays lifetime 

sparsity, as the activations from many more epochs would be required for conclusive results, but 

the trend is interesting and a full analysis of lifetime sparsity will be conducted in future work.  

 

3.4.2.2 Behavioral Results 

 Compositions from the Normal network are rated far better than those of the Random 

network. Although the internal structure of the Random network becomes more compressed over 

time, the Goodness ratings are poor regardless of the number of epochs of training (see Figure 

3.10 below). 

         
Figure 3.10. Participant mean responses over epochs of training for the Normal and 
Random networks. 
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When the population sparsity for both Normal and Random networks is correlated with 

goodness ratings, Rolls sparsity is shown to be a highly significant predictor of subjects’ 

responses, R2 = .57, F = 13.00, p < .01. The correlations become weaker when breaking down 

the correlation by network type: Normal sparsity barely reaches significance as a predictor for 

goodness ratings for those melodies, with R2 = .65, F = 7.43, p = .05. Random sparsity, however, 

is not a significant predictor of Ratings, R2 = .29, F = 1.62.00, p = .27. Therefore, it seems 

compressed coding may be a more useful heuristic of learning and compositional sophistication 

for structured, stylistic music. Also, the correlations between population sparsity and goodness 

ratings may be lower in the present study because, especially in the Normal network, the 

goodness ratings largely plateau after several thousand epochs of training. 

 
 
3.5 General Discussion 

 
Examining how neural networks learn musical structure can point to ways in which 

humans learn music. These studies provide evidence that a compressed coding strategy is the 

optimal way for neural network models to encode musical information.  

The Normal, Bigram, and Random networks all display increasingly efficient internal 

representations over their developmental trajectory. Listeners’ ratings follow a general increase 

that corresponds with the amount of training that a network has received as well as the 

population sparsity of the network's hidden layer while learning. While we expected that subject 

ratings would increase with training, the increasingly compressed representations during training 

shows that the learning algorithm of the networks also picked up the sparse structure of the input. 

While many approaches attempt to build compression and sparsity into the model, it is 

interesting that compressed coding simply arises in the present networks as they learn. 



 

  81 

The structure of music may lend itself to efficient coding. Of the vast number of notes 

that may be selected for use in the composition, only a subset of them are appropriate given the 

tonal and harmonic structure. Tonality is hierarchically organized, and its foundation is centered 

around a particular group of tones (i.e., the tonic triad). This inherent organization can be 

optimally encoded with sufficient training, and it is this musical structure that is largely 

responsible for the strong correlation between the population sparsity that develops in the hidden 

layer and listeners’ goodness ratings. This type of computational model can be used to capture 

not only the structure of music, but also the common musical patterns and rules that listeners 

internalize over time. Future work with this SRN will model listeners’ schemata: after different 

types of training (modeling differing amounts and types of musical experience), the network will 

be prompted to produce the trajectories of schemata through state space. 

Considering again the prior experiments, the Normal and Bigram networks from 

Experiment 2 show the difference in hidden layer efficiency that results from differing amounts 

of structure in the network's input. The Bigram network did exhibit less efficiency while training, 

a hallmark of less structure being present in the signal (because transitional relationships between 

bigrams were random). While the Normal network is more efficient during training, the Bigram 

network interestingly shows more compression during some stages of composition, and receives 

better ratings overall. This may be because while the Normal network has a more compressed 

representation during training, it is more likely than the Bigram network to enter into a repetitive 

series of notes while composing (such as the tonic triad) because it was trained on melodies with 

a longer musical context (utilizing information from more previous time-steps during training). 

Similarly, the Random network of Experiment 3 converges on a solution of selecting the most 
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probable tone – the tonic – for prediction and composition, which impacts compression and 

explains the Random network’s poor goodness ratings. 

 
 
3.6 Future Directions 
 

Although the previous studies confirm that the current architecture of this network is 

effective and informative, future work will explore how to optimize parameters of the SRN for 

better performance. For example, follow-up experiments can implement more recent advances in 

recurrent neural network architectures that encode time information in different ways. Some of 

the newer models used to generate and predict musical output are “Long Short Term Memory” 

networks (Eck & Schmidhuber, 2002) and Echo State Networks (Jaeger, 2001). Additionally, the 

model could use an interval-based representation rather than a pitch-based representation to 

examine whether differences in learning and composition would arise.   

Continuing to explore the different internal characteristics of a network during 

composition versus training may also yield interesting results. The counterintuitive fact that the 

Bigram network in the second study exhibited greater compression during composition and 

higher goodness ratings shows that the process of composition in a SRN may be more 

multifaceted than previously appreciated. When a network feeds itself its own output during 

composition, the inherent complexity of the recurrent loop generates highly variable output that 

warrants further investigation. Future work will also measure the lifetime sparsity of Normal and 

Random networks by examining the hidden layer activations from many epochs of training. We 

would expect both Normal and Random networks to display population sparsity (compression), 

but only Normal networks to demonstrate lifetime sparsity. 
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3.6.1 Learning Algorithms 
 

A network’s learning algorithms are essential to how well the network can perform. A 

learning rate that is too low makes the network inefficient (many epochs of training are required 

to learn the structure of the input). Conversely, setting the learning rate very high leads to rapid 

learning of the patterns in the current epoch, but can create instability in the network. Learning in 

the current epoch can completely override traces of prior learning, called catastrophic 

interference. This produces a network that cannot generalize beyond one training example or 

learn general patterns in the larger training corpus. Therefore, finding the optimal learning rate, 

which likely depends on the structure and quantity of the input, is essential. 

Motion through the SRN uses a logistic function, which is a fairly simple approach. A 

more complex but possibly more accurate means of modeling musical structure would be to use 

nonlinear functions instead of sigmoid transformed linear maps. The gradient descent error 

function can, especially when used in a high-dimensional state space, cause problems in terms of 

getting “caught” in local minima and converging upon non-optimal solutions. To move beyond 

this problem, non-gradient methods can be used, such as Expectation Maximization (Mark 

Andrews, personal correspondence).  

 

3.6.2  Relative Size of Network Layers 
 
 Of considerable importance is the relative size of the input/output layers and 

hidden/context layers. The above model uses an expansive hidden layer, but one that compresses 

the input might lead to different discoveries about the representation of tonal structure. Tones 

that function similarly in the key may be clustered together in state space, for example. 
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In Elman (1990), the input and output layers were each comprised of 31 nodes, while the hidden 

and context layers each had 150 nodes. He also specifies that the XOR network used 6 

input/output nodes and 20 hidden/context nodes. Therefore, it might prove beneficial in future 

implementations of this network to use hidden/context layers that are three to five times as large 

as the input/output layers. 

 
 
3.6.3 Combining Short-term and Long-term Models 
 

Lastly, another direction that could be extremely effective would be to employ an 

architecture that weights and combines multiple networks (that are the product of different types 

of training) in order to more accurately reflect human listeners’ performance. This approach is 

used in one of the most successful models of musical expectation, IDyOM (Pearce, 2005). As 

mentioned previously, IDyOM is variable-order Markov model that employs a multiple 

viewpoint framework combining short- and long-term models. 

The “short-term memory” network would be similar to the current SRN, but possibly 

with a higher learning rate, and would reflect learning for one melody. The “long-term memory” 

model would feature much lower momentum and learning rates, and would learn tonal structure 

across many different training examples. This network would represent the implicit learning that 

listeners demonstrate after years of exposure to Western tonal music (that is, a statistical 

distribution of the likelihood of tones in a key; Krumhansl, 1990). Combining these two 

networks will allow the model to use both well-learned statistical regularities in music, as well as 

local statistics from the current melody, to produce even more sophisticated musical 

compositions.  
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The benefit to this approach is that modeling tonal learning with a multi-layer SRN may 

yield more human-like performance than a model using a Markov-based approach. IDyOM’s 

short-term memory layer includes a memory trace of all the previous inputs (tones or chords) 

from training. Arguably, this is not the most accurate model of how the brain processes and 

remembers tonal information. Because recurrent networks feature a parameter of decay that is 

reflected in the context layer, the SRN may provide a more accurate model of human memory 

than a Markov approach. 
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CHAPTER 4 
 

INFORMATION THEORY AND ELECTROENCEPHALOGRAPHY:  
 
AN INVESTIGATION OF FACTORS CONTRIBUTING TO AND REFLECTING  
 
SUCCESSFUL MUSIC RETENTION IN ADULT LISTENERS 

 
 
 
4.1 Introduction 
 

We experience the world in time, dynamically finding structure in sequences of sensory 

events. Music is a fruitful domain for exploring the mechanisms responsible for learning 

structured sequences, a task that subserves a wide range of human behaviors. Research by 

Krumhansl (1990), Pearce & Wiggins (2006), Huron (2006), and others shows that listeners 

implicitly acquire knowledge about the rules and structure of music. As shown in Chapter 3, 

computational modeling lends insight into this process of learning over time. When a simple 

recurrent network is exposed to different statistical properties of music (i.e. as in the Normal, 

Bigram, and Random networks), tonal structure is clearly shown to play a large role in the 

network’s compositional success, as well as its internal structure. To take this research a step 

further, the musical structure of the input can be manipulated according to specific parameters 

more nuanced than “Normal” and “Random” (which can only lead to gross differences in 

processing). Using computational methods, tonal and statistical structure can be manipulated 

more systematically to help reveal the ways in which these properties may interact and influence 

human learning and memory. 

The following chapter examines the process of learning novel music over time, with a focus 

on expectation and musical structure, using two very different methodologies. The first is a 

behavioral study using carefully constructed tone sequences that vary across information 
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theoretic measures (such as entropy and predictive information). Expectation ratings are 

collected during listening sessions, and a memory test is given after each listening session. This 

approach enables us to examine how the statistical structure of music, as measured by 

information theory, affects expectation ratings of tones, as well as memory for specific 

exemplars, over a period of increasing exposure. The second method uses 

electroencephalography (EEG) to measure the brain’s electrical activity as tunes varying in 

musical structure are played in several listening sessions. Both event-related potential (ERP) 

techniques and time-frequency analyses are used to examine neural changes over time. The 

combination of information theory and neuroscience methods explicates the mechanisms 

responsible for music perception and memory. 

 
 
4.2 Information Theory Behavioral Experiment 

 
Information theory (IT) has been instrumental in explaining phenomena across a wide 

range of domains, such as engineering, linguistics, neurobiology, and music. Information-

theoretic measures such as entropy, a measure of uncertainty, have successfully described and 

predicted how the human brain anticipates forthcoming sensory input (e.g., Manning & Schutze, 

1999; Abdallah & Plumbley, 2009). Within music, an emphasis on anticipation and prediction 

has existed since the 1950s, and statistics-based approaches to learning have been influential for 

decades (consider Krumhansl & Kessler, 1982; and Saffran, Johnson, Aslin, & Newport, 1999). 

The probabilistic output of IDyOM (one of the computational models described in the Chapter 

3), for example, has been used to derive information theoretic properties such as information 

content and entropy, which have been shown to accurately reflect and predict listeners’ 

expectations (Pearce & Wiggins, 2006; Pearce et al., 2010). 
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While statistical and computational approaches have modeled human performance on a 

variety of music perception tasks, these approaches have not yet been extended to modeling the 

learning trajectory of listeners: we do not yet know how information-theoretic measures capture 

musical learning over increasing exposure to musical exemplars, and how much exposure is 

necessary to learn the statistical regularities of novel music. The following study addresses these 

questions. 

In the present study, computational techniques were used to create a set of tone sequences 

varying systematically across information theoretic measures. Varying the sequences’ statistical 

structure allows us to assess which factors have the greatest impact on music perception and 

memory. We focused on testing how well three information theoretic factors, surprise (entropy), 

coding gain, and predictive information (see Abdallah & Plumbley, 2009), captured listeners’ 

expectancy of tones and memory for tone sequences. Surprise, as outlined in (Abdallah & 

Plumbley, 2009), is the entropy of the predictive distribution, measured as the negative log 

probability of x given the context z: −log pX|Z(x|z). Coding gain quantifies how much the last 

observation (xt-1 not including prior history) helps the listener predict the current (known) 

observation xt. Predictive information quantifies how much the current observation helps the 

listener predict the future (xt+1) given all past observations. The average of each of these three 

measures was computed for every tone sequence in the present study (henceforth referred to as 

whole-sequence statistics). 

To investigate the processes underlying musical learning, listeners were exposed to tone 

sequences and tested on recognition memory over several listening sessions. In each listening 

session, participants heard tone sequences and rated the expectedness of a tone (termed the 

“Probe tone”) within each sequence. Probe tones varied in terms of suprisingness (-log 
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probability) across sequences. A recognition memory test followed each listening session. This 

format enabled us to compute information theoretic measures for every tone sequence, and 

compare the effect of these measures on Probe tone ratings. We also examined how IT measures 

reflected recognition performance in the test sessions. We hypothesized that sequences featuring 

generally high-entropy would be difficult to remember, and Probe tones would be rated with 

lower expectancy. Because each tone sequence was presented in every listening session, we also 

aimed to clarify the learning trajectory of tone sequences; that is, how music represented in 

short-term memory gradually becomes more richly encoded in long-term memory, and how IT 

measures influence this process over time. 

 
 
4.2.1 Method 
 
4.2.1.1 Participants 
 
Twenty-three students participated in this study for extra credit in a psychology course.  
 
 
 
4.2.1.2 Materials and Procedure 
 

After receiving written and verbal instructions, participants listened to three 

approximately 15-minute long listening sessions, each followed by a brief test session. In each of 

the three listening sessions, participants heard 24 tone sequences and were asked to rate the 

melodic expectancy of a particular tone (the Probe tone) within each sequence. This tone was 

identified visually on the computer screen via a clock counting down on the subsequent tones of 

the sequence. When the clock reached midnight, participants rated the expectancy of the 

concurrent tone on a scale from 1 to 5, where ‘1’ represented highly unexpected and ‘5’ 

represented very expected.  
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Each listening session was followed by a test session. Sixteen test stimuli were presented 

in each of the three test sessions, where 8 sequences were familiar (had been presented 

previously) and 8 were unfamiliar. After each test sequence, participants responded “Yes” or 

“No” to whether they had heard the sequence before. Upon responding, the listener made a 

confidence rating on a scale from 1 to 5 where ‘1’ represented not confident and ‘5’ represented 

very confident.  

The 24 tone sequences of the listening sessions were comprised of 24 isonchronous tones, 

played in a piano timbre. Each tone was 500ms in duration, yielding sequences that were 12-

seconds-long each. The sequences were generated with an alphabet of 7 pitches (representing 

one octave of the diatonic scale). A first-order Markov transition matrix was derived (Pearce, 

2005) from the scale degrees of Canadian folk songs/ballads, Chorale melodies, and German folk 

songs in a major key (the same corpus as described in Table 2 of Pearce and Wiggins, 2006). 

Sequences used in the study were generated using random sampling from this transition matrix, 

and subsets were selected from different quadrants of the subjective 3-dimensional information 

space formed by the information theoretic measures described above: average Surprise (entropy), 

average Coding Gain, and average Predictive Information (averages were computed for each 

tone sequence). We use the term subjective because the statistical measures depend on the 

model’s training – if the model were trained on a corpus of non-Western music, it would produce 

very different tone sequences that reflect the statistical properties of that genre. In addition, the 

IT measures are the product of an adaptive model; the model’s predictions are updated with 

every musical event in order to better reflect listeners’ perception and expectations.  

As a perceptual “reset”, a distinct 500ms white noise clip was played after every tone 

sequence in the listening and test sessions. The study was administered on a MacBook Pro 
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laptop, and stimuli were presented and responses collected using Psychtoolbox (Psychophysics 

Toolbox Version 3) within the programing environment of MATLAB 2010a (MathWorks, Inc). 

Participants listened to stimuli over headphones set to a comfortable listening volume. 

 
 
4.2.2 Results and Discussion 
 
4.2.2.1 Listening Sessions 
 

For the listening sessions, an ANOVA was performed with Probe tone, Surprise, Coding 

Gain, Predictive Information, and Listening Session as independent measures, and Expectation 

Ratings as the dependent measure. Listeners were included as a random effect in the analysis. 

There was a highly significant main effect of Probe Tone, F = 181.74, p < .0001, with higher-

entropy tones rated as less expected. As for the whole-sequence IT measures, there were also 

main effects of Surprise, F = 3.92, p < .05, and Predictive Information, F = 9.67, p < .01. In 

addition to these main effects, there were also a significant interaction between Probe Tone and 

all three of the IT measures of sequences statistics: Surprise X Probe Tone, F = 22.34, p < .0001, 

and Coding Gain X Probe Tone, F = 35.72, p < .0001, and Predictive Information X Probe Tone, 

F = 91.65, p < .0001, were all highly significant. Listening Session did not contribute 

significantly to the results. 

In the graphs provided below, the average Expectation Rating for each melody was 

calculated by collapsing over participants to more clearly display main effects (on a continuous 

rather than discrete scale). Probe Tone had the largest effect in the study and had a highly 

significant linear relationship with Average Expectancy Rating, R^2 = .69, F = 154.20, p < 

.0001. As shown in Figure 4.1 below, high expectancy tones do receive reliably higher 
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expectation ratings than low expectancy tones (again, Probe Tone is a measure of the –log 

probability of the rated tone). 

 

 
 

Figure 4.1. Surprise (in nats) of probe tone as a predictor of average expectancy 
ratings of probe tones 

 
 
 

In terms of whole-sequence statistics, both Surprise and Predictive Information were also 

significant predictors of Average Expectancy Ratings. As shown in the top graph of Figure 4.2 

below, Surprise (-log probability calculated for the entire tone sequence) was correlated with 

Average Expectancy Ratings such that more predictable sequences (lower Surprise values) 

yielded higher Expectancy ratings of probe tones, R^2 = .29, F = 28.87, p < .0001. The second 

graph of Figure 4.2 displays the correlation between Predictive Information and Average 

Expectancy Ratings, R^2 = .34, F = 36.23, p < .0001. The third graph shows Coding Gain and 

Expectancy Ratings, again significant in this analysis, R^2 = .37, F = 41.54, p < .0001. 
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Figure 4.2. The main effects of Surprise, Predictive information, and Coding Gain 
on Average Expectancy Ratings during the listening sessions. 
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Sequences with high average Surprise values contain uncertainty; the tones comprising 

these sequences have high information content on average. Therefore, it is logical that sequences 

containing many “surprising”, unpredictable tones would yield lower expectancy ratings as 

shown above. 

These sequences only contain 24 tones, relatively few for approximating the transition 

matrix created by the IDyOM model and establishing measures of predictability. Imagine 

sequences constructed to display high-predictive information: to be high average predictive 

information, each successive tone in the sequence must have high information content. 

Therefore, analysis of these sequences shows that they are almost indistinguishable from 

completely random sequences. We believe this is why participants have trouble rating tones as 

highly expected in high-predictive information sequences.  

Coding gain is a measure of how much additional information was gained from the last 

observation in helping to predict the current (known) observation. Positive values for coding gain 

infer a reduction in surprisingness given the current observation. Therefore, the greater overall 

coding gain of the sequence, the more predictable the sequence, which suggests an increased 

ability to rate tones as having high expectancy. 

 
 
4.2.2.2 Test Sessions 
 
 Data from the test sessions are reported in Table 4.1 below as percent correct response. 

Signal detection analysis was performed but yielded no significant results for D-prime or 

Criterion; therefore, subsequent analysis will use Percent Correct Response as the dependent 

measure. Chance performance would be .5, and the similarity of performance for Familiar and 

Unfamiliar items indicates little bias towards either response. 
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Listening Session Familiar Correct Familiar Incorrect Unfamiliar Correct Unfamiliar Incorrect 
Session 1 0.67 0.33 0.64 0.36 
Session 2 0.63 0.37 0.65 0.35 
Session 3 0.70 0.30 0.65 0.35 

 
Table 4.1.  Test performance (percent correct) for familiar and unfamiliar sequences across 
listening sessions. 

 
 
 

Because Yes/No responses were collected in the test sessions, a logistic regression was 

performed with Surprise, Coding Gain, Predictive information, Familiarity (new or old stimulus), 

and Listening Session as factors, and Correct Response as the dependent variable. All three 

whole-sequence statistics showed significant main effects: Surprise was a significant main effect, 

 χ² = 17.10, p < .0001, as well as Predictive information, χ² = 13.37, p < .0001, and Coding Gain, 

χ² = 4.26, p < .05. The only significant interaction including Familiarity was with Predictive 

information, χ² = 14.18, p < .001. Listening Session interacted with each of the whole-sequence 

IT measures: Surprise X Listening Session,  χ² = 7.24, p < .05, Predictive Information X 

Listening Session, χ² = 9.42, p < .01, and Coding Gain X Listening Session, χ² = 7.43, p < .05, 

were all significant interactions. 

Confidence ratings are not reported here, as they were very similar across listening 

sessions and stimulus types: The average confidence ratings across subjects varied between 2.80 

and 3.14 for all conditions. 

 The logistic regression highlights the significant roles that measures of entropy and 

predictability have on musical learning and memory. The three information theoretic measures 

examined here, Surprise, Predictive information, and Coding Gain, were all significant predictors 

of learning over time (as evinced by their significant interactions with Listening Session). In the 

first Listening Session, Surprise has little effect on the correctness of participants’ responses. In 
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the subsequent listening sessions, a trend was displayed between increasing Surprise and number 

of correct responses (p < .01). Similarly, Coding Gain did not have a significant effect on 

response in the first listening session, but was negatively correlated (p < .01) with Correct 

response in the second and third listening sessions. Predictive information showed a positive 

correlation with Correct response that was not significant until the third listening session, in 

which greater predictive information led to more correct responses (p < .05). Follow-up studies 

need to be conducted to explore these complex information dynamics, but it is clear that the 

information theoretic measures investigated in this study interact dynamically with both 

expectancy and learning over a period of increasing exposure to novel tone sequences. 

 
 
4.2.3 Future Directions of IT Research  
 

Because it is impossible to perform an exhaustive behavioral investigation of which 

exemplars and rules listeners learn, computer models must be further developed to simulate and 

predict the process of musical learning. To this end, both IDyOM and the Simple Recurrent 

Network model (Agres, DeLong, & Spivey, 2009) discussed in the previous chapter will be 

optimized and then tested on IT measures and compared to human listeners. Future work will 

also test memory differences between ecologically valid melodies and experimentally controlled 

tone sequences with an expectation that stylistic, ecological exemplars will be more easily 

remembered than high entropy sequences. 

 
 
4.3 Bridging Information Theory and EEG  
 

Listeners are adept at learning the statistical rules underlying musical sequences. The 

present study demonstrates the difficulty in committing many novel tone sequences to memory 
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(as shown by the relatively poor memory task performance). This may be due to the type of 

stimuli used; clearly listeners are able to learn a vast number of songs and themes, therefore 

more ecological stimuli may lead to better learning and memory performance. Also, language 

research (a domain in which listeners have been shown to be proficient in statistical learning of 

phonological sequences) has revealed that people tend to remember the semantics of what is 

said, not a verbatim account. Therefore, it may prove more insightful to test listeners’ learning of 

semantics (musical rules and underlying statistics) across exemplars rather than the individual 

exemplars themselves. 

 An area of music cognition that warrants much more investigation is the relationship 

between musical rule-learning (statistical learning of musical structure and schemata) and 

learning of particular musical exemplars. We see from this IT study that learning individual 

sequences is possible, but challenging. Again, however, this may be due to the nature of the 

stimuli (tone sequences are difficult to commit to memory). In the following EEG studies, we 

use more ecological stimuli – folk and jazz tunes – with the prediction that this more typical 

musical structure will assist memory. In the previous IT study, it is likely that participants were 

learning the rules describing the underlying transition matrices rather than the particular 

exemplars themselves. Therefore, to further examine participants’ ability to learn specific 

exemplars, and to test the use of ecological melodies, the following EEG studies probe listeners’ 

memory for novel folk tunes (and their randomized counterparts) over time. The use of stylistic 

and randomized tunes allows us to test the role of structure over the course of learning. The 

following EEG studies explore whether repeated same-day listening sessions result in successful 

encoding of unfamiliar melodies, and lend insight into the neural dynamics of the learning 

process for these more ecological stimuli. 
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4.4 Electroencephalography (EEG) Experiments 
 

To gain a more accurate account of human music learning, it is crucial to corroborate 

behavioral and computational approaches with studies of brain activity. Research in speech and 

music shows that listeners model their auditory environment to form expectations about future 

input. Although imaging techniques such as fMRI can show fine-grained spatial activation of 

brain areas underlying perceptual and cognitive tasks, the temporal resolution is insufficient to 

study in detail responses to individual notes in music played at natural tempi. EEG, however, 

permits us to study the electrical activity of the brain with excellent temporal resolution, making 

this method especially appropriate to examining neural responses during music listening (e.g., 

Williamson & Egner, 2004; Tervaniemi et al, 2001). 

Our EEG research examines how listeners’ expectations of forthcoming tones predict 

memory performance and influence early portions of the auditory evoked response (AER) 

(Naatanen, 1992). Relatively few EEG studies of music perception have investigated neural 

responses underlying learning as music becomes familiar with repeated exposure, and how brain 

responses change accordingly with the increasingly detailed musical representation that is 

formed in memory. Recent work has shown that low probability tones in unfamiliar, well-

structured melodies elicit a negative Event-Related Potential (ERP) between 400-450ms post-

tone onset, as well as increased beta band activity (Pearce et al, 2010). The following studies 

examine how ERP response and oscillatory activity change as melodies are repeatedly presented.  

 
 
4.5 EEG Experiment 1: ERP Response 
 

As made very clear through the previous section on information theory, prediction and 

expectation play a fundamental role in auditory perception. In language, expectancy effects are 
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evident in a number of phenomena observed in the EEG literature (e.g., the MMN, N400, and 

P600). Researchers in music have made the connection between prediction and music perception, 

cognition, and emotion for decades (e.g., Meyer, 1953; Narmour, 1990; Huron, 1990). The brain 

does not passively process incoming information, rather, listeners continually form a predictive 

model of their auditory environment. 

Only recently has on-line learning in the non-speech auditory domain been addressed 

using electroencephalography (EEG). In a statistical learning study by Abla, et al. (2008), 

listeners heard ‘tone words’ over 3 learning sessions. The transitional probabilities (TP) between 

the three tones of a word are greater than the TPs between words. Once these probabilities are 

learned, the second tone of a word should be highly predictable upon hearing the first tone. The 

authors hypothesized that these differences in TPs would be reflected in neural response. Indeed, 

they found that, after hearing the first tone of a word, listeners’ N1 and N4 ERP amplitude 

increased while the transitional probabilities within words were being learned. Once these 

probabilities were known, the ERP amplitudes decreased (Abla, et al, 2008). This interesting 

finding suggests that during the process of learning, more effortful neural processing is present, 

but once the statistical properties of the stimulus are learned, fewer resources need to be 

expended. 

The following study explores the impact of learning and familiarity on the amplitude of 

obligatory components of the auditory evoked response (AER), specifically the N1 component. 

We hypothesized the following: First, a difference in the AER should be observed between 

normally structured melodies and scrambled melodies because structured music is more 

predictable. As the listener learns a melody, she will form increasingly more specific predictions 

about the melody (e.g., what tones to expect in a subsequent musical phrase). Therefore, the 
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amplitude of the N1 component should increase during musical learning, and become attenuated 

once the music is learned (see Abla et al, 2008; Loui et al, 2009; Kim et al., 2011). For melodies 

lacking musical structure, we should not observe a decline in the N1 amplitude, because it should 

be nearly impossible to form a stable predictive model. These predictions are expressed 

graphically in Figure 4.3 below. 

 

        
 

Figure 4.3. We hypothesize that the amplitude of the N1 component will gradually 
decline because fewer neural resources will need to be recruited as familiarity increases. 

 
 
 
4.5.1 Method 
 
4.5.1.1 Participants 
 

Ten adult volunteers (6 female and 4 male) with normal hearing and minimal musical 

training participated in the study. 

 
 
4.5.1.2 Materials and Procedure 
 

Participants listened to monophonic Irish folk tunes, played in a plucked guitar timbre, 

during two listening sessions (Block 1 and Block 2). Both sessions featured the same four 

Normal tunes and four Randomized versions of those tunes. Normal tunes were alternated with 
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Random tunes, and presented in a different order for Block 1 and Block 2. There was no overt 

task or presentation of visual stimuli; listeners were told to focus on committing the tunes to 

memory. The folks songs were drawn from the Nottingham Folk Music Database. 

 Finale PrintMusic 2010 software was used to create WAV files of the songs. Praat 

software was then used to isolate the tones of the melodies and create a WAV file for each tone. 

The tones were either presented sequentially (in the Normal condition) or in a pre-specified 

random order (in the Random condition) using E-Prime Software. The tunes were played at a 

tempo of 90 bpm to allow enough time after tone onsets to collect ERP responses. Each listening 

session was approximately 12 minutes long, and listeners were able to take short breaks between 

listening sessions if they desired. 

 
 
4.5.1.3 Data Acquisition and Preprocessing 

 
EEG was recorded using a 128-channel EGI Hydrocel geodesic sensor net with a Cz 

reference. Data were sampled at 500 Hz/channel and impedances were kept below 60 kΩ by 

applying saline solution to dry electrode sponges when necessary. Using BESA (Brain Electrical 

Source Analysis, MEGIS Software, Gräfelfing, Germany) software, eye blinks were corrected 

(multiple source eye correction method), and channels with pervasive artifacts were spline 

interpolated (this was kept below 10% of channels per subject). Segments of data still containing 

large artifacts were rejected by hand. The data were then bandpass filtered (0.3–30 Hz) and 

segmented (−100 to 800 ms) to obtain ERPs before averaging. Lastly, the data were re-

referenced to an average reference using Brain Vision Analyzer software (Brain Products, 

Munich, Germany) and filtered at 1 Hz. 
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4.5.1.4 Data Analysis 

Brain Vision Analyzer software was used to create grand averages for both conditions. 

Based upon the N1 topography, peak amplitude for this obligatory component was found for 

every subject and condition at the fronto-central electrodes for which N1 amplitude was the 

greatest (electrodes numbers 6 and 11). 

 
 
4.5.2 Results and Discussion 
 

An ANOVA was conducted including the factors Listening Block (1 and 2) and Song 

Type (Normal and Random), with Subject as a random variable, and peak N1 amplitude as the 

dependent variable. For electrode 11, localized centrally and towards the front of the scalp, there 

was a significant main effect of Song Type, F(1,27) = 4.29, p < .05, and a significant interaction 

between Listening Block and Melody Type, F(1,27) = 21.66, p < .0001. For electrode 6, which is 

central but more posterior to electrode 11, the analysis yielded a significant interaction between 

Block and Melody Type, F(1,27) = 4.98, p < .05. As expected, the N1 amplitude decreases as 

participants learn the Normal melodies, but increases as listeners struggle to form an accurate 

predictive model for the Random melodies. This effect was apparent for frontal central channels, 

and the grand average ERPs for both conditions (as well as the N1 peak topography) are shown 

below for a channel in this region (see Figure 4.4). 
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Figure 4.4. Grand average ERP responses (for electrode 6) and N1 topography per 
condition, across blocks. The top graph displays Normal (blue) versus Random (red) 
response for Block 1, and the graph below displays Normal (light blue) versus  
Random (pink) response for Block 2. Negative is plotted downwards. 

 
 
 

Our results lend support to the claim that as learning occurs, and a stronger internal 

predictive model is formed, the brain gradually becomes more efficient (see Figure 4.5). Because 

Normal folk tunes are highly predictable in nature, a larger N1 amplitude was initially seen (as 

compared to the Random “melodies”). This amplitude decreased once the listeners became 

familiar with the melodies by Block 2. Conversely, the N1 amplitude for the Random melodies 

increased over time, presumably because it is very difficult to predict forthcoming tones in this 

unstructured music. 
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    Figure 4.5. Peak amplitude of the N1 component for Normal and Random sequences.  
 
 
 

In sum, this study provides evidence that increasing familiarity with Normal melodies 

results in decreased N1 amplitude. As predictability increases, the brain’s response becomes 

more efficient. No such effect is observed for repeated Random “melodies”, presumably because 

it is unlikely that a predictive model is formed. 

 
 
4.6 EEG Experiment 2: Time-Frequency Analysis 
 

Investigating event-related responses is only one approach to understanding how neural 

activity may reflect the processing demands of incoming stimuli. The oscillatory neural 

dynamics of music listening have been studied far less than event-related responses. Therefore, 

rather than focus solely on ERP techniques, we also examined changes in the power spectra of 

the alpha (8-12 Hz) and beta (15-30 Hz) frequency bands as Irish folk tunes became familiar 
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over time. Contrary to previous research, which alludes to alpha as an idling of the brain, some 

studies have shown that an increase in alpha activity has been correlated with the number of 

items held in working memory (Jensen, et al, 2002). If processing Random sequences places 

greater demand on working memory due to the lack of musical structure, we expect to see more 

alpha activity for these sequences compared to Normal sequences. In the domain of music, more 

beta band activity has been demonstrated for improbable (high information content) compared to 

probable (low information content) tones within melodies (Pearce, et al, 2010). Consequently, 

we also expect to see greater beta band activity for randomized sequences. 

 In the following study, participants heard Normal and Random folk melodies over the 

course of three listening sessions. Participants also completed a recognition memory test after the 

final listening session. To summarize our hypotheses, we predict: 1) more alpha and beta activity 

during Random rather than Normal sequences, because it is more effortful to try to learn Random 

sequences; 2) better performance on the memory test for Normal compared to Random 

sequences; and 3) a correlation between alpha/beta band activity and performance on the 

memory test. 

 
 
4.6.1 Method 
 
4.6.1.1 Participants 
 
Nineteen non-musician adult volunteers with normal hearing participated in this experiment. 
 
 
 
4.6.1.2 Materials and Procedure 
 

Participants listened to monophonic Irish folk tunes, played in a piano timbre, during 

three 16-min listening sessions (Blocks 1, 2, and 3). All three blocks featured the same six 
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Normal tunes and six Randomized versions of those tunes (played in a different order in each 

block). Like the previous experiment, there was no overt task or presentation of visual stimuli; 

listeners were told to stay alert and focus on memorizing the tunes. The folks songs were drawn 

from the Nottingham Folk Music Database. 

 Finale PrintMusic 2010 software was used to create WAV files of the songs. Praat 

software was then used to isolate the tones of the melodies and create a WAV file for each tone. 

The tones were either presented sequentially (in the Normal condition) or in a pre-specified 

random order (in the Random condition) using E-Prime Software. The tunes were played at a 

tempo of 120 bpm, faster than the previous study because ERP responses were not analyzed. 

Listeners were encouraged to take a short break between listening sessions. After the third 

listening session, participants ran in a brief memory test in which four-measure-long excerpts of 

Normal and Random songs were presented. Listeners heard 24 Normal and 24 Random excerpts, 

of which half were Familiar (heard during the Listening Blocks) and half were Unfamiliar. After 

hearing each excerpt, participants simply responded ‘Yes’ or ‘No’ as to whether they had heard 

the phrase before. 

 
 
4.6.1.3 Data Acquisition and Preprocessing 

 
EEG was recorded using a 128-channel EGI Hydrocel geodesic sensor net with a Cz 

reference. Data were sampled at 500 Hz/channel and impedances were kept below 60 kΩ by 

applying saline solution to dry electrode sponges when necessary. Eye blinks were corrected 

(multiple source eye correction method), and channels with pervasive artifacts were spline 

interpolated (this was kept below 10% of channels per subject) using BESA software rather than 
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Independent Component Analysis (ICA)4. Segments of data still containing large artifacts were 

rejected by hand. The data were then bandpass filtered (0.3 - 50 Hz), re-referenced as a 27-

channel Laplacian montage, and exported for time-frequency analysis using Matlab, EEGLAB 

software (Arnaud Delorme and Scott Makeig, version 10), and the Chronux toolbox (developed 

in the laboratory of Partha Mitra). A Laplacian montage was used because, unlike an average 

reference, this approach preserves information about surrounding channels. Average referencing 

can introduce artifacts to all the channels and generally decrease the localization of sources 

across the scalp (compare Figure 2 and Figure S1 of Cimenser, et al, 2011). Because a Laplacian 

reference only utilizes activity from surrounding electrodes, it provides a more accurate account 

of localized neural activity. 

 
 
4.6.1.4 Data Analysis 
 

Based on the Chronux toolbox, and with the help of Dr. Andrew Goldfine (Weill Cornell 

Medical College), scripts were developed to run the Multi-Taper Method (Thomson, 1982) on 

                                                
4 Use and limitations of ICA:  ICA has been widely implemented to remove blinks and other artifacts from EEG 
data, and is also often used to find neural signatures of perceptual and cognitive processing. This analysis is well 
suited for ERP studies that have brief trials, and works best with relatively clean data. In my current EEG studies, I 
perform time-frequency analyses on relatively long swaths of data (several-minute long datasets), in which 
inconsistencies are present (different types of artifacts occur). Because these data are quite noisy in some cases, ICA 
was found to not be an adequate processing tool. For example, the first component in an ICA analysis of EEG data 
should almost always isolate the blink artifact. But due to noise in the data (bad channels and muscular artifacts), the 
blink artifact was distributed over many components, making it nearly impossible to remove blinks without 
potentially disrupting neural data.  

In addition to the difficulty of isolating blink artifacts, ICA was found to distort the oscillatory activity of 
interest in my experiments. To reduce the amount of noise and inconsistencies in the data (to improve the efficacy of 
ICA), ICA was run on data from one listening session/condition at a time. Although less data produces cleaner 
components, a major confound is introduced via this approach: By running ICA separately for each 
condition/listening session, and because the artifactual components have traces of neural activity, I would not be 
able to claim that differences between conditions were due to different processing mechanisms in the brain. In other 
words, by removing (different) noisy blink components for each dataset, more alpha activity (for example) may have 
been inadvertently removed in one dataset compared to another. Because running ICA on an entire subject’s data 
(all listening sessions and both conditions) is not an option due to all the different types of artifacts present in that 
quantity of data, ICA was determined to me an in-effective tool for this type of study/analysis. Therefore, 
preprocessing of data was only possible using BESA’s blink and artifact correction tools.  
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these data in order to obtain accurate power spectra (PS) of oscillatory activity during the 

listening sessions. A frequency resolution of 2 Hz was used. Also, a Two-Group Test was 

performed on the data to isolate significant frequency differences in the PS between conditions 

and blocks. 

 
 
4.6.2 Results and Discussion 
 
 A regression analysis of Melody Type (with Subject as a random factor) and Memory 

Performance yielded a significant difference in Hit Rate (correctly identifying a sequence as 

“familiar”) between Normal and Random sequences, F(1,18) = 24.61, p < .0001, with listeners 

performing better on Normal trials. The average Hit rate for Normal sequences was 82% (+/- 

3.0% std error), whereas the average Hit rate for Random sequences was at chance, 53.5% (+/- 

4.4% std error). There was no significant difference in D-Prime, however there was a main effect 

of Criterion, F(1,18) = 51.42, p < .0001, with an average Criterion value of -.79 Normal 

sequences and .25 for Random sequences. 

Preliminary time-frequency results have not yielded a significant correlation between 

memory performance measures and average alpha or beta band activity, possibly because only 

one recognition memory test was given at the end of the entire experiment (as opposed to testing 

memory after each listening session). The average peak oscillatory activity for alpha and beta 

across subjects is shown below in Figure 4.6.  
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Figure 4.6. Peak values for average oscillatory activity for Normal and Random sequences 
in each of the three listening blocks. 

 
 

 
Despite these negative findings, the results are still promising, as it appears that 

significant differences in alpha and beta band activity between conditions may have been washed 

out due to individual differences. One listener’s power spectra results are shown below in Figure 

4.7, in which significant differences between blocks are clearly shown in alpha activity (between 

6-12Hz) and beta activity (15-30Hz).  
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                     Power Spectra: Normal melodies 

 
Frequency in Hz 

 

 
      Power Spectra: Random melodies 

 
        Frequency in Hz 
 

Figure 4.7. Example power spectra from one subject at central electrode Cz for listening       
sessions 1 (red), 2 (blue), and 3 (green). Top graph: Normal melodies. Bottom graph: 
Random melodies. 
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The participant above displayed increasing alpha and beta activity over the course of the 

three listening blocks, with greater overall power in the alpha and beta bands for Random 

sequences. Also, increased alpha activity was elicited during blocks 2 and 3 compared to block 1 

for Random sequences. This increased activity is not shown until block 3 for Normal sequences. 

In addition, there were greater increases in beta activity over the course of the experiment for 

Random compared to Normal sequences. These findings need clarification through follow-up 

research, but give preliminary evidence supporting increased alpha and beta activity as 

sequences are learned over time. The greater increase in oscillatory activity for Random 

compared to Normal sequences shown above may be due to the higher processing demands of 

learning sequences lacking in musical structure. 

 In sum, we expected listeners to be unsuccessful at learning Random sequences, and 

support for this hypothesis was found in the memory test, where listeners performed poorly on 

Random test trials. In addition, we expected listeners to have difficulty creating predictive 

models for Random sequences, and hypothesized that this lack of accurate expectation would be 

reflected in neural activity (a less accurate predictive model should lead to greater alpha and beta 

activity). Although we cannot yet make claims from the group time-frequency results, several 

participants did demonstrate increasingly greater alpha and beta band activity for Random 

sequences over the course of the listening sessions. This may possibly result from interesting 

individual differences, such as variable amounts of musical training and experience. Like the 

Alba, et al (2008) study demonstrates, significant differences in task performance can be 

reflected in participants’ neural activity. Therefore, future studies in this line of investigation will 

“bin” data according to ‘years of musical training’ and memory task performance. In addition, 
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future studies will incorporate a memory test after every listening session to examine the time-

course of musical learning at a finer level of detail. 

 
 
4.7 Conclusions and Future Directions 

 
 Information Theoretic approaches have elucidated various aspects of music perception, 

such as the melodic expectancy of forthcoming music (e.g., Pearce, et al., 2010). In the IT study 

described above, three subjective information theoretic factors, Surprise, Predictive information, 

and Coding Gain, all significantly influenced expectation ratings of Probe tones during the 

listening sessions. Generally, sequences that were more difficult to predict (higher 

surprise/entropy, etc) gave rise to worse memory performance in participants. There was also an 

increasing impact of these factors on memory for exemplars throughout the study. The effect of 

entropy became more pronounced as listeners repeatedly heard melodies (sequences with low 

overall Surprise were more likely to be remembered by the third listening session, for example). 

 The effect of unpredictability was also apparent in my EEG studies. When listeners are 

unable to form an accurate predictive model of forthcoming input, neural processing is more 

effortful: the amplitude of N1 response increases for Random compared to Normal sequences 

over time. In addition, preliminary evidence shows increases in alpha and beta band activity as 

novel sequences are learned over a period of increasing exposure.  

Although the above EEG studies only manipulated global musical structure by using 

Normal and Randomized melodies, future work will use tone sequences varying on the 

information theoretic measures described in the previous section. Over the course of learning, we 

predict that sequences should elicit more efficient neural oscillatory response over time. We 

expect, for example, that melodies with low predictive information and high entropy should 
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impose greater processing demands than those with low entropy and high redundancy. Lastly, it 

would be interesting to test learning and memory for the above ecological melodies compared to 

those tailored to reflect particular information theoretic properties.  
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CHAPTER 5 
 
GENERAL DISCUSSION:  PREDICTION AS AN EFFICIENT AND 
 
INDISPENSIBLE COMPONENT OF MUSICAL LEARNING  
 
 
 
5.1 General Discussion 
 
 This dissertation centers around the dynamic process of learning music over time – what 

is likely to be encoded upon first hearing a novel melody (in terms of musical characteristics and 

statistics), and how mental representations change with increasing exposure to music. Schematic 

processing, predictive mechanisms, and increased efficiency of representation were all 

highlighted as important aspects of musical learning. Evidence for these findings was drawn 

from behavioral research, computational and information theoretic methods, and 

electroencephalography. 

Like memory for language or visual experience, musical memory is multifaceted and 

complex. Sometimes sections of music are remembered “verbatim”, while other passages are 

encoded in a more general, schematic framework. Expertise can play a large role in musical 

learning, as differences between musicians and non-musicians (such as the accuracy of a set of 

musical predictions) affect the level of detail retained in memory. The robustness of memory 

also depends on the amount of time lapsed since exposure to novel music, with the emphasis on 

musical contour in short-term memory giving way to a more precise interval pattern encoding in 

long-term memory. Music recognition is also influenced by familiarity with the stimulus and 

episodic associations. In addition, musical memory is of course subject to general memory 

constraints, such as the limits of working memory span. All of these facets of musical memory 

may be understood in terms of a few key concepts described below. 
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5.1.1 Experience Enables Efficiency 
 

One general “goal” of evolution is to be as structurally and metabolically as efficient as 

possible. When considering cognitive function, this is manifested in terms of predictive 

processing - finding meaningful patterns in the environment allows for expedited processing of 

future input. As Moshe Bar attests, the brain is proactive – it needs not form new predictions 

“from scratch”, but almost always relies on existing “scripts” in memory, which are the product 

of previous experience and associative processing (Bar, 2011). Although some resources are 

required, especially initially, to create a mental predictive model, an accurate set of expectations 

decreases demands on resources later. Schemata are long-term predictive models – they are 

based on extensive experience and allow the perception of stylistic (well-structured) music to be 

more efficient. While most often an indispensible part of musical perception and learning, 

schematic processing is occasionally detrimental to memory by causing a poverty of detail. 

Similarly, an inaccurate or inappropriately applied schematic framework can lead to errors of 

encoding or recall. When a predictive model is consistently erroneous, it is altered to reflect the 

statistical properties of the signal. A tradeoff exists between the level of informativeness that 

prediction affords, where precise expectations are more useful in guiding perception, and 

accuracy of prediction, which often stems from more general and abstract expectations.  

 
 
5.1.2 Schematic Processing as a Predictive Model 
 
 Arguably, one of the most important aspects of our perception and memory is our ability 

to use schematic processing to understand, efficiently encode, and predict what we experience. 

Schematic processing is the top-down mediation of input that guides the listener’s expectations 

during music perception (thereby also influencing memory). More robust schematic processing 
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allows for a more structured and detailed gist to be encoded in memory. Given the flood of 

information constantly bombarding our senses, using schemata to process and selectively store 

incoming information is more efficient and flexible (for comparisons and abstractions) than 

encoding all of the information verbatim.  

If an adult with Western musical experience listens to a theme and variations for the first 

time, his musical schemata will guide his perception of the music through a series of implicit 

expectations about the rising tension and cadential release in the music (Gjerdingen, 1988). In 

this way, schemata scaffold the listener’s perception of music by providing a framework of 

knowledge and expectations. Upon hearing the theme, which is often a salient and repeated event 

in the music, the theme’s contour and foundational metrical features will be stored as a gist in 

memory. While hearing the variations, in which the thematic material is repeated in different 

ways (such as transpositions and alternate rhythms), the listener forms an increasingly more 

detailed representation of the principal theme. The melodic contour will be supplemented by 

specific interval patterns in long-term memory, and a schematic representation of the theme’s 

prolongational reduction (pattern of tension and relaxation based on the harmonic and metrical 

structure) will be encoded (Lerdahl & Jackendoff, 1983). This creates a sort of melodic 

invariance that allows the theme to be recognized across different instantiations. It is the type of 

schematic-predictive model that is general and flexible enough to be widely applicable and 

accurate for general expectations. 

Research in music cognition has outlined several types of melodic expectation (common 

chord progressions, melodic motion, etc) and predictive processing, but many of the current 

approaches to modeling this tension/relaxation in music are essentially based on a snapshot in 

time. Time-span reduction analysis, for example, creates predictions about rising and waning 
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tension without regard to how the listener’s expectations change over time (Lerdahl & 

Jackendoff, 1983). The information-theoretic approach of Chapter 4 offers a useful remedy by 

modeling adaptive statistical predictions in the listener that change dynamically with every 

subsequent event in the music. In addition, computational models and EEG can capture the 

mechanisms underlying the evolving experience of learning music over time. 

In sum, schematic processing and gist-like representation are crucial for the 

comprehension and appreciation of music. Future work should capitalize on the recent advances 

in knowledge about statistical learning and computational modeling, as well as neuroscientific 

approaches, to further address how schemata are developed and memory representations 

dynamically change over time. 

 
 
5.2 Summary of Findings and Conclusions 

 
The studies within this dissertation explored the process of forming musical expectations, 

and the role of schematic expectations in guiding perception and memory. In order to explore the 

memory representation formed upon hearing a melody for the first time, I conducted a set of 

behavioral change detection studies (Chapter 2). Inspired by visual change blindness research, 

these experiments investigated the relationship between musical schemata, tonal and rhythmic 

structure, and musical expertise. Both musicians and non-musicians were tested to assess 

whether training facilitates the use of schematic processing and thus the formation of a more 

detailed memory representation. 

The results of the first behavioral study showed that professional musicians were 

significantly more successful at detecting changes than non-musicians for melodies containing at 

least a minimal amount of structure. Generally, less tonal structure (eg. non-stylistic and 
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randomized melodies) resulted in compromised change detection for the two groups. When 

sequences did not conform to listeners’ schemata, they were either left with a poverty of 

information encoded in memory (i.e., for random sequences), or an inaccurate representation 

(i.e., for diatonic changes). The second experiment revealed tonality to have a particularly large 

effect on memory performance, with note duration, interval of change, and musical expertise also 

contributing significantly. 

Clearly, the memory representation for a novel melody is quite different than that of a 

well-known melody (or one that has been presented repeatedly). Memory for novel music will 

generally be less detailed and more schematic than long-term musical memory. To gauge how 

memory representations change over the course of the learning trajectory, I conducted a series of 

SRN studies.  

The computational studies discussed in Chapter 3 examined the learning trajectory of 

tonal representations in music while observing changes in the network’s internal structure over 

time. Our simple recurrent network demonstrated that sparse population coding is an efficient 

and effective way to distill information about musical structure. Three experiments examined the 

learning trajectory of a simple recurrent network upon exposure to musical corpora differing in 

statistical structure (Normal, Bigram, and Random networks). By having listeners rate the 

network’s own novel musical output from different points along the learning trajectory, the 

experiments compared the networks’ internal representations to behavioral data. We found that 

the hidden layer representations of tonal structure become more efficiently represented (in terms 

of population sparsity) as the network learns, and that this sparsity is strongly correlated with 

listeners’ judgments of the networks’ compositions. We argue that sparsity underlies the 

network’s success: It is the mechanism through which musical characteristics are learned and 
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distilled, and facilitates the network’s ability to produce more complex and stylistic compositions 

over time. Future work will clarify which type of sparsity arises within the network’s internal 

representations, population or lifetime sparsity (or both). Population sparsity describes a network 

in which only a few nodes are active all the time. Lifetime sparsity, which may be a more 

interesting measure of sparsity, occurs when a small set of active nodes are distributed in 

representing information over time. We may calculate this measure in future work by tracking 

the activations of hidden layer nodes throughout the course of training. Our hypothesis is that 

both population and lifetime sparsity are present in networks exposed to normal, stylistic music, 

but only population sparsity arises in networks exposed to random sequences of tones. 

Considering further the internal structure of these SRNs, and comparing these 

computational models with the previous change detection findings, we hypothesize that the SRN 

essentially learns musical schemata over the course of training. Future work will prompt the 

SRN to produce computational schemata (trajectories through tonal state space) after exposure to 

a corpus of stylistic, non-stylistic, or random music. The networks can also be used to produce 

their own gist memory after exposure to brief melodies. Comparing this output to listeners’ 

behavioral findings will be some of the first computational work to model gist memory.  

 The SRN’s process of acquiring statistical regularities from exposure may also be 

compared to the listeners’ process of learning the statistical regularities of tone sequences in 

Chapter 4. In the information theoretic study presented therein, sequences of varying 

predictability were presented over the course of three listening sessions. The measures of 

Surprise, Predictive information, and Coding Gain were all found to influence both melodic 

expectation during listening and memory at test. Generally, sequences that were highly 

unpredictable led to lower expectation ratings of probe tones and worse memory performance. 
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Interestingly, memory performance for sequences that were high-entropy or low average Coding 

Gain significantly improved from the first to third test session. This may be because listeners 

these sequences were the most challenging to commit to memory, and therefore initially very 

poor performance improved with exposure. Like the SRN of Chapter 3, listeners slowly learned 

the statistical tonal regularities of tone sequences over time. To test whether the listeners’ 

memory representations also become more efficient, a series of EEG studies was conducted. 

The two EEG experiments outlined in Chapter 4 examined the N1 obligatory component 

and alpha and beta band activity as musical sequences varying in structure were learned over 

time. These studies provide preliminary evidence that while novel tone sequences are being 

learned, processing demands are high. Once an accurate predictive model is formed (i.e., for 

structured sequences), fewer resources need to be recruited for perception (the N1 amplitude 

decreases for Normal tunes). However, when little structure is present in the signal, as is the case 

with randomized tone sequences, processing demands increase as the brain attempts to form a 

useful model. Arguably, the differential N1 response between Normal and Random melodies and 

the preliminary oscillatory findings in Experiment 2 suggest the absence of schematic processing 

and expectation in melodies lacking musical structure. In other words, normal structure enables 

the formation and utilization of predictive models that ultimately result in increased efficiency of 

musical processing mechanisms. This finding is reminiscent of a TMS cortical mapping study in 

which the volume of neural substrate dedicated to finger movement increased as novice 

participants learned a pattern on the piano. After weeks of training, the volume of the dedicated 

motor representation reduced in size, showing increased efficiency once the pattern was learned 

(Pascual-Leone, 2006). It should be noted that in this study, as well as imaging studies of 

repetition suppression, for example, it is difficult to determine whether the decrease in response 
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is due to neural fatigue, sharpening, or facilitation (for an overview of these models see Grill-

Spector, Henson, & Martin, 2006). Similarly, in my EEG studies, further research would be 

needed to determine whether the observed decrease in neural activation is due to an overall 

reduction in responsiveness (all the neurons are still firing, but a decreased rate), to fewer 

neurons responding (at the same rate), or to increasing sparsity (the neurons have a distributed 

and selective response). 

In sum, the studies described above elucidate the process of musical learning over time, 

with particular emphasis on schematic processing, musical structure, statistics-based predictive 

models, increased efficiency, and the role of musical expertise. The SRN and EEG experiments 

illustrate how increased efficiency underlie successful learning over time. These findings, as well 

as results from the IT study, provide evidence that schemata are formed as the probabilities of 

forthcoming music are gradually learned with increasing experience. The set of expectations that 

schemata provide dynamically guide perception and influence memory, sometimes at the 

expense of accuracy and detail, but most often to support flexible and efficient cognitive 

processing. 
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