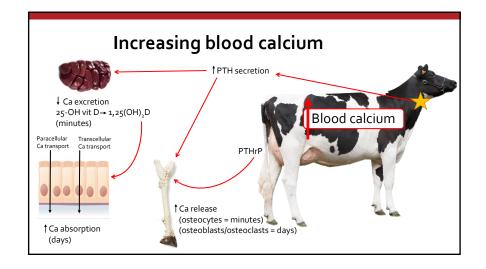
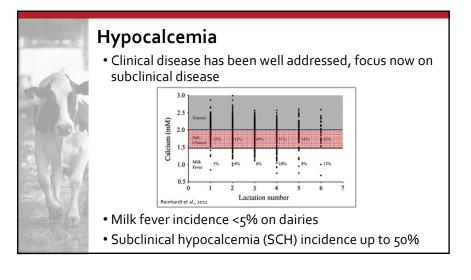
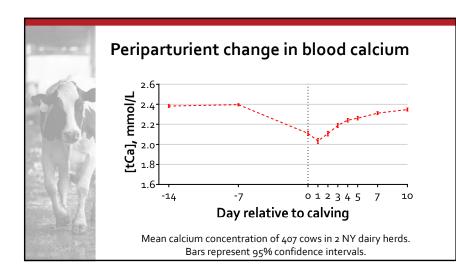
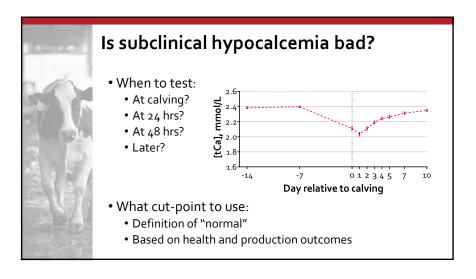

This slide informs you that I have received research support from the following corporate entities, some of which also provide compensation for speaking engagements: • Boehringer Ingelheim Animal Health • Elanco Animal Health • Phibro Animal Health Since the outcomes of my Cornell research may be of interest or may be beneficial to these companies, university policies require that I disclose these potential conflicts. I have disclosed these relationships to Cornell University and they are being managed in accordance with the CU policy 1.7 on financial conflicts of interest related to research.




Overview


- Calcium demands of early lactation
- When is hypocalcemia a problem?
- Postpartum calcium supplementation



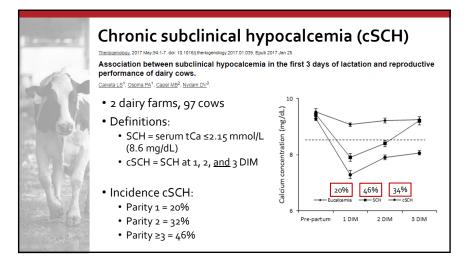
Subclinical hypocalcemia (SCH)

- Multiple studies have explored categorization of blood calcium concentrations in early lactation
 Oetzel et al., 1988; Oetzel et al., 1996; Martinez et al., 2012
- Recent studies use epidemiologic outcomes to improve characterization
- Chapinal et al., 2011; Rodriguez et al., 2017; Wilhelm et al., 2017; Neves et al., 2018; Venjakob et al., 2018
- No consensus on optimal test day or what cut point to use for classification of SCH

Does calcium concentration at calving matter?

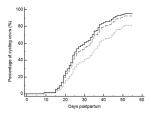
- Prospective cohort study in 5 dairy herds in NY
- 1,416 cows, blood collected by farm employees
- Mean time from calving to blood collection = 3 h

			Farm		
	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>
Milking cows, n	1,474	567	1,282	1,677	1,222
Milk production, lb	85.5	85.6	81.4	82.1	81.0
Prepartum DCAD, mEq/100 g DM	-6.9	-2.8	-5.5	7.3/14.1	-2.8


Conclusions tCa: 2.0 mmol/L = 8.0 mg/dL

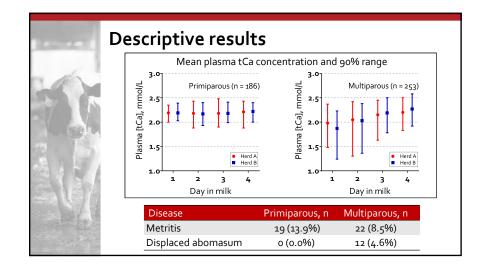
- <u>Primiparous cows</u>: tCa immediately after parturition was non-informative
- Multiparous cows:
 - Greater tCa increased the risk of culling
 - Every 0.1 mmol/L increase, RR = 3.4 (95% CI = 1.0 to 12.0)
 - Cows with tCa ≤1.95 mmol/L made more milk
 - 94.4 vs. 92.0 lb per test-day (P < 0.001)
 - Cows with tCa ≤1.85 mmol/L were more likely to get a DA
 - RR = 2.8 (95%Cl = 1.4 to 5.9)

Take-home message (and more questions...)


- Caution in classifying subclinical hypocalcemia based on a single time-point collected within 12 h of calving
- Are our cut-points for subclinical hypocalcemia too high?
- Is it the duration of subclinical hypocalcemia, not the value that is important?

Caixeta et al.: chronic SCH on reproduction

- Return to cyclicity:
 - Eucalcemic cows were more likely to return to cyclicity by end of VWP than cSCH cows
 - HR = 1.8 (P = 0.06)



- Pregnancy at first service:
 - cSCH cows had lower odds of pregnancy compared to eucalcemic cows
 - OR = 0.27 (P = 0.04)

When does calcium concentration matter?

- Prospective cohort study on 2 dairy herds in NY
 - 396 cows, blood sample collected daily for first 4 DIM
 - Health disorders and daily milk production collected from farm computer records
- Describe temporal association of tCa with:
 - Risk of metritis and/or displaced abomasum
 - Average daily milk yield for first 15 weeks

Disease results – primiparous cows

• Reduced tCa at 2, 3, or 4 DIM associated with an increased risk of metritis

DIM	n	<i>P</i> -value	AUC	Cut point, mmol/L		RR	95% CI
1	137	0.22	_	_	_	_	_
2	137	0.001	0.78	≤2.15	36.5	4.0	2.0 to 8.0
3	137	<0.001	0.80	≤2.10	26.3	5.2	2.6 to 10.3
4	134	<0.001	0.80	≤2.15	25.4	6.1	3.0 to 12.2

Adapted from Neves et al., 2018. J. Dairy Sci 101: 9321-9331.

Milk results – primiparous cows

• Reduced tCa at 1 DIM associated with increased milk

				Cut point,	% below	Milk yield,
DIM	n	<i>P</i> -value	AUC	mmol/L	cut point	lb/d
1	137	0.01	0.57	≤2.15	40.0	6.4 (±1.8)
	Adapted from Neves et al., 2018. J. Dairy Sci 101: 0221-0221					

• No association of tCa at 2, 3, or 4 DIM with milk yield

Disease results – multiparous cows • Association with metritis and/or DA differed by parity Cut point, % below P-value AUC mmol/L cut point RR 95% CI Parity DIM 105 0.17 0.67 4.1 1.8 to 9.5 105 < 0.001 ≤1.97 20.0 104 0.24 103 0.25 151 0.17 151 0.50 0.60 151 3.1 1.4 to 6.8 148 0.04 0.70 ≤2.20 43.2

Milk results - multiparous cows

- Association of tCa with milk yield differed by DIM
 - Reduced tCa at 1 DIM associated with increased milk yield
 - Reduced tCa at 4 DIM associated with decreased milk yield

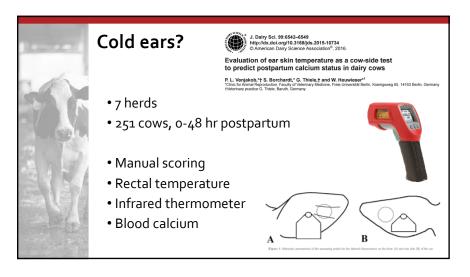
				Cut point,	% below	Milk yield,
DIM	n	<i>P</i> -value	AUC	mmol/L	cut point	lb/d
1	256	0.002	0.61	≤1.77	23.5	5.7 (±1.8)
4	251	0.04	0.52	≤2.20	39.0	-4.0 (±1.8)

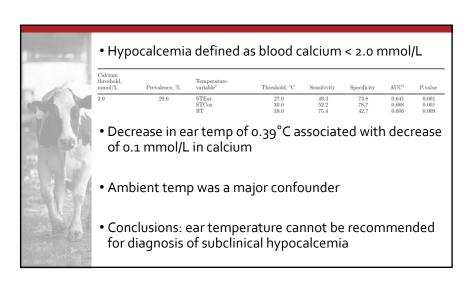
Adapted from Neves et al., 2018. J. Dairy Sci 101: 9321-9331.

Conclusions

- <u>Day in milk</u> at time of testing and <u>parity</u> are important factors when characterizing SCH!
 - Parity 1 cows at 2 DIM
 - Parity 2 cows at 2 or 4 DIM ------ ???
 - Parity 3+ cows at 4 DIM
- Need more large field studies to validate these thresholds

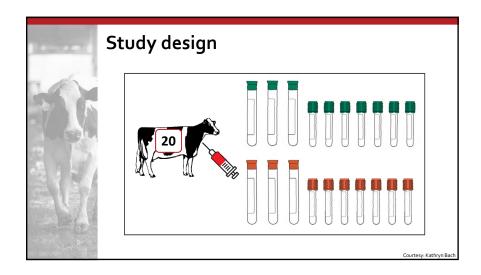


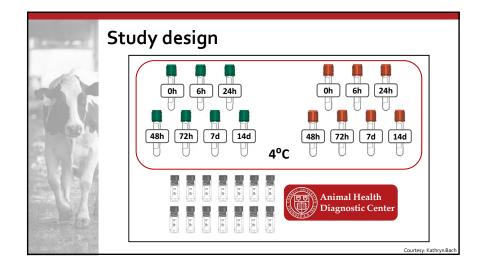

Implications for the real world ...

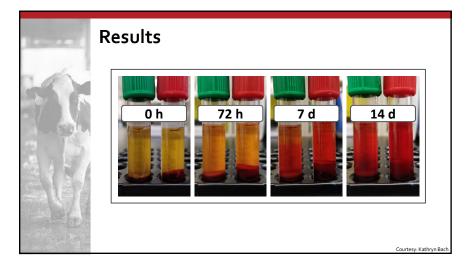

- We need to stop diagnosing SCH at 1 DIM.
- Should we evaluate herd-level calcium status based on parity group?
- What is a practical testing strategy in commercial herds?

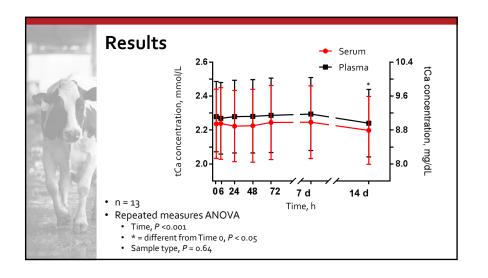
Measure total calcium at 2-4 DIM

• Does postpartum calcium supplementation affect longer-term calcium homeostasis?

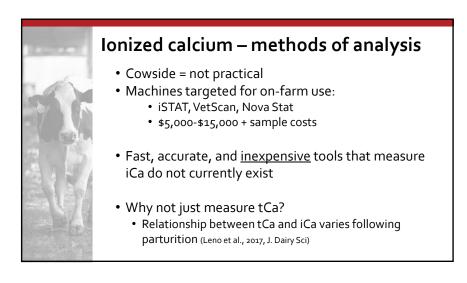

Direct measurement of calcium

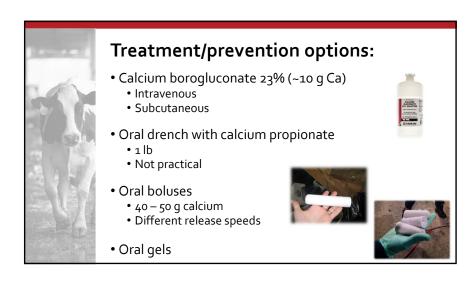

- Calcium is differentiated into 3 forms in blood:
 - Free or ionized (50-60%)
- Bound to proteins (30%)
- Complexed (10%)
- 2 options:
- Total calcium (tCa)
- Ionized calcium (iCa)

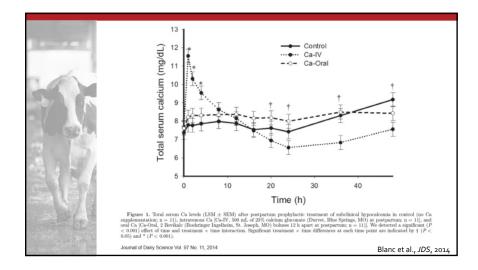


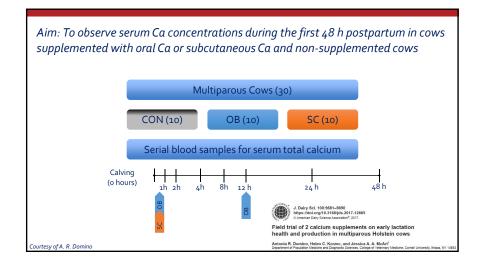

Total calcium

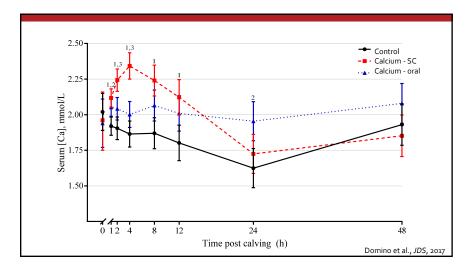
- Collect in green or red top tubes
- Fairly stable
- Methods of analysis:
 - Benchtop analyzer in laboratory @ \$5-15/sample
 - Analyzer in vet clinic @ \$5-7.50/sample



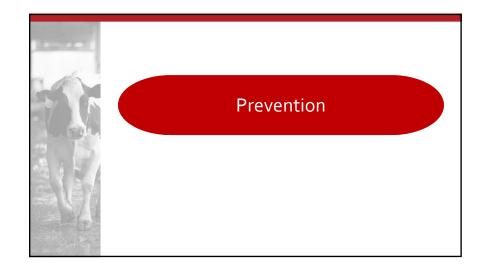

Ionized calcium


- iCa thought to have greater biological relevance than tCa
- Ion-selective electrode technology is largely employed for clinical use (blood-gas analyzers)
- Measurement of iCa is expensive, special handling procedures
 - Heparin salts bind calcium
 - Use of electrolyte-balanced syringes
 - Exposure to air changes blood pH

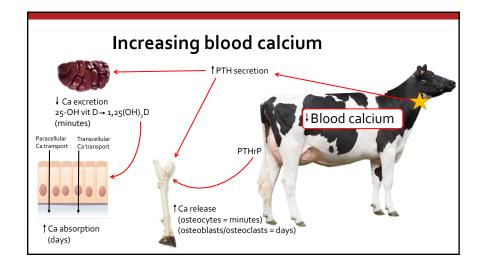


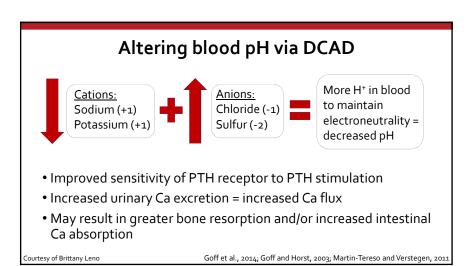


Postpartum calcium supplementation



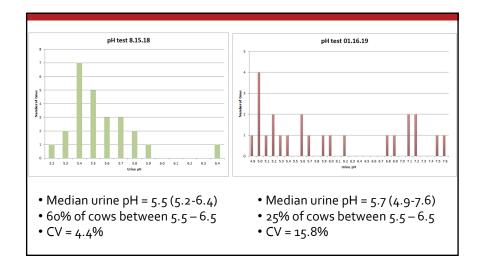
So, what is best?


- Subcutaneous calcium? Oral calcium? Nothing?
 - Increase blood calcium for a short period of time
 - Does supplementation prevent disease or improve milk yield?
- Answer: it depends.
 - Blanket therapy not always beneficial
 - Target groups: high producing cows, older cows, lame cows, cows with difficulty calving
 - Avoid other groups: primiparous cows



Nutritional strategies to reduce hypocalcemia

- Prepartum nutrition:
 - Feeding a dietary cation anion difference diet
 - Feeding a low Ca diet
 - Ca < 20q/d absorbed (practically difficult)
 - Calcium binder
- Postpartum nutrition:
 - Ensure adequate minerals



Is the DCAD working?

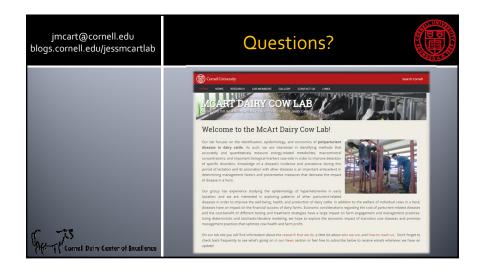
- Urine pH:
 - Midstream urine samples
 - Measure ~12 to 15 cows weekly
 - Consistent measurement relative to feeding time
- Goals:
 - 80% cows between 5.5 6.5
 - CV < 8%

Feeding DCAD

- Feeding DCAD but normal urine pH values?
 - Cows not consuming expected DM or TMR not mixed properly
 - Improper evaluation and adjustment for other free-choice minerals or forage content
- Large variation between <u>cows</u> may indicate unequal consumption of ration.
 - Overcrowding or social factors
 - Sorting due to poor mixing

Feeding DCAD

- Variation between <u>weeks</u> can indicate inconsistency in ration mixing or changes in feed ingredient composition.
- Use this information to improve feeding and management strategies!


Calcium binders

- Sodium aluminum silicate (Zeolite A)
 - Can bind dietary Ca, P, Mg
 - Show to increase active form of vitamin D prepartum
 - Studies done in USA and New Zealand
 - Targeted 500 g/d as fed
- Decreased prevalence of hypocalcemia
- No change in postpartum milk yield

Summary ...

- Hypocalcemia is a normal occurrence in immediate postpartum dairy cows.
- Diagnostic testing is expensive use your money wisely.
- Calcium supplementation is beneficial to an important group cows – the key is determining which group needs it and when!
- Prevention is always better than treatment.

<u>Goal</u>: identify optimal strategies to monitor and prevent hypocalcemia

