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Abstract 

As an alternative to standard estimation methodology, such as ordinary 

least squares or weighted least squares, we investigate tractable estimation 

methodology involving the use of integral transforms, particularly the use of 

the Laplace transform. To this, we establish theoretical results in transform 

estimation, and point out the numerically and analytically desirable proper­

ties of transform estimation, which are not directly available in standard least 

squares estimation, when dealing with implicitly defined functions such as 

those arising from a convolution or as the solution to a system of differential 

equations. Moreover, we address the choice of the variable of the transforma­

tion or the kernel of the transform in theory and make some recommendations 

for the practical selection of such variable. As an example of how transform 

estimation could be efficiently and meaningfully implemented, we propose 

convergent algorithms for estimating the flow rates or the parameters, from a 

discrete set of measurements, in linear time invariant compartmental models. 

1 Introduction 

Integral transform estimation has been widely used in the engineering and statistical 

literature, see for instance [1, 2, 3, 4, 5, 6, 7] and more recently [8] employed the use 

of the Laplace transform for estimation when dealing with a linear time invariant 

compartmental system. Most of these authors used the Laplace transform to obtain a 

closed form expressions to the convolution operator or to the solution of a differential 

equation. However, most authors also acknowledged the arbitrariness in estimation 

due to the infinite freedom of choosing the variable in the kernel of the Laplace 

transform. 

Because it motivates our approach to integral transform estimation and that of 

[8], we provide some detail of the work of [1, pp. 86-89]. They dealt with the inverse 

problem of estimating the coefficients of a second order differential equation from 

a discrete set of observations. They proposed the used of the Laplace transform to 



obtain a closed form expression of the implicitly defined model function and in their 

numerical simulation, they obtained coefficient estimates which were numerically 

the same as if they had not applied their transform methodology, but rather had 

approached the problem via least squares. However, it appears that [8] are the first 

in employing the use of the Laplace transform for estimation when dealing with a 

linear time invariant compartmental system. 

This paper consists of two main sections. Since they serve as an excellent source 

for the practicality of transform estimation, Section 2 gives a brief review of gen­

eral compartmental models and the Laplace transform. However, we first review 

standard estimation methodology involving compartmental models and its compu­

tational demands, then we introduce transform estimation as a general methodology 

for implicitly defined functions. To this, we obtain results in the theory of trans­

form estimation and established convergence for a proposed algorithm involving the 

Laplace transform in compartmental models. Section 3 focuses on the numerical 

implementation of transform estimation in compartmental models. More specifi­

cally, we make some practical recommendations for the appropriate choice for the 

variable of the transformation in the Laplace kernel and establish general conver­

gence results of our proposed algorithms. Lastly, we conclude with remarks about 

the numerical and analytical utility of Laplace transform estimation and point out 

other applications of transform estimation. 

2 Compartmental Models 

Compartmental systems have a wide range of applicability particularly in biomedi­

cal engineering where they are used to model the kinetics of distribution of materials 

through the organism, pharmacology, chemical kinetics, and in diagnosis and ther­

apy such as clinical pharmacology and pharmacotherapy. Thus, the problem of 

estimating the flow rates and subsequently the "concentration" curve in any one of 

the compartments from a discrete set of data, is of considerable importance. 
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Formally, by a compartmental system we mean a biological or a physical system 

which is made up of a finite number subsystems, called compartments or states, 

each of which is homogeneous and well-mixed, and the compartments interact by 

exchanging materials. There may be inputs from the environment into one or more 

compartments, and there may be outputs or excretions from one or more compart­

ments into the environment, see for instance [9]. Nonetheless, the dynamics of a 

general compartmental system are modeled by the following 

x(t) 

x(O) 

y(t) 

where the ith equation is given by 

Ax(t) + Bu(t), t :;:: 0 

0 

Cx(t), 

n r 

xi = L aijXj + L bikuk(t), i = 1, ... , n. 

j=l k=l 

(2.1) 

In the terminology of control theory, x, u, andy are referred to as the state/response 

function, input, and output vectors, respectively. However, for our purposes, we will 

refer to the system given by (2.1) as a compartmental system where A = [aij] is the 

n x n compartmental matrix representing the interaction between compartments 

whose entries are typically unknown and must be determined from a discrete set of 

measurements. The entries represent linear combinations of the flow /transfer rates 

from compartment j to compartment i, where compartment j is denoted by Xj, the 

jth component of the vector x(t), and where x(t) is the rate of change of the response 

function with respect to time. In general, the entries of A may depend on the state 

x(t), on time t, and on a vector of unknown scalar parameters. However, for the 

remainder of this paper we will assume that A consists solely of unknown scalars so 

that (2.1) is then a linear time invariant compartmental system. 

To determine these entries or parameters, an experiment is conducted in which r 

inputs excite the compartments thus causing them to interact with one another. The 

r inputs are regarded as the transposed column vector, u(t) = (u1(t), u2 (t), ... , ur(t))T, 
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where u(t) is the input or forcing function. The paths by which the r inputs enter 

the n compartments is represented by a n x r matrix B = [bik], called the input 

distribution matrix where entry bik is positive if input uk(t) enters compartment i, 

and zero otherwise. Since it might not be possible or practical to observe each indi­

vidual state by itself, we define a p x n matrix C, known as the output connection 

matrix, representing the paths from compartments to sampling devices where entry 

Cij is positive if compartment j influences output function component Yi; otherwise 

Cij = 0 . Hence, we see that y(t) = (Yl(t), Y2(t), ... , Yp(t)f. 

Due to conservation of mass or from the mass balance equations, it can be estab­

lished that the compartmental matrix, A, has non-negative off diagonal elements, 

non-positive diagonal elements, and its column sums are non-positive, see [1 OJ. This 

implies that the matrix is diagonally column dominant and that the eigenvalues of 

A have a non-positive real part and that none are purely imaginary. The former 

follows from Gerschgorin's theorem which can be found in [10, 11], for instance. 

Furthermore, these matrices need not be symmetric or normal since the entries cor­

respond to physical flow rates from one state to another. This property of A will 

play a critical role in the estimation process, nonetheless. (These matrices, actu­

ally their transpose negated, belong to the more general class of matrices known as 

M-Matrices, [12]). 

Through the use of integrating factors, the solution to (2.1), or the input-output 

relation, can be deduced to be 

y(t) = Cx(t) Clot e(t-T)ABu(T)dT 

·- cetA * Bu(t), 

where * denotes the convolution operator. 

(2.2) 

Prior to stating our algorithm and because it will motivate our approach to 

estimation, we review the standard method of estimation involving compartmental 

models. 
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2.1 Standard Estimation 

There is a large literature pertaining to the estimation and identifiability of a com­

partmental system from what is referred to as input-output experiments, see [10, 13] 

for example. However, estimation of the flow rates is not a trivial matter numerically 

since it involves the specification and coding of a highly nonlinear model function. 

In [14], they attempt to address this problem by proposing a method of estima­

tion which does not involve the encoding of partial derivatives in their optimization 

scheme. However, the success of their methodology is still dependent on the accu­

rate approximation of the matrix exponential. In what follows, we briefly review 

standard estimation methodology and its computational demands. 

Suppose the outputs are measured at discrete times t 1 < t 2 < ... < tm. Then 

we introduce the p x 1 vectors yi, i = 1, ... , m, where yi is a set of measurements 

gathered in all of the p compartments at time ti, that is an approximation to the 

true outputs that satisfies 

(2.3) 

where it is usual to assume that the statistical expected value of the p x 1 error 

vector E is zero, given the true value of the parameters at each fixed sampling time 

ti, and that the errors have finite statistical variance as well. However, we will make 

no further mention of the statistical properties of the estimator(s) in this paper. 

We suppose that the response function, y(t), is approximated by these discrete 

set of measurements yi at times ti. Then under the assumption that the entries of A 

are uniquely, either locally or globally, least squares identifiable, they are estimated 

from the following model 

i = 1, ... ,m. 
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That is, we seek the local or global minimizer of the constrained nonlinear least 

squares problem, 
m 

min L 11y(ti)- Yill 2 ; k,j = 1, ... , n, 
akj i=l 

subject to (2.4) 

akj 2: 0, k f. j, and 
n 

akk :::; - L ajk, k f. j, 
j=l 

where IIF(·)II 2 = F(·fF(·) and F denotes thepx1 nonlinear vector-valued function. 

Some facts about (2.4) are in order. The constraints are needed to insure a 

meaningful solution to (2.4); that is, it can be shown, see [15], that the constraints 

imply that the solution to the compartmental system is nonnegative and stable for 

all time, t. It can also be shown that a sufficient condition for the local identifiability 

of (2.4) is that the Jacobian of the objective function is of full rank [16]. The proof 

relies on showing that under the proper restrictions on the compartmental matrix, 

forcing function, and input matrix, the sequence of iterates from Newton's method 

is bounded. This sequence will be a uniformly bounded sequence in a separable 

Hilbert space from which it follows, see [17], that we can extract a weakly convergent 

subsequence which converges to a solution of (2.4). However, if the Hilbert space is 

finite dimensional, as it is in this case, then the convergence will be strong so that 

we have a strong solution to (2.4). 

However, estimating the transfer rates or parameters of a compartmental system 

from data is an inverse problem which is typically ill-posed. That is, identifiabil­

ity and continuous dependence on the data are concerns. For these reasons, to 

insure continuous dependence on the data, (2.4) is usually regularized in the sense 

of Tychonoff, see for instance [18]. Regularization is then accomplished in two 

ways: either (2.4) is linearized and then regularized, as is the case if one employs 

the Levenberg-Marquardt algorithm, or the objective function in (2.4) is regular­

ized and then linearized as is the case when one employs a penalized least squares 

method, see [18]. 
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Regardless of which regularization procedure one employs, the accurate solvabil­

ity of (2.4) is dependent on the accuracy of the numerical approximation of the 

matrix exponential. The numerical approximation of the matrix exponential could 

be a sensitive issue since compartmental matrices are usually not symmetric or nor­

mal, thus their spectral decomposition need not exist. Furthermore, even if the 

spectral decomposition exists, the eigenvectors could be numerically linearly depen­

dent and thus the matrix of eigenvectors could be ill-conditioned. Nonetheless, this 

may or may not be an issue since the Pade approximation algorithm is believed to 

numerically only fail to produce a relatively accurate eAt only when the matrix ex­

ponential condition number, v(A, t) fort= 1 is correspondingly large [11, page 576]. 

Precisely what restrictions this places on the compartmental system is unclear. We 

thus propose a method of estimation involving the Laplace transform, which does 

not directly depend on the numerical approximation of the matrix exponential, eAt, 

and has the interesting property that it uses the structure of A, namely the diagonal 

dominance. We first introduce the general principle behind transform estimation. 

2.2 Transform Estimation 

We introduce transform estimation mostly for the cases when a closed form expres­

sion of a function, like x(t) given by (2.2), is not known or is impractical/impossible 

to determine explicitly. Thus, one is forced to rely on numerical approximations to 

such functions. This will be the case whenever the model function involves a con­

volution or is the solution to a system of differential equations. In a later section, 

we demonstrate the practicality of transform estimation by considering the linear 

time invariant compartmental systems as an example, but for now we give the idea 

behind transform estimation. 

Suppose that we are given functions h(t, e), e fixed but belonging to some com­

pact space 8 c RN, and g(t) (which may or may not depend on e) both in some 

finite dimensional vector space W(D) C L2 (D). If there exists a e E 8 such that the 
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following prevails 

g(t) = h(t, B), a.e. t E D, (2.5) 

or equivalently the following prevails 

k (g(t)- h(t, B))w(t, s)dt = 0, Vw E W, and s E 0 c 8', (2.6) 

where SS denotes the complex plane, then we say that () yields a strong estimator of 

g(t) in the sense given in the following definition. 

Definition 2.1 Let W(D x 0) =span{ wi}~l~e), where ~(We) is the dimension of 

the space W c L2 (D x 0). If there exist a e E 8, where 8 is a compact subset of 

RN, such that for given functions h(t, B) and g(t) in W relationship (2.6) prevails, 

then we say that e yields a strong estimator of g( t). 

Note, however, that (2.6), in light of Definition 2.1 can be relaxed to read, only 

for all w in the set of basis elements of W. From this, we can still conclude that 

(2.6) implies (2.5) (this is even more obvious if one uses an orthogonal basis). 

However, a more relaxed than Definition 2.1 is necessary since (2.6) is an integral 

equation of the first kind and, as such, could be ill-posed. That is, there might not 

exist a e such that (2.6) holds, see for instance [18]. We thus make the following 

definition. 

Definition 2.2 The estimator (} E 8 is a transformed least squares estimator if it 

solves 

min r [ r (g(t)- h(t, B))w(t, s)dt]2ds, Vw E W, e lo ln 
where W, 0, h(t, B), and g(t) are as given in Definition 2.1. 

(2.7) 

Furthermore, if llg- hiiP ~ E, E small at the computed solution of (2.7), say e, for 

all elements in 8, then it certainly follows that e is a least squares estimator of g(t) 

in the ordinary least squares sense. 

In practice, one would not directly insists that llg - hi I be small at e for all 

elements of 8 since this would be too costly and impractical to implement directly. 
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However, assuming the existence of a solution to ( 2. 7), this will happen as a conse­

quence of the Implicit function theorem, see [19], as the following claim states. 

Claim 2.1 Suppose W0(0), 9(t) and h(t, e) are as given in Definition 2.1, and that 

there exists a e E 8 C RN, such that (2. 7) holds. Furthermore, suppose that the 

residual or the value of the objective function, 9- h, ate is small so that (2.6) holds 

with relatively small error, then it follows that 119- hiiLz must also be small at e. 

Proof: Since hand 9 are in W =span{ wi}~i~), where ~(W) is as given in Definition 

2.1, then it follows that we may express both h and 9 as linear combinations of the 

basis elements Wi· So that the Lz inner product (9- h, wi)L2 being small for each i, 

by the Implicit function theorem, it is possible to solve for each of the coefficients 

in terms of the others so that one gets a polynomial involving the norm of the 

basis elements (this is more obvious if one uses Gram-Schmidt to orthogonalize the 

basis elements). It follows that 119- hll£z must be small at e. Thus our claim is 

established. 

2.3 Generic algorithm 

Motivated by Definition 2.2 and Claim 2.1, we propose that transform estimation 

be implemented as follows. 

Suppose that we are given a discrete set of data, mi, i = 1, ... , n, such that 

(2.8) 

where E is the error vector which is typically assumed to have statistical expected 

value equaled to zero and finite variance. Then, the following are guidelines for 

applying transform estimation. 

1. A priori fit some 9(t) to the data {mi}, (the choice of fitting function is be 

best decided upon the given problem); nonetheless, the expectation is that in 

principle the agreement between 9(t) and h(t, e), for() fixed but unknown true 
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value, should be good in the least squares sense. That is, 

llg(t)- h(t,e)ll:::; t:, 

We thus, for ease of illustration, define a function TJ such that 

9(t)- h(t, e) = TJ(t, e). (2.9) 

2. We then multiply both side of (2.9) by w(t, s) and integrate over n so that 

k (g(t)- h(t, e))w(t, s)dt = k TJ(t, e)w(t, s)dt. (2.10) 

3. In practice, however, due to the presence of errors in the estimation of g(t) or 

h(t, e), we insist that (2.10) hold in the least squares sense. Moreover, since W 

is finite dimensional, we propose that the following modification to Definition 

2.2 be employed. 

That is, suppose that there exists a sequence sj, j = 1, ... , ~(W(D.)) such that 

w(t, Sj) forms a basis for W, we then solve the following discretized version of 

(2.7) 

min 2:.) { (g(t)- h(t, ()))w(t, Sj)dt) 2 ~Sj, 
e s· lnt 

J 

(2.11) 

where ~sj are appropriately chosen weights for the discretization and where 

the choice of w(t, s) or the kernel of the transformation, is made based on the 

given problem whenever feasible. 

The steps of the above algorithm will be illustrated with the Laplace transform 

applied to linear time invariant compartmental systems. Moreover, in Section 3, we 

will investigate relaxing the assumption that w(t, sj) be a basis set of W. For now, 

we present preliminaries about the Laplace transform and compartmental matrices. 

2.4 The Laplace transform and compartmental models 

In this section we introduce the Laplace transform of a function and briefly discuss 

some of its desirable features, namely its smoothing effects, its continuity, and the 
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fact that it turns the convolution operator, involving the matrix exponential, into 

an algebraic expression. For completeness, the details are provided in the Appendix. 

For now, however, we define the Laplace transform of a function. 

We say that a function u(t) is Laplace transformable if the following integral 

exists 

u(s) := fooo e-stu(t)dt, (2.12) 

and is uniformly and absolutely convergent for Re( s) > b, where we denote the 

Laplace transform of u(t) by u(s). In the Appendix, we discuss the following useful 

facts about the Laplace transform. 

Laplace transform is known to have the effect of smoothing functions with rapid 

and oscillatory initial growth and to be continuous from L2 (0, oo) to L2 [a, ,8], a =F 0, 

where 0 2 =[a, ,8] (see (5.14)). Also, its inverse L-1 will exist and be stable provided 

we restrict ourselves to smooth functions that are defined in L 2 [a, ,8] or to smooth 

functions which are supported on the interval [a, ,8]. Lastly, it is also known that the 

Laplace transform of a convolution is the product of the Laplace transform of each 

of the functions provided the Laplace transform of each of the functions in question 

exists. For proofs of any of the above statements, the reader is referred to [1, 20] 

and the Appendix. 

Applying the latter statement about the Laplace transform to (2.1), which has 

as solution the convolution given by (2.2), we have that the Laplace transform of 

(2.2) is 

f)(s) = C(si- At1 Bu(s). (2.13) 

Note that (2.13) is well-defined provided that the forcing function u(t) is Laplace 

transformable and provided that the determinant of ( si - A) is not zero for all 

Re(s) > 0. 

Claim 2.2 (si- A) is nonsingular for Re(s) > 0 when A is a compartmental 

matrix. 

Proof: See Appendix. 
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An interesting observation, and one which we will exploit, is the fact that the 

matrix (sl- A) remains diagonally column dominant since A is a compartmental 

matrix and Re(s) > 0. We are now ready to specify the approach to transform 

estimation when dealing with the compartmental system given by (2.1). 

2.5 Transform estimation for compartmental models 

In this section, we proceed to set up the analogue of (2.4) but in terms of the Laplace 

transform. To do this, we follow steps 1-3 stated in Section 2.2 and define the p x m 

matrix 

r 1 := y1(ti), for each l = 1, ... ,p and for all i = 1, ... , m, (2.14) 

where for each fixed l, we have a vector corresponding to the m measurements made 

in the zth compartment at times ti· Then for each land all min (2.14), we fit a curve, 

r 1(t), to the data, which is specified by the user and that is Laplace transformable. 

Nonetheless, for reasons discussed in the Appendix, section 5.1, it is expected that 

the fit between r 1(t) and the response function y(t) is a good one given the true 

compartmental matrix, A. That is, we suppose that in principle 

r1(t)- y(t) ~ 0, in L2 - norm, 

at the unknown but true compartmental matrix A. 

More generally, if we let r 1(t) - y(t) = 17(t) and proceeding along step 2 from 

Section 2.2 , where w(t, s) is now the kernel of the Laplace transform e-st, and from 

the definition of the Laplace transform given by (2.12) and upon rewriting (2.10) 

using this new notation, we seek to estimate A in the least squares sense from the 

model 

g(s) = y(s) + ~(s), (2.15) 

where ~( s) is the error function and where for notational convenience we define the 

p x 1 vector g(s) := f 1(s), l = 1, ... ,p, such that g(s) is the Laplace transform of 

r 1(t) which was obtained from fitting, without loss of generality, in the £ 2-norm 
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sense, the vector r1 in (2.14) for each l to the data given by yi, i = 1, ... , m. Likewise 

y(s) := y1(s), l = 1, ... ,pis the Laplace transform of y(t). 

Naturally, r 1 (t) should be chosen to reflect the true nature of problem (2.1) 

but subject to being Laplace transformable. Furthermore, under the assumption 

that the true curve is smooth enough and well approximated by polynomials, we 

expect that the agreement between g and y be good if the agreement between the 

corresponding Laplace transforms, g and y is a good one, see [1, 20] and (5.14). 

More precisely, we expect that when 

\\g(t) -y(t)!IL2 (0,oo):::; E,E small, (2.16) 

whenever 

!I?J(s)- y(s)!IL2 (a,,8):::; E, 0 <a< f3 < oo and E small. (2.17) 

Armed with the above statement and following step 3, we solve for a given 

sequence { sq} ~=l in the kernel of the Laplace transform 

mm 
Ukj 

ij 

L I!?J(sq)- y(sq)W 
q=l 

subject to 

akj ~ 0, k ¥=- j, and 
n 

akk :::; - L ajk, k i=- j, 
j=l 

(2.18) 

where the constraints insure that the solution is nonnegative and stable for all time, 

t, see [15], since it can readily be established that if the Laplace transform j ~ 0, 

for s > 0, then it must be that f ~ 0, for t > 0, and vice-versa. 

The following claim, which is an immediate consequence of Claim 2.1, provides 

the ground basis for transform estimation when dealing with a compartmental sys­

tem consisting of a forcing function which is a "bolus/ one-hit" input into the system 

and the eigenvalues of the compartmental matrix are all real, nonzero, and distinct. 

However, to establish such a claim, we need for g(t) to depend on the parameters 

we wish to estimate, namely the entries of the compartmental matrix A. Relaxing 
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this rather numerically undesirable requirement is the essence of Section 3, but for 

now we retain it. 

Claim 2.3 Let the r x 1 forcing function u(t) consist of the Dirac delta function, 

o(t), and let the compartmental matrix A be invertible with real and distinct eigen­

values. Further, suppose the sequence of {sqH=ll ij = 1, ... , n is chosen such that 

(2.19) 

where o:q = \.Aq\ and Aq corresponds to the eigenvalues of A, and suppose the residual 

of the objective function, (2.18), at the true value of the compartmental matrix, A, 

is small so that (2.6) holds with small error. Then it follows that \\g- y\\ 2 must also 

be small at A. 

Proof The proof follows immediately from Claim 2.1 once we make the observation 

that under the conditions of the claim it follows from (2.2) that the general ith entry 

of the solution to the system given by (2.1) is x(t) = eAtej. Furthermore, to the 

data we are fitting the parametric function g(t) = C E~=l e-sqt B, where B is an x 1 

vector of unknown scalars. From this we see that both y(t) and g(t) span the same 

n-dimensional subspace of L2 whose basis elements are e-sqt for q = 1, ... , n which 

are bounded functions oft. Thus if (2.6) holds with small error, then it follows that 

\\g- Y\\L 2 must also be small at A from Claim 2.1. Thus the claim is established. 

In the Appendix, section 5.4, we relax some of the assumptions of Claim 2.3 

and present a numerical approach for a general compartmental matrix and forcing 

function; however, the theoretical results of this section need not hold. 

Our next theorem states sufficient conditions under which an algorithm involving 

a parametric form of g(t), such as (5.23), converges to the unconstrained optimizer 

of (2.18); naturally, provided we start within a neighborhood of the solution. 

Theorem 2.1 Let Ac := ac be within a neighborhood, D, of the true compartmen­

tal matrix A := a, which we assume to be invertible and to have distinct eigenvalues. 

Moreover, let Bu(t) = e0 o(t), where e0 is the natural basis element with a 1 in the 
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oth position and zero else where. For an arbitrary sequence of scalars { sq} ~= 1 > 0, 

where ij is some a priori decision about the total number of scalars, if the function 

g(t) is a sum of exponentials corresponding to the actual eigenvalues of ac and if 

there exists a O" 2: 0 such that O" < A where A is the smallest eigenvalue of the sym­

metry matrix JT(a)J(a), where J(a) is the Jacobian of the objective function, then 

the sequence of iterates in the Levenberg-Marquardt algorithm converges q-linearly 

to the true A in £ 2-norm. 

Proof: See Appendix. 

We point out that fitting a parametric function, such as (5.23), per iteration 

is a costly and potentially sensitive numerical procedure that should cautiously be 

implemented. Nonetheless, it is of theoretical value as Claim 2.3 and Theorem 2.1 

illustrate. 

In the next section, we look at practical modifications of transform estimation. 

In particular, we note that if one fits a non-parametric function to the data, then 

not only is the Jacobian of the objective function simpler (see Appendix), but it is 

also possible to obtain a more general convergence result than Theorem 2.1 provided 

the solution to the least squares problem exists and that we meet the hypothesis of 

the Levenberg-Marquardt algorithm, see [21]. 

3 Implementation of transform estimation 

The continuity of the Laplace transform and the possible numerical stability of its 

inverse when restricted to smooth functions, see section 5.1, suggest that a method 

of estimation involving the Laplace transform applied to this class of functions be 

considered. Thus, in this section, we advocate selecting the kernel of the Laplace 

operator rather arbitrarily instead of actually computing eigenvalues. Thus, the 

Jacobian ofthis particular approach will not be as computationally demanding since 

we will recommend a one time, non-parametric, fit to the data. The convergence 

results of the previous section will follow but for a larger class of functions than 
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those of Theorem 2.1. However, before proceeding, we need the following broader 

definition of an estimator. 

Definition 3.1 We say that e E 8 is an weak least squares estimator if it solves 

min ( [ ( (g(t)- h(t, O))w(t, s)dt] 2ds, for some wE W, (3.1) 
e Jo Jn 

where W is an arbitrary subset of L2 (fJ x 0), and we emphasize that g(t) now does 

not depend on e. 

However, (3.1) is an infinite dimensional problem, so that a more practical definition 

of e E 8 being a weak least squares estimator is that it solve the following discretized 

version of (3.1) 

min L [J (g(t)- h(t, e))w(t, Sq)dtF !::.sq, 
e sq>O n 

(3.2) 

for some positive sequence of scalars { Sq} ~=l and some sequence of weight functions 

w(t, sq) E W c L2 (fJ). Naturally, in both (3.1) and (3.2), it is assumed that the 

choice of non-parametric function, g(t) describes the data well in the least squares 

sense. 

Criteria (3.1) and (3.2) can be motivated by the continuity of the Laplace trans­

form, which was established in (5.14). Moreover, if agreement between the data and 

the fitted function, g(t), is reasonable, that is, if 

jjyi- g(t)jj < t, t a small scalar, 

then, it is expected that the following prevail at the true yet unknown compartmental 

matrix, A. 

Jjg(t)- y(t)JJL2 (0,oo) :S E. (3.3) 

Hence, we have that 

Jjg(s)- y(s)JJL 2 (a,J3) :S E, 0 <ex< f3 < oo. (3.4) 

In practice, some educated choice(s) of the sequence {sq} and of w(t, sq) must 

be made according to the problem at hand. As we will see in this section, for linear 
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time invariant compartmental models, the algorithmic convergence results from the 

previous section still hold, but the estimator is now a weak least squares estimator 

in the sense defined here. Nonetheless, given the lack of numerical simulations or 

the analysis of a real data set, we state the guidelines recommended by [1, 20] for 

the selection of the variable of the transformation. The details of this argument can 

be found in the Appendix, section 5.3. 

Workers [1, 20] argue that unless there is good reason for doing otherwise one 

should choose Sq 2: 1 for each q. Thus, when no other information is available, the 

sequence {sq}~=l should be chosen to be real and greater than or equaled to 1. In 

fact, [1] suggest that { sq} be chosen to be the sequence 1, 2, 3, ... , ij when they dealt 

with the inverse problem described by a linear second order ordinary differential 

equation. At this stage, we are not prepared to recommend otherwise. 

In the next section, we give a possible implementation of the algorithm for solving 

(2.18) regards of whether the fitted function g(t) depends on the parameters or not. 

3.1 Algorithm for compartmental models 

The algorithm for solving (2.18) could be implemented as follows. 

1. Given a current guess of the minimizing compartmental matrix ac, which con­

sists of the entries of the n x n compartmental matrix Ac strung along as an 

n2 x 1 vector, and a positive sequence {sq}, we solve for Z the following linear 

system of equations. 

(3.5) 

so that the result is stored in Z which implicitly depends on Sq. This allows 

us to define fj(sq) := C Z(sq) without ever forming the inverse of (sql- A). 

2. Create g(sq) as indicated in the arguments from (2.14) through (2.15). Note 

that this step and step 1 (above) involve independent operations and as such 

could be performed in parallel. This property is particularly attractive if one 

chooses to fit a parametric curve g(t) to the data at every iteration. 
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3. Update ac· That is, the new iterative, a+, of the unconstrained objective 

function could come as the solution to the Levenberg-Marquardt update, see 

[21], 

where Jlc ~ 0 is the regularization parameter, J(ac) is the (ij+p) x n 2 Jacobian 

of the (ij + p) x 1 vector-valued function R(ac) := g(sq) - y(sq)· 

4. Return to step 1 with a+ and possibly generate a new sequence of { Sq} ~=l, 

depending on whether one wishes to use eigenvalue information or some other 

choice. 

5. The algorithm terminates when some established criterion has been met, such 

as when the relative gradient of the objective function is closed enough to zero 

or when the model functions are sufficiently closed to the data in some sense 

(usually in the £ 2-norm sense). 

For the above algorithm, we have the following convergence result, which includes 

a wider class of functions than those of Theorem 2.1, provided the solution exists. 

Theorem 3.1 In either (2.4) or (2.18), suppose that the objective functions and 

their Jacobian are in coo of the parameter space, that the Jacobians are in L 2 (a, /3), 

0 < a < f3 < oo, for each fixed invertible compartmental matrix A, and that 

the least squares minimizer of either (2.4) or (2.18) exists in the interior of the 

feasible regions. Then, provided there exists a O" ~ 0 such that O" < A (where A is 

the smallest eigenvalue of the symmetry matrix JT(a)J(a) and where J(a) is the 

Jacobian of either of the objective functions) within a neighborhood of the solution, 

the Levenberg-Marquardt algorithm converges q-linearly. 

Proof: The conclusion readily follows from the conditions for convergence of the 

Levenberg-Marquardt algorithm since it can be seen that both the exponential ma­

trix and the Laplace of the exponential matrix are in coo of the parameter space 

for s > 0. Moreover, since we are dealing with compartmental matrices, both the 
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objective functions and their respective Jacobians are bounded in £ 2 of compact 

sets of (a, {3), 0 < a< f3 < oo. So that the Jacobian of the objective functions are 

Lipschitz continuous. Thus our theorem is established. 

4 Discussion 

In this paper, we introduced transform estimation as an alternative approach to 

standard estimation methodology to situations when a closed form expression of a 

model function, such as x(t) in (2.2), is not known or is impractical to determine 

explicitly. Thus, one is forced to rely on the accuracy of numerical approximations. 

We illustrated the numerical and analytical appeal of transform estimation with the 

Laplace transform applied to the nontrivial inverse problem of estimating the flow 

rates in linear time invariant compartmental models from a given set of data. To this, 

we proposed convergent algorithms for the implementation of transform estimation 

that also exploited the structure of compartmental matrices such as their diagonal 

dominance. We conclude with the following comments pertaining to future research 

avenues including other applications of transform estimation. 

Other interesting applications of transform estimation, particularly those involv­

ing the Laplace transform or the Z-transform, are in differential-difference equations 

or other branches of mathematics which necessitate the numerical approximation to 

eAt or Ak, k a positive integer. Thus, transform estimation in conjunction to time­

continuous or discrete-time Markov processes should be investigated. 

Our last remark pertains to the interesting observation the when sk =/:. sk' =/:. 0 

for k =/:. k' and w(t, sq) = e-sqt, q = 1, 2, ... , ij, that W, defined in problem 3.2, is 

readily seen to be of dimension ij, since the w(t, Bq) are independent and thus span 

a ij-dimensional space. This in conjunction to weak least squares estimation and 

Claim 2.3, should be further considered but from a theoretical and computational 

view point. Nonetheless, it would be very interesting to see how these methods 

perform in practice through simulations and the analysis of a real data set. 
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5 Appendix 

For completeness, we start this section by providing the Jacobians of (2.4) and 

(2.18). Proofs of claims and theorems and the material on the Laplace transform is 

appended. 

Note that a typical entry of the Jacobian of the unconstrained versions of (2.4) 

or (2.18) involves, respectively, 

C loti eA(ti-T) Aakj (ti- T)Bu(T)dT, 

and 

C(sql- A)-2 AakjBu(sq), 

where Aakj is as defined in the proof of Theorem 2.1 (see (5.6)). Note that through 

Laplace transform estimation, we are avoiding the computation of the matrix ex­

ponential; moreover, in a similar fashion to step 1 of the algorithm in section 3.1, 

there is no need to invert (sql- A), but rather we could solve for ~ the following 

linear system of equations, 

Note that if (sql- A)- 1 and Aakj commute then we can just use the value of Z 

computed in step 1, see (3.5). 

Proof of Claim 2.2: 

Since A is a compartmental matrix, then its diagonal entries are non-positive, its 

off-diagonal entries are nonnegative, and it is diagonally column dominant. Thus 
n 

\akk\ 2: L \ajk\, j f. k, and k = 1, 2, ... , n. 
j=l 
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These facts together with Gerschgorin's circle theorem, see [11 ], imply that for each 

k, the disk Dk := {z : lz- akkl ~ Jakkl} contain at least one eigenvalue of A and 

that such eigenvalues have a non positive real part and none are purely imaginary. 

Hence, if we let QH AQ = T be the Schur decomposition of A, where T is upper 

triangular, so that A is similar toT and where Q is a unitary matrix, it follows that 

(sl- A)= (QsiQH- QTQH) = Q(sl- T)QH. 

Thus, by the assumptions made on the eigenvalues of A and since Q is unitary, it 

gives that (sl- T)-1 exists, consequently (sl- A)-1 exists for all Re(s) > 0. Thus 

Claim 2.2 is established. 

Proof of Theorem 2.1: 

For the convergence of the sequence of iterates in the Levenberg-Marquardt algo­

rithm, see [21], we only need to prove that the objective function is twice con­

tinuously differentiable in D and the Jacobian, J(a), of the objective function is 

Lipschitz continuous for all a E D, where D is an open convex subset of RN and 

IIJ(a)JIL2 ~a, a> 0, Va ED. 

We start by establishing the Lipschitz continuity of the Jacobian. Under the 

conditions of the theorem, we have that g(t) is a parametric approximation to 

where, for clarity, we let 

g(t) = caeActeo, 

where ca is the parametric matrix obtained from fitting the data to a sum of expo­

nentials per iteration. Moreover, the Laplace transform of y(t) is 

So that the iterative sequence for problem (2.18) is 
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where f-Lc ?: 0 is the regularization parameter J(ac) is the (q + p) x n2 Jacobian of 

the (q + p) x 1 vector-valued function R(ac) := g(sq)- y(sq)· 

To show that the Jacobian is Lipschitz continuous, let us analyze what a typical 

entry of the Jacobian of the above iterative sequence entails. Without loss of gen­

erality, we analyze the (k, j) entry of J(a) which is the derivative with respect to a 

of the first component of R(a). This is given by 

aca _1 afJ(si- A)- 1 _ 2 
-;:;-(sf- A) e0 + C f) eo- C(sqi- A) Aakje0 , (5.6) 
uakj akj 

where 

Aakj 1 in klh position 

0 else where. 

In (5.6), we see that if ca is twice continuously differentiable and bounded in L2 , 

that every entry of the Jacobian will be likewise Lipschitz continuous and bounded . 

This follows from the fact that (si -A)-1 is well-defined when A is a compartmental 

matrix and s > 0, (so that its derivative with respect to the entries of A exist and are 

bounded) and from the fact that the eigenvalues of a matrix, depend continuously 

(in theory) on the entries of their matrix, see for instance [11]. 

To show that ca is twice continuously differentiable and bounded in L2 , we recall 

that ca is obtained from solving uniquely the linear least squares problem given by 

(5.22), where ca plays the role of fji and y(ti) is as given in the hypothesis of the 

theorem. 

Hence we are solving for ca in the least squares sense from the model 

(5.7) 

where X:= x(t1 ) ... x(tm) is then x m matrix where each column consists of the so­

lution of the compartmental system evaluated at the indicated times, Y := y1 ... ym 

is the p x m matrix whose columns consists of the data gathered in the p compart­

ments at the indicated times, and E is just them x p error vector. From (5.7), we 
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see that ( ca? will be uniquely determined provided the columns of X are linearly 

independent. 

Since the projection of Y onto the column space of X yields the normal equations 

which, if the matrix X is of full rank, the unique solution is 

(5.8) 

which continuously depends on a. That is, it is a well known fact that the "forward" 

problem depends continuously on a, so that slight perturbations on a, cause slight 

perturbations of the solution to the compartmental system, x(t), which in turn cause 

slight perturbations on xrx (in principle, since numerically, the condition number 

of xrx must be reasonable for slight perturbations on a to yield slight perturbations 

on the computed solution of ca, but we do not approach this issue in this paper). 

Thus, assuming that (5.8) is well-defined, we see that ca is indeed at least twice 

continuously differentiable and bounded in £ 2 (0, oo), since it is a product of coo 
and £ 2 (0, oo) bounded functions of a. That is, X andY involve the coo term, eAt, 

which is also in £ 2 (0, oo) since A is an invertible compartmental matrix, so that it 

is a stable system for all timet, see [15]. 

Prior to showing that (5.8) is well-defined, we point out that by the above state­

ment, by (5.6), and by (5.14) that the Jacobian of the objective function is in 

L 2 (TJ, /3), 0 < TJ < f3 < oo, for each a E D since each component of the Jacobian is 

in £ 2 , so that it is certainly true for sums of the elements of the Jacobian. Hence, 

the theorem will follow once we show that (5.8) is well-defined. 

To show that (5.8) is well-defined, we show that the solution to the system of 

differential equations span an n dimensional space, so that X will be of full rank. 

Let A = U AU-1 where A = diag(,\)i=1 such that Ai =J- Aj for i =J- j then the 

general (i)th entry of the solution to the compartmental system, x(t) = UeAtU- 1e0 
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IS 
n 

""a· e>..qt 
L...... zq ' 
q==l 

for some scalars aik· For clarity of presentation, we let 

(5.9) 

(5.10) 

Then, suppose there exists a k such that fk = adk+1 , for some scalar a 1 =/= 0, and 

note that u-1eo just picks up the oth column of u-1, so that in (5.10), if ik =/= 0 for 

all t and arbitrary k, then we see that the kth and k + 1 th equations give 

2_bke>..kt f3 
!k ' 

(5.11) 

for some nonzero scalars bk, bk+l, /3, and fJ. However, fk = adk+l by hypothesis, 

but this cannot happen if Ak =/= )..k+l· In a similar argument, we can show that for 

any i, the fi's cannot be equaled. Thus, we have that {fi}i==1 span ann-dimensional 

manifold, as desired. Hence, (5.8) is well-defined and the theorem is established. 

5.1 The Laplace transform 

In this section, for easy of reading we present material on the Laplace transform and 

some of its properties that we invoked throughout this paper. For further details, 

the reader is referred to [1, 20]. 

The Laplace transform of a continuous function, u(t), exists if 

for some constants a and b as t --+ oo and if 

for iu(t) idt < oo 

for every finite T. These two assumptions imply that the integral, 

u(s) := laoo e-stu(t)dt, (5.12) 
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exists and is uniformly and absolutely convergent for Re( s) > b. 

Next, we have that the inverse of the Laplace transform, L-1 , exists provided 

u(s) is analytic for Re(s) >band behaves like~ for lsi large; that is, 

u(s) = ~ + 0( l:l 2 ) as lsi---+ oo along s = b + id, b >a. 

Then 

1 1 A u(t) = -2 . u(s)estds, 
1r'l (C) 

t > 0, 

where (C) is the contour in the region of analyticity. 

Furthermore, it can be easily seen that the Laplace transform is a contractive 

map from L 1 (0, oo) to L00 (0, oo) since le-st1 for Re(s) 2': 0 and t > 0, that is, 

(5.13) 

However, L -1, while it exists, it is not a continuous operator since it is not stable 

under reasonable perturbations. That is, since the Laplace transform has the ef­

fect of smoothing functions with rapid and oscillatory initial growth these cannot 

be well-approximated from numerical values of u(s) alone. However, if we restrict 

ourselves to functions, u(- log r), which can be well-approximated in any sense by 

a polynomial in r, 0 < r ::; 1, then L -l is well-behaved for these quite smooth func­

tions, see [20]. Nonetheless, in principle, by the Weierstrass theorem [19], we know 

that it is always possible to approximate any continuous function by polynomials in 

the LTnorm sense; moreover, so that we may pass the limit under the integral sign, 

we will restrict ourselves to integrable functions, see [19] . 

In the following section we continue to analyze the Laplace transform but now 

in conjunction with compartmental matrices. 

5.2 Continuity of the Laplace transform and compartmental 

matrices 

Unfortunately, it is not true that the Laplace transform is continuous from L1 to 

L1 on all of the interval (0, oo); nor is it continuous from L2 to L2 on all of (0, oo) 
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either. Nonetheless, it is an immediate application of Cauchy-Schwarz inequality 

and Fubini's theorem [22] to show, that when s is restricted to real numbers, the 

Laplace transform is continuous from L2(0, oo) to L2(fh), where fh is a compact 

subset of (0, oo) which is bounded away from zero. A similar statement can be made 

about the L1-norm. We briefly outline the proof for the former statement since in 

this paper, we will deal exclusively with the L2 -norm. That is, by Cauchy-Schwarz 

and by Fubini's theorem we have 

< r>O ( r ~ds )h2(t)dt 
lo ln2 s 

< (ln(/3) -ln(o:))jjh(t)JJL(n1 )' 

(5.14) 

where ln(x) is the natural log of x. Hence, L, or the Laplace transform is continuous 

from L2 (0, oo) to L2 [o:, /3], o: f. 0, where f22 = [o:, /3]. 

Similarly, L -l will exist and be stable provided we restrict ourselves to smooth 

functions that are defined in L2[o:, /3] or to smooth functions which are supported 

on the interval [ o:, {3], see [20, 1]. 

5.3 A choice of the variable of the transformation 

Workers [1, 20] argue that unless there is good reason for doing otherwise one should 

choose sq ~ 1 for each q. To see this, suppose j ( s) is the Laplace transform of some 

function f ( t), which we re-state here for convenience, 

j(s) = fooo e-st f(t)dt, s E SS. (5.15) 

Then naturally, if s is complex-valued than j(s) will also be complex-valued. Fur­

thermore, through the change of variable r = e-t, we see that 

A {1 
f(s) = lo r8 - 1g(r)dr, 
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where g(r) = f(-log(r)) and 0 < r::; 1. 

Next, if we let s = a+ iT and using the fact that, through its Taylor series 

expansion, eix = cos x + i sin x, we can write J ( s) in terms of its real and imaginary 

part, then 

/(s) =a( a, T) + ib(a, T) where 

a( a, T) = fo1 ru-1 cos(Tlogr)g(r)dt, and (5.16) 

b(a, T) = fo1 ru-1 sin(T logr)g(r)dt. 

From (5.16), we see that unless T = 0, we are faced with solving two integral 

equations. Moreover, if T =!= 0 then, when a < 1, the integrand could have rapid 

oscillations near the origin and in fact it has a singularity at r = 0. Given this 

information, we will recommend that, when no other information is available, that 

the sequence { sqH=1 be chosen to be real and greater than or equaled to 1. In fact, 

[1] suggest that { sq} be chosen to be the sequence 1, 2, 3, ... , ij when they dealt with 

the inverse problem described by a linear second order ordinary differential equation. 

5.4 General forcing function 

Although Claim 2.3 holds under rather stringent requirements, nonetheless, for a 

general forcing function u(t), sampling matrix, B, and diagonalizable A, we illustrate 

how one would fit a parametric function g(t), to the data, even though the theoretical 

results presented in the paper need not hold. 

Suppose we have the spectral decomposition of A := U AU-1 , where A = diag{ Aq}~=l 

and U has as its columns the eigenvectors corresponding to each Aq, respectively. 

From this, together with the series expansion of eAt, it follows that 

(5.17) 

Applying (5.17) to (2.2) at each time ti, i = 1, ... , m and pulling C inside the integral, 

we have 

(5.18) 
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Discretizing (5.18) and letting c := cu, B := u-1B and fj,Tk := u(T)b.k, where 

k = 1, ... , mi, and where we have chosen the weights b.k appropriately so that we 

can say that the following discretization is a good approximation to (5.18), and 

where mi is the total number of partition points within the interval (0, ti), then 

m; 

y(ti) ~ L Ce(t;-7[,)A BuTk' (5.19) 
k 

- -where C is a p x n matrix and B is an n x r matrix and V,Tk is an r x 1 vector. It is 

a straight forward exercise in matrix multiplication to conclude that (5.19) yields 

m; n • 

y(ti) ~ L[LDiVi], (5.20) 
k=l i 

where Di is a p x r matrix for each ?, and yi is an r x 1 vector for each ?, such that 

V i= e(t;-Tk)\u-::.k, ~ 1 z= , ... ,r. 
~ 

(5.21) 

So an attempt to fit the data to (2.2) necessitates that we estimate prn entries once 

the eigenvalues are provided; that is, we solve 

(5.22) 

Now we can say that we have fitted the data at a discrete set of times and at 

each iteration, or for any given guess of the minimizer of (2.18), to a function of the 

form 
m; n 

g(t) = L(L Die(t-Tk)Aiujn, k = 1, ... , r; 
k=l i 

Now taking the Laplace transform of (5.23), we have 

(5.23) 

(5.24) 

Note that for (5.22) to have a unique solution, we need prn to exceed the number 

of unknowns. 
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