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ABSTRACT. We study the time it takes until a a fluid queue with a finite, but large, holding capacity reaches the
overflow point. The queue is fed by an on/off process, with a heavy tailed on distribution, which is known to
have long memory. It turns out that the expected time until overflow, as a function of capacity L, increases only
polynomially fast, and so overflows happen much more often than in the “classical” light tailed case, where the
expected overflow time increases as an exponential function of I.. Moreover, we show that in the heavy tailed case,
overflows are basically caused by single huge jobs. An implication is that the usual GI/G/1 queue with finite but
large holding capacity and heavy tailed service times, will overflow about equally often no matter how much we
increase the service rate. We also study the time until overflow for queues fed by a superposition of k iid. on/off
processes with a heavy tailed on distribution, and show the benefit of pooling the system resources as far as time
until overflow is concerned.

1. Introduction.

Traffic on data networks, e.g. Ethernet LANs, has characteristics substantially different from those of
traditional voice traffic. An important feature of data traffic lies in its dependence structure; traditional
models are based on assumptions of short-range dependence (like Poisson arrivals and exponential call
lengths), while recent measurement and analysis of data traffic has produced strong indications of long-
range dependence and self-similarity. Several empirical studies present statistical evidence for existence of
these non-standard dependence structures. See for example Leland, Taqqu, Willinger and Wilson (1993,
1994); Willinger, Taqqu, Leland and Wilson (1995); Crovella and Bestavros (1995); Cunha, Bestavros and
Crovella (1995).

Seeking an explanation for the observed long range dependence and self-similarity, Willinger, Taqqu,
Sherman and Wilson, (1995) have modeled traffic between a single source and destination as an on/off or
packet train process. In their model, an idealized source alternates between an on state, in which it produces
data at a constant rate, and an off state in which it produces no data. The durations of the on and off
periods are independent; on times are identically distributed, and so are off times. The data they present
indicates that both on and off times are reasonably well modeled by heavy tailed distributions with shape
parameter governing heaviness represented by the parameter . In one example, @ = 1.7 and 1.2 respectively
for the on and off periods. A similar conclusion was drawn by Crovella and Bestavros (1995) who in their
study of world wide web use found evidence of heavy tails in such things as file lengths, transfer times, and
operator idle periods. Other papers dealing with on/off and related models for communication systems are
Brichet et al (1996), Kella and Whitt (1992), Choudhury and Whitt (1995).
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Various paradigms for on/off models can be kept in mind. One is the storage or fluid queue model where
the store is filling at rate 1 during an on period and the contents are subject to constant release at rate r
when the content level is positive. Another paradigm allows one to imagine work entering the system at rate
1 during on periods and a server working at rate r. We use either paradigm as is convenient.

In a previous paper we studied the stationary distributions of the simple on/off models. In the present
paper we study the behavior of the first time the contents process exceeds level L for large levels L. Since
this represents the time until *buffer overflow” in an on/off system with limited capacity, it is important in
understanding the behavior of traffic networks.

The simplest model consisting of a single on/off source feeding a single server queue, is defined as follows.
Let {X;,i = 1,2,...} be a sequence of iid nonnegative random variables representing on periods, and
similarly let {Y;,7=1,2,...} be iid nonnegative random variables representing off periods. The on and off
sequences are independent. Let F,, be the common distribution of X;’s, and Fyg be the common distribution
of Y;’s. The workload arrives in the system at rate 1 during on periods (no workload arrives in the system
during off periods). The service rate is . That is, whenever the system is nonempty, workload is leaving
the system at rate r. The state of the system at time ¢ (its content at time ¢, the workload in the system at
time ¢) is denoted by X (¢), and can be formally defined as follows. For a ¢ > 0 let
(1.1) 7(t) = { L3 Y5 (X + Y3) <t < U5 4 Y3) + Xy, for some n > 1,

0, otherwise.

So Z(t) is the indicator of the the source “being on” at time ¢. Defining the service rate at state z by

r, ifz >0,
r(z) = .
0, ifz=0,

the state process {X(¢),,t > 0} is defined by
(1.2) dX(t) = Z(t)dt — r(X(1))dt.

The analogous GI/G/1 queue can be thought of as model (1.2) with on periods shrunk to zero and
workload arriving in the system in lumps of size {B;,¢ > 1}. In this context, {Y;,i > 1} can be thought of
as interarrival times. One can take, for example, B; = (1 — r)X;, as this is the net increase in the state of
the system (1.2) after the ith on period. However, the discussion below does not depend on this particular
form of the offered work. The service rate is still r, so that the actual service time of the ith customer is
Bi/T’, s i Z 1.

It turns out that the system overflow patterns in the on/off model, when the on times are heavy tailed, are
very similar to those of the GI/G/1 queue when the amount of work B; is heavy tailed. The computations
describing the structure of system overflows in both cases are similar, and they are easier for the GI/G/1
queue. We will present the detailed arguments only for the more involved case of the fluid model (1.2).

To emphasize the dramatic effect of heavy tailed distributions on system behavior, we contrast the heavy
tailed case with the simplest, classical case in Section 3. Consider the fluid queue with Fi,, being exponential
with mean pqpn, Foi being exponential with mean pog, such that

(1.3) _ Men .
Hon + Hoff

Clearly, (1.3) is the necessary and sufficient condition for the system (1.2) to be stable. If

(1.4) (L) =inf{t > 0: X(t) > L}
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is the time until the system overflows, then based on martingale and Markov methods, we find in Section 3
that

1 1
1.5 FEr(L) = L — —1)=bL,,L>0
(1) () = afexp (ot = o) = 1) ~ b, L0
where )
_ (/'Lon + Noff)(rﬂoff)
a= 5
(riuoﬁ' - (1 - r)l/ton)
and
b= Hon + Hoff

THoff — (1 - r)ﬂon '

Several conclusions are immediate from (1.5). First of all, in the exponentially distributed on and off
periods case, the expected time till the system overflows increases exponentially fast with the system holding
capacity. Secondly, the average off time, pog, critically affects the average time until the system overflows
since it affects the multiplicative constant as well as the growth rate. Quite different conclusions are reached
in the heavy tailed case.

In Section 2 we show that in the case of on times having a heavy tailed distribution, the expected time to
exceed L is asymptotically the same as the expected time until a single on period would cause the contents
to exceed L assuming the contents were empty at the start of the on time. This is very different from the
exponential result (1.5), for in this case the expected time until a single on period causes the system to
exceed the capacity I is asymptotic to

(o + o) 50 (75,

Hon Hoff ) €XP (1_7')/10n ’

which is of a larger order of magnitude than (1.5). In the case of heavy tailed on periods the expected
time until the system exceeds a level grows much slower than the exponential rate of increase seen in
(1.5). Furthermore, the fact that in the heavy tailed case the system overflow is caused by a single long on
period implies that the mean off time p g affects the expected time until overflow only by its effect on a
multiplicative factor but does not otherwise influence the growth rate.

A similar conclusion is valid for the GI/G/1 queue with heavy tailed amounts of work {B;,7 > 1}. In
this case the offered workload exceeds the system capacity L when a single customer brings amount of
work reaching L. In particular, the mean interarrival time affects the time until the overflow only as a
multiplicative factor, and it does not depend on the service rate r (!). This provides intuition about the
?failure modes” of such a system.

Precise arguments showing unusual behavior in the heavy tailed case are presented in the next section
where we study the maximum of the fluid queue (1.2) over a single “wet period”, and use the findings to
obtain functional limit theorems for the maximum process of the queue (1.2) and for the hitting time process
of the same queue. Section 3 contrasts in detail the behaviors in cases where on and off distributions have
exponentially bounded tails with the heavy tailed case. Tangentially relevent papers on extremes of queues
(which typically emphasize Markovian methods and exponential tails) are Tglehart (1972), Asmussen and
Perry (1992), Berger and Whitt (1995); Abate, Choudhury and Whitt (1994).

In Section 4 we study the behavior of models with several on/off sources and a single server. We show
again that in the case r < 1 the asymptotic behavior of the time at which the contents process exceeds L is
the same as that of the first time that any of the input processes has an on period long enough to achieve
level L from an empty initial content level. We then compare the behavior of a system of completely separate
on/off processes with one in which the inputs are pooled and in which the capacity of the system is the
sum of the capacities of the separate systems. Our conclusions quantify the benefits of pooling the system
resources.

Other papers on multisource models, usually emphasizing Markovian environments, are Anick, Mitra and
Sondhi (1982), Prabhu and Pacheco (1995), Pacheco and Prabhu (1996).
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2. Level crossing times in single input models.

In this section we consider the extreme values of the contents process specified in (1.2) and the time for
the content to cross a level. The fluid or storage model is generated by an alternating renewal process which
feeds a reservoir. We represent the renewal sequence as {S,,n > 0} with S, = >-""_,(X;+Y;), n > 1 and for
convenience we suppose So = 0. Both F, and Fog have finite means pon and pog and we set g = pon + pofr-
During an on period, liquid enters at net rate 1 — » and during an off period liquid is released at uniform
rate . We assure that neither the input rate nor the output rate overwhelms the other by assuming

(2.1) 1> > Hen
1"

Define S,(lX) = E?Il X; and SSLY) = 2?21 Y; and the stopping time
(2.2) N =inf{n>0:(1-r)sX) —rs¥) <0}
so that

[N=n]=[(1-r)5 —rs™) > 0,5=1,...,n = 1,(1 = r)S) —r5¥) <0} € B(X;,Yii=1,....n).
Consider {X(S,),n > 0}. Comparing X (S, ) with X(S,4+1) we get

X(Spp1) = (X(Sn) + (1= 1) Xpyy — r¥p)*
(X(Sn) +&arn)?,

(2.3)
where {{,41 = (1 — 7)Xp41 — r¥n41} is iid. This equation expresses that the change of contents over a

renewal interval is the input during the on period and the loss during the off period. Of course (2.3) is
Lindley’s equation (Resnick, 1992, page 270; Asmussen, 1987; Feller, 1971) and since (2.1) implies

E£1 = (1 - r)ﬂon — Tlioff = Hon — TH < 0,
we know from standard theory that the process
{Wal = {X(Sn)}

will be stable and EN < oco. As is customary, we call {W,,} the queuing process.
We suppose that

(2.4) 1= Fon(z)=2"%L(x), a>1, z— oo,

where I is a slowly varying function. Note that the process {X(¢),# > 0} is regenerative (cf. Resnick, 1992;
Feller, 1971; Asmussen, 1987). One set of regeneration times is

{Cn} = {Sn : X(Sn—) = 0},

which are the times when a dry period ends and input commences to fill the store. In order to understand
the behavior of the extremes of {X(#)}, it is natural to study the extremes over a cycle. For this purpose,
it is necessary to understand the tail behavior of the distribution of maximum of the queuing process over
one cycle. A result about this is stated next.
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Proposition 2.1. For the stable queuing process {Wp} satisfying (2.1) and (2.4), the mazimum over a
cycle has a distribution tail asymptotic to the tail of the on distribution; that is, as v — oo

P[\/ W, > 2] ~P[& > 2] E(N)
) ~P[(1—7r)X; > 2] E(N)
(2.5) ~(1 = 7)* Fon(z)E(N).

The proof of this critical result is deferred to the end of this section. Note the result depends on Fy, and
r but that Fog only affects the answer through the multiplicative factor E (V).

We now look at the extremes of {X(¢)} over a cycle and examine the distribution tail of Vo<,;<c, X(s)
where

Cy = Sy.

Note that N is the first downgoing ladder epoch of the random walk
(Y &n> 00 ={(1-r)s = s n > 0}
i=1

associated to the queuing process {W, } and that it is not the downgoing ladder epoch of {S, } which is
determining the time scale.

Corollary 2.2. Assume the contents process {X(t)} satisfies (2.1) and (2.4). The distribution tail of the
mazimum of the contents process over one cycle is asymptotic to the tail of the on distribution; that is, as
r — 00

(2.6) P\ X(5) > 2] ~ (1 = r)*Fon(z) E(N).

s=0

Note again that Fog only affects the answer through the multiplicative factor EF(V).

Proof. Set M; = \/Sczl0 X (s). Because of the sawtooth character of the paths of X(-) we have that

N
My =\ ((1=r)s —rsh))

<.
I
—

and therefore

j=0 n=0
Thus
N
P[M - W, >=x
liminf P> 2] e Vizo ) >
r— 00 On(l) r— 00 FOH(I)
(1 - ) B(¥)

where the last step uses Proposition 2.1.
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To get a reverse inequality, choose K such that
E((l — T)Xl — T(Yl A K)) <0

which can always be done since
EY1AK) 1 EYy
as K T co. Then
J
(Y, K) , _ A K ()
S =N (ViAK) < S
i=1

which obviously gives

N
V (- - rs) <

j=0 J

((1 — r)SJ(»X) —r S](»}_/’IK)) .

<=z

1

Also B B
N < NE) :=inf{n >0: (1 —r)SX) — rs¥K) < 0}

and thus we have

N(K)
M<\/ ((1 —r)st) — rsj(’_‘f))
j=0
N(K)
<\ ((1 — 1S — s Ly A K))
j=0
N(K)
< ((1 - r)SJ(X) - T'S](»Y’K) + ’PK) .

j=0
We therefore have
P[M, > z] P[\/f:g) ((1 - T)SJ(»X) - rS](Y’K)) >z —rK]|
lim sup ———= <limsup _
r—o00 Fon(2) 00 Fon()

and applying Proposition 2.1 to the random walk {(1 — r)S](X) - rS](»Y’K),j > 0} we get this equal to

=(1 - r)*B(N')) = (1 = r)*E(N)

as K — oco. This provides the reverse inequality and completes the proof. O

We are now in a position to discuss the behavior of the extremes of the contents process and also the
behavior of the first passage time over a level. For a non-decreasing function U : (0, 00) — (0, o) define the
(left continuous) inverse

UT(z)=inf{s >0:U(s) >z}, z>0.

Define the non-decreasing process
t

M(t)y=\/ X(s)

s=0
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and the first passage time (L > 0)

(L) =inf{s > 0: X(s) > L}
=inf{s >0: M(s) > L}
=M~ (L).

Standard inversion techniques from extreme value theory (Resnick, 1987, Section 4.4) allow for the simul-
taneous treatment of the weak convergence properties of (M(-), M~ (+)) as random elements of D, (0, c0) x
D;(0,00) where D, (0,00) is the space of right continuous functions with finite left limits and D;(0, c0) is
the space of left continuous functions on (0, co) with finite right limits. Each space is equipped with the M;
topology.

Theorem 2.3. Assume the contents process {X ()} satisfies (2.1) and (2.4). Define the quantile function

Let {Yy(t),t > 0} be the extremal process (Resnick, 1987, Section 4.3) generated by the ezireme value
distribution

so that

Define

Then in D,(0,00) x D;(0,00) as u — o0

(T (7)) = s

In particular we get for the first passage process, as u — oo

ot
(1 = Fonlu)) () = V(1)
and N
LILH;oP %(1 —Fon(L))r(L)<z| =PEQl)<z]=1—-¢"% x>0,

where F(1) is a unil exponential random variable. Furthermore, as I — oo

7

(1= Fon( DD E((0) = s

Proof. We let { Ny, k > 1} be the iterates of N so that Ny, is the kth downgoing ladder epoch of the random

walk {(1— r)S,(lX) - rS,(LY), n > 0}. Then by the strong law of large numbers Ni,/k — E(N) as k — co. We

write

M(Sy,) =\ X(s) = \/ V X) ] := \/ M;

s=Sx
ie

1
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so that {M;,i > 1} is iid. From Corollary 2.2, as 2 — oo

P[M; > z] ~ (1 —=7r)*Fon(2)E(N)
so that as u — oo

uP[My > b(u)z] ~(1 — r)* E(N)uFon(b(u)z)
~(1—7r)*E(N)z~".

Therefore,

[ut] _

M; M(Sx,,,) <

2.7 L= o (1 — p)(EN)Y Y, ().
(27) V i = st = (1= (EN) Y

=1
Observe that as u — oo

Sy _
(2.8) NMed L B(N)
u

in C(0,00). For the renewal sequence {Sy, ,k > 0}, let
O(t) = inf{k: Sy, >t}
be the associated counting function so that as u — oo

O(ut) ¢ t
— = —
u ESy  uE(N)

(2.9)

in C(0,00). Note the inequalities

M(SN@(,“)_l) M(Ut) M(SN@(ut))
< .
b(u) T ob(w) T b(u)
Now from Billingsley, 1968, Theorem 4.4 and composition

M(SNoi)  M(S8y o)
b(u) b(u)

=(1=r)(EN)Y*Y,(t/uEN)

Z(1—r)u oV, (t) = Salt)

in the J; topology and we hope the same result is true in the M; topology for the family of processes
M (u-)/b(u) as u — co. In order to verify this, we need to show

M(SN@(ut)) - M(SNe(ut)—l)
b(u)

in the M, topology. For a fixed ¢ we get for any € and large u that

P [ M(SN@(ut)) - M(SNe(ut)—l)

b(u)
— P[[Sa(t) = Sa(t = )| > 7]

=0

(2.10)

) — M(S

Ne(ut) N@(u(i—e)))
b(u)

>n| <P

‘M(S

|
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which goes to 0 as € — 0 by the stochastic continuity of S, (Resnick, 1987, Proposition 4.7). The multivariate
analogue needed to prove M7 convergence is similar.

Random off times

 mulaton /
,,,,,,,, approximation

12

log(mean hitting time)
8

1 2 3 a4 5 6
log(level)

Figure 2.1. Pareto on/off periods, o = 1.5, r = .53.

The weak convergence result for 7(-) is obtained by taking inverses in the process convergence. Inversion

is a continuous operation in the M; topology. We note that inverses of extremal processes have exponential
marginals (Resnick, 1987) so as u — oo

M~ (b(u)z)

" = 57 (2)

(a4

and changing variables s — b(u) yields
M=(s2)
— = S5 ().
1—Fon(s)

Observe for y > 0

PSS (1) Syl =P[1 < Sa(y)]

=1—exp{—y(1 —r)*u~'}.

Finally we consider the result for the expected values. On the one hand, by Fatou’s lemma, we get

1 _ [s3
1< liminf B (ﬁu - Fon(L))T(L)> .
— 00 M
For a reverse inequality, note that

(L)< S,

where

v:i=inf{n: X, > L/(1-7r)}
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so that
Er(L) < E(X1+Y1)Ev = pFEv.
However
Ev=Y Plv>nl=> P[\/Xi<L/(1-1)
n=0 n=0 i=1

_ 1 N ( - r)”®
1— Fon(L/(1—7)) Fou(L)

and this completes the proof. O

To illustrate these results we present two modest simulations. For each simulation we supposed F,, was
Pareto with @« = 1.5 and r = .53. For the first simulation, F,g was the same Pareto and for the second
simulation F,g corresponded to constant off times with value 3. We used 500 replications to compute
expected hitting times of various levels by simulation and compared these with the approximate mean
hitting time given by Theorem 2.3. The levels used for both experiments were 2, 5, 10, 22, 46, 100, 215, 464.
The plots use a log scale for both axes. Note that the dotted line appears closer to the solid one when the off
time is deterministic which may indicate a faster rate of convergence of the the approximation compared to
the situation where the approximation has to cope with randomness in the off time. However, no systematic
investigation has been completed of the rate of convergence.

Deterministic off times

. /
,,,,,,,, approximation

1 2 3 a 5 6
log(level)
Figure 2.2. Pareto on period, deterministic off period, o = 1.5, r = .53.

We also sought experimental evidence to confirm the intuition that in the heavy tailed case the process
exceeds a level L because of a very long on period. As an additional experiment, we simulated 1000 runs of
the process with a = 1.5, the off distribution concentrated at 3 and r = .53. We waited until the process
crossed L = 64 and then measured the length of the last on period X, multiplying by (1—r). We compiled

1000 realizations of
(1=7)Xon
(=77 A

the truncation by 3 being for the purpose of keeping the data in a comfortable range. The range of the
1000 realizations was [.896, 3] and 848 observations were at least as large as 1, meaning that in about 85%
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of the simulation runs, the process crossed L due to a single large on period pushing the process across. A

histogram of the data follows showing the preponderance of observations to the right of 1.
Histogram of ratios

1.0 1.5 2.0 2.5

(1-r)X
L

200

150

100

50

3.0

Figure 2.3. °2 A 3 for Pareto on period, deterministic off period, @ = 1.5, r = .53.

It remains to prove Proposition 2.1. We restate it in the following form.

Proposition 2.1'. Suppose {{,,n > 1} are iid with E&; < 0 and for z > 0
Pl¢y > 2] = F(z) ~27%L(z), a>1

where L is a slowly varying function. Let

{51(16)’71 Z 0} = {OaZEian 2 1}

i=1
be the random walk with negative drift and step distribution F. Suppose

N =inf{n>0:5¢ <0}

is the downgoing ladder epoch of {5,(16)}. Then as x — oo

N
P[\/ S > 2]~ E(N)P[¢&, > 2] = E(N)F(x).

n=0

Proof. For z > 0 let
N(z) =inf{n >0: 8¢ > z}.
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Then
N N
P\ s >a]=P[\/ S© > 2,N(z) < N]
n=0 n=0
—ZP[S(O z],i=1,...,n—1;88 > 4]

EEP[SZ(E)E[O,;L‘], i=1,....,n—1; X, > 2]

as ¢ — o0o. Thus we get

PV, S8 > o]

(2.11) lim inf ) > E(N).
The reverse inequality is more challenging. Observe that
N NAN(z)
P\ s&>z1=pP[ \J SO >a]
n=0 n=0
and that
N N/\N(z‘)
(2.12) PI\/ & >al~P[ \/ & >a]~E(N)F(x)
n=0 n=0

where the first equivalence follows from Resnick (1986) and second being a minor modification of the first.
So we attempt to compare

NAN(z) NAN(z)
Pl \/ SO >z withP[ \/ & >al
n=0 n=0

We write as an abbreviation

N* = N AN(z).
Pick A > 0. Then we have

N* N*
Pl\/ s >a]-P[\/ & > 2]

n=0 n=1

N* N*
:P[\/ SELE) >z, \/ &n < 7]
n=0 n=1

N* N* N* N*
=PI\ S© >z, \/&a<e-A+P\/ SE>ze-2<\ & <a]
n=0 n=1 n=0 n=1

(2.13) =I(2) + L(z).
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From (2.12) we get

. PV —A-P ;
F(z) F(z)
as ¢ — 0o. So I, is of small order and we turn attention to I.
Pick and fix K such that [K/2] > a/(a — 1) and write
N*
I( <P\/5(5) >z, \/52 < z/K] +P\/5(5) >e,2/K < \[ & <o)
i=0 i=1 i=0 i=1
=I1(x) + Lia(x).
For an integer M we further decompose
N
Ia(z) =P[\/ $& > z,2/K < \/52 <z— ) \/52 > z/K]
i=0 i=1 i=1
\/5<f)>x \/52 <a— A \/52 < z/K, \/ &> /K, N* > M]
=0 i=1 i=1 i=M+1
=I21(2) + Iaa(z).
For z > A
N* m
I121(2) <P[ There exists some n < M A N* such that &, > z/K, v ij > A
m=0j=1

i#n

P[ There exists n < M such that &, > z/K, \/ ZE'J > A

m=0j=1
i#n
<MF(z/K)P[\] 5 > )]
ji=0
and thus we conclude
(2.15) hmsuleL() < MK“P[(} ISP Al

ji=0

Furthermore for I132(z) we have

La(2) <P{ | [ > 2/K, 89 €[0,2], i =1,...,n— 1]}
n>M

< Z S(E)EOJJ] :177n_1’£”>I/K]
n=M+1

=F(z/K)E(N* A N(2)1[n+AN()>M]
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and thus

haa(®) _ oo v
(2.16) hfiigp F(2) < K*E(N1iys)-

Finally we deal with I11(z). Define stopping times

Ni(z/K) =inf{n >0:58 > z/K},

Ni(z/K) =int{n > Ni_1(a/K): SE = $§) | o) >2/K}, iz2

Because all positive steps of the random walk must be small in the piece controlled by I11(z), we have

Iii(z) <P[N;i(z/K)< N, i=1,...,[K/2]]
and by the strong Markov property, this is bounded by

<P[Ni(z/K)< N, i=1,...,[K/2]—1]P \/ SE) > x/K]

n=0

<o < (P S > w/ K],

n=0

Since P[\/,, 5,(5) > z] is regularly varying in z with index —(a — 1) (see for example, Bingham, Goldie and
Teugels, 1987, page 387) we have

Ut ( ) _ (PIVaZo S5 > o/ K]/

— 0

as x — oo.
We now must put the pieces together. We have

N () VAN
Jim sup P\, _o5% > :;]( )P[\/nzo & > 7] < lim sup Li(z) + Lizi(z })7(—}-)[122( x) + I(x)
T—00 T r— 00

<K*MP[\/ S > AN+ K*E(N1ys )

n=0

Let A — oo and then M — oo to get

=0.

N* (&-) _ N*
hm sup P[\/n:O S > j;]( )P[\/nzo £n > I]
r— 00 x

Since P[VY_ €, > ] ~ E(N)F(z) we get

AV 7
lim sup [V":}g( ) > 7] < E(N)
r—o00 X

which is the desired reverse inequality. The proof is complete. [
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3. Contrast with exponential tails. If Fi,, has an exponentially bounded tail, known results of Iglegart
(1972) can be applied to obtain the analogue of Theorem 2.3. We continue to assume that {X;} and {V;}
are iid, independent of each other, with distributions Fon and Fug respectively. Set & = (1 —r)X; —rY; and
for stability continue to suppose E¢; < 0. Recall N is the first downgoing ladder epoch of the random walk
with steps {&;}. We need to suppose

Al For some v > 0: EY& =1
(A1) v

and for this value of v we have

(A2) E&e" = 1, € (0,00)
and
(A3) &1 has a non-lattice distribution.

An analogue of Corollary 2.2 is provided by Iglehart (1972) which suffices to give the tail behavior of the
maximum contents level in a cycle. We write Sﬁf) =(1- r)S,(lX) — rSﬁLY), n > 0.

Proposition 3.1 (Iglehart, 1972, Lemma 4). Suppose assumptions A1, A2 and A3 hold. Then forz >0
(3.1) P[My > 2] = P[\/ X(5) > 2] ~ a(0)e™”,

where
(1 (675(6))) Y(1-r)X1
CL(O) ’WLYE(N) ( ( : )

We may now follow the line of reasoning of Section 2. The exponential tails given in (3.1) imply

(3.2) o V M; —loga(0)u = Yo()

in D,(0,00) where Yy(+) is the extremal process generated by the Gumbel distribution
A(z) = exp{—e™"}, z€R.
We then get as u — oo

z + loga(0)u
Y

(7M<ut> ~ loga(0)u, M~ )/u) = (Yo(t/(E(N)), nE(N)Yg (2)

which leads to ( )
T(z+u N
a(O)T = uE(N)Yy™ (vz).
If £ = 0 we get as u — o©
T(U) A7 —
a(O)eW—u = uE(N)Y; (0).
Note that Y5~ (0) is exponentially distributed with mean 1 and we get the final result

a(0) (WY {1 ez (L= BeTY)2Y r(u)
33) (uE(N) e > B (E( ) W(EN)2 7y ) e P
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as u — oo where F(1) is a unit exponential random variable.
We may also check that E7(u)/e’ converges as follows. Observe that

(3.4) 0<7(s) < Sny,

where .
V(s) = inf{n: \/ M; > s}
i=1
since the hitting time of X (-) must occur before the end of the cycle that has a cycle maximum bigger than
the level. Since V(s) is geometrically distributed

a(O)ng) = E(1),

where, as usual, F(1) is a unit exponential random variable. Furthermore, as s — oo

ESNV(S) :uENV(s) = puE(N)E(V(s))

=) (33,5 4)
_nE(N)

ev’.

So as s — oo

E(Snye,) _ nE(N)

and

V(s) . nE(N)
evs = a(0)

SNV _
—(S) ~
e uE(N)

B(1).

These two statements coupled with (3.3) and (3.4) and a variant of Fatou’s lemma sometimes called Pratt’s
lemma (Pratt, 1960) yield the desired result

(3.5) Er(s) ~

Note how critically Fof enters into formulas (3.3), (3.5) since Fog is important in determining the growth
rate v of the hitting time. In the heavy tail case, Fyg did not play a role in determining the growth rate of
7(s) since levels were hit basically due just to big upward jumps which were controlled by F,y. Recall that
in the heavy tailed case, as s — oo,

Er(s) ~ (1 —7)"%/Fou(s) ~ ES, = uEv

where
v=inf{n:(1-r)X, > s}.

Example: Consider the standard example where both F,, and F,g are exponential distributions with
means fion and piog respectively. The negative drift condition is

(1 - r)//ton — Tloff < 0
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and 4 must satisfy
1= B (X = (1= (1 = r)pton) (14 77s10m) ™!

Solving for v we get the solutions v = 0 and

_ THoff — (1 - T).uon _ _E€1
(1 - r)rﬂonﬂoﬁ' (1 - r)rﬂonﬂoﬁ"‘

The numerator is positive by the drift condition.
We now calculate the coefficient of 7(u)/e? in (3.3) in order to compare it to the exact calculation given
in (1.5). Since X7 is assumed exponential with mean o, we have

Ee’Y(l—T)Xl — T Hoff )
(1 - r)ﬂon

To calculate p, we compute %Eesgl and substitute s = v. This calculation is made easier by use of the
formulas

T loff
L+ gt =
on
1—~(1—=r)u :(1—7°)Non = 1
o T Hoff 1+ T'Y/loﬁ"‘
With these formulas we find
Hy = —E&.

Next observe that because of exponential tails,

where F(1) is a unit exponential random variable and hence

5© —1— 1
14 yrpos
(1= 7)pion
T Uoff
_-F&a
B Phoff

1— Ee”

=1 -

Knowing the distribution of Sj(\f;) also enables us to compute EN since
ES'®) = —rpuoe = E(N)E¢,

and hence
T Hoff

EN = .
—E&

Putting the ingredients together, (3.2) becomes

(= E&)? m(u)

N(rﬂoﬂ)2 et

= E(1)

which agrees with the exact calculation for the expected value in (1.5).
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The contrast with the heavy tailed case is very evident. Instead of E7(s) being of the same order as ES,,
the expected time until an on period of length at least s/(1 —r) occurs, we have in our exponential example

ES, =pEv = p/Fou(s/(1 — 7))
=pexp{s/(ton(1 —1))}.

However from (3.5)
,u(rﬂoﬁ)z o
(=E&)E

Comparing the growth rates v with 1/(pon(1 — 7)) we have

Et(s) ~

1 1 < 1
(1 - r)//ton T Hoff (1 - r)//ton

0<y=

so that F'S, has a faster growth rate which is to be expected since in the exponential case, the process X(-)
jumps over a high level as a result of an accumulation of small upward movements and not typically as a
result of a single large jump.

To obtain the exact expression for E7(s) in this example, proceed as follows. Defining

X () = (X(1), 2(1)),t 20,

we describe the state of the system prior to reaching level s as a Markov process {X(t),t > 0} with a state
space £ = {(2,1),0 < z < s,i = 0,1}. We can express 7(s) in terms of the hitting times of the Markov
process {X(t),t >0} as

7(s) = T(s,1) :=inf{t > 0: X(t) = (s,1)}.

For x € [, let H(x) be the expected hitting time Ti, 1) starting at x, and define for an 0 < z <'s,
hi(z) = H((2,1)),  ha(2) = H((,0)).

Then E7(s) = h1(0). Using the natural filtration F; = o(Z(u),0 < u < t),t > 0, we observe that for any
t>0

E(Ty ) = H(X (AT 1)) + X(EAT) = M(2).

Therefore, {M(t),t > 0} is a martingale, and its martingale property leads to the following system of ordinary
differential equations:

1 1
(3.6) (I1—r)hi(z)=—1+ hi(z) — ha(z),
/’LOH Mon
1 1
(3.7) rhy(z) =1+ hi(z)— ha(z),
Hoff Hoff
with the obvious boundary conditions
(3.8) ha(0) = ptogg + h1(0),  hi(s) = 0.

The system (3.6-3.8) can be solved in the standard way, and we obtain (1.5).
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4. A single server fluid queue fed by several on/off processes.

Let {XZ»(J), i=1,2,...}, 7= 1,...,k and {YZ»(]), i=1,2,...}, 7 = 1,...,k be iid copies of the on
sequence {X;, i = 1,2,...} and the off sequence {Y;, i = 1,2,...} correspondingly. We construct k iid
on/off processes, {Z;(t), t > 0}, j = 1,...,k as in (1.1). Sometimes we will find it convenient to work
with stationary versions of {Z;(¢t), t > 0}, j = 1,...,k. Those exist due to the finiteness of pon and o,

and can be constructed as follows. Fixa j = 1,...,k, and let CJ(»O), XJ(O), Yj(o) and Yo(j) be four independent

random variables which are independent of {X;j), Yi(j), i > 1} defined as follows: C](»O) is a Bernoulli random
variable with values {0, 1} and mass function

P[CJ(-O) =1]= 'uuﬂ =1- P[C](»O) = 0]

and (z > 0)

P[X(O) >z] = Fon(s) ds, P[Y»(O) >z] = Forls) ds.
! z Hon ! @ Hoff

Finally, Yo(j) has the Fyg distribution. Define a delay random variable D;O) by
D;'O) — C](O)(X](O) + YO(J')) +(1— C](»O))Yj(o)
and a delayed renewal sequence by
(4.1) {89, n >0} := {D*, D & i(x}j) +Y9)n > 1}
i=1

Then a stationary version of {Z;(¢), ¢ > 0} is defined by

(4.2) Zi(t) = CJ(O)l[o,x;“))(t) + i Us9) <ras®4x0), )"
n=0

See Heath, Resnick and Samorodnitsky (1996) for details. In a similar way we can construct a stationary
version {Z;(t), < —oco <t < oo} defined for all real ¢. We take, further, the k& stationary on/off processes
to be independent.

In this section we consider a single server queue as above, with service rate r, fed by the k& on/off processes.
That is, the combined inflow rate in the system is given by

(4.3) ZW(t)y = Z1(t) + ...+ Zi(t), >0, or — o0 <t < oo,
and, similarly to (1.2), the state {X(¥)(#), ¢ > 0} of the system satisfies
(4.4) dX® () = 2B (1) dt — r(X*) (1)) dt.
It is of interest to consider the behavior of a system (4.4) with a general k, first of all as a step towards
understanding the queues with more general long memory input streams and, secondly, to understand the

effect of pooling the resources in the systems of the type we are considering. The natural rate condition for
this system, parallel to (1.3), is

Hon
4.5 k <,
(4.5) .
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saying that the long-term inflow rate to the system (4.4) is less than the potential long-term outflow rate
from the system. Of course, we also assume that r < k, to make sure that the system is non-degenerate. In
the appendix we verify that, under condition (4.5), there is a stationary stochastic process {X*)(2), ¢t > 0}
satisfying (4.4). This statement, though intuitively obvious, does require an argument due to the lack of
renewal structure in the process {Z(*¥)(t), ¢t > 0}. We assume, as always, that the distribution Fo, % Fog is
not arithmetic.

When the on periods have a heavy tailed distribution, we know from the discussion in Section 2 that, for
k = 1, the state of a system driven by (4.4) crosses a high level L by increasing to that level almost from 0
within a single on period. We expect high level crossing patterns of the system contents to be similar for a
general k. Intuitively, the time to reach a high level L should critically depend on

(4.6) ko = the smallest integer > r.

By the non-triviality assumption, kg < k. If kg = 1, by analogy to the case k& = 1 one expects the state of
the system to reach a high level I when one of the k on/off processes has an on period of length L/(1 —r).
If ko > 1, the same intuition says that the system will reach a high level L only when kg very long on periods
occur at about the same time, and so it will take much longer until this high level is reached. In this section
we prove the above statement for the case kg = 1, thus generalizing the conclusion reached in Section 2 for
k = 1. The proof of the Theorem 4.1 is significantly more involved than the argument required for £ = 1
due, once again, to the lack of renewal structure in the process {Z(*)(t), t > 0}.

A natural way of calculating the time until the system contents reach the level L is by starting from the
moment the system is empty, and all k on/off processes begin an on period. One must realize, however, that
for £ > 1 such a moment in time is far from being “typical”, and, even if we initialize the system in such a
way, chances are that such moments will not recur. Therefore, we state our theorem in a more general way,
by allowing more general initial conditions. To this end, let H be an arbitrary probability law on R’j_, whose

marginals have finite first moments. Let (D(lo) ... ,D;ﬂo)) be an H-distributed random vector, independent
of the sequences {XZ-(]), i=1,2,...}, j=1,...,k and {Yi(]), i=1,2,...}, j=1,..., k. We again define
a delayed renewal sequence by (4.1), and, similarly to (4.2), we define {Z;(t), t > 0} by

(o]

(4.7) Zi(t) = Z Us9 cicspx 0,1

n=0

Clearly, this time {Z;(t), t > 0} does not have to be stationary. If {X®)(t), t > 0} is given now by
X®)(0) =z € {0,1,2,...} and (4.4), we will denote all probabilities and expectations related to it as Py 5,
and Fp z,, accordingly. That is, we are allowing the system to start in an arbitrary state zg, when all the

on/off processes are in off periods, with H describing the joint distribution of the remainders of the initial
off periods. Let

(4.8) r(L)=inf{t>0: X®(#)> L}.
Theorem 4.1. Let
Fon(z) =27 %L(z), a>1, 2 — oo,

and assume that for some p > 1 we have EYY < co. If the service rate r satisfies (4.5), and v < 1, then for
any H and xo we have

(4.9) tim Fon () By (L) = lim Fop(— )EH,M*(L):%“,

L—o 1—7r L—o0 1—7r
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where

(L) =inf{t > 0 : one of the k on/off processes begins at time 1

}.

L
an on period of length at leastl

An argument identical to that of Theorem 2.1 immediately proves the corresponding result for the corre-
sponding GI/G/1 queue. Let {}/Z»(j), i=1,2,...}, j=1,...,k be iid copies of the sequence of interarrival
times {Y;, 1 = 1,2,...}, and let {Bl(j), i=1,2,...}, j=1,...,k be iid copies of the sequence of offered
work {B;, 1 =1,2,...}, so that at time S,(Lj) = Yl(j) + ...+ Y,Sj) an amount of work B,(lj) is brought in the
system on the jth channel, n = 0,1,...; 7 = 1,...,k. Let r be the service rate. Note that the following
theorem does not require the assumption r < 1.

Theorem 2.2. Let the distribution Fo, of B; satisfy
Fon(z) =27 %L(z), a>1, 2 — oo,

and assume that for some p > 1 we have EY} < co. If

Hon
4.11 klen <y,
( ) Hoff
then
_ 1
(4.12) Llim Fon(L)ET(L) = 7 Hofts

where (L) is the first time the amount of work in the system reaches the level L.

In particular, the expected time to reach a high level L in (2.12) does not depend on the service rate r.
Note that the result of Theorem 2.2 remains true if one initializes in an arbitrary way the state of the system.

Let us look at the implications of our results on the benefits of pooling the system resources. Think of k
iild GI/G/1 queues, with holding capacity L each, and service rates r each. The queue number j is driven by
the sequences {YZ»(]), i=1,2,...} and {BZ(]), i=1,2,...} as above, j = 1,..., k. We take pooling system
resources here to mean that we put together the service resources to create a “super-server” with service
rate kr, and we feed this “super-server” by a combined stream of the k£ input processes, as in Theorem 2.2.
The holding capacity of the new system is taken to be kL, again, as the result of pooling the resources. Let
us look at a generic stream of “customers”, or work (i.e. one of the k original streams of work). One can
imagine that when the holding capacity of the system serving these “customers” is reached, the system is
blocked for a time to any future arrivals. Under the “k separate servers” scenario, the expected time until
the serving system is blocked is E7(L), while when the system resources are pooled, this expected time is
ET,r. By Theorem 2.2 the ratio R of the two expected times is, asymptotically for large L,

kFon(kL) 1

R= 1 — = 1
L2 TFon(D) | kel S

which is the expected benefit of pooling the resources. However, this benefit becomes less pronounced if «
is close to 1.
We are ready now for the proofs.

Proof of Theorem 2.1. Obviously,

(4.13) EHaom(L) < Epe, (L) +

1—7
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If
(4.14) rwug:mQ$P.n>1xﬁL>———}g_1
we have

(4.15) (L) = min(r*’l(L), .. ,T*vk(L)).

Observe that 7%1(L),...,7*F(L) are, conditionally on (D(lo) e ,D;co)), independent, and that
(4.16) 79 (L) 4 DJ(O) + Z(XZ(*,J) +l/i(i))’

i=1

where G(Lj) is a geometric random variables with parameter Fon(lf—r), independent of two independent iid

sequences, {XZ»(*’j), i=1,2,...} and {Yi(j), i=1,2,...}, where the latter sequence has, as usual, the Fog
distribution, and the former has the distribution

. . . L/(1-r)
P(XZ,(*J) c A) = P(X%J) c A|X§]) < L) = ﬁ/ 1($ c A) Fon(dl‘).

. . . st :
Everything is also independent of the delay random variable D(()J). In particular, (X§])|X£J) <IL)< X%J),
and hence

(4.17) Ti(L) < Sg&w

where all the random variables appearing in the right hand side of (4.17) are independent. We conclude that

st ) As<n G
<\ o+ Y x4y,
1<j<k i=1

and so ' '
Eye,m™ (L) < En V D(()]) + pFE /\ G(L]).
1<j <k 1<j <k

Since AlSjSkG(L]) is, once again, a geometric random variable with parameter 1 — Fon(5 ¥, we obtain

immediately that

r

; L
Eream(L) < Egpogm(L <E py) (————————————-1)
H7UT()— H7DT()+1_T— H v o T H 1—Fon(L)k +1—7°’
1<j <k -7
which implies that
, L , 0 . 1
(4.18) hmsupFon(—) FEpe,m(L) < hmsupFon(—)EH.xDT (L) < —pe
L—oco 1—7r ! L—0co 1—r ' k
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For a lower bound, we start with observing that we may assume that Algjng;O) = 0, Py, z,—almost
surely. Indeed, shortening all the initial off periods by the same amount can only bring the level crossing
time closer. Now, take an 0 < € < 1, and observe that

(L) 2 7 (L(1 = ) 1[r()2 7 (L(1- )]s

and so
(4.19) Eptay7(L) > Ert,ag™ (L= €)) = Brry (7 (L1 = ) ir(ny<re(za1- o)

The main part of the proof of a lower bound on the expected crossing time is a proof of the fact that

(4.20) tim Pon (=) Bty (7 (L = D iyermza-eny) = 0.

L—oc 1—r

Suppose that (4.20) has been proved. If we can establish that

(4.21) lim inf Fon (15—7@) B, (L) > %u,

then (4.19), (4.20) and the regular variation of Fou(L) will provide the required counterpart to (4.18), and so
prove the theorem. To prove (4.21) we may, of course, assume that H = é(o,... 0), and zo = 0. We, therefore,
use P and F without any subscripts. We remark at this point this assumption is made only for the purpose
of proving of (2.21), and will be removed once the latter has been proved. However, at certain later stages
of the proof of the theorem we will find it useful (and possible) to re-impose this assumption once again.

With G(Lj), j=1,...,k as before, let

sk . k
(4.22) #(L) = mln(S(Gl(L)l), . ,S(G(L)k)).

Let us check first that

o
(4.23) lim Fon(1

L—o0 —T

) (E%*(L) - ET*(L)) —0.

We may assume that the random variables {XZ»(j), i > 1}, {XZ»(*’j), i> 1}, {I/Z»(j), i > 1} and G(Lj),
j = 1,...,k are all defined on the same probability space, such that XZ-(j) > XZ-(*’j) for all ¢+ > 1 and
j=1,...,k, and that the same {Yi(j), i>1} and G(Lj) are used to define S(Gj()j) and 79 (L) for j = 1,... k.
We then have: :

s * . 1 k . *, *, j *,7
(L) —1"(L) = mln(S((;()l), ... ’S(G()")) — HllIl<T 'I(L), N & 'k(L)) < \/ (S(G]()j) — 7 (L)) .
L L 1< <k L
Since S(j()j) > t*J(L) for all j = 1,...,k, we have, therefore,
GL

E#*(L) — Er*(L) <kE(SM), — rY(L))

e T

=kEGV(EX®M — Ex ()
_ L \-1

:k(Fon(l_r) —1)0(1)
_ L \-1

=0 (Fon ( T 7“) )
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as L — oo. This proves (4.23). Therefore, (4.21) will follow once we check that

N L 1
(4.24) lim £fF°“(1 )E (L) > .
Now,
EF*(L) = Emin(S(l()l), .. S(k()k)) /0 (5(1()1) > :t:) dz.

Choose an N > 1 (large) and 0 < § < 1 (small) and observe that for any z > 0,

el
P(s >a2)=P(Y (x" +v M) > 2
(s >2) (3 )
(4.25) 2P(mn>N[G(Ll) > max(N, 7 _5 T ; (XD + vy > n(1 _5)u)])
=P (G(Ll) > max(N, ﬁ))P(ﬂn>N[;(Xi(l) + Yz’(l)) >n(l— 6)#)])

:aNP(G(Ll) > HlaX(N, ﬁ)) .

Observe that by the strong law of large numbers, 8y — 1 as N — co. We have, therefore,

o) ) k
E#(L) >0% / P> 2 ) dx
(L) 26y N(1-6)p ( g (1_5)/)

=0%, i (1 —=6)uP (G(Ll) > n)k
n=N
K(N+1)
Foo (-
=05 (1 = &) (H)

L ke
1 —Fon(l_r)

o 1
limianon(l ) EF(D) 2 k(1= 6),

L—o0 -7

We conclude that

and (4.24) follows by letting N — oo and 6 — 0. Therefore, to prove the theorem we only need to prove
(4.20).

By the assumptions of the theorem, there is a p’ > 1 such that both EX{)I < oo and EYlpl < oco. By
Holder’s inequality,
(4.26)

Y .
Ett,z, (r*(L(l — (L) < (B =) € (Brteo (7 (L= D)) Pra (r(E) < 7 (E(1 = ),
where = + i, = 1. We use the following inequality: for any o-finite measure spaces (€1, F1, p1) and

(Qa, TZ, /lg) / > 1 and a nonnegative measurable function f: Q; x Qs — R,

1

([ ([ e mdon)” ) ey ([ sty mon) ™ o)
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See for example Lemma 3.3.1 of Kwapienn and Woyczyniski (1992). Let jo = argmin(D(lo), e ,D;co)) (with

ties broken in, say, the lexicographical manner), and recall that D;g) =0, Py, z,—almost surely. We have by

(4.27)

where C'is a finite positive constant. It follows from (4.26) that we will prove (4.20) by showing that

(4.28)

(Erta(r (L= )

1/p'

1/p' 1/p'

< (Prea(i))

<(Brtao( (D))

<(PuantsG )"

00 p! I/PI
= (E (> + v i <6 )

=1

LILII;O Pr oo (T(L) < 7°(L(1 — €))) = 0.

Let us prove first that for every

(4.29)

we have

(4.30)

To this end, let us “unpool” the system. That is, imagine k separate fluid queuing systems defined by

(4.31)

N>2kL,
a—1

LILII;O Pr o (T(L) < 7*(L/N)) = 0.

dX;(1) = 7;(t) dt — %T(Xj)(t) dt, >0

where {Z;(t), t > 0} is given by (4.7), and X;(0) = %mo, J=1,..., k. The k processes {X;(t), t >0}, j =
1,...,k are, conditionally on the initial delay (D(lo) ... ,D;ﬂo)), independent. Let Y(®)(¢) = X (¢) 4+ ... +
Xi(t), t > 0. The two processes, {X(k)(t), t > 0} and {Y(k)(t), t > 0} describe the states of two queuing
systems. Obviously, X(*)(0) = Y(¥)(0), the two systems have identical inflow streams of work, while the

outflow of work from X(k)(-) when the system is not empty is always at rate r , and the rate of outflow of

work from Y(k)(-) does not exceed r. Therefore, for every w,

(4.32)

X®E @)y <y®@), t>o0.

Note that (4.32) is just an expression of the benefit of pooling the system resources. Define

(4.33)

YN =inf{t >0: YE(1) > L}.
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Then (4.32) implies that T(Y)(L) < 7(L), so that
{w: ) < @M} c{es M) < (/m)},
and, therefore,
(4.34) P1,5,(7(L) < T°(L/N)) < P (rY (L) < 7*(L/N)).

Now, let for j = 1,...,k '
ULy =inf{t > 0: X;(t) > L}.

Then

(4.35) Pi1.2g(TY)(L) < 7°(L/N)) <Pp.00 (TU)(L/k) < *(L/N) for some j = 1,... k)

<EPHx rUN(L/k) < 7*(L/N))

ZJ: (r9(L/k) < T (L/N)).

Therefore, (4.30) will follow from (4.34) and (4.35) once we prove that for every

(4.36) M > 2—1

we have

(4.37) Jim Pr o (FU(L) < 79 (L/M) =
forj=1,... k.

We will prove (4.37) for j = 1. Let Ty = inf{t > D(lo) : X1(t) = 0}. Write
P oo (TO(L) < 7Y L/M)) = Pp oo (To < TO(L) < 79U L/ M) + Prr oy (T"(L) < 754 L/M) ATp).
Since for all L > 2z
Prp oo (TON(L) < 79 YL/ M) A To) <Pp oo (TV(L) < To)
<P(1{}), < Tp) — 0

=

as I — oo because of the rate condition (4.5) (or recall Corollary 2.2), (4.37) will follow if we prove that

(4.38) lim Py o (To < 7O(L) < 79Y(L/M)) =

L—co

Clearly, at time Ty the system is in an off period. Denote by H the law (under Pg z,) of the remainder of
this off period after time Ty. By the strong Markov property,

Pr,ao(To < 7(L) < 71 (L/M)) < Ppo(r(L) < 7H(L/M)).
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Therefore, (4.38) will follow once we prove (4.37) with 2o = 0, and so (4.37) in its generality will follow if
we prove it only for g = 0. Assume, therefore, that zo = 0.

For K; > 0 and K3 > 0 let {X§K1’K2), t > 0} denote the process given by (4.31) (with j = 1) when D(lo)
is replaced by DSO) A K1, and each Yi(l) is replaced by Yi(l) A Ka. Let 7((L; Ky, K3) and 7% (L; K1, Ks)
be the random times analogous to T(l)(L) and 7!(L) correspondingly, defined with respect to the process
{X%Kl’Kz), t > 0}. Observe that the event

Axyx, = (w0 TO(L Ky K) < )y (Ko, K)))

increases when K; and K; decrease. Tt is enough, therefore, to prove (4.37) in the case when K; = 0, and
K> is any finite positive number such that

Hon
Hon + E(Yl(l) A K2)

<7°
k.

In other words, we will prove (4.37) in the case when D(lo) = 0, the off times are bounded (by K3), and
zg = 0. We will, therefore, use once again P and E without any subscripts.
We define 3 events, A;(L), i = 1,2, 3, corresponding to the following 3 possibilities.
(i) ™Y (L/M) < T(L) A Ty. That is, the process {X:(t), t > 0} begins an on interval of length at

least before reaching either level L, or returning to 0.

M(1-r)
(iiy TO(L) < 7Y (L/M) A Ty. Tn other words, the process {X1(t), t > 0} reaches level I before starting

an on interval of length at least m and before returning to 0.

(i) To < 7W(L) A 7Y (L/M). In other words, the process {X;(t), t > 0} returns to 0 before reaching
level L, and without having an on interval of the length of at least m

Clearly,
P(r(E) < =N (1/M) = P({rO(E) < 7 {(L/M)} 0 Ao(E)) + P({rO(L) < 7Y(L/M)} 1 As(L)).
However, by the strong Markov property,

p({r“)(L) < N L/M)} N AS(L)) = P(A3(L))P(r"(L) < 7= (L/M)).

Therefore,
" 1 j2 ({T<1>(L) < WL/M)} N A2(L))
4.39 P(r"N(L) < 7™ (L/M)) =
(4.39) (FO(L) < 71 (L/M)) )
Let & = (1— T)XZ»(I) — rYZ»(i), 1 =1,2,.... Taking into account that the off times are bounded, we can repeat

now the argument used to estimate I11(z) in the proof of Proposition 2.1’, to conclude that
(1) 1 \/ 5 L e
P( L)< 7 YL/M)}n A L)< P( S 7) ,
(0 < ey am) < (P(V 59> 5
and P (VZo:o S > L) is regularly varying in I with index —(a — 1). Moreover,

L

1= P(4s(D)) 2 Ps(0) 2 P(X17 > 375) = P (57755 )
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We conclude by (4.39) and (4.36) that

oo l€) L /2]
<P (Vn:O St > M(l—r)))
limsup P(r(L) < 7Y(L/M)) < lim sup —

— 00 — 00 —L
; ; o ()

=0.

This proves (4.37) and so (4.30) is proven as well. We observe at this point that the above argument that
allowed us to assume the initial delays being equal to 0 shows that we have also proved that for every N
satisfying (4.29)

(4.40) Llim sup Ppo(r(L) < 7"(L/N)) = 0.
—co g

The next step in the proof of (4.28) is to show that two “long” on periods are “unlikely to happen
simultaneously”. Formally, let

(4.41) Qr, = inf{t > 0: at time ¢ there are two on periods running, each of length at least L}.

We claim that there is a function v;, — 0 as I, — oo such that
(4.42) Jim Pi, (QL < 7;1(1?0“@))—1) —0.

Of course, Qr will only decrease if we assume that all delay times and off times are equal to 0, and @y, is
unaffected by zg. We will, therefore, once again drop the subscripts from P and F, and assume that all off
times are equal to 0.

FOI‘jl,j2:1,...,k,j1¢j2,let

Q(le’j2) =inf{t > 0: at time ¢, the processes X;, () and Xj,(-) both have on periods running,
each of length at least L}.

Then o
QL — A Q%lv]?)’
ir#ia
and so for any ¢ > 0,
k(k—1
(1.43) Pr<g < Do <)
Let

Q(Ll) =inf{t > 0: at time ¢, X1(-) begins an on period of length at least L
(4.44) during which X3(-) also begins an on period of length at least L}

with Q(Lz) defined similarly. Then
Q>0 naf?,
which means that for any ¢ > 0,

(4.45) PQM <q) <2P(QY < ).
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Let Z, k = 1,2,... be an iid sequence, such that

where G, is a geometric random variable with parameter F,,(L), independent of an iid sequence X;, 0=
1,2,..., with common law

P(X;€4) = P(Xl € AlX; < L) =7 1@) /L 1(x € A) Fon(dz).

Then Z; represents the first time Xy (-) starts an on period of length at least L. Let Hp be yet another

geometric random variable, independent of the sequence Zp, k& = 1,2,..., this time with parameter pp
defined as follows. Let W be a random variable with distribution
1 [ee]
P(W e A) = P(X1 c A|X; > L) - / 1(z € A) Fon(de),
Fon(L) Jr

and independent of X3(-). Recall that at time 0 the process X(-) starts an on interval. Then define
(4.46) pr = P(inf{s,(f) n>1, X, > 1) < W).

That is, pr, is the probability that X(2)(-) begins an on period of length at least L during an on period of
XM(.), whose length is at least L. If X(2)(-) does not start such an on period, we then have to wait till the
next on period of X(l)(-) whose length is at least L. Therefore,

Hy,
(4.47) Q2 3 Za.
n=1

We claim that

(4.48) pr, — 0 as L — oo.
Indeed,
1 T -
(4.49) Pr= /L P(Z1 < t) Fou(dt) = 0 /L P(;XZ» < 1) Fon(dt).

Observe that for every ¢ > I,

GL n
~ 1 . 5 Hon
P X <) <P(Gp < —=—7 P f X;— <0
(; = ) = ( L > (Fon(L))l/Z) + <n>(F011(1L))‘1/2; n 5 = )
(4.50) +P(“§“GL <t).

Notice that the first term in the right hand side of (4.50) goes to 0 as L — oo, and that by the strong
law of large numbers so does the second term in the the right hand side of (4.50). Since neither of these two
terms depends on ¢, (4.48) will follow once we prove that

. 1 * 5 Hon
4.51 lim =—— P G <t) Fon(dt) = 0.
(4:51) 5% Fon(L)/L (5 G < 1) Fonldl)
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However, for all L big enough and all t > L we have [2t/pon] > 1, and so

Hon

[2t/Non] 2t
<

P
( Hon

GL<t)=1— (FOH(L)) ]FOH(L).

Therefore,

. 1 Hon 2 . /°°
lim sup = P Gr <t)dt < lim su t Fou(dt) =0
L—»oop Fon(L) /;, ( o ) Hon L—»oop L ( )

since pion < 0o. This proves (4.51), and, therefore, we have (4.48).
Define now vy, = piﬂ. Observe that by (4.43) (4.45) and (4.47) we have

(4.52) P(QL < A7 (Fon(L))™ ) < k(k —1) (Zz < pp VA Fon(L))” 1).

However,
Hy Jr
d ~
PIEAED IR
n=1 i=1

where J1, is a geometric random variable with parameter pr, Fon(L), independent of {XZ, i=1,2,...}. Since,
as L — oo,

(pr.Fon(L))Jr = E(1)

where F(1) is a standard exponential random variable and we immediately obtain (4.42) using (4.52) and
the law of large numbers.
Let us go back now to the proof of (4.28). Observe, first of all, that for all L big enough,

Prs, (T(L) < (L1 — e))) < Pro (T(L(l —¢/2)) < T (L(1 - e))).

Therefore, it is enough to prove (4.28) for zo = 0, for the general case will follow by making ¢ smaller. We
will, therefore, use the notation Py and Fp, when zg = 0.

Fix any N satisfying (4.29) and big enough to make the right hand side of (4.53) below positive, and
observe that it is enough to prove (4.28) for ¢ = 1/N. Fix, further, a p satisfying

(4.53) (k—1)p < % — e

We have
(4.54)
Pr(r(L) < (L(1 = €)) <Py (r(L) < 7(L(1 = ), 7(Le?) > 7 (L), 7(L) < Q)
+ Py (r(Le*) < 7°(Le%)) + Pu((L) > Qpr)-
Observe that by (2.30)
lim Py (r(Le?) < 7*(Le*)) = 0.

— 00

Furthermore, by (4.42) and (4.18)

Pu(r(L) 2 Qur) <Pur (Qpr. < (1) ™ (Fan(pL) ™) + Par (7(1) = (1) ™ (Fon(pL) ")

<Py (QpL < (7pL)_1(Fon(pL))_1) + 7pLFon(pL)EHT(L)

—0
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as L — oo. Therefore, (4.28) will follow once we prove that

(4.55) lim Py (n(L) < 7*(L(1 =€), 7(Le%) 2 7*(Le), 7(L) < Qpr) = 0.

— 00

As a matter of fact, we will prove an even stronger statement. We will prove that

(4.56) Jim sup Prr (7(1) < 7(5(1 =), 7(Le*) 2 7 (L), (L) < Qur ) = 0.
Let
B(L) = {r(L) < 7 (L(1 = ), 7(Le?) > 7*(Le%), 7(L) < Q1 }.

We split this event into two events, Bi(L) and Bz(L), accordingly to the following two possibilities.
(i) After starting the first “wet period” the process X (¥)(-) reaches level L before returning to 0.

(ii) The process X (*)(-) returns to 0 before reaching level L.

Let us look at the event By(L) first. Since Bi(L) C B(L), at time 7(Le?) at most one of the k on/off
processes has an on period whose length is at least pL. Depending on whether the number of such on/off
processes is 0 or 1, we split the event By(L) into B11(L) and Bia(L). Let us look, for example, at Bya(L).
The treatment of the event By1(L) is similar.

Since Bi2(L) C B(L), the single on period running at time 7(Le?) of length least pL, has length not

exceeding % Let us now modify the state of the system at time 7(Le?) in the following way. Bring

all the work remaining in the presently running on periods in one “lump” at time 7(Le?), and attach the
remainders of these on periods to the subsequent off periods. Obviously, this action can only make 7(I)
smaller, and so it can only increase the probability of the event By3(L). Observe that, after this action, the
state of the system does not exceed

L+ L(1 —€)+ (k—1)pL < L(1 —¢/2)

by (4.53). We increase, if necessary, the state of the system to exactly L(1 — ¢/2) (only increasing in the
process the probability of the event By3(L)). We conclude that for some Ho,

(4.57) Py(Bia(L)) < Prryrii—e ,2)(Sgp v > 1),
>0

where {V(¥)(t), t > 0} is given by
dv® )y = 25 (1) dt — r dt,
with {Z(¥)(t), t > 0} given by (4.3) and (4.7). However,
V() = Vi(t) + ...+ Vi(t), t >0,
where for j =1,...,k the process {Vj(¢), t > 0} is defined by

r

dv;(t) = 2;(t) dt — - db,

with V;(0) = L(1—¢€/2)/k, and with initial delay governed by the jth marginal law, HY, of Hy. We conclude
immediately by (4.57) that

Py (Bi12(L)) < ksup Py 11— ¢j2y/p(sup Va(t) >
H® 120
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where P without a subscript indicates, as usual, absence of delay and zero initial state. Because of the
negative drift, we conclude that

(4.58) lim sup Py (B12(L)) = 0.
L—c H

In exactly the same way one can show that

(4.59) lim sup Py (B11(L)) = 0.
L—co g

Finally, we consider the event By(L) above. Consider the two possibilities that are feasible after the
process reaches 0: either after that time the state of the system reaches the level Le? before the beginning
of the first on period of length at least Le3, or not. Accordingly, by the strong Markov property,

Pir(By(L)) < Pr(r* (Le) < 7*(L(1 = ))) (sup Pa(r(Le*) < 7*(Le*)) + sup Po(B(L))).
Taking supremum over H, we obtain
sup Prr(B(L)) <sup Pu(Bi1(L)) + sup Prr (Bia(1))
+ P (L) < 7 (L(1 = ))) (sup Prr(r(Le*) < 7°(Le%)) + sup Pr(B(L)) ).

which is the same as

supy P (B11(L)) +supg Pu(Bi2(L)) + supy Pu(r(Le?) < 7*(Le?))
P(r*(Le3) = m(L(1 —¢)))

(4.60) sup P (B(L)) <

Now (4.56) follows from (4.60), (4.58), (4.59), (4.40) and the fact that

P(r*(Le*) = m*(L(1 —¢))) = FO;EOIE&;;)) - <1€_ 6)“ >0

as L — oo by the regular variation. This completes the proof of the theorem. O

5. Appendix.

We will construct explicitly a stationary version of {X(¥)(#), ¢ > 0}. In fact, we will construct a stationary
version of {X(¥)(t), —oc < t < oo} on the whole real line. We proceed as follows. Let {Z;(t), —o0c < t <
oo}, j=1,...,k be stationary. Then {Z(*)(t), —co < t < oo} defined by (4.3) is itself stationary. We will
construct {X(*)(t), —oo <t < oo} by exhibiting a measurable function ¢ : D(R,{0,1,...,k}) — R, such
that the process

(5.1) X® @) = p(ZH(- 4 1)), —oo <t < o0

satisfies (4.4). Clearly, the process given by (5.1) is stationary.
Let x = (z(u), —oo < u < o0) € D(R,{0,1,...,k}), and let

< T o<T 1 <0< <Thy<...
be the epoch times for {z(u), —o0o < u < co}. That is, at each time T;, {z(u), —0c < u < oo} changes its

value, and let
Zo1 = {i: «(T; —0)=0, z(T; +0) = 1}.
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For x = (Z(k)(t), —00 < t < o0), the points T; with i € Zg ;1 are the times when one of the on/off processes
begins an on period, following a period when all k processes were off. For every ¢ € Zg ; let L; be the length
of the “wet period” commencing at T;. Formally, let X(*)(T;) = 0, and define {X*)(#), u > T;} by the
following analogue of (4.4)

(5.2) dX®) (u) = 2(u) du— r(X®)(u) du.

Then
Li=inf{u>0: X(k)(TZ- +u) = 0}.

If we denote
Gi = {x : for every i € Zo1(x), L;i(x) < oo},

then the rate condition (4.5) implies that the set Gy € D(R,{0,1,...,k}) has full measure under the
probability measure jo induced by {Z(*)(t), —co < t < 00} on D(R,{0,1,...,k}). Now, fora —oo < t < oo
let

Ao1(t) ={T; <t: i€ Zoa},

and define
(5.3) T(t) = inf{T; € Ao (t) : T; + L; > t}.

Denote
Gy = {x : for every —oco < t < oo, T; + L; >t for only finitely many i € .A071(t)}.

We claim that the set G2 € D(R,{0,1,...,k}) has full measure under the probability measure . That is,
we claim that

(5.4) P({w : for some —co < t < 0o, T; + L; > t, for infinitely many i € .A071(t)(Z(k)(-)(w))}) =0.

Now, concentrating on the rational times only, we see that (5.4) will follow once we prove that for any
—o0 < t < 0o we have

(5.5) P({w :T; + L; >t for infinitely many i € .Ao,l(t)(Z(k)(-)(w)) }) =0.
We check (5.5) for ¢ = 0. We have
P({w : T; + L; > 0 for infinitely many i € Aoﬁl(O)(Z(k)(-)(w)) })
k 0
< P(limsup{w : Z/ Z;(u) du > r|n| — r})
and the last probability goes to 0 as n — —oo because of the rate condition (4.5) and the obvious fact that

1 ul 0 I
— Z;(u) du — k222
||Z/ it "

as n — —oo. This proves (5.5) and so (5.4) holds.
Finally, let

G3 = {x : for every —oo < t < 00, there is a u < ¢ such that z(u) = k}
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Note that Fopn* Foe being non-arithmetic implies that the set G € D(R,{0,1,...,k}) has full measure under
the probability measure pg. Finally, we let G = G1 N G5 N G3, and we note that G has also full measure
under the probability measure pq.

We will define now the function ¢(x), x € D(R,{0,1,...,k}). If x € G, let p(x) = 0 (an arbitrary
number). Suppose now that x € G. Since x € G35, we may meaningfully define s(x) = sup{u < 0: z(u) = k}.
Since x € Go, T(x,s(x)) is well defined by (5.3). Now define w(x) as X(*)(0) given by solving (5.2) on
(T(x, s(x)), 00), with X(#)(T(x, s(x))) = 0. Intuitively, s(Z(*)(-))) is the last time before time 0 that all k
on/off processes were on, which is identifiable as a time point when the system is in a “wet period”, and
T(Z®)(-), s(Z*)(-))) is the beginning of that “wet period”, at which time the system must be empty. This
constructs the required function ¢ : D(R,{0,1,...,k}) — Ry, and thus a stationary version of a process
satisfying (3.4).
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