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In a magnetic multilayer, spin-transfer torque from a spin-polarized current can

excite magnetic layers into steady-state precessional oscillations. In this dis-

sertation, the main theme of our work has been the study of microwave sig-

nals produced by spin-torque-driven magnetization dynamics excited by direct

or radio-frequency currents in magnetic multilayer spin-valve devices with a

nanopillar geometry.

In the first part of our work, we have studied the frequency linewidths of

the precessional oscillations excited by direct currents in the magnetic layers as

a function of the in-plane magnetic field angle and temperature. The motivation

of this work was to understand the important mechanisms contributing to the

linewidths with a view to optimizing the coherence of the oscillations. We have

found strong variations in the frequency linewidth of the signals, with a de-

crease by more than a factor of 20 as the field is rotated away from the magnetic

easy axis to the in-plane hard axis. Based on micromagnetic simulations, we

have identified these variations as due to a transition from spatially incoherent

to coherent precession.

As a function of temperature, our experimental linewidths can be explained

by a combination of amplitude and phase fluctuations and thermally-activated

hopping between different dynamical modes. At lower temperatures, the

linewidths are affected more strongly by amplitude and phase fluctuations. At



higher temperatures, the linewidths increase more rapidly due to thermally-

activated hopping between different dynamical modes.

In the second part of our work, we have studied spin-torque effects on the

exchange-bias of antiferromagnet / ferromagnet bilayers by studying the ampli-

tude of the spin-torque-driven resonant motion of an exchange-biased magnetic

layer in response to a radio-frequency current. The motivation of this work was

to investigate spin-torque effects in antiferromagnets. We have fabricated mag-

netic nanopillar devices in which the free magnetic layer is exchange-biased to

an antiferromagnet, and which allow a direct measurement of the magnitude

of the exchange bias and its current dependence. Using spin-torque-driven fer-

romagnetic resonance (ST-FMR) measurements, we have observed strong vari-

ations in the precession frequency as a function of the current, indicating that

the exchange-bias is current-dependent. We have also verified that the effective

damping of an exchange-biased nanomagnet is higher than for an unpinned

nanomagnet.
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CHAPTER 1

INTRODUCTION

1.1 Background and Review of Spin-Torque

The drive towards miniaturization and sophistication of consumer electronic

devices has been progressing at a relentless pace. Silicon-based microelectronic

devices have played an integral role in steering this revolution during the lat-

ter part of the last century. Gordon Moore’s prediction [1] in 1965 of doubled

computing capacity in every new silicon chip manufactured within two years

of the previous one is testimony to the ascendancy of silicon in the microelec-

tronics race. Most conventional electronic devices have exploited the charge of

electrons in the conduction mechanism but there has also been a significant re-

search effort over the last several years to exploit the intrinsic spin of electrons -

a field that has come to be known as spintronics.

1.1.1 Giant Magneto-Resistance (GMR)

Magnetic materials have an intrinsic magnetization, which makes them superb

candidates for nonvolatile memory. Today, almost every modern storage device,

from a hard disk drive to an IPod uses magnetic materials in some form for

writing, recording and reading data. The research effort in magnetic materials

was recognized by the 2007 Nobel Prize awarded to Peter Grunberg and Albert

Fert for the discovery of the Giant Magneto-Resistance (GMR) effect [2].

Magnetic materials like iron, unlike normal metals like copper, have an un-
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equal density of spin-up and spin-down states at the Fermi level, thereby allow-

ing one spin-channel to be the majority carrier and the other spin-channel to be

the minority carrier. This allows magnetic materials to act as spin-polarizers. If

a current is passed through two magnetic layers placed next to each other, the

incoming unpolarized electrons go through the first magnetic layer and come

out polarized in the direction of the magnetization of that layer. When the po-

larized electrons encounter the second magnetic layer, they encounter a low-

resistance if the magnetization of the second layer is parallel to that of the first

magnetic layer and a high-resistance if the magnetization of the two layers is

anti-parallel. In other words, the resistance through a stack of magnetic layers

depends on the relative density of states of the majority spin-carriers at the Fermi

level in the magnetic layers. This is the basis of the GMR effect. If the magnetic

layers are parallel, we measure a low resistance and if they are anti-parallel, we

measure a high-resistance. The difference between the low-resistance and high-

resistance states can be a few tens of percent for spin-valves (magnetic layers

separated by a copper spacer) or several hundreds of percent for magnetic tun-

nel junctions (magnetic layers separated by an insulating barrier such as MgO

or Al2O3). Grunberg and Fert were awarded the Nobel Prize for the discovery

of GMR in Fe/Cr/Fe trilayers [3] and (Fe/Cr) multilayers [4], respectively.

1.1.2 Spin-Transfer Effect

An analogue of the GMR effect is the spin-transfer effect, which was theoret-

ically predicted by Slonczewski and Berger [5, 6]. We mentioned above that

in GMR, an electrical current passing through a magnetic layer becomes spin-

polarized. If, however, the electrical current is large enough and the volume
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of the magnetic layers is small enough, the electrical current can become spin

polarized upon passing through one magnetic layer and can then transfer some

of that spin into the second next magnetic layer. As a result, the magnetization

of the second layer can either switch parallel or anti-parallel relative to the first

magnetic layer [7] or it can be excited into steady-state oscillation of frequen-

cies in the microwave range [8]. A nice review of the spin-transfer torque was

published by Ralph and Stiles in [9].

In Figure 1.1, we show a cartoon of how the spin-transfer effect works. There

are two magnetic layers separated by a spacer. One of the magnetic layers is

made much thicker than the other layer, so that it will be harder to switch. We

call this magnetic layer the ”fixed” layer. The second magnetic layer, which is

thinner, is called the ”free” layer. Assume that the magnetic layers start out

initially with a small relative misalignment angle. If current is passed such that

electrons flow from the fixed layer to the free layer (Figure 1.1(a)), they will

pass through the fixed layer first and come out polarized in the direction of the

fixed layer. When they encounter the free layer, in order to conserve angular

momentum, they will transfer the transverse component of their momentum to

the free-layer, exerting a torque on it that will push it to align parallel with the

fixed layer.

On the other hand, if current is passed such that electrons flow from the free

layer to the fixed layer (Figure 1.1(b)), they will pass through the free layer first

and come out polarized in the direction of the free layer. When they encounter

the fixed layer, however, they exert a torque on the fixed layer but it is not suf-

ficient to move the fixed layer because of its large volume. Consequently, the

reflected electrons from the fixed layer go back to the free-layer and now exert a
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Figure 1.1: Cartoon of the spin-torque effect. (a) Electron flow from the fixed
layer to the free layer leads to parallel alignment between the magnetic layers
and low-resistance. (b) Electron flow from the free layer to the fixed layer leads
to anti-parallel alignment between the magnetic layers and high-resistance.

torque on the free-layer that pushes the free-layer to align anti-parallel with the

fixed layer.

So depending on the direction of the current, the spin-transfer can exert a

torque on the free layer that can cause it to align either parallel or anti-parallel

with respect to the fixed layer, leading to a low-resistance state or a high-

resistance state, respectively.
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Figure 1.2: Vector diagram of all the torques acting on the free layer: the field-
torque, the damping-torque and the spin-transfer torque. The spin-transfer
torque supports the damping torque for one sign of current and opposes it for
the reverse sign of current.

So far, in the discussion of spin-transfer, we have only talked about the effect

of a current. If we now apply a magnetic field as well, the physics becomes

even more interesting since there is now a competition between the field torques

and the spin-transfer torques. We summarize all the torques on the free-layer

in Figure 1.2. Assume that the fixed layer is along the same direction as the

external magnetic field. The external magnetic field applies a torque of the form

H × MFR that causes the magnetic free layer to precess about the field. There is

also a damping torque, proportional to MFR × (H ×MFR), which applies a torque

that pushes the free layer to eventually relax along the external field direction.

Finally, the spin-transfer torque has the form of MFR × (MFR × MFX) and it is

proportional to the relative angle between the fixed and free layers. Depending

on the sign of the current, the spin-transfer torque can cause the free layer to
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align parallel with the fixed layer, in which case the spin-transfer torque and

damping torque are in the same direction or the spin-transfer torque can cause

the free layer to align anti-parallel with the fixed layer, in which case the spin-

transfer torque and damping torque oppose each other.

If we apply a current such that the spin-transfer torque favors the anti-

parallel configuration, then depending on the relative magnitude of the damp-

ing torque and the spin-transfer torque, we can think of 3 different regimes:

1) Damping torque > Spin-Transfer Torque (for example, if we apply a large

magnetic field and a small current): the free layer will eventually just relax along

the external field direction (Figure 1.3(a)).

2) Damping torque < Spin-Transfer Torque (for example, if we apply a small

magnetic field and a large current): the free layer will switch to the anti-parallel

state (Figure 1.3(b)).

3) Damping torque = Spin-Transfer Torque: the free layer will be excited into

steady-state oscillations and will emit microwaves (Figure 1.3(c)).

We would like to point out that Figure 1.3 shows a simple case of circular

precession in a device with no easy-plane anisotropy. However, typically our

magnetic nanopillar devices have a strong easy-plane anisotropy. Therefore,

the precession is mostly confined in the easy plane of the device and it follows

an elliptical trajectory. We will discuss the elliptical trajectories in more detail in

Section 3.4.7.
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(a) Damping > Spin-Torque (c) Damping Torque = Spin-Torque(b) Damping Torque < Spin-Torque

Relaxes along H-direction Switching Steady-State Oscillations

Figure 1.3: Different regimes of spin-transfer. (a) Damping torque > Spin-
Transfer torque, the free layer eventually relaxes along the field direction. (b)
Damping torque < Spin-Transfer torque, the free layer switches to the anti-
parallel configuration. (c) Damping torque = Spin-Transfer torque, the free layer
is excited into steady state oscillations. Figure from [9].

1.1.3 Technological Applications of Spin-Transfer

The spin-transfer torque has promising technological applications. A nice re-

view of the technological outlook for spin-torque has been published by Katine

and Fullerton in [10]. The ability of the spin-transfer torque to lead to static

parallel and anti-parallel states has applications for writing data and its ability

to lead to steady state microwave oscillations has applications for frequency-

tunable nanoscale microwave sources. We will discuss these applications briefly

below.

Applications of Spin-Torque-Driven Switching

In order to demonstrate the advantage of spin-torque in writing data, we would

like to briefly discuss the traditional method for writing data by the cross-point

architecture in Magnetic Random Access Memory (MRAM) (Figure 1.4(a)).
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(a) MRAM Cross-point architecture

(b) ST-MRAM 

Figure 1.4: (a) MRAM cross-point architecture. (b) ST-MRAM architecture. Fig-
ure from [10].

Writing is usually achieved by passing an electrical current through a ”bit

line” and a ”write line”. By Ampere’s Law, the current generates a magnetic

field and a writes a bit at the cross-point of the bit line and the write line. The

bit is a magnetic tunnel junction that is programmed to ”1” or ”0” by aligning

the magnetic layers parallel or anti-parallel with the magnetic fields generated

by the currents. The advantages of the MRAM cross-point architecture are that

it is nonvolatile like FLASH (unlike DRAM and SRAM). Compared to FLASH,
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it is fast (20 nanosecond write and read time) and has high endurance (1015

cycles). There are some disadvantages to this architecture, however. The biggest

problem is that the bits are written by a magnetic field, which is long-range.

Because of the wide distribution of switching fields of the neighboring bits, the

magnetic field can also write neighboring bits. This is called the ”half-select”

problem. Freescale developed a prototype of a Toggle MRAM in 2006 [10] that

overcame the half-select problem by using synthetic antiferromagnets in the free

layer. The writing scheme also has a disadvantage that it is not easily scalable.

This is because in addition to scaling down the bits, we also have to scale down

the bit lines and the write lines. It also has power consumption issues, since

large currents have to be applied across the bit lines and write lines to generate

magnetic fields to switch the bits.

In Spin-Torque Magnetic Random Access Memory (ST-MRAM), writing is

achieved by passing electrical current through a ”bit line” and switching the

state of the bit by spin-torque. The advantage of ST-MRAM over traditional

MRAM is that it eliminates the half-select problem since each bit is written lo-

cally instead of by a long-range magnetic field. In addition, scalability is not as

difficult an issue, since there is no need for an external write line. More impor-

tantly, switching is determined by the current density rather than by the current.

The critical currents for writing depend on the magnetic material’s saturation

magnetization (MS ), volume (V), damping (α), anisotropy (HK) and demagneti-

zation fields (2πMS ).

IC =
2e α
~η

MS V (H + HK + 2 πMS ) (1.1)

Some of the challenges that still lie ahead for ST-MRAM include reducing the

critical currents to make the devices compatible with CMOS as well as to lower
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power consumption yet maintain high thermal stability. The energy barrier be-

tween the low-resistance and high-resistance states depends on the anisotropy

field, the saturation magnetization and the volume.

UA =
HK MS V

2
(1.2)

In Equation 1.1, we can see that to reduce the critical currents, we can engineer

materials carefully to reduce their volume, MS and anisotropies. However, we

see in Equation 1.2 that the energy barrier also directly depends on these quanti-

ties. So even if these quantities can be made smaller, a balance must be reached

so that the activation barrier (UA) does not also become very small. Another

challenge is that the write-current must always be smaller than the read-current

to prevent the read-current from changing the state of the bit by spin-torque.

On this note, it should also be mentioned that spin-torque can also be a source

of noise in read heads if the sensing current starts affecting the bits through

spin-transfer effects.

To summarize, the feasibility requirements for ST-MRAM involve lowering

the critical current density (JC) yet maintaining the highest thermal stability

(UA). The desired critical currents, which are limited by CMOS transistors, are

about 0.1-0.2 mA (JC = 106 A/cm2). In addition, the data retention time should

be 10 years and the threshold for stability should be about 1.3 eV or ≈60 kBT.

Several research efforts have been undertaken to reduce the JC. Some examples

are using low MS materials and high- anisotropy shapes [11], materials with

perpendicular anisotropy [12, 13], and reducing damping by engineering side-

wall oxides [14].

Another challenge is that spin-valves have high endurance (108 A/cm2) but

very small GMR. Magnetic tunnel junctions, on the other hand, have high TMR
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but very low endurance (107 A/cm2). Recently, Braganca et al. [15] demon-

strated a neat 3-terminal device consisting of both a spin-valve and a magnetic

tunnel junction. They wrote data through a spin-valve and read through a mag-

netic tunnel junction, thereby side-stepping the disadvantages of both systems.

Applications of Spin-Torque-Driven High-Frequency Dynamics

We would now like to briefly discuss the outlook for applications of spin-

torque-driven microwave oscillations for making frequency-tunable nanoscale

microwave sources for applications in chip-to-chip and wireless communica-

tions. For these applications, it is desirable that the oscillations be highly repro-

ducible and periodic, i.e. that they have narrow linewidths in their frequency

spectrum. One of the big challenges for spin-torque oscillators is the need for

higher output power. Practical GHz communications require microwatts of

power. Currently, the maximum power that spin-valves and magnetic tunnel

junctions can output are of the order of picoWatts and nanoWatts, respectively.

One promising direction for improving the output power from spin-torque

oscillators is to phase-lock an array of several oscillators together. This was

demonstrated by Freescale and NIST for 2 oscillators [16, 17]. Kaka et al. [16]

used spin-wave interactions to phase-lock two independently connected point-

contact oscillators in close proximity and found that the phase-locked state was

characterized by a sudden narrowing of the linewidth and increase in power.

They demonstrated that the oscillators locked in frequency and the oscillations

were phase-coherent so that the combined power was P1 + P2 + 2
√

P1.P2.
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1.2 Overview of this Dissertation

In this dissertation, the main theme of our work has been the study of mi-

crowave signals produced by spin-torque-driven magnetization dynamics in

magnetic multilayer spin-valve devices with a nanopillar geometry.

In Chapter-2 of this dissertation, we will describe the methods that we em-

ployed to fabricate, measure and model our devices. We fabricated all our de-

vices at the Cornell NanoScale Science & Technology Facility (CNF), and we

will briefly describe the nano-fabrication procedure in this chapter. We will also

discuss in detail the high-frequency techniques that we used to measure the

magnetization dynamics. In the first technique, we applied a DC-current and

measured an RF-output. In the second technique, we applied a RF-current and

measured a DC-output. We used the first technique to study the linewidths of

high-frequency dynamics of magnetic nanopillars described in Chapter-3 and

the second technique to study the dynamics of antiferromagnet / ferromagnet

bilayers in Chapter-4. We will also briefly discuss the macrospin and micromag-

netic numerical simulations in Chapter-2.

In Chapter-3, we will discuss our work on the linewidths of precessional

oscillations excited by direct currents as a function of the in-plane magnetic field

angle and temperature. The motivation of this work was to understand the

important mechanisms contributing to the linewidths with a view to optimizing

the coherence of the oscillations. We will first review the important mechanisms

and models for linewidths as well as previous studies of spin-torque oscillator

linewidths, and then we will discuss our results and analysis.

In Chapter-4, we will discuss our work on the current-dependence of the
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exchange-bias in antiferromagnet / ferromagnet bilayers by exciting them with

radio-frequency (RF) currents. The motivation of this work was to investigate

spin-torque effects in antiferromagnets. We will first review the previous the-

oretical and experimental work that has been done to investigate spin-torque

effects on exchange-bias, and then we will discuss our results and analysis.

In Chapter-5, we will present all our conclusions from the dissertation.
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CHAPTER 2

METHODS: NANO-FABRICATION, MEASUREMENTS & MODELING

In this chapter, we will describe the methods that we employed to fabricate,

measure and model our magnetic nanopillar devices. We fabricated all our de-

vices at the Cornell NanoScale Science & Technology Facility (CNF) and we

will briefly describe the nano-fabrication process in Section 2.1. In Section 2.2,

we will describe in detail the DC-characterization and the high-frequency tech-

niques to measure the microwave signals from our devices. We will also de-

scribe the operation of the commonly used room-temperature and cryogenic

probe-stations. Finally, in Section 2.3, we will describe the numerical simula-

tions (macrospin and micromagnetic) that we undertook to model our devices.

2.1 Nano-Fabrication

In this section, we will briefly discuss the nano-fabrication process that we used

to make the magnetic nanopillar devices. The nanopillar fabrication process at

Cornell has been well-documented and is described in detail in Reference [1],

as well as previous Ph.D. theses [2, 3, 4, 5]. Therefore, we will not delve into

too much detail of the process in this thesis. Instead, we will just give a brief

overview of the process and also share some personal pointers and tricks that

we found useful during the nano-fabrication of our devices.

Sputtering Magnetic Layers

We start with a blank silicon wafer with about 1000 nanometers (nm) of silicon

oxide. The first step in the fabrication process is sputtering thin films of all the
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Si/SiO2 substrate – use thick SiO2 (10,000 A)

Py (sticking/adhesion layer): 40 nm

Cu (bottom electrode): 80 nm

Magnetic FIXED layer

Cu (spacer layer)

Magnetic FREE layer

Cu (capping layer): 20 nm 

Pt (capping layer): 30 nm

Si/SiO2 substrate – use thick SiO2 (1000 nm)

Py (sticking/adhesion layer): 4 nm

Cu (bottom electrode): 80 nm

Magnetic FIXED layer

Cu (spacer layer)

Magnetic FREE layer

Cu (capping layer): 20 nm 

Pt (capping layer): 30 nm

Figure 2.1: Sputtered multilayer stack for nanopillar fabrication.

layers, including the magnetic layers (Figure 2.1). The first layer (Permalloy,

Ni81Fe19; 4 nm) is usually a ”sticking” layer to promote adhesion between the

magnetic films stack and the silicon-oxide on the wafer. The next layer is the

Copper (Cu) bottom electrode (usually 80 nm), then the magnetic fixed layer,

the Cu spacer and the magnetic free layer. Finally, the top capping layers: Cu (20

nm) / Pt (30 nm) are sputtered to prevent the magnetic layers from oxidation.

In order to make the coercivity of the magnetic fixed layer higher than that

of the free layer, we either make the fixed layer much thicker than the free layer

or we pin its magnetization in a certain direction by exchange-biasing it to an

antiferromagnet. We sputter all our films in the AJA sputtering system in the

Buhrman group. For layers that require an antiferromagnet to exchange-bias

one of the magnetic layers, we use the magnetic stage in the AJA to sputter the

layers in a magnetic field (300 Oe). We anneal at 220◦C for 85 minutes inside the

AJA and then let the layers cool down in the presence of the magnetic field to
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pin the exchange-bias along a certain direction.

Evaporating Carbon

After sputtering all the layers, we evaporate 50 nm of Carbon on top of the

Pt capping layer in the odd-hours evaporator at the Cornell Nanoscale Facility

(CNF). The Carbon acts as a mask for the nanopillar in a later step of the fabrica-

tion process. It is important to evaporate Carbon within 24 hours of sputtering,

otherwise moisture accumulates on the wafer and the evaporated Carbon does

not adhere well and peels off during liftoff at a later stage. The Carbon can be

evaporated in the odd-hours or even-hours evaporator at CNF. However, we

have found that the even-hours evaporator spits a lot of Carbon during evapo-

ration and makes it very difficult to control the evaporation rate, so we recom-

mend using the odd-hours evaporator whenever possible.

Electron-beam lithography

The next step is to define the nanopillar devices by electron-beam lithography.

We first spin a bilayer of PMMA resist to give a good undercut. In case the spun

resist film does not look okay, we have found it very risky to strip PMMA resist

with acetone and IPA at this stage, because these solvents can attack the carbon

underneath the resist and peel it off as well. So we usually just proceed with the

spun resist, even if it is non-uniform in some areas of the wafer.

Next, we do e-beam lithography on the Leica VB6 system and develop the

PMMA resist. Our devices are usually circular or elliptical-shaped with dimen-

sions of the order of several tens of nanometers. In a typical fabrication run,

we try different shapes and sizes of devices. We show Scanning Electron Mi-

croscope (SEM) images of some devices in Figure 2.2. It is always good practice

to do a dose-test on a test wafer with exactly the same layer-structure as the
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50 nm x 150nm

50 nm x 150nm 80 nm diameter(a) (b)

Figure 2.2: Scanning Electron Microscope (SEM) images of (a) an elliptical de-
vice and (b) a circular device after electron-beam lithography.

regular wafers, before exposing the latter. The dose-test jobfile was written by

Patrick Braganca and is described in detail in his Ph.D. thesis [5].

During the e-beam exposure of the wafers, in addition to the devices, the job-

file also defines several alignment marks. These alignment marks are crucial for

the later photolithography steps when we use these to align the top and bottom

electrodes with the device.

After developing the e-beam resist, we evaporate Chrome (Cr) on top of the

carbon layer in the odd-hours evaporator at CNF. The Cr acts as a mask for

the carbon during a later step in the nanofabrication process. Next, we strip the

PMMA resist and remove the carbon from everywhere except above the devices

by Reactive Ion Etching (RIE) in an oxygen plasma in the PT-72 tool at CNF.

Photolithography-1 + Ion Mill-1: Isolate devices

In the first photolithography step, we pattern the top and bottom electrodes for
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each device as well as isolate different devices by etching through the magnetic

layers into the silicon-oxide of the wafer (Figure 2.3(a)). The square pads are the

bottom electrodes and the spaceship-shaped pads are the top electrodes. The

nanopillar device (not visible) is at the center.

The first photolithography step is crucial, because we align the alignment

marks of the photolithography mask with the alignment marks that were made

during the e-beam step (Figure 2.4). The alignment marks are to the left of the

(5, 1) die and to the right of the (5, 9) die, and they are more easily found by

locating a triangle defined next to them during e-beam (Figure 2.4(a)). Excellent

alignment is very important (Figure 2.4(b)), because this step affects the relative

position of the device with respect to the electrodes and hence affects all future

processing steps.

After ion-milling into the oxide, a typical profilometry scan of the etch-depth

looks as shown in Figure 2.3(b). It is important to make sure that the devices are

electrically isolated at this stage; we usually test this by checking the resistance

at different points of the wafer with a multimeter and expect it to be very high.

Another indication that we have etched into the oxide is the color of the oxide,

which should be bluish-purple.

Photolithography-2 + Ion Mill-2: Define bottom leads

Once the devices and electrodes have been electrically isolated from each other

as well as other devices on the wafer, next we define the bottom leads. If we

want the fixed layer to be patterned, we etch the magnetic layers 50% into the

bottom Cu electrode. If we want the fixed layer to be extended, we etch into the

fixed layer till about 10% of the fixed layer thickness. The Carbon and Cr masks

that were evaporated earlier act as a mask for the nanopillar in this step to pre-
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TOP TOP

BOTTOM

PAD
TOP

PAD

(a)

TOP PAD

(Pt)

TOP PAD

(Pt)

PILLAR

(Pt)

Oxide

(b)

Figure 2.3: Photolithography-1 + Ion Mill-1. (a) Optical image of top pads
(spaceship-shaped), bottom pads (square-shaped) and bottom leads. The
nanopillar device (not visible) is at the center of the electrodes and leads. The
red dashed line is the path of the (b) profilometry scan. We scan between two
top pads across the device in the center.
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(a) (b)

Alignment

Mark

Figure 2.4: Alignment marks defined during e-beam and photolithography. (a)
The alignment marks are at the left of the (5,1) die and at the right of the (5,9)
die, and can be easily located by triangles next to these two die. (b) Example of
good alignment between the alignment marks defined during e-beam and later
during photolithography.

vent it from getting milled away as well. Figure 2.5(a) shows an optical image of

the bottom leads after ion-milling and Figure 2.5(b) shows a profilometry scan

of the etch-depth. For the device in Figure 2.5(b), we etched about 80 nm from

the top of the Pt. We can see this is also the difference between the height of the

top pad and the bottom lead in the center.

PECVD Oxide + Planarization (Ion Mill-3)

Next, we deposit silicon-oxide by Plasma Enhanced Chemical Vapor Deposition

(PECVD) in the IPE-PECVD system at CNF to isolate the devices and electrodes.

The typical procedure for the PECVD is: (1) clean the chamber with O2, (2)

condition the chamber with S iO2, (3) deposit S iO2 on the wafers, (4) clean the

chamber with O2. We usually use the soft-pumpdown procedure to prevent the

wafers from moving around during the pumpdown.
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BOTTOM

LEADS

(a)

TOP PAD

(Pt)

TOP PAD

(Pt)

Bottom
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(Cu)

Oxide

(b)

Figure 2.5: Photolithography-2 + Ion Mill-2. (a) Optical image of bottom leads
after milling. We can see the color of the bottom leads (diagonal lines) is dif-
ferent from the color of the pads (partial squares near the edges). The bottom
leads were milled all the way to the Cu bottom electrode, while the top-layer of
the pads is Pt. The red dashed line is the path of the (b) profilometry scan. We
scan between two top pads across the device and bottom leads in the center. We
etched about 80 nm into the bottom leads, and the profilometry scan shows this
as the difference between the top pads (Pt) and the bottom leads (Cu).
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(a) (b)Optical Image AFM Image

Figure 2.6: (a) Optical image and (b) AFM image (rotated by 45◦) of the test-
array of devices that we measure with the AFM after planarization (Ion Mill-3).
This test-array is defined by e-beam lithography inside a small square near the
center of each of the 81 die on the wafer. The array can be located by four big
circles (as shown); the array of test devices is on each side of this column of
circles.

After depositing about 300-500 nm of silicon-oxide everywhere on the wafer,

we planarize the oxide to flatten the bump above the pillar. This is usually done

in the ion-mill. In order to check if we planarized the correct amount, we take

Atomic Force Microscopy (AFM) images of a test array of devices on a few die of

the wafer (Figure 2.6) (this test array of devices was defined in the e-beam step

earlier; the test array is inside a small square right above the arrow at the center

of every die). If the oxide above the nanopillars is planarized to within 5-20

nm, we proceed to the next step, otherwise we planarize the oxide some more.

Figure 2.7 (a) shows an example of the AFM height profile for under-planarized

devices, where the bump above the pillar is not flattened and is almost 100 nm

in height. Figure 2.7 (b) shows the height profile for the same devices after

being planarized some more. Figure 2.8 (a)-(b) show a surface plot of the same
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(a) Before Planarization

(b) After Planarization

Figure 2.7: AFM height measurements of the test-array of devices (a) before and
(b) after planarization. The inset of (a) shows an AFM image of the devices.
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(a)

(b)

Before Planarization

After Planarization

Figure 2.8: AFM surface-plot measurements of the test-array of devices (a) be-
fore and (b) after planarization. The scale in (a) and (b) is 100 nm/division.
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device array before and after planarization. One note of caution at this step: it is

absolutely critical not to over-planarize by over-milling the oxide. This happens

when so much oxide is milled away that the oxide above the bottom leads starts

approaching the same height as the top of the nanopillar, thereby leading to part

of the nanopillar also getting etched away during the planarization. If the top

of the pillar gets etched away, there is no way to salvage it and we have to start

a new fabrication process all over from scratch.

Photolithography-3 + BOE etch

At this point of the fabrication process, there is oxide above everything on the

wafer, including the devices and electrodes. The next few steps involve selec-

tively removing oxide above the devices and electrodes to make electrical con-

tact to them. This is done by selectively protecting different areas in a series of

photolithography steps. First, we remove oxide above the top and bottom pads

by BOE etch. Figure 2.9(a) shows a profilometry scan after the BOE etch.

Photolithography-4 + deposit 100 nm of SiO2

Next, we evaporate 100 nm of S iO2 to protect the top leads from shorting at a

later step. The inset of Figure 2.9(b) shows an optical image of the area where

S iO2 is evaporated to protect shorts and Figure 2.9(b) shows the profilometry

scan after 100 nm of S iO2 is deposited over the leads.

Photolithography-5, Ion Mill-4 + Photolithography-6, Ion Mill-5

The final steps involve carefully removing the oxide above the nanopillar.

This is done in two stages. In Photolithography-5 and Ion Mill-4, we mill

away part of the oxide and use this step as a calibration for the oxide etch

rate. Figure 2.10(a)-(b) shows profilometry scans before and after the etch. In

Photolithography-6, we use the oxide etch rate determined in the previous step
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‘A’ ‘B’
‘C’

‘D’

‘E’

A B C D E

A B C D E

(a) After PL-3 + BOE etch

(b) After PL-4 + 

100 nm oxide above ‘D’

Figure 2.9: Profilometry scans of the oxide height after (a) (PL-3 + BOE etch)
and (b) (PL-4 + 100-200 nm of oxide evaporation above top leads). The inset
of (b) shows an optical image of the area (green hexagon) above the top leads
where 100-200 nm of oxide is evaporated to prevent shorting. The red dashed
line is the path of the profilometry scans in (a) and (b). We scan from the bottom
pads (”A”) across the bottom leads (”B”), small bottom pads (”C”), bottom leads
(”D”) and device area (”E”). ”A” and ”C” are the same height (Pt) since they are
the top of the bottom pads and the BOE removes the oxide above these pads,
”B” and ”D” are the oxide height above the bottom leads. In (b), the height of
”D” is above the height of ”B” by about 200 nm after more oxide is evaporated.
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(a) After PL-4 + 100 nm oxide

(b) After PL-5 + 

etch window ‘R’
‘Q’

‘R’

P Q R

‘P’

P Q R

Figure 2.10: Profilometry scans of the oxide height after (a) (PL-4 + 100-200 nm
of oxide evaporation above top leads) and (b) (PL-5 + IM-4). The inset of (b)
shows an optical image of the small square etch-window around the device.
The red dashed line is the path of the profilometry scans in (a) and (b). We scan
from the top pads (”P”) across the top-lead area (”Q”) and the device area (”R”).
In (a), the height difference between the oxide above the top-lead area (”Q”) and
the device area (”R”) is 130 nm. (b) After PL-5 and etching through the small
window ”R”, the height difference becomes -70 nm).
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TOP
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TOP
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BOTTOM

PAD

BOTTOM

LEAD

Figure 2.11: (a) Optical image of the completed devices, electrodes and leads
after PL-6 + IM-5 and IM-6. We can see the top leads defined after PL-6, just
before we deposit Cu above them to make electrical contact. (b) The devices are
contacted and electrically characterized by RF-probes.

to mill away all the oxide above the pillar and define the top leads (Figure 2.11

(a)). Finally, we make contact to the top of the nanopillar by depositing Cu over

the top-leads. We do all subsequent electrical characterization by contacting the

top and bottom pads with probes (Figure 2.11 (b)).

2.2 Measurements

2.2.1 dV/dI Measurement

In order to measure the resistance of our devices, we bias the devices with a

current-source and measure the voltage (we current-bias instead of voltage-bias

the device, because the resistance of our spin-valve devices is small, of the order

of several tens of Ω’s). A schematic of our home-made current-source is shown

30



(a)

VAC cos (ωt)

VDC

RDC-pot (~ kΩ’s)

10 Ω
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RAC-pot (~ kΩ’s)

VOUT

V10Ω

Figure 2.12: Schematic of home-made current-source to bias the devices.

in Figure 2.12. In the current-source, we use two voltage followers for the DC

and the AC parts of the current-source. The DC voltage, VDC is supplied from

a DAQ card and the AC voltage, VAC is supplied from the reference channel

of a lock-in. The DC and AC voltages are put across two variable-resistance

potentiometers, RDC−pot and RAC−pot, which are of several kΩ’s, thereby acting as

a current-source. The resistors are large, so that constant current can be applied

to the device despite any changes in the device resistance.

In order to measure the current going through the device, a 10Ω resistor is

put in series with the device and the voltage is measured across the 10Ω sensing

resistor. Since the device and the sensing 10Ω resistor are in series, the same

current passes through both of them. The resistance of the sensing resistor is

chosen to be small, so that there is not a large voltage drop across it. The output

of the current-source is given by:

VOUT = VDC
RS + 10Ω

RS + 10Ω + RDC−pot
+ VAC cos(ωt)

RS + 10Ω

RS + 10Ω + RAC−pot
(2.1)

The DC-resistance of the device is determined by dividing the DC-voltage
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across the device by the DC-current measured from the 10Ω resistor.

RS ,DC =
VDC−sample

I10Ω

=
VDC−sample

V10Ω

10Ω

(2.2)

The AC-resistance of the device is determined by dividing the AC-voltage

across the sample (measured with a lock-in amplifier, Equation 2.4) by the AC-

current (Equation 2.5). The AC-current is determined from the AC-voltage

across the 10Ω and RAC−pot, which is the difference between the total AC-voltage

drop across the 10Ω, RAC−pot and RS and the AC-voltage drop across just RS .

RS ,AC =
VAC−sample

IAC
(2.3)

VAC−sample =
Vlock−in × S ensitivity

10
(2.4)

IAC =
VAC−(10Ω+RAC−pot)

10Ω + RAC−pot
=

VAC−sample

10Ω + RAC−pot

RS ,DC + 10Ω + RAC−pot

RS ,DC
− VAC−sample

10Ω + RAC−pot
(2.5)

2.2.2 High Frequency DC-Spectra Measurements

As discussed in Chapter 1, the spin-transfer-torque can cause the magnetic lay-

ers to switch reversibly between parallel and anti-parallel orientation, or pre-

cess in steady-state oscillations in the microwave-frequency regime. The first

direct measurements of these high-frequency oscillations were undertaken at

Cornell and the measurement technique was developed by Prof. Dan Ralph,

Jack Sankey and Sergey Kiselev in their seminal paper [6]. We employed this

technique to study the linewidths of the high-frequency oscillations in Chapter

3 and we will describe it briefly in this section.

A schematic of the circuit is shown in Figure 2.13. The oscillations are mea-

sured by a heterodyne mixing scheme [6]. A DC current is applied across the
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Figure 2.13: Schematic of circuit and heterodyne mixing technique to measure
DC-driven microwave frequency dynamics.

sample from the DC-port of a bias-tee; due to spin-transfer-torque, the free layer

starts precessing and because of the GMR effect, there is an oscillating change

in resistance ∆R(t) and therefore, a time-varying voltage, ∆V(t). The oscillating

voltage signal from the sample is fed into a bias-tee. The AC component of the

signal at frequency ωS is amplified and fed into the RF-port of a mixer. An exter-

nal signal-generator sweeps frequencies between ωREF = 0-20 GHz (RF power =

+12 dBm), which are fed into the LO-port of the mixer. The mixer multiplies the

two sinusoidal signals at frequencies ωS and ωREF and outputs signals of two

frequencies, ωS + ωREF and ωS − ωREF . These are then fed into a low-pass filter

that has a bandwidth, BWLP (usually of the order of 10’s of MHz), which is close

to (but smaller) than the expected linewidth of the spin-torque-driven spectral
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peak. The low-pass filter then outputs a signal of frequency |ωS − ωRF | < BWLP.

Usually, the signal is filtered once more by a DC-block which only allows sig-

nals of frequencies >∼10 kHz (the DC-block is added to reduce any DC arti-

facts), and the final signal has a frequency 10 kHz < ωS − ωREF | < BWLP. The

addition of the DC-block implies that frequencies within a few tens of kHz of

the main spectral frequency are lost, but this is usually not a big deal since the

linewidth is usually several orders of magnitude bigger, of the order of tens to

hundreds of MHz. After filtering, the final signal is fed into a diode-detector

which rectifies the signal and outputs the DC-component of the rectified signal

into the DAQ card of the measurement-acquisition computer. The frequencies

swept by the signal-generator are also recorded for each bin by the DAQ card

and a frequency spectrum of the rectified voltage signal can thus be obtained

(Figure 2.14).

Note that a low-pass filter of x MHz has a bandwidth BWLP = 2x MHz.

The band-width of the low-pass filter sets the resolution limit of the frequency

linewidth (in other words, it sets the minimum linewidth that can be measured

by the circuit), so it should always be smaller than the linewidth of the spin-

torque signal. If the band-width of the low-pass filter is larger than the fre-

quency linewidth of the spin-torque signal, it will smear out the signal and we

won’t get an accurate measurement of the linewidth. The BWLP should also be

equal to the bin-width of the frequency sweep, so the low-pass bandwidth and

the number of bins in the frequency sweep should be chosen carefully. For ex-

ample, at room temperature, where the linewidths are of the order of 100’s of

MHz, I chose a sweep range of 1-18 GHz, 170 bins, low-pass of 50 MHz (BWLP

= 100 MHz), bin-width of 100 MHz and a sweep-time of 20 seconds. At lower

temperatures, where the linewidths of the spin-torque-signals are small, I used
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Figure 2.14: Example of (a) measured microwave-frequency spectrum at IDC =

0 mA, (b) measured microwave-frequency spectrum at IDC =5.0 mA showing a
dynamical spectral peak, (c) calibrated power spectral density at IDC =5.0 mA,
and (d) Lorentzian fit to the spectral data.

a smaller BWLP (1-10 MHz) and increased the number of bins accordingly for

the same sweep range. Typically, a spectral peak should have at least 8-10 data

points or bins.

In Figures 2.14(a) and (b), the raw frequency spectrum looks complicated

with lots of bumps and dips. This is because of frequency-dependent reflections

and losses through the mixer and through the line to the sample. In order to

analyze the spin-torque-driven spectra at a certain IDC (for example, IDC = 5.0
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mA in Figure 2.14(b)), we take a spectrum at 0 mA (Figure 2.14(a)) where there

is no spin-transfer signal and subtract and divide it from the spectrum at IDC

(Figure 2.14(c)). We will explain the reason behind subtracting and dividing the

spectrum by the 0 mA spectrum below. In Figure 2.14(c), we can see two main

spectral peaks at IDC = 5.0 mA; these are the first and second harmonics. We

fit the peaks to a Lorentzian function (Figure 2.14(d)) and obtain the frequency,

linewidth and integrated area.

Calibration Procedure

As we mentioned before, the raw frequency spectrum that we measure in-

cludes the frequency-dependent Johnson noise in the circuit, reflections due to

impedance-mismatch as well as losses in the line. It is important to take these

into account in order to determine the pure spin-torque signal from the sample.

At I=0 mA, there is no signal due to spin-torque and the the only microwave

signals are the Johnson noise from the sample and the amplifier noise. We use

this fact to calibrate the frequency-dependent Johnson noise, amplifier noise and

gain by taking power spectra at I=0 mA. This calibration procedure was taught

to me by Jack Sankey.

In Figure 2.15, we show the important sources of impedance-mismatch and

losses in the line. Γ2 = ((RS −50)/(RS +50))2 is the reflection due to the impedance

mismatch by virtue of the sample resistance, RS not being exactly 50Ω; α is the

attenuation in the line. We will model the different sources of loss and reflec-

tions by assigning each an effective temperature and converting the tempera-

ture to a power, kBT × (Bandwidth). Note that everything beyond the amplifiers

is impedance-matched to 50Ω.
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Figure 2.15: Calibration for frequency-dependent Johnson noise: sources of re-
flections and losses in the line.

The first contribution to the spectral power density comes from reflections

in the circuit due to impedance-mismatch because of the sample not being 50Ω.

The sample is at temperature T, the transmission from the mismatched load is

(1 − Γ2) and transmission through the attenuated line is (1 − α).

P1−sampleresistance = (1 − Γ2)(1 − α)kBT (2.6)

The second contribution to the power spectrum comes from the amplifiers

and the amplifier noise. Assume the amplifiers are at an effective noise temper-

ature TAMP, the signal that goes from the amplifiers to the sample is proportional

to (1 − α), reflected from the sample-mismatch (Γ2) and travels back across the

line (1 − α). We assume only one reflection.

P2−ampli f iernoise = Γ2(1 − α)2kBTAMP (2.7)

The third contribution is due to attenuation of the line, which is proportional
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to α and the temperature of the line, T.

P3−line = αkBT (2.8)

The final contribution to the power spectrum is the spin-torque-signal from

the sample. We model the dynamical signal from the sample as a temperature,

TD. The contribution of this component has the same form as Equation 2.6,

except that the temperature is TD instead of the bath temperature of the sample,

T.

P4−dynamics = (1 − Γ2)(1 − α)kBTD (2.9)

The difference between the power terms in the presence of a DC-current and

the absence of a DC-current is just the fourth term due to spin-torque (Equation

2.9). The voltage that is measured at the DAQ is proportional to the frequency-

dependent gain of all the amplifiers (G) and can be written in generic form as

follows:

P(I) − P(0) = P4−dynamics = (1 − Γ2)(1 − α)kBTD (2.10)

V(I) − V(0) = G(PI − P0) = G(1 − Γ2)(1 − α)kBTD (2.11)

V(I) is the DAQ voltage spectrum in the presence of current and V(0) is the

DAQ voltage spectrum when IDC = 0. The dynamical temperature, TD, can then

be written as follows:

TD =
V(I) − V(0)

kBG(1 − α)(1 − Γ2)
(2.12)

We can measure the V(I) and V(0) spectra, and calculate Γ2 as described previ-

ously. The only unknown frequency-dependent quantity to be determined for

the calibration is kBG(1 − α).

Calculating kBG(1−α): In order to determine the frequency-dependent quan-

tity, kBG(1 − α), we remove the sample from the circuit and insert a 50Ω resis-
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tor instead to completely impedance-match the circuit. In this case, Γ2 = 0 and

Equation 2.7 drops out. The calibration is done at IDC = 0mA, so there is no spin-

torque signal and Equation 2.9 also drops out. The only terms left are Equations

2.6 and 2.8. To determine kBG(1 − α), first take a spectral sweep for the 50Ω re-

sistor at IDC = 0mA at room-temperature, T = TR = 294 K. Equation 2.10 then

becomes:

T = TR : VR = G[(1 − α)kBTR + αkBTR] (2.13)

Then put the 50 Ohm resistor in liquid nitrogen, so that T = TN = 77 K.

T = TN : VN = G[(1 − α)kBTN + αkBTR] (2.14)

Subtracting Equation 2.14 from Equation 2.13, we get the following:

VR − VN = kBG(1 − α)(TR − TN) (2.15)

Thus the frequency dependence of kBG(1 − α) can be determined simply by

taking the difference of the voltage spectrum for a 50Ω resistor at IDC = 0mA at

room temperature and 77K.

kBG(1 − α) =
VR − VN

294 − 77
(2.16)

Now P/PJN can be calculated as follows:

P
PJN

=
kBTD

kBTJN
=

TD

294
=

VI − V0

294 kBG(1 − α)(1 − Γ2)
(2.17)

Figure 2.14(c) shows the calibrated power density for IDC = 5.0 mA, which is

obtained from Equation 2.17 multiplied by PJN (∼4 pW/GHz).
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Calculating Precession & Misalignment Angles

As described previously, the calibrated spectra are fit to a Lorentzian function.

From the integrated area under the Lorentzian, the precession angle (θmax) of

the oscillating layer and misalignment angle (θmis) between the magnetic layers

can be computed [6]. The derivation of these quantities will be shown below.

The angle between the fixed layer magnetization, MFIXED, and free layer mag-

netization, MFREE, is time-dependent and for small oscillations, can be written

as:

θ(t) = θmis + θmax sin(ωt) (2.18)

Due to GMR, the resistance is also time-dependent and we can thus measure a

time-dependent voltage:

∆R[θ(t)] =
∆Rmax

2
(1 − cos[θ(t)]) (2.19)

∆V(t) = I∆R[θ(t)] (2.20)

Assuming small angle precession,

θ(t) � 1 : 1 − cos(θ) ≈ (θ)2/2 (2.21)

We can obtain the following form for ∆V(t):

∆V(t) =
I ∆Rmax

4
(θ2

mis +
θ2

max

2
) − [

I ∆Rmaxθ
2
max

8
] cos(2ω t) + [

I ∆Rmaxθmisθmax

2
] sin(ω t)

(2.22)

The first term in the equation is a DC-component which is filtered out. The

second term has a second harmonic, 2ω and the third term has a first harmonic,

ω. The power from the first and second harmonics can then be written as:

P1 f =
1
R
〈(∆Vω

2
)2〉 =

I2 ∆R2
max θ

2
mis θ

2
max

32 R
(2.23)

P2 f =
1
R
〈(∆V2ω

2
)2〉 =

I2 ∆R2
max θ

4
max

512 R
(2.24)
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Figure 2.16: Cartoon of the misalignment angle between the layers, θmis and
the precession angle of the free layer, θmax. (a) Case of θmis < θmax and (b) Case of
θmis > θmax. (c) An intuitive picture of the resistance as a function of the trajectory
position for (a), showing that the second harmonic dominates. (d) An intuitive
picture of the resistance as a function of the trajectory position for (b), showing
that the first harmonic also becomes important.

Thus, we can calculate θmax and θmis from the integrated power of the second

and first harmonics.

Intuitive understanding of 1st and 2nd harmonics

As the last 2 equations suggest, we see that when θmis < θmax, the second har-

monic is dominant but when θmis is large, the first harmonic becomes dominant.
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We can intuitively understand this from Figure 2.16.

In Figure 2.16(a), when θmis is small and θmax is large, the free-layer magne-

tization follows the dotted trajectory. Suppose the free-layer starts at point ”1”

in the trajectory, which is the lowest resistance. As it goes to ”2”, the resistance

becomes maximum, at ”3” it becomes lowest again and at ”4” it reaches a maxi-

mum. So by the time it returns to point ”1” (i.e. completes one cycle), it has gone

through two maxima (Figure 2.16(c)) and hence the 2ω peak becomes dominant.

In Figure 2.16(b), when θmis is large compared to θmax, we can follow the dot-

ted trajectory again. At ”1”, the resistance is intermediate, at ”2” it is the lowest,

at ”3” it is intermediate and at ”4” it is the maximum. As Figure 2.16(d) shows,

the first harmonic also becomes important in this case.

2.2.3 Spin-Torque-Driven Ferromagnetic Resonance (ST-FMR)

Measurements

Unlike the DC-driven dynamics discussed in Section 2.2.2, where we apply a DC

current and measure an RF output, the ST-FMR technique works in the reverse

way: we apply an RF current and measure a DC output [7, 8]. The ST-FMR tech-

nique at Cornell was developed by Jack Sankey and is described in References

[8, 9]. In this technique, a radio-frequency (RF) current is applied across the

device to excite magnetic precession (Equation 2.25) and the amplitude of the

resonant motion is detected from the changing resistance of the sample (Equa-

tion 2.26). This amplitude is a DC voltage that is proportional to the mixing
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signal between the RF current and the oscillating resistance (Equation 2.27).

I(t) = IDC + IRF cos(ωt) (2.25)

R(t) = R0 + ∆R cos(ωt + δ) (2.26)

VDC = IRF
∆R
2

cos(δ) (2.27)

A schematic of the circuit is shown in Figure 2.17. We apply the RF current

to the sample from a frequency-sweeping signal generator through the AC-port

of the bias-tee. The RF current from the signal generator is applied in pulses

of frequency, fPULS E ∼1 kHz (Figure 2.17). We measure the DC mixing volt-

age, Vmix from the DC-port of the bias-tee, by a lock-in amplifier. The reference

signal of the lock-in is at the same frequency as the signal-generator pulse fre-

quency ( fPULS E ∼1 kHz) (this is accomplished by connecting the VIDEO port of

the signal-generator to the REF port of the lock-in). The output of the lock-in is

read into the DAQ card to obtain the frequency spectrum of Vmix. The frequency-

sweep time of the signal-generator should be set to about 5 × (time-constant of

the lock-in) × (number of bins). For example, to sweep from 1-9 GHz with a 40

MHz bin-width, I used a time-constant of 50 msecs and a total sweep time of 50

seconds.

In order to decide the pulse-period (duration between each RF pulse) and

pulse-width (how long the RF pulse is on in one period), the following proce-

dure is generally followed: we set the signal-generator to ”CW” mode instead

of ”sweep” mode, so that the signal-generator just outputs a signal of fixed fre-

quency. We monitor the lock-in output while trying out a few different values

of the pulse-period, until the fluctuations of the lock-in output are within 10-20

nVolts. Then we set the pulse-width to half the pulse-period. Then we auto-

phase to make the reference pulse signal from the signal-generator in-phase
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Figure 2.17: Schematic of ST-FMR circuit.

with the RF signal from the sample. Once the pulse-period and pulse-width

are set, we revert to the signal generator ”sweep” mode for the ST-FMR mea-

surements.

Flatness Procedure

There is a caveat involved when an RF-current is applied from the signal-

generator: the RF-power outputted by the signal-generator is not constant and

is frequency-dependent (Figure 2.18(a)). In order to ensure that a constant RF-

current is applied across the sample, there is a flatness calibration procedure

that must be undertaken before the ST-FMR measurements. This flatness cal-

ibration should be done in the current and magnetic field regime where there
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Figure 2.18: Flatness procedure for ST-FMR measurements. (a) Pre-flatness
spectrum, showing the non-constant, frequency-dependent RF-power out-
putted from the signal-generator. (b) Flatness correction that is uploaded to the
signal-generator to output a constant RF-current across the sample. (c) Example
of a ST-FMR spectrum.

are no spin-torque-driven dynamics. Typically, this regime is at high magnetic

fields where the misalignment angle between the magnetic layers is very small.

If the layers are almost parallel, the spin-transfer-torque is close to zero and so

the only output we measure from the sample is due to the reflections and losses

through the line and not attributable to any magnetic signature. To do the flat-

ness calibration, in addition to applying a large magnetic field, we apply an

RF-signal (usually a value between -17 and -35 dBm) from the signal generator.

We also apply a DC-current that is below the critical current for spin-transfer
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but large enough to give a sufficient Vmix signal [the Vmix signal, as described

below in Equation 2.28 has a background, non-frequency-dependent compo-

nent that is present due to the non-linear V-I behavior of the device (first term in

Equation 2.28). The DC-current that is applied for the flatness procedure should

have a large slope in the dV/dI to maximize the signal]. We set the pulse-width

and pulse-period as discussed previously. The flatness spectrum, Vmix, (Figure

2.18(a)) is converted to dB by: -10× log(Vmix) and adjusted (Figure 2.18(b)) so that

at lower frequencies, the signal-generator subtracts dB and at higher frequencies,

adds dB so that the RF-power to the sample is always constant. This flatness file

is then uploaded to the signal-generator. We verify that the flatness correction

has been uploaded correctly by taking a Vmix spectrum at the same magnetic

field and IDC at which the flatness spectrum was taken and check that the Vmix is

a constant and independent of frequency.

An example of the ST-FMR spectrum is shown in Figure 2.18(c). The

linewidth of the ST-FMR peak is proportional to the damping and the ampli-

tude of the peak is roughly proportional to the magnitude of the spin-transfer

torque. The amplitude is maximum when the angle between the layers is close

to 90◦. Usually, we fit the spectra to the sum of symmetric and anti-symmetric

Lorentzians and fit for 7 parameters: offset and frequency, linewidth, ampli-

tude of the symmetric and anti-symmetric Lorentzians. The ST-FMR spectra are

analyzed by the following equation, which was derived in References [8, 9, 10].

〈Vmix〉 =
1
4
∂2V
∂I2 I2

RF +
1
2
∂2V
∂θ∂I

~γ sin(θ)
4eMsVσ

× I2
RF (ζ‖ S (ω)−ζ⊥

γ(4πMe f f + H)
ωR

A(ω)) (2.28)

The first term is the background DC-term; it leads to a non-zero offset in

the spectrum and it arises from the non-linearity of the V-I behavior of the de-

vice (discussed above). The second term includes a combination of a symmet-
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ric Lorentzian, S (ω) = 1/[1 + [(ω − ωR)/σ]2] and an anti-symmetric Lorentzian,

A(ω) = [(ω − ωR)/σ]S (ω). In the above equation, ζ‖ = [(2e/~)/ sin θ]dτ‖/dI and

ζ⊥ = [(2e/~)/ sin θ]dτ⊥/dI are the dimensionless differential in-plane and out-of-

plane torques respectively.

The peak-shape can be intuitively understood from Figure 2.19. If the spin-

torque is in-plane (as is the case in spin-valves), the symmetric component is

large. This is because of the following reason: in Figure 2.19(a)-(b), we show

the time-dependence of the applied IRF and the resistance response. When IRF

is negative (time ”b”), the in-plane spin torque pushes the free layer to align

parallel with the fixed layer leading to the low-resistance state. When the IRF

is positive (time ”d”), the in-plane spin-torque pushes the free layer to align

anti-parallel with the fixed layer leading to the high-resistance state. Thus, the

resistance response follows IRF , i.e. they are in-phase: when IRF is maximum,

the resistance is maximum; when IRF is minimum, the resistance is minimum.

Consequently, the resonance curve (Figure 2.19(c)) in the frequency spectrum is

a symmetric Lorentzian with a maximum at ωR, i.e. the resonant frequency.

On the other hand, if the torque is out-of-plane (also called the ”field-like”

torque), the asymmetric component is large (as is the case in magnetic tunnel

junctions). This is because of the following reason: in Figure 2.19(d)-(e), we

show the time-dependence of the IRF and the resistance response. When IRF is

negative or positive (time ”b” and ”d”), the out-of-plane spin torque pushes the

free layer to go out-of-plane, leading to an intermediate resistance state. Note

that the out-of-plane torque can only lead to an intermediate resistance state

and not a high-resistance or low-resistance state. This is because of the strong

demagnetization fields that cause the precession to be confined mostly in-plane
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Figure 2.19: Peak shapes of the ST-FMR signal. When the (a) IRF and (b) re-
sistance are in-phase (case of in-plane torque), the peak-shape of the resonance
curve is a symmetric Lorentzian with a maximum at the resonant frequency, ωR.
When the (a) IRF and (b) resistance are 90◦ out-of-phase (case of out-of-plane
torque), the peak-shape of the resonance curve is an anti-symmetric Lorentzian
with a minimum at the resonant frequency, ωR.
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despite an out-of-plane torque. Therefore, when the IRF is a positive or negative

maximum, the resistance is intermediate and hence is 90◦ out-of-phase. Con-

sequently, the resonance curve (Figure 2.19(f)) in the frequency spectrum is an

anti-symmetric Lorentzian with a minimum at ωR, i.e. the resonant frequency.

Sign of peak

In our current convention, a positive current causes the free layer amplitude to

increase and the fixed layer amplitude to decrease; a negative current causes the

reverse. So for a free-layer response, the sign of the ST-FMR peak is expected

to be positive and for a fixed-layer response, the sign of the ST-FMR peak is

expected to be negative.

Conversion from sinusoidal output to square-wave amplitude

We also need to take into account that the lock-in reference signal is sinusoidal

whereas the RF output from the sample is a square-wave. This is because the

signal-generator applies the RF-current to the sample in square pulses (Figure

2.17). Consequently, the lock-in mixes a square-wave signal (from the sample)

with a sinusoidal signal (from the lock-in reference) and the output is hence,

a sinusoidal signal. In order to obtain the correct Vmix, we must multiply the

output of the lock-in (measured by the DAQ card) by the following conversion

factor: (Lock-in sensitivity)/10 × π/√2.

2.2.4 Projected Field Probe Station

We used a GMW projected field probe station (Figure 2.20) to apply magnetic

fields at variable angles at room-temperature. The magnetic field is applied by

coils inside the cubical black box (marker ”A” in Figure 2.20). The direction of
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the applied field is varied by rotating the cubical box with a motor (marker ”B”

in Figure 2.20). The electromagnet can apply magnetic fields as high as H = 3000

Oe.

(a) (b)
A

B

C

Figure 2.20: Photograph of the projected-field probe station, which can apply
magnetic fields at variable field angles at room-temperature. (a) ”A” is source
of the magnetic field, ”B” is the motor that rotates the cubical black box, thereby
changing the direction of the magnetic field. (b) ”C” is the probes and the sam-
ple placed near the center of the magnetic field.

2.2.5 3-D Vector Magnet

In order to do high-frequency measurements at variable magnetic field angles

at low temperatures, we used the American Magnetics 3-axis vector magnet

system (Figure 2.21). This system has 3 pairs of super-conducting coils, which

can produce magnetic fields of upto H = 1 Tesla in-plane and H = 7 Tesla out-

of-plane. In this section, we will briefly describe the operation of the system,

in particular how to cool down the magnets and how to use the high-frequency

dipstick for measurements.
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Figure 2.21: Photograph of the top-view of the 3-axis vector magnet cryostat.
The blue area is the outer chamber and the silver area is the inner chamber
where the 3 super-conducting coils are located.”A” is the nitrogen-release port
for the outer-chamber, ”B” is the nitrogen-fill port for the outer chamber, ”C” is
the helium-fill port for the inner chamber, ”D” is the helium recovery port for
the inner chamber; ”E”, ”F” and ”G” are the magnet leads for the 3 pairs of coils;
”H” is the over-pressure valves, ”I” is the port for the helium level-meter, ”J”
is the point through which the dipstick and sample are loaded into the system,
”K” is the helium-recovery valves that connect to the building recovery system.

Cooling down the system

Since the magnets are super-conducting, we need to cool them down to 4.2 K

before we can apply any current through the coils. The system has an inner

chamber and an outer chamber. The super-conducting coils are inside the inner

chamber. During operation, the inner chamber is filled with helium and the

outer chamber is filled with liquid nitrogen to prevent heat loss. In Figure 2.21,
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the blue area is the outer chamber and the silver area near the center is the inner

chamber. Marker ”B” is the nitrogen-fill port for the outer chamber and marker

”A” is the nitrogen-release port. Marker ”C” is the helium-fill port for the inner

chamber and marker ”D” is the helium-recovery port for the inner chamber.

Since helium is very expensive, we usually do not transfer helium into the

inner chamber right away since there would be significant boil-off in that case.

Instead, we follow a pre-cooling procedure. We first cool the inner chamber

with liquid nitrogen to bring the magnets from room-temperature down to 77K

and then transfer helium to bring the temperature down further to 4.2 K. This

procedure will be described below.

Before the pre-cooling procedure, ensure that the lid on the cryostat (marker

”J”) is firmly intact and screwed in. Also, turn off all 3 magnet power supplies

(these are on a separate electronics rack, not shown in Figure 2.21).

1) Fill inner chamber with liquid nitrogen (pre-cool inner chamber to 77K): We first

pre-cool the inner chamber with liquid nitrogen. This is done by connecting

the port designated by marker ”C” (Figure 2.21) to a nitrogen dewar and leav-

ing the port designated by marker ”D” open to air to act as a pressure-release

port. It is absolutely critical that there always be a port for pressure-release

while any transfer is taking place, to prevent over-pressure that can have dire

consequences. While we are transferring nitrogen, we monitor the temperature

of the magnets. This is done by monitoring the resistance of the magnet leads

by connecting the two leads of one of the magnets to a Keithley multimeter

(markers ”E”, ”F” and ”G” show the lead-pairs of the three magnets). At room-

temperature, the resistance of the magnets is about 1400Ω. As the magnets start

getting colder, the resistance decreases and at 77 K, the resistance of the magnets
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is about 175Ω. When the magnets are at 77K, we stop the nitrogen transfer and

leave the system cold overnight.

2) Transfer nitrogen from inner chamber to outer chamber: Next, we need to trans-

fer nitrogen from the inner chamber to the outer chamber so that we can then fill

the inner chamber with helium. In order to push out the nitrogen from the inner

chamber into the outer chamber, we connect the port marked by ”B” to port ”C”.

We connect port ”D” to a helium gas cylinder. The helium gas pushes the liq-

uid nitrogen from the inner chamber through port ”C” into the outer chamber

through port ”B”. We leave port ”A” open to air and it acts as the pressure-

release port during the transfer of nitrogen from the inner chamber to the outer

chamber.

It is very important to ensure that all the liquid nitrogen has been removed

from the inner chamber before transferring any liquid helium for the next step

of the cool-down. To check if nitrogen is still being transferred from the inner

chamber to the outer chamber, periodically touch the pipe connecting ports ”B”

and ”C”. If nitrogen is still flowing, the pipe will be cold. Also monitor the pipe

from nitrogen release port ”A”. If nitrogen is still flowing, there will be a steady

stream of pressure-release from this port.

When all the nitrogen has been transferred from the inner chamber, discon-

nect ports ”B” and ”C” from each other. Leave ports ”B” and ”A” open to air.

Put a stopper-knob on port ”C”. Connect port ”D” to the helium recovery sys-

tem (marker ”K”) to prepare for the next step of the liquid helium transfer.

3) Fill helium in the inner chamber (cool inner chamber to 4.2 K): Once all the

nitrogen is transferred from the inner chamber to the outer chamber, we can
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transfer liquid helium into the inner chamber to complete the cool-down to 4.2

K. In order to do this, ensure port ”D” is connected to the helium recovery line

(marker ”K”) of the building. This is crucial. Next, bring the liquid helium de-

war and use a transfer-tube to transfer helium from the dewar into port ”C”.

While transferring helium, keep an eye on the over-pressure valves (shown by

marker ”H” in Figure 2.21). If the valves pop up, decrease the transfer pressure

from the helium dewar. Also, monitor the recovery gauge on the wall and note

down the recovery reading. The inner chamber is usually full with helium when

the recovery gauge shows an increase by 200-300 units. Also monitor the resis-

tance of the magnet leads. The magnets are at 4.2 K and super-conducting when

the lead resistance is close to 0Ω. While the helium is transferring, connect the

helium level-meter to port ”I”. When the inner chamber is filled with helium,

the level-meter usually shows a ”60%’́ reading (it doesn’t show 100% for some

reason).

Once the helium is filled inside the inner chamber, remove the transfer-tube

from port ”C” and plug port ”C” with a stopper-knob.

4) Fill nitrogen in the outer chamber: Finally, to prevent heat losses from the

inner chamber, we fill the outer chamber with more nitrogen. This is done by

connecting port ”B” to the nitrogen dewar and keeping port ”A” open to air to

act as a pressure release. The outer chamber is filled with nitrogen when we

start seeing nitrogen coming out of port ”A”.
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Preparing the dipstick and sample for cooldown

Once the system is cold, we can now prepare the sample and the high-frequency

dipstick for measurements (Figure 2.22). The dipstick has a 40 GHz K-cable

running from the top to the bottom (top shown by marker ”K” in Figure 2.22(a)

and bottom shown by marker ”S” in Figure 2.22(b)). The devices are ribbon-

bonded inside a sample-carrier (as described in Nathan Emley’s thesis [3]) and

the sample carrier is connected to the bottom of the cable (marker ”T” in Figure

2.22(b)). There is also a heater and temperature-sensor at the bottom (marker

”R” in Figure 2.22(b)). These are wired very delicately (markers ”P” and ”Q” in

Figure 2.22(b)) to the top of the dipstick (marker ”L” in Figure 2.22(a)). Marker

”L” in Figure 2.22(a) shows the military connector point for the temperature-

control of the system.

Before inserting the dipstick into the vector magnet, we have to pump down

and pre-cool the sample. This procedure is described below.

1) Ribbon-bond the sample onto a sample carrier and gently connect the sample

carrier to the bottom of the dipstick (marker ”T”). Do not use a torque-wrench,

instead just tighten gently with the fingers to prevent stress to the delicate sol-

der joint of the K-cable.

2) In order to prepare to pump-down the sample, connect ports ”M” and ”N” in

Figure 2.22(a)) to a vacuum pump.

3) Put some vacuum grease around the inner circumference of the vacuum can

(Figure 2.22(c)) and gently put the vacuum can over the sample at the bottom of

the dipstick. Turn on the vacuum pump and wait till the vacuum can is pumped

out. It is important to pump-down the vacuum can to ensure it doesn’t fall into

the chamber of the vector-magnet during insertion and lifting.
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Figure 2.22: Photograph of the dipstick and sample-carrier for the 3-axis vector
magnet cryostat. (a) Top of the dipstick. ”K” is the top of the K-cable that
connects the electronic measurement racks to the bottom of the dipstick to the
sample. ”L” is the military-connector port for the temperature controller and
sensor. ”M” and ”N” are the ports through which the dipstick is pumped out
to keep the vacuum can in place. (b) Bottom of the dipstick. ”P” and ”Q” are
the electrical connections to the heater and temperature controller (”R”), ”S”
is the K-cable running from the top of the dipstick, ”T” is the point where the
sample-carrer with the ribbon-bonded sample is connected. (c) Vacuum can at
the bottom of the dipstick, protecting the sample.
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4) Next, insert the dipstick in a bucket of liquid nitrogen to pre-cool it to 77K.

This is done to prevent helium boil-off in the vector magnet when the rela-

tively warm dipstick is inserted. Monitor the temperature with the temperature-

control unit connected to marker ”L”. When the temperature is 100 K or so, the

dipstick can be inserted into the vector magnet.

5) Carefully unscrew the lid (marker ”J” in Figure 2.21) of the vector magnet and

insert the dipstick into the inner chamber very slowly to reduce helium boiloff.

Make sure the dipstick is still being pumped down by the vacuum line dur-

ing insertion to prevent the vacuum can from falling off. Also make sure the

sample and dipstick are grounded while inserting the dipstick into the magnet;

this is done to prevent static discharge from contact with the walls of the inner

chamber that can kill the sample. The sample is usually grounded by putting

a grounding cap at the top of the cable (marker ”K” in Figure 2.22). Keep in-

serting the dipstick lower until the sample is at the center of the magnet (for the

high-frequency dipstick, we have to insert the dipstick all the way till the lid

touches the top of the dipstick and then we have to lift it up by 2” to make sure

the sample is at the center of the magnet).

Once the dipstick is loaded inside the cryostat, disconnect the vacuum

pump. Add a little bit of exchange-gas by opening the green valve on the dip-

stick (port ”M”) quickly for 2-3 seconds. This facilitates a speedy cool-down

of the sample to 4.2K. In order to start measurements, first disconnect the he-

lium level-meter connection (marker ”I” in Figure 2.21) BEFORE turning on the

magnet power supplies. If the level-meter is still connected to the system when

the power supplies are turned on, the system will quench! Also disconnect the

Keithley multimeter probes and connect the magnet power supplies to the re-

spective leads. Ensure that the helium recovery line (marker ”K”) is connected

57



to the recovery port ”D”. Turn on the magnet power supplies. Connect the dip-

stick to the electronics racks (marker ”K”) and start measurements.

2.3 Modeling: Numerical Simulations

2.3.1 Macrospin Simulations

In order to model the response of our magnetic nanopillar devices to a spin-

transfer-torque, we conducted numerical simulations of the Landau-Lifshitz-

Gilbert equation (LLG) for both the free and fixed layers in the macrospin ap-

proximation, where we model the magnetization of each magnetic layer as a

single-spin (Equations 2.29 and 2.31).

dM̂FR

dt
= γ (−→He f f ,FR × M̂FR) + γ αFR(M̂FR × (−→He f f ,FR × M̂FR)) (2.29)

+
g µB µ0 ηFR I

2 e Msat,FR AFR tFR
(M̂FR × (M̂FR × M̂FX)) (2.30)

dM̂FX

dt
= γ (−→He f f ,FX × M̂FX) + γ αFX(M̂FX × (−→He f f ,FX × M̂FX)) (2.31)

− g µB µ0 ηFX I
2 e Msat,FX AFX tFX

(M̂FX × (M̂FX × M̂FR)) (2.32)

Equation 2.29 is the LLG equation for the free layer and Equation 2.31 is the

LLG equation for the fixed layer. The left-side of Equations 2.29 and 2.31 is the

rate of change of magnetization, which is equal to the sum of all the torques on

the magnetization. The first term on the right-side of Equations 2.29 and 2.31

is the torque due to the effective field, −→He f f . This torque causes the magnetic

layers to precess about −→He f f (Figure 2.23). The effective field is the vector sum

of the applied magnetic field (−→Happlied), the dipole field interaction between the

58



Field-Torque

Spin-Transfer

Torque

Damping

Torque

M
FIXED

M
FREE

H
eff

Figure 2.23: Schematic of all the torques in the Landau-Lifshitz-Gilbert equation
for magnetization dynamics: Field Torque, Damping Torque and Spin-Transfer
Torque. Depending on the sign of the current, the spin-transfer torque can either
oppose the damping torque (solid arrow) or act in the same direction as the
damping torque (dashed arrow).

layers (−→Hdipole), the shape-anisotropy field (−→Hanisotropy) and the exchange-bias field

(−→Hexchange−bias) due to an antiferromagnet.

−→He f f ,FR =
−→Happlied +

−→Hdipole, FX on FR − −→Hanisotropy,FR +
−→HLangevin (2.33)

−→He f f ,FX =
−→Happlied +

−→Hexchange−bias +
−→Hdipole, FR on FX − −→Hanisotropy,FX +

−→HLangevin (2.34)

The anisotropy field takes into account the shape-anisotropy of the sample and

can be written in terms of the demagnetization factors, NX, NY and NZ .

−→Hanisotropy = [NX M̂X Msat,NY M̂Y Msat,NZ M̂Z Msat] (2.35)

The effective field also includes a Langevin field (−→HLangevin) to take into account

thermal effects. Thermal fluctuations are modeled as a randomly fluctuat-

ing field with a Gaussian distribution of zero mean and standard deviation
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√
2.0 α kB µ0 ∆t T/ γ Msat V , where T is the temperature and ∆t is the time-step

of the simulation.

The second term on the right-side of Equations 2.29 and 2.31 is the torque

due to damping. This torque acts along a direction that causes the magnetic

layers to eventually relax along −→He f f (Figure 2.23). γ is the gyromagnetic ration

and α is the material-dependent damping.

The third term is the torque due to spin-transfer. The magnitude of this

torque depends on the misalignment between the fixed and free magnetic lay-

ers. For our simulations, we assume the torque is sinusoidal [Slonczewski [11]].

In this term, ”g”, ”µB”, ”µ0”, and ”e” are fundamental constants, η is the spin-

torque efficiency (we set it to 0.2), Msat is the saturation magnetization, A is

the cross-sectional area of the device and ’t’ is the thickness of the device. De-

pending on the sign of the current, I, the spin-torque can either act in the same

direction as the damping torque or in the opposite direction (Figure 2.23).

In the numerical simulations, we use the Huen or Runga-Kutta algorithms

to integrate the LLG equation for both magnetic layers, calculate the magneti-

zation of the fixed and free layers at each time-step and finally compute the Fast

Fourier Transform (FFT) of the GMR oscillations. Each simulation usually spans

200 nanoseconds with a time-step, ∆t of 1 picosecond.

We will discuss in detail the results of our macrospin simulations of the

linewidths of spin-torque-driven dynamics as a function of the in-plane mag-

netic field angle and temperature in Sections 3.4.7 and 3.5, respectively.
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2.3.2 Micromagnetic Simulations

In the previous section, we discussed simulations in the macrospin approxi-

mation by treating the magnetization of each magnetic layer as a single-spin.

In micromagnetic simulations, however, instead of treating the entire magnetic

layer as a single spin, we discretize the device into several smaller cells and

solve the LLG equation for each cell. So unlike the macrospin single-domain

calculation where the fundamental unit is the entire magnetic device or region,

in a micromagnetic simulation, the fundamental unit is each small magnetic

cell. Consequently, the magnetic behavior of the entire magnetic device is de-

termined by the magnetic behavior of each cell and its magnetic interactions

with neighboring cells.

In order to do micromagnetic simulations, we used the the micromagnetics

program, OOMMF (Object Oriented Micromagnetic Framework), which was

developed at NIST [12]. To illustrate how OOMMF implements the micromag-

netic calculation, a sample OOMMF input file is shown below. Before we delve

into the specifics of the input file, we would like to give a big picture of how the

OOMMF software is organized. There are two broad classes of OOMMF soft-

ware: 1) magnetic field OOMMF, and 2) current-driven spin transfer OOMMF.

The first class can do calculations involving magnetic fields, while the second

class can do calculations involving both magnetic field and current.

The input file in both kinds of OOMMF is a ”MIF” extension file. This file

contains user-written code to define the device dimensions, cell dimensions,

relevant energies (such as Zeeman, exchange, demagnetization, etc.), and the

desired algorithm (Energy Minimization, or the Euler Evolution of the Landau-

Lifshitz-Gilbert (LLG) equation). The output from an OOMMF simulation is
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of two kinds: 1) Scalar quantities, such as the average magnetization, energies,

torques, etc., which are outputted into a data-table or a graph, and 2) Vector

Field display, which displays these quantites at each cell and gives a spatial

map of the magnetization.

Sample MIF file

# MIF 2.1

set pi [expr 4∗atan(1.0)]

set mu0 [expr 4∗$ pi∗1e-7]

RandomSeed 1

Specify Oxs ScriptAtlas:atlas {
xrange { 0 350e-9 }
yrange { 0 160e-9 }
zrange { 0 5e-9 }
regions { ellipse }
script Ellipse

}
proc Ellipse { x y z } {
set xrad [expr 2.*$ x - 1. ]

set yrad [expr 2.*$ y - 1. ]

set test [expr $ xrad*$ xrad+$ yrad*$ yrad]

if { $ test>1.0 } { return 0 }
return 1

}
Specify Oxs RectangularMesh:mesh {
cellsize { 5e-9 5e-9 5e-9 }
atlas :atlas
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}
Specify Oxs UniformExchange {
A 13e-12

}
Specify Oxs Demag { }
Specify Oxs UZeeman ”

multiplier [expr 0.001/$ mu0]

Hrange {
{ 0 0 1000 0 0 0 5 }
}
”

Specify Oxs EulerEvolve {
alpha 0.5

start dm 0.01

}
Specify Oxs TimeDriver {
basename evolveM

vector field output format { text .17g }
evolver Oxs EulerEvolve

stopping dm dt 0.01

mesh :mesh

stage iteration limit 0

total iteration limit 0

Ms { Oxs AtlasScalarField {
atlas :atlas

default value 0.0
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values {
ellipse 8e5

}
} }
m0 { Oxs AtlasVectorField {
atlas :atlas

norm 1

default value { 1 0 0 }
values { ellipse { 1 0 0 } }
} } }

The above ”MIF” can be divided as follows:

The ”Specify Oxs ScriptAtlas:atlas” line defines the dimensions of the

magnetic region. The dimensions, for this example, are a (350 × 160 × 5) nm3

rectangle. Since we need the magnetic region to be an ellipse, we wrote a script

to consider only those points on this rectangle that satisfied the equation of an

ellipse (2x−1)2 +(2y−1)2 ≤ 1, for an ellipse centered at (1/2, 1/2) to be considered

as the magnetic region.

The ”Specify Oxs RectangularMesh:mesh” defines the dimensions of each

magnetic cell. The dimensions, for this example, are a (5 × 5 × 5) nm3 cube. Thus,

in this example, there are 2240 cells in the magnetic region.

The ”Specify Oxs UniformExchange” and ”Specify Oxs Demag ” define

the exchange energy between neighboring cells and the demagnetization en-

ergy, respectively.
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The ”Specify Oxs UZeeman” defines the magnitude and direction of the

external magnetic field. At each specified magnetic field, the program calculates

the LLG equation (Equation 2.29) for each cell and determines the magnetic

characteristics of the device.

The ”Specify Oxs EulerEvolve” and ”Specify Oxs TimeDriver” define the

conditions, such as damping (”alpha”) and maximum initial angle of the spins

(”start dm”), for solving the LLG equation by the Euler algorithm.

The OOMMF program calculates the equilibrium magnetization, M, for each

cell, by iteratively solving dM/dt for each cell. It keeps iterating this calculation

until a ’stopping criteria’ is reached. The stopping criteria can be either the value

of the torque (dM/dt), or the amount of simulation time elapsed, or the number

of iterations. For studying the steady state magnetization, the stopping criteria

is usually specified by ”stopping dm dt=0.000001”, which asks the evolver to

keep solving for the magnetization, M, until the torque, dM/dt, at all cells is

very close to zero. For studying magnetization dynamics, the stopping criteria

is usually specified by ”stopping time=x”, where ”x” is the desired time until

when it should keep solving.

Micromagnetic simulations for Section 3.4.8

The micromagnetic simulations in Section 3.4.8 were done by the same proce-

dure described above, except that they also included a spin-torque term. These

simulations were done in collaboration with Giovanni Finocchio at the Univer-

sity of Messina, using the algorithms described in [13].

Calculating Spectral Density from Micromagnetics FFT’s

The spectral density from the micromagnetics simulations can be calculated in 2
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ways. In these simulations, the magnetization M(Ri, t j) is recorded for each cell,

Ri at every time step t j.

1) One way to obtain the spectral density is to compute the FFT for the GMR

oscillations of each cell, S [Ri]( f ), then calculate the power for each cell by

|S [Ri)]( f )|2 and finally compute the total power by summing over the power

in all the cells, P α
∑ |S [Ri]( f )|2.

2) Another way to obtain the spectral density is to compute the FFT for the av-

erage GMR oscillations of all the cells.

P =
I2 ∆R2

max |S ( f )|2 ∆t
R N

(2.36)

S ( f ) = FFT (gmr(t)) (2.37)

gmr(t) =
1 − MFIXED.MFREE

2
(2.38)

In Section 3.4.8, I calculated the spectral density by the second method.
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CHAPTER 3

LINEWIDTHS OF SPIN-TORQUE-DRIVEN OSCILLATIONS AS A

FUNCTION OF IN-PLANE MAGNETIC FIELD ANGLE & TEMPERATURE

3.1 Previous Studies of Spin-Torque Oscillator Linewidths

In a magnetic multilayer device, spin-transfer torque from a spin-polarized di-

rect current can excite steady-state magnetic precession [1, 2], thereby creating

a nanoscale frequency-tunable microwave source [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17]. Such nano-oscillators have been studied previously in two device

geometries: nanopillars in which the precession occurs in a finite disk of mag-

netic material [3, 5, 6, 8, 9, 12, 13, 14, 16, 17], and point contact devices in which

precession is excited within a small region that is part of a larger-area magnetic

thin film [4, 7, 10, 11, 15]. For applications, it is desirable that the microwave

signal has a frequency spectrum with a narrow linewidth at room temperature.

For this reason, understanding what physical processes affect the linewidth has

generated considerable interest, both theoretically [18, 19, 20, 21, 22, 23, 24] and

experimentally [12, 13, 5, 6, 7, 9, 15, 25, 26, 27, 28, 29]. Experiments have been

done to explore the linewidth dependence on temperature [12, 13] and on mag-

netic fields which rotate the precession axis out of the sample plane [5, 6, 7, 9, 15].

3.1.1 Putting Our Work in Perspective

In this chapter, we will report measurements and simulations of DC-driven pre-

cession which show a surprisingly strong dependence of this linewidth on the

in-plane angle of applied magnetic field. We find that the most-commonly stud-
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ied field orientation, in-plane and parallel to the magnetic easy axis, produces

the broadest linewidths. As the field angle is rotated towards the in-plane hard

axis, the linewidths decrease dramatically, by more than a factor of 20 in some

devices. Comparisons with micromagnetic simulations suggest that this change

is due to a crossover from spatially incoherent to coherent dynamics.

3.2 What do Linewidths Mean?

In this chapter, we will discuss the linewidths of the spectra of resistance oscil-

lations excited by a direct (DC) spin-polarized current. It is important to note

that the mechanisms governing the linewidth of DC-driven precession differ

from the physics of the linewidth in ferromagnetic resonance (FMR) experi-

ments excited by oscillatory drives. While the linewidth in an FMR experiment

is determined directly by the magnetic damping coefficient and hence by relax-

ation mechanisms, the linewidth of DC-driven auto-oscillations is an entirely

different physical quantity that is not directly related to relaxation. Instead,

the linewidth of DC-driven precession measures any lack of perfect periodic-

ity in the resistance oscillations, which can be caused by thermal fluctuations

or chaotic dynamics, but not directly by damping. To illustrate the distinction

between the two types of measurements, at zero temperature in the absence

of any chaos the linewidth for DC-driven precession should presumably go to

zero, while the linewidth of an FMR experiment would still be nonzero and

given by the damping coefficient. Both types of linewidth have been measured

in the same sample, and they can differ by more than a factor of ten, for instance

in [30] the FMR linewidth was 240 MHz and the DC-driven linewidth was 13

MHz for the same values of magnetic field and temperature).
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3.3 Important Mechanisms and Mathematical Models for

Linewidths

In this section, we will discuss some important mechanisms and models for

linewidths. The linewidths of spin-torque-driven oscillations can be affected by

amplitude and phase fluctuations, thermally-activated hopping between differ-

ent dynamical modes, or spatial incoherence.

3.3.1 Amplitude and Phase Fluctuations in a Non-Linear Auto-

Oscillator

Before we discuss the contribution of amplitude and phase fluctuations to the

linewidth, we will briefly discuss what these fluctuations mean. These fluctua-

tions are caused by thermal effects. Thermal effects can act either perpendicular

(radial) to the trajectory or along (tangential) the trajectory of the oscillation.

Amplitude fluctuations

If thermal effects act perpendicular to the trajectory (i.e. radially), they lead to

fluctuations of the precession angle or amplitude (Figure 3.1). The amplitude

fluctuations can be described by an amplitude correlation time. The amplitude cor-

relation time is the time over which the precessing magnetization loses memory

of its initial starting trajectory. As time goes on, the magnetization becomes less

and less correlated with the state it started out in, i.e. 〈(θ(0)−θ̄)(θ(t)−θ̄)〉 decreases

exponentially (θ is the precession angle or amplitude). However, regardless of
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Figure 3.1: Illustration of Amplitude Fluctuations. Thermal effects acting per-
pendicular to the trajectory cause a spread in the precession angle or amplitude.

the starting point, the magnetization will ultimately tend to settle into some

steady-state trajectory (while continuing to fluctuate). At T=0, the amplitude

correlation time is also equal to the amount of time it takes the magnetization

to return to its equilibrium trajectory. At higher temperatures, the amplitude

correlation time is the time after which the fluctuations completely randomize.

The amplitude correlation time is inversely proportional to the damping rate

(ΓP): if the amplitude correlation time is large, the damping rate of amplitude

fluctuations is small.
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Phase Fluctuations

If thermal effects act along the trajectory, they will lead to a spread in the time

it takes to complete every orbit, by making the magnetization precess faster or

slower. In order to understand how phase fluctuations lead to broadening of

the linewidth, we consider an example of an ensemble of N different oscilla-

tors. We borrowed this example from Reference [31]. Suppose at time t=0, all

the oscillators are in phase and they all complete their respective orbits at the

same time (Figure 3.2(a)). In this case, the time-domain signal of all the oscilla-

tors is identical and the ensemble signal looks identical to the signal of any one

oscillator (Figure 3.2(b)). In this case, the probability distribution of the phase

P(φ,t) is just a delta function at a phase of zero (Figure 3.2(c)), since all the os-

cillators in the ensemble are at the same phase. As time goes on, the oscillators

start going out of phase relative to each other, leading some oscillators to com-

plete the orbit faster than others (Figure 3.2(a)). This leads to a spread in the

time-domain signal (Figure 3.2(b)) and a broad phase probability distribution

(Figure 3.2(c)). The width of the probability distribution, 〈φ2(t)〉, is proportional

to the phase diffusion constant (D), which is a measure of how fast the phase

diffusion occurs.

It should be noted that in this example, we tried to elucidate the role of phase

fluctuations by considering an ensemble of different oscillators. For a single

oscillator, the phase fluctuations will manifest themselves into the linewidth in

the same way: instead of thinking of an ensemble of different oscillators with

different phases, the analog for a single oscillator would be the different periods

of its orbital trajectory due to phase fluctuations.

The phase fluctuations can be described by a phase coherence time. The co-
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Figure 3.2: Illustration of Phase Fluctuations. Thermal effects acting along the
trajectory cause a spread in the time it takes to complete every orbit. Taking the
example of an ensemble of N oscillators, at t=0, all the oscillators are in phase
and they all complete their orbits in the same time. Thus, the time-domain
signal of the ensemble is just the same as the time-domain signal of any one
oscillator. This gives rise to a delta function in the probability distribution of the
phase. As time goes on, the oscillators go out of phase and there is a spread in
the time-domain signal for the ensemble, leading to a finite distribution of the
phase probability. The width of the distribution is proportional to the rate of
phase diffusion. Figure from [31].
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herence time is the time over which the phase is coherent or predictable. It is

inversely proportional to the linewidth (∆ω).

Distinction between Linear and Non-Linear Auto-Oscillators

In a linear auto-oscillator, the precession frequency does not depend on the am-

plitude. Thus, amplitude fluctuations do not affect the frequency and therefore,

do not affect how long it takes to complete a trajectory (i.e. the phase is un-

affected). In other words, in a linear auto-oscillator, the amplitude and phase

fluctuations are decoupled from each other and act independently.

Typically, amplitude fluctuations cannot keep increasing boundlessly since

the magnetization will ultimately tend to settle down towards its steady-state

trajectory. However, phase fluctuations have no restoring force to revert the

phase to its original value and so they can keep increasing without any bounds.

On the other hand, in a non-linear auto-oscillator, the precession frequency

depends on the amplitude. Thus amplitude fluctuations lead to different preces-

sion frequencies, which in turn affect how long it takes to complete a trajectory,

thereby leading to phase noise. Thus, in a non-linear oscillator, the amplitude

and phase noise fluctuations are coupled.

Linewidths of Linear & Non-linear Auto-Oscillators

The amplitude and phase fluctuations in a non-linear oscillator have been in-

corporated in a theory developed by Prof. Andrei Slavin’s group at Oakland

University [19, 20, 32, 33]. They published a nice review of this theory in Refer-
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ence [34]. We will briefly discuss it here.

The power spectrum of an auto-oscillator in the presence of thermal noise is

given by [32]:

S (Ω) =

∫
dτκ(τ)eiΩτ. (3.1)

Here, κ(τ) is the correlation function of the oscillator variable c(t),

κ(τ) = 〈c(t + τ)c∗(t))〉, (3.2)

where c = |c|exp(iφ), |c| is the amplitude and φ is the phase of the oscillation.

The power of the oscillations is p = |c|2. In the regime where phase fluctua-

tions dominate, the autocorrelation function corresponding to the phase noise

contributions can be written as [32]:

κ(τ) = p0〈exp(i[φ(t) − φ(0)])〉 = p0ei〈φ(t)−φ(0)〉 exp[−∆φ2(t)/2] (3.3)

The variance of the phase fluctuations, ∆φ2 is given by:

∆φ2 = 〈φ2(t)〉 − [〈φ(t)〉]2 =
D(p0)

p0
t =

Γ+(p0) η(p0)
p0

t (3.4)

Here ”t” is the time, D(p0) is the diffusion coefficient that characterizes how fast

the phase diffusion occurs. D(p0) = Γ+(p0) η(p0), where p0 is the steady-state

oscillation power, Γ+(p) = Γ0(1 + Qp). Γ0 is the linear Gilbert damping constant

and Q is the non-linear damping coefficient. η(p0) is the noise power. From

Equation 3.4, we see that the variance ∆φ2 for an auto-oscillator varies linearly

with time. However, as we will discuss below, this is only true for the case of a

linear auto-oscillator. The linewidth of a linear auto-oscillator is then given by:

2∆ω0 =
∆φ2

t
= Γ+(p0)

η(p0)
p0

, (3.5)

The ratio η(p0)/p0 is the ratio of the noise power to the oscillation power, which

can also be re-written as a ratio of corresponding energies, kBT/E(p0). So the
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linewidth of the linear oscillator can be written as:

2∆ω0 = Γ+(p0)
kBT

E(p0)
, (3.6)

where E is the energy of the oscillations that depends on the amplitude, p.

Case of a non-linear auto-oscillator: In a non-linear oscillator, the preces-

sion frequency depends on the oscillation amplitude and this gives rise to a

non-linear shift in the frequency: ω[p(t)] = ω[p(0)] + N δp. This non-linear fre-

quency shift, N δp, leads to a coupling between the amplitude and phase fluc-

tuations (discussed above) and it acts as an additional noise source, leading to

a broadening of the oscillator linewidth. Tiberkevich and Slavin calculated the

variance ∆φ2 after including the extra noise term, i.e. the non-linear frequency

shift, N δp:

∆φ2 = 2 ∆ω0

[
(1 + ν2) t − ν2 1 − e−2ΓP |t|

2ΓP

]
, (3.7)

where ∆ω0 is the generation linewidth of a linear oscillator (Equation 3.6), ν =

N/Γe f f is the normalized non-linear frequency shift coefficient, N = dω/dp is the

rate at which STO frequency changes with STO power and Γe f f is the rate at

which the effective damping changes with the STO power. Γe f f = ∂p(Γ+ − Γ−),

where Γ+ is the non-linear effective damping term discussed above. Γ− is the

spin-torque term, proportional to the current.

It should be noted that for the case of a linear oscillator, ν = 0 and Equation

3.7 reduces to Equation 3.4. For the case of a non-linear oscillator, we see that the

variance (Equation 3.7) does not vary linearly with time as it did for the linear

oscillator case (Equation 3.4). This is due to the additional non-linear noise term

N δp. For the non-linear case, the variance grows linearly with time only at time

intervals larger than the amplitude correlation time (1/ΓP).
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From the variance (Equation 3.7), Tiberkevich and Slavin have calculated

the linewidth of the non-linear oscillator in two different regimes, depending on

whether the coherence time of phase fluctuations is larger (low temperatures) or

smaller (high temperatures) than the correlation time of amplitude fluctuations

[32]. As the temperature increases, the phase coherence time decreases, i.e. the

rate at which it loses phase (∆ω, or linewidth) increases.

Low temperature limit

When the phase coherence time (1/∆ω) is larger than the amplitude correlation

time (1/ΓP), i.e. ∆ω � ΓP, the exponential factor in the variance (Equation 3.7)

can be neglected and the linewidth becomes:

2∆ωLOWT EMP = 2∆ω0(1 + ν2) = Γ+(p0)
kBT

E(p0)
(1 + ν2) (3.8)

Thus, in the low temperature limit, the linewidth increases by a factor of (1 +

ν2) relative to the linear oscillator (Equation 3.6). In this regime, the linewidth

increases linearly with temperature and the power spectrum is a Lorentzian.

Tiberkevich and Slavin describe the low-temperature limit by:

kB T �
(
ΓP

Γ+

)
E(p0)

(1 + ν2)
(3.9)

High temperature limit

When the phase coherence time (1/∆ω) is smaller than the amplitude correlation

time (1/ΓP), i.e. i.e. ∆ω � ΓP, the exponential function in the variance (Equation

3.7) can be expanded into Taylor series and the linewidth becomes:

∆ωHIT EMP = |ν|
√

Γ+ΓP

√
kBT

E(p0)
(3.10)

Thus, in the high temperature limit, the linewidth is proportional to T1/2. They

also calculated the power spectrum to be a Gaussian in this regime.
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In Figure 3.3(a), we show Tiberkevich and Slavin’s calculations of the

linewidths as a function of temperature. When the non-linearity, ν, is 0 (i.e. lin-

ear oscillator), the linewidth is linearly proportional to T at all temperatures. As

the non-linearity, ν increases, the temperature range over which the linear tem-

perature dependence occurs decreases. Eventually, at very high non-linearity,

the temperature dependence becomes square-root even at low temperatures.

Figure 3.3(b)-(c) shows that for small non-linearity, the linewidth varies as T,

while for large non-linearity, the linewidth varies as
√

T .

Regarding Sankey’s T1/2 dependence

In [12], Sankey et al. found that the linewidth varies as
√

T for linewidths calcu-

lated from integrating the Landau-Lifshitz-Gilbert equation. They did not ob-

serve a linear temperature dependence, as predicted by Tiberkevich and Slavin.

We speculate that this may be for the following reason. Sankey et al.’s
√

T de-

pendence corresponds to a highly non-linear case of the theory of Tiberkevich

and Slavin (Figure 3.3(c)), i.e. a large ν = N/Γe f f . Tiberkevich and Slavin assume

a large non-linear damping coefficient, Q, in their calculations while Sankey

et al. assumed Q = 0 and only took into account a constant Gilbert damping.

Thus, the non-linear damping, Γp of Tiberkevich and Slavin is higher than for

Sankey et al., implying that their relaxation rate toward the equilibrium orbit

is higher (or correlation time is smaller), leading to the cross-over temperature

from linear-T dependence to
√

T dependence being higher (because need to go

to even higher temperatures before ∆ω becomes larger than the large ΓP) (Equa-

tion 3.9).

Sankey et al. assumed that the magnetic dynamics are governed by the
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Figure 3.3: (a) Temperature dependence of the linewidth of a non-linear auto-
oscillator at different values of non-linearity, ν. When ν =0 (i.e. linear oscillator),
the linewidth varies linearly as temperature. As ν increases, the temperature
range over which the linewidth varies as T decreases and at very high ν, it varies
as
√

T . (b) Low temperature limit for small non-linearity (ν2 = 100), showing
linear T dependence. (c) High temperature limit for large non-linearity (ν2 =

108), showing
√

T dependence. Figure from [32].
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Landau-Lifshitz-Gilbert equation, for which Q=0, so ΓP is smaller and there-

fore one needs a smaller temperature for ∆ω to cross the smaller ΓP. Therefore

the cross-over from linear-T dependence to
√

T is smaller than in the case of

Tiberkevich et al. That is why Sankey et al. may be seeing
√

T temperature de-

pendence, because the linear regime of their temperature dependence may be

occuring only at extremely small temperatures.

3.3.2 Thermally-Activated Hopping between Dynamical Modes

The linewidths can also be affected by thermally-activated hopping between

different dynamical modes. This may happen if there are two dynamical

modes of different frequencies but nearly degenerate energies. In this case, the

linewidths would depend on the thermal-activation barrier, EB [12].

∆ f =
1
π τ

=
f
π

exp
(−EB

kB T

)
(3.11)

Previous experiments have shown that the magnetization can telegraph be-

tween static and meta-stable or dynamical states [35, 36, 12, 37] (Figure 3.4). In

this case, the frequency spectrum has a large low-frequency tail that appears to

be centered about zero frequency (Figure 3.4(a)). The magnetization can also

telegraph between two different dynamical states. In this case, the frequency

spectrum has two closely-spaced spectral peaks of two distinct frequencies [38].

Krivorotov et al. [36] demonstrated this by a very neat experiment in the time-

domain. They found that if they did a Fourier Transform over a long time, they

saw two closely-spaced spectral peaks of distinct frequencies (Figure 3.4(c)), but

if they did a Fourier Transform over shorter time intervals, they saw only one

spectral peak at one of the two frequencies (Figure 3.4(d)-(e)).
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(a) (b)

(c)
(d) (e)

Figure 3.4: Power spectra for magnetization telegraphing between static and
meta-stable or dynamical states. (a) Power spectral density showing a large
low-frequency tail when the magnetization telegraphs between a static and dy-
namical state. (b) Example of time-domain measurements of the magnetization
when it telegraphs between a static high-resistance state and a large-amplitude
dynamical state. (c) Fourier transform of telegraphing between two dynamical
states of different frequencies. (d)-(e) Fourier transform over a smaller time-
interval shows only one of the two frequencies. Figures (b)-(e) from [36].

3.4 Linewidths as a Function of In-Plane Magnetic Field Angle

3.4.1 Devices: Structure & Fabrication

We will report results from two types of multilayer devices, both with a nanopil-

lar geometry. In both cases the magnetic ”free layer” that precesses is 4 nm of

permalloy (Py, Ni81Fe19). In the first geometry, the magnetic ”fixed layer” that
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polarizes the current is 4 nm of Py exchange-biased to a layer of antiferromag-

netic IrMn. The full layer structure is (with thicknesses in nanometers): 4 Py

/ 80 Cu / 8 IrMn / 4 Py / 8 Cu / 4 Py / 20 Cu / 30 Pt and a Cu top contact

(Figure 3.5(a)). The second type of sample has a thicker Py fixed layer (20 nm)

with no exchange bias: 2 Py / 120 Cu / 20 Py / 12 Cu / 4 Py / 12 Cu / 30

Pt with a Cu top contact (Figure 3.5(b)). The samples are fabricated using the

procedure described in [39, 40] and Section 2.1. First the layers are deposited

by sputtering, and then electron-beam lithography and ion milling are used to

etch through both the free and fixed magnetic layers to the bottom Cu contact,

giving a device cross section that is approximately elliptical (Figure 3.6(a) inset).

The minor diameter of the cross section is 50-70 nm, and we have studied sam-

ples with aspect ratios of both 2:1 and 3:1. We use photolithography to pattern

bottom leads and to make top contacts. For the exchange-biased samples, we

sputter the layers in a magnetic field (300 Oe) and anneal at 220◦C for 85 minutes

before patterning to pin the fixed layer direction along the long axis of the el-

lipse. In this chapter, we will show data from one 50×150 nm2 exchange-biased

fixed-layer device and one 70×130 nm2 thick-fixed-layer device. Similar results

were obtained in 17 exchange-biased samples and 5 thick-fixed-layer devices.

3.4.2 DC-Characterization

Figure 3.6 shows the differential resistance (dV/dI) as a function of current (I)

and magnetic field (H) for the two devices at room temperature. For the device

with the exchange-biased fixed layer, as the current is swept (Figure 3.6(a)), at

low magnetic fields we observe hysteretic switching between the parallel and

anti-parallel magnetic orientations with a resistance change at zero bias ∆R =
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(a) (b)

Figure 3.5: Layer structure of the two types of nanopillar spin-valve devices
that we studied. (a) Layer structure for the device with an exchange-biased
fixed layer. (b) Layer structure for the device with a thick fixed layer.

0.094 Ω, and above H = 450 Oe we find non-hysteretic peaks in dV/dI that are as-

sociated with transitions among precessional and static magnetic states. At zero

bias, as the magnetic field is swept in the direction of the long axis of the sample

cross section (the magnetic easy axis, ”0 degrees”) (Figure 3.6(b)), we observe

switching of the magnetic layers between parallel and anti-parallel alignment.

The transitions on the right in Figure 3.6(b) are associated with transitions of

the magnetic free layer. From these, we infer that the effective dipole field of

the fixed layer acting on the free layer is Hdipole = 80 Oe, the coercive field of the
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50 nm x 150nm
50 nm x 150nm

Figure 3.6: (a) Differential resistance as a function of current at room tempera-
ture for a nanopillar spin valve device with an exchange-biased fixed layer. In-
set: top-view electron micrograph of device shape. (b, c) Resistance as a function
of magnetic field for the same device for fields (b) along the easy-axis direction
and (c) along the in-plane hard axis. (d-f) Differential resistance of a nanopillar
spin valve device with a thick fixed layer as a function of (d) current and (e, f)
magnetic field at room temperature.

85



free layer at room temperature is Han ≈ 200 Oe. From the transitions on the left,

we find that the sum of the exchange bias and effective field on the fixed layer

is HEB = 360 Oe. As the field is swept in the perpendicular in-plane direction

(the in-plane hard axis, ”90 degrees”) (Figure 3.6(c)), the angle between the lay-

ers changes smoothly from the antiparallel orientation to parallel. The device

with the thick fixed layer (Figure 3.6(d)-(f)) is similar, except that the 0 degree

magnetic-field sweep shows no exchange bias acting on the fixed layer. For this

device, from minor loops for the free layer, we determine Hdipole = 400 Oe and

Han ≈ 100 Oe.

3.4.3 High-Frequency DC-Driven Spectra

Our main focus will be high-frequency voltage oscillations produced by spin-

torque-driven magnetic precession driven by a direct current. These oscilla-

tions arise because precession of the magnetic moment of the free layer causes

microwave-frequency changes in the resistance of the magnetic multilayer due

to the giant magnetoresistance (GMR) effect, and in the presence of a DC current

bias these produce voltage oscillations according to Ohm’s law. We measure the

frequency spectrum of the voltage oscillations using a heterodyne mixer circuit,

as described in Section 2.2.2. We perform all measurements at room tempera-

ture, with a large in-plane magnetic field applied using a projected field electro-

magnet [41] (Section 2.2.4) that allows us to control the field angle θH continu-

ously. For the field values used in our experiment (800-1000 Oe), both the mea-

sured resistances and macrospin modeling using the parameters determined

above indicate that for the exchange-biased samples the offset angle between

the magnetic moments of the two layers grows from 0◦ to ∼ 35◦ as θH is in-
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Figure 3.7: Stoner-Wohlfarth macrospin calculations of the orientation of the
fixed and free magnetic layers and the relative angle between them as a function
of the in-plane magnetic field angle, θH. (a) Calculated orientation of the fixed
and free layers for an exchange-biased-fixed-layer device at H = 1000 Oe using
the following parameters: Han = 200 Oe, Hdipole = 100 Oe and Heb = 360 Oe at
5◦ relative to the easy axis. (b) a thick-fixed-layer device at H = 800 Oe using
the following parameters: Han = 100 Oe, Hdipole = 400 Oe. (c) Calculated relative
angle between the magnetic layers for the two kinds of devices.

creased from 0◦ to 90◦, while for the thick-fixed-layer devices without exchange

bias the offset angle is always < 5◦ (Figure 3.7).

Figures 3.8(a) and 3.8(b) show DC-driven spectra for the exchange-biased

device at 1000 Oe and the thick-fixed-layer device at 800 Oe, at selected values of

θH. The current bias is 5 mA, significantly larger than the critical current needed

to excite magnetization dynamics for any θH. In the exchange-biased device,

when H is applied along the magnetic easy axis in the direction of the exchange
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Figure 3.8: Power spectral density of spin-torque-driven oscillations at room
temperature, for field angles θH = 0◦, 45◦, and 90◦ (as labeled), for (a) an
exchange-biased-fixed-layer sample and (b) a thick-fixed layer sample. Insets:
sample structures. (c,d) Variation of the linewidth as a function of θH for both
types of samples.

bias (θH = 0◦), there is no visible precessional peak, just a low-frequency tail in-

dicating aperiodic dynamics. A precessional peak is first resolvable for θH ≈ 25◦,

and at θH = 45◦ there is a broad peak near 6 GHz with a linewidth (full width at

half maximum, FWHM) of 2 GHz, along with a smaller second harmonic peak.

As θH is increased further toward 90◦, the linewidth decreases dramatically. The

minimum linewidth for I = 5 mA is 170 MHz at θH = 95◦, a factor of 20 narrower

than at θH ≈ 25◦ (Figure 3.8(c)). If one selects the current and field magnitudes at

which the linewidth narrowing is largest, we observe narrowings as a function
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of θH ranging from a factor of 10 to 50 in all of our exchange-biased samples. We

do not show here the devices in which the factor of 50 was observed because

the narrowest peaks were limited by the resolution bandwidth chosen for the

measurements.

We see a similar, but somewhat less dramatic dependence of linewidth on

θH for the thick-fixed-layer device (Figure 3.8(b,d)). In this case a broad preces-

sional peak is visible even for θH = 0◦ at a frequency corresponding to the second

harmonic of the precessional frequency. At θH = 45◦, this second harmonic peak

has narrowed by about 30% and a peak at the fundamental precession frequency

is also visible. For θH = 90◦, the second harmonic frequency is again much larger

than the fundamental, and the linewidth of the second harmonic reaches a min-

imum of 450 MHz, a factor of 5 less than the linewidth at θH = 0◦. We observed

linewidth narrowing as a function of θH by factors between 2 and 5 in all of our

thick-fixed-layer devices.

3.4.4 Analysis as a Function of Magnetic Field Angle

For the analysis, we will focus on the linewidth of the spectral peak at the fun-

damental precessional frequency for the exchange-biased fixed-layer sample,

and the second harmonic of the thick-fixed-layer sample, because these are the

largest signals. The reason that the fundamental peak and the second harmonic

peak have different relative amplitudes in the two samples can be understood

from the magnitude of the offset angle between the fixed and free layer mag-

netic moments at I = 0. For the range of magnetic field strengths that we apply,

there is a non-zero offset angle between the magnetic moments in the exchange-
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biased fixed-layer sample whenever θH , 0◦ or 180◦. Due to the nonzero off-

set angle, small-angle magnetic precession of the free layer produces a time-

varying resistance signal with a fundamental frequency equal to the precession

frequency. For the case of the thick-fixed-layer sample, the absence of an ex-

change bias layer causes the offset angle between the fixed and free layer mag-

netizations to be much smaller, and to go to zero for θH = 0◦ and 90◦, where the

moments of both magnetic layers should be saturated along the field direction.

When the precession amplitude is larger than the equilibrium offset angle, one

cycle of precession produces two cycles of resistance, so the dominant signal

should be at the second harmonic of the precession frequency. It is a coinci-

dence that the first harmonic signal in Figure 3.8(a) and the second harmonic

in Figure 3.8(b) both occur near the same frequency when θH = 90◦. This is the

result of the large value of Hdipole in the thick-fixed-layer sample, which points

opposite to the external field acting on the free layer, so that it reduces the to-

tal field and therefore also reduces the precessional frequency of the free layer,

compared to the exchanged-biased fixed layer sample.

In order to determine why the linewidths vary so strongly, we have ana-

lyzed the linewidth, precession frequency, and power of the precessional sig-

nals as a function of field angle and current for the two types of samples. For

the exchange-biased-fixed-layer samples (Figure 3.9), as a function of increas-

ing field angle up to θH ≈ 90◦ the signal displays a decreasing frequency and an

increasing total power, together with the decreasing linewidth. The increasing

power suggests that the precession amplitude grows as a function of θH at fixed

current, while the frequency shift is consistent with an increasing demagneti-

zation field and an increased precession amplitude. The narrowest linewidths

are observed for θH between 75◦ and 95◦, and for small currents (2.5 - 4 mA),
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Figure 3.9: Analysis of the spin-torque-driven microwave signals as a function
of θH for the sample with the exchange-biased fixed layer as a function of current
and field angle at room temperature and H = 1000 Oe. (a) Linewidth. (b) Peak
frequency. (c) Integrated power within the precessional peak divided by I2. (d)
Power spectral density plotted on a logarithmic scale, as a function of θH, for
I = 4 mA.

the minimum linewidths approach 40 MHz, close to the resolution bandwidth

employed in the measurements. Beyond θH ≈ 95◦ (the exact value is current de-

pendent), the total power in the precessional signal drops abruptly by a factor

of 10 and the frequency undergoes changes in slope and jumps as a function

of θH. We suspect that these changes may be associated with transitions in the

magnetization state of the fixed layer. Between θH = 97◦ and θH = 110◦, the

frequency becomes more current-dependent, the total power decreases slightly,

and the linewidth increases with field angle at all currents. Beyond θH = 110◦,
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there is no visible precessional peak in the spectrum. The dependence of the

power spectrum on θH (for I = 4 mA) is summarized in a logarithmic-scale plot

in Figure 3.9(d). We note that the lack of symmetry about θH = 90◦ in all of the

panels of Figure 3.9 shows that the exchange bias of the fixed layer is still play-

ing a role, even though the magnitude of the applied magnetic field is greater

than the exchange-bias field. The dynamics show no dependence on whether

θH is swept up (0◦ to 180◦) or down (180◦ to 0◦).

For the thick-fixed-layer sample (Figure 3.10), the linewidths generally de-

crease with θH between θH = 0◦ and 90◦, and increase between θH = 90◦ and

180◦ at all currents. In the ranges 30◦ − 75◦ and 105◦ − 130◦ the fits appear to

suggest a non-monotonic dependence on θH, with peaks and abrupt jumps, but

these are likely just artifacts of the fitting procedure, associated with the fact

that the spectra at these angles seem to consist of two closely-spaced peaks (see

Figure 3.10(d)) that are not well-described by Lorentzian fits. The measured fre-

quencies vary smoothly as a function of θH (Figure 3.10(b)), with a form that

is approximately symmetric about θH = 90◦, as expected in the absence of any

exchange bias. As noted already in Figure 3.8, the decrease in the linewidth

between θH = 0◦ and 90◦ for the thick-fixed-layer sample is less dramatic than

the factor of 10-50 observed for the exchange-biased fixed layer samples. Fig-

ure 3.11(a)-(b) shows spectra at θH = 45◦ and θH = 135◦ as an example of the

asymmetry about θH = 90◦ for the exchange-biased-fixed-layer sample and Fig-

ure 3.11(c)-(d) shows spectra at θH = 45◦ and θH = 135◦ as an example of the

symmetry about θH = 90◦ for the thick-fixed-layer sample.

Since the free magnetic layer is nominally identical in the two kinds of sam-

ples (4 nm of Py), based on the large difference in the magnitude by which the
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Figure 3.10: Analysis of the spin-torque-driven microwave signals as a function
of θH for the sample with the thick fixed layer at room temperature and H = 800
Oe. (a) Linewidth. (b) Peak frequency. (c) Integrated power divided by I2. (d)
Power spectral density plotted on a logarithmic scale, as a function of θH, for
I = 5 mA.

linewidths narrow as well as the differences in symmetry about θH = 90◦ in the

two kinds of samples, we suggest that the orientation of the fixed layer must

play an important role in the degree of coherence of the free layer. We have con-

firmed that the mode which is excited at different θH is always a free layer mode

in both types of samples. This was determined by conducting spin-transfer-

driven ferromagnetic resonance measurements (ST-FMR) [42, 30] on the sam-

ples as a function of θH; the sign of the ST-FMR signals corresponds to a free

layer mode and not the lowest-frequency fixed layer mode [30]. The ST-FMR

measurements will be discussed in more detail in Section 3.4.6.
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Figure 3.11: Examples of the differences in symmetry about θH = 90◦ between
the two kinds of devices. Power spectral density at θH = 45◦ and θH = 135◦ for
the (a) exchange-biased-fixed-layer device and the (b) thick-fixed-layer device.

3.4.5 Analysis as a Function of Current: Qualitative Correlation

between Linewidth and d f /dI

As we discussed in Section 3.3, the linewidths are proportional to the quan-

tity (d f /dθmax)2 since they are predicted to increase as a function of the non-

linearity of the oscillator - the degree to which the average precession frequency,

f changes with the amplitude θmax of the precession [12, 20]. Since increasing the

current should increase the precession angle θmax, regions with small values of

d f /dI should also have small values of d f /dθmax. This motivated us to study

whether the regions of narrow linewidths are correlated with regions where the
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Figure 3.12: Analysis of the spin-torque-driven microwave signals as a function
of current for the sample with the exchange-biased fixed layer at room temper-
ature and H = 1000 Oe. (a) Linewidth. (b) Peak frequency. (c) Integrated power
divided by I2. (d) Power spectral density plotted on a logarithmic scale, as a
function of current, for θH = 45◦ and (e) θH = 95◦.

precession frequency is nearly constant as a function of current. In Figures 3.12

and 3.13, we have analyzed the linewidth, frequency and power of the preces-

sion signals for the two types of samples as a function of current. For both types

of samples, we observe a positive correlation between the observed linewidths

and the corresponding d f /dI.

In the exchange-biased-fixed-layer sample (Figure 3.12), for θH < 80◦, as a
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function of current, the frequency decreases and the linewidth and power in-

crease. The decrease in frequency and increase in power with current indicate

that the oscillations persist in elliptical orbits and their precession amplitude

increases with current. We note that at these field angles, the linewidths are

broad and the frequency also decreases substantially with current, i.e. d f /dI is

large. In the range 80◦ < θH < 90◦, the frequency first increases with current

(for instance, till I < 2.5mA for θH = 85◦, and till I < 3.6mA for θH = 90◦), then

there is a sudden jump in frequency at those currents, and above those currents,

the frequency decreases with current. The jumps in frequency at I = 2.5mA

for θH = 85◦ and at I = 3.6mA for θH = 90◦ suggest that there may be a tran-

sition between two modes with different frequencies. This is also confirmed

by the sudden increase in linewidth and power at those currents. In the range

90◦ < θH < 97◦, for instance at θH = 95◦, we observe the narrowest linewidths

and we also see that the frequency stays almost constant with current, i.e. d f /dI

is very small. We also noted the independence of frequency on current in this

range of θH in Figure 3.9(b). In the range 97◦ < θH < 110◦, for instance at

θH = 100◦, the linewidths start to broaden again and the frequencies also de-

crease with current (i.e. d f /dI increases). The dependence of the power spec-

trum on I (for θH = 45◦ and θH = 95◦) is summarized in a logarithmic-scale

plot in Figure 3.12(d). We can see that at θH = 45◦, the linewidth is broad and

the frequency decrease with current is large (large d f /dI). At θH = 95◦, where

we observe the narrowest linewidths, the frequency also doesn’t change much

with current (small d f /dI). We see a similar dependence on current for the thick-

fixed-layer sample (Figure 3.13).
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(d) H= 800 Oe; Field Angle= 0 deg

(e) H= 800 Oe; Field Angle= 90 deg

Figure 3.13: Analysis of the spin-torque-driven microwave signals as a function
of current for the sample with the thick fixed layer at room temperature and
H = 800 Oe. (a) Linewidth. (b) Peak frequency. (c) Integrated power divided
by I2. (d) Power spectral density plotted on a logarithmic scale, as a function of
current, for θH = 0◦ and (e) θH = 90◦.

3.4.6 Spin-Torque-Driven Ferromagnetic Resonance Measure-

ments (ST-FMR)

In order to determine if the oscillations in the DC-driven experiment dis-

cussed in Section 3.4.3 correspond to the normal modes of the free layer or

the fixed layer, we conducted spin-torque-driven ferromagnetic resonance (ST-
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FMR) measurements [42, 30] on the same devices under exactly the same current

and magnetic field conditions. In addition to IDC, we applied a radio-frequency

(RF) current, IRF = 0.42 mA and measured the amplitude of the resonant motion

by measuring the dc-voltage corresponding to the mixing of IRF and the chang-

ing resistance due to spin-torque (as described in Section 2.2.3). We conducted

detailed ST-FMR measurements on 4 of the 22 devices measured in the DC-

driven experiment and observed similar results in all 4. In this section, we will

describe the ST-FMR results for the same 50×150 nm2 exchange-biased-fixed-

layer device that was discussed in previous sections. We applied the same mag-

netic field, H = 1000 Oe as in the DC-driven experiment (Section 3.4.3) and

varied the magnetic field angle, θH between 0◦ and 180◦. At each θH, we varied

the IDC and measured the ST-FMR spectrum at each IDC to compare directly with

the spectra in Section 3.4.3.

Figures 3.14(a) and 3.14(b) show the DC-driven spectra and the correspond-

ing ST-FMR spectra at different θH at H = 1000 Oe and IDC = 5.0 mA. In Figure

3.14(b), we can only see ST-FMR spectra for θH > 72◦, because the ST-FMR signal

below 72◦ degrees is very small due to the small misalignment angle between

the magnetic layers (the torque is roughly proportional to sin(θ), where θ is the

angle between the layers). We would like to make two main points regarding

the ST-FMR data. First, we can clearly identify the DC-driven peaks (Figure

3.14(a)) in the ST-FMR spectrum (Figures 3.14(b)). For example, the 90◦ peak

at IDC = 5.0 mA in the DC-driven spectrum, which was also shown in Figure

3.8(a) is visible at almost the same frequency in the ST-FMR spectrum. Figures

3.14(c) and 3.14(d) show the frequencies of the DC-driven spectral peaks and the

corresponding frequencies of the ST-FMR spectral peaks, as a function of IDC at

different θH. We see that the frequencies above IDC = 2.0 mA match very well

98



Figure 3.14: Comparison of DC-driven spectra and ST-FMR spectra for the
exchange-biased-fixed-layer device at H = 1000 Oe. (a) Power spectral den-
sity from the DC-driven precessional modes at H = 1000 Oe and IDC = 5.0 mA
at different θH. The spectra are offset in increments of 1.5 pW/GHz. (b) ST-FMR
spectra at H = 1000 Oe, IDC = 5.0 mA and IRF = 0.42 mA at different θH. The
spectra are offset in increments of 0.4 µV. (c) Peak frequencies of the DC-spectra
as a function of IDC at different θH. (d) Peak frequencies of the ST-FMR spectra
as a function of IDC at different θH.
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Figure 3.15: ST-FMR spectra at different IDC at θH = 90◦ and H = 1000 Oe for the
exchange-biased-fixed-layer device. The spectra are offset in increments of 0.4
µ V.

for both spectra. We would like to point out that in the ST-FMR experiment, we

observe excitations even below the critical current, including at IDC = 0 mA, be-

cause of the IRF resonant drive. An example of the ST-FMR spectra at different

IDC is shown for θH = 90◦ in Figure 3.15. At IDC = 0 mA, we are able to see a RF-

driven positive peak at the FMR frequency. This zero-bias ST-FMR peak evolves

into the DC-driven mode above IDC = 2.0 mA, the critical current for DC-driven

excitations. We discussed earlier in Section 3.4.5 that at θH close to 90◦, there is

an abrupt jump in frequency at certain IDC. We ascribed this frequency jump

to transitions between precession modes with different frequencies. In the ST-

FMR spectra also, we see that between IDC = 3.5 mA and IDC = 3.75 mA, the

peak frequency suddenly increases, corresponding to the same range of IDC in

which the sudden frequency transition in the DC-spectra occurs.
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Second, we see that the ST-FMR peaks are positive at all θH. The sign of the

torque, for a positive sign of IDC in our measurement, should give a positive

peak for a free layer mode and a negative peak for a fixed layer mode in the

ST-FMR spectrum. This suggests that the mode which is excited at different θH

is always a free layer mode. In addition, the zero-bias ST-FMR peak evolves

smoothly into the DC-driven peaks at higher IDC, indicating that we are exciting

the lowest-frequency, most spatially uniform mode [12, 43]. We would like to

point out that the shape of the ST-FMR peaks at large IDC is complicated and

not just a simple Lorentzian because of phase-locking between the DC-driven

precession and IRF [30].

3.4.7 Macrospin Simulations

We have performed macrospin simulations (as described in Section 2.3.1) in an

attempt to understand our results. These were performed by integrating the

Landau-Lifshitz-Gilbert equation for both magnetic layers and included a Slon-

czewski spin-torque term, the magnetic interaction between the layers, and fluc-

tuating Langevin fields to model thermal fluctuations. We explored a range of

parameters chosen to approximate the sample characteristics. For the exchange-

biased-fixed-layer sample, we used the following parameters: H = 1000 Oe T =

300 K, exchange-bias field, HEB = 360 Oe, 5◦ relative to the easy axis; Hdipole due

to the fixed layer on the free layer = 100 Oe, Hdipole due to the free layer on the

fixed layer = 100 Oe, Hanisotropy of fixed and free layers = 200 Oe; thickness of free

layer = 4 nm; thickness of fixed layer = 4 nm, area = 50×150 nm2, free and fixed

layer saturation magnetization MS = 560 emu/cm3, free layer damping α = 0.01;

fixed layer damping = 0.1.
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For the thick-fixed-layer sample, we used the following parameters: H = 800

Oe, T = 300 K, exchange-bias field, HEB = 0 Oe, Hdipole due to the fixed layer on the

free layer = 400 Oe, Hdipole due to the free layer on the fixed layer = 0 Oe, Hanisotropy

of fixed and free layers = 100 Oe, thickness of free layer = 4 nm, thickness of fixed

layer = 20 nm, area = 70×130 nm2, free and fixed layer saturation magnetization

MS = 560 emu/cm3, free layer damping α = 0.01; fixed layer damping = 0.1.

Each simulation spanned 200 nanoseconds with a time step of 1 picosec-

ond. The simulations were initialized with the two magnetic layers in the anti-

parallel state, as is the case in the experiment due to the dipolar coupling be-

tween the layers.

Simulated Trajectories as a Function of Current

In Figures 3.16,3.17 and 3.18, we show the simulated trajectories of the oscilla-

tions for the thick-fixed-layer sample as the current is increased incrementally at

H = 800 Oe and θH = 10◦. The same qualitative behavior was observed at all field

angles studied in the simulations, as well as for the exchange-biased-fixed-layer

sample. In Figures 3.16 (b),3.17 (b) and 3.18 (d) and (e), the x-axis is along the

easy (major) axis of the elliptical sample, the y-axis is along the in-plane hard

(minor) axis and the z-axis is along the hard, out-of-plane axis.

At I = 0 mA (Figure 3.16), when the magnetic layers are subjected only to

the external magnetic field H = 800 Oe applied along θH = 10◦, the free layer

is almost parallel to the field direction, the MX component is close to 1, the MZ

component is close to 0 and the MY component oscillates a small amount. The

oscillations are not completely periodic because of thermal fluctuations. This
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(b) I = 0 mA

Figure 3.16: Simulated free-layer magnetization response and trajectory at I = 0
mA and H = 800 Oe, applied along θH = 10◦. (a) MX, MY and MZ as a function
of time. (b) Magnetization trajectory. The red line indicates the direction of the
applied magnetic field, θH.

state persists until the critical current (about I = 1.3 mA in the simulation). At

I = 1.3 mA (denoted by I/IC = 1) (Figure 3.17), steady-state oscillations begin

and the free-layer magnetization precesses in an elliptical trajectory (the oscil-

lations are elliptical and not circular because of the strong out-of-plane demag-

netization field that tries to confine the precession in-plane). As the current is

increased further, the amplitude of the oscillations keeps increasing, until the

two ends of the elliptical trajectory merge at I = 1.6 mA (I/IC = 1.2). Beyond this

point, the magnetization telegraphs between two degenerate out-of-plane or-

bits. This is shown in Figure 3.18. In Figures 3.18 (a) and (d), an example of the

telegraphing is shown at I = 3.0 mA (I/IC = 2.3). The MZ component is negative

at certain times and positive at other times, as the moment telegraphs between

the two out-of-plane orbits. As the current is increased further to I = 3.5 mA

(I/IC = 2.7) (Figure 3.18 (b)), the magnetization spends more and more time in

one of the out-of-plane orbits than the other, but it still telegraphs between the

two. Finally, at I = 3.9 mA (I/IC = 3) (Figures 3.18 (c) and (e)), the moment settles

into one of the out-of-plane orbits and precesses in that orbit forever.
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Figure 3.17: Simulated free-layer magnetization response and trajectory at
I/IC = 1 and H = 800 Oe, applied along θH = 10◦. (a) MX, MY and MZ as a func-
tion of time. (b) Magnetization trajectory, showing elliptical precession. The red
line indicates the direction of the applied magnetic field, θH.

Comparison with experiment: The simulations predict that steady-state ellip-

tical precession is stable over a much narrower range of current than we find

experimentally. In the experiment, steady-state elliptical precession persists un-

til at least I/IC = 3, as shown in Figures 3.12 and 3.13. In the simulations, it

persists until only approximately I/IC = 1.2.

Simulated Linewidths as a Function of the Field Angle

We studied the linewidths calculated directly from the Fourier Transform of the

GMR oscillations in the simulation, focusing particularly on the regime of el-

liptical precession (Figure 3.17). We found that the simulation results of the

linewidths as a function of the field angle were extremely sensitive to the choice

of parameters. For example, we were not able to observe any substantial nar-

rowing in the linewidths for the parameters used for the exchange-biased-fixed-
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Figure 3.18: Simulated free-layer magnetization response and trajectory at
I/IC = 2.3, I/IC = 2.7 and I/IC = 3 at H = 800 Oe, applied along θH = 10◦. Out-
of-plane component, MZ , as a function of time at (a) I/IC = 2.3, (b) I/IC = 2.7
and (c) I/IC = 3. (d) Magnetization trajectory, showing the merging of the two
ends of the elliptical clamshell orbit and subsequent telegraphing between two
degenerate out-of-plane orbits. (e) Magnetization trajectory, showing the mag-
netization settling into one of the out-of-plane orbits. The red line indicates the
direction of the applied magnetic field, θH.

layer sample but we were able to observe some narrowing in the predicted

linewidths using the parameters of the thick-fixed-layer sample. As θH is in-

creased from 0◦ to 90◦ at room temperature, the linewidths narrowed by a factor

of 2-3 (Figure 3.19). However, the decrease in the linewidths was not as large as

observed experimentally. Whereas our macrospin simulations are unable to ex-

plain the large linewidth changes we measure, micromagnetic calculations give

better agreement. We will discuss these next in Section 3.4.8.
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Figure 3.19: Simulated power spectral density and linewidth variations as a
function of θH at I/IC = 1 and H = 800 Oe. (a) Simulated power spectral density
at θH = 5◦, 50◦ and 95◦. (b) Simulated linewidth as a function of θH.

Regarding Tiberkevich and Slavin’s fits to our data

We would also like to point out that Tiberkevich and Slavin have reported that

they are able to fit the large changes in linewidth that we observe using the

stochastic nonlinear oscillator equation (Equations 3.8, 3.10) for the dominant

spin wave mode [33]. They found that the linewidths in their calculations

were closely related to the non-linear frequency shift, N, as a function of the

in-plane field angle (Figure 3.20(a)). They found that for small H (case-1 in Fig-

ure 3.20(a)), the non-linear frequency shift, N, changes sign at θH = 80◦; at this

angle, N2 = 0 and the linewidth is also minimum. At higher fields (cases-2 and

3), the absolute value of the non-linear frequency shift decreases and hence the

linewidth also decreases until N2 approaches zero near 90◦, where the linewidth

becomes a minimum. Their theory predicts that the minimum linewidth should

be achievable for an in-plane field angle close to 90◦ and a field close to 4 times

the anisotropy field.

In Figure 3.20(b)-(c), we show the results of their calculations and fits to our
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Figure 3.20: Calculations of the (a) non-linear frequency shift as a function of the
in-plane field angle using the analytical expression of the generation linewidth
for a non-linear oscillator. (b) calculated linewidth from the the non-linear fre-
quency shift and comparison to experimental data of [44]. Figures from [33].

data. The black dots are our experimental data and the red line is their fit to

the data. The dotted line is the calculation when the non-linear term is not in-

cluded. They showed that if they did not take into account the non-linearity, the

linewidth decrease was smaller. Their calculations differ from our macrospin

simulations in that they assume a non-linear damping coefficient, Q = 3. In our

macrospin LLG simulations, we assume Q = 0, i.e. we only assume a constant

Gilbert damping and no amplitude-dependent damping. The physical origin

of the non-linear damping is not entirely clear, but presumably this can be a

consequence of micromagnetic coupling effects (see next section, Section 3.4.8).

3.4.8 Micromagnetic Simulations

Whereas our macrospin simulations with no non-linear damping are unable to

explain the large linewidth changes we measure, we find that micromagnetic

calculations give better agreement. We performed simulations using the algo-
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rithms described in Ref. [45], which integrate the Landau-Lifshitz-Gilbert equa-

tion for both magnetic layers and include a Slonczewski spin-torque term [46],

the Oersted field from the current, the magnetic interaction between the layers,

and fluctuating Langevin fields to model thermal fluctuations. The parameters

used in the micromagnetic simulations for the exchange-biased sample are: H =

1000 Oe, exchange-bias field, HEB = 360 Oe, 20◦ relative to the easy axis; free and

fixed layer saturation magnetization MS = 650 emu/cm3, free layer damping α

= 0.025; fixed layer damping = 0.2; temperature = 300 K, exchange constant =

1.3×10−6 erg/cm, GMR asymmetry parameter = 1.5, current polarization = 0.38,

and computational cell size = 5 × 5 × 4 nm3. Each simulation spans 100 ns with

a time step of 0.334 ps.

Figure 3.21(a) shows examples of the simulated resistance as a function of

time for an exchange-biased sample. The corresponding spectral densities of the

resistance oscillations are shown in Figure 3.21(b). We find that, due to thermal

fluctuations at room temperature, there is no well-defined precessional peak in

the simulated signal between θH = 0◦ and approximately 30◦, consistent with

our measurements. At θH = 30◦, we see only a broad second harmonic peak in

the simulated spectrum but no first harmonic, because of the relatively small

misalignment angle between the layers. The first harmonic appears in the sim-

ulation at θH = 45◦, and it has a linewidth of about 3.1 GHz. As θH is increased to

90◦, the linewidth of the first harmonic decreases strongly, eventually reaching

a minimum (FWHM) of 350 MHz. The minimum linewidth in the simulation is

about twice as large as the minimum linewidth of 170 MHz observed at θH = 90◦

in the experiment for the same parameters (Figure 3.8(a)). The simulation pre-

dicts a factor of about 10 by which the linewidth narrows between the field angle

at which a first harmonic peak becomes first resolvable in the simulation, i.e. at
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Figure 3.21: Micromagnetic simulations of the exchange-biased sample. (a) Re-
sistance as a function of time. RP is the resistance for parallel free and fixed
magnetic layers, and RAP corresponds to antiparallel layers. (b) Correspond-
ing power spectral densities. The curves for θH = 45◦ and 90◦ are offset by 30
pW/GHz and 60 pW/GHz. The curves for θH = 0◦ and 45◦ are scaled by a factor
of 4. (c) Calculated linewidth as a function of θH for H = 1000 Oe and I = 3.5 mA.
(d,e) Snapshots of the magnetization distribution in the magnetic free layer for
(d) θH = 0◦ and (e) θH = 90◦, at times corresponding to maxima in the precession
cycle.
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θH = 45◦, and θH = 90◦. This is close to the factor by which this peak narrows

between θH = 45◦ and 90◦ in the experiment, but smaller than the factor of 20

by which it narrows between θH = 25◦ (the field angle at which the peak first

becomes resolvable in the experiment) and θH = 90◦.

Similar simulations (not shown) for the thick-fixed-layer sample predict that

the linewidth decreases from about 2.5 GHz at θH = 0◦ to about 530 MHz at θH =

90◦. The minimum linewidth in the simulation is quite close to the minimum

linewidth of 450 MHz observed at θH = 90◦ in the experiment, and the factor of

5 by which the linewidth narrows is also close to the experimental value.

For both kinds of samples, the micromagnetic simulations suggest that the

nature of the magnetization dynamics is qualitatively different for θH near 0◦

and 90◦. In Figures 3.21(d) and 3.21(e), we show snapshots of the spatial distri-

bution of the magnetization in the free layer at T = 300 K for both field angles.

The arrows in these plots represent the magnetization in the sample plane and

the colors represent the magnetization component parallel to the long axis of the

ellipse. For the case of θH = 0◦ (Figure 3.21(d)), the oscillations are spatially non-

uniform and irregular, and the left and right halves of the ellipse can precess in

opposite directions. Because different parts of the sample are not precessing to-

gether, this spatial incoherence produces temporal incoherence in the resistance

signal, broadening the linewidth. In contrast, for the case of θH = 90◦ (Figure

3.21(e)), the dynamics are nearly spatially uniform, with the whole free layer

precessing together in a spatially and temporally coherent manner, to give a pre-

cessional trajectory with a very well-defined frequency and a narrow linewidth.

For angles near θH = 45◦ the magnetization undergoes ns-scale jumps between

spatially nonuniform states and the state which is more spatially coherent.
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Based on the micromagnetic simulations, we can consider the possible mech-

anisms underlying the crossover from spatially incoherent to coherent dynam-

ics. One factor may be that the misalignment angle (θmis) between the fixed

and free layer moments grows as θH is increased in the exchange-biased sam-

ples. When θmis is much larger than the range of angular variations within the

micromagnetic configuration of the free layer, the spin torque on each spatial

element will be in the same direction, and this may promote spatially-coherent

motion [45]. Another important factor may be the amplitude of the precession.

In Figure 3.21(a), we see that the amplitude of the oscillations is much smaller

at θH = 0◦ and θH = 45◦ than at θH = 90◦. Smaller oscillation amplitudes make

the dynamics more sensitive to thermal fluctuations in both amplitude and fre-

quency [12]. A potential mechanism that does not appear to contribute to the

crossover between spatially coherent and incoherent dynamics is the Oersted

field from the applied current. We performed simulations with the Oersted field

both included and absent, and found no significant qualitative differences in the

dynamics.

3.5 Linewidths as a Function of Temperature

In order to further investigate the important mechanisms governing the

linewidths in our spectra, we also studied the linewidths as a function of tem-

perature at field angles where we observed the narrowest linewidths at room

temperature, i.e. close to 90◦ (as we discussed in the previous sections). We con-

ducted these temperature-dependence measurements in the CNS Janis cryostat

as well as the 3-D Vector Magnet system (Section 2.2.5). In this section, we will

discuss the measurements from one particular exchange-biased-fixed-layer de-
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vice that showed very similar dV/dI and high-frequency characteristics as the

device we discussed in the previous sections.

3.5.1 DC-Characterization

In Figure 3.22, we show the differential resistance for this device as a function

of the magnetic field and current at room temperature when the field is applied

close to 90◦. In the magnetic field data (Figure 3.22(a)), the angle between the

layers changes smoothly as the magnitude of the applied field is varied along

90 degrees, giving rise to a smooth change in resistance instead of an abrupt

switching between parallel and anti-parallel. When the current is swept (Figure

3.22(b)), at low magnetic fields, we observe hysteretic switching between the

parallel and anti-parallel states and at high magnetic fields, we observe signa-

tures of dynamics.

3.5.2 Analysis as a Function of Temperature

In Figure 3.23, we show the results of the high-frequency DC-spectra as a func-

tion of temperature at H = 1150 Oe. The narrowest linewidths that we were able

to observe were about 8.9 MHz at T = 10K and I = 4.0 mA (Figure 3.23(a)). This is

compared to 135 MHz at T = 294K and I = 4.0 mA, which is close to the narrow-

est linewidths we observed for the previously discussed exchange-biased-fixed-

layer sample under similar conditions (Figure 3.9(b)). In Figure 3.23(b)-(d), we

have analyzed the linewidth, precession frequency and integrated power as a

function of temperature at different currents. The linewidths increase with tem-
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Figure 3.22: Differential resistance as a function of H and I at room temperature
for a nanopillar spin valve device with an exchange-biased fixed layer that was
cooled down for temperature-dependence measurements. (a) Resistance as a
function of magnetic field for field along the in-plane hard axis. (b) Resistance
as a function of current at H = 300 Oe and H = 1200 Oe.

perature at all currents, as expected, and these will be our main focus in this sec-

tion. The precession frequency decreases with temperature at all currents. This

is not surprising since the demagnetization field decreases with temperature,

leading to a smaller effective field and smaller frequency. The frequencies also

decrease with current, indicating that we are in the elliptical precession regime.

The integrated power decreases quite dramatically with temperature, by almost

a factor of 10. It is not clear why it decreases so rapidly. Micromagnetic effects

might be in play, which might lead to the oscillations being even more spatially

coherent at lower temperatures than at higher temperatures.

3.5.3 Modeling of Linewidths

We will now focus on the important mechanisms governing our linewidths. In

order to do this, we fit the experimental linewidths according to the models dis-

cussed in Section 3.3. The first model takes into account amplitude and phase
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Figure 3.23: Analysis of the spin-torque-driven microwave signals as a function
of temperature for an exchange-biased fixed layer sample at H = 1150 Oe and
θH = 90◦. (a) Power spectral density for I = 4.0 mA at T = 10 K and T = 294 K.
(b) Linewidth. (c) Peak frequency. (d) Integrated power divided by I2.

fluctuations (Section 3.3.1) and the second model takes into account thermally-

activated hopping between different dynamical modes (Section 3.3.2). For am-

plitude and phase fluctuations, as we discussed in Section 3.3.1, Tiberkevich and

Slavin calculated two different regimes for the temperature dependence of the

linewidth. At low temperatures, their calculations predicted a linear tempera-

ture (T) dependence of the linewidth (Equation 3.8) and at higher temperatures,

a square-root temperature (
√

T ) dependence (Equation 3.10). We also discussed

in Section 3.3.1 that Sankey et al. [12] found that the linewidths obtained from

integrating the LLG equation varied as
√

T .
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For our experimental data, we analyzed the linewidths by fitting to both a

linear (T) and
√

T term, and also added the contribution of thermally-activated

hopping:

∆ω = a T 1/2 +
f
π

exp
(−EB

kBT

)
= A

d f
dθ

T 1/2 +
f
π

exp
(−EB

kBT

)
(3.12)

∆ω = c T +
f
π

exp
(−EB

kBT

)
(3.13)

We fitted by adjusting 2 parameters: (i) a, (ii) EB/kBT in Equation 3.12 and (i) c,

(ii) EB/kBT in Equation 3.13. The parameter ”a” in Equation 3.12 is the same as

Ad f /dθ in Sankey et al. [12].

In Figure 3.24, we show our experimental linewidths as well as a fit to the

models discussed above. For a fit to Equation 3.12, we obtain a = Ad f /dθ = 2.3 ±
0.6 MHzK−1/2 and EB/kBT = 445 ± 54 K. These are in very good agreement with

the fit parameters obtained in [12]: A d f /dθ = 2.3 MHzK−1/2 and EB/kBT = 400 K,

as well as in [35]. For a fit to Equation 3.13, we obtain c= 0.26 ± 0.05 MHz K and

EB/kBT = 642 ± 148 K. The fits do not appear to be too sensitive to the choice of

the exponent (1 or 1/2) of the temperature.

We also tried to analyze the linewidths at lower temperatures and higher

temperatures separately to determine which model is more important in each

temperature range. In Figure 3.25, we show the experimental linewidths and

the fits in the two temperature ranges. At lower temperatures (T < 160 K), we

fitted the linewidths to ’a T 1/2’ and ’c T ’ and adjusted the parameters ”a” and

”c”, respectively. We obtained a = Ad f /dθ = 2.8 ± 0.14 MHzK−1/2 and c = 0.27 ±
0.02 MHz K. Our data and fits are unable to distinguish between the T and

√
T

models.

At higher temperatures, we fitted the linewidths to ’ f /π exp(−EB/kBT )’ and
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Figure 3.24: Modeling the temperature dependence of the linewidths. The cir-
cles are the experimental linewidths at H = 1150 Oe and I = 4.0 mA. The blue
solid line is a fit to Equation 3.12 and the red solid line is a fit to Equation 3.13.

adjusted the parameter EB/kBT. We obtained EB/kBT = 309 ± 15 K. If we add

the ’a T 1/2’ term to the higher temperature fit model (Equation 3.12), we obtain

a = Ad f /dθ = 1.9 ± 1.7 MHzK−1/2 and EB/kBT = 415 ± 128 K. If we add the ’c T ’

term to the higher temperature fit model (Equation 3.13), we obtain c= 0.24 ±
0.1 MHz K and EB/kBT = 574 ± 224 K. By adding the ’a T 1/2’ and ’c T ’ terms to

the thermally-activated model, we notice that the error bar on the fits becomes

very high. If we remove these terms and fit the high-temperature data to just

the thermally-activated term, the fit is better and the error bar is small (EB/kBT

= 309 ± 15 K). This suggests that the thermally-activated model is sufficient to
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Figure 3.25: Analyzing the temperature dependence of the linewidths in the
(a) lower temperature range (< 160 K) and (b) higher temperature range. The
circles are the experimental linewidths at H = 1150 Oe and I = 4.0 mA. The olive
solid line is a fit to Equation 3.11, the blue solid line is a fit to Equation 3.12, and
the red solid line is a fit to Equation 3.13.
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Figure 3.26: Example of power spectral density indicating hopping between
different dynamical modes at T = 185 K and H = 1150 Oe.

explain the large linewidths at higher temperatures.

It should be pointed out that the effective barriers we obtain from the fits

(EB/kBT ≈ 300 - 450K) are smaller than the effective barriers for static switching

(EB/kBT ≈ 104 − 105 K). This is not surprising, because in thermally-activated

hopping between different dynamical modes, the precession states have differ-

ent frequencies and different energies, but the difference between the energies

of two dynamical states is not as large as the energy difference between static

parallel and anti-parallel states. In Figure 3.26, we show an example of hopping

between dynamical modes at T = 185 K. At I = 3.4 mA and I = 3.6 mA, there is a
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precession mode at about 4 GHz. As we increase the current to I = 3.8 mA, we

see two precession frequencies at about 4 GHz and 5 GHz. These correspond to

two precession states very close in frequency. At I = 4.0 mA, the lower frequency

peak disappears and the higher-frequency peak evolves into a very sharp peak

at about 5.2 GHz.

Effect of heating

We also tried to take into account the effect of Joule heating due to the currents

that we apply across the sample. We calculated the effective temperature as a

function of the bath temperature at different currents in Figure 3.27(a), by using

the equation in [47]:

Te f f =

√
T 2 +

3
4

(
e I R
π kB

)2

, (3.14)

where Te f f is the effective temperature, T is the bath temperature, I is the current

and R is the resistance. We find that the lowest effective temperature, even at

a bath temperature of 10 K, is probably not much less than 100 K. We plot the

linewidths as a function of the effective temperature in Figure 3.27(b).

Figure 3.27: Calculation of effective temperature due to Joule heating. (a) Calcu-
lated effective temperature as a function of bath temperature for different I. (b)
Linewidths as a function of the effective temperature at different I and H = 1150
Oe.
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3.5.4 Macrospin Simulations as a Function of Temperature

We conducted macrospin simulations as a function of temperature at two dif-

ferent field angles, θH = 10◦ and θH = 80◦ (we did not perform simulations

at θH = 0◦ and θH = 90◦ in order to avoid singularities during the integra-

tion of the LLG equation). These were performed by integrating the Landau-

Lifshitz-Gilbert equation for both magnetic layers and included a Slonczewski

spin-torque term, the magnetic interaction between the layers, and fluctuating

Langevin fields to model thermal fluctuations (Section 2.3.1). The parameters

used in the macrospin simulations for the exchange-biased sample were: H =

1000 Oe, exchange-bias field, HEB = 360 Oe, 1◦ relative to the easy axis; Hdipole

due to the fixed layer on the free layer = 100 Oe, Hdipole due to the free layer on

the fixed layer = 100 Oe, Hanisotropy of fixed and free layers = 200 Oe; thickness

of free layer = 4 nm; thickness of fixed layer = 4 nm; area = 50×150 nm2; free

and fixed layer saturation magnetization MS = 560 emu/cm3, free layer damp-

ing α = 0.01 (we did not take into account any non-linear damping); fixed layer

damping = 0.1. Each simulation spanned 200 ns with a time step of 1 ps.

Figures 3.28(a) and (c) show the spectra at T = 10 K and T = 250 K for field

angles along θH = 10◦ and θH = 80◦, and Figures 3.28(b) and (d) show the corre-

sponding linewidths calculated directly from the Fourier Transform of the oscil-

lating GMR at the two field angles. We can see that at θH = 10◦ (Figure 3.28(a)),

the simulation correctly predicts a large second harmonic and a very small first

harmonic, because of the small misalignment angle between the magnetic lay-

ers. At θH = 80◦ (Figure 3.28(c)), the simulation shows a large first harmonic and

second harmonic due to the large misalignment angle between the magnetic

layers. In Figures 3.28(b) and (d), we see that the simulated linewidths increase
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Figure 3.28: Simulated power spectral density and linewidths as a function of
temperature for θH = 10◦ and θH = 80◦. (a) Simulated power spectral density for
H = 1000 Oe and θH = 10◦ at T = 10K and T = 250K. (b) Simulated linewidths of
the second harmonic as a function of temperature at H = 1000 Oe and θH = 10◦

(c) Simulated power spectral density for H = 1000 Oe and θH = 80◦ at T = 10K
and T = 250K. (d) Simulated linewidths of the first harmonic as a function of
temperature at H = 1000 Oe and θH = 80◦.

with temperature. We fit the linewidths to a T p model by adjusting the expo-

nent, ”p” of the temperature. We obtained p = 0.7 for the linewidths at θH = 10◦

and p = 0.82 for the linewidths at θH = 80◦. The value of ”p” in both cases is

close to 0.5 obtained by Sankey et al. [12]. We suggest that the discrepancy be-

tween our exponent and Sankey et al. might be due to the fact that we did not

attempt to adjust the current at different temperatures to keep the amplitude
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always constant.

3.5.5 Conclusions for Temperature Dependence of Linewidths

In conclusion, the temperature dependence of our experimental linewidths

can be explained by a combination of amplitude and phase fluctuations and

thermally-activated hopping. At lower temperatures, the linewidths are af-

fected more strongly by amplitude and phase fluctuations. Our fits are unable

to distinguish between the linear T and
√

T dependence. At higher tempera-

tures, the linewidths increase more rapidly due to thermally-activated hopping

between different dynamical modes.

3.6 Comparing Our Minimum Linewidths to Previous Spin

Torque Oscillator Studies

The minimum linewidths achieved by us at room temperature were 40 MHz

for fields applied along the in-plane hard axis (at lower temperatures, T = 10

K, we obtained linewidths of 8.9 MHz). This is among the narrowest room-

temperature linewidths observed for nanopillar devices in which the free layer

moves approximately as a single magnetic domain. We are aware of only one

report of a narrower linewidth in this category - a 21 MHz linewidth in a MgO

tunnel-junction device [Nazarov et al [48]]. Narrower lines (down to 7 MHz)

have been seen at higher currents in all-metal nanopillars, but these signals have

been identified with fixed-layer excitations or coupled motion of free and fixed

layers [9]. In other experiments on free-layer oscillations in metallic nanopillars,
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Sankey et al [12] reported a minimum room-temperature linewidth of 250 MHz,

Mistral et al [14] observed linewidths below 10 MHz at 225 K, but did not re-

port room-temperature results, and Houssameddine et al [16] reported 50 MHz

lines in nanopillars with perpendicularly-polarized fixed layers, but this paper

never stated whether the measurements were done at low temperature or room

temperature.

In point-contact devices, linewidths of approximately 2 MHz have been

obtained [Rippard et al [7], [15]]. Nanopillar samples in which spin torque

drives gyromagnetic oscillations of a magnetic vortex have achieved very nar-

row linewidths of approximately 300 kHz [Pribiag et al [17]]. Vortex oscillations

in point-contact devices have been measured with a linewidth of 576 kHz [Pu-

fall et al [49]].

3.7 Conclusions

We observe that applying a magnetic field along the hard in-plane axis of a

magnetic nanopillar device, so as to offset the precession axis of the free layer

away from the orientation of the exchange-biased fixed layer, can produce a

dramatic reduction in the linewidth of the spin-torque-driven dynamics excited

by a DC current. Based on micromagnetic simulations, we associate this re-

duction with a crossover from spatially nonuniform magnetization dynamics

to spatially coherent precession. This ability to control the spatial uniformity

of the magnetization dynamics should help in the development of spin-torque

nano-oscillators for use as microwave sources. Our results also suggest that

large device-to-device variations in linewidths measured previously [3, 8, 9, 12]
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may be associated with variations in the angle of the exchange bias relative to

the field direction.

The temperature dependence of our experimental linewidths can be ex-

plained by a combination of amplitude and phase fluctuations and thermally-

activated hopping. At lower temperatures, the linewidths are affected more

strongly by amplitude and phase fluctuations. Our fits are unable to distin-

guish between the linear T and
√

T dependence. At higher temperatures, the

linewidths increase more rapidly due to thermally-activated hopping between

different dynamical modes.
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CHAPTER 4

SPIN-TORQUE EFFECTS ON THE EXCHANGE-BIAS OF

ANTIFERROMAGNET/FERROMAGNET BILAYERS

4.1 Review of Antiferromagnets & Exchange-Bias

Antiferromagnets (AFM’s) are commonly used in magnetic sensors to pin the

magnetization of a ferromagnet (FM) in a particular direction by interfacial

exchange coupling. This ”exchange-bias” phenomenon leads to a unidirec-

tional anisotropy and enhanced coercivity in the ferromagnet. Different mod-

els have been proposed to try and explain the origin of this exchange-coupling

[1, 2, 3, 4, 5, 6] and the predictions of these models depend on whether the net

spin moment at the antiferromagnet / ferromagnet interface is compensated or

uncompensated (Figure 4.1). The net moment of the entire bulk of an antiferro-

magnet is zero; the compensation of spins just refers to the relative orientation

of the spins in the interfacial layer of the antiferromagnet. If all the spins in one

particular layer of the antiferromagnet are in the same orientation relative to

each other but are in the opposite orientation with respect to all other spins in

the subsequent layer, then the antiferromagnet interface is said to be uncompen-

sated, since the layer right next to the interface has a net moment even though

the bulk net moment of the antiferromagnet is zero (Figure 4.1(a)). On the other

hand, if the spins in one particular layer of the antiferromagnet are all alterna-

tively in the opposite orientation, then the antiferromagnet interface is said to

be compensated, since the layer right next to the interface has no net moment

(Figure 4.1(b)).

In reality, perfectly uncompensated antiferromagnet/ferromagnet interfaces
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(a) Uncompensated AFM interface (b) Compensated AFM interface

FM

AFM

Figure 4.1: Cartoon of uncompensated and compensated antiferromagnet / fer-
romagnet interfaces.

require atomically flat antiferromagnets and are hard to realize experimentally.

Most ferromagnet / antiferromagnet interfaces are rough and are either par-

tially uncompensated or fully compensated. Fully compensated antiferromag-

net interfaces have exchange-bias because of roughness-induced randomness in

the number of spins of each sub-lattice at the antiferromagnet / ferromagnet in-

terface. Consequently, different local regions of the interface have more spins

of one sub-lattice than the other, leading to the formation of antiferromagnetic

domains perpendicular to the ferromagnet / antiferromagnet interface that can

lead to some uncompensated spins at the interface even if the interface is mostly

compensated, thereby creating exchange-bias [3]. This random field model is

able to predict the correct order of magnitude of the hysteretic loop shift due to

the unidirectional anisotropy.

4.2 Spin-Torque Effects in Antiferromagnets

In order to think of spin-transfer torques in an antiferromagnet, we can intu-

itively see that there would be fundamental differences from when the spin-
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torque acts on a ferromagnet. In the case of a ferromagnet, the spins inside the

ferromagnet are locked together and the spin-transfer torque does not change

the relative orientations of the different spins inside the ferromagnet. In fact,

the spin-transfer torque essentially acts on the overall net orientation of all the

spins. In the case of an antiferromagnet, however, there are two sub-lattices of

opposite spins involved and so a spin-transfer torque on any particular layer of

the antiferromagnet could then affect the relative orientation of all subsequent

layers in the antiferromagnet because of the strong exchange-energy that war-

rants the net spin-moment of the antiferromagnet to be zero. Consequently, in

the case of an antiferromagnet, it is the difference between the sums of the torques

over the two opposite sub-lattices that becomes important [7]. This can lead to

the two sub-lattices moving relative to each other or the two sub-lattices mov-

ing together (but still opposite relative to each other) leading to a rotation of the

average direction of the antiferromagnet order parameter. The second effect is

the one that becomes important for antiferromagnetic giant magnetoresistance

(AGMR), i.e. the analog of GMR that depends on the relative alignment of two

antiferromagnets instead of two ferromagnets [8, 9].

4.2.1 Theoretical Predictions of Spin-Torque Effects in Antifer-

romagnets

Theories have suggested that torque from a spin-polarized current crossing

through an antiferromagnet/ferromagnet interface might alter the structure of

the antiferromagnet, thereby affecting the exchange-bias field produced by it on

the adjacent ferromagnetic layer [8, 10, 11, 12].
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In particular, Haney et al. [10] have calculated that the spin-torque on a fer-

romagnet due to a compensated antiferromagnet with 2-fold symmetry has the

form of sin 2θ instead of sin θ from another ferromagnet (as discussed in earlier

chapters). Their calculations indicate that for electrons flowing from an AFM

to a FM, the spin-torque tends to align the FM direction parallel with the AFM

axis and tends to align the AFM axis perpendicular to the FM direction in the

same plane. The reverse is true for electrons flowing from a FM to an AFM:

in this case, the spin-torque tends to align the AFM axis parallel to the FM di-

rection and tends to align the FM direction perpendicular to the AFM axis in

their common plane. They summarized these results by saying that spin-torque

tends to align the orientation of the ”downstream” material parallel with the

”upstream” material while it tends to align the orientation of the ”upstream”

material perpendicular to the ”downstream” material.

Haney and co-workers then calculated the implications of a sin 2θ torque by

integrating it into the LLG equation and found an interesting result. Assuming

that the AFM axis (along ẑ) is in the same direction and the same easy plane

(̂y − ẑ plane) as the ferromagnet (Figure 4.2(a)), a spin-torque for the case of

electrons flowing from the FM to the AFM would cause the FM direction to

align perpendicular to the AFM axis (along ŷ) but still in the common plane

(as discussed in the previous paragraph). As the FM precesses, the spin-torque

has a component that pushes the FM out-of-plane (i.e. in the x̂ direction); if the

torque is large enough, then the stable configuration of the FM is out-of-plane

(Figure 4.2(a)). Their results are summarized in the color plot (Figure 4.2(b)). In

this Figure, ”hc1” is a dimensionless quantity proportional to the spin-transfer

torque. hc1 < 0 corresponds to electrons flowing from the FM to AFM; we can

see that for this configuration that at small magnetic fields (”h”), the spin-torque
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(a) (b)

h

Figure 4.2: Theoretical predictions of the spin-transfer torque in antiferromag-
nets. Figure from Reference [10]. (a) Trajectory of the free-layer magnetization
due to the out-of-plane torque from an antiferromagnet. (b) Color plot of MX,
out-of-plane component of the magnetization, as a function of the current and
magnetic field.

pushes the FM out-of-plane as evidenced by the large MX component.

We would like to point out that the most commonly studied metallic anti-

ferromagnets, such as IrMn and FeMn, do not have the 2-fold symmetry that is

assumed in the theoretical models described above. Instead these antiferromag-

nets have an average tetrahedral symmetry.

4.2.2 Previous Experiments of Spin-Torque Effects in Antifer-

romagnets

Some recent experiments have claimed to observe an effect on magnetic switch-

ing in antiferromagnet / ferromagnet bilayers [13, 14, 15, 16, 17]. The device

geometries and results for each are summarized below (all thicknesses in nm):

In [13] and [17], Wei et al studied FeMn / CoFe bilayers and IrMn / CoFe

bilayers, respectively, in a point-contact geometry. In their device geometries,
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the CoFe layer (3 nm) was pinned by an antiferromagnet (FeMn or IrMn, 3 nm

and 8 nm) and a second CoFe layer (10 nm or 3 nm) was unpinned and sepa-

rated by a 10 nm copper spacer. They applied very large current densities (108

A/cm2) perpendicular to the plane of the samples (CPP) by employing a point-

contact geometry. They measured GMR versus field scans for their devices at

different currents between -35 mA to +35 mA. They found that the offset and

width of the hysteresis resistance loop corresponding to the pinned magnetic

layer switching changed with current (Figure 4.3(a)). Since the offset of the hys-

teresis loop corresponds to the magnitude of the exchange-bias, they concluded

that the exchange-bias changes with current. In particular, for their devices,

negative currents (electrons from FM to AFM) increased the exchange-bias and

positive currents (electrons from AFM to FM) decreased the exchange-bias (Fig-

ure 4.3(b)).

In [14], Urazhdin et al. studied FeMn / Py bilayers in a nanopillar geometry.

In their device geometry, the Py layer (5 nm) was pinned by FeMn (1.5 - 4 nm)

and a second Py layer (30 nm) was unpinned and separated by a 10 nm copper

spacer. They applied current pulses upto ±20 mA perpendicular to the plane

(CPP) of the nanopillar devices at large fields (H = +3000 or -3000 Oe) and then

measured the exchange-bias from the hysteresis loop at small currents. Their

results are summarized in Figure 4.3(c). They found that when the magnetic

field was initialized to negative field, H = -3000 Oe, the exchange-bias increased

at negative currents (electrons from FM to AFM) and then saturated. At positive

currents (electrons from AFM to FM)), they found no systematic dependence

of the exchange-bias on current. When the magnetic field was initialized to

positive field, H = +3000 Oe, there was no sizable variation of the exchange-bias

with current.
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(a)

(b)

(d)

(c)

(e)

Figure 4.3: Summary of previous experiments to probe spin-torque effects in
antiferromagnets. (a) Resistance as a function of magnetic field at different cur-
rents, for FeMn/CoFe bilayers in a point-contact geometry (Figure from Refer-
ence [13]). (b) Grey scale plot of the data in (a) (Figure from Reference [13]).
(c) Exchange-bias as a function of current for two different initialized field val-
ues, for FeMn/Py bilayers in a nanopillar geometry (Figure from Reference [14].
(d) GMR versus field scan before and after a current is applied for FeMn/Py
multilayers (Figure from Reference [15]). (e) HEB as a function of current for
NiCo0/CoFe multilayers (Figure from Reference [16]).

136



In [16], Dai et al. studied NiCoO / CoFe bilayers. In their device geometry,

the CoFe layer (3 nm) was pinned by NiCoO (40 nm) and a second CoFe layer

(4.5 nm) was unpinned and separated by a 3.8 nm copper spacer. They stud-

ied mm2 multilayers and applied AC-currents in the plane (CIP) of the sample.

Their results are shown in Figure 4.3(d).

In [15], Tang et al. studied FeMn / Py bilayers. In their device geometry,

the Py layer (10 nm) was pinned by FeMn (15 nm) and a second Py layer (10

nm) was unpinned and separated by a 4 nm copper spacer. They studied mm2

multilayers and applied currents in the plane (CIP) of the sample. Their results

are shown in Figure 4.3(e).

4.2.3 Putting Our Experiments in Perspective

All the above experiments to date have studied the current-dependence only

in the limit of large magnetic fields, near the switching threshold for the ferro-

magnet. In order to study the current dependence of the exchange-bias more

directly, over a wide range of currents and magnetic fields, we have conducted

dynamical spin-torque-driven ferromagnetic resonance (ST-FMR) measurements

on antiferromagnet/ferromagnet bilayers, which allow a direct measurement of

the magnitude of the exchange bias and its current dependence. We studied

IrMn / Py layers in a naopillar geometry. In our device geometry, the Py layer

(6 nm) is pinned by IrMn (6 nm or 9 nm) and a second Py layer (40 nm) is un-

pinned and separated by a 10 nm copper spacer. We will discuss our device

geometry in detail in the next section.
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4.3 Design & Structure of Devices

We have designed and fabricated magnetic multilayer devices with a nanopil-

lar geometry, in which the magnetic free layer is 6 nanometers (nm) of Permal-

loy (Py; Ni81Fe19) exchange-biased to an antiferromagnet, IrMn (6 nm or 9 nm)

(Figure 4.4). In contrast to previous experiments [18, 19] as well as the devices

discussed in Chapter 3, where the fixed layer is typically the magnetic layer that

is pinned by an antiferromagnet, we pin the free layer by an antiferromagnet in

order to directly study the dynamics of an exchange-biased nanomagnet. In our

devices, the fixed layer is a semi-extended film of Py (40 nm) (Figure 4.4) and it

is ”fixed” by virtue of its magnetization always being fixed along the direction

of an external magnetic field due to its small coercivity. We make the fixed layer

extended to reduce dipolar coupling between the magnetic layers and also to

minimize any dynamics in the fixed layer. The complete layer structure is (with

thicknesses in nm): 4 Py/80 Cu/40 Py/10 Cu/6 Py/(6, 9) IrMn/20 Cu/30 Pt.

We fabricated and measured devices with two different thicknesses of the

IrMn antiferromagnet (6 nm and 9 nm) for comparison. We chose the free layer

(Py) to be the same thickness of 6 nm for both antiferromagnet thicknesses. We

would like to point out that this free layer is a little thicker (6 nm) than the free

layer discussed previously (4 nm) in Chapter 3 (Figure 3.5). We chose it to be

thicker for this experiment in order to avoid a large surface contribution to the

damping from the antiferromagnet. We made the ferromagnet thick enough so

that the surface damping would not be so dominant that we couldn’t observe

any resonance. However, we did not make it too thick in order to avoid pre-

cluding any dynamics in this layer.
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Py: 40 nm

(Extended)

IrMn: 6 or 9 

nm

Cu: 10 nm

Py: 6 nm

Py: 40 nm

(Extended)

IrMn: 6 or 9 

nm

Cu: 10 nm

Py: 6 nm

IrMn: 6 or 9 

nm

Cu: 10 nm

Py: 6 nm

Figure 4.4: Layer structure of the pinned-free-layer nanopillar spin-valve de-
vices that we studied. The free layer, Py (6 nm) is exchange-biased by an antifer-
romagnet, IrMn (6 or 9 nm), while the fixed layer (Py, 40 nm) is semi-extended.

We chose the thicknesses of the antiferromagnet after conducting SQUID

measurements to determine the optimal parameters for exchange-bias. In Fig-

ure 4.5, we show SQUID results for a control sample: an unpinned Py film

(Figure 4.5(a)) as well as a Py film pinned to 3 different antiferromagnet thick-

nesses: 3 nm (Figure 4.5(b)), 6 nm (Figure 4.5(c)) and 9 nm (Figure 4.5(d)). For

the unpinned Py film (Figure 4.5(a)), the hysteresis loop is centered about zero

magnetic field and has no finite width, indicating the lack of exchange-bias and

anisotropy, as expected. For the Py film pinned by 3 nm (Figure 4.5(b)), we see

that the loop is centered about zero magnetic field, indicating no substantial
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Figure 4.5: SQUID data of the magnetic moment as a function of the applied
magnetic field for (a) an unpinned Py layer (6 nm thick)
and a pinned Py layer (6 nm thick) exchange-biased by antiferromagnet (IrMn)
of different thicknesses (b) 3 nm, (c) 6 nm and (d) 9 nm.

exchange-bias. However, the loop has a finite width indicating an enhanced

coercivity. This is not unexpected, since pinning a ferromagnetic film to an an-

tiferromagnet is known to enhance the ferromagnet coercivity. For the Py films

pinned to the 6 nm and 9 nm antiferromagnet (Figures 4.5(c) and (d)), we see

that the loops are offset from zero field by about H ≈ 200 Oe and they also have

a finite width, indicating that the Py film is exchange-biased with a HEB ≈ 200

Oe. We do not see any pronounced difference in the exchange-bias for the two

different antiferromagnet thicknesses in Figures 4.5(c) and (d).
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4.4 Fabrication of Devices

The devices are fabricated by the procedure described in Section 2.1. The lay-

ers are first deposited by sputtering in a magnetic field (300 Oe) and annealed

at 220◦C for 85 minutes to exchange-bias the free-layer. We use electron-beam

lithography and ion-milling to pattern the antiferromagnet, the free magnetic

layer and the Cu spacer layer to give a circular or elliptical cross-section. We etch

only partially (about 4-5 nm) into the fixed layer to make it mostly extended. In

order to minimize any artifact signals arising from magnetic fluctuations in the

contacts, we incorporate an additional etch step (not discussed in Section 2.1)

to pattern the fixed layer into an 18 × 18 µm2 square (Figure 4.6), leaving the

contacts free of magnetic material. This patterned area of the fixed layer is still

almost 104 times larger than the cross-sectional area of the free layer, thereby

allowing it to still be semi-extended and unpatterned relative to the free layer.

We use photo-lithography to pattern bottom leads and to make top contacts. We

have measured 6 devices in detail: 3 devices with a 6 nm IrMn thickness and 3

devices with a 9 nm IrMn thickness. In this chapter, we will discuss data for a 80

nm2 diameter circular device (Figure 4.7(a), inset) with 9 nm IrMn thickness, for

which we observed the most pronounced effects in the ST-FMR measurements.

4.5 DC-Characterization

Figure 4.7(a) shows a typical differential resistance (dV/dI) as a function of the

magnetic field at room temperature. As the magnetic field is swept along the

direction of the exchange-bias (”0 degrees”), we observe hysteretic switching of

the magnetic layers between parallel and anti-parallel alignment with a resis-
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Figure 4.6: Optical and AFM images of the semi-extended fixed layer. (a) Op-
tical image of the bottom leads and the fixed layer after photolithography. We
do the etch in two steps: in the first step, we etch till the fixed layer. In the sec-
ond step, we protect a square of 18µm2 in the center (”E”) and etch the bottom
leads (”B” and ”D”) all the way to the Cu bottom electrode. (b) AFM image of
a surface plot showing the 18µm2 fixed layer and the deeper bottom leads. (c)
Profilometry scan of the fixed layer height relative to the bottom leads. We scan
from the top pads (”A”) across the bottom lead (”B”), the bottom pad (”C”),
bottom lead (”D”) and the fixed layer (”E”).
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tance change, ∆R ≈ 0.1Ω . The loop on the left corresponds to the switching of

the exchange-biased free layer: the non-zero offset is due to the exchange-bias

field (HEB ≈ 100 Oe) from the antiferromagnet and the width of the loop is very

small due to the negligible shape anisotropy of the circular device. The loop on

the right, close to zero field, corresponds to the switching of the semi-extended

fixed layer which has a very small coercive field (< 10 Oe) (this small coercive

field might be due to non-zero dipole interactions with the pinned free layer).

Note that the HEB of the patterned pinned free layer is smaller than the HEB of

the pinned free layer thin film measured in the SQUID (Figure 4.5(d)). This may

be because the antiferromagnet pins a smaller surface-area of the ferromagnet

in the patterned case than in the thin-film case, leading to a smaller HEB. Also

note that the HEB is smaller for these devices than the HEB measured in previous

experiments (Figure 3.6(b)), because the antiferromagnet is grown on top of the

ferromagnet in the current experiment whereas it was grown at the bottom of

the ferromagnet in previous experiments. Our SQUID measurements for both

kinds of samples: FM/AFM and AFM/FM layers are also consistent with this

difference in exchange-bias.

Figure 4.7(b) shows the differential resistance (dV/dI) as a function of the

applied field angle, θH at H = 75 Oe, less than the HEB. When the magnetic field

is applied along 0◦ (i.e. the exchange-bias direction), both magnetic layers are

parallel (low resistance). Since the coercivity of the unpatterned fixed layer is

very small, as the magnetic field is rotated away from 0◦, the magnetization of

the fixed layer follows the field direction while the magnetization of the free

layer remains pinned approximately along the exchange-bias direction. As a

result, the angle between the layers changes gradually from parallel (at θH = 0
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80 nm diameter

Figure 4.7: (a) Differential resistance as a function of magnetic field applied
along the direction of the exchange-bias. Inset: SEM of circular cross-section of
80 nm diameter device. (b) Differential resistance as a function of magnetic field
angle. ”0 degrees” corresponds to the exchange-bias direction.

degrees) to anti-parallel orientation (at θH = 180 degrees) as θH is varied. (Note

that the slope of the resistance between θH = 0◦ and θH = 90◦ is smaller than the

slope between θH = 90◦ and θH = 180◦. This is due to the fact that the pinned

free layer also moves by a few degrees as the external field angle is varied, but it

moves by a much lesser amount once the magnetic field crosses 90◦. Therefore,

the resistance increases much faster between 90 − 180◦ than it does between

0 − 90◦. At much smaller H, the resistance slope is almost always the same

between 0 − 90◦ and 90 − 180◦, as we would expect, since the pinned free layer

doesn’t move at all). The advantage of our device design is that it allows for an

easy control of the relative alignment between the layers simply by rotating the

magnetic field.
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4.6 ST-FMR Measurements

We have conducted ST-FMR measurements (Section 2.2.3) on these devices

and these will be our main focus. In the ST-FMR technique [20, 21], a radio-

frequency current (IRF) is applied across the device to excite magnetic preces-

sion. The precession of the magnetic moments of one or both of the layers causes

changes in the resistance of the magnetic multilayer. The amplitude of the res-

onant motion is detected from the changing resistance of the sample by mea-

suring the dc-voltage corresponding to the mixing of the IRF and the changing

resistance (Equation 2.28).

A typical ST-FMR spectrum of the mixing voltage (Vmix) as a function of the

frequency for our FM/AFM bilayer devices is shown in Figure 4.8(a). The spec-

trum has a non-zero offset due to the non-linear V-I behavior of the device. We

observe a positive peak close to 3 GHz (Peak-1) and a closely spaced negative

peak close to 4 GHz (Peak-2). We have confirmed that the positive and negative

peaks correspond to two distinct modes since they move independently with

field magnitude and field angle (Figure 4.8(b)). Figure 4.8(b) shows the spec-

tra at H =100 Oe at different θH. At θH = 129 degrees, we observe a spectrum

similar to Figure 4.8(a), but as we increase θH, the positive and negative peaks

distinctly separate. Based on this, we have analyzed all our spectral data by

fitting the positive and negative peaks to a sum of two Lorentzian peaks (Equa-

tion 4.1) with 7 adjustable parameters: the offset (u) as well as the frequencies

(f, g), linewidths (w, z) and amplitude (a, c) of the 2 peaks.

Vmix = u +
a

(1 + (x − f )/w)2 +
c

(1 + (x − g)/z)2 (4.1)
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Figure 4.8: (a) Typical ST-FMR spectrum for the FM/AFM bilayer device at H =

75 Oe applied at θH = 127◦ relative to the exchange-bias (close to where the
angle between the layers is close to 90◦); IDC = 0 mA; IRF = 0.12 mA. (b) ST-FMR
spectra at H = 100 Oe applied at different field angles θH, where we can see the
two peaks separating.

4.7 Analysis as a Function of Magnetic Field Angle

In order to determine which peak in the spectrum corresponds to the pinned

free layer excitation mode, we analyze the frequency of the positive and nega-

tive peaks as a function of the applied field angle (Figure 4.9(a)) when only a

small RF-current (IRF = 0.12 mA, IDC = 0 mA) is applied. For a mode associated

with a free layer excitation, we would expect the frequency to decrease steadily

as the applied field angle is increased (cartoon in Figure 4.9(b)). This is for the

following reason: at small field angles, the effective field on the free layer (−→He f f ),

due to the sum of the exchange-bias field (−→HEB) and the external field (−→Happlied)

is large since both these field vectors point in the same direction. Hence the

frequency at small field angles would be high. As we rotate the external field

away from the exchange-bias direction, we would expect the effective field on

the free layer to decrease steadily since the exchange-bias field and the external

field point in opposite directions, leading to a decrease in frequency. On the
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Figure 4.9: Analysis of the ST-FMR spectra for the FM/AFM pinned-free-layer
device as a function of θH, to identify the pinned-free-layer mode. (a) 3-D color
plot of the Vmix frequency spectrum as a function of θH at H = 75 Oe, IDC = 0 mA
and IRF = 0.12 mA. (b) Frequency versus θH of peak-1 at H = 75 Oe, IDC = 0 mA
and IRF = 0.12 mA. Cartoon below (b) shows the field vector, −→He f f , which is the
vector sum of −→Hexternal and −→HEB. (c) Amplitude of the Vmix signal for peak-1 as a
function of the angle between the magnetic layers at H = 75 Oe, IDC = 0 mA and
IRF = 0.12 mA.
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other hand, we would expect to see no dependence on the field angle for an

extended fixed layer mode. This is because the extended fixed layer is isotropic

and so we would expect it to have the same frequency at all field angles. In

Figure 4.9(b), we find that the frequency of the positive peak (Peak-1) decreases

steadily as the applied field angle is increased, indicating that this mode corre-

sponds to the pinned free layer excitation. On the other hand, the frequency of

the negative peak (Peak-2) does not have a clear dependence on the field angle

(Figure 4.9(a)). This might be a mode corresponding to excitations in the ex-

tended fixed layer or some form of dynamical coupling between the fixed and

free layer oscillations.

We also point out that the amplitude of the peak in the ST-FMR spectrum

is proportional to the spin-transfer torque, which is proportional to sin θ (θ is

the angle between the magnetic layers). So we would expect to see a maximum

torque when θ is 90◦. In Figure 4.9(c), we observe that the maximum amplitude

of the peak indeed occurs at a field angle where the relative angle between the

layers is close to 90◦.

4.8 Analysis as a Function of IDC

Having identified Peak-1 to correspond to the pinned free layer excitation, we

now discuss its current dependence. In order to do so, we rotated the applied

field to a few different angles so that we could change the relative alignment

between the layers. At each angle, we applied a DC current in addition to the

RF-current (IRF = 0.12 mA) and took ST-FMR data at different field magnitudes.

In this section, we will focus on the field angle where the angle between the
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layers is close to 90◦ (i.e. when the field angle is 110◦ relative to the exchange-

bias), since we observe the largest amplitude of the ST-FMR signals at this field

angle.

Figure 4.10(a) shows a color plot of the mixing voltage as a function of the

frequency and IDC and Figure 4.10(b) shows the spectra at a few different cur-

rents between IDC = −3mA and IDC = +3mA. We find that the frequency in-

creases steadily as IDC is swept from negative to positive currents (Figure 4.10(c))

for all applied magnetic fields (H). The frequency of the magnetization preces-

sion is proportional to the effective field, He f f , on the ferromagnet. In the case

of our circular, exchange-biased free layer sample, the effective field should de-

pend on the applied magnetic field (H), the exchange-bias field (HEB) and the

out-of-plane demagnetization field, 4πMe f f (Equation 4.2).

ω2 = γ2 [H cos(θH − β) + HEB cos β][H cos(θH − β) + HEB cos β + 4πMe f f ] (4.2)

In the above equation, the only possible current-dependent parameters are the

out-of-plane demagnetization field, 4πMe f f and the exchange-bias field (HEB).

The demagnetization field might change with current due to Joule heating of the

magnetic layer. For the current range that we have conducted all our measure-

ments in (-3 to +3 mA), we estimate from Equation 3.14 that the effective tem-

perature of the magnetic layer can increase by ∼5-10K at room temperature. The

higher effective temperature can reduce the demagnetization field and therefore

change the frequency. However, our previous temperature-dependence SQUID

measurements have shown that the change in demagnetization field with tem-

perature is not large enough to cause the large changes in frequency that we

observe as a function of current. Therefore, we conclude that the most likely

frequency dependence of the current is due to the current-dependence of the

exchange-bias.
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(a)

Figure 4.10: Analysis of the ST-FMR spectra for the FM/AFM pinned-free-layer
device as a function of IDC. (a) 3-D color plot of the Vmix frequency spectrum as
a function of IDC at IRF = 0.12mA, H = 75 Oe, applied along θH = 110◦ relative
to the exchange-bias (close to where the angle between the layers is 90◦). Red
is positive mixing voltage, blue is negative mixing voltage. (b) Vmix spectra at
different IDC. (c) Frequency versus IDC for different field magnitudes (H = 25 −
100 Oe in steps of 5 Oe) applied along θH = 110◦ relative to the exchange-bias
(close to where the angle between the layers is 90◦). (d) HEB as a function of IDC,
calculated from the precession frequency (Equation 4.2).

It should also be pointed out that as discussed in Chapter 3, for IDC above

the critical current for exciting dynamics as well as for large-angle dynamics,

the amplitude of the precession increases with applied IDC, which can lead to

frequency variations with IDC. However, in the present case, we see the large

frequency variation with IDC even below the critical current and we are also in

the small-angle precession regime (precession angle is only few tens of degrees,
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as we will discuss later), so that applying higher IDC cannot lead to significantly

high enough amplitudes to change the frequency by the large amount that we

see in Figure 4.10(c). Consequently, just the variation in precession angle due to

IDC cannot independently explain the large variation in frequency and we con-

clude that the exchange-bias must have some current-dependence. We would

also like to point out that the frequency changes with current cannot be ex-

plained by Joule heating, since the observed response to positive and negative

currents is opposite.

From the frequency variation with current, we have calculated from Equa-

tion 4.2 the corresponding exchange-bias (HEB) variation with current (Figure

4.10(d)). We see that the calculated HEB for all magnetic fields changes from

≈140 Oe at IDC = −3 mA to ≈200 Oe at IDC = +2 mA. This corresponds to a

change in HEB per unit current density, ∆HEB/∆JDC ≈ 6 × 104 Oe.nm2/mA. We

also find that above H =55 Oe, all the curves for the different applied magnetic

fields collapse on the same line (Figure 4.10(d)). We would like to note that the

calculated HEB from the Kittel frequency at IDC = 0 is about 180 Oe, which is a

little larger than the HEB measured from the dV/dI (≈100 Oe) in Figure 4.7(a).

In Figures 4.10(b)-(d), we show only the current-range between IDC = −3

mA to IDC = +2 mA. This is because, at higher IDC, we excite vortices in the

circular free layer. This can be seen by the large change in amplitude at high IDC

in Figure 4.10(a) and Figures 4.11(a)-(b), as well as from intermediate resistance

states in the field sweeps at constant current.

According to our current convention, positive current corresponds to elec-

trons flowing from the free layer to the fixed layer, i.e from the antiferromag-

net to the free-layer ferromagnet and negative current corresponds to electrons
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Figure 4.11: Amplitude of the ST-FMR spectral peaks as a function of IDC at (a)
small H and (b) large H, applied along θH = 110◦ relative to the exchange-bias
(close to where the angle between the layers is 90◦).

from the fixed layer to the free layer, i.e. from the ferromagnet to the antiferro-

magnet. Based on this, our results suggest that electrons from the antiferromag-

net to the ferromagnet (positive current) enhance the exchange-bias and elec-

trons from the ferromagnet to the antiferromagnet (negative current) decrease

the exchange-bias.

4.9 Effective Damping

We have also calculated the effective damping, α from the linewidth of the ST-

FMR peaks (Figure 4.12). We have found that at IDC = 0 mA, the effective damp-

ing is about 0.025 for most of the magnetic fields (Figure 4.12). We expect to ob-

serve higher effective damping in an exchange-biased nanomagnet due to the

”slow relaxer” mechanism due to thermal excitation of antiferromagnetic grains

[22]. Fuchs et al. have measured damping values of 0.010±0.002 in an unpinned

Py nanomagnet [23]. The damping values for an exchange-biased thin film have
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Figure 4.12: Effective damping of the FM/AFM pinned-free-layer device as a
function of IDC at fields applied along θH = 110◦ relative to the exchange-bias
(close to where the angle between the layers is 90◦).

been reported to be between 0.015 − 0.02 [24, 25, 26, 27]. We observe damping

values that are slightly higher than those observed in extended films. This may

be because the antiferromagnetic grains in a nanomagnet have greater freedom

to undergo irreversible processes since they are not held in place by an extended

film.

4.10 Dependence on IRF

We also briefly studied the ST-FMR spectra at different IRF . As expected, the

amplitude of precession increases quadratically with IRF (Figure 4.13(a)). We

conducted all the above ST-FMR measurements and analysis at IRF = 0.12 mA,

which is small enough that we are not in the non-linear regime of IRF . In Figure
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Figure 4.13: Analysis of the ST-FMR (a) amplitude and (b) frequency as a func-
tion of IRF at H = 25 Oe applied along θH = 90◦ relative to the exchange-bias
direction.

4.13(b), we plot the frequency as a function of different IRF and find that it de-

creases with increasing IRF . This is not unexpected, since increasing IRF increases

the precession amplitude slightly.

We have estimated the precession angle for IRF = 0.12 mA from the Vmix

magnitude. For a complete switching event (precession amplitude = 180◦) (∆R =

0.1Ω) and an IRF = 0.12 mA, we would expect the Vmix to be about 10 µV. In

Figure 4.13(a), Vmix is of the order of 1 µV, which amounts to a ∆R ≈ 0.01Ω, which

is about 1/10th of the amplitude of a complete switching event, indicating that

the precession amplitude < 20◦.

4.11 Variations among different samples

Thicker Antiferromagnet Devices (9 nm IrMn): For all the 3 thicker antiferro-

magnet devices (9 nm) studied in detail, the frequency decreases as the mag-

netic field is rotated away from the exchange-bias direction, indicating that we
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are exciting the pinned free layer mode in all the samples. The peak shape at

IDC =0 mA also looks consistently similar across all the devices (Figure 4.8(a)).

For all 3 samples, we observe strong variations in the frequency as a function of

current: the frequency decreases with negative IDC and increases with positive

IDC when the relative angle between the layers is close to 90◦, indicating that the

exchange-bias is current-dependent.

Thinner Antiferromagnet Devices (6 nm IrMn): In Figure 4.14, we sum-

marize the data for one of the thinner antiferromagnet (6 nm) samples. The

differential resistance (dV/dI) as a function of H (Figure 4.14(a)) and θH (Figure

4.14(b)) look similar to the one for the thicker antiferromagnet sample in Figure

4.7. The peak shape (Figure 4.14(c)) also looks similar to that for the thicker an-

tiferromagnet sample (Figure 4.8(a)). As a function of the magnetic field angle,

the frequency of the positive peak decreases indicating that we are exciting the

pinned free layer mode (Figure 4.14(d)). As a function of IDC (Figure 4.14(e)-

(f)), there is a variation in the frequency but it is not as strong as for the thicker

antiferromagnet sample (Figure 4.10).

We are not sure what the discrepancy in the current-dependence of the fre-

quency between the thicker and thinner antiferromagnet samples might be due

to. Theories have predicted that the spin-torque on an antiferromagnet acts on

the bulk of the antiferromagnet, as opposed to the surface as in the case of a

ferromagnet [8]. Since the spin-torque on the antiferromagnet is predicted to be

a bulk effect, it is possible that the spin-torque may act differently on the dif-

ferent thicknesses of antiferromagnet, leading to different consequences for the

current-dependence of the exchange-bias.
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(e)

(d)

45 18090

Figure 4.14: Data for a thinner antiferromagnet (6 nm) device. (a) Differen-
tial resistance as a function of magnetic field applied along the direction of the
exchange-bias. (b) Differential resistance as a function of magnetic field angle.
”0 degrees” corresponds to the exchange-bias direction. (c) Typical ST-FMR
spectrum for the FM/thinner AFM (6 nm) bilayer device at H = 75 Oe applied
along θH = 110◦ relative to the exchange-bias (close to where the angle between
the layers is about 90◦). (d) 3-D color plot of the Vmix frequency spectrum as a
function of θH at H=75 Oe, IDC =0 mA and IRF =0.1 mA. (e) 3-D color plot of the
Vmix frequency spectrum as a function of IDC at H=75 Oe, IRF = 0.1 mA, applied
along θH = 110◦ relative to the exchange-bias (close to where the angle between
the layers is about 90◦). (f) Vmix spectra at different IDC.
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4.12 Comparison to Previous Studies of Spin-Torque Effects on

Exchange-Bias

We would like to compare the changes in exchange-bias that we observe to

previous studies of the current-dependence of the exchange-bias. In particu-

lar, we would like to compare our results to Wei et al. [13, 17]. We show their

data in Figure 4.15 for FeMn and IrMn exchange-biased samples. In their ex-

periments, they applied very high current densities of the order of 108 A/cm2

across a point-contact geometry. Their current convention is the same as ours:

positive current corresponds to electrons from the free layer to the fixed layer.

They found that the exchange-bias decreases for positive currents and increases

for negative currents and they calculated slopes of about 0.2-0.3 Tesla/Amperes

(T/A) for the FeMn samples and about 0.01 T/A for the IrMn samples [13, 17].

Comparing our device structure to their devices: our Cu spacer thickness

is the same (10 nm) as theirs; their pinned layer is CoFe (3 nm) whereas our

pinned layer is Py (6 nm); their antiferromagnet thicknesses (IrMn and FeMn, 8

nm) are close to the thicknesses we used (IrMn, 6 nm and 9 nm).

As we showed in Figure 4.10(d), for our samples, the exchange-bias increases

at positive currents and decreases at negative currents. This is opposite to the

trend observed by Wei et al. in [13, 17]. However, we would like to point out

that even in [13, 17], there were differences between the current-dependence of

the exchange-bias for the IrMn and FeMn antiferromagnet samples. For their

samples, the current-dependence on exchange-bias for IrMn samples appears

to be much weaker than for the FeMn antiferromagnet samples (Figure 4.15).

We suggest that the different current-dependence of the exchange-bias between

157



(a) FeMn (8 nm) / CoFe (3 nm)

(b) IrMn (8 nm) / CoFe (3 nm)

Figure 4.15: Comparison of the current-dependence of the HEB for FeMn/CoFe
bilayers and IrMn/CoFe bilayers (Figure from Reference [17]).

our samples and their samples might be due to different interfaces between the

antiferromagnet / ferromagnet (IrMn / Py, in our case; IrMn / CoFe, in the case

of Wei et al.). We have also learned from private communication with Prof. Jack

Bass at Michigan State that they observed some unusual behavior in their IrMn

/ Py samples; their results have not been published, so we are unable to directly

compare our results with theirs for the IrMn / Py bilayers.

We also tried to do some quantitative comparisons between the current-

dependence of the exchange-bias for our samples and theirs. First, the current

densities that we applied across our samples were of the order of 107 A/cm2,

while Wei et al. applied current densities of the order of 108 A/cm2. From Fig-
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ure 4.10(d), we estimate the change in exchange-bias per unit current for our

sample to be about 1.2 T/A. This is slightly larger than the slope reported by

Wei et al. for the FeMn/CoFe samples (0.2 - 0.3 T/A) and much larger than

their IrMn/CoFe samples (0.01 T/A). The exchange-bias per unit current den-

sity for our sample was about 6000 T.nm2/A, compared to about 4000 T.nm2/A

for the FeMn samples and 200 T.nm2/A for the IrMn samples measured by Wei

et al.

4.13 Conclusions

We have conducted spin-torque-driven ferromagnetic resonance (ST-FMR) mea-

surements on magnetic nanopillar devices in which the free layer is exchange-

biased by an antiferromagnet, with the motivation of exploring spin-torque ef-

fects on the exchange-bias in antiferromagnet/ferromagnet bilayers. We have

found variations in the precession frequency as a function of current, indicating

that the exchange-bias is current-dependent. The current-dependence of the fre-

quency variations is stronger in devices with a thicker antiferromagnet (9 nm)

than in the devices with a thinner antiferromagnet (6 nm). We have also verified

that the effective damping of an exchange-biased nanomagnet is higher than for

an unpinned nanomagnet.
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CHAPTER 5

CONCLUSIONS

In this dissertation, we have described experiments to study the microwave sig-

nals produced by spin-torque-driven magnetization dynamics in magnetic mul-

tilayer spin-valve devices with a nanopillar geometry.

Spin-transfer torque from a spin-polarized current can generate steady-state

magnetic precession in magnetic multilayers, a phenomenon of technological

interest for making tunable nanoscale microwave sources and resonators. For

technological applications, it is desirable that the microwave signal has a fre-

quency spectrum with a narrow linewidth at room temperature. The linewidth

of DC-driven precession is determined by deviations from perfect periodicity in

the precessional trajectories. Some important sources of these deviations might

be amplitude and phase fluctuations, thermally-activated hopping between dy-

namical modes or spatial incoherence.

The motivation of the first part of our work, described in Chapter 3, was

to understand the important mechanisms contributing to the linewidths with a

view to optimizing the coherence of the oscillations. We studied the frequency

linewidths of the precessional oscillations as a function of the in-plane magnetic

field angle and temperature. We reported measurements and simulations of

DC-driven precession which showed a surprisingly strong dependence on the

linewidth on the in-plane angle of the applied field. We found that the most-

commonly studied field orientation, in-plane and parallel to the magnetic easy

axis, produces the broadest linewidths. As the field angle is rotated toward the

in-plane hard axis the linewidths decrease dramatically, by more than a factor

of 20 in some devices. Based on micromagnetic simulations, we identified these
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variations as due to a transition from spatially incoherent to coherent preces-

sion. This work was published in [1].

We also studied the linewidths as a function of temperature at field angles

where we observed the narrowest linewidths, i.e. along the in-plane hard axis.

We found that our experimental linewidths could be explained by a combina-

tion of amplitude and phase fluctuations and thermally-activated hopping be-

tween different dynamical modes. At lower temperatures, the linewidths were

more strongly affected by amplitude and phase fluctuations. At higher temper-

atures, the linewidths increased rapidly because of thermally-activated hopping

between dynamical modes.

The motivation of the second part of our work, described in Chapter 4,

was to investigate spin-torque effects on the exchange-bias of antiferromag-

net/ferromagnet bilayers. Antiferromagnets are commonly used in magnetic

sensors to pin the magnetization of a ferromagnet in a particular direction by

interfacial exchange coupling. This ”exchange-bias” phenomenon leads to a

unidirectional anisotropy and enhanced coercivity in the ferromagnet. Theo-

ries have predicted that an electrical current crossing through an antiferromag-

net/ferromagnet interface can alter this exchange-bias, and some experiments

have also claimed to observe an effect on magnetic switching. However, all ex-

periments to date have studied the current-dependence only in the limit of large

magnetic fields, near the switching threshold for the ferromagnet. In order to

study the current dependence of the exchange-bias more directly, over a wide

range of currents and magnetic fields, we conducted spin-torque-driven ferro-

magnetic resonance (ST-FMR) measurements on antiferromagnet/ferromagnet

bilayers.
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We fabricated magnetic nanopillar devices in which the free magnetic layer

is exchange-biased to an antiferromagnet, and which allow a direct measure-

ment of the magnitude of the exchange bias and its current dependence. We

observed a strong variation in the precession frequency of the pinned free layer

as a function of current. Since the frequency of the magnetization precession is

proportional to the effective field on the magnet, which in turn depends on the

exchange-bias field, we concluded that the exchange-bias changes with current.

We also verified that the effective damping of an exchange-biased nanomagnet

is higher than for an unpinned nanomagnet.
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