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The West African westerly jet (WAWJ) is a low-level (~ 925 hPa) feature of 

the summer climatology that transports moisture from the eastern Atlantic onto the 

African continent at 8-11°N. Here the dynamics of the jet’s formation and its role in 

Sahel precipitation variations are examined.  

Horizontal momentum budgets analysis shows that the jet forms when a region 

of westerly acceleration is generated by the superposition of the Atlantic Intertropical 

Convergence Zone (ITCZ) and the westward extension of the continental thermal low, 

which is associated with the formation of an offshore low related to seasonal sea 

surface temperature (SST) warming at 6°-18°N along the coast.  

Variations of the westerly jet are significantly positively correlated to 

precipitation variations over the Sahel (10°-20°N, 18°W-30°E) on both interannual 

and decadal time scales.  In wet periods of 1958-1971 and 1988-2009 (dry period of 

1972-1987), enhanced (decreased) westerly moisture fluxes associated with a strong 

(weak) jet increase (decrease) the low-level moisture content over the Sahel, 

decreasing (enhancing) the stability of the atmosphere.  

While variations of the jet are closely associated with variations of the Atlantic 

marine ITCZ between 20°W and 30°W, regional model simulations suggest that 

decadal SST variations in the eastern Atlantic do not force the observed decadal 

variations in the jet.   



 

Climate response over North America to a hypothetical shutdown of the 

Atlantic meridional overturning circulation in the context of global warming is 

investigated using a regional climate model. 

The model predicates precipitation decreases in most of the United States and 

Mexico from April to September, except over the eastern U.S. where rainfall increases 

in April, May, June, and September.   

Moisture budgets analysis shows that precipitation variations over the eastern 

and western U.S and Mexico are mainly due to changes in moisture convergence 

associated with large-scale circulation changes, e.g., the westward extension of the 

North Atlantic subtropical high and the formation of an anomalous high over the 

eastern Pacific and the Gulf of Mexico.   

Variations in land surface temperature are dominated by greenhouse gas 

warming, which is magnified by local hydrological changes in the summer.  More 

extreme warm temperatures and dry spells occur. 
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CHAPTER 1 

 

DYNAMICS OF THE WEST AFRICAN WESTERLY JET1

1.1 Introduction  

 

It has long been recognized that the eastern tropical Atlantic is an important 

moisture source for West Africa, and that low-level westerlies transport moisture onto 

the continent in boreal summer (Lamb 1983; Koster et al. 1986; Cadet and Nnoli 

1987; Druyan and Koster 1989; Grist and Nicholson 2001; Fontaine et al. 2003). The 

westerly flow near 10°N along the West African coast was identified as a jet in 

satellite-based observations by Grodsky et al. (2003). Here we refer to this feature as 

the West African westerly jet (WAWJ), and study its dynamics. 

West Africa is known to have especially strong atmosphere-ocean-land surface 

interactions. The association between the WAWJ and moisture transport onto the 

continent suggests that the jet plays an important role in the coupled system. In this 

paper we investigate the basic dynamics of the WAWJ’s formation and maintenance. 

The jet’s climatological structure, seasonality, and diurnal cycle are documented, and 

the processes that cause it to form and persist are investigated. In particular, we clearly 

distinguish the WAWJ from the westerly monsoon flow. 

Studies of the low-level westerly flow over West Africa are reviewed in the 

following section. Section 1.3 is a description of the datasets and methods used to 

investigate the WAWJ dynamics. In section 1.4, climatological features of the WAWJ 

in the reanalyses are presented, and the jet dynamics is diagnosed in section 1.5. The 

last section contains the main conclusions. 

                                                 
1 Pu, B., and K. H. Cook, 2010: Dynamics of the West African westerly jet.  J. Climate, 23, 6263-6276.  
© American Meteorological Society. Reprinted with permission. 
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1.2 Background 

Low-level jets are known to be important sources of moisture for low-latitude 

precipitation systems.  They are often related to orographic features, such as the Great 

Plains, South American, and Somali low-level jets, but not necessarily, as in the 

Caribbean low-level jet. 

Based on the QuikSCAT scatterometer wind data, Grodsky et al. (2003) find 

that the surface westerlies embedded within the Atlantic ITCZ at about 7°N-12°N near 

the West African coast form a jet that persists from May to September, with a 

maximum wind speed exceeding 7 m s-1 in late boreal summer. In strong jet years, 

e.g., 1999, they report surface westerly wind speeds in excess of 15 m s-1 at some 

locations. Grodsky et al. (2003) find that a linear three-term (pressure gradient, 

Rayleigh friction, and Coriolis force) momentum balance provides a reasonable 

description of the zonal winds. They conclude that the jet is in near-geostrophic 

balance, and the meridional pressure gradient is generated by a westward extension of 

the continental thermal low over the eastern Atlantic.  

Grodsky et al. (2003) also discuss how the ocean responds to the WAWJ. They 

find that both observations and GCM simulations suggest that the jet cools the SST by 

~ 0.3 K through entrainment and latent heat loss. The Ekman pumping associated with 

the jet causes cooling and shallowing of the ocean mixed layer to the north and 

warming and deepening to the south. The resulting strengthened meridional gradient 

of sea surface height between 10°N and the equator could intensify the North 

Equatorial Counter Current transport by 15%. 

Several factors inspired us to pursue further study of the WAWJ. One is results 

from a study of the African Humid Period (AHP), which occurred 6-8,000 years ago at 

a time of high surface moisture across the Sahel and Sahara caused by greater 

summertime insolation. Atmospheric GCMs typically under-predict AHP rainfall 
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(Braconnot et al. 2000). Patricola and Cook (2007) used a regional climate model 

(atmosphere only) to show that one can capture a reasonable simulation of the AHP if 

the changed conditions of the land surface (most notably, soil moisture) are specified 

in the model in addition to the increased summer insolation. The monsoon flow across 

the Guinean coast does not change between the present day and AHP simulations, but 

the WAWJ strengthens and deepens considerably and is the primary source of 

moisture for the northward expansion of the monsoon. This response, combined with 

the elimination of the African easterly jet along with its role in transporting moisture 

off the continent (Cook 1999), explains the increased wetness of the AHP climate. The 

failure of coarser-resolution models to resolve this jet may be one reason atmospheric 

GCMs under-predict AHP rainfall. 

Another regional modeling study also exposed a crucial role for the WAWJ in 

West Africa climate change and variability. Patricola and Cook (2008) used a coupled 

atmosphere/vegetation regional model to generalize the results from the AHP study 

described above and understand the implications for potential abrupt climate change 

over northern Africa. Idealized simulations were conducted to test the dependence of 

the northern Africa climate on the initial conditions specified for vegetation. When the 

coupled model is initialized with the Sahara desert border placed anywhere south of 

17.9°N, the coupled model equilibrates to a climate similar to today’s climate. In 

contrast, when the coupled model is initialized with the Sahara border at or north of 

17.9°N, a “green Sahara” solution results. This green Sahara solution occurs because 

the initial conditions place higher levels of soil moisture at the latitude of the thermal 

low. Initially fueled by moisture evaporated from the surface, the thermal low deepens 

and replaces the dry, shallow thermal low/Saharan high system of the present day 

climate. Again, the WAWJ is the agent that sustains a strong moisture flux into 

northern Africa; the southerly monsoon flow across the Guinean coast is unchanged. 
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These studies demonstrate that the westerly flow onto the continent — 

nominally the WAWJ — can vary independently of the southwesterly monsoon flow. 

There are two distinct low-level westerly flow regimes important for transporting 

moisture to the West Africa continent in summer months. One is the westerly 

component of the monsoon flow which results from the Coriolis acceleration acting on 

the southerly flow across the Guinean coast driven most fundamentally by land/sea 

contrast. The other is the WAWJ. 

Previous studies have examined the westerly flow onto northern African’s west 

coast and documented its importance in bringing moisture onto the African continent 

without identifying the flow as a jet. Gu and Adler (2004) find that the formation of 

strong low-level westerly flow between 10°W and 10°E at 850 hPa is coincident with 

the development of rain along 10°N over West Africa in June and July. During boreal 

summer, when moisture transport from the Gulf of Guinea is reduced due to the 

development of the Atlantic cold tongue, transport by westerly winds can be very 

important. Sijikumar et al. (2006) find that both in a regional model and the ERA40 

reanalysis the onset of the West African monsoon is characterized by an enhanced 

westerly flow at 10°-15°N between the eastern Atlantic and the continent.   

Previous studies also demonstrate the importance of the westerly flow in the 

region’s variability, but without distinguishing between the WAWJ and the monsoon 

westerlies. Grist and Nicholson (2001) find differences in the westerly flow between 

10°W and 20°E between wet and dry years in the Sahel, with westerly flow 

anomalously strong and deep during wet years. Nicholson and Grist (2003) suggest 

that the westerlies are best developed from July through September, especially 

between 10°W and 10°E in association with Coriolis acceleration of the southeasterly 

trades. Tomas and Webster (1997) indicate that inertial instability adds to this westerly 

acceleration. Jury et al. (2002) demonstrate a link between the zonal wind in the 
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central Atlantic (10°S–5°N, 40°W–0°E) and African rainfall. Fontaine et al. (2003) 

find that the near surface (1000-925 hPa) westerly moisture flux is enhanced in wet 

years. Using a regional climate model, Hagos and Cook (2008) find that, in response 

to Atlantic and Indian Ocean warming in the 1990s, anomalous westerly flow brings 

moisture onto the West Africa continent to support the Sahel rainfall recovery of that 

period. 

In summary, previous work suggests that this small feature—the WAWJ—is 

important for understanding climate—including its variability and change—in 

Sahelian Africa.  

 

1.3 Methodology  

The 6-hourly ERA40 reanalysis (Uppala et al. 2005; UCAR/NCAR/CISL/DSS 

and ECMWF, 2005) at T106 resolution (equivalent to about 1.125° latitude by 1.125° 

longitude on the Gaussian grid) from 1958 to August 2002 is used to create the 

climatological daily and 6-hourly variables used in this study. This reanalysis is 

chosen as the primary source because of its relatively high spatial resolution and long 

time coverage. We choose not to extend the analysis past August 2002 because the 

ERA40 reanalysis is sufficiently long to provide a climatology. This is preferable to 

avoid issues that would arise if we extended the record by matching with a different 

reanalysis.  

In regions with a sparse observing network such as West Africa, any reanalysis 

product relies heavily on model simulation. So we also compare the ERA40 reanalysis 

to the monthly NCEP/NCAR reanalysis (NCEP1; Kalnay et al. 1996) from 1958 to 

2001 and the NCEP/DOE AMIP-II reanalysis (NCEP2; Kanamitsu et al. 2002) daily 

reanalysis from 1979 to 2001. These products have a coarser resolution than the 

ERA40 reanalysis, at 2.5° latitude and longitude. Since satellite observations are not 
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available before 1979, we compared the jet climatologies for 1958-1987 and 1979-

2001. For the years after 2001, we also examined the ERA-Interim reanalysis 

climatology (Simmons et al. 2007a, b) for 1989-2008 and the ECMWF AMMA 

operational analysis climatology (http://bddamma.ipsl.polytechnique.fr/available-

datasets-4.html) for 1999-2007. 

The QuikSCAT SeaWind observations used by Grodsky et al. (2003) have 

higher resolution (25 km by 25 km) than the ERA40 reanalysis. However, the time 

coverage of this wind dataset is shorter (June 1999-present) and is, therefore, not 

suitable for a study of the climatological jet.  

To understand the formation and maintenance of the WAWJ, terms in the 

horizontal momentum balance are analyzed in the following vector form:  

                                                                              ,                                            (1.1) 

 

where the Lagrangian acceleration is defined by  

                                                 .                                        .                                (1.2) 

 

),( vuV ≡


 is the horizontal velocity vector, in which u  is the zonal wind and v  is the 

meridional wind. ω  is the vertical p-velocity. The first term on the right side of Eq. 

1.1 is the acceleration due to horizontal geopotential height gradients, where Φ  is 

geopotential height. The second term is the horizontal Coriolis acceleration, where 

ϕsin2Ω≡f  is the Coriolis parameter, Ω  is the angular speed of rotation of the earth 

=7.292×10-5 rad s-1, and ϕ  is latitude. The third term represents horizontal friction, 

which is calculated as a residual in the analysis and so contains error due to the 

estimation of derivatives by finite differencing. 

The component equations of Eq. 1.1 are also used in the analysis as follows: 
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and  

                                                                                                                           (1.4)  

where xR  and yR  are the residual terms mentioned above. 

 The ageostrophic zonal wind is also examined, defined by 

                                                                                                 .                         (1.5) 

 

The 6-hourly ERA40 reanalysis and forecast surface variables are used to 

derive climatological (1958-2001) daily values for the surface heat budget analysis in 

section 1.5. Assuming that there are no horizontal or vertical heat fluxes out of or into 

the atmosphere/ocean column, the net surface heating is calculated based on the 

following equation: 

                            lhshlwswnet QQQQQ +++= ,                                        (1.6) 

where netQ is the net surface heating, and swQ , lwQ , shQ , and lhQ  are the net 

downward solar radiation, net upward longwave radiation, upward sensible heat flux, 

and upward latent heat flux, respectively.  

 

1.4 The WAWJ in the Reanalyses 

Figures 1.1a and b display the 1958-2001 July-September climatology of 

winds and geopotential heights at 925 hPa over West Africa in the ERA40 and NCEP1 

reanalyses, respectively. In the ERA40 reanalysis (Fig. 1.1a), the WAWJ is located off 

the African west coast between 8°N and 11°N, clearly distinguished from the 

southwesterly monsoon flow maximum over the continent between 0°E and 5°E. The 

jet is not well captured in the lower-resolution NCEP1 reanalysis (Fig. 1.1b), but the 

two reanalysis products are in general agreement about the large-scale flow and 

geopotential height distribution. An examination of the other reanalysis products listed 

in section 3 also produce WAWJ features that are consistent with those in the ERA40 

yRfu
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climatology (not shown), justifying the use of the ERA40 reanalysis for this 

investigation.  

 

 
 
Figure 1.1 925 hPa winds (m s-1) and geopotential heights (gpm) in the (a) ERA 40 
and (b) NCEP1 reanalysis climatologies (1958-2001), averaged from July to 
September. Zonal wind speeds above 4 m s-1 are shaded with light gray, and above 5 m 
s-1 with dark gray. Contour intervals are 3 gpm. 
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Daily climatological variables are used to study the structure and seasonal 

cycle of the WAWJ. Based on zonal wind velocities at 925 hPa between 8°N and 

11°N off the west coast, five stages of jet development are defined. In Stages 1 and 5, 

when the jet forms and terminates, the core zonal wind speed is between 1.5 m s-1 and 

3 m s-1. In Stages 2 and 4, when the jet intensifies and weakens, the zonal wind is 

between 3 m s-1 and 5 m s-1, and in Stage 3, when the jet reaches its maximum, the 

westerly wind is greater than 5 m s-1. Figures 1.2a-e display wind vectors, zonal wind 

shading, and geopotential height contours for each stage.   

Stage 1 (Fig. 1.2a) lasts from June 7th until June 27th. Westerly winds develop 

in the jet region during this stage, with flow down the geopotential height gradient 

toward land. From June 28th until July 21st, defined as Stage 2, the low-level jet 

intensifies. As shown in Fig. 1.2b, the thermal low (e.g., the 800 gpm contour) extends 

westward over the ocean during this time. This forms an offshore low (marked with an 

“X”) which is related to the dynamics of the jet formation discussed below. Note that 

there is evidence of the low’s formation as a region of offshore cyclonic winds in 

Stage 1 (Fig. 1.2a). The WAWJ extends westward to 22°W and strengthens, with a 

zonal wind maximum of 4 m s-1 at 8°-10°N. Over land, the zonal wind at 14°-18°N is 

also stronger than in Stage 1 as the monsoon flow expands northward to about 19°N 

over West Africa. 

The jet reaches peak intensity in Stage 3 (Fig. 1.2c). From July 22nd until 

September 5th, it extends from 13°W to 30°W, and the offshore low extends to about 

34°W. At 8°-10°N, zonal wind speeds reach 5 m s-1. When the jet expands eastward 

across the coast, the winds become northwesterly, pointing down the geopotential 

height gradient toward the continental thermal low.  
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Figure 1.2 Same as Figure 1.1 but for the five stages of jet development in the ERA40 
analysis (see text). Only one in two wind vectors are plotted for clarity. In Fig. 1.2b, 
the black thin box (9.5°-10.6°N, 20°-30°W) represents the jet acceleration region. The 
thick boxes over the Atlantic (9.5°-10.6°N, 15°-25°W) and over western Africa (9.5°-
10.6°N, 5°W-5°E) are the WAWJ averaging region and the monsoon averaging 
region, respectively. Topography is masked out. 
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In Stage 4 (Fig. 1.2d), from September 6th to September 19th, the westerly jet 

weakens to about 4 m s-1, and the offshore low moves southward to 8°-14°N. The jet 

dissipates in Stage 5 (Fig. 1.2e). From September 20th to October 18th, the westerly 

winds over the ocean diminish to 1-2 m s-1 and the low moves southward to 5°-10°N.  

Figure 1.3a displays a latitude-height cross-section of the zonal wind speed 

averaged from 15°W to 25°W during the jet maximum (Stage 3). The jet core is 

located at 925 hPa between 8°N and 10°N. Westerly flow extends up to 700 hPa, 

embedded in the large-scale easterlies. The African easterly jet core is located above 

(600-700 hPa) and north (17°N) of the WAWJ. The tropical easterly jet core is located 

to the south, near 5°N, at about 250 hPa.  

Figure 1.3b shows a longitude-height cross section at 9.5°N, also for Stage 3.  

(Note that the streamlines intersect the 1000 hPa surface vertically in both Figs. 1.3a 

and b in regions with relatively strong vertical velocity because of the 103 scaling 

used. The physical surface over the ocean is at about 1013-1014 hPa.) Below about 

750 hPa, the flow is mostly westerly from 35°W to 20°E. The WAWJ maximum is 

located between 15W° and 18°W, with a magnitude of 6 m s-1 at 925 hPa. Again, the 

WAWJ is distinguished from the maxima in the westerly flow over land, which is 

located at 2°W and 6°-15°E between 900 hPa and 800 hPa.  

Compared with the results of Grodsky et al. (2003), the monthly mean westerly 

wind speed in the jet region is 1 m s-1 weaker in the ERA40 reanalysis climatology. 

This may be due to the lower resolution of the ERA40 reanalysis compared with the 

QuikSCAT data, or to differences in the averaging periods.  
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Figure 1.3 Cross-sections of zonal wind speed (m s-1; westerlies shaded) in the ERA40 
reanalysis with (a) streamlines of meridional and vertical winds (scaled by 103) 
averaged between 15°W and 25°W and (b) streamlines of zonal and vertical winds at 
9.5 °N, averaged from July 22nd to September 5th. Topography is masked out. 
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To understand the diurnal and seasonal cycles of the WAWJ and compare 

them with the monsoon flow, two averaging regions are chosen. For the WAWJ, the 

averaging region is 9.5°-10.6°N and 15°-25°W, and for the monsoon region it is 9.5°-

10.6°N and 5°W-5°E (see Fig. 1.2b). The averaging region for the WAWJ was chosen 

as the area over which the jet is best defined as purely westerly, and it captures the 

maximum westerly wind speed. The averaging region for the monsoon flow is located 

over the same latitude range, and has the same longitudinal extent centered on the 

Greenwich meridian. A “jet acceleration” region to the west of the jet maximum is 

also defined (9.5°-10.6°N and 20°-30°W). The results presented below are not 

strongly dependent on the exact location of the averaging regions. 

 

 
Figure 1.4 6-hourly zonal wind speeds (m s-1) in the WAWJ (solid) and the West 
African monsoon (WAM, dashed) averaging regions (see Fig. 1.2b) in the ERA40 
reanalysis, averaged in Stage 3. The time axis is UTC. Local time in the jet region is 
UTC-1 hour. In the monsoon region, local time is the same as UTC.  

 

Figure 1.4 displays climatological 6-hourly zonal wind speeds in the WAWJ 

(solid line) and the monsoon (dashed line) regions for Stage 3. The WAWJ has a weak 

semidiurnal cycle, with two daily maxima at 6Z and 18Z (5 AM and 5 PM local time). 

It is a little stronger at 18Z with a wind speed of about 5 m s-1, and weakest at 12Z (11 
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AM local time) with a speed of 4.2 m s-1. The cycle is similar in the other stages. In 

the monsoon region, the zonal winds have only one maximum each day, about 5.4 m s-

1 at 6 AM local time, and a minimum of 3.7 m s-1 at 6 PM. The wind speed diurnal 

range in the monsoon region is about twice that in the jet region.  

The seasonal development of the wind components in the jet region is shown 

in Figure 1.5a. The zonal wind is easterly in May, changes to westerly in early June, 

maintains a maximum from late July to early September, and returns to easterly in late 

October. The meridional wind has a similar seasonal cycle to the zonal wind, but the 

speeds are 3-4 m s-1 lower after the WAWJ begins to form. The vertical velocity is 

relatively strong in the jet region, and it develops rapidly in early summer. These large 

upward vertical velocities indicate that the WAWJ is co-located with the Atlantic 

ITCZ, as mentioned by Grodsky et al. (2003). 

Figure 1.5b shows the wind components in the monsoon region. Variations in 

wind speeds are smaller than in the jet region during the analysis period. The zonal 

wind remains westerly through almost all of the analysis period, increasing from about 

2.5 m s-1 in May and June to a maximum of about 5 m s-1 from mid-July to mid-

August. It peaks about 2 weeks earlier than the WAWJ. The meridional wind is 

comprised of southerly flow at approximately 4 m s-1 throughout the spring and 

summer, exceeding the zonal wind speed until early July. The vertical velocity in the 

monsoon region is small throughout the period, further distinguishing the monsoon 

dynamics from that of the WAWJ. Weak subsidence from May through early June is 

replaced by essentially zero vertical velocities for the rest of the period.   
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Figure 1.5 Averaged wind speeds in the (a) WAWJ (15°-25°W) and (b) monsoon 
(5°W-5°E) regions at the same latitudes (9.5°-10.6°N) in the ERA40 reanalysis. The 
averaging regions are shown in Fig. 1.2b.  Black solid, gray solid, and black dashed 
lines represent the averaged zonal, meridional (m s-1) and vertical p-velocities (Pa s-1, 
scaled by 102), respectively. The numbers indicate the stages of the WAWJ as defined 
in Fig. 1.2. 
 
 
 

1.5 Formation of the WAWJ  

a. Dynamics  

Tomas and Webster (1997) discuss the mechanisms of low-level tropical 

westerly flow. They suggest that when the cross-equatorial pressure gradient is large, 

in the vicinity of the zero absolute vorticity (η ) contour, strong zonal wind shear is 



 

16 

needed to balance the absolute vorticity advection associated with divergent flow. 

Therefore, in the Northern Hemisphere, a tropical low-level westerly maximum tends 

to appear north of the 0=η  contour. An example of the low-level westerly maximum 

in the Indian Ocean in boreal summer is displayed to support the argument.  

Whether this theory is sufficient to explain the formation of the WAWJ is 

examined in the ERA40 reanalysis. Over the eastern Atlantic, the 0=η  contour is 

located near 4°N in August, with a maximum zonal wind shear positioned near 4°-5°N 

(not shown). From 20°W to 40°W, westerlies are located to the north of the 0=η  

contour, while easterlies are located to the south. However, the WAWJ is located 

about 5° farther north of this zonal wind shear maximum, which suggests that the 

formation of the jet is not only related to the large-scale absolute vorticity advection 

but also is associated with regional scale dynamics. Also, as pointed out by Grodsky et 

al. (2003), this mechanism does not explain the westward extension of the continental 

thermal low and the southward pressure gradient in the jet region. Here we try to 

answer these questions through momentum and surface heat budgets analyses. 

Figures 1.6a-d display the spatial distribution of each term in the vector 

horizontal momentum equation (Eq. 1.1) at the time of the WAWJ maximum (Stage 

3). The contours and vectors indicate the magnitudes and directions of the forces, 

respectively.  
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Figure 1.6 Vectors representing terms in Eq. 1.1, with contours showing magnitudes 
(10-5 m s-2), averaged over the jet maximum period, as follows: (a) geopotential height 
gradient, (b) Coriolis, (c) acceleration, and (d) residual terms. 
 

 

Within the North Atlantic subtropical high, in the upper left corner of each 

panel (11°N-15°N and 22°W-35°W), the flow is essentially geostrophic, with large 

and opposite pressure gradient (Fig. 1.6a) and Coriolis terms (Fig. 1.6b), and small 

acceleration and friction terms (Figs. 1.6c and d, respectively).  

Further south, over the eastern Atlantic in the vicinity of the WAWJ (7°N-

11°N and 14°W-32°W), pressure gradient forces (Fig. 1.6a) are directed mainly 

northward, with a maximum between 8°N and 10°N near 20°W, south of the offshore 

low (Fig. 1.2b). The Coriolis forces in this region (Fig. 1.6b) are directed southward 

and southeastward, with magnitudes 2-3×10-5 m s-2 greater than the pressure gradient 

forces. The acceleration term (Fig. 1.6c) is small in the vicinity of the WAWJ, but 

south of the jet region the acceleration is greater and aligned with the Coriolis force. 
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The residual term is comparable in magnitude to the acceleration term (Fig. 1.6d). It 

opposes the wind direction in general, supporting the interpretation of this term as 

friction.  

Over West Africa, the flow is strongly ageostrophic, with pressure gradient and 

Coriolis forces essentially perpendicular to each other (Figs. 1.6a and b).  The 

acceleration term (Fig. 1.6c) is relatively small. The residual is the largest term, again 

suggesting that this term reflects frictional accelerations which are expected to be 

large in the well-developed planetary boundary layer over tropical land surfaces. The 

residual term decreases rapidly with elevation (not shown). 

To understand how the WAWJ forms, the evolution of the momentum balance 

(Eqs. 1.3 and 1.4) is analyzed in the jet acceleration region (Fig. 1.2b). The 

climatological meridional acceleration (      ) is shown by the dotted line in Figure 

1.7a, with a smoothed version using a 7-day running mean denoted by the black solid 

line. The numbers in Fig. 1.7a indicate the stages of the WAWJ as defined in Fig. 1.2. 

The meridional acceleration is negative during Stage 3, i.e., during the maximum of 

the WAWJ, and positive at all other times. 

Each term in the meridional momentum budget (rhs of Eq. 1.4) is shown in 

Figure 1.7b. The first-order momentum balance is geostrophic. Negative values of the 

pressure gradient force before the middle of July are associated with the high to the 

north of the WAWJ acceleration region. This negative pressure gradient force 

weakens from May through July as the North Atlantic subtropical high intensifies and 

shifts northward in its normal seasonal cycle (see Figs. 1.2a-c). At the same time, the 

marine ITCZ moves northward in its seasonal cycle. The low-level convergence zone, 

which moves to about 11°N in the far eastern Atlantic because of the proximity to the 

continent (Hagos and Cook 2005), becomes co-located with the jet acceleration region 

in July (Fig. 1.2c), and the pressure gradient force changes sign (Fig. 1.7b).  

dt
dv
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From mid-July to early September, the Coriolis force associated with the high 

zonal velocities of the WAWJ is approximately 2.5×10-5 m s-2 greater than the pressure 

gradient force. Thus, the WAWJ is super-geostrophic when it is mature.  

 

 
 
Figure 1.7 Meridional momentum budget terms (Eq. 1.4) in the jet acceleration region 
(shown in Fig. 1.2b), calculated from the ERA40 reanalysis. (a) Meridional 
acceleration (black dotted line) with 7-day running mean (black solid line). (b) 7-day 
running mean of the meridional geopotential height gradient (black thick line), 
Coriolis (gray thick line), and residual (gray thin line; 10-5 m s-2). 
 
 
 

An examination of the u-momentum balance (Eq. 1.3) explains the processes 

that accelerate the flow eastward. The climatological zonal acceleration (      ) is dt
du
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shown by the dotted line in Figure 1.8a, with a smoothed version using a 7-day 

running mean denoted by the black solid line. Positive (eastward) acceleration 

increases by about 1×10-5 m s-2 from Stage 1 to 2, and the westerly wind intensifies. In 

Stage 3, the eastward zonal acceleration weakens after a maximum in late July, and 

becomes westward in early September. The westward zonal acceleration strengthens 

through Stages 4 (Fig. 1.2d) and 5 (Fig. 1.2e), and the jet is destroyed.  

Each term on the rhs of Eq. 1.3 is plotted in Fig. 1.8b. The zonal momentum 

balance is approximately geostrophic until the middle of July, with opposing pressure 

gradient and Coriolis forces decreasing in magnitude as the continental thermal low 

extends westward over the eastern Atlantic (Figs. 1.2a and b), and with friction 

supporting the pressure gradient force. After the middle of July, the pressure gradient 

force settles into a relatively low positive value (about 2×10-5 m s-2) as the westward 

extension of the thermal low becomes established (Fig. 1.2c). The Coriolis force 

changes sign at the end of Stage 2, and zonal geostrophic balance is interrupted during 

the jet maximum period (Stage 3). This change in the sign of the u-momentum 

equation Coriolis force, i.e., the sign change in v shown in Fig. 1.5a, occurs as the 

low-level tropical convergence zone (the marine ITCZ) moves across the jet 

acceleration region.  
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Figure 1.8 Same as Fig. 1.7, but for the zonal momentum budget (Eq. 1.3). 

 

Figure 1.9 shows the zonal geostrophic and ageostrophic wind components, 

calculated based on Eq. 1.5, along with the total wind speed in the jet acceleration 

region. From early June to mid-July, and from late September to mid-October, the 

ageostrophic wind is in the opposite direction to the geostrophic wind, since the 

pressure gradient force (            ) is greater than the Coriolis force ( fu ) as seen in 

Fig. 1.7b. The generation of a westerly ageostrophic wind in Stages 1 and 2 is 

associated with an increase of the eastward acceleration (Fig. 1.8a), which is related to 

the decline in the westward Coriolis force (Fig. 1.8b) associated with the northward 

progression of the Atlantic marine ITCZ as discussed above. From mid-July to late 

y∂
∂− φ
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September, the ageostrophic wind is in the same direction as the geostrophic wind, as 

the Coriolis force is larger than the pressure gradient force (Fig. 1.7b). This occurs as a 

result of enhanced westerly acceleration by the zonal Coriolis force. As displayed in 

Fig. 1.8b, the Coriolis force in the jet acceleration region changes direction from 

westward to eastward in mid-July, enhancing the westerly flow.  

From June to October, the ageostrophic wind component remains steady at 

about 1 m s-1, so variations in the geostrophic wind explain much of the seasonality of 

the total zonal wind (Fig. 1.9). The daily zonal wind speed in the jet averaging region 

is significantly correlated (at the 95% confidence level) with the meridional 

geopotential height gradient from 8°-10°N and 15°-24°W, and from 7°-14°N and 24°-

32°W in all stages.  

 

 
 
Figure 1.9 Zonal geostrophic (gray solid line), ageostrophic (black dashed line) and 
total wind speeds (black solid line) in the jet acceleration region. 

 

The above analysis demonstrates that the WAWJ results from multi-scale 

interactions over the eastern Atlantic. It is also an example of atmosphere-ocean-land 

surface interaction since its formation is controlled by both continental and ocean 
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processes. When the seasonal development of the continental thermal low is 

superimposed on the seasonal progression of the marine ITCZ, a region of enhanced 

eastward acceleration forms off the west coast of Africa. The resulting WAWJ is, 

therefore, a regional-scale feature controlled by these large-scale structures.  

 

b. Formation of the offshore low 

The pressure gradient at 8°-13°N over the eastern Atlantic is critical to the 

formation of the WAWJ. As revealed in the reanalysis climatology (Fig. 1.2), the 

westward extension of the thermal heat low at 925 hPa is associated with the 

development of an offshore low at 15°N along the West African coast. The formation 

of the offshore low (Fig. 1.2c) is investigated in this section. 

Figures 1.10a-e show SSTs (contoured) with wind vectors and geopotential 

heights (shaded) at 1000 hPa for each stage of the WAWJ development. The wind and 

geopotential height fields are similar to those at 925 hPa (see Fig. 1.2), but the 

relationship with surface heating is more clear at the lower level. Warm SSTs 

accompanied by low geopotential heights are located near the coast in every stage. In 

early June, the warmest SSTs are centered between 6°-11°N and 12°-20°W (Fig. 

1.10a). From late June to early September, the region of warmest coastal SSTs moves 

north (Figs. 1.10b-c), and low geopotential heights extend westward over the eastern 

Atlantic at 10°N, reaching to about 28°W in Stage 3 (Fig. 1.10c). Note that the 

Atlantic cold SST tongue is evident at 6°-10°N in Stages 3 and 4 (Figs. 1.10c and d). 

During Stage 4, the warmest SSTs are located at 14°N, essentially coincident with the 

coastal low (Fig. 1.10d). The warmest SSTs extend southwestward from the West 

African coast to 24°W and 8°N in October, and the low center moves southward to 

about 8°N (Fig. 1.10e).  Fig. 1.10 suggests that the evolution of the low is associated 

with heating of the ocean surface, so the surface heat budget is examined.  
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Figure 1.10 Skin temperature (contours), 1000 hPa geopotential heights (shading), and 
wind vectors in Stages 1 to 5 in (a)-(e), respectively. Contour interval is 2 gpm for 
geopotential heights, and 0.3 K for temperature. Topography is masked out. 

 

 

Figure 1.11a displays the net surface heating (Eq. 1.6) from the ERA40 

reanalysis for Stage 3. As shown in Fig. 1.11a, net heating values over land are smaller 

than 10 Wm-2, but a net surface heating maximum of 130 Wm-2 is positioned at 17°-

23°N over the eastern Atlantic. Near the coast, a net surface cooling maximum of -80 

W m-2 is located at 13°W and 7°N.    

Since the ERA40 heat balance values contain uncertainty (Allan et al. 2004), 

we also examined the radiation variables in the NCEP1 reanalysis for 1958-2001 and 
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the satellite-derived variables in the NASA/GEWEX Surface Radiation Budget (SRB; 

data obtained from the NASA Langley Research Center Atmospheric Sciences Data 

Center NASA/GEWEX SRB Project) products for 1984-2004. A narrow net surface 

heating center is found at 15°-18°W and 14°-25°N near the coast in the NCEP1 

climatology. Each component of the heat budget in the NCEP1 reanalysis is similar to 

the ERA40 reanalysis (not shown). Surface solar and longwave radiation in the SRB 

climatology also show features similar to the ERA40 reanalysis (not shown).   

Figure 1.11b shows the skin temperature differences between Stage 3 and 

Stage 2 (Stage 3 minus Stage 2). Corresponding to the net surface heating rates shown 

in Fig. 1.11a, SSTs in Stage 3 are about 2 K warmer than in Stage 2 at 17°-21°N near 

the coast, with relatively warm SSTs extending southward to 6°N at 35°W. Consistent 

with the surface cooling near 13°W and 7°N, SSTs in Stage 3 are about 0.5 K cooler 

than in Stage 2 near the western Guinean Coast. The pattern of surface heating shown 

in Fig. 1.11a, with warming to the north and cooling to the south, moves the coastal 

SST maximum to the north between Stages 2 and 3 (Figs. 1.10b and c). 
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Figure 1.11 (a) Net surface heating (W m-2) and 925 hPa wind vectors (m s-1) from the 
ERA40 reanalysis during the WAWJ’s mature stage (Stage 3). (b) Skin temperature 
(K) and 925 hPa winds differences for (Stage 3)-(Stage 2). Contour intervals are 10 W 
m-2 in Fig. 11a and 0.5 K in Fig. 1.11b. 
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Each component of the surface heat budget is examined for the time of the jet 

maximum (Stage 3). Figure 12a displays the net solar radiative heat flux. As shown in 

Fig. 1.12a, a solar heating center of 260 Wm-2 is located at 14°-25°N over the eastern 

Atlantic (extending northward to about 29°N, not shown). To the south, solar heating 

rates are much lower, with a minimum of 60 Wm-2 at 6°-11°N on the coast. So the 

pattern of surface heating to the north and cooling to the south seen in the net surface 

heat balance that advances the warm coastal SSTs northward from Stage 2 to Stage 3 

is supported by the net surface solar radiation.   

In addition to the distribution of solar heating, the pattern of latent cooling in 

the eastern Atlantic helps drive the northward shift of the SST maximum off the west 

coast of Africa. As seen in Fig. 1.12b, the evaporative cooling of the surface is 

minimal at 12°-18°N along the coast, and much stronger to the south with a maximum 

at 2°-7°N.  

The net longwave radiative and sensible heat fluxes (not shown) are relatively 

uniform between 12°N and 22°N over the eastern Atlantic, so they do not play a 

primary role in moving the coast SST maximum to the north between Stages 2 and 3.  

It is the sum of the solar and latent heat fluxes (Figs. 1.12a and b) that produces the 

pattern of heating to the north and cooling to the south along the coast shown in Fig. 

1.11a, and that moves the SST maximum northward between Stages 2 and 3 of the jet. 
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Figure 1.12 (a) Downward solar radiation and (b) upward latent heating flux averaged 
between July 22nd and Sept 5th for the jet maximum period (W m-2). Positive values 
denote downward heat flux (surface heating), while negative values denote upward 
heat flux (surface cooling). Vectors are winds at 10 meters. Contour intervals are 20 
W m-2. 

 

An examination of cloud distributions helps relate the surface heating pattern 

to the movement of the ITCZ and, thereby, the dynamics discussed in the previous 

section. Figure 1.13a shows total cloud cover from the ERA40 climatology (1958-
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2001) for Stage 3. Between 15°-24°W and 16°-25°N, the cloud fraction is 0.4 or 

lower, allowing relatively high amounts of solar radiation to reach the surface (Fig. 

1.12a). The cloud cover fraction is even lower over the Sahara, but the surface albedo 

is much higher than over the ocean (0.3-0.4 compared with 0.05-0.1) so the solar 

heating is centered over the ocean. The low solar heating of the surface at 4°-12°N 

(Fig. 1.12a) is related to the higher cloud covers of the ITCZ region (Fig. 1.13a).  

 

 
 

Figure 1.13 Total cloud cover (fraction) in (a) the ERA40 climatology (1958-2001) for 
the WAWJ mature stage (Stage 3) and (b) the ISCCP climatology (1984-2007) for 
August. 
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Since cloud cover in the reanalysis is not assimilated, satellite measurements 

from the International Satellite Cloud Climatology Project (ISCCP, 

http://isccp.giss.nasa.gov; Rossow and Shiffer 1999) climatology (1984-2007) for 

August are used to validate the cloud distribution shown in Fig. 1.13a. As shown in 

Fig. 1.13b, the mean cloud cover distribution in the ISCCP climatology is similar to 

that in the ERA40 reanalysis, with a minimum between 20°N and 25°N on the 

continent that extends westward over the eastern Atlantic. These low cloud amounts 

over the coastal eastern Atlantic are related to the low-level inversion (at 17°-25°N, 

not shown) associated with the westward advection of the dry and warm Saharan air 

(i.e., the Saharan air layer), which suppresses deep convection (Wong and Dessler 

2005). The ISCCP cloud data also confirm the high cloud amounts between 5°N and 

12°N associated with the ITCZ. 

The pattern of latent cooling of the surface is also related to the seasonal 

movement of the ITCZ through the surface winds. The cooling maximum at 2-7°N is 

associated with strong surface winds to the south of the ITCZ, while the minimum in 

the north is associated with the low wind speeds in the offshore low to the north of the 

WAWJ. As the offshore low develops, the surface winds weaken and latent heat loss 

decreases, which tends to warm SSTs and deepen the low. 

Surface heat budgets in different stages (not shown) reveal a similar 

association between the net surface heating and SST warming. From early June to 

mid-October (Stages 1-5), the net surface heating center is located at 19°N, 20°N, 

19°N, 17°N, and 13°N, respectively, with a net cooling center associated with the 

ITCZ to the south.  

Grodsky et al. (2003) also discuss the relationship between the WAWJ and 

SSTs, demonstrating that the presence of the jets causes a cooling of SSTs through 

Ekman pumping and latent heat loss. They find that these two processes cool eastern 

http://isccp.giss.nasa.gov/�
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Atlantic SSTs in August by about 0.35 K, when the westerly wind speed is 2 m s-1 

stronger between a strong jet year (1999) and a weak jet year (2000). This cooling 

effect is quite local, and has only a small effect on the larger-scale surface heat 

balances discussed here.  

 

1.6 Conclusions  

The climatology and dynamics of the West African westerly jet (WAWJ) are 

studied in the relatively high-resolution (about 1.125° latitude by 1.125° longitude) 

ERA40 reanalysis. This work builds upon the observational analysis of Grodsky et al. 

(2003), who first identify the westerly flow onto the continent near 10°N as a jet using 

QuikSCAT data. The work is further motivated by the results of Patricola and Cook 

(2007, 2008) who find that the WAWJ plays a crucial role in moisture transport into 

the Sahel, and that the jet can vary independently of the southwesterly monsoon flow. 

Here we show that the structure and dynamics of the WAWJ and the southwesterly 

monsoon flow are distinct, and study the processes that cause the jet to form. 

The WAWJ develops at the beginning of June, reaches a maximum intensity of 

6 m s-1 at 925 hPa during August, and dissipates in mid-October. Based on the 

strength of the zonal wind speed in the ERA40 climatology (1958-2001), five stages 

of jet development are identified. At its mature stage, July 22nd – September 5th, the jet 

extends between 12°-30°W and 8°-11°N, and from the surface to 700 hPa.  

In the 6-hourly ERA40 reanalysis, the jet displays a weak semidiurnal cycle, 

with two wind speed maxima of 5-6 m s-1 at 5 AM and 5 PM local time and minima of 

4-5 m s-1 at 11 AM and 11 PM local time.  

The formation of the WAWJ depends on multi-scale interactions. Over the 

eastern Atlantic, a region of enhanced westerly acceleration forms when the seasonal 

progression of the continental low is superimposed on the seasonal progression of the 
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Atlantic marine ITCZ. While the pressure gradient force in the relatively small region 

between 9°-10°N and 20°-30°W accelerates the zonal wind to the east, the 

superposition of the large-scale meridional convergence associated with the ITCZ 

constrains the development of meridional acceleration. In this way, the regional-scale 

WAWJ is coupled to large-scale processes. 

Analysis of the momentum budget shows that the mature WAWJ is super-

geostrophic. A westerly ageostrophic wind component develops as the southerly flow 

adds to eastward acceleration via the Coriolis term. The ageostrophic wind contributes 

up to 40% of the total wind during Stage 2 and Stage 4, e.g., mid-July and from early 

to mid-September. 

The geostrophic zonal wind explains much of the WAWJ’s seasonal variation. 

The meridional pressure gradient at 8°N-13°N associated with the geostrophic wind is 

influenced by the westward extension of the continental thermal low, which in the 

ERA40 reanalysis is related to the formation of an offshore low over the eastern 

Atlantic.  

The surface heat budget analysis reveals that the development of the offshore 

low is related to seasonal SST warming in the eastern Atlantic, a response to the net 

surface heating. From early June to mid-October, a net surface heating pattern with 

warming at 8°-25°N and cooling to the south at 4°-8°N persists over the eastern 

Atlantic between 10°W and 35°W. As the magnitude of this heating pattern varies, 

SSTs between 6°N and 18°N vary, with a coastal SST maximum moving northward 

and southward. The offshore low at 1000hPa is co-located with this coastal SST 

maximum. In Stage 3, when coastal SSTs strongly warm and the thermal low is deep, 

the westward extension of the low reaches its maximum, with the strongest southward 

geopotential height gradient setting up in the jet region.   

The net surface heat pattern mainly reflects the distribution of the solar 



 

33 

radiative and latent heat fluxes. The solar radiation maximum over the eastern Atlantic 

is associated with low cloud amounts at 16°-25°N in the coastal region where there is 

a low-level inversion that prohibits strong convection (Wong and Dessler 2005), and 

the minimum to the south is related to high cloud amounts in the ITCZ. The weak 

surface wind speeds in the offshore low and strong wind speeds to the south of the 

ITCZ are associated with the latent cooling minimum to the north and maximum to the 

south, respectively. 

In summary, the Atlantic ITCZ plays an important role in the WAWJ 

formation. The ITCZ favors formation of a purely westerly acceleration zone, and thus 

is dynamically associated with the jet formation. The ITCZ is also thermally related to 

the WAWJ formation through the surface heat budget and the formation of the 

offshore low.  

Previous studies discuss the importance of westerly flow over the eastern 

Atlantic and West Africa without distinguishing the WAWJ from the southwesterly 

monsoon flow. Here we demonstrate that the WAWJ is a feature distinct from the 

monsoon flow.  

First, the geographical locations of the two are different. The WAWJ is located 

over the eastern Atlantic and the West African coast, while the monsoon westerlies are 

mainly over the West African continent. In the summer, the jet is centered between 

8°N and 11°N (Figs. 1.1a and 1.3a), and the monsoon westerlies extend inland to 

20°N (Figs. 1.1a and 1.3b). 

The vertical wind in the jet region is up to 10 times greater than that in the 

monsoon region from late July to early September. While the meridional wind in the 

monsoon region is 2-3 m s-1 stronger than in the WAWJ region, the maximum zonal 

wind in is about 2 m s-1 weaker (Fig. 1.5). The diurnal cycle of the monsoon westerly 

flow, which has a peak at 6 AM local time and a minimum at 6 PM, is also 
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distinguished from the semidiurnal cycle of the WAWJ (Fig. 1.4). 

The monsoon dynamics is also different from that of the WAWJ. In the 

monsoon region, momentum balance is achieved among the pressure gradient force, 

Coriolis force, and a strong friction term, and the flow is sub-geostrophic. The 

formation of the West African monsoon is essentially related to the heat capacity 

differences between the West African continent and the Atlantic, which is associated 

with large-scale land/sea pressure gradients at low levels and the seasonal migration of 

the southerly trades. Thus, the monsoon development is directly related to the strength 

of the continental thermal low, and both peak earlier in the year than the WAWJ (Figs. 

1.2b and 1.5b). In contrast, the WAWJ is more closely related to the westward 

extension of the thermal low as well as the seasonal progression of the marine ITCZ 

over the eastern Atlantic.  
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CHAPTER 2 

 

ROLE OF THE WEST AFRICAN WESTERLY JET IN SAHEL RAINFALL 

VARIATIONS 

 

2.1 Introduction 

Two low-level westerly flow regimes are important for moisture transport into 

West Africa. One is the well-known West African monsoon (WAM) flow, which is 

formed by the westward acceleration of the onshore flow across the Guinean coast. 

The other is the westerly flow near 10°N, directed from the eastern Atlantic onto the 

West African coast. Grodsky et al. (2003) first identified this westerly flow as a jet 

using high-resolution scatterometer measurements and studied its dynamics. Pu and 

Cook (2010; hereafter PC2010) called this jet the West African westerly jet (WAWJ).  

They studied the mechanisms of the jet’s formation, and distinguished its features and 

dynamics from the WAM flow. Here we advance our understanding of the WAWJ by 

studying how it is related to Sahel rainfall variability on interannual and decadal 

scales, and by comparing the moisture transport associated with the jet with that of the 

monsoon flow.  

Relevant literature is reviewed in the following section, with an emphasis on 

our current understanding of the moisture transport that supports Sahel rainfall and the 

WAWJ. Section 2.3 describes the datasets and analysis methods used. Results are 

presented in section 2.4, and section 2.5 summarizes the conclusions.  

 

2.2 Background 

A number of authors have investigated the ways in which moisture is 

transported into West Africa.  Studies that identify moisture transport associated with 
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the zonal flow are particularly relevant to our focus on the WAWJ.  For example, 

Kidson (1977) suggested that the westerly flow to the south of the 850 hPa trough 

(around 8°N) is an important low-level moisture source for Sahel rainfall.  Cadet and 

Nnoli (1987), in a case study for May through mid-September of 1979, identified a 

strong westerly moisture flux from the eastern Atlantic below 850 hPa that develops in 

early June near 5°N. They report that, in August, the moisture flux maximum is 

located near 10°N in association with a westerly wind maximum. 

In the middle troposphere (700-500 hPa), a strong easterly moisture flux 

associated with the African Easterly jet (AEJ) centered near 15°N advects moisture 

from eastern and central Africa to the west. Cook (1999) found that moisture 

divergence between 600 hPa and 800 hPa over West Africa is associated with this jet. 

Druyan and Koster (1989) compared various water vapor fluxes into West 

Africa in the GISS climate model. They found that westerly water vapor transport 

from the tropical North Atlantic Ocean is the largest moisture supply for rainfall in the 

western Sahel, while southwesterly moisture transport from the Gulf of Guinea 

contributes the most to the central Sahel. 

These studies of westerly moisture transport into Sahelian West Africa do not 

specifically address the role of the WAWJ because it was only identified as a jet 

recently, and it was not previously distinguished from the (south)westerly monsoon 

flow.  Building on the identification of the jet by Grodsky et al. (2003), PC2010 

studied the dynamics of the jet in various reanalyses. They showed that the WAWJ is 

clearly distinguished from the monsoon westerly flow in terms of its structure, 

seasonal cycle, and dynamics. The jet develops when a region of westerly acceleration 

forms by the superposition of the Atlantic marine ITCZ and the westward extension of 

the continental thermal low in their seasonal progressions. The extension of the 

thermal low is associated with the formation of an offshore low which is related to the 
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seasonal warming of coastal SSTs between 6°N and 18°N. In August, when the 

coastal SST strongly warms and the thermal low is deep, the westward extension 

reaches a maximum and the WAWJ peaks. 

A number of studies relate variations in moisture transport with variations in 

Sahel rainfall. For example, Fontaine et al. (2003) studied moisture fluxes over the 

West African monsoon region (5°-20°N, 18°W-18°E) from 1968-1998. They found 

that there are stronger westerly fluxes (between 5°N-15°N) from the northern tropical 

Atlantic into West Africa in wet years, along with enhanced moisture fluxes from the 

Mediterranean Sea into the northern Sahel.  

Using a regional climate model, Hagos and Cook (2008) studied the influence 

of Indian and Atlantic Ocean SSTAs on Sahel precipitation in the late 20th century.  

Warming in the Indian Ocean in the 1980s forced subsidence over central Africa and 

anomalous anticyclonic circulations over the west coast, which drives moisture away 

from the Sahel. During the 1990s, the region of subsidence moved to the west as the 

scale of the Indian Ocean warming increased, and Sahel rainfall increased. Cyclonic 

circulation associated with warm SSTAs in the northern tropical Atlantic Ocean 

further enhanced moisture transport into the Sahel to support the rainfall recovery. 

Gu and Adler (2004) suggested that when moisture transport from the Gulf of 

Guinea is reduced due to the development of the Atlantic cold tongue in summer, 

water vapor transported by the westerly flow between 10°W and 10°E at 850 hPa can 

influence rainfall along 10°N over West Africa. 

These studies, and others, associate variations in Sahel precipitation and 

westerly moisture transport, but they do not distinguish the WAWJ from the monsoon 

westerlies. Only a few recent studies discuss this association.  Grodsky et al. (2003) 

found there is a “substantial relationship” between the amplitude of the WAWJ and 

the Western Sahel Rainfall Index (WSRI; Lamb 1983). The correlation between the 
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time series of the first EOF of August zonal winds averaged at 10°-30°W and the 

WSRI is significant from 1949 to 2001. 

Patricola and Cook (2007) simulated the precipitation of the African Humid 

Period (AHP) by applying specified land surface conditions and summer insolation in 

a regional model. They found that the simulated monsoon flow across the Guinean 

coast in the AHP case is similar to that of the present day, but the WAWJ is much 

stronger and deeper. The enhanced WAWJ together with the elimination of the 

African easterly jet supports the wetness of the Sahel and Sahara. The inability of 

global models to capture the WAWJ may explain their difficulties in simulating a 

sufficiently-wet AHP. 

Patricola and Cook (2008) identified an atmosphere/vegetation feedback 

mechanism that may contribute to the propensity for abrupt climate change over 

northern Africa. They found that when a coupled atmosphere/vegetation regional 

model is initialized with the southern border of the Sahel north (south) of 17.9°N, a 

green (dry) Sahara solution results.  There was no difference in the southwesterly 

monsoon flow across the Guinean coast between the dry (present day) and “green 

Sahara” climate states.  Rather, an intensification of the WAWJ provided the critical 

moisture transport into the northern Sahel and Sahara.       

The purpose of this paper is to investigate the relationship between variations 

in the WAWJ and Sahel rainfall on interannual and decadal time scales. 

 

2.3 Methodology  

Climatological Sahel precipitation is greatest in August (Kidson 1977; Long et 

al. 2000), essentially coincident with the late July to early September maximum in the 

WAWJ speed (PC2010). So this study of interannual to decadal variability is focused 

on the month of August. 
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Reanalysis products are used to examine features of the circulation. The 

ERA40 reanalysis (Uppala et al. 2005; UCAR/NCAR/CISL/DSS and ECMWF, 2005; 

T106, about 1.125° latitude by 1.125° longitude) is analyzed for 1958-2002, and the 

ERA-Interim reanalysis (Simmons et al. 2007a, b; 1.5° latitude by 1.5° longitude) for 

1989-2009. The ECMWF TOGA Global Advanced Operational Spectral Analysis2

For precipitation, the CRU ts3.0 (CRU; Mitchell and Jones 2005; 0.5° latitude 

by 0.5° longitude) station observations for 1958-2006, the satellite-derived Global 

Precipitation Climatology Project (GPCP; Adler et al. 2003; 2.5° latitude by 2.5° 

longitude) data for 1979-2009, and the CPC Merged Analysis of Precipitation 

(CMAP; Xie and Arkin 1996; 2.5° latitude by 2.5° longitude) data for 1979-2009 are 

used.  

 

(EC-TOGA; T106) for 1998-2007 is used for recent years. The lower resolution (2.5° 

latitude by 2.5° longitude) NCEP/NCAR reanalysis (NCEP1; Kalnay et al. 1996) for 

1958-2009 and the NCEP/DOE AMIP II reanalysis (NCEP2; Kanamitsu et al. 2002) 

for 1979-2009 are also used as a comparison.  

Multiple datasets are used for several reasons. First is that the Sahel has a 

relatively low density of station observations to constrain the reanalyses. Also, longer 

time series may have uncertainties due to changes of observing stations or data 

processing methods. Cross-validation among datasets provides an estimate of these 

uncertainties. In addition, since some reanalyses do not extend to the present, e.g., the 

ERA40 reanalysis ends in August 2002, we examine comparable reanalyses to include 

recent years.  

To characterize the strength of the WAWJ, a “WAWJ index” is defined as the 

area average of the August 925 hPa zonal wind speed for 8.4°-10.6°N and 15°-25°W. 
                                                 
2 European Centre for Medium-Range Weather Forecasts, updated yearly: ECMWF TOGA Global 
Advanced Operational Spectral Analysis, daily 1985-cont. Dataset ds111.0 published by the CISL Data 
Support Section at the National Center for Atmospheric Research, Boulder, CO, available online at 
http://dss.ucar.edu/datasets/ds111.0/. 
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This averaging region is chosen to capture the maximum westerly wind (see Fig. 3a in 

PC2010). A “WAM index” is used to characterize the strength of the monsoon flow.  

It is defined as the 925 hPa wind speed averaged between 5°W-5°E and 5.0°-7.3°N in 

August. The monsoon averaging region has the same number of grid point as the jet 

region, and it captures both the maximum westerly and southerly wind speeds over the 

Guinean coast. 

 

2.4 Results 

a. Correlations between the WAWJ and precipitation 

Figure 2.1 shows the time series of the WAWJ index from various reanalyses. 

Means and standard deviations of the indices are listed in Table 2.1. While the jet 

indices from the different reanalyses have similar interannual variations, the strength 

varies. The mean jet index ranges from 3.4 m s-1 in the NCEP2 reanalysis to 5.0 m s-1 

in the ERA40 reanalysis. The NCEP1 jet index is greater than the ERA40 jet index for 

1958-1963, smaller for 1963-2000, and again greater for 2001-2002. The magnitude of 

the NCEP2 jet index is very similar to the NCEP1 jet index for 1979-1990, 1-2 m s-1 

weaker than the NCEP1 jet index for 1991-2000, and 2-3 m s-1 weaker for 2001-2009.  

The magnitude of the ERA-Interim jet index resembles the NCEP1 jet index for 1989-

2000, and is 0.5-1 m s-1 weaker for 2001-2009. The jet index in the EC-TOGA 

analysis lies between the ERA-Interim and NCEP2 jet indices. The standard deviation 

is highest in the NCEP1 reanalysis and lowest in the ERA-Interim reanalysis.  

Many factors can contribute to differences among the reanalyses, e.g., different 

sources of observations, physical parameterizations used in models, and assimilation 

methods. Lack of observations in West Africa might also be important. As a 

comparison, we examined 925 hPa zonal wind speeds in regions with significantly 

more observations, e.g., North America and Europe. The differences among the 
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reanalyses are very small in these regions, while in other regions with sparse 

observations, e.g., South America, the differences are large (not shown).  

 

 
 
Figure 2.1 WAWJ indices (m s-1) from the ERA40 (black solid line), ERA-Interim 
(black long dashed line), NCEP1 (solid grey line), and NCEP2 (black short dashed 
line) reanalyses, and the EC-TOGA (dot-dash line) analyses. All are interpolated to a 
1.5° grid.  

 

 

 
Table 2.1 Means and standard deviations (σ ) of jet indices (m s-1) from various 

reanalyses. 
 

Reanalyses Time Mean (σ ) 

ERA-40 1958 - 2002 5.0 (1.2)  

ERA-Interim 1989 –2009 4.8 (0.9)  

EC-TOGA 1998 –2007 4.4 (1.1)  

NCEP1 1958 –2009 4.6 (1.6)  

NCEP2 1979 –2009 3.4 (1.3)  
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Despite the uncertainties and differences among the reanalysis products, Fig. 

2.1 demonstrates that, there are common features. Correlations among the WAWJ 

indices are displayed in Table 2.2, and all pass the 99% confidence level. This 

suggests that the reanalyses are useful for examining the WAWJ, but with some 

caution. Considering the small scale of the WAWJ, the high resolution ERA40 

reanalysis for 1958-2002 and the ERA-Interim reanalysis for 2003-2009 are used as 

the primary resources in this paper.  

 
Table 2.2 Correlation coefficients among jet indices from various reanalyses. 

All exceed the 99% confidence levels. 
 

 ERA-Interim EC-TOGA NCEP1 NCEP2 

ERA40 Co1989-2002=0.87 - Co1958-2002=0.76 Co1979-2002=0.89 

ERA-Interim - Co1998-2007=0.90 Co1989-2009=0.86 Co1989-2009=0.89 

EC-TOGA - - Co1998-2007=0.85 Co1998-2007=0.96 

NCEP1 - - - Co1979-2009=0.88 

 

To investigate the relationship between the strength of the WAWJ and Sahel 

rainfall, correlations among all combinations of three reanalyses and three 

precipitation datasets were calculated (Figure 2.2). Figures 2.2a-c display correlations 

between the CRU precipitation and the ERA40 (1958-2002), NCEP1 (1958-2006), 

and NCEP2 (1979-2006) jet indices, respectively, with only correlation coefficients 

exceeding the 95% confidence levels displayed.  In each case, significant positive 

correlations extend across the Sahel. 

When other combinations of precipitation data and reanalysis jet indices are 

correlated, similar patterns emerge.  Figures 2.2d, e, and f show correlations between 

the CMAP precipitation and the ERA40 (1979-2002), NCEP1 (1979-2009), and 
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NCEP2 (1979-2009) jet indices, respectively. Figures 2.2g-i display correlations 

between the GPCP precipitation and jet indices in the three reanalyses. Correlations 

between the WAWJ indices and Sahel rainfall are robust and consistent across all 

combinations of data sets. 

 

 
 
Figure 2.2 Correlations between the WAWJ indices from 3 reanalyses and 3 
precipitation datasets. Only correlation coefficients exceeding the 95% confidence 
levels are shown. Shading denotes positive correlations while contours denote 
negative correlations with intervals of -0.1. Figs. 2.2a-c are correlations between the 
CRU precipitation and the ERA40, NCEP1 and NCEP2 jet indices, respectively. Figs. 
2.2d-f are correlations between the CMAP precipitation and three jet indices, while  
Figs. 2.2g-i are correlations between the GPCP precipitation and three jet indices. 

 

 

We define a Sahel precipitation index based on the correlations shown in Fig. 

2.2, averaging August rainfall between the west coast (about 17°W) and 30°E and 
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between 10°N and 20°N. Because both the ERA40 reanalysis (1958-2002) and CRU 

precipitation (1901-2005) are not updated to the present, the ERA-Interim reanalysis 

for 2003-2009 and GPCP data for 2006-2009 are used to extend the jet and Sahel 

precipitation time series. Using different records to extend the indices may introduce 

some inconsistency, but including recent information provides a better estimate of 

decadal variations and trends. Means and deviations of the WAWJ and Sahel 

precipitation indices from different data sets for the years in which they overlap are 

listed in Table 2.3 to characterize their differences.  

 
Table 2.3 Means and standard deviations (σ ) of the jet indices (m s-1) from the 

ERA40 and ERA-Interim reanalyses and the Sahel precipitation indices (mm day-1) 
from the CRU and GPCP observations during their overlap periods. 

 

Datasets Overlap period Mean (σ ) 

ERA40 
1989-2002 

5.4 (1.1) 

ERA-Interim 4.5 (0.9) 

CRU 
1979-2005 

4.4 (0.9) 

GPCP 4.4 (0.9) 

 

Figure 2.3a shows the time series of the WAWJ index from the ERA-40 and 

ERA-Interim reanalyses (solid line) and the Sahel precipitation index from the CRU 

and GPCP observations (dashed line) from 1958 to 2009. The WAWJ and 

precipitation indices are highly correlated, with a correlation coefficient of 0.62 that 

exceeds the 99% confidence level. From the late 1950s through the 1960s, both the 

WAWJ and Sahel precipitation are relatively strong. From the 1970s to the 1980s, 

both the jet and the rainfall are weak, with minima in 1984. They both recover in the 

late 1980s and vary near the climatological average during the 1990s and 2000s. 

To isolate the decadal signal, the time series shown in Fig. 2.3a are filtered by 
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applying a 9-year running mean, and displayed in Fig. 2.3b. Decadal variations of the 

jet index are similar to the jet variations shown by Grodsky et al. (2003), who 

examined the time series of the amplitude of the first EOF of the zonal wind in the jet 

region. Co-variations of the jet and Sahel precipitation indices on decadal time scales 

are evident. From the 1960s to the 1980s, both the jet and Sahel precipitation indices 

experienced strong, weak, and recovery periods. In the 1990s, the magnitude of the jet 

index is similar to that in the 1960s while the Sahel precipitation index is still weaker 

than its 1960s level. During the 2000s, the jet index is weaker than in the 1990s, while 

the magnitude of the Sahel rainfall index is very similar to its 1990s level.  

Figure 2.3c shows interannual variations of the WAWJ and Sahel precipitation 

indices, calculated as the full time series (Fig. 2.3a) minus the filtered time series (Fig. 

2.3b). Interannual variations of the WAWJ index are also significantly correlated with 

Sahel precipitation, with a correlation coefficient of 0.63, exceeding the 99% 

confidence level.  

The WAWJ and Sahel rainfall indices are also highly correlated in July and 

September (not shown). The correlation between the jet index and Sahel rainfall index 

for July (September) is 0.41 (0.64) for 1958-2009 (1958-2008), exceeding the 99% 

confidence level.  
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Figure 2.3 (a) The WAWJ (solid) index (m s-1) from the ERA40 reanalysis for 1958-
2002 and the ERA-Interim reanalysis for 2003-2009, and the Sahel precipitation 
(dashed) index (mm day-1) from the CRU data for 1958-2006 and the GPCP data for 
2007-2009. (b) Decadal and (c) interannual components of the jet and Sahel 
precipitation indices. All indices are interpolated to a 1.5° grid. Dashed (dot-dot-dash) 
lines in (a)-(b) denote the mean of the jet (Sahel precipitation) index for 1958-2002. 
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b. Relationship between the WAWJ and precipitation on decadal times scales 

Based on the decadal-scale co-variations of the WAWJ and Sahel precipitation 

(Fig. 2.3), three periods are defined, namely, 1958-1971, 1972-1987, and 1988-2009, 

corresponding to times of a wet Sahel/strong jet, dry Sahel/weak jet, and relatively wet 

Sahel/strong jet, respectively. The end of a strong (weak) jet period is defined when 

the anomalies of the jet index reach -0.5 (0.5) standard deviation (σ), and within next 

7 years at least 5 years have negative (positive) anomalies and no positive (negative) 

anomalies greater than 1σ. The same criterion is applied to the Sahel precipitation 

index to define wet and dry periods. Note that the last period is not a rigid “wet” 

period based on the criterion above. The number of years with positive precipitation 

anomalies is the same as the number of years with negative anomalies, but the 

magnitudes of the positive anomalies are slightly larger than the negative anomalies.  

Note that this criterion begins the drought period in 1972, while some previous 

work defines the Sahel drought from 1968 (Nicholson 1981, Druyan 1989). The 

different starting years may be related to the different datasets used, different 

averaging regions, different reference periods when calculating anomalies, or the fact 

that we only evaluate for August here to clarify the relationship with the WAWJ. Long 

et al. (2000) note that interannual variations of Sahel precipitation averaged for June-

July and for August-September are quite different. Our choice of periods is very 

similar to that of Long et al. (2000), who defined 1959-1971 and 1972-1989 as wet 

and dry periods for southern sub-Sahara (about 8°-16°N, see Fig. 1 in Long et al. 

2001) for August and September. The following analysis is the same, and the 

conclusions are not changed, if 1968 is used as the beginning at the dry period. 

Figures 2.4a-c show 925 hPa wind vectors, zonal wind speeds (shading), and 

geopotential heights (contours) averaged over the three periods. Average WAWJ 

speeds exceed 6 m s-1 in the 1958-1971 and 1988-2009 periods (Figs. 2.4a and c, 
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respectively).  The thermal low extends westward over the eastern Atlantic to about 

35°W in association with a well-developed offshore low near 15°N that accompanies 

the formation of the WAWJ (PC2010). In 1972-1987, the jet maximum speed is 

around 5 m s-1, and the thermal low only extends westward to about 25°W (Fig. 2.4b).  

Figure 2.5a shows the August precipitation climatology from the CRU and 

GPCP data for 1958-2009. There are two maxima over West Africa, one along the 

west coast between 5°N and 12°N and the other at 10°E and 7°N over the eastern 

Guinean coast. North of 15°N, precipitation rates fall below 6 mm day-1.  

Precipitation anomalies, calculated as differences from the 1958-2009 mean, 

for the three time periods are displayed in Figs. 2.5b-d. Positive Sahel precipitation 

anomalies for 1958-1971 range up to 1.25 mm day-1 (about 30%), centered between 

10°N and 15°N, and extending inland from the west coast to about 26°E (Fig. 2.5b). 

The Guinean coast region is anomalously dry. A nearly opposite pattern occurs during 

the second period (1972-1987), with a dry Sahel and relatively wet Guinean coast 

region (Fig. 2.5c). The anomalies range from -1.5 mm day-1 to 1 mm day-1 (-30% to 

10%). From 1988 to 2009, displayed in Fig. 2.5d, precipitation anomalies are mostly 

positive, with drying over the western Guinean coast. Sahel precipitation has partially 

recovered in this recent time period, with positive anomalies about two fifths of the 

magnitude of the first period.  
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Figure 2.4 925 hPa wind (m s-1) and geopotential heights (gpm; contours) for (a) 1958-
1971, (b) 1972-1987, and (c) 1988-2009 from the ERA40 (1958-2002) and ERA-
Interim (2003-2009) reanalyses. Westerly winds greater than 5 m s-1 (6 m s-1) are 
shaded with light (dark) gray. 
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Figure 2.5 (a) Precipitation climatology (1958-2009) and anomalies for (b) 1958-1971, 
(c) 1972-1987, and (d) 1988-2009 from the CRU (1958-2005) and GPCP (2006-2009) 
data. Shading denotes positive values while contours denote negative values.  Contour 
intervals are 2 mm day-1 in (a) and 0.25 mm day-1 in (b)-(d).   

 

To relate decadal precipitation variations to features of the circulation, we 

examine the vertically-integrated, mass-weighted moisture flux, M, for August as  

 

                                                                                 ,                                     (2.1) 

 

where q is specific humidity and   is the horizontal wind. The integration is from the 

surface (Ps) to Ptop=10 hPa, and calculated as a finite sum shown on the right hand side 

of the equation. As shown in PC 2010, the WAWJ extends from the surface to 700 

hPa at its mature stage in the climatology. Further examination of the ERA40 
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reanalysis shows that in August the monsoon flow occurs primarily below 700 hPa 

and the AEJ is centered at 600 hPa. This motivates a decomposition of the 

atmospheric column moisture transport, M, into an integral from the surface to 700 

hPa (M1) and from 700 hPa to 10 hPa (M2) according to 

 

                                                                                                    .                  (2.2)     

  

Figures 2.6a and b show M1 and M2 for the 1958-2009 ECMWF reanalysis 

climatology, respectively. Between the surface and 700 hPa, the primary fluxes of 

moisture onto the African continent are the westerly flux at 7.5°- 10°N in the vicinity 

of the WAWJ and the southwesterly flux at 10°W-10°E associated with the monsoon 

flow across the Guinean coast (Fig. 2.6a). Between 12.5°-15°N and 18°W-5°E, the 

small easterly fluxes over land are associated with the lower levels of the AEJ. Along 

the west coast between 20°N and 30°N, a northeasterly flux transports moisture off the 

coast. Above 700 hPa over land, easterly fluxes associated with the African easterly jet 

transport moisture off the continent between 10°N and 20°N (Fig. 2.6b).  
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Figure 2.6 Vertically-integrated mass-weighted moisture transport from the ERA40 and 
ERA-Interim reanalyses for the 1958-2009 climatology, integrated (a) from the surface 
to 700 hPa and (b) from 700 hPa to 10 hPa. Vector scale indicates the magnitude of the 
moisture flux in kg m-1s-1. 
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Figures 2.7a-c display anomalies of M1 (Eq. 2.2) for each time period defined 

above. These anomalies are very similar in structure to the horizontal wind anomalies, 

indicating that changes in V


 and not q (Eq. 2.2) are most important. 

The role of the enhanced WAWJ in bringing moisture onto the west coast in 

the 1958-1971 wet period is evident in Fig. 2.7a. Over the eastern Atlantic, an 

enhanced westerly moisture flux is located between 15°W and 40°W. Anomalous 

southwesterly moisture flux at 0-10°W associated with the monsoon also transports 

more moisture from the Gulf of Guinea onto the continent. Over land, an anomalous 

cyclonic circulation is centered near 20°E and 15°N, and this carries moisture 

eastward and northward to 20°N.   

In the 1972-1987 drought period, the anomalous moisture transport from the 

eastern Atlantic is negative between 5°-12.5°N and 40°W-5°E (Fig. 2.7b). This is 

related to the weak WAWJ of this period (Fig. 2.4b). Moisture transport by the 

monsoon flow over the Guinean coast changes little. Over land, an anomalous 

northerly moisture flux at 12°E and 5°-15°N brings moisture from the Sahel toward 

the Guinean coast.  

In the 1988-2009 “recovery” period, an anomalous westerly moisture flux 

associated with a stronger WAWJ is located at 7°-15°N over the eastern Atlantic, 

enhancing eastward moisture transport toward the continent (Fig. 2.7c). Along the 

west coast at 10°W, moisture is transported northward to about 18°N. Over the Gulf of 

Guinea at 5W°-5°E, southwesterly moisture transport associated with the monsoon is 

decreased.  

Anomalies of moisture transport between 700 hPa and 10 hPa (M2) are quite 

small (not shown), indicating that changes in moisture transport by the African 

easterly jet are not strongly correlated with the decadal drought signal. 
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Figure 2.7 Vertically-integrated mass-weighted moisture transport for (a) 1958-1971, (b) 
1972-1987, and (c) 1988-2009, integrated from the surface to 700 hPa. Vector scale 
indicates the magnitude of the moisture flux in kg m-1s-1. 
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The moist static energy (MSE) budget analysis helps to demonstrate the 

association between the moisture profile and large-scale convective precipitation in 

the Sahel. MSE is the sum of the sensible, latent and geopotential energy according to  

                                                                        ,                                              (2.3) 

where cp is the specific heat of air at constant pressure, T is air temperature, L is the 

latent heat of vaporization of water, q is specific humidity, g is the acceleration due to 

gravity, and z is height. MSE increasing with altitude denotes a stable atmosphere, so 

increases in low-level MSE destabilize the vertical column and promote convection. 

Figures 2.8a-c display anomalies of MSE and its component terms (Eq. 2.3) 

over the Sahel at 18°N and 15°W-30°E, where the anomalies of precipitation (by per 

cent) are relatively large, for 1958-1971,1972-1987 and 1988-2009, respectively. As 

shown in Fig. 2.8a, during 1958-1971 the negative slope of MSE anomalies (solid 

line) below 600 hPa indicates a convectively unstable environment. Increased low-

level moisture content (Lq; dashed line) associated with enhanced low-level moisture 

transport (Fig. 2.7a) destabilizes the lower atmosphere, while decreases in temperature 

(cpT; dot-dash line) tend to stabilize the lower troposphere. Anomalies between 500 

hPa and 600 hPa act to stabilize the mid-troposphere. Between 250 hPa and 500 hPa, 

in association with decreases in moisture content at high levels, instability increases 

again. Changes of geopotential term (gz; dotted line) are negligible. 

In the 1972-1987 dry period (Fig. 2.8b), large decreases in moisture content 

between 700 hPa and 1000 hPa are associated with a more stable MSE profile.   Small 

increases in low-level temperature tend to destabilize the atmosphere, but they are 

overwhelmed by the moisture anomalies. 

During the 1988-2009 recovery, MSE anomalies are relatively small. The 

anomalous negative slope of the MSE is mainly associated with increases in moisture 

gzLqTcMSE p ++=
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content and air temperature below 850 hPa accompanied by decreases in moisture 

content at 700 hPa. Above 500 hPa, the anomalous MSE slope is positive, indicating 

that deep convection is discouraged.  

Figs. 2.5-2.8 suggest that decadal variations of Sahel precipitation are related 

to variations of the WAWJ via low-level moisture transport. In periods when the 

WAWJ is strong, enhanced westerly moisture transport increases the low-level 

moisture content over the Sahel, and this is associated with decreased vertical stability 

and precipitation increases.  

 

 
Figure 2.8 Anomalies of moist static energy  (MSE) terms  (Eq. 2.3) averaged between 
15°W and 30°E at 18°N for (a) 1958-1971, (b) 1972-1987, and (c) 1988-2009, with 
reference to the 1958-2009 mean. Sold lines denote the total MSE, dashed (dot-dash) 
lines denote the moisture (temperature) term, and dotted lines denote the geopotential 
term (units: 103 m2 s-2). 

 

This association between the WAWJ and Sahel rainfall on decadal time scales 

does not necessarily mean that the former is the fundamental cause of the latter. 

Variations of the WAWJ and westerly moisture transport displayed here may be part 

of large-scale circulation changes in response to SST variations in the Indian Ocean 

and tropical Atlantic, which provide forcing of Sahel rainfall variations during the 

(b) (a) (c) 
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1980s and 1990s (Hagos and Cook 2008). The close connection between the WAWJ 

and the local circulation, e.g., the continental thermal low and its westward extension 

(PC2010), also suggests feedbacks between the precipitation field and land surface 

conditions through modifications of the WAWJ. Also note that the correlation 

between the WAWJ index and Sahel rainfall index is 0.62, which suggests that the 

WAWJ (statistically) explain less than 40% of the Sahel rainfall variance in August. 

Other factors, e.g., the WAM and local land surface processes, also influence Sahel 

rainfall.  

 

c. Case studies of the relationship between the WAWJ and Sahel precipitation  

To examine the relationship between the WAWJ and Sahel rainfall in 

individual extreme years, we chose a year from each decadal period defined above 

when both the anomalies of the jet and Sahel rainfall indices are greater than ±1σ. 

1964, 1984, and 1999 are chosen. Because two different reanalyses (observations) are 

used in the third period, we also examine 2007, when the anomaly of the jet index 

from the ERA-Interim reanalysis is relatively large, 0.9σ, and the anomaly of the 

Sahel precipitation index from the GPCP data is about 0.8σ. 

Precipitation anomalies for the four years are displayed in Figures 2.9a-d. 

Anomalously high precipitation extends across the western Sahel, with drying to the 

south, in 1964 and 1999 (Figs. 2.9a and d, respectively). In 1984, the driest year 

during 1958-2009 period (Fig. 2.3a), Sahel precipitation anomalies are up to -4 mm 

day-1 (-80 %; Fig. 2.9b).  In 2007, the Sahel is predominantly wet as is the Guinean 

coast region, but negative precipitation anomalies dominate in the southwest and over 

the Cameroon highlands. 

 

 



 

61 

 
Figure 2.9 Precipitation anomalies for (a) 1964, (b) 1984, (c) 1999 in the CRU data, 
and (d) 2007 in the GPCP data with reference to the 1958-2009 mean. Shading 
denotes positive anomalies while contours denote negative anomalies with intervals of 
-1 mm day-1. 

 

An examination of the moisture transport connects the flow and precipitation 

anomalies for these extreme years. Figures 2.10a-d display anomalies of M1 (Eq. 2.2) 

for 1964, 1984, 1999, and 2007, respectively. In the anomalously wet years in the 

Sahel of 1964, 1999, and 2007, westerly moisture fluxes from the eastern Atlantic are 

enhanced (Figs. 2.10a, c, and d, respectively) in association with a strong WAWJ (Fig. 

2.3a). Westerly and southerly anomalies over the continent further transport moisture 

eastward and northward to the Sahel. In 1984, the westerly moisture flux at 8°-12°N 

over the eastern Atlantic is strongly decreased (Fig. 2.10b). Over land, an anomalous 

northerly flux between 0°-10°E and 10°-18°N transports moisture from the Sahel to 

the Guinean coast. Note that the anomalous northerly moisture fluxes over the 

(b) 

(d) 

(a) 
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Guinean coast between 0° and 10°E in 1964, 1999 and 2007 (Fig. 2.10a,c, and d) are 

associated with a weaker southerly monsoon flow (not shown).  

The moisture transport anomalies shown in Fig. 2.10 are consistent with the 

precipitation anomalies in Fig. 2.9 in general. Enhanced (decreased) rainfall in the 

Sahel is accompanied by enhanced (decreased) westerly moisture transport by the 

WAWJ.  

 
 

 
Figure 2.10 Anomalies of the vertically-integrated mass-weighted moisture transport 
from the surface to 700 hPa for (a) 1964, (b) 1984, and (c) 1999 from the ERA40 
reanalysis, and (d) 2007 from the ERA-Interim reanalysis with reference to the 1958-
2009 mean. Vector scale indicates the magnitude of the moisture flux in kg m-1 s-1 

 

Figures 2.11a-d show MSE anomalies averaged between 15°W and 30°E at 

18°N (where the anomalies of precipitation are relatively large) for 1964, 1984, 1999 

(b) (a) 

(d) (c) 



 

63 

and 2007, respectively. In 1964, 1999, and 2007, the negative slopes of the MSE 

anomalies (solid lines) indicate a destabilized environment (Figs. 2.11a, c, and d, 

respectively). Increases in MSE at low levels are associated with moisture (dashed 

line) increases below 700 hPa. The geopotential term (dotted line) changes little while 

the temperature term (dot-dash line) either tends to stabilize the vertical column (Figs. 

2.11a and c) or changes little compared to the climatology (Fig. 2.11d).  In 1984, 

decreases in low-level MSE are related to large decreases in moisture content below 

600 hPa (Fig. 2.11b). While increases in low-level temperature tend to destabilize the 

vertical column, the effect of moisture decreases dominates and the stability of the 

atmosphere increases. 

As shown in Figs. 2.9-2.11, the association between the WAWJ and Sahel 

rainfall persists in various cases from different periods, suggesting that this 

relationship is robust.  
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Figure 2.11 Anomalies of MSE terms averaged between 15°W and 30°E at 18°N for 
(a) 1964, (b) 1984, and (c) 1999 from the ERA40 reanalysis, and (d) 2007 from the 
ERA-Interim reanalysis with reference to the 1958-2009 mean. Sold lines denote the 
total MSE, dashed (dot-dash) lines denote the moisture (temperature) term, and dotted 
lines denote the geopotential term (units: 103 m2 s-2). 
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d. Comparison between the WAWJ moisture transport and the monsoon moisture 

transport  

As displayed in Fig. 2.6a, both the southwesterly moisture flux associated with 

the monsoon flow across the Gulf of Guinea and the westerly flux associated with the 

WAWJ are important moisture sources for Sahel precipitation. Here we compare these 

two moisture sources. 

Figure 2.12a displays a 50-year Hovmöller diagram of the zonal moisture 

transport averaged between 7.5°N and 10°N and vertically-integrated from the surface 

to 700 hPa.  This represents moisture transport onto the African continent by the 

WAWJ. Moisture transport onto the continent by the monsoon flow is represented in 

Fig. 2.12b by the vertically-integrated meridional moisture transport averaged between 

0° and 5°E. A comparison of Figs. 2.12a and b indicates that, overall, onshore 

moisture transport by the WAWJ is stronger and more variable than transport by the 

monsoon flow. 

Westerly moisture transport associated with the WAWJ is strongest between 

12°-20° W. Consistent with the previous discussion, this westerly moisture transport 

exhibits strong interannual and decadal variations. In the dry period (1972-1987), 

westerly moisture transport at 25°-35°W and 10°W-0°E is much weaker than during 

the wet (1958-1971) and recovery (1988-2009) periods. In the mid-1980s, westerly 

moisture transport between 5°W and 35°W decreases up to -60% compared with the 

climatological mean.  

Southerly moisture transport from the Gulf of Guinea to the African continent 

is greatest between 0° and 10°N (Fig. 2.12b). Decadal variations are weaker than those 

of the zonal moisture transport (Fig. 2.12a). For instance, during the dry period of the 

late 1970s and the 1980s, the meridional moisture transport across the Guinean coast 

was very similar to that during the wet period in the 1960s.  
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Figure 2.12 Vertically-integrated (a) zonal moisture flux (averaged between 7.5°N and 
10°N) and (b) meridional moisture flux (averaged between 0° and 5°E) from the 
surface to 700 hPa in the ERA40 and ERA-Interim reanalyses. Contour interval is 40 
Kg m-1 s-1. Westerly and southerly fluxes are shaded. 

 

Such a difference between the strength of the monsoon moisture transport and 

Sahel precipitation can also occur in individual years. For instance, in 1999 and 2007, 

when the Sahel was wet (Figs. 2.9c and d), the southwesterly monsoon flow and 

associated moisture transport (Figs. 2.10c and d) was weak. This agrees with Lamb 

(1983), who found that the strength of the monsoon moisture transport across the 
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Guinean coast is not always consistent with Sahel precipitation.  

Figure 2.13 displays the WAM (dotted line) and Sahel precipitation (short-

dashed line) indices (defined in section 3) along with their 9-year running means (solid 

and long-dashed lines) for 1958-2009. The monsoon index is relatively strong during 

the 1960s, around the average during the 1970s, and weak in the 1980s. After a small 

increase in the early 1990s, the monsoon index has weakened since the late 1990s. 

During the 2010s, the strength of the monsoon index decreased up to 15% compared 

with the climatological mean. The correlation between the WAM index and the Sahel 

precipitation index is 0.36 for 1958-2009, above the 99% confidence level but the 

correlation is lower than that between the WAWJ and Sahel precipitation, consistent 

with a weaker association between the southerly moisture transport over the Guinean 

coast and Sahel rainfall variations (Figs. 2.3a and 2.12b). 

 

 
Figure 2.13 West African monsoon (dotted) index (m s-1) and Sahel precipitation 
(short dashed) index (mm day-1) and their 9-year running means (sold line for the 
monsoon index and long dashed line for the Sahel precipitation index). All indices are 
interpolated to a 1.5° grid. 

 

e. Role of the WAWJ in the regional vorticity balance  

The WAWJ is associated with Sahel precipitation not only through moisture 
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transports. In the quasi-equilibrium of the climatological mean, when mid-

tropospheric condensational heating associated with monsoon rainfall stretches vortex 

columns in the lower troposphere and generates a positive low-level relative vorticity 

tendency, the low-level flow compensates by advecting negative vorticity into the 

region. Cook (1997) showed that the primary vorticity balance in this region is the 

Sverdrup balance, i.e., the positive vorticity tendency is balanced by the advection of 

low planetary vorticity air from lower latitudes by the monsoon flow across the 

Guinean coast.  Here we find that vorticity advection by the WAWJ is also important 

for this balance,  

The climatological vorticity equation is 

 

                                                                                                          ,            (2.4) 

 

where ζ is the relative vorticity, f is the Coriolis parameter, ( )vuV ,=


is the horizontal 

wind, in which u is the zonal wind and v is the meridional wind, ω  is the vertical p-

velocity, and ( )yx FFF ,=


is friction. Variables are averaged over time for the 

climatology, such that            , the effects of transients are neglected [see Cook 

(1997)], and the frictional generation of relative vorticity is calculated as a residual.   

Figures 2.14a and b display the convergence and advection terms (first 2 terms 

on the left hand side in Eq. 2.4) for August at 925 hPa for the 1958-2002 ERA40 

climatology.  The 925-hPa level is chosen because it displays the role of the WAWJ 

most clearly, but the 850 hPa level is very similar.  Between 5°N and 15°N over the 

eastern Atlantic and West Africa, a positive vorticity tendency is associated with the 

convergence term (Fig. 2.14a) in the vicinity of the WAWJ.  South of the jet core at 

10°N, this vorticity tendency is balanced by the advection term (Fig. 2.14b). North of 

10°N, the positive vorticity tendency is balanced by friction (not shown), similar to 
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Cook (1997). The tilting term is relatively small terms and is also not shown.   

The negative vorticity tendency over the eastern Atlantic and the West African 

coast just south of 10°N associated with advection (Fig. 2.14b) is generated by the 

northward advection of low absolute vorticity. This is similar to the findings of Cook 

(1997) for the monsoon flow.  However, for the monsoon flow the advection term was 

dominated by the meridional advection of low planetary vorticity air, while in the 

vicinity of the WAWJ it is dominated by the meridional advection of low relative 

vorticity air. In the jet region, the meridional gradient of the zonal wind is negative to 

the north of the jet core and positive to the south, setting up a positive (northward) 

meridional gradient of relative vorticity, i.e., 
                                                         
                                                                                           .                                       (2.5)                                

 

So low relative vorticity is transported northward into the WAWJ region by the 

southerly flow             into the Atlantic marine ITCZ in which the WAWJ is 

embedded. In this way, the WAWJ is coupled to the precipitation climatology in 

helping to maintain the local vorticity balance as well as through the moisture budget.    

 

 

 

 

 

 

 

 

 

 

0>















∂
∂

−
∂
∂

≈
∂
∂

y
u

yy
ζ

)0( <
∂
∂

−
y

v ζ



 

70 

 

 

 

 
Figure 2.14 (a) Convergence and (b) advection terms in the vorticity equation (Eq. 
2.4). Values are calculated for August at the 925 hPa level for the ERA40 climatology 
(1958-2002). Shading intervals are 0.8×10-10 s-2. Topography is masked out. 
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f. Processes of WAWJ variations 

PC2010 found that the WAWJ has a significant ageostrophic component, but 

the geostrophic component of the zonal flow, gU , captures most of its seasonal 

variations. Here we find that the correlation between the WAWJ and gU  on 

interannual and decadal time scales is high, at 0.81 for the 1958-2009 analysis period 

(exceeding the 99% confidence level). This suggests that variations of the WAWJ are 

related to the low-level geopotential height gradient at 8°-13°N over the eastern 

Atlantic and to coastal SSTs (PC2010). 

To explore the degree to which eastern Atlantic SSTs might influence decadal 

rainfall variability in the Sahel by forcing variations in the WAWJ, idealized (process-

study) simulations with an atmosphere-only regional climate model were conducted 

using the NCAR/NOAA WRF (Weather Research and Forecasting) model 

(Skamarock et al. 2008) version 3.1. Previous work (Patricola and Cook 2010) found 

that with appropriate parameterization and resolution choices, WRF represents the 

features of the West African climate very well. 

Following Patricola and Cook (2010), we use a domain from 57.6°W and 

38.2°E to 16°S and 34.2°N, 28 vertical levels, 90-km resolution, and the following 

parameterizations: the RRTM longwave (Mlawer et al. 1997) and Dudhia shortwave 

(Dudhia 1989) radiation schemes; Noah land surface model (Chen and Dudhia 2001); 

Mellor-Yamada-Janjic planetary boundary layer scheme (Mellor and Yamada 1982; 

Janjic 1990, 1996, 2002); Kain-Fritsch cumulus scheme (Kain 2004; Kain and Fritsch 

1990, 1993) .  

For the control simulation, surface and lateral boundary conditions are 

climatological means (1958-2001) from the NCEP1 reanalysis, except soil moisture, 

soil temperature, skin temperature, and SST, which are from the ERA40 reanalysis.  

The model is initialized on March 15th, and run through the end of October. 
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Three additional simulations were conducted. In one, named Test 1, decadal-

mean SSTs, surface and lateral boundary conditions for the relatively wet period of 

1958-1971 are prescribed. A second simulation (Test 2) also uses SSTs for 1958-1971, 

but with climatological (1958-2001) surface, initial, and lateral boundary conditions.  

In a third simulation (Test 3), SST and boundary conditions for the dry period of 1972-

1987 are prescribed.   

None of the test simulations captures the observed decadal anomalies of the 

WAWJ or Sahel rainfall. In Test 1, the WAWJ is weaker than in the control run and 

Sahel rainfall decreases for JJAS. In Test 2, the WAWJ is weakly enhanced in July but 

changes little in August. Rainfall decreases between 5°-20°E and 7°-15°N and 

increases in the rest of West Africa in July. In August, rainfall between 13°-16°N and 

10°W-10°E increases and decreases over the west coast and the eastern Sahel.  In Test 

3, the WAWJ is stronger than in the control run for June and September, but changes 

little in July and August. Rainfall decreases over the northern Sahel at 14°-15°W and 

increases in the south for June, August and September. In July, Sahel rainfall increases 

between 5°W and 5°E and decreases between 15°E and 30°E.   

In short, the decadal anomalies produced by these simulations forced with 

decadal-mean Atlantic SSTAs do not resemble the observed anomalies.  This suggests 

that decadal rainfall variations over the Sahel are not caused by Atlantic SSTs through 

control of the WAWJ, despite the fact that the WAWJ is a primary source of moisture 

for Sahel rainfall.  Moisture is delivered into the Sahel by the WAWJ, but decadal 

variations in the WAWJ may be simply a response to variations in the rainfall that are 

forced in other ways. 

Hagos and Cook (2008) found that decadal SST variations in the Indian Ocean 

influence the low-level westerly moisture flux near the West African coast. The results 

of the simulations discussed above support this result in suggesting that eastern 
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Atlantic SSTA forcing alone cannot explain decadal variations of Sahel rainfall and 

the WAWJ. 

PC2010 showed that the formation of the region of westerly acceleration that 

produces the WAWJ is associated with the seasonal progression of the Atlantic marine 

ITCZ, so the role of the Atlantic ITCZ in the jet’s decadal variability is examined here.  

From 1958-2009, there are 8 years in which the WAWJ index anomaly 

exceeds one standard deviation, namely, 1964, 1967, 1970, 1988, 1989, 1994, 1995, 

and 1999. With the exception of 1970, the Atlantic marine ITCZ off the West African 

coast (20°-30°W) is located to the north of its climatological position in these “strong 

WAWJ” years. [The zero meridional wind speed contour is used to identify the 

location of the ITCZ as in Grist and Nicholson (2001).]  Similarly, in 9 out of 11 

“weak WAWJ” jet years, the ITCZ is located to the south of its climatological 

position.  

The association between the speed of the WAWJ and the location of the 

Atlantic ITCZ is consistent with the dynamics of the jet formation (PC2010). In years 

when the ITCZ is located farther north (south), the westerly acceleration region is 

extended (reduced). Stronger (weaker) southerly winds between 8°-11°N and 20°-

30°W enhance (decrease) the westerly acceleration through the Coriolis acceleration. 

Figure 2.15 shows the time series of the jet index (dotted line), a smoothed version of 

the jet index (9-year running mean; solid line), and the meridional wind speed (dot-

dash line) averaged over the jet acceleration region (20°-30°W, 8.4°-10.6°N) also with 

its 9-year running mean (dashed line) from the ERA40 and ERA-Interim reanalyses. A 

high correlation (0.62 for 1958-2009, exceeding the 99% confidence level) between 

the two further confirms this hypothesis.  
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Figure 2.15 WAWJ (dotted line) index averaged over the jet region (15°-25°W, 8.4°-
10.6°N) with its 9-year running mean (solid line) and the meridional wind speed (dot-
dash line) averaged over the jet acceleration region (20°-30°W, 8.4°-10.6°N) with its 
9-year running mean (dashed line) from the ERA40 and ERA-Interim reanalyses. 
Units are m s-1. 
 
 

2.5 Conclusions 

Previous work documents that westerlies over the eastern Atlantic bring 

moisture to West Africa. This westerly flow is usually considered to be of the 

monsoon flow, but Grodsky et al. (2003) identified it as a low-level jet. Pu and Cook 

(2010) refer to this jet as the West African westerly jet (WAWJ) and further 

distinguish it from the monsoon flow by showing that it is physically separate and 

governed by different dynamics. Here, the relationship between the WAWJ and Sahel 

precipitation on decadal and interannual time scales is examined for August, when 

both the jet intensity and rainfall rates are maximum.  

Correlations across different reanalyses and precipitation datasets over 

different time periods agree that variations of the WAWJ are significantly positively 

correlated to precipitation over West Africa between 10°-20°N and 18°W-30°E. Based 

on this co-variation of the WAWJ and Sahel precipitation, 3 periods are identified, 

namely, 1958-1971, 1972-1987, and 1988-2009, corresponding to times of a wet 
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Sahel/strong jet, dry Sahel/weak jet, and relatively wet Sahel/strong jet, respectively. 

Decadal variations of Sahel precipitation are closely related to variations of the 

WAWJ. During wet (dry) periods, enhanced (weakened) westerly moisture transport 

by a strong (weak) WAWJ increases (decreases) the low-level moisture content over 

the Sahel, destabilizing (stabilizing) the atmosphere and fueling precipitation. 

The relationship between the jet and Sahel precipitation is also found in 

individual years. For instance, in 1964, 1999, and 2007 (1984), when the jet is strong 

(weak), enhanced (reduced) westerly moisture fluxes occur over the eastern Atlantic, 

combined with anomalous southerly (northerly) moisture fluxes over the continent and 

Sahel precipitation increases (decreases) .  

The WAWJ also plays an important role in maintaining the regional vorticity 

balance. In the jet region, the strong zonal wind shear sets up a positive (northward) 

relative vorticity gradient. The positive, low-level relative vorticity tendency due to 

mid-tropospheric condensational heating associated with precipitation is mainly 

balanced by the northward transport of low relative vorticity. This is different from the 

monsoon region where the Sverdrup balance dominates (Cook 1997). 

The correlation between the monsoon index and the Sahel rainfall index is 

lower than that between the WAWJ index and the Sahel rainfall index, suggesting a 

weaker association between Sahel rainfall and the southwesterly monsoon flow over 

the Guinean coast in August. Moisture transport across the Guinean coast also has 

weaker decadal variability and is less consistent with Sahel rainfall variations than the 

westerly moisture flux across the West African coast associated with the WAWJ. 

When monsoon flow over the Guinean coast is weak, e.g., 1964 and 1999, with 

an anomalously strong jet and enhanced westerly moisture transport, Sahel 

precipitation is strong. This suggests that the WAWJ plays an essential role in Sahel 

precipitation variations. As shown in the ERA40 and ERA-Interim reanalyses, the 
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monsoon flow is weakening in recent years, despite a partial recovery of Sahel 

rainfall. Understanding the relationship between the WAWJ and Sahel precipitation is 

especially useful under this scenario.  

Strong (weak) jet years are usually accompanied by the northward (southward) 

displacement of the Atlantic marine ITCZ, revealing that the association between the 

WAWJ and the ITCZ is not limited to the seasonal time scale (PC2010). When the 

Atlantic ITCZ is located north of its climatological location, the southerly winds in the 

jet acceleration region (20°-30°W and 8.4-°10.6°N) are greater, enhancing westerly 

acceleration by the Coriolis force. 

Regional model simulations suggest that forcing from eastern Atlantic SSTs 

alone does not explain decadal variations in the WAWJ. The WAWJ is a primary 

mode of moisture delivery to the Sahel from the Atlantic, but it is not controlled by 

Atlantic SSTs. Rather, it responds to variations associated with precipitation forced by 

other means, such as Indian Ocean SSTs (Hagos and Cook 2008). 
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CHAPTER 3 

 

NORTH AMERICAN CLIMATE RESPONSE TO THE ATLANTIC MERIDIONAL 

OVERTURNING CIRCULATION SHUTDOWN AND GREENHOUSE GAS 

WARMING 

 

3.1 Introduction 

The thermohaline circulation is the density driven global ocean circulation. 

The part over the Atlantic basin is referred to as the Atlantic meridional overturning 

circulation (AMOC). The cold and dense water sinks at high latitudes and forms deep 

water, which flows southward to the Southern Hemisphere. At the surface, northward 

flow transports the warm and salty water to compensate the mass loss. Oceanic heat 

transport in the Atlantic, which is mainly associated with the AMOC, is overall 

northward (Ganachaud and Wunsch 2000; Stammer et al. 2003), with the magnitude 

of about 0.7 ± 0.2 PW (1 PW=1015 W) over the tropical Atlantic and 1.3 ± 0.15 PW 

near 25°N (Ganachaud and Wunsch 2000; 2003).  Reorganization of the AMOC is 

believed in association with abrupt cooling events in paeloclimatic records (Alley and 

Agustsdottir 2005; Clark et al. 2001; Broecker 2003；Clarke et al. 2004). When the 

formation of the deep water is suspended by large amount of the freshwater input, the 

AMOC may be slowed or even shutdown.   

Coupled atmosphere-ocean model simulations suggest that the strength of the 

AMOC is sensitive to increases in CO2 concentration, and weakens as the sea surface 

buoyancy increases (Gregory et al. 2005). While the observed slowdown of the 

AMOC has some uncertainties (Kerr 2005; Latif et al. 2006), most of the IPCC 

(Intergovernmental Panel on Climate Change) coupled models predict a slowdown of 

the AMOC in the 21st century (IPCC AR4 2007). Although none of the IPCC model 
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predicts a complete shutdown of the AMOC by the end of the 21st century when 

forced with the IPCC SRES (Special Report on Emissions Scenarios, Nakicenovic et 

al. 2000) scenarios, studies also found that models may underestimate the possibility 

as many are less sensitive to the forcing, e.g., freshwater influxes, than the real world 

(Alley and Agustsdottir 2005). Estimation and understanding climate responses to the 

AMOC reorganization in the context of global warming will provide useful 

information for risk management.  

While various models simulated the AMOC slowdown/shutdown in the future, 

few provide details on regional climate changes, as the coarse resolution of the GCMs 

(general circulation models) limits spatial details of the prediction. In this paper, we 

take advantage of the high resolution and regionally specified parameterizations of the 

regional climate model to provide a detailed study on climate variations over North 

America under a hypothetical shutdown of the AMOC in the period of 2081-2100. 

This study will add to the understanding of how the combined forcing of the 

greenhouse gas warming and AMOC shutdown influences regional climate. 

Studies on climate impacts associated with the reorganization of the AMOC 

with emphasis on North American climate variations are reviewed in Section 3.2. 

Section 3.3 introduces the regional model used in this study and the simulation design. 

Section 3.4 is the model validation, comparing the output of the control simulation 

with the reanalyses and observations. Section 3.5 presents the results and Section 3.6 

contains main conclusions.  

 

3.2 Background 

Studies found that about 8200 years ago, there was an abrupt cooling over 

Europe and northeastern North America, accompanied with drying over Sahara, 

western Asian monsoon regions, and probably the U.S. Great Plains, and a southward 
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shift of the ITCZ (Alley and Agustsdottir 2005). This “8k” event along with other 

cooling events, such as the Younger Dryas and Heinrich events, are believed to be 

associated with the reorganization of the AMOC (Alley and Agustsdottir 2005; Clark 

et al. 2001; Broecker 2003).  

Studies suggest that enhanced freshwater influx before the cooling events may 

dilute the surface of the North Atlantic Ocean and suppress the formation of the 

Atlantic deep water and the meridional overturning circulation. For instance, the 8k 

event is believed to be related to the outburst flood by the drainage of large ice lakes 

about 8400 years ago (Clarke et al. 2004), while the Younger Dryas event is 

associated with the rerouted continental runoff from the Mississippi River to the St. 

Lawrence River at about 13,000 B.P. (before the present; Clark et al. 2001).  

Model simulations with freshwater forcing produce anomaly patterns similar to 

the paleoclimatic records (Ressen et al. 2001a and b, 2002), further confirming that 

organization of the AMOC is an important mechanism for abrupt climate changes.  

Global warming has a potential to change the buoyancy of the surface water 

over the North Atlantic and influence the strength of the AMOC. Recent observations 

show that freshwater input over the high latitude oceans increases (Dickson et al. 

2003; Curry and Mauritzen 2005). Comparing the transatlantic section at 25°N with 

four pervious sections taken over the past five decades, Bryden et al. (2005) found that 

the AMOC has slowed by about 30 percent between 1957 and 2004, and the 

northward heat transport is reduced. However, since direct observation of ocean 

circulation is sparse and limited, there are uncertainties about the observed AMOC 

trend, e.g., whether its variations are within the nature variability or represent a long 

term trend (Kerr 2005; Latif et al. 2006). 

Many atmosphere-ocean general circulation models (AOGCMs) simulate a 

weakening the AMOC when forced with increasing CO2 concentration (Wood et al. 
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1999; Manabe and Stouffer 1999; Gregory et al. 2005). For instance, using the GFDL 

coupled model, Dixon et al. (1999) found that increasing greenhouse gas changes net 

surface freshwater fluxes (precipitation, evaporation and runoff from land) over the 

North Atlantic, reducing surface densities at high latitudes. The vertical convection is 

inhibited and the AMOC weakens.  

Thorpe et al. (2002) found in HadCM3 coupled model, the AMOC weakens 

about 20% in response of a CO2 increasing of 2% per year for 70 years. Schmittner et 

al. (2005) found 28 projections from 9 coupled models forced with the SRES A1B 

CO2  concentration predicted a weakening of the AMOC by 25(±25)% until 2100.  

Many studies explored the climate impacts of the AMOC shutdown in the 

coupled models. Vellinga and Wood (2002) studied the climate feedbacks of the 

AMOC shutdown in a pre-industrial climate state through an atmosphere-ocean 

coupled model, HadCM3.  During the first 50 years after the AMOC collapsed in the 

model, the air temperature decreases about 1-2°C in the Northern Hemisphere and 

increases about 0-0.5°C in the Southern Hemisphere. Eastern North America and 

Europe cool about 1-2°C in (model) years 20-30, while the maximum cooling (-8°C) 

occurs over the northwest Atlantic. Precipitation is reduced over the large parts of the 

mid-latitudes in the Northern Hemisphere. Over the U.S. there is a weak increase of 

precipitation over the southwest. The ITCZ over the Atlantic and eastern Pacific is 

shifted southward.  

Multi-model comparisons of the model reactions to idealized freshwater 

perturbations are reported by Stouffer et al. (2006). Freshwater flux of 0.1 Sv (1 Sv = 

106 m3 s-1) is applied to the North Atlantic Ocean uniformly between 50°N and 70°N 

for 100 years to force 15 coupled AOGCMs and Earth system models. The strength of 

the AMOC at the 100th year decreases by 9% ~ 62% among various models. The 

ensemble mean averaged in the 81-100 model years shows that most of the Northern 
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Hemisphere cools with a cooling maximum of -3°C located south of Greenland and 

0°C to -0.6°C over the continents. Among the 15 models 5 have predicted a warming 

over the Barents and Nordic Sea in various degrees, which is caused by the northward 

shift of oceanic deep convection which results in increasing northward heat transport 

in higher latitudes. A warming of 0°C-0.3°C occurs in the Southern Hemisphere. 

Precipitation decreases in most of the Northern Hemisphere except over the North 

Pacific.  

Another group of simulations with stronger freshwater perturbation of 1.0 Sv is 

conducted by 9 models. The AMOC collapses to a near shutdown condition within 50 

years of the start of the perturbation. In the ensemble mean, the Northern Hemisphere 

cools about 2°C-3°C on average and the Southern Hemisphere warms about 0.3°C. 

The maximum cooling occurs between Scotland and Iceland up to -12°C. Over North 

America, cooling reaches -4°C in the northwest, and up to -2°C in other parts of the 

continent. Maximum warming of about 2.4°C occurs over the South Atlantic long the 

African coast.  

Other simulations show similar results (Barreiro et al. 2008). When the AMOC 

is shutdown, the temperature in the Northern Hemisphere will decrease by 1-3°C, and 

there will be a slight warming of 0-0.5°C in the Southern Hemisphere. However, the 

warming in the South Hemisphere is lagged to the cooling in the Northern 

Hemisphere. Roche et al. (2010) found that under Last Glacial Maximum conditions 

after the AMOC is shutdown the maximum warming in the Southern Hemisphere 

occurs about 190-300 (model) years later than the coldest period in Greenland, and 

this result is supported by ice-core evidence (Petit et al. 1999; EPICA community 

members 2004) although the time resolution of records in Antarctica and Greenland 

are too coarse to clearly identify the time lag.  

While these papers explore the climate change under paleoclimatic and pre-
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industrial conditions, studies on the AMOC shutdown in the context of increasing CO2 

concentration is especially useful in predicting climate changes in the future as the 

cooling effect of the AMOC shutdown may offset or change the effects of greenhouse 

gas warming. Although the chance of the AMOC shutdown in the 21st century is very 

low, the possibility cannot be excluded (IPCC AR4 2007). Study of this extreme 

climate state will provide a likely upper limit of climate impacts for policy makers in 

risk management.   

Using the coupled climate model HadCM3, Vellinga and Wood (2008) studied 

climate impacts of a hypothetical shutdown of the AMOC in the 2050s. The AMOC 

shutdown is artificially induced by applying 5×105 km3 of freshwater perturbation to 

the North Atlantic between 50°N and 90 °N. The effect of greenhouse gas warming is 

also considered by prescribing historical CO2 concentration for 1859-1990, IS92a 

scenario for 1990-2100 and a constant value of 700 ppmv for 2100-2150. The strength 

of the AMOC weakens with a rate of about -0.3 Sv/decade in the first half of the 21st 

century. After an instantaneous freshwater perturbation in 2049, it substantially 

reduces and then recovers at a rate of about 0.6 Sv/decade. 

During the first decade of the AMOC shutdown, relative to global warming, 

the Northern Hemisphere air temperature cools about -1.7°C while the Southern 

Hemisphere slightly warms. Along the west fringes of Europe and most of the North 

Atlantic the cooling effect due to the AMOC shutdown outweighs the greenhouse gas 

warming effect and the temperature returns to pre-industrial conditions. As the AMOC 

recovers, by the year 2150 the temperature catches up with the parallel simulation 

forced by greenhouse gas alone. While precipitation changes are generally in 

opposition to that caused by the greenhouse gas warming, over Central America, 

Southern Europe, and Southeast Asia, the precipitation is further reduced.   

They also compared climate impacts of the pre-industrial AMOC shutdown 
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with those of the AMOC shutdown under global warming and found that influences of 

the AMOC shutdown and greenhouse gas increasing may add linearly (e.g., averaged 

surface air temperature in the Northern Hemisphere over land) and nonlinearly 

(precipitation field) in different regions (Vellinga and Wood 2008). 

Laurian et al. (2009) studied the cooling effect of the AMOC shutdown in the 

ECHAM/MPI-OM climate model simulation forced by 1.0 Sv freshwater and SRES 

A1B CO2 concentration from 2001 to 2100. They found that a global surface cooling 

of 0.72 K (compared to the control simulation forced only by A1B CO2 emission 

scenario) is associated with reduced downward longwave radiation due to reduced 

water vapor content.   

Jacob et al. (2005) found that using a high resolution (0.5°) regional model to 

dynamically downscale the AOGCM output provided a better risk assessment for 

Europe of AMOC-induced climate change. They found that the regional model 

predicted a much larger fraction of snow in total precipitation than the global model 

because of its higher resolution and better ability to simulate regional orographic 

features. 

Here we use a regional climate model to investigate the climate response over 

North America to the AMOC shutdown and greenhouse gas warming on high spatial 

(90 km) and temporal (monthly) resolutions. Our method is different from the 

dynamical downscaling that is directly driven by the AOGCM output. Detail 

simulation design is addressed in the following section.  

 

3.3 Simulation design 

The regional climate model NCAR/NOAA WRF (Weather Research and 

Forecasting) version 3.1.1 (Skamarock et al. 2008) is used to conduct the simulations. 

The model is fully compressible and non-hydrostatic, using flux-form Euler governing 
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equations to calculate horizontal and vertical winds, potential temperature and 

moisture on the terrain-following σ surface.  

In order to examine how the shutdown of the AMOC will influence the 

regional climate adjacent to the North Atlantic, a relatively large domain is chosen. 

Figure 3.1 shows the domain, from 125°W to 30°E and from 5°S to 70°N.  Here we 

focus on climate variations over North America. Changes over West Africa and 

Europe will be addressed in another paper.     

 

 
 
Figure 3.1 SST anomalies between the shutdown simulation and the control 
simulation. Shading over the ocean denotes SST anomalies with intervals of 0.5 K. 
Contours over land denote topography higher than 103m with intervals of 0.5×103m. 

 

90-km resolution is used. Previous studies found this horizontal resolution is 

enough to produce a reasonable summer climate over northern Africa (Patricola and 

Cook 2010) and North America by the WRF model.  The model contains 31 vertical 

levels, with the top of the atmosphere set at 30 hPa. The physical parameterization 
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selections are the same as Patricola and Cook (2010), except that the RUC land 

surface model (Smirnova et al. 1997, 2000) is replaced by the unified Noah land 

surface model (Chen and Dudhia 2001), which produces more realistic results. Other 

parameterizations used are: the Mellor-Yamada-Janjic planetary boundary layer 

scheme (Mellor and Yamada 1982; Janjic 1990, 1996, 2002), the Monin-Obukhov-

Janjic surface layer scheme (Monin and Obukhov 1954; Janjic 1994, 1996, 2002), the 

new Kain-Fritsch cumulus scheme (Kain and Fritsch 1990, 1993) , the Purdue Lin 

microphysics scheme (Lin et al. 1983; Rutledge and Hobb 1984; Tao et al. 1989; Chen 

and Sun 2002), the RRTM longwave radiation scheme (Mlawer et al. 1997), and the 

Dudhia shortwave radiation scheme (Dudhia 1989). 

Three groups of simulations are conducted, the control run, shutdown, and 

slowdown, to represent the present day climate, the extreme condition when the 

AMOC is shutdown and a mild state when the AMOC is slowed. In this paper we 

mainly discuss the results from the shutdown simulation. In each group, 20 years 

simulations are run to form a stable climatology. Interested in climate variations in 

summer and early autumn, in each year, integrations are initialized on 15 March and 

run for 200 days to 30 September.  The first 17 days are disregarded for spin-up. Our 

analysis is focused on April -September. 

  In the control run, surface and lateral boundary conditions are from the 

NCEP2 reanalysis (Kanamitsu et al. 2002) for 1981-2000. Monthly values from the 

reanalysis are linearly interpolated to 6-hourly values for WRF input. The CO2 

concentration is held fixed at 330 ppmv.  

Ensemble mean of 9 IPCC AR4 AOGCMs, the CCCMA_CGCM3.1, CNRM-

CM3, ECHAM/MPI-OM, GFDL-CM2.0, MIROC3.2 (medium resolution), MRI 

CGCM2.3.2, NCAR CCSM, NCAR PCM, and the UKMO-HadCM3, following 

Patricola and Cook (2010), is averaged between 1981 and 2000 to form the present 
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day climatology. Output from the same 9 AOGCMs forced by the IPCC SRES A2 

emission scenario for 2081-2100 is averaged to form the climatology in the future. 

The monthly mean differences between the two, future minus the present day, are used 

as “anomalies” and applied to the NCEP2 reanalysis (1981-2000) monthly values to 

form the lateral and surface boundary conditions for the hypothetical shutdown of the 

AMOC.  

An idealized SSTA (SST anomaly) pattern is designed to represent Atlantic 

SST variations within two decades after the AMOC shutdown under greenhouse gas 

warming. Based on results of previous water-hosing experiments (Vellinga and Wood 

2002, 2008; Stouffer et al. 2006; Chang et al. 2008; Barreiro 2008 ), a Gaussian shape 

cooling center of -7 K is placed over the North Atlantic at 20ºN and 55ºW. AOGCMs 

predict that the Atlantic will cool by -5 K ~ -12 K in terms of AMOC shutdown, and -

7 K is in the middle of this range. SSTs over the eastern boundary current (e.g., the 

Canary Current) region also cool but in a lesser extent, so a comma-like cold anomaly 

pattern is designed. Over the whole domain, a uniform 2.5 K warming is applied to all 

the ocean points to represent the effect of greenhouse gas warming by the end of the 

21st century. 2.5 K is approximately the domain averaged warming of the GCM 

ensemble mean in 2081-2100.  The SST prescribed to the WRF is the sum of this 

idealized SSTA and the NCEP2 1981-2000 SST. 

CO2 concentration is set to 757 ppmv, the mean value of the SRES A2 

emissions scenario during 2081-2100. This scenario represents inaction of the global 

community, i.e., business as usual, and likely is an upper limit of the expected change 

in CO2 concentration.   

The AOGCM output does not provide the soil moisture and soil temperature 

fields that are needed in WRF input. Given the lack of a better option the same present 

day values from the NCEP2 reanalysis are used for the shutdown simulation for each 
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year.  Examination of the soil moisture and soil temperature fields over Africa from 

previous simulations reveal that they adjust rapidly to the overlying atmospheric 

conditions, usually within a couple of weeks. 

For the slowdown simulation, the setting is the same as the shutdown except 

the prescribed SSTA is the SST anomalies between the AOGCM ensemble mean 

averaged during 2081-2100 and during 1981-2000.  The SSTA is positive over the 

whole domain with relatively weak warming of 0-1.5 K over the  North Atlantic 

(centered at 20°-40°W and 45°-65°N) and 2-3 K warming over the subtropical and 

tropical oceans (not shown). The name “slowdown” is referred to the state of the 

AMOC in comparison to the present day. Note that the climate in this period is 

influenced by both greenhouse gas warming and the weakening of the AMOC. 

 

3.4 Simulation Validation 

Output from the control simulation averaged between 1981 and 2000 is 

compared with the reanalysis and observations in the same period to examine if the 

present day climate is well represented. Figures 3.2a-d show 850 hPa wind and 

geopotential heights from the ERA40 reanalysis and the control simulation for April-

June (AMJ) and July-September (JAS) in the 1981-2000 mean. In AMJ, as shown in 

the ERA40 reanalysis, the primary large-scale system is the North Atlantic subtropical 

high (or the Bermuda high) over the ocean at 40°W and 25°N and the Icelandic low at 

high latitudes near 80°W (Figs. 3.2a). In the control run, the strength of two centers is 

about 10 pgm greater than that in the ERA40 reanalysis, and the westerly winds 

between them are also greater compared to the ERA40 reanalysis.  
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Figure 3.2 850 hPa geopotential heights and winds in (a)-(b) the ERA40 reanalysis 
and (c)-(d) the control run for (a), (c) AMJ and (b), (d) JAS in the 1981-2000 mean. 
Contour intervals are 20 gpm. Geopotential heights greater than 1540 gpm and less 
than 1420 gpm are shaded. Topography is masked out in the model output. 
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In JAS, the subtropical high is stronger and extends to the continents (Fig. 

3.2b). In the WRF control run, while the east-west extension of the subtropical high is 

very similar to the ERA40 reanalysis, the north-south extension is a little weaker over 

the eastern U.S., but greater over the North Atlantic Ocean, Western Europe and 

northern Africa (Fig. 3.2d). Note that over the eastern Pacific there is a low located at 

110°W and 15°N which does not appear in the ERA40 reanalysis (Fig. 3.2b) but is 

seen in the NCEP 2 reanalysis at 1000 hPa (not shown). This feature is associated with 

the relatively high SST between 10°-20°N and 95°-110°W in the NCEP 2 reanalysis. 

At high latitudes, the magnitude and location of the Icelandic low are very similar to 

those in the ERA40 reanalysis.  

The root mean square (RMS) differences of 850 hPa geopotential height, zonal 

and meridional wind speeds between the control simulation and the ERA40 reanalysis 

are 8.9 (9.0) gpm, 1.2 (1.7) m s-1, 0.9 (1.1) m s-1 for AMJ (JAS), respectively.  

Major features at higher levels, e.g. 500 hPa and 200 hPa, are also well 

simulated by the WRF (not shown).  In general, the control run successfully 

reproduced the large-scale circulation of the present day.   
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Figure 3.3 Precipitation from (a)-(b) the NARR and (c)-(d) WRF control run for (a), 
(c) AMJ and (b), (d) JAS in the 1981-2000 climatology. Black boxes denote six 
regions defined in Section 3.5.  

 

Figures 3.3a-f display the AMJ and JAS averaged precipitation from the North 

American Regional Reanalysis (NARR; Mesinger et al. 2006) and the control run for 

1981-2000. In AMJ, precipitation in the NARR is mainly located over the east central 

and eastern U.S., with a maximum at 90°W and 30°N (Fig. 3.3a). In the control run, 

while the rainfall gradient over the central U.S. is well-captured, the maximum is 

misplaced to around 80°W and 40°N (Fig. 3.3c). In the north, the maxima over 

Montana and Idaho are well simulated, although the magnitude is a little greater 
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compared to that in the NARR. Precipitation over the southern Mexico is also 

overestimated.  

In JAS, precipitation maxima in the NARR are located over the upper 

Mississippi Valley and along the southeast coast (Fig. 3.3b). In the WRF control run, 

the precipitation maximum over the southeast coast is well simulated while the 

maximum over the upper Mississippi Valley is missed (Fig. 3.3d). Over Colorado and 

New Mexico, the precipitation is overestimated compared to the NARR.  Over Mexico 

the precipitation amount is also much greater than that in the NARR.  

RMS differences of the precipitation between the control simulation and the 

NARR shown in Fig. 3.3 (15°-50°N, 120°W-70°W) is 1.3 mm day-1 for AMJ and 3.4 

mm day-1 for JAS. 

Further examination of the monthly mean precipitation found that the rainfall 

maximum in June over the central U.S. is misplaced to May. 3 hourly output shows 

that over the central U.S., the mid-night to early morning rainfall maximum shown in 

the NARR is not captured by the control run (not shown). Over the Great Plains, the 

warm season precipitation is mainly contributed by the nocturnal precipitation, and 

both regional models (Davis et al. 2003) and AGCMs (Lee et al. 2007) have 

difficulties in capturing this maximum.  Liang et al. (2004) found diurnal cycles of 

rainfall in a MM5-based regional climate model are sensitive to the choice of cumulus 

parameterization. The Kain-Fritsch scheme, which is used in our control run, works 

better in capturing the late afternoon peaks over the southeast U.S. where moist 

convection is controlled by the near-surface forcing, while the nocturnal precipitation 

maximum over the Great Plains is better represented by the Grell scheme.  Davis et al. 

(2003) also found that the Kain-Fritsch scheme may put the rainfall maximum too far 

west. This is consistent with the overestimated rainfall over Colorado and New 

Mexico shown in Figs.3.3c and d. 
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Figure 3.4 Skin temperature (K) from (a)-(b) the NARR and (c)-(d) WRF control run 
for (a), (c) AMJ and (c), (d)  JAS. 

 

Figures 3.4a-d display the surface skin temperature in the NARR and the 

control run for AMJ and JAS. In AMJ, as shown in Fig. 3.4a, temperature maxima in 

the NARR are located over southern Texas and along the west coast of Mexico. Over 

the northwestern U.S., the temperature is relatively low over the Rocky Mountains.  

Over the central and eastern U.S., there is a clear meridional temperature gradient. All 

these major features are well represented in the control run (Fig. 3.4c).  In JAS, in the 

NARR the temperature maxima are located over central Texas and southeastern 

California, while the temperature over the central and southern Mexico is relatively 

low compared to that in the north (e.g., Texas) and over the ocean (Fig. 3.4b). In the 
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control run, the maximum in the U.S. is located further north in Texas and Oklahoma 

(Fig. 3.4d). Over the west coast of Mexico, temperature is higher than that in the 

NARR. Note that the skin temperature in NARR is not assimilated.   

RMS differences of skin temperatures between the control simulation and the 

NARR shown in Fig. 3.4 is 1.8 K for AMJ and 2.1 K for JAS. 

In summary, the large-scale circulation in the simulation domain and major 

climate features over the U.S. and Mexico are well captured by the WRF control run.  

 

3.5 Results 

a. Precipitation and circulation changes  

The six regions (see Fig. 3.3c), the north central (35°-45°N, 95°-105°W), south 

central (26°-35°N, 95°-105°W), northwestern (40°-49°N, 105°-120°W), southwestern 

(32°-40°N, 105°-120°W), and eastern U.S. (31°-49°N, 75°-95°W), and the eastern 

Mexico (15°-26°N, 86°-100°W), are defined based on the monthly precipitation 

anomalies between the shutdown and control simulations and the seasonal 

precipitation changes in the control run. In these regions rainfall anomaly patterns and 

seasonal variations are relatively uniform. 

Figures 3.5a-f show the regional averaged monthly precipitation in the control 

(black solid lines) and shutdown simulations (black dashed lines). Over the north 

central U.S. (Fig. 3.5a), in the shutdown simulation, precipitation decreases from April 

to September, with maximal anomaly of -0.9 mm day -1 in August (about -42%). Two-

tailed t-test is applied to examine if the differences between the control and shutdown 

simulations are statistically significant. It shows that monthly rainfall anomalies in 

June, July, August, and September are significant at the 80% confidence levels, while 

anomalies in April and May are not significant at the 80% confidence level. 
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Figure 3.5 Regional averaged precipitation (mm day-1) from the control (black solid 
lines) and shutdown (black dashed lines) simulations in the (a) north central, (b) south 
central, (c) northwestern, (d) southwestern, and (e) eastern U.S., and (f) the eastern 
Mexico. 

 

Over the south central U.S. (Fig. 3.5b), in the shutdown simulation, 

precipitation also decreases in every month from April to September, with a minimal 

anomaly of -0.1 mm day-1 (about -5%) in June and a maximal anomaly of -0.9 mm 

day-1 (-41%) in August.  Two-tailed t-test at the 80% confidence level shows that 

rainfall anomalies are significant in July, August, and September and not significant in 

April, May, and June. 

In the shutdown simulation, precipitation decreases from May to September, 

with the largest decrease of -0.5 mm day -1 in July and August (-35% to -38%) over the 

northwestern U.S. (Fig. 3.5c). Rainfall anomalies in June, July and August are 
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significant at the 80% confidence level, while anomalies in April, May and September 

are not.  

Over the southwestern U.S. (Fig. 3.5d), precipitation decreases from April to 

September, with the largest decrease of -0.7 mm day -1 in August (-35%). Rainfall 

anomalies are significant at the 80% confidence level from April to September except 

in June. 

Over the eastern U.S.(Fig. 3.5e), in the shutdown simulation, precipitation in 

April-June and September is greater than that in the control run with a maximum 

increase of about 0.7 mm day-1 (15%) in May. In July and August, precipitation 

decreases up to 0.3 mm day-1 (-8%). Rainfall anomalies are significant at the 80% 

confidence level in April and May. 

Precipitation over the eastern Mexico (Fig. 3.5f) decreases from April to 

September in the shutdown simulation, with a maximum decrease of 9.5 mm day-1 in 

August (about -78%).  The rainfall anomalies are significant at the 80% confidence 

level from April to September. 

In short, as shown in Fig. 3.5, in the shutdown simulation, precipitation over 

the most part of the U.S. and the eastern Mexico decrease from April to September, 

with a maximum decrease in August. Rainfall over the eastern U.S. also decreases in 

July and August, but increases in other months.  

The vertically-integrated column moisture balance is examined to understand 

the precipitation anomalies. Changes in precipitation in the vertical column is 

contributed from the local evaporation and moisture convergence,   

                                                                                ,                                     (3.1) 

 

where P is precipitaoin, E is evaporation,     is specific humidity, Ps is surface pressure, 

Ptop is the pressure at the top of the atmosphere, and     is horizontal wind. The second 
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term on the right of Eq.3.1 is the vertically-integrated moisture convergence. Here this 

term is calculated as the differences between the precipitation and evaporation (P-E). 

 

 
 
Figure 3.6 Anomalies of (a)-(b) precipitation (c)-(d) evaporation, and (e)-(f) (P-E) 
between the shutdown and control simulations for (a), (c), (e) AMJ and  (b), (d), (f) 
JAS. Units: mm day-1. 
 
 

Figures 3.6a-f show the anomalies of precipitation, evaporation and vertically-

integrated moisture convergence for AMJ and JAS between the shutdown and control 

simulations. In the shutdown simulation, precipitation increases over the eastern U.S 

and the central Mexico and decreases over the central and western U.S. in AMJ (3.6a).  

Evaporation plays an important role in precipitation anomalies, contributing up to two 

fifths of precipitation increases over the eastern U.S. (Fig. 3.6c). Decreases in 

evaporation over the south central U.S. also contribute to about one half of the 

anomalies. Patterns of moisture convergence anomalies are very similar to the 

precipitation anomalies in general (Fig. 3.6e). Over the western and north central U.S., 
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decreases in precipitation are mainly related to the anomalous moisture divergence in 

this region, while over the eastern U.S. between 75°W and 90°W the anomalous 

moisture convergence contributes to about two fifths of the precipitation increase.   

In JAS, precipitation decreases in most part of the U.S. except over a narrow 

region near the east coast (Fig. 3.6b). The drought is most severe over the central U.S., 

with precipitation decrease up to 1.3 mm day-1 (-40%). Over Mexico, precipitation 

decreases more in the south than in the north. Along the eastern and southern coast, 

precipitation anomalies are up to -80%. Evaporation decreases over the central and the 

western U.S., contributing about one half to the total rainfall anomalies, while over the 

eastern U.S. between 75°W and 90°W and the central Mexico, evaporation increases 

(Fig. 3.6d).  Anomalous moisture divergence occurs over the western and west central 

U.S. with a center over Colorado (Fig. 3.6f). Moisture convergence is enhanced over 

the east central U.S. in Louisiana, southern Arkansas and Iowa. Over the eastern U.S., 

anomalous moisture divergence reduces the moisture content contributed by the 

enhanced evaporation. Over the southern Mexico and Gulf of Mexico, anomalous 

moisture divergence is the main contributor to the rainfall decrease.   

As revealed in Fig. 3.6, variations of large-scale moisture convergence 

contribute significantly to the precipitation anomalies, while evaporation plays an 

important role in rainfall changes in JAS. Further examination of the evaporation 

anomalies in JAS found that they are very similar to the soil moisture anomalies in 

AMJ, which is closely related to AMJ precipitation anomalies (not shown). 

Considering the large contribution from the moisture convergence, we focus on 

understanding the variations in moisture convergence and how those are related to the 

large-scale circulation changes.   

To reveal the association between moisture convergence (Eq. 3.1) and 

circulation changes, the vertically-integrated, mass-weighted moisture transport (flux), 
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M, is examined, 

                                                                                    ,                                  (3.2)                

 

where     is specific humidity and      is the horizontal wind. The integration is from the 

surface (Ps) to Ptop=125 hPa, and calculated as a finite sum shown on the right hand 

side of the equation. 

 

 
 
Figure 3.7 Vertically-integrated mass-weighted moisture transport (vectors; kg m-1s-1) 
for (a)-(b) the control simulation and (c)-(d) the anomalies between the shutdown and 
control simulations for (a), (c) AMJ and (b), (d) JAS. Magnitude of moisture transport 
greater than 90 kg m-1s-1 is shaded in (a), (b); for the anomaly fields (c), (d), shading 
denotes the magnitude differences between the shutdown and control simulations with 
intervals of 20 kg m-1s-1. 
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Figures 3.7a and b show M in the control simulation for AMJ and JAS, 

respectively. In AMJ, a southeasterly flux transports moisture from the Caribbean Sea 

and the Gulf of Mexico northward onto the North American continent (Fig. 3.7a). 

Over the central U.S., the southwesterly flow associated with the Great Plains low-

level jet (GPLLJ) transports moisture northward. Between the 70°W and 90°W, the 

westerly flux brings moisture to the eastern U.S.  In JAS, the magnitude of the easterly 

moisture flux from the Caribbean Sea and the Gulf of Mexico is greater compared to 

that in the spring, bringing more moisture to Mexico and southern Texas, while over 

the central U.S, the meridional moisture transport associated with the GPLLJ is 

weaker (Fig. 3.7b). Between 38° and 45°N northwesterly moisture flux transports 

moisture to from the central U.S. to the northeastern, while over the southeastern U.S. 

westerly moisture flux is relatively weak.  

Figs. 3.7c and d show the moisture transport (M) differences between the 

shutdown and control simulations for AMJ and JAS, respectively. As shown in Fig. 

3.7c, anomalous southwesterly moisture fluxes are located over the eastern U.S. 

between 75°W and 95°W, enhancing the moisture transport from the Gulf of Mexico 

onto the continent. This is consistent with the enhanced moisture convergence in Fig. 

3.6e and precipitation increase in Fig. 3.6a. Between 85°-105°W and 17°-23°N 

southeasterly moisture transport is weaker than that in the control simulation. Over the 

Pacific Ocean, an anomalous southerly moisture flux transports more moisture to the 

Baja California peninsula and the southwestern U.S. 

In JAS, anomalous westerly moisture fluxes over Mexico and the western Gulf 

of Mexico between 20°N and 30°N strongly decrease the southeasterly moisture 

transport onto Mexico and the south central U.S. (Fig. 3.7d). Between 80°-90°W and 

15°-25°N, anomalous northeasterly flux also decreases the moisture supply from the 

eastern Gulf of Mexico and Caribbean Sea. At 117°W, a narrow southerly flux brings 
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moisture onto southern California. Between 100°W and 112°W, anomalous northerly 

flux transports moisture from the U.S. to the northern Mexico and merges with the 

westerly flux over the eastern Mexico. Between 90°W and 100°W, northward 

moisture transport is enhanced, while over the southeast coast moisture transport is 

decreased. The decreased moisture transport over the southern Rocky Mountains, 

Mexico, the southwestern U.S., and the Gulf of Mexico and the enhanced moisture 

transport in the west and north U.S. and the southern Mexico set up strong gradient of 

moisture transport, which is consistent with the anomalous moisture divergence (Fig. 

3.6f) and precipitation anomalies (Fig. 3.6b).   

To examine the relationship between the wind anomalies and moisture 

transport anomalies and how the moisture is transported from the coastal region to 

inland region, the height-longitude cross-section of wind (shading) and moisture 

transport (contours) anomalies (shutdown minus control) averaged between 30°N and 

35°N are shown in Figure 3.8. Figs. 3.8a and b show the meridional wind and 

moisture transport anomalies from the surface to 300 hPa for AMJ and JAS, 

respectively, while Figs. 3.8c and d show wind and moisture transport in the zonal 

direction. In AMJ, southerly wind anomalies are located between 70°W and 102°W, 

relatively strong between 1000 hPa and 850 hPa and at high-level above 400 hPa (Fig. 

3.8a). The Great Plains low-level jet (located between 90°W and 105°W in the control 

run, not shown) is enhanced about 25%. Above the Rocky Mountains between 102°W 

and 110°W, wind anomalies are northerly with a center at 750 hPa. At higher levels 

between 100°W and 115°W, northerly wind anomalies are located around 300 hPa. 

Over the west coast, wind anomalies are southerly. 

Anomalous moisture fluxes are centered at lower levels and generally co-

located with the wind anomaly centers (Fig. 3.8a). Southerly moisture transport 

anomalies are located between 70°W and 95°W, with maxima at 95°W in the GPLLJ 
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region and at 75°W over the western Pacific. Anomalous northerly moisture transport 

is centered at 103°W over the Rocky Mountains, while anomalous southerly moisture 

flux is located between 110°W and 120°W. 

 

 
 
Figure 3.8 Anomalies of the wind (shading; m s-1) and moisture transport (contours; m 
s-1) in the (a)-(b) meridional and (c)-(d) zonal directions for (a), (c) AMJ and (b), (d) 
JAS. Positive (negative) values denote westerly (easterly) and southerly (northerly) 
wind and moisture transport anomalies. Topography is masked out. 

 

In the zonal direction (Fig. 3.8c), the westerly wind anomalies between 70°W 

and 120°W extend from the surface to about 400 hPa, with maxima at 107°W and 

74°W. The westerly moisture transport anomalies are concentrated at low levels, with 

two maxima co-located with the wind anomaly maxima.  

In JAS, southerly wind anomalies are located between 70°W and 105°W, with 

maxima at 80°W and 98°W (Fig. 3.8b). The GPLLJ is enhanced by more than 30%. 
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Over the Rocky Mountains, anomalous northerly winds are centered at 110°W. 

Between 115°W and 120°W, the southerly wind anomalies are relatively strong, 

extending from the surface to 450 hPa. Consistent with wind anomalies, anomalous 

southerly moisture fluxes are located between 70°W and 105°W, while over the 

Rocky Mountains anomalous northerly moisture flux peaks at 110°W. In the west, the 

anomalous northward moisture flux is located at 115°-120°W.  

In the zonal direction (Fig. 3.8d), westerly wind anomalies are located from 

70°W to 117°W, extending from the surface to about 800 hPa over the eastern U.S. 

and to about 650 hPa over the Rocky Mountains. Easterly wind anomalies are located 

above the westerly anomalies with a maximum around 300 hPa. Anomalous westerly 

moisture fluxes are located at low-level, while anomalous easterly fluxes are located at 

higher levels, with maximum between 800 hPa and 400 hPa.   

In short, Fig. 3.8 demonstrates that moisture transport anomalies are dominated 

by the wind anomalies. In AMJ, enhanced southwesterly moisture fluxes are 

associated with the southwesterly wind anomalies. In JAS, anomalous northerly 

moisture fluxes over the Rocky Mountains associated with northerly wind anomalies 

decrease the northward moisture transport, while anomalous easterly winds and 

moisture fluxes above 650 hPa decrease the eastward moisture transport from the 

central U.S. to the eastern U.S. Thus, the vertically-integrated moisture transport over 

the Rocky Mountains and the eastern U.S. is much weaker compared to that in the 

control run (Fig. 3.7d). 
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Figure 3.9 850 hPa wind (vectors; m s-1) and geopotential height (shading; gpm) 
anomalies for (a) AMJ and (b) JAS. Location of the North Atlantic subtropical high in 
the control simulation is denoted by the thick black contours. 

 

Figures 3.9a and b show the 850 hPa geopotential height (shading) and wind 

(vectors) anomalies for AMJ and JAS, respectively. The black thick contours indicate 

the location of the Atlantic subtropical high in the control simulation. Since 

geopotential heights increase in the whole domain in the shutdown simulation, to 
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emphasize the structure of the anomalies, domain averaged geopotential height 

difference between the shutdown and control simulations is subtracted from the 

anomaly field, following Cook et al. (2008). As shown in Fig. 3.9a, in AMJ the 

geopotential height is higher over the West Atlantic, the east and south coast of the 

U.S., Mexico and the Gulf of Mexico. Between 20°W and 50°W over the northern 

Atlantic, a negative anomaly is centered at 35°W and 50°N, while in the south at 0-

10°N and 10°-45°W, the geopotential height anomaly is also negative. Over the 

eastern Atlantic a positive geopotential height anomaly is centered near 40°W. The 

distribution of the geopotential heights over the Atlantic is similar to the “quadrupole” 

identified by Cook et al. (2008) in their study of the springtime intensification of the 

GPLLJ in GCM simulations during 2079-2099 under the IPCC SRES A2 scenario, 

when the simulated AMOC is slowed. They found that the strengthened zonal 

geopotential height gradient enhances the GPLLJ and rainfall in the north central U.S. 

 Different from the GCM output shown by Cook et al. (2008), in the shutdown 

simulation the westward extension of the subtropical high is confined over the coastal 

region, but has greater northward and southward extensions. The geopotential height 

gradient over the eastern and south central U.S. and the east Gulf of Mexico is 

enhanced toward the southeast direction, accompanied with anomalous southwesterly 

wind anomalies. This is consistent with the enhanced southwesterly moisture transport 

(Fig. 3.7c) over the eastern U.S. in AMJ. 

In JAS, the positive height anomalies are located at 10°-55°N over the 

northwestern Atlantic, the central and eastern U.S., the Gulf of Mexico, and the 

eastern Pacific near the Gulf of California (Fig. 3.9b). Compared to the geopotential 

height and wind anomaly field in AMJ (Fig. 3.9a), the Atlantic subtropical high 

extends further west and north in JAS. Over the central U.S. southwesterly wind 

anomalies accompanied with the southeastward geopotential height gradients enhance 
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the GPLLJ and the southerly moisture transport (Fig. 3.8b).   

Over the Pacific between 10°N and 30°N, the anomalous high is much stronger 

than that in AMJ, extending from 80°W to 120°W, with two anomalous centers 

located near the west and east coast of Mexico. This anomalous high develops from 

near surface and extends up to 400 hPa (not shown). Examination of higher levels 

(above 750 hPa) found that the anomalous high is centered over the eastern Pacific. 

The formation of this anomalous high is associated with the variations of the land-sea 

surface temperature gradient. In the control run, in the north of 20°N, influenced by 

cold California current, SST is colder than skin temperature over land, while in the 

south of 20°N, land surface temperature is colder than that of the ocean. In the 

shutdown simulation, as the land surface temperature increases greater than that over 

the ocean, the land-sea temperature gradient increases in the north and decreases in the 

south. The low at 107°W and 17°N in the control run (Fig. 3.2) weakens, while in the 

north at 27°N a high forms over the ocean in the shutdown simulation (not shown). 

Anomalous subsidence associated with the southward shift of the Pacific ITCZ also 

contributes to the positive geopotential height anomalies between 10°N and 15°N (not 

shown). 

The strong geopotential height gradients caused by this anomalous high are 

associated with large-scale anticyclonic flow between 10°- 35°N and 80°-120°N. The 

anomalous northerly flow over the Rocky Mountains and the southerly flow in the 

west shown in Figs. 3.8a and b are part of the anticyclonic flows related to this 

anomalous high. Over the Gulf of Mexico, the anomalous anticyclonic moisture fluxes 

are also associated with this anomalous high. 

To examine the vertical circulation changes, Figures 3.10a-d show the 

streamlines of the zonal and vertical winds averaged between 30°N and 35°N for the 

control run and the differences of the shutdown run minus control run for AMJ and 



 

110 

JAS, respectively. Results are very similar if averaged between 30° and 40°N. Vertical 

wind speeds are shaded. As shown in Fig. 3.10a, in AMJ over the U.S. the flow are 

westerly in general. There is rising motion over the Rocky Mountains between 95°W 

and 115°W, with maxima over the west slope and ridge. In the east between 92°W and 

102°W, subsidence occurs over the east slope of the Rocky Mountains in the mid-

level. Over the eastern U.S., rising motion at low-level is relatively weak and stronger 

at 200 hPa.  

In JAS (Fig. 3.10b), the rising motion over the Rocky Mountains is greater 

than that in AMJ, with strong sinking motion located between 85°W and 102°W, 

which has an easterly returning flow at lower levels. Rising motion is located over the 

eastern U.S. with a maximum between 500 hPa and 200 hPa. To the west between 

115°W and 120°W the sinking motion is weaker compared to that in AMJ. 

Figures 3.10c and d show the anomalies (shutdown minus control) of the 

streamlines and vertical wind speeds for AMJ and JAS, respectively. As shown in Fig. 

3.10c, over the eastern U.S. between 80°W and 95°W rising motion is enhanced 

between the surface and 200 hPa. The rising motion over the Rocky Mountains and 

the sinking branch over the east slope weaken. Anomalous sinking motion is located 

over the east coast between 70°W and 80°W, while over the west coast there is 

anomalous rising motion.    

In JAS, there is anomalous rising motion over the east coast between 80°W 

and 95°W, decreasing the sinking flow, while between 95°W and 105°W the sinking 

motion is enhanced (Fig. 3.10d). Over the Rocky Mountains, the rising motion is 

weakened over the ridge but enhanced over the west slope. Over the western U.S. the 

subsidence is weakened between 118°W and 120°W and enhanced between 115°W 

and 118°W.  

As shown in Fig. 3.10, the enhanced rising motions at 80°-90°W over the 
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eastern U.S. in AMJ and over the south coast around 90°-95°W in JAS are consistent 

with anomalous moisture convergence (Figs. 3.6e and f) and the precipitation increase 

(Figs. 3.6a and b), while the anomalous subsidence over the central U.S. is also 

consistent with the enhanced moisture divergence. 

 

 
 
Figure 3.10 Streamline of zonal and vertical winds (scaled by 103; m s-1) averaged 
between 30°N and 35°N in (a)-(b) the control simulation and (c)-(d) the anomalies 
between the shutdown and the control simulations for (a), (c) AMJ and (b), (d) JAS. 
Vertical wind velocity is shaded. 

 

The moist static energy (MSE) is the sum of the sensible, latent and 

geopotential energy according to  

                                                                            ,                                          (3.3) 

where cp is the specific heat of air at constant pressure, T is air temperature, L is the 

latent heat of vaporization of water, q is specific humidity, g is the acceleration due to 

gravity, and z is height. MSE increasing with altitude denotes a stable atmosphere, so 

gzLqTcMSE p ++=
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increases in low-level MSE destabilize the vertical column and promote convection. 

MSE budget analysis helps to examine the how variations in the stability of the 

atmosphere are associated with variations in vertical temperature and moisture content 

profiles.  

Figures 3.11a-b show the MSE anomalies over the eastern (80°-95°W, 30°-

35°N) U.S. for AMJ and JAS, respectively. In AMJ, MSE increases at low-level 

between the surface and 500 hPa, and the stability of the atmosphere decreases (Fig. 

3.11a). While the temperature profile contributes little to the MSE anomalies, 

increases in moisture content at low-level, which are associated with the enhanced 

southwesterly moisture transport (Fig. 3.7c), enhance the instability of the air column. 

Between 300 hPa and 100 hPa, variations in temperature and the moisture content 

nearly balance each other, and the stability of the atmosphere changes little. 

In JAS, the MSE profile has a negative slope between 1000 hPa and 450 hPa 

(Fig. 3.11b). Decreases in stability are associated with increases in moisture content, 

which are associated with the anomalous southerly moisture transport (Fig. 3.8b).  The 

temperature anomaly is nearly constant at low-level and contributes little to the 

structure of the MSE anomaly profile. Between 400 hPa and 100 hPa, the negative 

slope of the MSE is contributed by the temperature profile, which has a higher value at 

200 hPa and a lower value at 500 hPa.  The stability of the atmosphere is enhanced. 

This is consistent with the vertical wind anomalies at 80°-95°W (Fig. 3.10d). In JAS, 

with enhanced stability at higher levels, the anomalous rising flow is much weaker 

compared to that in AMJ and is confined in a smaller region. 
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Figure 3.11 Anomalies of moist static energy (MSE) terms (Eq.3.3) over (a)-(b) the 
eastern and (c)-(d) central U.S. for (a), (c) AMJ and (b), (d) JAS. Sold lines denote the 
total MSE, dashed (dot-dash) lines denote the moisture (temperature) term, and dotted 
lines denote the geopotential term (units: 103 m2 s-2). 
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Figures 3.11c and d show the MSE anomalies averaged over the central (95°-

105°W, 30°-35°N) U.S. for AMJ and JAS, respectively. In AMJ, increases in MSE 

anomalies between the surface and 500 hPa is mainly due to enhanced low-level 

moisture content (Fig. 3.11c), which is related to increases in southerly moisture 

transport due to the enhanced GPLLJ (Fig. 3.8a). The enhanced instability at low 

levels is consistent with the enhanced rising motion (Fig. 3.10c).   

In JAS, the slope of MSE profile show that the instability of the atmosphere 

increases below 900 hPa, changes little between the 950 hPa and 700 hPa, and 

increases between 700 hPa and 500 hPa. Above 500 hPa, the atmosphere again is 

relatively stable (Fig. 3.11d). Below 950 hPa, changes of the MSE profile is 

dominated by the increases of moisture content, which are associated with enhanced 

southerly moisture transport by the GPLLJ (Fig. 3.8b). While changes in temperature 

profile tend to destabilize the atmosphere between 850 hPa and 500 hPa, the enhanced 

stability related to the high moisture content at 700 hPa partially counteracts this 

effect, and the atmosphere is relatively stable between the 950 hPa and 700 hPa. At 

higher levels between 400 hPa and 100 hPa, despite the decrease in moisture content, 

the atmosphere is relatively stable due to a larger temperature anomaly at 150 hPa and 

a smaller temperature anomaly at 500 hPa.  

In short, large-scale circulation changes are consistent with the precipitation 

changes. Westward extension of the North Atlantic subtropical high and the formation 

of the anomalous high over the eastern Pacific and Gulf of the Mexico changes 

moisture transport onto the U.S. and Mexico. Both the variations in low-level moisture 

content and the temperature profile associated with circulation changes modify the 

vertical stability of the atmosphere. Over the eastern U.S., deep convection develops 

in AMJ due to enhanced moisture content, while in JAS changes in vertical 

temperature profile discourages deep convection.  
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b. Surface temperature changes 

Figure 3.12 shows temperature anomalies for the shutdown minus control run 

(solid lines) and slowdown minus the control run (dashed lines) in different regions 

over the U.S. and Mexico. In both shutdown and slowdown simulations, the surface 

skin temperature increases, suggesting the dominant influence of global warming. In 

the shutdown simulation, over the north central U.S., the temperate anomaly is about 3 

K in April, increase from May through August, with a maximum of about 7.5 K in 

August, then decreases to 6.5 K (Fig. 3.12a). In the south central U.S., positive 

temperature anomalies have a minimum of 3.4 K in April and a maximum of 5.6 K in 

September (Fig. 3.12b).  

 

 
 
Figure 3.12 Anomalies of surface skin temperature (K) for the shutdown minus control 
simulations (solid lines) and for the slowdown minus the control simulations (dashed 
lines) for (a) the north central U.S., (b) the south central U.S., (c) the northwestern 
U.S., (d) the southwestern U.S., (e) the eastern U.S., and (f) the eastern Mexico. 
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Over the northwestern U.S., the temperature anomaly has a seasonal cycle 

similar to that in the north central U.S., with a maximum of 6 K in August and a 

minimum of 2.5 K in April (Fig. 3.12c). Over the southwestern U.S., anomalous 

temperature maximum of about 5 K also occurs in September (Fig. 3.12d).   

Surface temperature anomalies also have maxima of about 5.5 K and 6.5 K in 

August over the eastern U.S. (Fig. 3.12e) and the eastern Mexico (Fig. 3.12f), 

respectively. 

Considering the prescribed SST pattern, the slowdown simulation is not 

exactly comparable with the shutdown, in which the warming signal of SST is 

represented by uniform 2.5 K warming. Here the slowdown simulation is used to 

represent the signal of global warming modified by the slowdown of the AMOC, and 

the comparison between the two is concentrated on the seasonal cycle changes instead 

of quantifying the differences. Figs. 3.12a, c, and e suggest that in the north central, 

northwestern and eastern U.S., in early spring, e.g. May, the cooling effect associated 

with the AMOC shutdown tends to counteract the warming signal, while in the later 

summer, the nonlinear combination of the two forcing results in a warming signal. 

Over the southwest U.S., the global warming signal is weakened by the cooling effect 

of the AMOC shutdown (Fig. 3.12d), while over the eastern Mexico, the combined 

forcing leads to a much stronger warming (Fig. 3.12f). The situation is more 

complicated over the south central U.S. (Fig. 3.12b). While the warming signal is 

weakened by the AMOC cooling effect during July and August, in May and 

September, the combined forcing tends to magnify the warming signal. 

Examination of the surface heat budgets in JAS reveals that warming over the 

central and northwestern U.S. is mainly due to decreases in latent cooling, which is 

associated with decreases in evaporation (Fig. 3.6d). Over the eastern U.S. the 

enhanced surface heating is associated with increases in net shortwave radiation and 
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downward longwave radiation, which are related to redistribution of cloud and 

moisture content (not shown).   

 In short, the greenhouse gas warming dominates the land surface temperature 

change for the first order. Variations in regional hydrological cycles and circulation 

further modify the temperatures through latent heat and cloud distribution. 

 

c. Temperature extremes and dry spells 

Differences of the monthly maximum temperature between the shutdown and 

control simulations reveal changes of extreme warm events. Figures 3.13a and b 

display the histogram of monthly maximum 2m temperature over the north central 

U.S. for AMJ and JAS, respectively. Daily mean temperature in each month is used to 

calculate the monthly maximum. As shown in Fig. 3.13a, in AMJ, range of monthly 

maximum temperature changes from 289-309K to 292-313 K. More extreme warm 

events above 308 K occur. In JAS (Fig. 3.13b), while the range of monthly maximum 

temperature shifts from 299-309 K to 305-315 K, the peak also changes from 306-307 

K to 312-313 K. 

Figures 3.13c and d display the histogram of monthly maximum temperature 

over the eastern U.S. for AMJ and JAS, respectively. In AMJ (Fig. 3.13c), occurrence 

of maximum temperature greater than 301K largely increases. Two peak occurrences 

of 294-295 K and 298-299 K shift to 296-297 K and 302-303 K.  During JAS (Fig. 

3.13d), the peak of 299-300 K shifts to 305-306 K in the shutdown simulation. The 

occurrence of warm events between 303 K and 310 K increases and decreases between 

300 K and 302 K.  Similar changes with more extreme warm events are found in other 

regions (not shown). 
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Figure 3.13 Histogram of monthly maximum 2m temperature (K) in the control 
(while) and shutdown (black) simulations over the (a)-(b) the north central and (c)-(d) 
eastern U.S. for (a), (c) AMJ and (b), (d) JAS. Y-axis denotes occurrence of the 
extreme temperatures within the ranges shown on the x-axis in the 20 years of the 
control or shutdown simulations.

(c) 

(a) 

(b) 

(d) 



 

119 

Figure 3.14 shows the occurrence of dry spells in the control simulations and 

the anomalies (shutdown minus control) from April to September. Following 

Groisman and Knight (2008), a dry spell is defined as consecutive days with rainfall 

less than 1 mm day-1.  According to the length of the dry spells, 6 categories are 

defined, 1-10 days, e.g. equal and longer than 1 day but less than 10 days, 10-20 days, 

20-30 days, 30-40 days, 40-50 days, and ≥ 50 days. Figure 3.14a shows the frequency 

of dry spells in each category in the control simulation from 1981-2000. The 

distribution is well validated in comparison with the NARR dry spell occurrence (not 

shown). For dry spell with the length of 1-10 days, the maximum occurrence is over 

the northeast U.S.  For dry spell with the length of 10-20 and 20-30 days, maxima are 

over the southwestern Texas and northern Mexico, and over the western U.S. in 

Nevada, south California, Idaho and Utah. Most of dry spells with length of 30-50 

days occur over the western U.S., while for dry spells longer than 50 days, the 

maximum is located along the west coast of the U.S. and Mexico.   

In the shutdown simulation (Fig. 3.14b), dry spells with the length of 1-10 days 

decrease over the U.S. and Mexico, except over the south coast and the eastern 

Canada, where there are more dry spells. The occurrence of dry spells with the length 

of 10-20 days increases over most part of the U.S. and Mexico with a peak over the 

central U.S., and decreases over the south coast and the west coast in California and 

Nevada.  Similar pattern is seen for the dry spells with the length of 20-30 days, but 

with a weaker magnitude. Comparing the changes of dry spells over the south coast 

among the categories of 1-10, 10-20, and 20-30 days suggest that decreases in the 20-

30 dry spells is associated with increases in shorter dry spells of 1-10 days. This may 

be related to increasing occurrence of rainfall (Figs. 3.6a and b) which breaks the 

longer dry spells into shorter spells.  
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Figure 3.14 Number of dry spells (see definition in the text) with length of 1-10 days, 
20-30 days, 30-40 days, 40-50 day and greater than 50 days in the (a) control 
simulation and (b) anomalies between the shutdown and control simulations from 
April to September. 

 

 

(a) 

(b) 
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Occurrence of dry spells with length greater than 30 days increases over the 

western and central U.S. Most of the states in the west of 85° W have at least one 

more dry spell with the length of 30-40 days in the 20 years. In Nevada, Arizona, 

Texas, and also Mexico, such dry spells occur 4 to 5 more times. In Oregon, Nevada, 

southern California, Utah, Arizona, Texas, and the eastern Mexico, 3-4 more dry 

spells with the length of 40-50 days occur. Dry spells with the length ≥ 50 day also 

increase in these regions. Increases of dry spells over the west coast and eastern 

Mexico is consistent with the decreases in the 10-30 days dry spells, suggesting that in 

those regions dry spells tend to become longer associated with changes of rainfall 

frequency.  

In short, Figs. 3.13 and 3.14 demonstrate that under the scenario of AMOC 

shutdown and strong greenhouse gas warming, more extreme warm events and longer 

dry spells will occur over most of the U.S. 

   

3.6 Conclusions 

Both the paleoclimatic records and model simulations reveal that 

reorganization of the Atlantic meridional overturning circulation (AMOC) has far-

reaching climate impacts over the Northern Hemisphere. Observations and model 

simulation also suggest that the strength of the AMOC is sensitive to the greenhouse 

gas concentration, and wakens in various extents (model dependent) with increasing 

CO2. Although none of the IPCC AR4 model predicts a complete shutdown of the 

AMOC by the end of the 21st century under the SRES emission scenarios, the 

possibility cannot be excluded (IPCC AR4 2007). Model simulations suggest that 

while the climate responses, e.g., temperature and precipitation, to the AMOC 

shutdown are generally opposite to those caused by greenhouse gas warming, the two 

forcing may add nonlinearly and the total effects are regionally dependent (Vellinga 
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and Wood 2008). Here we study the climate response over the United States and 

Mexico to a hypothetical AMOC shutdown during the period of 2081-2100 through an 

atmosphere-only regional climate model (WRF). In the AMOC shutdown simulation, 

an idealized SSTA (Fig. 3.1) and boundary perturbations predicted by the AOGCMs 

for 2081-2100 are applied to the NCEP2 reanalysis (1981-2000) to drive the model, 

while the CO2 concentration is fixed to the average value of 2081-2100 under the 

SRES A2 emission scenario.  

WRF model predicts that precipitation decreases in most of the United States 

and Mexico from April to September, except over the eastern U.S. where rainfall 

increases in April, May, June, and September. Decreases in rainfall are most severe in 

August, with negative anomalies up to -40% over the central U.S. and -80% over the 

eastern Mexico. 

Moisture budget analysis shows that precipitation variations are mainly due to 

changes in moisture convergence in Mexico, the eastern and western U.S.  Decreases 

in evaporation contribute about one half to the precipitation anomalies over the 

southern central U.S. for AMJ and over the whole central U.S. for JAS, while 

increases in evaporation enhance rainfall over the east coast for JAS.  

Moisture transport anomalies are examined and found to be consistent with 

precipitation and moisture convergence anomalies. In AMJ, enhanced southwesterly 

moisture transport brings more moisture from the Gulf of Mexico onto the eastern 

U.S.  This is mainly due to enhanced southwesterly wind between the surface and 500 

hPa, which is associated with the westward extension of the North Atlantic subtropical 

high. In JAS, this anomalous moisture flux is shallower due to the high-level easterly 

wind anomalies.  

Over the central U.S., southerly moisture transport is enhanced from April to 

September due to a stronger Great Plains low-level jet (GPLLJ) associated with the 
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westward extension of the subtropical high. In JAS, anomalous southerly flux over the 

Rocky Mountains decreases the northward moisture transport. The moisture supply 

from the ocean onto Mexico and the U.S. is decreased by the anomalous anticyclonic 

moisture fluxes over the Gulf of Mexico.  

Moisture transport anomalies are dominated by the variations of large-scale 

circulation. One of the most prominent features in the shutdown simulation is the 

strengthening and extension of the North Atlantic subtropical high, which enhances 

the southeastward geopotential height gradients over the northwest Gulf of Mexico 

and the eastern U.S. in AMJ and over the central U.S. in JAS.  Another important 

feature is the formation of an anomalous high between 15°N and 30°N over the 

eastern Pacific and the Gulf of Mexico due to variations in land-sea surface 

temperature gradient. In JAS, it extends from the surface to about 400 hPa, decreasing 

the moisture transport onto the continent. 

Examination of the MSE and vertical wind anomalies found that in AMJ, 

enhanced moisture content over the central and eastern U.S. decreases the stability of 

the atmosphere. Anomalous rising motion over the eastern U.S. enhances the moisture 

convergence, and precipitation increases. In JAS, a relative stable layer occurs 

between 400 hPa and 100 hPa associated with a larger temperature anomaly at 200-

100 hPa and a smaller temperature anomaly at 500-400 hPa. The stability of the 

vertical column over the central and eastern U.S. increases.  Deep convection is 

discouraged, and precipitation decreases.   

Greenhouse gas warming dominates temperature variations over land. 

Variations in regional hydrological cycles and circulation further modify the 

temperatures through latent heat and cloud distribution. In August, temperature 

increases up to +7.5 K over the north central U.S., +6 K over the western U.S., +5.7 K 

over the eastern U.S., and +6.5 K over the eastern Mexico. Over the south central 
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(+5.6 K) and western (+5 K) U.S., the maximum increase occurs in September. More 

extreme warm events occur. 

Dry spells tend to be shorter over the south coast of the U.S.  Over the central 

U.S. dry spells with length of 10-30 days increase, while over the western U.S. and the 

eastern Mexico, dry spells longer than 30 days increase.    
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