
BUDGET-CONSTRAINED BAYESIAN
OPTIMIZATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Eric Hans Lee

December 2020

c© 2020 Eric Hans Lee

ALL RIGHTS RESERVED

BUDGET-CONSTRAINED BAYESIAN OPTIMIZATION

Eric Hans Lee, Ph.D.

Cornell University 2020

Global optimization, which seeks to identify a maximal or minimal point over

a domain Ω, is a ubiquitous and well-studied problem in applied mathematics,

computer science, statistics, operations research, and many other fields. The

resulting body of global optimization research is vast, ranging from heuristic

and metaheuristic-driven approaches such as evolutionary search to application-

driven systems such as multi-level, multi-fidelity optimization of physical sim-

ulations. Global optimization’s inherent hardness underlies this sheer variety

of different methods; absent any additional assumptions, obtaining an efficient

certificate of global optimality is not possible. Consequently, there are no agreed-

upon methods that exhibit robust, all-around performance like there are in local

optimization.

Data-driven algorithms and models, spurred by recent advances in cheap

computing and flexible, open-source software, have been growing in popularity

over recent years. Bayesian optimization (BO) is one such instance of this trend

in global optimization. Using its past evaluations, BO builds a probabilistic

model of the objective function to guide optimization, and selects the next iterate

through an acquisition function, which scores each point in the optimization

domain based on its potential to decrease the objective function. BO has been

observed to converge faster than competing classes of global optimization al-

gorithms. This sample efficiency is BO’s key strength, and makes it ideal for

optimizing objective functions that are expensive to evaluate and potentially

contaminated with noise. Key BO applications that meet these criteria include

optimizing machine learning hyperparameters, calibrating physical simulations,

and designing engineering systems

BO’s performance is heavily influenced by its acquisition function, which

must effectively balance exploration and exploitation to converge quickly. De-

fault acquisition functions such as expected improvement are greedy in the sense

that they ignore how the current iteration will affect future ones. Typically, the

BO exploration-exploitation trade-off is expressed in the context of a one-step

optimal process: for the next iteration, choose the point that balances information

quantity and quality. However, if we possess a pre-specified iteration budget

h, we might instead choose the point that balances information quantity and

quality over the next h steps. This non-myopic approach is aware of the remaining

iterations and can balance the exploration-exploitation trade-off correspondingly.

Non-myopic BO is the primary topic of this dissertation; we hope that making

decisions according to a known iteration budget will improve upon the perfor-

mance of classic BO, which is budget-agnostic. In Chapter 3, we draw from the

rich literature of sequential decision making under uncertainty to reframe BO as

a finite-horizon Markov decision process (MDP), in which one tries to maximize

a cumulative reward over a fixed number of iterations. In Chapter 4, we develop

efficient methods to solve finite-horizon MDPs in the context of BO through a

combination of rollout and policy search, with supporting variance reduction

techniques to further drive down their computational overhead. In Chapter 5, we

extend our non-myopic acquisition functions to the cost-constrained BO setting,

in which the objective function has non-uniform cost. Based off the work in

Chapter 5, we develop a promising heuristic called CArBO in Chapter 6, which

uses an early exploration, late exploitation strategy to perform much better than

competing methods in the batch BO setting. Finally, Chapter 7 covers BO with

gradient information.

BIOGRAPHICAL SKETCH

Eric Hans Lee was born in Stockholm, Sweden on August 3rd, 1993 to Wanchen

Lee and Lijun Lin, and emigrated with his parents to the States when he was

very young. Swayed by frequent lobbying from his parents, who had very

strong opinions on what a young Chinese immigrant ought to study, Eric had

originally decided on medicine, until he took introductory calculus at the local

community college and liked it. He attended University of California, Berkeley,

starting in 2011 and studied applied mathematics, graduating in 2015 magna

cum laude. While at Berkeley, Eric became interested in numerical methods,

both from a summer REU at the Center for Discrete Mathematics and Theoretical

Computer Science, and from a numerical linear algebra course taught by Pro-

fessor James Demmel at Berkeley. Eric applied to and was accepted by Cornell

University, where he started his Ph.D. in Computer Science in the fall of 2015.

Eric immediately started working with his advisor, Professor David Bindel, first

on applications of optimal control in electrical networks, and then on Bayesian

optimization. While at Cornell, Eric did research internships at Cray, SigOpt,

and then Amazon in Minneapolis, San Francisco, and Berlin, respectively.

Eric enjoys traveling, reading and writing fiction, and eating new things. He

will join SigOpt post-graduation, where he hopes to continue contributing to the

Bayesian optimization community at large.

iii

To Michele, who mentored me when I needed it the most.

iv

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my advisor David Bindel, who allowed me

great freedom to pursue my own research topics whilst being patient and under-

standing as I developed from a naive undergraduate to a somewhat-matured

researcher. The immense breadth of knowledge I gained under his tutelage, from

optimal control and model reduction to numerical linear algebra and numerical

optimization, is a legacy I will never forget. I am also grateful to my committee

members Ken Birman and Peter Frazier. To Ken for always providing advice,

guidance, and humorous anecdotes, and to Peter for his frequent research feed-

back. My academic experience at Cornell was significantly shaped by my fellow

advisees, Kun Dong and David Eriksson, in whom I found life-long friendships;

by my collaborators Mike McCourt and Harvey Cheng at SigOpt, with whom I

enjoyed discussing both optimization and basketball; and by my collaborators at

Amazon Berlin, including Valerio Peronne, Huibin Shen, Matthias Seeger, and

Cédric Archambeau, with whom I tackled many important research problems.

I want to thank my friends at Cornell outside my immediate academic family,

including John Paul Ryan, Sebastian Ament, Aman Argawal, Edwin Peguero,

Ted Yin, Michael Roberts, and Xinran Zhu. I want to especially thank my office-

mates, including Weijia Song, with whom I shared memorable biking adventures;

Kevin Sekniqi, with whom I tried —and failed— to start a company; and Danny

Adams, who kept me grounded in reality whenever I was stressed. I also want

to thank other faulty members at Cornell, including Mike Stillman, with whom I

enjoyed many morning chats next to Gimme coffee, Emin Gün Sirer, who treated

me like a true friend, and John Hopcroft, whose class I TAed for three years and

learned much from in the process. Of course, no Cornell CS dissertation would

be complete without acknowledging Becky Stewart, who supported me with all

v

sorts of logistics, and without whom I suspect the entire CS graduate student

population would be rendered helpless.

My close college friends helped me stay sane throughout this entire process,

and I am especially grateful to Robbie Zheng, Michael Lee, Jon San Miguel,

Ayman Bin Kamruddin, and Charlie Woo Young Choi —whom I am especially

grateful to, as he hosted me in Seoul and lent me a measure of peace to finish my

thesis in during the Covid-19 outbreak. I could never forget about my high school

friends Kang Fu, Michael Liu, Arvid Ali, Sean Min, Derek Hui, Eric Zhang, and

Crystal Liu, with whom I have maintained a constant connection with despite

many years and many differences.

No dissertation is completed without the constant support of loved ones. In

particular, I am forever grateful to have had the opportunity to study at Cornell

simultaneously with my younger sister, Jessica Alice Lee (Class of 2019). I was

able to watch her grow from an impressionable teenager, to a stressed-out college

student, to an accomplished and wonderful young woman. Though I sometimes

wish she listened more to my —often unsolicited but dutifully given— advice,

such is always the way with younger siblings! Finally, I thank Michele Lesmeister,

who was my mentor throughout high school. She taught a confused and lost

Chinese-American adolescent to love literature, to think critically, and to embrace

his sense of wit and humor. The debt I owe her is immeasurable.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xii

Nomenclature xvi

1 Introduction 1

2 Background 6
2.1 Multivariate Gaussian . 7
2.2 Gaussian processes and Gaussian process regression 8

2.2.1 Kernel hyperparameters . 10
2.2.2 Derivative information . 12

2.3 Bayesian optimization . 13
2.3.1 Probability of improvement 14
2.3.2 Expected improvement . 15
2.3.3 Lower and upper confidence bound 15
2.3.4 Knowledge gradient . 16

2.4 Batch Bayesian optimization . 16
2.4.1 Batch acquisition functions 17
2.4.2 Batch fantasizing . 18

2.5 Bayesian optimization with different cost metrics 19

3 Markov decision processes and Bayesian optimization 22
3.1 Introduction . 23
3.2 The Markov decision process . 25
3.3 Solving MDPs . 27

3.3.1 Optimality conditions . 27
3.3.2 Dynamic programming . 28

3.4 BO as an MDP . 29
3.5 Non-myopic BO . 31
3.6 Conclusion . 33

4 Efficient strategies for non-myopic Bayesian optimization 35
4.1 Introduction . 36
4.2 Rollout policies . 37
4.3 Computational methods for rollout 39
4.4 Efficient rollout via variance reduction 41

4.4.1 Quasi-Monte Carlo (QMC) 42
4.4.2 Common random numbers (CRN) 43

vii

4.4.3 Control variates . 44
4.5 Fast policy search . 45
4.6 Experiments . 46

4.6.1 Variance reduction experiments: 47
4.6.2 Variance reduction ablation study 49
4.6.3 Full rollout on synthetic functions: 50
4.6.4 The impact of model mis-specification: 51
4.6.5 Policy search: synthetic . 53
4.6.6 Policy search: NAS benchmark 54

4.7 Conclusion . 56

5 Non-myopic, cost-constrained Bayesian optimization 58
5.1 Introduction . 59
5.2 Motivation and Related Work . 60
5.3 Constrained Markov decision processes 63

5.3.1 Feasible trajectories . 65
5.4 Cost-constrained BO as a CMDP 65
5.5 CMDP rollout . 68
5.6 Experiments . 71

5.6.1 K-nearest neighbors . 72
5.6.2 Decision trees . 74
5.6.3 Random forest . 75

5.7 Conclusion . 76

6 CArBO: practical cost-constrained Bayesian optimization 78
6.1 Introduction . 79
6.2 Batch BO . 80
6.3 CArBO: Cost Apportioned BO . 81

6.3.1 Cost-effective initial design 82
6.3.2 Cost-cooling . 84
6.3.3 CArBO . 85

6.4 Experiments . 86
6.5 Additional Experiments . 91
6.6 Building better cost models . 94

6.6.1 Neural networks . 95
6.6.2 Robust regression . 96
6.6.3 Cost models for multi-layer perceptrons 98
6.6.4 Experiments . 98
6.6.5 Cost models for convolutional neural networks 100
6.6.6 Experiments . 100

6.7 Conclusion . 101

viii

7 Bayesian optimization with gradients 103
7.1 Introduction . 104
7.2 Background . 104

7.2.1 Conjugate Gradient and preconditioning 106
7.2.2 Stochastic trace estimation 106
7.2.3 Structured kernel interpolation 107
7.2.4 Structured kernel interpolation for products 108

7.3 Scalable GPs with derivatives . 109
7.3.1 D-SKI . 109
7.3.2 D-SKIP . 110
7.3.3 Preconditioning . 111
7.3.4 Dimensionality reduction 111

7.4 Experiments . 112
7.4.1 Eigenspectrum approximation 112
7.4.2 Kernel learning on test functions 113
7.4.3 Dimensionality reduction 114
7.4.4 Preconditioning . 115
7.4.5 Rough terrain reconstruction 116
7.4.6 Implicit surface reconstruction 118
7.4.7 Bayesian optimization with derivatives 119

7.5 Conclusion . 121

8 Conclusion 123

Bibliography 127

ix

LIST OF TABLES

4.1 We estimate the convergence rate and error reduction σ/σ̂ for the
standard MC estimator and our estimator, for horizons 2, 4, 6,
and 8 on the Ackley (2D) and Rastrigin (4D) synthetic functions. 48

4.2 We compare the reduction in variance between QMC and MC,
denoted by σ1/σ̂, and QMC + control variates and MC, denoted
by σ2/σ̂. While control variates contributes the greater reduction
in variance for h = 2, QMC contributes the greater reduction in
variance for h > 2. This is likely because our control variates,
which are myopic acquisition functions, more closely resemble
the rollout acquisition functionsi for small horizons. 49

5.1 We list the HPO problem, budget, and the classification errors
achieved by EI, EIpu, and rollut for horizons 2 and 4. We also bold
the best-performing optimizer and provide the mean cost savings,
which represents the time needed by rollout to achieve compara-
ble results to both EI and EIpu. Rollout provides significant cost
savings overall. 72

6.1 Results for all different batch methods on five HPO tasks, each
tested on four datasets using 51 replications. The tasks are K-
nearest-neighbors (KNN), multi-layer perceptron (MLP), support-
vector machine (SVM), decision tree (DT), and random forest (RF).
The datasets are a1a, a3a, splice, w2a. The median classification
error is shown for different optimizers and batch sizes. CArBO3
displays strong results, showing the best on 18 out of the 20
benchmarks and lagging by a small amount in the other four cases. 87

6.2 Results for batch size 7 on KNN, MLP, SVM, decision tree, and
random forest (RF). CArBO7 displays strong results, showing
the best on 18 out of the 20 benchmarks and lagging by a small
amount in the other four cases. 88

6.3 Results for batch size 11 on KNN, MLP, SVM, decision tree, and
random forest (RF). CArBO7 displays strong results, showing
the best on 18 out of the 20 benchmarks and lagging by a small
amount in the other four cases. 89

6.4 For each batch size and objective, we calculate the median cost
savings as a percentage of budget. Negative numbers indicate
that CArBO performed worse than the best optimizer. CArBO
performs strongly on the large majority of problems. Furthermore,
when it does worse, it only does worse by a small amount. 90

6.5 EIpu results with warped GP and low-variance models. 99

x

7.1 Relative RMSE error on 10000 testing points for test functions
from [Surjanovic and Bingham, 2018], including five 2D func-
tions (Branin, Franke, Sine Norm, Sixhump, and Styblinski-Tang)
and the 3D Hartman function. We train the SE kernel on 4000
points, the D-SE kernel on 4000/(d + 1) points, and SKI and D-SKI
with SE kernel on 10000 points to achieve comparable runtimes
between methods. 114

7.2 Relative RMSE and SMAE prediction error for Welsh. The D-SE
kernel is trained on 4000/(d + 1) points, with D-SKI and D-SKIP
trained on 5000 points. The 6D active subspace is sufficient to
capture the variation of the test function. 115

7.3 The hyperparameters of SKI and D-SKI are listed. Note that there
are two different noise parameters σ1 and σ2 in D-SKI, for the
value and gradient respectively. 117

xi

LIST OF FIGURES

2.1 A few popular RBF kernels. 9
2.2 A Gaussian process (GP) is a distribution over functions. Here, we

show the posterior mean (red) and 95 percent confidence interval
(magenta) of a GP given four observations of a ground-truth
function f (x) (black). The GP uses the Matérn 5/2 kernel, and
its hyperparameters are calculated through maximum likelihood
estimation. 9

2.3 An example where gradient information pays off; the true func-
tion is on the left. Compare the regular GP without derivatives
(middle) to the GP with derivatives (right). Unlike the former, the
latter is able to accurately capture critical points of the function. 12

2.4 In Bayesian optimization iteration proceeds by first building a
GP (left plot) from observations. Optimization of the acquisi-
tion function (right plot) gives a new sample point. Left: the GP
model. Right: the expected improvement, probability of improve-
ment, upper confidence bound (κ = 1), and knowledge gradient
acquisition functions are plotted. 14

2.5 We compare EI (blue) and EIpu (green) on a synthetic function
with synthetic wall clock time. 20

3.1 Modeling h steps of BO, where yk is known. At each step, we make
a decision (an evaluation xk) and receive a reward (an observation
yk). We might assume for all k + 1 ≤ t ≤ k + h that yt is drawn from
a posterior distribution conditioned on all prior decisions and
rewards. 24

3.2 Left: the GP prior using a constant mean and Matérn 5/2 kernel
with ` = 0.2. Middle: the myopic acquisition function prefers sam-
pling at the origin. Right: the non-myopic acquisition function
prefers sampling away from the origin. 32

4.1 Comparing EI (left), KG (middle), and a rollout acquisition func-
tion (right) on a carefully chosen objective for two steps of BO. We
observe five values of f (x) = sin(20x) + 20(x − 0.3)2. For each ac-
quisition function, we perform two steps of BO. EI will ignore the
left region and instead greedily evaluate twice in a sub-optimal
location. KG is less greedy, but will nonetheless evaluate similarly
to EI. The rollout acquisition function will evaluate the region of
high uncertainty and thus identify the global minimum. 37

4.2 We calculate of a rollout acquisition function in 1D with different
values of h using only 50h samples. (Top) The results of a standard
MC estimator. (Bottom) The results of our estimator look far less
noisy. 41

xii

4.3 We estimate a function via MC. (Left) Standard MC without using
CRN is noisy, and the estimate’s argmin is not the function’s.
(Right) Using CRN makes a significant difference. The estimate
is not only much smoother, but its argmin is also the same as the
function’s. 43

4.4 The estimation errors of MC (red) and our reduced-variance esti-
mator (blue). 47

4.5 The estimation errors of MC (red), QMC (green), and QMC com-
bined with control variates (blue). Generally speaking QMC
contributes to a greater drop in variance. Note that the y-axis is
logarithmically scaled. 49

4.6 Empirically, looking longer horizons only seems to help on multi-
modal functions. On unimodal functions (not necessarily convex),
there is little to no performance gain. 50

4.7 (Left) The expected performance of EI-based rollout for h = 1, 2,
3, 4, and 5. (Middle, Right) The observed performance of rollout,
given model error in the form of a smoother and less smooth
kernel, respectively. When the model has large error, the resulting
performance of non-myopic policies can be reversed from the
expected performance. 51

4.8 (Top) Policy search performs at least as well as the best acquisition
function, if not better. (Bottom) For each of the corresponding ob-
jectives, we plot the percentage of use of each acquisition function
per iteration for PS4. EI and KG are chosen more often than any of
the UCB acquisition functions. The worst-performing acquisition,
UCB-0, is chosen the least, suggesting correlation between an
acquisition’s performance and its percentage of use. 53

4.9 We compare the performance of policy search for horizons 2 and
4 in red and blue, respectively, with that of EI, UCB0, UCB2, and
KG. PS2 and PS4 outperform the others after about 20 iterations. 55

4.10 The classification error achieved by PS2 and PS4 is largely on
par with, if not better than, the performance of EI, KG, and UCB
variants. The only exception is the Naval dataset. 56

5.1 Runtime distribution, log-scaled, of 5000 randomly selected
points for the K-nearest-neighbors (KNN), Multi-layer Percep-
tron (MLP), Support Vector Machine (SVM), Decision Tree (DT),
and Random Forest (RF) hyperparameter optimization problems,
each trained on the w2a dataset. The runtimes vary, often by an
order of magnitude or more. 61

5.2 We run EI and EIpu on KNN, 51 times each. Left: EIpu evaluates
many more cheap points than EI, which evaluates more expensive
points. The optimum’s cost, one of the most expensive points, is
a black star. Right: EIpu performs poorly as a result. 62

xiii

5.3 In this example, we examine a carefully chosen example show-
casing the strength of the rollout approach. We consider the
objective f (x) = ‖x‖2 sin(2π‖x‖2), the cost c(x) = 10 − 5‖x‖2, the
domain [−1, 1]2, and a budget of 150. The most expensive point
is the global minimum. EIpu performs worse than EI, and both
tend to get stuck in cheaper, local minimum. Our rollout policy
for horizons 2 and for performs better than both EI and EIpu. . . 71

5.4 We compare KNN classification error among EI, EIpu, and our
cost-constrained rollout for horizons 2 and 4. Rollout performs
significantly better than both EI and EIpu. 73

5.5 We compare decision tree classification error among EI, EIpu,
and our cost-constrained rollout for horizons 2 and 4. Rollout
performs significantly better than both EI and EIpu. 74

5.6 We compare random forest classification error among EI, EIpu,
and our cost-constrained rollout for horizons 2 and 4. Rollout
performs significantly better than both EI and EIpu. 75

6.1 We plot the median evaluation time per iteration using each
method’s median number of iterations. We shade the iterations
that consume the first τ/8 cost, corresponding to the budget con-
sumed by CArBO’s initial design. CArBO clearly starts with
many cheap evaluations and gradually evaluates more expensive
points, enabling it to outperform EI and EIpu. 81

6.2 Two initial designs with the same cost, plotted over a contour
of the synthetic cost function. Left: a grid of four points. Right:
a cost-effective solution containing 15 points, which covers the
search space better than the grid. 82

6.3 Top: Sequential comparison. Bottom: Batch comparison, of batch
sizes 3 and 7. RS is plotted in grey, EI methods are plotted in red,
EIpu methods are plotted in green, and CArBO methods are in
plotted blue. In almost all cases, CArBO converges significantly
faster than competing methods. The median is plotted, with one
standard deviation shaded above and below. 85

6.4 We compare CArBO’s wall clock time performance (left) to its total
compute time performance (right) for batch sizes 1, 2, 4, 8, and 16.
CArBO scales linearly with batch, evidenced by comparable total
compute time performance among all batch sizes. 92

6.5 We study CArBO’s initial design budget from 1/8 to 6/8 of the
total budget. While CArBO 6/8 does perform worse, there is
relatively little performance change, indicating at least some ro-
bustness to the initial design budget. 93

6.6 The cost-effective design contributes the larger performance in-
crease compared to EI-cooling in this ablation study. 94

xiv

6.7 A comparison of different loss functions. The standard L2 loss
weighs outliers, defined as points outside the interval [−δ, δ],
quadratically. Robust loss functions such as the L1 or the Huber
weigh outliers linearly. The Tukey biweight loss weights outliers
by a constant amount. 97

6.8 We run EIpu using both low-variance and warped GP models on
MLP a1a. The warped GP (blue) has higher prediction error and
slower performance than the low-variance model (green). 99

6.9 The low-variance CNN model had lower RMSE only in the lim-
ited data regime (iterations < 20). Though it converges faster than
the warped GP, both converge to the same optimum. 101

7.1 (Left two images) log10 error in D-SKI approximation and com-
parison to the exact spectrum. (Right two images) log10 error in
D-SKIP approximation and comparison to the exact spectrum. . 113

7.2 Scaling tests for D-SKI in two dimensions and D-SKIP in 11 di-
mensions. D-SKIP uses fewer data points for identical matrix
sizes. 113

7.3 7.3(a) shows the top 10 eigenvalues of the gradient covariance.
Welsh is projected onto the first and second active direction in
7.3(b) and 7.3(c). After joining them together, we see in 7.3(d) that
points of different color are highly mixed, indicating a very spiky
surface. 115

7.4 The color shows log10 of the number of iterations to reach a tol-
erance of 1e-4. The first row compares D-SKI with and without
a preconditioner. The second row compares D-SKIP with and
without a preconditioner. The red dots represent no convergence.
The y-axis shows log10(`) and the x-axis log10(σ) and we used a
fixed value of s = 1. 116

7.5 On the left is the true elevation map of Mount St. Helens. In the
middle is the elevation map calculated with the SKI. On the right
is the elevation map calculated with D-SKI. 117

7.6 D-SKI is clearly able to capture more detail in the map than SKI.
Note that inclusion of derivative information in this case leads to
a negligible increase in calculation time. 117

7.7 (Left) Original surface (Middle) Noisy surface (Right) SKI recon-
struction from noisy surface (s = 0.4, σ = 0.12) 119

7.8 In the following experiments, 5D Ackley and 5D Rastrigin are
embedded into 50 a dimensional space. We run Algorithm 1,
comparing it with BO exact, multi-start BFGS, and random sam-
pling. D-SKI with active subspace learning clearly outperforms
the other methods. 121

xv

NOMENCLATURE

Bayesian optimization acquisition functions

EIpu(x) Expected improvement per unit cost acquisition function, page 62

Λ(x) A generic Bayesian optimization acquisition function, page 13

EI(x) Expected improvement acquisition function, page 15

KG(x) Knowledge gradient acquisition function, page 16

PI(x) Probability of improvement acquisition function, page 14

UCB(x) Lower/upper confidence bound acquisition function, page 16

EI-cool(x) The cost-cooled expected improvement acquisition function, page 84

Constants

` Kernel lengthscale, page 8

σ2 Noise variance, page 9

τinit Cost-effective initial design budget, page 83

b Bayesian optimization batch size or budget, page 16

h Markov decision process horizon, page 25

s Kernel scaling factor, page 8

General functions and Distributions

E Expectation, page 14

GP(µ(x), k(x, x′)) A Gaussian Process, page 8

xvi

L1 One-norm loss function, page 96

L2 Two-norm loss function, page 96

Lhuber Huber loss function, page 96

Ltukey Tukey loss function, page 96

N(µX,KXX) A normal distribution with mean µX, covariance KXX, page 9

µ(x) A Gaussian Process mean function, page 8

µ∇(x) A Gaussian Process mean function with derivatives, page 12

Φ(z) Normal distribution cumulative distribution function, page 13

φ(z) Normal distribution probability density function, page 13

π Markov decision process policy, page 25

π∗ The optimal Markov decision process policy, page 27

πt Markov decision process decision rule, page 25

πps Best policy found in Πps during policy search, page 46

τ The cost constraint in a constrained MDP, and the cost budget in cost-

constrained BO, page 63

c(x) Objective cost model, page 62

C(s, a, s′) Cost function in a constrained MDP, page 63

Cπ
h(s0) The expected cost of a policy starting from state s0, page 64

f Continuous function defined on Ω, page 13

xvii

k(x, x′) A Gaussian Process kernel function, page 8

k∇(x, x′) A Gaussian Process kernel function with derivatives, page 12

p(θ) Prior over hyperparameters, page 11

Vπ
h (s0) Markov decision process value function, page 25

fill(X) The fill distance of a set X, page 83

Other

A Markov decision process action space, page 25

S Markov decision process state space, page 25

Ω Bayesian optimization domain, assumed to be simple, page 13

Πps Paramaterized policy set used in MDP policy search, page 46

F The set of all possible trajectories in an MDP, page 65

G The set of feasible trajectories in a constrained MDP implicitly defined by its

cost function, page 65

T Markov decision process epoch set, page 25

Matrices and Vectors

x A vector in Rd, page 8

K̂XX Kernel matrix for regression i.e., K̂XX = KXX + σ2I, page 9

θ Vector of all kernel hyperparamters, page 8

yX A vector of function observations in GP regression, page 9

xviii

CHAPTER 1

INTRODUCTION

1

Global optimization seeks to identify an maximal or minimal point over a do-

main Ω. In the derivative-free setting, global optimization is a problem with many

competing classes of methods, including, but certainly not limited to Nelder-

Mead [Singer and Nelder, 2009], heuristic and metaheuristic-driven evolutionary

search [Back, 1996, Deb, 2001], model-based methods [Rios and Sahinidis, 2013],

and the classic branch-and-bound algorithm [Zinzen et al., 2009]. This disserta-

tion concerns itself with the development of novel global optimization algorithms.

We shall assume without loss of generality that the global optimization problem

we are trying to solve is the minimization of a continuous, black-box objective

function f (x) over a closed domain Ω ⊂ Rd that is relatively simple, such as the

unit hypercube:

min
x∈Ω

f (x).

A black-box function is one in which we can only query or evaluate, and for which

we possess neither an analytical form nor derivative information. We also assume

no additional structural information that might be taken advantage of to develop

high-quality optimization algorithms, such as convexity or upper and lower

bounds. By it’s very nature, a black-box function is challenging to minimize;

due to the limited information available, there exists no certificate of even local

optimality, let alone global optimality. Absent any additional assumptions, a

necessary and sufficient condition for any optimizer is that it search exhaustively

—that is, that it searches every point in the optimization domain. This is clearly in-

feasible for continuous domains, and the seminal work of [Solis and Wets, 1981]

proves that any optimizer which densely samples will eventually converge to

within ε of the global minimum of f (x) under minimal regularity conditions (e.g.,

continuity). Thus, even random selection of points in Ω will eventually locate the

global minimum. However, convergence rates of different global optimization

2

methods remain elusive without further assumptions on the problem e.g., a

known Lipshitz constant [Bull, 2011, Kawaguchi et al., 2015, Rudolph, 1996].

Bayesian optimization (BO) is a class of stochastic, model-based, global op-

timizers that empirically converge faster than many competing methods such

as evolutionary search [Jones et al., 1998a, Jones et al., 1998b]. This key strength

—the sample efficiency of BO— has led to its widespread adoption in certain fields

such as machine learning. Achieving sample-efficiency demands that BO bal-

ance exploration and exploitation, a classic trade-off in global optimization. Too

much exploration slows convergence, because the optimizer might over-evaluate

regions of the domain with a low probability of containing the global minimum.

Too much exploitation slows convergence, because the optimizer might repeat-

edly evaluate near a local minimum. BO expends significant computational

effort to maintain this balance, resulting in high optimization overhead. In its

basic form, BO has an O(n4) complexity, where n is the number of optimization

iterations. This makes it is suitable when its overhead is minimal compared to

that of f (x), and when n is relatively small (≤ 1000). Consequently, BO is fre-

quently used for optimization problems in which f (x) is very costly to evaluate

in terms of wall clock time, money, or human effort. Key applications of BO

include robotic gait control, neural network hyperparameter tuning, and sensor

set selection [Shahriari et al., 2016, Snoek et al., 2012, Frazier, 2018a].

While we provide a more formal description of BO in Chapter 2, we find

it helpful to provide a rough outline below. Each iteration of BO executes the

following two steps.

1. Build a probabilistic surrogate model of the objective.

2. Determine the next evaluation x via an acquisition function and evaluate it.

3

The acquisition function balances exploration and exploitation by scoring each

point in Ω based on its potential to decrease the objective function. Different scor-

ing criteria lead to different acquisition functions, and a well-chosen acquisition

function enables BO to converge much faster. Unforunately, standard acquisi-

tion functions such as expected improvement (EI) are too greedy and perform

little exploration. As a result, they perform poorly on multimodal problems

[Hernández-Lobato et al., 2014] and have provably sub-optimal performance in

certain settings, e.g., bandit problems [Srinivas et al., 2010]. A key research goal

in BO is developing less greedy acquisition functions [Shahriari et al., 2016]. Ex-

amples include predictive entropy search (PES) [Hernández-Lobato et al., 2014]

or knowledge gradient (KG) [Frazier et al., 2008].

In this dissertation, we introduce novel methodologies to further im-

prove the performance of BO. Many of our methodologies are concerned

with BO under a finite budget. We hope that by taking into account a fi-

nite budget, we can better decide where to evaluate f (x), which will then

improve upon the performance of classic BO. The research in this thesis

primarily builds upon the following prior work in non-myopic Bayesian

optimization: [Osborne et al., 2009, Lam et al., 2016, Lam and Willcox, 2017,

Abdolshah et al., 2019], and has been published in the following first-author

papers: [Lee et al., 2020a, Lee et al., 2020b], for which the author performed the

large majority of the research. Additional research in this thesis concerning

efficient Gaussian process regression with derivative information has been pub-

lished in [Eriksson et al., 2018], for which the author was a second author. We

structure this dissertation as follows:

• In Chapter 2, we cover background material, including Gaussian process

4

regression, BO acquisition functions, and different variants of BO including

batch BO and cost-constrained BO.

• In Chapter 3, we frame the exploration-exploitation trade-off as a princi-

pled balance between immediate and future rewards in a continuous state

and action space Markov decision process (MDP), in which one tries to

maximize a cumulative reward over a fixed number of iterations.

• In Chapter 4, we devise efficient strategies to solve Bayesian optimization

MDPs through a popular technique known as rollout, and discuss variance

reduction techniques to speed up rollout.

• In Chapter 5, we extend rollout to the cost-constrained BO setting in which

evaluating the objective has variable cost.

• In Chapter 6, we discuss simple heuristics that perform very well in the

cost-constrained BO setting. We combine these heuristics and extend them

to the batch setting, and show that they yield significant improvements

across the board.

• In Chapter 7, we extend Gaussian process regression to the setting with

derivatives, and use this as a building block to perform BO with derivative

information. We also discuss dimensionality reduction techniques.

5

CHAPTER 2

BACKGROUND

6

In this chapter, we include the necessary background to understand BO and

the research in this dissertation. While we hope this chapter is largely self-

contained, the reader will need some prior knowledge of probability theory,

linear algebra, and calculus.

2.1 Multivariate Gaussian

The multivariate Gaussian, also known as the multivariate normal, gener-

alizes the univariate Gaussian to Rn. The vector-valued random variable

y = [y1, y2, . . . , yn]T ∈ Rn is said to follow a multivariate normal distribution

with mean vector µ ∈ Rn and positive definite covariance matrix K ∈ Rn×n if its

probability density function (pdf) is given by:

p(y | µ,K) =
1

(2π)d/2|K|1/2
exp

(
−

1
2

(y − µ)T K(y − µ)
)
.

We can write this more succinctly as y ∼ N(µ,K). Note that |K| is the determinant

of matrix K i.e., the product of its eigenvalues. p(y | µ,K) is a proper distribution

in that it is always positive and integrates to 1. Among the multivariate normal’s

fundamental properties is self-conjugation; it’s conditional distribution is also a

multivariate normal. Assume we have sub-divided y into two random variables

y1 and y2 of dimension n1 and n2, respectively, and done the same with µ and K:y1

y2

 ∼ N
(µ1

µ2

 ,
K11 K12

KT
12 K22

)
,

7

where y1, µ1 ∈ R
n1 , y2, µ2 ∈ R

n2 , K11 ∈ R
n1×n1 , K12 ∈ R

n1×n2 and K22 ∈ R
n2×n2 . The

distribution of y1 conditioned on y2 is given by:

y1 | y2 ∼ N

(
µ̂, K̂

)
,

µ̂ = µ2 + KT
12[K11]−1(y1 − µ1),

K̂ = K22 − KT
12 [K11]−1 K12.

In Bayesian statistics, µ̂ is known as posterior mean and K̂ is known as the

posterior covariance1, given that N(µ,K) is the prior. This terminology will

become important when we generalize the multivariate normal to their infinite-

dimensional counterparts, Gaussian processes, in the next section.

2.2 Gaussian processes and Gaussian process regression

One can think of a Gaussian process (GP) as an infinite-dimensional gener-

alization of a multivariate Gaussian. To be more precise, a GP is a collec-

tion of random variables, any finite number of which are jointly Gaussian

[Rasmussen and Williams, 2006]. It defines a distribution over functions on Rd,

which we write as:

f ∼ GP(µ(x), k(x, x′)),

where µ(x) : Rd → R is a mean field and k(x, x′) : Rd × Rd → R is a symmetric and

positive (semi)-definite covariance kernel. A kernel k(x, x′) is a bivariate func-

tion that correlates its two arguments. A kernel dependent on r = ‖ x− x′ ‖2 i.e.,

k(x, x′) = φ(r) is a radial basis function (RBF) kernel, and typically contains length-

scale and scale factor hyperparameters ` and s, respectively. We list a few popular

1K̂ is also the Schur complement of K in numerical linear algebra.

8

Kernel Formula

Squared Exponential (SE) s2exp(− r2

2`2)
Matérn 3/2 s2(1 +

√
3r
`

)exp(−
√

3r
`

)
Matérn 5/2 s2(1 +

√
5r
`

+
√

5r
3`3)exp(−

√
5r
`

)

Figure 2.1: A few popular RBF kernels.

0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

Gaussian Process

f(x)
Mean
Observations
Std

Figure 2.2: A Gaussian process (GP) is a distribution over functions. Here, we
show the posterior mean (red) and 95 percent confidence interval (magenta) of
a GP given four observations of a ground-truth function f (x) (black). The GP
uses the Matérn 5/2 kernel, and its hyperparameters are calculated through
maximum likelihood estimation.

radial kernels in Table 2.1. A Gaussian process prior means the following. At any

set of points X = [x1, x2, . . . , xn]T ∈ Rn×d, the values fX = [f (x1), f (x2), . . . , f (xn)]T

are jointly distributed with respect to the following multivariate normal:

fX ∼ N(µX,KXX),

where µX ∈ R
n such that (µX)i = µ(xi) and KXX ∈ R

n×n such that (KXX)i j = k(xi, x j).

The mean and kernel functions are often chosen to reflect prior knowledge in the

data e.g., a periodic kernel for periodic data.

GP regression is equivalent to computing a posterior mean at a desired point,

and works as follows. Let us assume that we have a Gaussian process prior over

a set of locations X = [x1, . . . , xn]T ∈ Rn×d with a mean function µ and a kernel

9

k(x, x′). Let us assume that we’ve also observed values yX = [y1, . . . , yn]T at X,

where yi = f (xi). Because the multivariate Gaussian is a conjugate prior, the

posterior distribution at x is given by the standard conditional distribution in the

prior section:

N(µ̂, K̂xx),

where µ̂ and K̂xx are the posterior mean and covariance:

µ̂x = µx + KT
Xx[KXX]−1(yX − µX).

K̂xx = Kxx − KT
Xx [KXX]−1 KXx.

It is usually standard in GP regression to assume yX is contaminated by indepen-

dent Gaussian noise with variance σ2. This is equivalent to using the regularized

kernel matrix K̃XX instead of KXX during regression:

K̃XX = KXX + σ2I.

Kernel matrices are known to be often poorly conditioned [Wendland, 2004],

and adding a relatively small diagonal factor σ alleviates poor conditioning to a

certain extent. It can also be learned jointly with the kernel hyperparameters. An

simple example of GP regression can be seen in Figure 2.2, in which we’ve plotted

the posterior mean and square root of the variance (the standard deviation) of a

GP with four observations in 1D.

2.2.1 Kernel hyperparameters

The quality of a GP model depends not only on the choice of kernel function,

but also on the kernel function’s hyperparameters. The choice of kernel is

10

usually not automated2, and often requires external knowledge e.g., periodicity

of the data. However, once a kernel has been chosen, there are a few ways of

automatically selecting its hyperparameters, which we denote by the vector θ.

The first is maximum likelihood estimation (MLE). To be concise, we suppress the

dependence of KXX matrices on θ in our notation. Under a Gaussian process prior

depending on the covariance hyperparameters θ, the log marginal likelihood of

the observations yX given X and θ is:

LML(yX | X, θ) = −
1
2

[
(yX − µX)Tα + log |K̃XX | + n log 2π

]
.

∂

∂θ j
LML(yX | X, θ) = −

1
2

tr
(
(ααT − K̃−1

XX)
∂K̃XX

∂θ j

)
.

where α = K̃−1
XX(yX − µX) and K̃XX = KXX + σ2I. The standard direct method to

pre-compute the Cholesky factorization of K̃XX, and use it to compute α and its

log-determinant. A Cholesky factorization has complexity O(n3), which is too

expensive for inference and learning beyond even just a few thousand points.

Recent work exploits the data-sparsity of certain kernel matrices to solve with

K̃XX using conjugate gradient [Saad, 2003] and to calculate the log-determinant

log |K̃XX | with stochastic trace estimation [Dong et al., 2017]. These scale better

than the direct approach because K̃XX is structured, and can be applied to a vector

in under O(n2) time.

A Bayesian treatment of kernel hyperparameters requires a prior on the hy-

perparameters p(θ). Given this prior, one may opt to either perform a maximum-

a-posteriori (MAP) estimate or infer a full posterior distribution p(θ|X,Y), which

is then integrated out. The MAP will maximize the product of the likelihood

and the prior, or equivalently, the sum of the log-likelihood and the log-prior.
2It is worth noting that there is significant research devoted to kernel selection, which we will

not discuss in this dissertation.

11

Branin SE no gradient SE with gradients

Figure 2.3: An example where gradient information pays off; the true function
is on the left. Compare the regular GP without derivatives (middle) to the GP
with derivatives (right). Unlike the former, the latter is able to accurately capture
critical points of the function.

Inferring and integrating out a full posterior distribution p(θ|X,Y) is typically

done via Markov chain Monte Carlo (MCMC) [Rasmussen and Williams, 2006].

A full Bayesian treatment of hyperparameters is the most expensive, but has

been shown to exhibit greater robustness and prediction accuracy in the low-

data regine [Snoek et al., 2012], who recommends a uniform prior for the kernel

lengthscales and a log-normal prior for the kernel scaling parameter.

2.2.2 Derivative information

The GP model can easily be extended to incorporate derivative information,

which is especially valuable in higher dimensions, but comes at a cost: the kernel

matrix augmented with derivatives, K∇XX, is of size n(d+1)-by-n(d+1). This makes

scalability an even larger issue as training and prediction become O(n3d3) and

O(nd) respectively [Rasmussen and Williams, 2006, Eriksson et al., 2018]. Fig-

ure 2.3 illustrates the value of derivative information; fitting with derivatives is

evidently much more accurate than fitting function values alone.

12

We define a multi-output GP that allows us to both predict derivatives and

make inference based on derivative information. The multi-output GP model

takes the form

µ∇(x) =

 µ(x)

∂xµ(x)

 , k∇(x, x′) =

 k(x, x′) (∂x′k(x, x′))T

∂xk(x, x′) ∂2k(x, x′)

 ,
where ∂xk(x, x′) and ∂2k(x, x′) represent the column vector of (scaled) partial

derivatives in x and the matrix of (scaled) second partials in x and x′, respectively.

As in the scalar GP case, we model measurements of the function as contaminated

by independent Gaussian noise, but we can use different noise variances for the

function values and each partial derivative.

2.3 Bayesian optimization

Algorithm 1 Bayesian Optimization

0: input: budget b, acquisition function Λ(x)
0: Place a GP prior on f
1: for k = 0, . . . , b − 1 do
2: Learn GP hyperparameters, update posterior
3: Determine next evaluation point x∗ = arg maxΩ Λ(x)
4: Sample value yk+1 at point xk+1 according to π∗

5: Update observation set with xk+1 and yk+1

6: end for
7: Return: xi for which the minimum yi value was observed

Consider minimizing a continuous, black-box function f (x) : Ω → R over

a simple domain Ω ⊂ Rd. By black-box, we mean that the analytic form and

gradients are unavailable, and the function can only be queried through poten-

tially noisy evaluations. Bayesian optimization (BO) is a well-established class

of methods to address this problem. Using its past observations, BO builds an

probabilistic model of the objective function to guide optimization, and selects

13

0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

Gaussian Process

Mean
Observations
Std

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Acquisition Functions

EI
PI
UCB
KG

Figure 2.4: In Bayesian optimization iteration proceeds by first building a GP
(left plot) from observations. Optimization of the acquisition function (right plot)
gives a new sample point. Left: the GP model. Right: the expected improvement,
probability of improvement, upper confidence bound (κ = 1), and knowledge
gradient acquisition functions are plotted.

the next iterate through an acquisition function, which scores each point in the

optimization domain based on its potential to decrease the objective function.

We outline BO in Algorithm 1, where Λ(x) represents an arbitrary acquisition

function. Below, we list some popular acquisition functions. Many are expressed

as the expectation of a random variable, and only a subset of these have closed

forms, which we provide when available. We take φ(z) to be the pdf of the Normal

distribution and Φ(z) to be its cdf, where z =
y∗−µ(x)
σ(x) . We denote the current known

minimum as y∗ B f (xmin).

2.3.1 Probability of improvement

Probability of improvement (PI) is one of the simplest acquisition functions, and

is defined as the probability that the point x will yield an increase in the objective

function. PI can be written as:

PI(x) = E[γ(y(x))] = Φ

(y∗ − µ(x)
σ(x)

)
.

14

γ(y(x)) =

1 , y < y∗

0 , y ≥ y∗.

PI is not a popular acquisition function due to its empirical poor performance

[Jones et al., 1998b], as it tends to be overly exploratory. However, we include

it here because of its usefulness as a control variate when estimating other

acquisition functions.

2.3.2 Expected improvement

Expected improvement (EI), introduced by [Mockus et al., 1978] and then rein-

troduced by [Jones et al., 1998a], is arguably the de-facto standard BO acquisition

function. EI measures the expected reduction in the objective:

EI(x) = E[γ(y(x))] = (y∗ − µ(x))Φ
(y∗ − µ(x)

σ(x)

)
+ σ(x)φ

(y∗ − µ(x)
σ(x)

)
.

γ(y(x)) =

y∗ − y , y < y∗

0 , y ≥ y∗.

EI is known to be too greedy and perform little exploration [Qin et al., 2017]. As a

result, it performs poorly on multimodal problems [Hernández-Lobato et al., 2014]

and has provably sub-optimal performance in certain settings, e.g., bandit prob-

lems [Srinivas et al., 2010].

2.3.3 Lower and upper confidence bound

In the BO setting, the lower confidence bound acquisition is used when

minimizing and the upper confidence bound is used when maximizing

15

[Srinivas et al., 2010]. Without loss of generality, we will overload UCB as

acronym for both. In terms of minimization, UCB is defined as:

UCB(x) = µ(x) − κσ(x),

where κ is an input parameter representing the tradeoff between exploration and

exploitation. UCB provides regret bounds and thus gives certain convergence

guarantees, but its performance is dependent upon κ.

2.3.4 Knowledge gradient

The knowledge gradient (KG) acquisition function [Frazier et al., 2008,

Frazier, 2018b] reconsiders EI’s need to only return a previously evaluated point

as the final BO solution. KG instead is willing to return a final solution that has

some uncertainty attached to it, and assumes this to be the expected minimum

of the GP’s posterior mean. Let µ∗n+1(y(x)) be the minimum of the posterior GP

mean assuming y(x) has been evaluated. Then KG is defined as:

KG(x) = E[γ(y(x))].

γ(f |x) = µ∗n+1(y(x)).

Note that KG does not have an analytic form, unlike the other acquisition func-

tions, and therefore must be approximated numerically.

2.4 Batch Bayesian optimization

Standard BO is sequential but can be extended to the batch setting. In this

setting, b candidates x1, . . . , xb are selected by a batch acquisition function and

16

then evaluated in parallel. This parallel evaluation is especially suited to set-

tings in which multiple computers or resources are available to perform func-

tion evaluations, which can occur either synchronously or asynchronously. A

large body of work has been devoted to batch BO, including (but not lim-

ited to) work by [González et al., 2016, Azimi et al., 2010, Wu and Frazier, 2016,

Shah and Ghahramani, 2015, Wang et al., 2017, Snoek et al., 2012]. Batch BO is

inherently less sample efficient than sequential BO, which uses information the

most optimally. Consequently, the challenge in the batch setting is candidate

diversity, in which batch candidates are sufficiently different from each other, but

also sufficiently exploitative, so that sample efficiency is largely preserved. In

the ideal world, a batch size of b yields a corresponding b-times linear speed-up

in convergence rate.

2.4.1 Batch acquisition functions

A batch acquisition function is maximized over over Ωb to return b different

candidates x1, . . . , xb. These are evaluated in parallel. Below are batch extensions

to EI and KG, which are both expressed as an expectation over the GP’s joint

posterior distribution:

Λb(x1 . . . xb) = E[γ(y(x1), . . . , y(xb))].

For example, EI can be extended to the batch EI criterion by modifying the

associated random variable to take the minimum value of the batch:

γ(y(x1), . . . , y(xb)) =

y∗ −min1≤i≤b y(xi) , min1≤i≤b y(xi) < y∗

0 , min1≤i≤b y(xi) ≥ y∗.

17

KG can also be extended to the batch KG criterion in the same way:

γ(y(x1), . . . , y(xb)) = µ∗n+b(y(x1), . . . , y(xb)).

These expectations are taken with respect to the GP’s joint posterior distribution

at x1, . . . , xb. Both batch EI and batch KG do not have analytic forms, and their

values and gradients must be approximated. This makes them unwieldy to

maximize, and this especially true with large batch sizes.

2.4.2 Batch fantasizing

An alternative to batch acquisition functions is batch fantasizing, also known as

the Kriging believer [Snoek et al., 2012]. Instead of defining a batch criterion used

to select b simultaneous points, batch fantasizing executes a sequential simulation

using a sequential acquisition function, and determines a batch through this

simulation. The sequential simulation predicts n f different future evaluation

trajectories, known as “fantasies”[Wilson et al., 2018]. These n f fantasies are

aggregated to identify a sequence of evaluation points, which is then evaluated

in parallel. Batch fantasizing is described in Algorithm 2.

We make heavy use of batch fantasizing in Chapter 6, and describe Algorithm

2 assuming EI as the acquisition function without loss of generality. First, let x1

be the the argmax of EI, and sample n f values from the posterior at x1. These n f

“fantasy” values represent different future evaluation trajectories. We maintain

n f different GPs, and update them each with a different fantasy value (GP

hyperparameters are kept constant). Second, we maximize a new acquisition

that is the average of EI acquisition functions over each different fantasy. The

argmax of this averaged acquisition is set to be x2. We repeat these steps until a

18

Algorithm 2 Batch Fantasizing with EI

1: Input: batch b, fantasies n f , data X,Y
2: for i = 1, . . . , n f do
3: Y (i) ← copy(Y)
4: end for
5: x1 ← argmaxx∈Ω EI(x | X,Y)
6: for j = 2, . . . , b do
7: x← x∪{x j}

8: for i = 1, . . . , n f do
9: y(i)

k ← sample posterior(x | X,Y (i))
10: Y (i) ← Y (i) ∪ {y(i)}

11: end for
12: x j ← argmaxx∈Ω

1
n f

∑n f

i=1 EI(x | X,Y (i))
13: end for
14: return xb = {x1, . . . , xb}

batch of b points is obtained.

2.5 Bayesian optimization with different cost metrics

Progress in BO is implicitly measured with iterations. This assumption is inherent

in the EI, KG, and UCB acquisition functions we have covered, which only take

into account the distribution of the objective function and not variability in the

objective function’s cost. In fact, many of the applications that BO is used in have

variable cost, which can often be measured. In robotic gait control, different con-

trol actions take different times to accomplish. In hyperparameter optimization,

different hyperparameters result in different training times. In materials design,

constituent components have different monetary costs [Abdolshah et al., 2019].

The setting in which the cost of the objective varies is known as cost-aware BO.

When we are cost-aware, and also have an a-priori known budget, then we say

that we are cost-constrained.

19

25 50 75 100 125 150 175
Wall clock time (seconds)

1.0

1.2

1.4

1.6

1.8

2.0

Comparing EI and EIpu

EI
EIpu

Figure 2.5: We compare EI (blue) and EIpu (green) on a synthetic function with
synthetic wall clock time.

Cost-aware and cost-constrained BO are largely understudied at the time

of this dissertation’s writing, and indeed, we argue in Chapter 5 that the large

majority of practical applications are cost-constrained; a large portion of this

dissertation is dedicated to developing cost-constrained BO methods. Typical

approaches in this setting include multi-fidelity BO, in which fidelity parame-

ters s ∈ [0, 1]m, such as iteration count or grid size, are assumed to be a noisy

proxy for high-fidelity evaluations [Forrester et al., 2007, Kandasamy et al., 2017,

Poloczek et al., 2017, Wu and Frazier, 2019]. Increasing s decreases noise at the

expense of cost. Not all applications may be formulated as multi-fidelity, and we

develop more general methods in Chapter 5 and Chapter 6.

The de-facto heuristic in cost-constrained BO is to divide an acquisition

function by a cost model c(x). The cost model c(x) models the cost of evaluating

f (x). In particular, [Snoek et al., 2012] uses the expected improvement per unit

acquisition function:

EIpu(x) =
EI(x)
c(x)

In Figure 2.5, we see that EIpu beats EI on a synthetic function, whose wall clock

20

time also follows a synthetic function. However, as we will show in Chapter 5,

dividing the acquisition function by the cost is a rather weak heuristic that only

works well if the global optimum is relatively cheap to evaluate. We improve

upon EIpu in Chapters 5 and 6.

21

CHAPTER 3

MARKOV DECISION PROCESSES AND BAYESIAN OPTIMIZATION

22

3.1 Introduction

BO acquisition functions such as EI are greedy in the sense that they ignore

how the current iteration will affect future ones. Typically, the BO exploration-

exploitation trade-off is expressed in the context of a one-step optimal process:

for the next iteration, choose the point that balances information quantity and

quality. Unfortunately, many acquisition criteria are reliant on additional param-

eters, which affect BO performance in rather poorly understood ways. A classic

example is the κ parameter in UCB-κ, which represents the amount of exploration

to be done, and largely dictates performance of the underlying BO routine.

A look ahead approach, also known as non-myopia, is aware of the remaining

iterations and can balance the exploration-exploitation trade-off correspondingly

by accounting for the impact of future evaluations. The characterization of

the exploration-exploitation trade-off in BO as balance between immediate and

future rewards is an important one. A key research goal in BO is developing

less greedy acquisition functions [Shahriari et al., 2016, Frazier, 2018a], and ac-

counting for future rewards is a more principled way of doing so than existing

state-of-the-art acquisition functions. Examples of these include predictive en-

tropy search (PES) [Hernández-Lobato et al., 2014] or knowledge gradient (KG)

[Frazier et al., 2008], and generally rely on acquisition criteria that have been

empirically observed to work well.

To be non-myopic, we must reason about Bayesian optimization as a sequence

of decisions under known epistemic uncertainty. In Figure 3.1, we depict such

a sequence. At iteration k, we decide on a new evaluation xk+1, which in turn

yields a reward, or observation yk+1. We continue this process for h steps, where

23

yk
decide
−−−−→ xk+1

reward
−−−−−→yk+1

decide
−−−−→, . . . ,

reward
−−−−−→yk+h

Figure 3.1: Modeling h steps of BO, where yk is known. At each step, we make a
decision (an evaluation xk) and receive a reward (an observation yk). We might
assume for all k + 1 ≤ t ≤ k + h that yt is drawn from a posterior distribution
conditioned on all prior decisions and rewards.

h is the total budget. We assume that for all k + 1 ≤ t ≤ k + h that yt is drawn from

a posterior distribution conditioned on all prior decisions and rewards; because

yt is modeled as a GP, we can do this in a reasonably straightforward manner.

Having established distributions for yk+1, . . . , yk+h, we might reasonably ask for

an algorithm to compute the optimal sequence of decisions, which in this case

are the evaluation points xk+1, . . . , xk+1, so that the smallest of the observations is

minimized in expectation. As it turns out, this is a difficult problem, and one

that this chapter expands upon at length!

There is a rich literature on sequential optimization and control of discrete-

time systems, starting from the seminal work of [Bellman, 1952, Bellman, 1961]

and continuing to this day, including recent treatments by [Bertsekas, 1995],

[Powell, 2007], and [Puterman, 2014]. The classic framework in this space is

the Markov decision process (MDP), which models a stochastic control process

in which the next state depends only on the current one. MDPs are widely

studied and are ubiquitous in areas such as optimal control of dynamical systems,

econometrics, or robotics. A quintessential example of an MDP is the grid-world,

in which an agent living in a finite grid can either walk up, down, left, or right,

and whose goal is to reach a terminal grid point in the minimal amount of time.

More generally, an MDP formalizes the states an agent can reach, the actions

an agent can take, and the goal an agent is trying to achieve. As it turns out,

stochastic global optimization can be formalized in the same way.

24

As we have already stated earlier, we frame the exploration-exploitation trade-

off as a balance between immediate and future rewards in a continuous state

and action space Markov decision process (MDP). In this framework, non-myopic

acquisition functions are optimal MDP policies, and promise better performance

by considering the impact of future evaluations up to a given BO budget (also

referred to as the horizon).

3.2 The Markov decision process

In this section, we briefly introduce discrete-time MDPs. There is a wealth of

research and accompanying tutorials on MDPs, and we opt to only briefly review

the basics for the sake of parsimony. Our presentation concerns finite-horizon

MDPs, and we ignore algorithms concerning their infinite-horizon counterparts.

We follow the generally-accepted notation from [Puterman, 2014]; we express

an MDP as the collection < T,S,A, P,R >. T is the set of decision epochs and for

our problem, we only consider the finite horizon setting, where T = {0, 1, . . . , h−1},

for some integer h < ∞. The state space, S, encapsulates all the information

needed to model the system from time t ∈ T . A is the action space. Given a state

s ∈ S and an action a ∈ A, P(s′|s, a) : S×A× S→ [0, 1] is the transition probability

of the next state being s′. R(s, a, s′) : S × A × S → R+ is the reward received for

choosing action a from state s, and ending in state s′.

A decision rule, πt : S → A, maps states to actions at time t. A policy π is a

series of decision rules π = (π0, π1, . . . , πh−1), one at each decision epoch. Given

a policy π, a starting state s0, and horizon h, we can define the expected total

25

reward of π as Vπ
h (s0):

Vπ
h (s0) = E

s0,s2,...,sh−1

[h−1∑
t=0

R(st, πt(st), st+1)
]
.

The above expectation is taken with respect to the transition probabilities of

states at each epoch, and we will omit the subscript below the expectation

for the sake of neat notation for the rest of this dissertation. Vπ
h (s0) is also

known as the value function, and should be thought of as the fitness measure

of any particular policy. Only in very specific MDPs, such as linear control

systems using a linear quadratic regulator, is the analytic form of Vπ
h (s0) available

[Bemporad et al., 2002]. Absent a known analytic form, the value function must

computed through numerical integration. Assuming we can draw from the

transition probability P(s, a, s′), we can estimate the expected total reward for a

policy π with Monte Carlo (MC) integration [Sutton and Barto, 1998]:

Vπ
h (s0) ≈

1
N

N∑
i=1

[h−1∑
t=0

R(si
t, πt(si

t), s
i
t+1)

]
.

More intuitively, we approximate Vπ
h (s0) by averaging rewards accrued over

N independent sample paths from the MDP following policy π starting with

information s0:

(
π(si

0), si
1, π(si

1), si
2, π(si

2), . . . , si
h
)
, 1 ≤ i ≤ N ,

where superscript i indexes the sample number and subscript h indexes the

horizon. Unsurprisingly, computing the value function is also known as policy

evaluation in the MDP literature.

Note that we have presented a simplified version of MDPs. Typical formu-

lations also include a discount factor γ and a terminal reward R(s). We have

omitted these for notational brevity, as they are not used in this dissertation.

26

3.3 Solving MDPs

In phrasing a sequence of decisions as an MDP, our goal is to find the optimal

policy π∗ that maximizes the expected total reward:

π∗ = arg supπ∈ΠVπ
h (s0),

where Π is the space of all admissible policies. Note that in the case of a finite

state and action space, the number of admissible policies is dh
adh

s , where da is the

size of the action space and dh is the size of the state space. The exponential

increase of both the action and state spaces in h means that most real world MDPs

are quite difficult to solve exactly. However, we find it instructive to review exact

solutions so that our approximate solutions may be better motivated.

3.3.1 Optimality conditions

An optimal MDP policy always exists, though it may not be unique. Let the

optimal policy be denoted as:

π∗ = (π∗0, π
∗
1, . . . , π

∗
h−1).

Let us consider the following MDP subproblem, in which we are attempting to

minimize the following value function starting at time k:

E
[h−1∑

t=k

R(st, πt(st), st+1)
]
,

for any intermediate state sk. This MDP subproblem also known as the k-tail

subproblem. Bellman’s principle of optimality [Bellman, 1952, Powell, 2007] states

that the optimal policy for the k-tail subproblem is in fact:

π∗ = (π∗k, π
∗
k+1, . . . , π

∗
h−1).

27

In other words, the optimal policy for the k−tail subproblem is completely inde-

pendent of the first k optimal decision rules (π∗0, π
∗
1, . . . , π

∗
k−1)! Because the optimal

policy of the future does not depend on the past, a straightforward algorithm

exists to simultaneously calculate both the optimal policy and its value function.

We discuss it in the following subsection.

3.3.2 Dynamic programming

Bellman’s principle of optimality allows us to construct the following high level

algorithm to recover the optimal policy. First, for every final state sh−1, we

compute the optimal policy to maximize the tail problem for k = h− 1. This gives

us (π∗h−1). We then compute the optimal policy to maximize the tail problem for

k = h− 2. This gives us (π∗h−2, π
∗
h−1). We continue backwards in time until we reach

k = 0, which then gives us all optimal decision rules and thus the optimal policy:

π∗ = (π∗0, π
∗
1, . . . , π

∗
h−1).

This dynamic programming algorithm can be recursively expressed as a sequence

of nested optimization problems starting from k = h − 1 and working in reverse

to k = 0:

Vh(s∗) = 0,

Vk(s) = max
a∈A
Es′[R(s, a, s′) + Vk+1(s′)] (k = h − 1, h − 2, . . . , 0).

We start with zero reward at a terminal state s∗, and iterate backwards in time.

At each step, we perform a maximization problem to determine the optimal

decision rule that maximizes the k-tail subproblem. At the end of iteration, V0(s0)

is precisely the value function of the optimal policy i.e., V0(s0) = Vπ∗

h (s0). Note

28

that in many typical MDP formulations, the reward at a terminal zero state may

be determined by a nonzero terminal reward function, which we have omitted

above.

3.4 BO as an MDP

As we mentioned in the beginning of this chapter, we might think of BO as a

sequential process in which one determines the next iteration xnext, evaluates

f (xnext), observes some value, and collects some reward associated with this value.

If these values are drawn from a distribution conditioned on past data, then

BO —and indeed, many related, model-driven sequential optimization problems

under uncertainty— can be formulated as an MDP. The dynamics of this MDP

are driven by the inherent stochasticity in the GP, whose posterior distributions

provide a framework for expressing how optimization might proceed in the

future. Having covered the MDP fundamentals, we now map them to their

analogous counterparts in BO.

Given a GP prior over an observation setDk with mean µ(k) and kernel K(k),

we model h steps of BO as an MDP. The k superscript indicates that k evaluations

of the objective have already been performed, so thatDk ∈ Ωk × Rk.

• Horizon: our horizon is h, which can be the full or restricted BO budget.

• State space: The state space of BO is all possible observation sets reachable

from starting stateDk with h steps of BO.

• Action space: The action space of BO is Ω; actions correspond to sampling

a point in Ω. Its transition probability and reward function are defined

29

recursively, as follows.

• Transition probability: The transition probabilities in BO from stateDt to

stateDt+1, whereDt+1 = Dt ∪ {(xt+1, yt+1)}, given an action xt+1, is defined as:

P(Dt, xt+1,Dt+1) ∼ N(µ(t)(xt+1;Dt),K(t)(xt+1, xt+1;Dt)). (3.1)

In other words, the probability of transitioning from Dt to Dt+1 is the

probability of sampling yt+1 from the posterior of GP(µ(t),K(t)) at xt+1.

• Reward: The reward function in BO we consider is derived from the the EI

criterion [Jones et al., 1998b]. Let y∗t be the minimum observed value in the

observed setDt, i.e., y∗t = min{y0, . . . , yt}. Then our reward is expressed as:

R(Dt, xt+1,Dt+1) = (y∗t − yt+1)+ ≡ max(y∗t − yt+1, 0). (3.2)

In the BO setting, a policy is a sequence of decision rules, each of which selects

one of the next h BO evaluations. The value function of a policy can be expressed

as the total reduction in the objective function over h steps.

Vπ
h (Dk) = E

[k+h−1∑
t=k

R(Dt, πt(Dt),Dt+1)
]

= E
[k+h−1∑

t=k

(y∗t − yt+1)+

]
(3.3)

= E
[
(y∗k − yk+h)+

]
.

The optimal policy is then the sequence of decision rules that yields the highest

reduction in the objective function over h steps. In the case when h = 1, the opti-

mal policy is determined by maximizing the expected improvement acquisition

function:

π∗0 = arg max
Ω

EI(x),

30

Algorithm 3 Non-myopic, MDP Bayesian Optimization

0: input: horizon h, budget b, initial observation setDbi of size bi

0: Place a GP prior on f , update posterior withDbi

1: for k = bi, bi + 1, . . . , b − 1 do
2: Learn GP hyperparameters, update posterior
3: Calculate optimal policy π∗ = arg maxπ Vπ

min(h,b−k)(Dk)
4: Sample value yk+1 at point xk+1 according to π∗

5: Update observation setDk+1 = Dk ∪ {(xk+1, yk+1)}
6: end for
7: Return: xi for which the minimum yi value was observed

This can be shown by expanding the value function, its reward function, and its

transition probability for horizon 1:

πEI = arg max
π

Vπ
1 (Dk)

= arg max
x∈Ω

E
[
(y∗k − yx)+

]
= arg max

x∈Ω
EI(x | Dk),

where the starting state isDk. More generally, the EI acquisition function at any

point x is equivalent to the value function of the policy π(Dk) = x. EI is a greedy

policy, which may in part explain why it has empirically greedy behavior; it is

unaware of potential reductions in the objective function down the road, and

thus heavily favors exploitation over exploration. In the next section of this

chapter, we attempt to remedy this.

3.5 Non-myopic BO

We say that BO is non-myopic if it uses the optimal policy, or an approxi-

mation thereof, for h > 1. We formalize this notion in Algorithm 3, in which an

optimal policy is computed for the remaining budget (itself an input argument),

31

-.37 .37

Probabilistic Model

-.37 .37

Myopic Acquisition

-.37 .37

Non-myopic Acquisition

Observations GP Mean GP uncertainty Acquisition Argmax

Figure 3.2: Left: the GP prior using a constant mean and Matérn 5/2 kernel
with ` = 0.2. Middle: the myopic acquisition function prefers sampling at the
origin. Right: the non-myopic acquisition function prefers sampling away from
the origin.

and used to determine the next BO evaluation.

In Figure 3.2, we illustrate the strength of non-myopic BO on a carefully

chosen toy problem. We consider an objective function with two samples evenly

spaced from the origin, whose sampled values (plotted in black) are both zero.

Any GP model fitting the observed data therefore must have a mean of zero

(plotted in red) with an uncertainty region (plotted in magenta) maximized

around the origin. Because the mean is zero, the value of the uncertainty region

is directly correlated with the value of the expected improvement acquisition

function; maximizing EI is thus equivalent to maximizing the variance.

If we have a budget one one left, we sample according to the argmax of EI,

which is the optimal policy for h = 1. This leads us to sample at the origin.

This is shown in the middle image of 3.2, in which the EI acquisition function

is traced out in green and its argmax is marked with a green star. If we have

a budget of two left, sampling according to the argmax of EI is no longer the

correct thing to do. This can be seen in the right image of 3.2, in which we trace

32

out the value function of for h = 2 in green and mark the optimal policies with

two green stars. The behavior of the optimal policy is clearly different from EI’s

and prefers sampling at evenly spaced points in expectation. This leads to higher

expected reduction in the objective function over two BO steps. Note that due

to the symmetry of the problem, the optimal policy is not unique. In practice, a

tiebreaking mechanism would be required to pick a consistent optimal policy

should there be multiple.

3.6 Conclusion

We have presented BO as a classic MDP and shown a small example of how

optimal MDP policies empirically improve BO performance. There is much work

that can still be done in just this MDP formulation alone. We might extend it

to cover the batch, multi-objective, and cost-constrained variants of BO. With

the exception of the cost-constrained variant, which we devote Chapter 5 and

some of Chapter 6 to, we haven’t investigated either the batch or multi-objective

setting in detail. The batch setting is rather straightforward, and requires an

extension of the action space from Ω to Ωb, where b is the batch size. The resulting

MDP is otherwise unchanged, and therefore Bellman’s optimality condition still

holds. The multi-objective setting (in which the objective is vector-valued) is a

more interesting, because the reward function, and therefore the value function,

are be vector valued as well. The resulting MDP is known as a multi-objective

MDP (MOMDP), and is a somewhat well-studied object [Roijers et al., 2013]. The

general idea, as with any multi-objective optimization problem, is to enumerate

the Pareto frontier of optimal policies. Algorithms for doing so can be found in

[Chatterjee et al., 2006].

33

In general, our MDP formulation, while principled, is difficult to solve exactly

for all but the smallest problems; computing the optimal policy for BO though

the classic dynamic programming algorithm is intractable. This is because the

BO state and action spaces are uncountably infinite. Naively discretizing the

state and action spaces is also intractable, due to the high dimensionality of said

spaces. There are other exact methods to solve finite-horizon MDPs, such as

Value Iteration or Policy Iteration [Bertsekas, 1995], which are similarly intractable—

we do not cover them in this dissertation for brevity’s sake. In Chapter 4, we

discuss efficient strategies to approximate optimal policies which lead to good

performance in practice.

34

CHAPTER 4

EFFICIENT STRATEGIES FOR NON-MYOPIC BAYESIAN

OPTIMIZATION

35

4.1 Introduction

Calculating the optimal policy for BO is difficult, and requires solving an

infinite-dimensional dynamic program [Powell, 2007, Frazier, 2018a]. Rollout

[Bertsekas, 1995, Bertsekas, 2005, Bertsekas, 2010] is a popular method of approx-

imating an optimal policy. In the context of BO, rollout simulates future BO real-

izations and their corresponding values using the GP model, and then averages

them. This average defines a rollout acquisition function, which is considered the

state-of-the-art in non-myopic BO [Frazier, 2018a, Wu and Frazier, 2019]. While

more practical than the calculating the optimal policy, rollout acquisition func-

tions are still computationally expensive to the extent that suggesting the next

evaluation can take several hours [Wu and Frazier, 2019]. In this chapter, we

present efficient methods to compute these rollout acquisition functions:

• We compute rollout acquisition functions via Monte Carlo integration, and

use variance reduction techniques —quasi-Monte Carlo, common random

numbers, and control variates— to decrease the estimation error by several

orders of magnitude.

• We provide experimental results, which suggest rollout acquisition func-

tions perform better on multimodal problems.

• We examine the impact of model mis-specification on performance and

show that increasing the horizon also increases sensitivity to model error.

Non-myopic BO frames the exploration-exploitation trade-off as a balance of

immediate and future rewards. The strength of this approach is demonstrated in

Figure 4.1, in which we compare EI and KG to a non-myopic acquisition function

on a carefully chosen objective. The GP has a region of uncertainty on the left

36

EI Step 1

EI Step 2

KG Step 1

KG Step 2

Non-myopic Step 1

Non-myopic Step 2

Objective GP mean GP uncertainty Observations Acquisition Argmax

Figure 4.1: Comparing EI (left), KG (middle), and a rollout acquisition function
(right) on a carefully chosen objective for two steps of BO. We observe five values
of f (x) = sin(20x) + 20(x − 0.3)2. For each acquisition function, we perform two
steps of BO. EI will ignore the left region and instead greedily evaluate twice in a
sub-optimal location. KG is less greedy, but will nonetheless evaluate similarly
to EI. The rollout acquisition function will evaluate the region of high uncertainty
and thus identify the global minimum.

containing the global minimum and a local minimum at the origin. We run

two steps of BO, updating the posterior each step. EI and KG behave greedily

by sampling twice near the origin, while the non-myopic approach uses one

evaluation to explore the uncertain region, subsequently identifying the global

minimum and converging faster than either EI or KG.

4.2 Rollout policies

In the context of BO, rollout policies [Wu and Frazier, 2019], which are sub-

optimal but yield promising results, are a tractable alternative to optimal policies.

Our explanation of rollout for BO follows. For a given current state Dk, we

37

denote our base policy π̃ = (π̃0, π̃1, . . . , π̃h−1). We introduce the notationDk,0 ≡ Dk

to define the initial state of our MDP andDk,t for 1 ≤ t ≤ h to denote the random

variable that is the state at each decision epoch. Each individual decision rule π̃t

consists of maximizing the base acquisition function Λ given the current state

st = Dk,t,

π̃t = arg max
x∈Ω

Λ(x | Dk,t).

Using this policy, we define the rollout acquisition function Λh(x) as the rollout of π̃

to horizon h i.e., the expected reward of π̃ starting with the action π̃(Dk) = x:

Λh(xk+1) := E
[
V π̃

h (Dk ∪ {(xk+1, yk+1)})
]
,

where yk+1 is the noisy observed value of f at xk+1. Λh is better than Λ in expec-

tation for a correctly specified GP prior and for any acquisition function. This

follows from standard results in the MDP literature.

Definition 4.2.1 [Bertsekas, 1995] A policy π is sequentially consistent if, for every

trajectory it generates starting at s0:

(s0, a0), (s1, a1), . . . , (sh−1, ah−1),

it generates the following trajectory starting at s1:

(s1, a1), (s2, a2) . . . , (sh−1, ah−1).

In other words, sequential consistency requires the trajectory generated from

applying π starting at si for horizon h − i to be a sub-trajectory of the trajectory

generated from applying π starting at s0 for horizon h. Sequential consistency

guarantees that rollout does better than its base heuristic.

38

Theorem 4.2.1 [Bertsekas, 1995] A rollout policy πroll does no worse than its base

policy π̃ in expectation if π̃ is sequentially consistent i.e.,

Vπroll
h (s0) ≥ V π̃

h (s0).

That is to say, the value function of a rollout policy is always greater than or equal to the

value function of the base policy.

Any acquisition function is sequentially consistent, so long as we consistently

break ties if the acquisition function has multiple maxima —though this will

not occur for generic problems. Thus, Theorem 4.2.1 implies that rolling out

any acquisition function will do better in expectation than the acquisition func-

tion itself [Yue and Kontar, 2019]. We note that sequential consistency of the

base policy is a sufficient condition for Vπroll
h (s0) ≥ V π̃

h (s0), but in fact is stronger

than we need. A necessary condition is that of sequential improvement, which

we do not cover here (sequential consistency implies sequential improvement)

[Bertsekas, 2010, Bertsekas, 1995].

Thus, rolling out any acquisition function will do at least as well in expectation

as the acquisition function itself. The next BO evaluation is determined by πroll:

xk+1 = πroll(Dk) = arg max
Ω

Λh(x).

4.3 Computational methods for rollout

To rollout π once, we must do h steps of BO with Λ. Many such rollouts must

then be averaged to reasonably estimate Λh, which is an h-dimensional integral.

Estimation can be done either through explicit quadrature or MC integration,

and is the primary computational bottleneck of rollout. We opt for MC.

39

In the context of rollout, MC estimates the expected reduction over h steps of

BO using heuristic policy π̃:

Λh(xk+1) = E
[
V π̃

h (Dk ∪ {(xk+1, yk+1)})
]

≈
1
N

N∑
i=1

k+h−1∑
t=k

(y∗t − yt+1)+.

The distribution for yt+1 is a normal distribution whose mean and variance are

determined by rolling out π̃ to horizon h and examining the posterior GP:

yt+1 ∼ N(µ(t)(xt+1;Dt),K(t)(xt+1, xt+1;Dt)),

xt+1 = π(Dt) = arg max
x∈Ω

Λ(x | Dt).
(4.1)

A sample path or trajectory in this context may be represented as the sequence

(xk, yk), (xk+1, yk+1), . . . , (xk+1, yk+h) produced by Equation 4.1. We parameterize the

vector of y values, y, with an h-dimensional vector z drawn from N(0, Ih). yt+1 is

distributed according to N(µ(t)(xt+1;Dt),K(t)(xt+1, xt+1;Dt)), so we map zt+1 to yt+1

by a simple scale-and-shift. This map is done sequentially from time step one

to time step h. MC integration thus involves sampling N times from N(0, Ih),

mapping each of the samples, and averaging. The mapping step is equivalent to

applying our rollout policy π̃, and is the dominant cost of integration.

Compared to other quadrature schemes, MC is well-suited to high-

dimensional integration. MC converges at a rate of σ/
√

N, the standard de-

viation of the MC estimator, where σ2 is the population variance and N is the

total number of samples. MC’s primary drawback is slow convergence. Increas-

ing precision by an order of magnitude requires two orders of magnitude more

samples. If σ is high, many samples may be required to converge. In this section,

we focus on two strategies that significantly decrease the overhead of rollout:

variance reduction and policy search.

40

0 1
0.0

0.5

1.0
H=2

0 1
0.0

0.5

1.0
H=3

0 1
0.0

0.5

1.0
H=4

0 1
0.0

0.5

1.0
H=5

0 1
0.0

0.5

1.0
H=6

0 1
0.0

0.5

1.0

0 1
0.0

0.5

1.0

0 1
0.0

0.5

1.0

0 1
0.0

0.5

1.0

0 1
0.0

0.5

1.0

Figure 4.2: We calculate of a rollout acquisition function in 1D with different
values of h using only 50h samples. (Top) The results of a standard MC estimator.
(Bottom) The results of our estimator look far less noisy.

4.4 Efficient rollout via variance reduction

Unfortunately, while rollout is tractable and conceptually straightforward, it is

still computationally demanding. Variance reduction is a class of methods that

improve convergence by decreasing the variance of the estimator. Effective vari-

ance reduction methods can reduce σ by orders of magnitude [Owen, 2009]. We

develop a new estimator that uses a combination of quasi-Monte Carlo, common

random numbers, and control variates to significantly reduce the number of

MC samples needed. The effectiveness of this estimator is seen in Figure 4.2, in

which we compare the standard MC estimator (top row) to the one we developed

(bottom row) for different horizons. Our estimator is clearly far more practical

than the standard MC estimator, which is far too noisy to be of any practical use.

41

4.4.1 Quasi-Monte Carlo (QMC)

Quasi-Monte Carlo (QMC) integration may be seen as a middle ground between

regular MC and quadrature. In MC, points are sampled with respect to the under-

lying probability distribution, and tend to cluster even when the distribution is

uniform [Morokoff and Caflisch, 1994]. This means that they may not cover the

domain of integration particularly efficiently. Conversely, quadrature covers the

domain as thoroughly as possible, but as a result scales poorly with dimension.

QMC attempts to cover the domain of integration efficiently but not thoroughly.

Generally speaking, QMC is suitable for medium dimension problems, which

[Caflisch, 1998] suggests are problems whose dimensions are between 4 and 300.

This makes it well-suited for rollout, as dense quadrature is no longer possible

as the horizon h increases.

Instead of sampling directly from the probability distribution, QMC in-

stead uses a low-discrepancy sequence as its sample set [Caflisch, 1998,

Morokoff and Caflisch, 1995].

Theorem 4.4.1 [Caflisch, 1998]: QMC converges at a rate bounded above by

log(N)h/N, where N is the number of samples and h is the integral’s dimension.

This bound stems from the well-known Koksma-Hlawka inequality

[Caflisch, 1998], and is roughly linear for large N. In practice, this bound is

often loose and convergence proceeds faster [Papageorgiou, 2003]. QMC is inap-

plicable if a low-discrepancy sequence does not exist for the target distribution.

In our case, the distributions we integrate over are normal, for which low-

discrepancy sequences do exist. We generate low-discrepancy Sobolev sequences

42

No CRN Using CRN

True MC Estimate CRN Estimate

Figure 4.3: We estimate a function via MC. (Left) Standard MC without using
CRN is noisy, and the estimate’s argmin is not the function’s. (Right) Using CRN
makes a significant difference. The estimate is not only much smoother, but its
argmin is also the same as the function’s.

in the h-dimensional uniform distributionU[0, 1]h and map them to the unit mul-

tivariate Gaussian via the Box-Muller transform [Goodman, 2020]. This yields

a low-discrepancy sequence for N(0, Ih). Recall the parameterization of sam-

ples from N(0, Ih) to sample rollout trajectories in Equation 4.1. We apply QMC

by replacing the unit multivariate Gaussian samples with our low-discrepancy

sequence.

4.4.2 Common random numbers (CRN)

CRN is used when estimating a quantity to be optimized over parameter x, and is

implemented by using the same random number stream for all values of x. CRN

does not decrease the point-wise variance of an estimate, but rather decreases the

covariance between two neighboring estimates, which smooths out the function.

Consider estimating Ey[f (y, x1)] and Ey[f (y, x2)] for two points x1 and x2 using N

samples, with variances σ1/N and σ2/N respectively. We define the differences δ

43

and δ̂ as:

δ = Ey[f (y, x1)] − Ey[f (y, x2)],

δ̂ = Ey[f (y, x1) − f (y, x2)],

Var[δ] = (σ2
1 + σ2

2)/N,

Var[δ̂] = (σ2
1 + σ2

2 − 2 Cov[f (y, x1), f (y, x2)])/N.

Here, δ̂ uses the same number stream for both x1 and x2. If x1 and x2 are close

and f is continuous in x, Cov[f (y, x1), f (y, x2)]) > 0 which implies δ̂ < δ. The

smoothing effect of common random numbers can be seen in Figure 4.3, in

which we estimate the mean of a toy function without and with common random

numbers, in red and blue respectively. the blue curve is early far smoother than

the red. We’ve also shaded variance estimates; note that the pointwise variance

is unchanged.

4.4.3 Control variates

The general idea behind control variates is to find a covariate g(y) with the same

distribution as f (y) and a known mean. The quantity c(y) = f (y)−βg(y), known as

a regression control variate (RCV), is estimated, and then de-biased afterwards.

Theorem 4.4.2 Consider the estimator E[c(y)] = E[f (y) − βg(y)]. Let

Var[f (y)],Var[g(y)] = σ f , σg. g(y) is sufficiently correlated with f (y) if:

β2σ2
g − 2βCov[f (y), g(y)] < 0.

If g(y) is sufficiently correlated with f (y), then the estimator E[c(y)] is strictly more

accurate than E[f (y)] i.e., Var[c(y)] < Var[f (y)].

44

The optimal value that minimizes the variance of c(y) is β = Cov[f (y), g(y)]/σ2
h.

In practice, both Cov[f (y), g(y)] and σ2
h must be estimated.

In the case of k > 1 control variates, we consider a vector of control variates

g(y) = [g1(y), g2, . . . , gk(y)]T . Our estimator will have the form c(y) = f (y) − βT g(y),

where β is an length k vector of constants of the form:

β = Σ−1
g σg, f ,

where Σg is the covariance matrix of g(y) and σg, f is the vector of covariances

between each variate and f (y)

In the context of BO, we opt to use covariates derived from existing acquisition

functions with known means. EI and PI are straightforward options. We expect

their value to be at least somewhat correlated with the value of the rollout

acquisition function; a promising candidate point should ideally score highly

among all acquisition functions, and vice-versa.

4.5 Fast policy search

While we have lowered the cost of evaluating the rollout acquisition function,

there still remains the problem of its optimization. [Wu and Frazier, 2019] use

the reparameterization trick to estimate the gradient of EI for horizon two and

use stochastic gradient descent to maximize it. However, their method does not

immediately extend to horizons larger than two.

Policy search is an alternative method for approximately solving MDPs that

is often faster than rollout, in which a best performing policy is chosen out

of a (possibly infinite) set of policies Π = {π1, π2, . . . } [Bertsekas, 1995]. It is

45

performed either by computing the expected reward for each policy in the set,

or using a gradient-based method to maximize the expected reward given a

parameterization of the policy set. In this paper, we use a finite policy set:

Πps = {π(Dk) | π(Dk) := arg max Λ(x |Dk) ∈ A},

where A is any arbitrary set of acquisition functions. We then select the best-

performing policy:

πps = arg max
πi∈Πps

Vπi
h (Dk).

A less formal explanation follows: at every step of BO, we roll out each acquisi-

tion function in A on its argmax, and use the one with the highest h-step reward.

A related approach by [Hoffman et al., 2011] employs a bandit strategy to switch

between different acquisition functions. Our policy search method does not

maximize the rollout acquisition function, and is thus significantly faster, though

it likely reduces performance.

4.6 Experiments

Unless otherwise stated, we use a GP with the Matérn 5/2 ARD kernel

[Snoek et al., 2012] and learn its hyperparameters via maximum likelihood es-

timation [Rasmussen and Williams, 2006]. When rolling out acquisition func-

tions, we maximize them with L-BFGS-B using five restarts, selected by eval-

uating the acquisition on a Latin hypercube of 10d points and picking the

five best. We use EI as the base policy. All synthetic functions are found in

[Surjanovic and Bingham, 2020].

46

100 500 1000 1500 2000
10−4

10−3

10−2

10−1

100

E
st

im
at

io
n

E
rr

or
,

A
ck

le
y

Horizon 2

100 500 1000 1500 2000
10−4

10−3

10−2

10−1

100 Horizon 4

100 500 1000 1500 2000
10−4

10−3

10−2

10−1

100 Horizon 6

100 500 1000 1500 2000
10−4

10−3

10−2

10−1

100 Horizon 8

100 500 1000 1500 2000
MC Iterations

10−4

10−3

10−2

10−1

100

E
st

im
at

io
n

E
rr

or
,

R
as

tr
ig

in

100 500 1000 1500 2000
MC Iterations

10−4

10−3

10−2

10−1

100

100 500 1000 1500 2000
MC Iterations

10−4

10−3

10−2

10−1

100

100 500 1000 1500 2000
MC Iterations

10−4

10−3

10−2

10−1

100

Standard Monte Carlo Quasi-Monte Carlo + Control Variates

Figure 4.4: The estimation errors of MC (red) and our reduced-variance estimator
(blue).

4.6.1 Variance reduction experiments:

We compare the estimation error and convergence rate between the standard

MC estimator and our estimator. We take 2d random points in the domain and

evaluate the Ackley and Rastrigin functions in 2D and 4D, respectively. We roll

out EI for horizons 2, 4, 6, and 8, and calculate the variance of both estimators

for MC sample sizes in [100, 200, 300, . . . , 2000], using 50 trials each. We take the

ground truth to be estimation with 104 samples. The mean error of the standard

MC estimator (red) and our reduced-variance estimator (blue) are plotted with

dotted lines in Figure 4.4, with standard error shaded above and below. We also

compute a best-fit line to each mean error, which is plotted with a solid line.

Table 4.1 summarizes our experimental results, and includes our estimates for

the convergence rate of both estimators and the relative reduction in estimation

error σ/σ̂. Our estimator has significantly lower estimation error —the maxi-

mum reduction in estimation error we achieve is a factor of 410. Standard MC

47

Objective Horizon MC Rate Our Rate σ/σ̂

Ackley 2 0.53 0.95 410
Ackley 4 0.52 0.82 63
Ackley 6 0.55 0.64 28
Ackley 8 0.53 0.54 26

Rastrigin 2 0.56 0.90 150
Rastrigin 4 0.48 0.63 31
Rastrigin 6 0.47 0.68 30
Rastrigin 8 0.42 0.64 25

Table 4.1: We estimate the convergence rate and error reduction σ/σ̂ for the
standard MC estimator and our estimator, for horizons 2, 4, 6, and 8 on the
Ackley (2D) and Rastrigin (4D) synthetic functions.

clearly converges at a N−1/2 rate. Our estimator converges like N−1 for smaller

horizons, but its convergence rate drops as h increases. This is due to QMC’s

log(N)h/N convergence. N is not large enough for longer horizons to exhibit N−1

convergence; increasing it past 2000 should yield N−1 convergence.

Another trend is the increase in estimation error as the horizon increases,

which is expected given that the dimensionality of the underlying integral in-

creases. Fortunately, the error seems to increase only linearly —and by a small

constant— rather than exponentially, suggesting that MC samples proportional

to h is sufficient to achieve a high quality of approximation. Finally, the reduction

in estimation error levels off to around a factor of 25, suggesting that the correla-

tion between the rollout acquisition function and our control variates decreases

when h increases. A factor of 25 error reduction is still significant; the standard

MC estimator would need a minimum of 600 times more samples to achieve

comparable accuracy.

48

100 500 1000 1500 2000
MC Iterations

10−4

10−3

10−2

10−1

100

R
as

tr
ig

in

Horizon 2

100 500 1000 1500 2000
MC Iterations

10−4

10−3

10−2

10−1

100 Horizon 4

100 500 1000 1500 2000
MC Iterations

10−4

10−3

10−2

10−1

100 Horizon 6

100 500 1000 1500 2000
MC Iterations

10−4

10−3

10−2

10−1

100 Horizon 8

Vanilla MC QMC QMC + Control Variates

Figure 4.5: The estimation errors of MC (red), QMC (green), and QMC combined
with control variates (blue). Generally speaking QMC contributes to a greater
drop in variance. Note that the y-axis is logarithmically scaled.

Horizon σ1/σ̂ σ2/σ̂

2 129 410
4 51 63
6 19 28
8 19 26

Table 4.2: We compare the reduction in variance between QMC and MC, denoted
by σ1/σ̂, and QMC + control variates and MC, denoted by σ2/σ̂. While control
variates contributes the greater reduction in variance for h = 2, QMC contributes
the greater reduction in variance for h > 2. This is likely because our control
variates, which are myopic acquisition functions, more closely resemble the
rollout acquisition functionsi for small horizons.

4.6.2 Variance reduction ablation study

Recall that we combine QMC and control variates to achieve high levels of

variance reduction in the resulting Monte Carlo estimator.

In Figure 4.5, we empirically measure the individual impact of QMC and

control variates on the Ackley function. We roll out EI for horizons 2, 4,

6, and 8, and calculate the variance of estimators for MC sample sizes in

[100, 200, 300, . . . , 2000], using 50 trials each. We compare the Vanilla MC es-

timator, a QMC estimator, and a QMC estimator that also uses control variates.

49

10 20 30 40
0

2

4

6

8

10

M
in

 V
al

ue
 O

bs
er

ve
d

Branin

10 20 30 40

0

5

10

15

20
Weighted Norm (2D)

10 20 30 40

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Ackley (2D)

10 20 30 40 50

5

10

15

20

25

30

Rastrigin (4D)

random h=1 h=2 h=4 h=6

Figure 4.6: Empirically, looking longer horizons only seems to help on multi-
modal functions. On unimodal functions (not necessarily convex), there is little
to no performance gain.

The underlying function is the Rastrigin function. As we mentioned before,

the effectiveness of our control variates, which consist of myopic acquisition

functions, are less effective as h increases. As a whole, QMC contributes to a

greater drop in variance for horizons greater than 2, as seen in Table 4.2.

4.6.3 Full rollout on synthetic functions:

We roll out EI for h = 2, 4, and 6 on the Branin, weighted-two-norm (2D), Ackley

(2D), and Rastrigin (4D) functions in Figure 4.6 using 200h MC samples, and

compare to both standard EI and random search. To optimize the acquisition

functions quickly, we employ the following strategy: we evaluate the acquisition

function on a Sobol sequence of size 10d, as well as an additional point which is

the argmax of EI. We then use this as an initial design and run BO for 50d more

iterations. We run 50 iterations for each horizon and provide random search as a

baseline. The mean results and the standard error are plotted in Figure 4.6.

On the Branin function, all horizons performed comparably and converge

in 20 iterations. Rollout performed best on the Ackley and Rastrigin functions,

which are multimodal. On the weighted norm function, which is strongly convex,

50

2 4 6
Iteration

-2.450

-2.400

-2.350

-2.300

E
x
p

ec
te

d
P

er
fo

rm
an

ce

Matern 5/2, ` = 0.2

2 4 6
Iteration

-1.052

-1.050

-1.047

-1.045

-1.042

-1.040

-1.037

-1.035

-1.032

O
b

se
rv

ed
P

er
fo

rm
an

ce

Squared Exponential, ` = 0.8

2 4 6
Iteration

-3.974

-3.972

-3.970

-3.968

-3.966

O
b

se
rv

ed
P

er
fo

rm
an

ce

Matern 3/2, ` = 0.05

EI EI2 EI3 EI4 EI5

Figure 4.7: (Left) The expected performance of EI-based rollout for h = 1, 2, 3, 4,
and 5. (Middle, Right) The observed performance of rollout, given model error in
the form of a smoother and less smooth kernel, respectively. When the model
has large error, the resulting performance of non-myopic policies can be reversed
from the expected performance.

EI converges within 10 iterations, and looking ahead further yielded poorer

results. These results suggest that more exploratory acquisitions are needed

for a multimodal objective, whereas more exploitative acquisitions suffice for

reasonably simple objective functions.

4.6.4 The impact of model mis-specification:

We believe that any probabilistic model only supports a limited amount of look-

ahead due to the effects of model error. Errors in the GP model result in errors to

the MDP transition probabilities, which grow as they are propagated towards

longer horizons. This likely renders long-horizon rollout ineffectual. We support

this hypothesis by comparing the performance of policies in the MDP setting

they were designed in with their observed performance on objectives drawn

from a different MDP.

We do this by drawing objective functions from a GP with fixed kernel every

51

step of BO. More concretely, evaluating the objective function at any point x

is performed by sampling from the GP posterior distribution at x. Because

policies are designed to maximize this MDP’s reward for a fixed horizon and

because the objective is drawn from the MDP itself, policies looking further

ahead perform better by definition. We then draw objectives from a GP using a

different kernel with a different lengthscale, and check if policies looking further

ahead still perform better.

We rollout EI in 1D with a budget of seven and we model our objective with

a GP using the Matérn 5/2 kernel with ` = 0.2. In Figure 4.7, the left panel

depicts expected performance of rollout for h = 1, 2, 3, 4, and 5. The middle panel

and right panels depict observed performance of rollout when the we sample

objectives from a GP that has a far smoother kernel (SE with ` = 0.8) and far

less smooth kernel (Matérn 3/2 with ` = 0.05), respectively. All plots use 2000

independent BO trials with a fixed initial design.

The result is perhaps unsurprising; the ranking of the observed performance

of policies completely reversed from the expected performance. Myopic BO

performed the best; more generally, policies with shorter horizons outperformed

those policies with longer horizons. This demonstrated sensitivity to model

error suggests non-myopic BO must carefully strike a balance between model

accuracy and look ahead horizon, and justifies use of modest horizons over the

full BO budget. This confirms experimental results by [Yue and Kontar, 2019],

who suggest looking ahead to modest horizons is preferable to longer horizons

in practice.

52

4.6.5 Policy search: synthetic

10 15 20

2

4

6

8

M
in

 V
al

ue
 O

bs
er

ve
d

Branin

10 15 20
1.0

0.8

0.6

0.4

0.2

0.0

0.2
Sixhump

10 15 20

1

2

3

4

5
Ackley

10 15 20
2

4

6

8

10

12
Rastrigin

PS2 PS4 EI UCB-0 UCB-2 KG

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Ac
qu

is
iti

on
 P

er
ce

nt
ag

e
of

 U
se

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

EI KG UCB-0 UCB-1 UCB-2 UCB-4 UCB-8

Figure 4.8: (Top) Policy search performs at least as well as the best acquisition
function, if not better. (Bottom) For each of the corresponding objectives, we
plot the percentage of use of each acquisition function per iteration for PS4. EI
and KG are chosen more often than any of the UCB acquisition functions. The
worst-performing acquisition, UCB-0, is chosen the least, suggesting correlation
between an acquisition’s performance and its percentage of use.

Policy search: We consider policy search (PS) with an acquisition set of EI, KG,

and Upper Confidence Bound (UCB–κ) for κ ∈ {0, 1, 2, 4, 8} [Snoek et al., 2012],

which contains acquisitions that tend towards both exploitation and exploration.

We run policy search for horizons 2 and 4 on the Branin, Sixhump, Ackley, and

Rastrigin synthetic functions, all in 2D, using 200h MC samples. Experiments

suggest that our policy search method performs at least as well as the best-

performing acquisition in Πps.

We apply the variance reduction techniques —QMC and control variates— of

Chapter 4 to the rollouts to significantly reduce the number of samples needed

to evaluate their value function. All acquisition functions are maximized via

L-BFGS-B with five random restarts, except for KG, which uses grid search of size

53

900. The mean results and standard error over 50 trials are plotted in Figure 4.8,

in which policy search for horizons 2 and 4, labeled PS2 and PS4 respectively, do

better or on par with the best-performing acquisition function. This robustness is

a key strength of policy search, as the performance of each acquisition function

is often problem-dependent.

We also examine the choice of acquisition function as a function of iteration.

The percentage of use of each acquisition function is shown for its corresponding

objective, and for plotting purposes we smooth the percentage with a box filter

of size five. EI and KG are chosen more often than the other acquisition functions.

UCB-0, the worst performing method representing a pure exploitation policy, is

chosen significantly less than others, while UCB-2 was chosen the most often out

of the UCB family. Of particular interest is the Ackley function (third column,

Figure 4.8): when UCB-2 starts to outperform the other acquisitions functions, a

clear spike in its percentage of use is seen in the corresponding histogram.

4.6.6 Policy search: NAS benchmark

The NAS benchmark is a tabular benchmark containing all possible hyperparam-

eter configurations evaluated for a two-layer multi-layer perceptron on different

datasets [Klein and Hutter, 2019]. We run policy search on the NAS benchmarks,

optimizing the perceptrons’ layer sizes, batch size, and training epochs.

The exact search space we consider is:

• Batch size in {8, 16, 32, 64}.

• Epochs in {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

54

10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

R
eg

re
t

NAS Benchmark Performance

PS2
PS4

EI
UCB-0

UCB-2
KG

Figure 4.9: We compare the performance of policy search for horizons 2 and 4 in
red and blue, respectively, with that of EI, UCB0, UCB2, and KG. PS2 and PS4
outperform the others after about 20 iterations.

• Layer 1 width in {16, 32, 64, 128, 256, 512}.

• Layer 2 width in {16, 32, 64, 128, 256, 512}.

The resulting search space is four-dimensional. We optimize over the unit hy-

percube [0, 1]4 and scale and round evaluation points to the corresponding NAS

search space entry. Note that the NAS benchmark contains other hyperparame-

ters as well, which we set to the default. These include the activation functions

(default: tanh), the dropout (default: 0), the learning rate (default: 0.005), and the

learning rate schedule (default: cosine).

The datasets in the NAS benchmark are all classification tasks taken from the

UC Irvine repository for machine learning datasets. We run our method on all

four in the NAS benchmark: Naval, Tele, Protein, and Splice, for 60 BO iterations.

The achievable classification error for each dataset is different, so we compare

methods by regret, which is defined as:

yinit − ybest

yinit
,

55

20 40

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

C
la

ss
ifi

ca
tio

n
E

rr
or

Naval

20 40
0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014
Tele

20 40

0.275

0.280

0.285

0.290

0.295

0.300

0.305

0.310
Protein

20 40
0.0004

0.0006

0.0008

0.0010

0.0012

0.0014
Slice

PS2 PS4 EI UCB-0 UCB-2 KG

Figure 4.10: The classification error achieved by PS2 and PS4 is largely on par
with, if not better than, the performance of EI, KG, and UCB variants. The only
exception is the Naval dataset.

where yinit is the starting value during optimization and ybest is the best observed

value during iteration so far. For each dataset, we run BO using EI, KG, UCB0,

UCB2, and our policy search methods for horizons 2 and 4, labeled PS2 and PS4

respectively. We replicate BO runs 50 times. In Figure 4.9, we plot the average

regret among the four datasets, and PS2 and PS4 beat the competing methods. In

Figure 4.10, we plot the the individual classification errors for further clarity. We

find the performance of both PS2 and PS4 performance are largely on par with,

if not better than, the performance of EI, KG, and UCB variants.

4.7 Conclusion

We have shown that a combination of quasi-Monte Carlo, control variates, and

common random numbers significantly lowers the overhead of rollout in BO.

We have introduced a policy search which further decreases computational cost

by removing the need to maximize the rollout acquisition function. Finally, we

have illustrated the penalties incurred by using inaccurate GP models in the

non-myopic setting.

56

This work raises several interesting research directions. Decreasing the vari-

ance of our estimator may be possible with additional variance reduction meth-

ods such as stratified or antithetic sampling. Developing a more comprehensive

policy search space, such as a parameterized set of all convex combinations of

acquisition functions, may further strengthen the policy search performance.

57

CHAPTER 5

NON-MYOPIC, COST-CONSTRAINED BAYESIAN OPTIMIZATION

58

5.1 Introduction

While BO budgets are typically given in iterations, this implicitly measures

convergence in terms of iteration count and assumes each evaluation has identical

cost. For many BO applications in practice, evaluation costs may vary in different

regions of the search space. In hyperparameter optimization, the time spent on

neural network training increases quadratically with layer size; in clinical trials,

the monetary cost of drug compounds vary; and in optimal control, controllers

have differing complexities. In these cases, standard BO is often insufficient.

Cost-constrained BO measures convergence with alternative cost metrics such as

time, money, or energy, for which standard BO methods are unsuited. In this

chapter, we extend non-myopic BO to handle the cost-constrained setting. We

loosely represent cost-constrained BO as the following (ill-defined) constrained

optimization problem:

min
x∈Ω

f (x),

subject to
nx∑
i=1

c(xi) ≤ τ.
(5.1)

Just as in standard BO, f (x) is a black box function that can be queried at points x.

However, in the cost-constrained setting, f (x) outputs not only its value, but also

the cost associated with evaluation, as determined by a black box cost function

c(x). The cost function c(x) itself is also assumed to be continuous. Our goal is to

minimize f (x) subject to the constraint that the total cost of all nx evaluations for

some integer does not exceed a given budget τ.

Equation 5.1 is an ill-defined optimization problem, and is only meant to

provide intuition. We will formalize it later in this chapter as an instance of a

constrained Markov decision process (CMDP), which likely comes as no surprise

59

for the reader. We then similarly extend notions of rollout from Chapter 4 to

the cost-constrained setting. Finally, we demonstrate its superior performance

on a set of practical hyperparameter optimization problems. To our knowledge,

there has been no work as of this dissertation’s writing in the area of non-myopic,

cost-constrained BO.

5.2 Motivation and Related Work

BO’s sample efficiency leads to fast convergence only if evaluations cost the

same, an assumption that is often not true in practice. Motivated by this, in

this chapter we develop cost-constrained BO acquisition functions, with the

overall aim of improving convergence when measured by cost. This cost may

be time, energy, or money, and the goal is to minimize the objective given a

known cost budget. Cost-constrained BO is an important problem, and we argue

that the large majority of BO problems are in fact, cost-constrained. Figure 5.1

illustrates this by randomly evaluating 5000 hyperparameter configurations for

five popular hyperparameter optimization problems. Unsurprisingly, resulting

evaluation times vary, often by an order of magnitude or more. Moreover, the

bulk of each problem’s search space tends to be cheap, suggesting significant cost

savings may be achieved by using a cost efficient rather than a sample efficient

optimizer.

Most prior approaches to cost-constrained BO occur in the grey-box setting, in

which additional information about the objective is available. Multi-fidelity BO is

one such widely studied approach in which fidelity parameters s ∈ [0, 1]m, such

as iteration count or grid size, are assumed to be a noisy proxy for high-fidelity

60

0 20 40 60
Eval Time (s)

10 3

10 2

10 1

D
en

si
ty

 o
f E

va
lu

at
io

ns
 (l

og
)

KNN w2a

0 20 40
Eval Time (s)

10 4

10 3

10 2

10 1

MLP w2a

0.5 1.0
Eval Time (s)

10 2

10 1

100

SVM w2a

0.25 0.50 0.75 1.00
Eval Time (s)

10 2

10 1

100

101

Decision Tree w2a

0 2 4
Eval Time (s)

10 2

10 1

Random Forest w2a

Figure 5.1: Runtime distribution, log-scaled, of 5000 randomly selected points for
the K-nearest-neighbors (KNN), Multi-layer Perceptron (MLP), Support Vector
Machine (SVM), Decision Tree (DT), and Random Forest (RF) hyperparameter
optimization problems, each trained on the w2a dataset. The runtimes vary, often
by an order of magnitude or more.

evaluations [Forrester et al., 2007, Kandasamy et al., 2017, Poloczek et al., 2017,

Wu and Frazier, 2019]. Increasing s decreases noise at the expense of runtime.

Multi-fidelity methods are often application-specific. For example, Hyper-

band [Li et al., 2017] and its BO variants [Falkner et al., 2018, Klein et al., 2016,

Klein et al., 2017] cheaply train many neural network configurations for only a

few epochs, and then train a selected subset for further epochs. In multi-task BO,

hyperparameter optimization is run on cheaper training sets before more expen-

sive ones. [Swersky et al., 2013] introduce a cost-constrained, multi-task variant

of entropy search to speed-up optimization of logistic regression and latent

Dirichlet allocation. Cost information is input as a set of cost preferences (e.g.,

parameter x1 is more expensive than parameter x2) by [Abdolshah et al., 2019],

who develop a multi-objective, constrained BO method that evaluates cheap

points before expensive ones, as determined by the cost preferences, to find

feasible, low-cost solutions.

These prior methods outperform their black-box counterparts by evaluating

cheap proxies or cheap points before carefully selecting expensive evaluations.

This early and cheap, late and expensive strategy is accomplished by leveraging

61

0.0 2.5 5.0 7.5 10.0
Evalaution Time (s)

102

103

104

N
um

be
r

of
 E

va
lu

at
io

ns

Histogram of total evaluations

50 100 150 200 250
Wall Clock Time (s)

0.130

0.135

0.140

0.145

0.150

C
la

ss
ifi

ca
tio

n
E

rr
or

BO Performance

EI
EIpu

Figure 5.2: We run EI and EIpu on KNN, 51 times each. Left: EIpu evaluates
many more cheap points than EI, which evaluates more expensive points. The
optimum’s cost, one of the most expensive points, is a black star. Right: EIpu
performs poorly as a result.

additional cost information inside the optimization routine. While these methods

demonstrate strong performance, they sacrifice generality and do not apply to

black-box BO. To our knowledge, cost-constrained BO in the general black-box

setting has not been thoroughly investigated. The de-facto standard in this

setting is to normalize the acquisition by a GP cost model [Snoek et al., 2012].

This extends EI to EI per unit cost (EIpu):

EIpu(x) B
EI(x)
c(x)

,

which is designed to balance the objective’s cost and evaluation quality.

[Snoek et al., 2012] showed that EIpu can boost performance on a variety of

HPO problems.

EIpu is not a bad acquisition function, insofar as possessing the correct units.

However, in our benchmarks, it demonstrated underwhelming performance.

Out of twenty HPO problems in Chapter 6, EIpu was worse than EI on nine.

We illustrate EIpu’s poor performance on certain problems in Figure 5.2, in

which EIpu (green) is slower than EI (red) at HPO of a K-nearest-neighbor

62

model. The empirical optimum, namely the best point over all trials (black star),

has high cost. As a result, dividing by the cost penalizes EIpu away from the

optimum and diminishes its performance. This is evidenced by the evaluation

time histograms: EIpu evaluates far more very cheap points compared to EI,

which instead evaluates fewer but more expensive points. Due to its bias towards

cheap points, EIpu and, more generally, dividing acquisition by cost, is likely to

only display strong results when optima are relatively cheap. This is a problem

in the black-box setting as we do not know the global optima’s cost a priori.

Intuitively, one can adversarially increase the optimum’s cost to make EIpu

underperform.

We argue that a more principled cost-constrained strategy can be developed

through a CMDP framework that we introduce below.

5.3 Constrained Markov decision processes

A constrained Markov decision processes (CMDP) is an MDP with an additional

set of cost constraints [Altman, 1999, Piunovskiy, 2006, Bertsekas, 2005]. These

costs, like MDP rewards, are accumulated through state by action until a certain

horizon. A CMDP extends an MDP, and is the collection < T,S,A, P,R,C, τ >. T

is the set of decision epochs and for our problem, we only consider the finite

horizon setting, where T = {0, 1, . . . , h − 1}, for some integer h < ∞. The state

space, S, encapsulates all the information needed to model the system from

time t ∈ T . A is the action space. Given a state s ∈ S and an action a ∈ A,

P(s′|s, a) : S × A × S → [0, 1] is the transition probability of the next state being

s′. R(s, a, s′) : S × A × S → R+ is the reward received for choosing action a from

63

state s, and ending in state s′. C(s, a, s′) : S × A→ R is the cost of choosing action

a from state s, and ending in state s′. τ is the cost constraint, and we assume

without loss of generality that it is a positive scalar value.

A decision rule, πt : S → A, maps states to actions at time t. A policy π is a

series of decision rules π = (π0, π1, . . . , πh−1), one at each decision epoch. Given a

policy π, a starting state s0, and horizon h, recall the definition of an MDP value

function Vπ
h (s0):

Vπ
h (s0) = E

[h−1∑
t=0

R(st, πt(st), st+1)
]
.

We can define the cost function Cπ
h(s0) in a similar way by replacing the reward

with the cost:

Cπ
h(s0) = E

[h−1∑
t=0

C(st, πt(st), st+1)
]
.

The cost function measures total expected cost given a policy π, starting state s0,

and horizon h. The goal in a CMDP is to find the optimal policy subject defined

as [Altman, 1999]:

π∗ = arg max
π

Vπ
h (s0),

subject to Cπ
h(s0) ≤ τ.

In other words, we want to determine the policy that maximizes the expected

reward subject to having expected cost less than τ. We refer readers to the classic

treatment of CMDPs by [Altman, 1999] for more information, and note that it

uses significantly different notation from ours. In their presentation, they define

the value and cost constraints exclusively in terms of policy vectors and not

states and actions.

64

5.3.1 Feasible trajectories

The notion of feasible trajectories [Bertsekas, 2005] is important when discussing

approximate CMDP solutions. Recall in the MDP case that a trajectory, an

element in the set of all possible trajectories F, is the sequence:

(s0, a0), (s1, a1), . . . , (sh−1, ah−1).

We say a trajectory is feasible if it doesn’t violate its cost constraint τ:

∑̀
t=0

C(st, at, st+1) < τ,

for any non-negative integer 0 ≤ ` ≤ h−1 less than horizon h. For consistency, we

extend all feasible trajectories to have length h by introducing a dummy state and

action which produce zero reward and cost (the formal equivalent of “standing

still”). The set of all feasible trajectories is known as G ⊆ F.

Instead of explicitly defining a cost constraint C(st, at, st+1) in the CMDP set-

ting, it is equivalent to instead replace it with the set of feasible trajectories G

implicitly defined by C(st, at, st+1), and take the expectation of the reward function

with respect to G instead of the transition probabilities.

5.4 Cost-constrained BO as a CMDP

We can express cost-constrained BO with non-uniform cost as a CMDP, which is

analogous to the extension from MDP to CMDP. At a high level, we get a value

yt and a cost ct from the objective at time t, and want to evaluate the point with

maximal reduction in the objective over h steps without exceeding a given cost

budget τ.

65

We note that our CMDP model is somewhat similar to the Bayesian optimiza-

tion with resources (BOR) framework developed by [Dolatnia et al., 2016], who

consider a partially observable MDP (POMDP) framework for BO when resource

consumption of the objective varies, and when there might be multiple agents

(such multiple laboratories or cloud instances) that can evaluate the acquisition

function in parallel. However, our formulation is much narrower in scope, and

considers only sequential evaluation. We cover parallel, cost-constrained BO in

Chapter 6. A more formal description, some of which is identical our treatment

of BO as an MDP, follows.

Given a cost function c(x) : Ω → R+, a cost budget τ, and a GP prior over

the observation set Dt with mean µ(t) and kernel K(t), we model h steps of cost-

constrained BO as a CMDP.

• Horizon: the horizon we consider is h.

• State space: The state space of BO is all possible observation sets reachable

from starting stateDt with h steps of BO.

• Action space: The action space of BO is Ω; actions correspond to sampling

a point in Ω. Its transition probability and reward function are defined

recursively, as follows.

• Transition probability: The transition probabilities in BO from stateDt to

stateDt+1, whereDt+1 = Dt ∪ {(xt+1, yt+1)}, given an action xt+1, are defined

as:

P(Dt, xt+1,Dt+1) ∼ N(µ(t)(xt+1;Dt),K(t)(xt+1, xt+1;Dt)). (5.2)

In other words, the probability of transitioning from Dt to Dt+1 is the

probability of sampling yt+1 from the posterior of GP(µ(t),K(t)) at xt+1.

66

• Reward: The reward function in BO we consider is derived from the the EI

criterion [Jones et al., 1998b]. Let y∗t be the minimum observed value in the

observed setDt, i.e., y∗t = min{y0, . . . , yt}. Then our reward is expressed as:

R(Dt, xt+1,Dt+1) = (y∗t − yt+1)+ ≡ max(y∗t − yt+1, 0). (5.3)

• Cost function: We use c(x) as our cost function. We assume in this presen-

tation that our cost is deterministic and state-independent; it only depends

on the action. In practice, the cost function must be learned as well, and

could certainly be modeled with an additional GP. In this case, the CMDP

could be modified to account for cost uncertainty as well, which we do not

consider in this chapter. Finally, we note that there are interesting appli-

cations for which the cost is state-dependent as well. For example, in the

sensor set selection problem [Garnett et al., 2010] with a reconfiguration

cost, the cost itself depends on the current sensor configuration.

• Constraint: For simplicity’s sake, we assume a scalar constraint τ. How-

ever, we could extend this to a vector-valued constraint. For example, in

as materials design, there might be a finite amount of each constituent

component, each with its own budget [Abdolshah et al., 2019].

The expected total reward of a policy π is unchanged and expressed as:

Vπ
h (Dk) = E

[k+h−1∑
t=k

R(Dt, πt(Dt),Dt+1)
]

= E
[k+h−1∑

t=k

(y∗t − yt+1)+

]
.

The expected total cost of π is expressed as:

Cπ
h(Dk) = E

[k+h−1∑
t=k

c(πt(Dt))
]
.

67

We can represent a trajectory though this CMDP as the sequence:

(xk, yk), (xk+1, yk+1), . . . , (xk+1, yk+h).

A trajectory is feasible if:
k+h∑
i=k

c(xi) ≤ τ.

5.5 CMDP rollout

CMDPs are considered far more difficult to solve than MDPs [Altman, 1999],

and the standard dynamic programming approach of Chapter 3 does not extend

trivially. Most importantly, Bellman’s principle of optimality no longer applies.

The optimal CMDP policy depends on the starting state and may require ran-

domization1 —indeed, the existence of an optimal policy is not guaranteed! The

standard solution is to solve a large linear program in the state and actions spaces,

but this is computationally intractable for all but the smallest problems. We opt

to use rollout. Rollout in the CMDP setting is conceptually straightforward and

very similar to standard rollout [Bertsekas, 2005]. The only difference is that

CMDP rollout averages only feasible trajectories from G instead of all possible

trajectories as standard rollout will do. In practice, this means that as we roll out

the base policy, we terminate either once we reach the horizon or violate the cost

constraint [Bertsekas, 2005].

There remains the question of what base policy we might use; rollout is only

as good as its base policy. We develop a base policy by considering the following

two cases:
1An optimal MDP policy is always determinstic.

68

• If the maximum of EI has cost c(x∗) = τ, and the total budget is equal to τ,

then the following policy π is optimal in the CMDP sense:

π(Dt) = x∗ = arg max
x∈Ω

EI(x | Dt).

• If the maximum of EI has cost c(x∗) = τ, there exists a point with arbitrarily

small cost c(xε) = ε, and the total budget is greater than or equal to τ + ε,

then xε should be evaluated before x∗. In the limit, a point that is free to

evaluate should always be evaluated first.

A reasonable base policy should, at the minimum, satisfy these two cases. To

deal with the first case, maximizing EI must necessarily be the last step in our

base policy. To deal with the second case, we note that maximizing EIpu for the

first rollout iteration will result in the desired behavior. For simplicity’s sake, we

extend to maximization of EIpu until the last iteration. The base rollout policy

π̃ = (π̃0, . . . , π̃h−1) that we consider is therefore:

π̃t(Dt) =

arg maxx∈Ω EIpu(x | Dt), t < h − 1,

arg maxx∈Ω EI(x | Dt), t = h − 1.

In other words, π̃ rolls out h − 1 steps of EIpu followed by a last step of EI. If

h = 1, then π̃ is equivalent to EI. Furthermore, this base policy is consistent with

an early exploration, late exploitation strategy, which we know to be a promising

heuristic from prior work; EIpu tends to select cheaper points and EI tends to

select more expensive points. Therefore, π̃ starts by trying to select cheaper

points and then ends with selecting a point that is possibly more expensive.

We define the non-myopic acquisition function Λh(x) as the rollout of π̃ to

horizon h i.e., the expected reward of π̃ starting with the action π̃0 = x:

Λh(xk+1) := E
[
V π̃

h (Dk ∪ {(xk+1, yk+1)})
]
,

69

where yk+1 is the noisy observed value of f at xk+1. As with any acquisition

function, the next BO evaluation is:

xk+1 = arg max
Ω

Λh(x).

Recall in the MDP setting from Theorem 4.2.1 that given a sequentially consistent

base policy, rollout will perform better in expectation than the base policy itself.

The same is true holds true in the CMDP setting.

Theorem 5.5.1 [Bertsekas, 2005] In the CMDP setting, a rollout policy πroll does no

worse than its base policy π̃ in expectation if π̃ is sequentially consistent i.e.,

Vπroll
h (s0) ≥ V π̃

h (s0).

That is to say, the value function of a rollout policy is always greater than the value

function of the base policy.

To guarantee sequential consistency of our acquisition function, we need only

consistently break ties if the acquisition function has multiple maxima.

In Figure 5.3, we examine a carefully chosen synthetic example showcasing

the strength of the rollout approach. We consider the cost-constrained optimiza-

tion problem:

f (x) = ‖ x ‖2 sin(2π‖ x ‖2),

c(x) = 10 − 5‖ x ‖2,

in the domain [−1, 1]2, and a budget of 150. The cost function has been designed

so that its maximum aligns with the minimum of the objective. As we showed

earlier, EIpu struggles with these types of problems. We run BO with EI, EIpu,

70

Objective and Cost

(a) The objective function (red) and cost (green).

0 20 40 60 80 100
% Cost Used

1.5

2.0

2.5

3.0

BO Performance

EI
EIpu
R2
R4

(b) Comparing BO performance

Figure 5.3: In this example, we examine a carefully chosen example showcas-
ing the strength of the rollout approach. We consider the objective f (x) =

‖x‖2 sin(2π‖x‖2), the cost c(x) = 10 − 5‖x‖2, the domain [−1, 1]2, and a budget
of 150. The most expensive point is the global minimum. EIpu performs worse
than EI, and both tend to get stuck in cheaper, local minimum. Our rollout policy
for horizons 2 and for performs better than both EI and EIpu.

and rollout with our base policy 50 times and plot the results. This is seen on the

right, in which EIpu (green) performs worse than EI (blue). However, rollout of

our base policy, for horizons two and four in pink and red respectively, performs

much better than both.

5.6 Experiments

We use rollout to perform hyperparameter optimization of different machine

learning models under budget constraints. We use a GP with the Matérn

5/2 ARD kernel [Snoek et al., 2012] to model both the objective and the cost

function, and learn hyperparameters via maximum likelihood estimation

[Rasmussen and Williams, 2006]. When rolling out acquisition functions, we

maximize them with L-BFGS-B using five restarts, selected by evaluating the

71

HPO problem Budget Cost Savings EI EIpu Rollout 2 Rollout 4
KNN 800 60% 0.084 0.081 0.081 0.075

Decision Tree 15 45% 0.105 0.106 0.092 0.100
Random Forest 15 35% 0.117 0.118 0.116 0.118

Table 5.1: We list the HPO problem, budget, and the classification errors achieved
by EI, EIpu, and rollut for horizons 2 and 4. We also bold the best-performing
optimizer and provide the mean cost savings, which represents the time needed
by rollout to achieve comparable results to both EI and EIpu. Rollout provides
significant cost savings overall.

acquisition on a Latin hypercube of 10d points and picking the five best. Fur-

thermore, we use the same variance reduction techniques described in Chapter 5

—QMC, common random numbers, and control variates— to significantly reduce

the overhead of rollout. This is especially important in the cost-constrained

setting because the optimizer overhead is important.

We compare rollout performance to EI and EIpu on HPO of three different

models: K-nearest neighbors (KNN), decision trees, and random forests, with

budgets of 800, 15, and 15 seconds respectively. These are relatively small

problems, chosen due to the number of replications required to show statistical

significance in the benchmarks. We summarize Table 5.6, in which we provide

the classification errors achieved by each optimizer and bold the best. We also

provide the mean cost savings, which represents the time needed by rollout to

achieve comparable results to both EI and EIpu. In the following subsections, we

provide more details on each of our three HPO problems.

5.6.1 K-nearest neighbors

The K-nearest neighbors algorithm (KNN) is a class of methods used for classifi-

cation and regression of either spatially-orientated data or data with a known

72

200 400 600 800
Seconds

0.07

0.08

0.09

0.10

0.11

0.12

0.13

C
la

ss
ifi

ca
tio

n
E

rr
or

KNN Performance

EI
EIpu
Rollout 2
Rollout 4

Figure 5.4: We compare KNN classification error among EI, EIpu, and our cost-
constrained rollout for horizons 2 and 4. Rollout performs significantly better
than both EI and EIpu.

distance metric (i.e., data imbedded in a Hilbert space). In the case of regression,

it outputs the plurality vote of its k nearest neighbors. In the case of regression, it

outputs an average of the k nearest neighbors. A number of hyperparameters

affect the performance of the KNN algorithm. Many KNN algorithms utilize

some form of random projection to project down the data into low dimensions;

in high dimensions, the KNN algorithm may perform poorly because points all

appear far away from each other, thus making classification with a large number

of neighbors difficult. The neighbor count itself is also a hyperparameter, as is

the notion of distance.

We consider a 5d search space: dimensionality reduction percentage and

type in [1e-6, 1.0] log-scaled and {Gaussian, Random}, respectively, neighbor

count in {1, 2, ..., 256}, weight function in {Uniform, Distance}, and distance in

{Minkowski, Cityblock, Cosine, Euclidean, L1, L2}. We perform hyperparameter

optimization of a KNN classification model on the a1a dataset in the UCI data

repository, and compare the reduction of classification errors over time among

EI, EIpu, and our cost-constrained rollout for horizons 2 and 4 in Figure 5.4. We

73

2.5 5.0 7.5 10.0 12.5 15.0
Seconds

0.10

0.12

0.14

0.16

C
la

ss
ifi

ca
tio

n
E

rr
or

Decision tree performance

EI
EIpu
Rollout 2
Rollout 4

Figure 5.5: We compare decision tree classification error among EI, EIpu, and
our cost-constrained rollout for horizons 2 and 4. Rollout performs significantly
better than both EI and EIpu.

see that cost-constrained rollout of horizon 4 performs better than both EI and

EIpu, as well as the cost-constrained rollout of horizon 2, and achieves a similar

result to EI and EIpu with only 40 percent of the budget.

5.6.2 Decision trees

Decision trees are one of the most popular predictive modeling in approaches

used in statistics, data mining and machine learning. In the case of classification,

leaves represent class labels and paths represent sets of features that lead to those

class labels. During training, a tree is built by splitting the source set into subsets

which constitute the successor children. The splitting is based on a threshold

that maximizes some notion of information gain such as entropy. The depth of a

decision tree is pre-specified.

We consider a 3d search space: tree depth in {1, 2, ..., 64}, tree split threshold

in [0.1, 1.0] log-scaled, and split feature size in [1e-3, 0.5] log-scaled. We perform

hyperparameter optimization of a decision tree classification model on the a1a

74

2.5 5.0 7.5 10.0 12.5 15.0
Seconds

0.116

0.118

0.120

0.122

0.124

C
la

ss
ifi

ca
tio

n
E

rr
or

Random forest performance

EI
EIpu
Rollout 2
Rollout 4

Figure 5.6: We compare random forest classification error among EI, EIpu, and
our cost-constrained rollout for horizons 2 and 4. Rollout performs significantly
better than both EI and EIpu.

dataset in the UCI data repository, and compare the reduction of classification

errors over time among EI, EIpu, and our cost-constrained rollout for horizons

2 and 4 in Figure 5.5. We see that cost-constrained rollout of horizon 2 and 4

performs better than both EI and EIpu, and achieves a similar result to EI and

EIpu with only 55 percent of the budget.

5.6.3 Random forest

A random forest is a set k of decision trees, and classifies based off the plural-

ity decision generated from all its trees —this technique is generally known as

bagging, and improves robustness in the classification algorithm. The hyperpa-

rameters in a random forest model are the same as those in a decision tree model,

with the addition of an additional hyperparameter that controls the number of

decision trees that must be trained.

We consider a 3d search space: number of trees in {1, 2, ..., 256}, tree depth

in {1, 2, ..., 64}, and tree split threshold in [0.1, 1.0] log-scaled. We perform

75

hyperparameter optimization of a decision tree classification model on the a1a

dataset in the UCI data repository, and compare the reduction of classification

errors over time among EI, EIpu, and our cost-constrained rollout for horizons 2

and 4 in Figure 5.6. We see that cost-constrained rollout of horizon 2 performs

better than both EI and EIpu, and achieves a similar result to EI and EIpu with

only 65 percent of the budget.

5.7 Conclusion

In this chapter, we have shown the importance of cost-constrained BO and

formulated it as an instance of a constrained Markov decision process. We then

developed a rollout algorithm using a cheap exploration, expensive exploitation

base policy that performed better than both EI and EIpu on three hyperparameter

optimization problems.

These investigations into cost-constrained BO are preliminary, and we believe

there is much future research that can be done in this area. First, the overhead

of the optimizer itself must be taken into account, especially in the context of

hyperparameter optimization. Unfortunately, the overhead of approximately

solving a CMDP was higher than the benchmarks we considered. In the next

chapter, we consider simpler heuristics with a much lower overhead, and show

that they also yield superior performance.

Second, we believe approximate solutions to CMDPs other than rollout are

worth investigating. State aggregation and state truncation are classic meth-

ods in the MDP setting to reduces the state space according to the transition

probabilities, and [Altman, 1999] recommends it as the de-facto approximation

76

method in the CMDP setting. Consequently, we might approximate our CMDP

model through state aggregation and state truncation and then compute an exact

solution via linear programming.

Finally, we have limited our discussion to the sequential BO setting. However,

cost-constrained BO becomes significantly more complex in the batch setting,

when evaluations are performed in parallel. We attempt to address this challenge

in the following chapter.

77

CHAPTER 6

CARBO: PRACTICAL COST-CONSTRAINED BAYESIAN

OPTIMIZATION

78

6.1 Introduction

There are several drawbacks to cost-constrained rollout. First, the rollouts them-

selves are expensive and may exceed the cost of the objective —which is the

case in Chapter 5’s experiments. In practical settings, the acquisition function

needs to suggest the next point(s) very quickly, often within a few minutes1.

More importantly, extending cost-constrained rollout to the batch setting, which

is especially important in the cost-constrained setting, is nontrivial. Batch BO,

at the time of this dissertation’s writing, is quickly becoming a key research

challenge. This is because cloud computing —and more generally, the rise of dis-

tributed computing— has made it simple to acquire a set of powerful machines

to perform simultaneous function evaluations.

A large body of work has been devoted to batch BO, including (but not lim-

ited to) work by [González et al., 2016, Azimi et al., 2010, Wu and Frazier, 2016,

Shah and Ghahramani, 2015, Wang et al., 2017, Snoek et al., 2012]. In general,

like in sequential BO, batch BO has focused on the case where iterations have

largely the same cost. The key challenge in this case, as we mentioned in Chapter

2, is that of diversity, in which batch candidates are sufficiently different from

each other, but also sufficiently exploitative, so that sample efficiency is largely

preserved. Note that we only concern ourselves with synchronous batches, in

which parallel evaluations occur simultaneously and wait for each other to finish.

This is in contrast to asynchronous batches, which do not wait for each other.

Asynchronous batch BO is certainly very important, but somewhat beyond the

scope of this chapter.

1In industry settings, five minutes is the maximum amount of time allotted to suggest the
next evaluation. This is of course, a rule of thumb, but a widely followed one that we adhere to
in this chapter

79

In this chapter, we tackle the problem of cost-constrained, batch BO with

fixed batch size. We introduce a set of heuristics for cost-constrained BO with

low overhead, the combination of which we call Cost Apportioned BO (CArBO).

CArBO takes cost-constrained rollout’s early exploration, late exploitation strat-

egy to the extreme. It does so by first building a cost-effective initial design

which attempts to maximize coverage of the optimization domain with minimal

cost, and then by using a technique called cost-cooling to encourage evaluation

of cheap points before expensive ones. CArBO runs sequentially, and can also

be run in batch with batch fantasizing. As we discussed in Chapter 2, Batch

fantasizing extends any acquisition function to the batch setting by predicting

multiple future evaluation trajectories [Wilson et al., 2018]. These fantasies are

aggregated to identify a sequence of evaluation points, which is then evaluated

in parallel. We will show that CArBO empirically scales well with batch size;

increasing the batch size by a factor of b yields a b factor decrease in wall-clock

time to achieve the same results. We show in an extensive set of experiments

drawn from 20 real-world HPO problems that CArBO significantly outperforms

competing methods within the same budget.

6.2 Batch BO

We loosely extend the cost-constrained formulation of Chapter 5 to handle the

batch setting as follows:

min
x∈X

min
X∈Ωb

f (x),

subject to
nx∑
i=1

c(Xi) ≤ τ.
(6.1)

80

0 20 40 60 80 100 120
Iteration Count

0.08

0.10

0.12

0.14

0.16

0.18

W
al

l C
lo

ck
 T

im
e

pe
r

E
va

lu
at

io
n

(s
) Evaluation Time per Iteration, SVM

EI
EIpu
CArBO

Figure 6.1: We plot the median evaluation time per iteration using each method’s
median number of iterations. We shade the iterations that consume the first
τ/8 cost, corresponding to the budget consumed by CArBO’s initial design.
CArBO clearly starts with many cheap evaluations and gradually evaluates more
expensive points, enabling it to outperform EI and EIpu.

As with before, the above optimization problem is ill-defined and is for illustra-

tive purposes only: we want to minimize f (x) subject to a total cost constraint τ,

where we are allowed to evaluate b points simultaneously. There is not much

prior work dealing with this problem, with the exception of [Snoek et al., 2012],

who uses the batch extension of EIpu (defined in Chapter 5). EIpu tends to

underperform in the sequential case, and the same is true of the batch case as

well, as we will show in our experiments section.

6.3 CArBO: Cost Apportioned BO

We introduce CArBO, an EI-based method employing the early and cheap, late and

expensive strategy from the multi-fidelity and multi-task setting. This strategy

is seen in Figure 6.1: in contrast with EI and EIpu, CArBO evaluates cheaper

points before expensive ones. CArBO does this through a cost-effective initial

design and cost-cooling. First, the cost-effective initial design aims to maximize

coverage of the search space with cheap evaluations, building a good surrogate

within a warm-start budget. Then, cost-cooling starts the optimization with EIpu

81

Normal Design Cost-effective Design

Figure 6.2: Two initial designs with the same cost, plotted over a contour of the
synthetic cost function. Left: a grid of four points. Right: a cost-effective solution
containing 15 points, which covers the search space better than the grid.

and ends it with EI by deprecating the cost model as iterations proceed. We

discuss each of these two building blocks next.

6.3.1 Cost-effective initial design

BO is always warm-started with an initial design. A design is a set of points

selected to learn variation in data, and BO evaluates an initial design before

optimization starts to provide starting data for its GP. Initial designs consume

some budget, and therefore must balance information gain with sample efficiency.

An overly small design yields a poor surrogate, while an overly large design

decreases sample efficiency. Initial designs must therefore be evenly spaced

throughout the domain, and are often Latin hypercubes or low-discrepancy se-

quences [Kirk, 2012, Ryan and Morgan, 2007]. These scale better than grid points

and distribute more evenly than random points [Stein, 1987, Niederreiter, 1988].

In practice, BO initial designs are small; the popular GPyOpt software uses five

points [gpy, 2016], though seminal work suggests 10d points, where d is the

82

Algorithm 4 Cost-effective initial design

1: Input: initial budget τinit, optimization domain Ω.
2: Cumulative time ct = 0, initial design Xinit = {}.
3: Discretize Ω into Ω̃.
4: while ct < τinit do
5: while size Xcand > 1 do
6: exclude most expensive point from Ω̃.
7: exclude point closest to Xinit from Ω̃.
8: end while
9: add remaining point to Xinit and evaluate.

10: Update ct, cost surrogate.
11: end while
12: return Xinit.

problem dimension [Jones et al., 1998b].

In cost-constrained BO we aim to design a cost-effective initial design, which

balances information gain with cost efficiency. A cost-effective design fills Ω

with more evaluations than a traditional initial design within the same warm-

start budget τinit. We select a cost-effective initial design through the following

optimization subproblem:

arg min
X∈2Ω

fill(X) B sup
x∈Ω

min
x j∈X
‖ x j − x ‖2.

subject to
∑
xi∈X

c(xi) < τinit.
(6.2)

Here, fill(X) is the radius of the largest empty sphere one can fit in Ω. It

measures the spacing of X in Ω, and is known as the minimax criterion in the

design-of-experiments literature [Pronzato and Müller, 2012]. The smaller a set’s

fill is, the better distributed it is within Ω. The argmin of Eq. (6.2) is the initial

design within τinit cost with the smallest fill.

Eq. (6.2) is a difficult optimization problem. In the discrete setting with con-

stant cost, it an instance of the vertex cover problem, known to be NP-complete.

83

Typically, approximations to the minimax criterion are built greedily, and have a

worst-case approximation factor of 2 [Damblin et al., 2013, Pronzato, 2017]. Al-

gorithm 4 is a variation of these approaches for non-constant cost functions, and

reduces to the greedy approach described in [Pronzato and Müller, 2012] given

a constant cost function. Algorithm 4 first discretizes Ω into candidates Ω̃ and

then adds a point from Ω̃ to the initial design as follows: remove the highest

cost point and then the shortest distance point from Ω̃, continuing until only one

point remains. This remaining candidate is cheap and far from other points in

the design. This inner loop is repeated, updating c(x) every iteration until τinit

is exceeded. This results in a set of cheap and well-distributed points. In the

batch setting, the inner loop is run b times to select b candidates that are then

evaluated in parallel. Figure 6.2 shows that a cost-effective design gains far more

information than a standard grid, with fifteen points compared to four.

6.3.2 Cost-cooling

The second building block is cost-cooling. Assume that at the kth BO iteration, τk

of the total budget τ has been used (at k = 0, τk = τinit). Cost-cooling, which we

call EI-cool when using EI, is defined as:

EI-cool(x) B
EI(x)
c(x)α

, α = (τ − τk)/(τ − τinit). (6.3)

Cost c(x) is assumed to be positive and modeled with a warped GP that fits the

log cost γ(x). The cost is predicted by c(x) = exp(γ(x)) as in the standard EIpu

[Snelson et al., 2004, Snoek et al., 2012]. Learning c(x) requires a warm-start, for

which we use five points drawn from the search space uniformly at random.

As the parameter α decays from one to zero, EI-cool transitions from EIpu to

84

20% 40% 60% 80%
Percent Wallclock Used

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or

KNN MLP SVM Decision Tree Random Forest

RS EI EIpu CArBO

20% 40% 60% 80%
Percent Wallclock Used

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or

EI3 EIpu3 CArBO3 EI7 EIpu7 CArBO7

Figure 6.3: Top: Sequential comparison. Bottom: Batch comparison, of batch sizes
3 and 7. RS is plotted in grey, EI methods are plotted in red, EIpu methods are
plotted in green, and CArBO methods are in plotted blue. In almost all cases,
CArBO converges significantly faster than competing methods. The median is
plotted, with one standard deviation shaded above and below.

EI. As a result, cost-cooling de-emphasizes the cost model as the optimization

progresses and cheap evaluations are performed before expensive ones. As

mentioned earlier, this behavior is shown by Figure 6.1, and also by additional

benchmarks located in the appendix. The idea of cost-cooling bears connections

to previous work on multi-objective, cost-preference BO [Abdolshah et al., 2019],

where cost constraints are loosened to ensure that the entire Pareto frontier is

explored. As we show in the appendix, EI-cool is not guaranteed to outperform

both EIpu and EI but usually outperforms at least one.

6.3.3 CArBO

The overall method we propose is detailed in Algorithm 5, which combines the

cost-effective initial design and cost-cooling. For its default cost-effective design

85

Algorithm 5 CArBO: Cost Apportioned BO

1: Input: batch b, initial budget τinit, budget τ
2: Cumulative time ct = 0.
3: Initial budget τinit.
4: Evaluate cost-effective initial design via Algorithm 4.
5: Update ct, cost and objective surrogates.
6: while ct < τ do
7: x1, . . . , xb ← EI-cooling batch fantasy b as per Eq. 6.3.
8: Evaluate x1, . . . , xb in parallel.
9: Update ct, objective and cost surrogates.

10: end while
11: return best hyperparameter configuration observed.

budget we use τinit = τ/8, where τ denotes the total BO budget. We found this

value of τinit to work well in experiments, and investigate different choices in

Section 6.5.

We formulate CArBO in the general batch setting, namely with b ≥ 1. Perform-

ing evaluations in parallel further reduces wall clock time, and can be achieved

with standard techniques as described with pseudo-code in the appendix. Note

that in the cost-constrained setting, linear scaling means convergence to the same

optimum as sequential BO in 1/b of the wall clock time. CArBO achieves linear

scaling by building its cost-efficient initial design with batches of points that are

far apart from each other and then by batch-fantasizing cost-cooling. We will

demonstrate this scaling on relatively large batch sizes of up to 16 in Section 6.5.

6.4 Experiments

We evaluate the performance of CArBO on a varied set of five popular HPO

problems, each trained on four different datasets, yielding twenty total bench-

marks. Each benchmark is given its own wall clock budget. Each HPO problem

86

Objective Budget EI3 EIpu3 CArBO3
KNN a1a 150 (s) 0.133 (83) 0.135 (121) 0.133 (111)
KNN a3a 300 (s) 0.121 (90) 0.121 (116) 0.119 (147)
KNN splice 10 (s) 0.123 (143) 0.120 (183) 0.113 (161)
KNN w2a 400 (s) 0.055 (83) 0.056 (142) 0.048 (77)
MLP a1a 100 (s) 0.123 (50) 0.128 (34) 0.121 (119)
MLP a3a 160 (s) 0.108 (40) 0.110 (30) 0.107 (97)
MLP splice 50 (s) 0.051 (41) 0.054 (32) 0.038 (71)
MLP w2a 200 (s) 0.024 (33) 0.024 (27) 0.023 (73)
SVM a1a 20 (s) 0.120 (189) 0.120 (218) 0.120 (295)
SVM a3a 30 (s) 0.109 (197) 0.108 (256) 0.107 (343)
SVM splice 4 (s) 0.114 (100) 0.114 (127) 0.113 (225)
SVM w2a 90 (s) 0.023 (256) 0.022 (304) 0.021 (356)
DT a1a 2.5 (s) 0.135 (150) 0.135 (149) 0.135 (150)
DT a3a 2.5 (s) 0.132 (133) 0.132 (135) 0.131 (134)
DT splice 2 (s) 0.029 (300) 0.029 (300) 0.029 (332)
DT w2a 8 (s) 0.055 (77) 0.052 (80) 0.054 (78)
RF a1a 30 (s) 0.117 (68) 0.116 (133) 0.116 (160)
RF a3a 35 (s) 0.110 (80) 0.109 (118) 0.109 (143)
RF splice 10 (s) 0.015 (31) 0.015 (55) 0.014 (46)
RF w2a 80 (s) 0.049 (60) 0.045 (135) 0.044 (142)

Table 6.1: Results for all different batch methods on five HPO tasks, each tested
on four datasets using 51 replications. The tasks are K-nearest-neighbors (KNN),
multi-layer perceptron (MLP), support-vector machine (SVM), decision tree (DT),
and random forest (RF). The datasets are a1a, a3a, splice, w2a. The median
classification error is shown for different optimizers and batch sizes. CArBO3
displays strong results, showing the best on 18 out of the 20 benchmarks and
lagging by a small amount in the other four cases.

is a model in scikit-learn [Pedregosa et al., 2011]. We train on four classification

datasets: splice, a1a, a3a, and w2a. The splice dataset (training size: 1000, test-

ing size: 2175) classifies splice junctions in a DNA sequence. The a1a and a3a

datasets (training sizes: 1605, 2265, testing sizes: 30,956, 30,296) predict whether

the annual income of a family exceeds 50,000 dollars based on 1994 US census

data. The w2a dataset (training size: 3,470, testing size: 46,279) predicts the

category of a webpage. All datasets are available in the UCI machine learning

repository [Dua and Graff, 2017]. Each benchmark is replicated 51 times on in-

dependent AWS m4.xlarge machines to ensure consistent evaluation times. The

87

Objective Budget EI7 EIpu7 CArBO7
KNN a1a 150 (s) 0.128 (149) 0.128 (195) 0.128 (250)
KNN a3a 300 (s) 0.117 (184) 0.117 (217) 0.116 (354)
KNN splice 10 (s) 0.107 (275) 0.107 (361) 0.103 (353)
KNN w2a 400 (s) 0.052 (150) 0.049 (277) 0.046 (189)
MLP a1a 100 (s) 0.122 (96) 0.127 (72) 0.119 (227)
MLP a3a 160 (s) 0.108 (79) 0.108 (62) 0.106 (194)
MLP splice 50 (s) 0.043 (84) 0.052 (64) 0.037 (145)
MLP w2a 200 (s) 0.023 (69) 0.023 (57) 0.023 (152)
SVM a1a 20 (s) 0.120 (395) 0.120 (483) 0.119 (663)
SVM a3a 30 (s) 0.108 (418) 0.107 (572) 0.107 (722)
SVM splice 4 (s) 0.114 (191) 0.113 (307) 0.111 (540)
SVM w2a 90 (s) 0.022 (570) 0.021 (676) 0.021 (763)
DT a1a 2.5 (s) 0.132 (347) 0.132 (347) 0.132 (344)
DT a3a 2.5 (s) 0.130 (300) 0.129 (300) 0.130 (304)
DT splice 2 (s) 0.028 (645) 0.025 (655) 0.027 (664)
DT w2a 8 (s) 0.077 (177) 0.078 (181) 0.054 (173)
RF a1a 30 (s) 0.116 (137) 0.115 (270) 0.114 (272)
RF a3a 35 (s) 0.108 (170) 0.109 (243) 0.108 (252)
RF splice 10 (s) 0.013 (73) 0.013 (114) 0.013 (88)
RF w2a 80 (s) 0.053 (258) 0.053 (312) 0.042 (298)

Table 6.2: Results for batch size 7 on KNN, MLP, SVM, decision tree, and random
forest (RF). CArBO7 displays strong results, showing the best on 18 out of the 20
benchmarks and lagging by a small amount in the other four cases.

problems and search spaces follow, with unlisted hyperparameters being set to

the scikit-learn default.

K-nearest-neighbors (KNN). We consider a 5d search space: dimensionality

reduction percentage and type in [1e-6, 1.0] log-scaled and {Gaussian, Random},

respectively, neighbor count in {1, 2, ..., 256}, weight function in {Uniform,

Distance}, and distance in {Minkowski, Cityblock, Cosine, Euclidean, L1, L2}.

Multi-layer perceptron (MLP). We consider a 11d search space: number

of layers in {1, 2, 3, 4}, layer sizes in {10, 11, ..., 150 } log-scaled, activation in

{Logistic, Tanh, ReLU}, tolerance in [1e-5, 1e-2] log-scaled, and Adam parameters

[Kingma and Ba, 2014]: step size in [1e-6, 1.0] log-scaled, initial step size in [1e-6,

88

Objective Budget EI11 EIpu11 CArBO11
KNN a1a 150 (s) 0.126 (238) 0.126 (318) 0.128 (411)
KNN a3a 300 (s) 0.115 (283) 0.115 (331) 0.115 (622)
KNN splice 10 (s) 0.099 (411) 0.102 (536) 0.095 (537)
KNN w2a 400 (s) 0.047 (206) 0.048 (373) 0.044 (314)
MLP a1a 100 (s) 0.122 (133) 0.126 (103) 0.119 (344)
MLP a3a 160 (s) 0.107 (114) 0.108 (90) 0.106 (296)
MLP splice 50 (s) 0.041 (126) 0.050 (92) 0.036 (215)
MLP w2a 200 (s) 0.022 (101) 0.022 (84) 0.023 (226)
SVM a1a 20 (s) 0.120 (587) 0.120 (753) 0.119 (956)
SVM a3a 30 (s) 0.108 (611) 0.107 (913) 0.106 (1019)
SVM splice 4 (s) 0.113 (282) 0.113 (425) 0.111 (836)
SVM w2a 90 (s) 0.022 (855) 0.021 (1040) 0.020 (1034)
DT a1a 2.5 (s) 0.132 (541) 0.132 (537) 0.132 (540)
DT a3a 2.5 (s) 0.129 (473) 0.130 (464) 0.128 (476)
DT splice 2 (s) 0.026 (1032) 0.027 (979) 0.025 (985)
DT w2a 8 (s) 0.078 (277) 0.078 (279) 0.052 (272)
RF a1a 30 (s) 0.116 (214) 0.114 (373) 0.114 (359)
RF a3a 35 (s) 0.108 (248) 0.108 (337) 0.108 (355)
RF splice 10 (s) 0.013 (110) 0.013 (162) 0.012 (118)
RF w2a 80 (s) 0.051 (389) 0.051 (484) 0.041 (383)

Table 6.3: Results for batch size 11 on KNN, MLP, SVM, decision tree, and random
forest (RF). CArBO7 displays strong results, showing the best on 18 out of the 20
benchmarks and lagging by a small amount in the other four cases.

1e-2] log-scaled, beta1 and beta2 in [1e-3, 0.99] log-scaled.

Support Vector Machine (SVM). We consider a 6d search space: iteration

count in {1, 2, ..., 128}, penalty term in {L1, L2, ElasticNet}, penalty ratio in [0,

1], step size in [1e-3, 1e3] log-scaled, initial step size in [1e-4, 1e-1] log-scaled,

optimizer in {Constant, Optimal, Invscaling, Adaptive }.

Decision tree (DT). We consider a 3d search space: tree depth in {1, 2, ..., 64},

tree split threshold in [0.1, 1.0] log-scaled, and split feature size in [1e-3, 0.5]

log-scaled.

Random forest (RF). We consider a 3d search space: number of trees in {1, 2,

..., 256}, tree depth in {1, 2, ..., 64}, and tree split threshold in [0.1, 1.0] log-scaled.

89

Objective CArBO CArBO3 CArBO7 CArBO11
KNN a1a 60% 49% -10% -11%
KNN a3a 52% 58% 22% 28%
KNN splice 73% 75% 52% 49%
KNN w2a 59% 55% 60% 59%
MLP a1a 21% 69% 67% 69%
MLP a3a -9% 50% 61% 56%
MLP splice 34% 62% 66% 59%
MLP w2a 4% 27% 20% -7%
SVM a1a 22% 42% 53% 39%
SVM a3a 67% 66% 65% 52%
SVM splice -1% 50% 67% 67%
SVM w2a 74% 78% 22% 72%
DT a1a -2% -7% 17% -8%
DT a3a 15% 22% -22% 35%
DT splice 10% 2% -25% 2%
DT w2a - 18% -41% 95% 96%
RF a1a 44% 28% 63% 61%
RF a3a 40% 54% 49% -24%
RF splice 16% 33% 27% 33%
RF w2a 52% 48% 82% 84%
Net Saving 32.5% 45.1% 41.6% 40.6%

Table 6.4: For each batch size and objective, we calculate the median cost savings
as a percentage of budget. Negative numbers indicate that CArBO performed
worse than the best optimizer. CArBO performs strongly on the large majority
of problems. Furthermore, when it does worse, it only does worse by a small
amount.

Our code is built on GPyOpt [gpy, 2016]. Kernel hyperparameters for both

the objective and cost Gaussian process models are calculated via maximum

marginal likelihood estimation [Rasmussen and Williams, 2006]. We compare

CArBO to EI, EIpu, and random search in the sequential case, as well as batch

sizes three, seven, and eleven. Note that multi-fidelity methods such as Hy-

perband are inapplicable on these benchmarks as they do not have any fidelity

parameters (with the exception of SVM).

We compare the performance of the competing algorithms in three ways.

First, we plot performance for each HPO problem by averaging the classification

90

error for each model over the four datasets used (Figure 6.3). This is done to

condense the large number of benchmarks we ran. We average as follows: first

we normalize performance so that the worst optimizer starts optimization at 1.0

and the best optimizer ends at 0.0, then we take the mean over all datasets. We

plot sequential results in the first row and batch results in the second. CArBO

outperforms both EI and EIpu by a large margin across all batch sizes.

Second, we compile a table of classification errors and iterations taken, and

bold the optimizer with the lowest classification error. For space’s sake, we

truncate the classification error precision to three digits. The table also lists each

benchmark’s time budget in seconds. CArBO for batch sizes one, three, seven,

and eleven is best on 16, 18, 17, and 16 HPO problems, respectively. As expected,

CArBO is able to exploit more BO iterations than either EI or EIpu for the same

wall-clock time.

Third, we calculate CArBO’s total cost savings, defined as the time needed by

CArBO to achieve comparable results to the next best optimizer (Table 6.4). We

consider Table 6.4 the most instructive comparison because it provides quanti-

tative savings instead of a qualitative ranking. We list the median cost savings

for each benchmark, as well as net savings over all benchmarks, for each batch

size. CArBO achieves large cost savings of roughly 40 percent, averaged over all

benchmarks and batch sizes.

6.5 Additional Experiments

This section illustrates the empirical behavior of CArBO relative to its internal

design choices, such as batch size or initial design budget. First, we investigate

91

102 103

Wall Clock Time (s) (log)

0.125

0.130

0.135

0.140

0.145

0.150

C
la

ss
ifi

ca
tio

n
E

rr
or

500 1000 1500 2000 2500
Total Compute Time (s)

Scaling Study for Batch Sizes 1, 2, 4, 8, 16

CArBO CArBO2 CArBO4 CArBO8 CArBO16

Figure 6.4: We compare CArBO’s wall clock time performance (left) to its total
compute time performance (right) for batch sizes 1, 2, 4, 8, and 16. CArBO scales
linearly with batch, evidenced by comparable total compute time performance
among all batch sizes.

the sensitivity of CArBO to its initial design budget. We also run a scaling test for

batch sizes up to 16. Finally, we run an ablation study. All following experiments

use the MLP a1a benchmark.

Batch Scaling. Information is used less optimally in batch BO than in sequen-

tial BO. Large batches size may result in decreased cost efficiency. We examine

this potential risk by running CArBO for batch size 1, 2, 4, 8, and 16 with wall

clock time budgets of 2400, 1200, 600, 300, and 150 seconds, respectively. Each

batch thus is allocated the same total compute time. As seen in Figure 6.4, mov-

ing up to batch size 16 results in little to no performance loss, indicating that

CArBO scales linearly with batch size.

Initial Design. In BO methods, the size of the initial design is somewhat

arbitrary. This is also true for CArBO, which uses 1/8 of the budget for the

92

20 40 60 80 100
Wall Clock Time (s)

0.120

0.122

0.124

0.126

0.128

0.130

0.132

C
la

ss
ifi

ca
tio

n
E

rr
or

Initial Design Study

CArBO 1/8 CArBO 2/8 CArBO 4/8 CArBO 6/8

Figure 6.5: We study CArBO’s initial design budget from 1/8 to 6/8 of the
total budget. While CArBO 6/8 does perform worse, there is relatively little
performance change, indicating at least some robustness to the initial design
budget.

initial design. We investigate the impact of varying the initial design budget in

Figure 6.5 from 1/8 up to an extreme value of 6/8 of the total budget. CArBO’s

performance was relatively unchanged; using 6/8 of the total budget for the

initial design degraded performance slightly, but represents an extreme case. We

leave a systematic approach to select the initial design budget as future work.

Ablation Study. CArBO combines two components: a cost-effective design

and cost-cooling. A natural question is the performance contribution of each.

To answer this question we perform an ablation study, in which we remove

each component and re-run optimization. In Figure 6.6, we compare CArBO to

CArBO using just EI or EIpu. We also compare these to EI and EIpu. The initial

design contributes the larger performance increase, which is not surprising. At

the same time, CArBO using EI-cooling performs the best.

93

20 40 60 80 100
Wall Clock Time (s)

0.12

0.13

0.14

0.15

0.16

C
la

ss
ifi

ca
tio

n
E

rr
or

Ablation Study

EI EIpu CArBO-EI CArBO-EIpu CArBO

Figure 6.6: The cost-effective design contributes the larger performance increase
compared to EI-cooling in this ablation study.

6.6 Building better cost models

One of the most popular applications of Bayesian optimization is neural network

hyperparameter optimization [Snoek et al., 2015, Frazier, 2018a]. In this setting,

BO is used to determine the optimal neural network hyperparameters that

minimize test error. Typical hyperparameters for a neural network include

layer count, layer sizes, types of layers, and loss function, as well as additional,

architecture-dependent hyperparameters such as convolution filter sizes. Cost

is certainly an important consideration in neural network training, as various

hyperparameters such as layer size may drastically change the cost of neural

network training. To keep cost into account, EIpu with a GP cost model is

typically used as the acquisition function [Snoek et al., 2012].

Predicting the cost of a computer program is well-studied by prior

work [Huang et al., 2010, Hutter et al., 2014, Di et al., 2013, Yang et al., 2018,

Priya et al., 2011], in which a cost model forecasts system loads, dispatches com-

94

putational resources, or determines computational feasibility. Gaussian processes

extrapolate poorly, leading to high-variance cost predictions far away from data.

This high-variance may introduce extra error that decreases BO performance.

We show that cost-aware BO can benefit from specialized, low-variance cost

models that extrapolate well. Floating point operations (flops) are a standard

measure of a computer program’s cost [Peise and Bientinesi, 2012]. We consider

a linear model that uses a small feature set, where each feature counts the

flops of a subroutine in the program. The total runtime is modeled as a linear

combination of these features. We train the model through robust regression

to deal with outliers in timing data [Boyd and Vandenberghe, 2004]. We model

multi-layer perceptrons (MLPs) and convolutional neural network (CNNs) with

low-variance cost models and show that they tend to improve BO performance.

6.6.1 Neural networks

The most basic neural network is the multi-layer perceptron (MLP). The MLP

consists of multiple fully-connected layers, each with its own activation func-

tion. Each layer is a dense matrix n × m of floating points numbers. Common

activation functions include the sigmoid, arctan, softmax, rectified-linear (ReLU)

[LeCun et al., 2015, Goodfellow et al., 2016]. The cost of applying each layer to

the input vector is the cost of a matrix-vector multiplication followed by an appli-

cation of the activation function, which has floating point cost O(nm). Typically,

MLPs are used for generic non-linear classification and regression problems.

For more complex vision tasks such as image recognition or image seg-

mentation, a convolutional neural network (CNN) is used. A CNN consists

95

of a large number of so-called convolutional layers appended over an MLP.

[Alom et al., 2018]. Each layer has a kernel size r and channel width m, and will

perform 3-dimensional convolutions of the input data according to the kernel

size and channel width. Each layer also has an optional pooling layer with

pooling ratio pi, which compresses the output by a scalar factor pi. Given input

size I, The cost of applying the convolutional layer i is O(I2r2mimi+1) and the cost

of pooling is O(I2 pimi).

Neural network training involves minimizing an error function with respect

to the neural network layer weights using a fixed number of gradient iterations.

Typically, training sets are very large, and so a full gradient is not calculated.

Instead, a smaller subset of the training data, known as the batch, of size b is

used to calculate a stochastic gradient. To further decrease training time, only

a randomly chosen fraction of weights is trained at a time. This fraction is

determined through a dropout rate d.

6.6.2 Robust regression

A linear regression problem is succinctly expressed as:

min
x
‖Ax − b‖2.

Alternatively, linear regression seeks to minimize the sum of squares of errors

ε between the model and training data. The literature on robust regression has

long observed that the L2 loss (the two-norm), tends to weigh outliers far away

from data more than necessary; if an error is large, it gets squared and thus shifts

the fit more than one might deem necessary. Robust regression weighs outliers

in the data less than the L2 loss through a robust loss function by solving the

96

2 1 0 1 2
0

1

2

3

4

(
)

Loss Functions

L2
L1
Huber
Tukey

Figure 6.7: A comparison of different loss functions. The standard L2 loss weighs
outliers, defined as points outside the interval [−δ, δ], quadratically. Robust loss
functions such as theL1 or the Huber weigh outliers linearly. The Tukey biweight
loss weights outliers by a constant amount.

following minimization problem;

min
x
‖Ax − b‖L.

There are many different loss functions, and we list the common ones associated

with robust regression below.

• The L1 loss L1(ε) weighs errors ε according to their absolute value, and is

favored in compressed sensing regimes because of its sparsity-inducing

properties [Boyd and Vandenberghe, 2004]:

L1(ε) = ‖ε‖1.

• The Huber loss Lhuber(ε) may be seen as a compromise between the L1 and

L2. It weighs outliers, defined as errors outside some region [−δ, δ], linearly,

and points within the region quadratically.

Lhuber(ε) =

1
2ε

2 , |ε | < δ

δ|ε | − 1
2δ

2 , |ε | ≥ δ,

97

• The biweight loss Ltukey(ε), also known as Tukey’s biweight, weighs each

outlier by a constant amount. Unfortunately, unlike the L1 and Huber,

Tukey’s biweight is no longer convex.

Ltukey(ε) =

δ2

6

[
1 −

(
1 − ε2

δ2

)3]
, |ε | < δ

δ2

6 , |ε | ≥ δ,

For both the Huber and Tukey’s biweight loss functions, the parameter δ must

typically be estimated, often through some measure of standard deviation

[Boyd and Vandenberghe, 2004]. We use the Huber loss for our experiments

because we typically do not expect sparsity in our error, and it is one of the

simpler robust regression loss functions to deal with due to its convexity.

6.6.3 Cost models for multi-layer perceptrons

Consider an MLP with layer sizes n1, n2, . . . , nk. We define the following features:

the cost of all matrix multiplications φquad = (n1n2 + n2n3 + · · ·+ nk−1nk) and the cost

of batch normalization and activation functions φlinear = (n1 + n2 + · · · + nk). Batch

size b and epoch e are constants, and are omitted. Our cost model is:

c(x) = c1φquad + c2φlinear + c3.

6.6.4 Experiments

We let k = 4, 10 ≤ ni ≤ 300, b = 100, e = 200, and use no dropout. We assume we

are training our MLP on four classification datasets: splice, a1a, a3a, and w2a. The

splice dataset (training size: 1000, testing size: 2175) classifies splice junctions in

98

0 25 50 75 100
Training Set Size

0.4

0.6

0.8

1.0

1.2

1.4

M
od

el
 R

M
SE

MLP Model RMSE

GP Cost
Linear Cost
Linear + GP Cost

20 40 60 80 100
Wall Clock Time (s)

0.130

0.135

0.140

0.145

0.150

0.155

0.160

Te
st

 E
rr

or

BO Performance

GP Cost
Linear + GP Cost

Figure 6.8: We run EIpu using both low-variance and warped GP models on MLP
a1a. The warped GP (blue) has higher prediction error and slower performance
than the low-variance model (green).

Objective Warped GP Linear Model Net Saving
MLP a1a 0.1363 0.1276 42%
MLP a3a 0.1124 0.1115 12%
MLP splice 0.0686 0.0629 25%
MLP w2a 0.0257 0.0242 29%
Net Saving - - 27%

Table 6.5: EIpu results with warped GP and low-variance models.

a DNA sequence. The a1a and a3a datasets (training sizes: 1605, 2265, testing

sizes: 30,956, 30,296) predict whether the annual income of a family exceeds

50,000 dollars based on 1994 US census data. The w2a dataset (training size:

3,470, testing size: 46,279) predicts the category of a webpage.

We train our low-variance model on timing data consistent with EIpu’s

evaluations, and run EIpu with this model on all four MLP benchmarks 51 times

each. Using our linear cost model clearly improves BO performance. Median

classification error and cost savings are shown in Table 6.5.

The left plot of Figure 6.8 compares root-mean-squared error (RMSE) among

three cost models: a warped GP (blue), our low-variance model (dotted green),

99

and GP whose mean is our low-variance model (green), on 10,000 randomly

chosen hyperparameters. A GP with a low-variance linear mean is the most

accurate, while the warped GP is least accurate. Our low-variance models are

strongest in the limited data regime; as the training set grows, the error gap

shrinks. The right plot of Figure 6.8 shows significant improvement over the

default cost model on the MLP a1a benchmark, which is the best performing

benchmark out of the four we ran.

6.6.5 Cost models for convolutional neural networks

Consider a CNN with h convolutional layers of kernel size r, channel sizes

m1, . . . ,mk, pooling ratios p1, . . . , pk, a fixed activation function, and an input of

size I × I × c, where c is the number of color channels. We define the additional

features: the cost of convolutions φconv = I2r2cm1 +
∑k−1

i=1 I2r2mimi+1 and the cost of

pooling φpool =
∑k

i=1 I2 pimi. After the convolutional layers is an MLP of input size

I2 pkmk, whose features we also include. Our final cost model is thus:

c(x) = c1φconv + c2φpool + c3φquad + c4φlinear + c5.

6.6.6 Experiments

We let h = 4, 1 ≤ r ≤ 10, 8 ≤ mi ≤ 128, k = 2, 8 ≤ ni ≤ 128, b = 100, 4 ≤

e ≤ 20, and we add a single max pooling layer after the convolutional layers

and a dropout rate of 0.25. We train on MNIST [LeCun et al., 1998, Deng, 2012],

a standard handwriting recognition dataset, and compare accuracy between

two cost models: a warped GP and a GP whose mean is the low-variance

100

10 20 30 40 50
Training Set Size

1

2

3

4

5

M
od

el
 R

M
SE

CNN Model RMSE

GP Cost
Linear Cost
Linear + GP Cost

0.2 0.4 0.6 0.8 1.0
Wall Clock Time (s) 1e5

0.008

0.010

0.012

0.014

Te
st

 E
rr

or

BO Performance

GP Cost
Linear + GP Cost

Figure 6.9: The low-variance CNN model had lower RMSE only in the limited
data regime (iterations < 20). Though it converges faster than the warped GP,
both converge to the same optimum.

model. We train on timings consistent with EIpu evaluation points and compare

classification error using 10,000 random hyperparameter configurations.

CNNs proved more difficult to model than MLPs. Figure 6.9 shows that the

low-variance model is only better than the GP for small training sets of size less

than 20. This is likely because flops do not reflect the actual runtime of CNN

training, which uses highly optimized libraries to perform convolutions.

6.7 Conclusion

How to best use a cost model to plan optimization when evaluation cost varies

is a challenging question. EIpu, which normalizes the acquisition function

by the cost model, is reasonable insofar as having the correct units, but per-

forms poorly if the optimum is not cheap. We introduced CArBO, an algo-

rithm adapting the early and cheap, late and expensive strategy from prior work

on grey-box, cost-constrained BO to the black-box setting, in which no exter-

101

nal information about cost is given. By combining a cost-effective initial de-

sign and cost-cooling, CArBO was shown to outperform EI and EIpu on an

extensive set of real-world benchmarks, both in the sequential and batch set-

ting. 6 A number of directions for future work are open. Adapting CArBO’s

initial design and cost-cooling to other acquisition functions, such as pre-

dictive entropy search [Hernández-Lobato et al., 2014] or max-value entropy

search [Wang and Jegelka, 2017], is straightforward. Combining CArBO with

multi-fidelity to learn fidelity parameters and their relationship to cost is also of

interest. As we showed, building an accurate cost model is an important prob-

lem, and our flop-counting approach can certainly be built on. Finally, CArBO

assumes fixed batch size, and allowing it to vary may boost performance further.

This is likely of practical importance as BO is often run on clusters or cloud

services.

102

CHAPTER 7

BAYESIAN OPTIMIZATION WITH GRADIENTS

103

7.1 Introduction

In this chapter, we discuss scaling GPs with derivative information. For many

simulation models, derivatives may be computed at little extra cost via finite

differences, complex step approximations, adjoint methods, or algorithmic dif-

ferentiation [Forrester et al., 2008].

As discussed in Chapter 1, the kernel matrix in this setting is of size

nd × nd. This makes regression expensive, due to the O(n3d3) computation

required. We extend prior work in scaling GP regression [Dong et al., 2017,

Gardner et al., 2018, Wilson et al., 2015] by developing fast matrix-vector mul-

tiplications in the GP setting with derivatives. We demonstrate our work on

applications in Bayesian Optimization (BO) [Wu et al., 2017], implicit surface

reconstruction [Macedo et al., 2011], and terrain reconstruction.

7.2 Background

Many scalable approximation methods for GP regression have been proposed, in-

cluding [Smola and Bartlett, 2001, MacKay and Gibbs, 1997, Harbrecht et al., 2012,

Gardner et al., 2018, Wilson et al., 2015, Dong et al., 2017]. All decrease the cost

of the GP log-marginal likelihood (LML), which we discussed in Chapter 1. We

reiterate the LML below:

LML(yX | θ) = −
1
2

[
(yX − µX)Tα + log |K̃XX | + n log 2π

]
.

∂

∂θ j
LML(yX | θ) = −

1
2

tr
(
(ααT − K̃−1

XX)
∂K̃XX

∂θ j

)
.

104

Recall that the LML’s dominant costs are the solve with K̃XX and the computa-

tion of its log-determinant log |K̃XX |. Typically, we first compute the Cholesky

factorization K̃XX = LLT , which costs O(n3) flops. Once the Cholesky is computed,

computing the log-marginal likelihood and its gradient costs O(n2) flops. For

large systems, the cubic complexity of the Cholesky factorization is restrictive. A

general framework for more efficient LML computation uses congjugate gradient

(CG) for the solve and stochastic trace estimation for the log-determinant. We

detail these in a later subsection.

Scalable methods incorporating derivatives have received little at-

tention. The unfavorable spectrum of K∇XX implies standard kernel

matrix low-rank approximations such as subset of regressors (SoR)

[Rasmussen and Williams, 2006] and fully independent training conditional

(FITC) are infeasible [Snelson and Ghahramani, 2005]. In this chapter,

we develop scalable methods for GPs with derivatives by extending

two existing scalable GP methods, structured kernel interpolation (SKI)

[Wilson and Nickisch, 2015] and structured kernel interpolation for products

(SKIP) to handle K∇XX, the kernel matrix with derivative information. SKI

uses local interpolation to map scattered data onto a large grid of inducing

points, enabling fast MVMs using FFTs. SKIP approximates a high-dimensional

product kernel as a Hadamard product of low rank Lanczos decomposi-

tions [Gardner et al., 2018]. Both SKI and SKIP provide fast approximate kernel

MVMs, which are a building block to solve linear systems with the kernel matrix

and to approximate log determinants [Dong et al., 2017].

The eigenspectrum of K∇XX may exhibit slow decay, despite KXX itself possess-

ing fast spectral decay. Fast forward to Figure 7.1 for two examples. We show

105

that a pivoted Cholesky preconditioner significantly improvs convergence.

7.2.1 Conjugate Gradient and preconditioning

Conjugate gradient (CG) is a classic method to solve the positive definite system

Ax = b, and only requires a way to multiply a vector by A [Saad, 1992]. If

the matrix-vector multiplication (MVM) is quicker than the dense O(n2), CG is

usually favored over a direct solve. The convergence of CG depends heavily

on clustering of the eigenvalues of A [Trefethen and Bau III, 1997]. A popular

way to increase convergence is with a preconditioner P, and solving instead for

P−1Ax = P−1b. If P−1A exhibits favorable spectral clustering or decay, CG will

often converge much faster in practice. Choosing a suitable preconditioner is

problem-specific.

In the context of scalable GPs, CG is used to solve K̃XXλ = (yX−µX). We discuss

our pivoted Cholesky preconditioner in later sections.

7.2.2 Stochastic trace estimation

Stochastic trace estimation [Dong et al., 2017] is used to calculate the log-

determinant log |K̃XX | = tr(log K̃XX), and like many other iterative methods in

numerical linear algebra, only requires an MVM. The motivation behind stochas-

tic trace estimation is the following identity:

log |K̃XX | = tr(log K̃XX) = E[zT (log K̃XX)z],

106

where z a vector whose components are independent with mean zero and vari-

ance one. We can calculate the expectation via Monte Carlo using p probe vectors

z1, z2, . . . , zp, leading to the following approximation:

E[zT (log K̃XX)z] ≈
1
k

k∑
i=1

zT
i (log K̃XX)zi,

where our probe vectors are drawn to have independent standard normal com-

ponents. If we first apply the Lanczos decomposition K̃XX = QT QT , which only

requires an MVM w/ K̃XX, we obtain the following:

K̃XX = QT QT =⇒ log K̃XX = Q log(T)QT ,

E[zT (log K̃XX)z] ≈
k∑

i=1

(Qzi)T (log T)(Qzi).

In practice, we truncate the Lanczos decomposition early and set p << n. This

makes stochastic trace estimation far faster than the Cholesky approach.

7.2.3 Structured kernel interpolation

If a GP’s kernel is stationary and its data locations are on a uniform grid, then KXX

has structure such that it can be multiplied quickly with fast Fourier transforms

(FFTs) in O(n log n) time. If the kernel is a product of 1D kernels i.e., k(x, x′) =

Πd
i=1k(x(i), x′(i)), then K is a Kronecker product of 1D kernel matrices:

KXX = K1 ⊗ K2⊗, . . . ,⊗Kd.

In this case, KXX can be applied more quickly by combining the identity (K1 ⊗

K2)vec(X) = vec(K1XK2) with FFTs.

These structured kernel MVMs are inapplicable when the data locations are

non-uniform, and SKI interpolates their kernel values with kernel values on a

107

pre-specified grid. More formally, we apply the interpolation scheme:

k(x, x′) ≈
∑

i

wi(x)k(xi, x′),

where each xi is a point on a grid of size q = md and wi(x) is an appropriately

chosen weight. Written in matrix form, SKI is expressed as:

KXX ≈ WKUUWT ,

where KUU ∈ R
q×q and W ∈ Rn×q. SKI uses local interpolation scheme such

as cubic convolutional interpolation [Keys, 1981], which results in a sparse W

with 4d entries per row. Therefore, the total cost of an MVM with WKUUWT is

O(n4d + q log q), which is far cheaper in low dimensions than O(n2).

7.2.4 Structured kernel interpolation for products

Structured kernel interpolation for products (SKIP) avoids the exponential scaling

in dimension of SKI, and is thus suited better for higher-dimensional problems.

Let A � B denote the Hadamard product (i.e., element-wise product) of matrices

A and B with the same dimensions. SKIP decomposes a product kernel into a

Hadamard product of one-dimensional kernels matrices, and performs a SKI

approximation along each dimension. Each SKI MVM is then used to construct a

rank-p, truncated Lanczos decomposition. This gives the following sequence of

approximations:

KXX ≈ (W1K1WT
1)�, . . . ,�(WdKdWT

d) ≈ (Q1T1QT
1)�, . . . ,�(QdTdQT

d).

Note that A � B can applied to a vector with the following identity:

(A � B) x = diag(ADxB),

108

where diag extracts the diagonal and Dx is the diagonal matrix of x. If SKIP

performs cubic convolutional interpolation on one-dimensional grid of size m in

each dimension, then W j ∈ R
n×m, K j ∈ R

m×m, Q j ∈ R
n×p, and T j ∈ R

p×p.

Constructing the SKIP kernel costs O(dr(n+m log m)+ p3n log d) flops and each

MVM costs O(p2n) flops, where p is the rank of the Lanczos decomposition.

7.3 Scalable GPs with derivatives

One standard approach to scaling GPs substitutes the exact kernel with an

approximate kernel. When the GP fits values and gradients, one may attempt

to separately approximate the kernel and the kernel derivatives. Unfortunately,

this may lead to indefiniteness, as the resulting approximation is no longer a

valid kernel. Instead, we differentiate the approximate kernel, which preserves

positive definiteness. We do this for the SKI and SKIP kernels below, but our

general approach applies to any differentiable approximate MVM.

7.3.1 D-SKI

D-SKI (SKI with derivatives) is the standard kernel matrix for Gaussian processes

with derivatives, but applied to the SKI kernel. Equivalently, we differentiate the

interpolation scheme:

k(x, x′) ≈
∑

i

wi(x)k(xi, x′)→ ∇k(x, x′) ≈
∑

i

∇wi(x)k(xi, x′).

SKI uses cubic convolutional interpolation [Keys, 1981], but higher order meth-

ods lead to greater accuracy, and we therefore opt for quintic interpola-

109

tion [Meijering et al., 1999]. The resulting D-SKI kernel matrix has the form KXX (∂KXX)T

∂KXX ∂2KXX

 ≈
 W

∂W

 KUU

 W

∂W

T

=

 WKUUWT WKUU(∂W)T

(∂W)KUUWT (∂W)KUU(∂W)T

 ,
where the elements of sparse matrices W and ∂W are determined by wi(x) and

∇wi(x) — assuming quintic interpolation, W and ∂W will each have 6d elements

per row. As with SKI with q gridpoints, we use FFTs to obtain O(q log q) MVMs

with KUU . Because W and ∂W have O(n6d) and O(nd6d) nonzero elements, respec-

tively, our MVM complexity is O(nd6d + q log q).

7.3.2 D-SKIP

The same Hadamard of product structure of SKIP applies to the kernel matrix

with derivatives. Without loss of generality, differentiating for d = 2 to get an

approximation of K∇ has the matrix form:

K∇XX ≈

W1K1WT

1 W1K1 ∂WT
1 W1K1WT

1

∂W1K1WT
1 ∂W1K1 ∂WT

1 ∂W1K1WT
1

W1K1WT
1 W1K1 ∂WT

1 W1K1WT
1

 �

W2K2WT
2 W2K2WT

2 W2K2 ∂WT
2

W2K2WT
2 W2K2WT

2 W2K2 ∂WT
2

∂W2K2WT
2 ∂W2K2WT

2 ∂W2K2 ∂WT
2

. (7.1)

Equation 7.1 expresses K∇XX as a Hadamard product of one dimensional

kernel matrices. Following this approximation, we apply the SKIP reduc-

tion [Gardner et al., 2018] and use Lanczos to further approximate equation 7.1

as (Q1T1QT
1) � (Q2T2QT

2). This can be used for fast MVMs with the kernel matrix,

see the appendix for details. Applied to kernel matrices with derivatives, we

call this approach D-SKIP. D-SKIP achieves better scaling with d than D-SKI as

constructing the D-SKIP kernel costs O(d2(n + p log p + p3n log d)) flops, and each

MVM costs O(dp2n) flops where p is the effective rank of the kernel at each step

(rank of the Lanczos decomposition). We achieve high accuracy with p � n.

110

7.3.3 Preconditioning

Recent work has explored several preconditioners for exact kernel matrices with-

out derivatives [Cutajar et al., 2016]. We have had success with preconditioners

of the form M = σ2I + FFT where K∇XX ≈ FFT with F ∈ Rn×p. Solving with

the Sherman-Morrison-Woodbury formula (a.k.a the matrix inversion lemma) is

inaccurate for small σ; we use the more stable formula M−1b = σ−2(f − Q1(QT
1 b))

where Q1 is computed in O(p2n) time by the economy QR factorization F

σI

 =

Q1

Q2

 R.

In our experiments with solvers for D-SKI and D-SKIP, we have found that a

truncated pivoted Cholesky factorization, K∇XX ≈ (ΠL)(ΠL)T works well for the

low-rank factorization. Computing the pivoted Cholesky factorization is cheaper

than MVM-based preconditioners such as Lanczos or truncated eigendecompo-

sitions as it only requires the diagonal and the ability to form the rows where

pivots are selected. Pivoted Cholesky is a natural choice when inducing point

methods are applied as the pivoting can itself be viewed as an inducing point

method where the most important information is selected to construct a low-rank

preconditioner [Harbrecht et al., 2012]. The D-SKI diagonal can be formed in

O(nd6d) flops while rows cost O(nd6d + q) flops; for D-SKIP both the diagonal and

the rows can be formed in O(nd) flops.

7.3.4 Dimensionality reduction

In many high-dimensional function approximation problems, only a few di-

rections are relevant. That is, if f : Rd → R is a function to be approximated,

111

there is often a matrix P with d̃ < d orthonormal columns spanning an active

subspace of Rd such that f (x) ≈ f (PPT x) for all x in some domain Ω of inter-

est [Constantine, 2015]. The optimal subspace is given by the dominant eigen-

vectors of the covariance matrix C =
∫

Ω
∇ f (x)∇ f (x)T dx, generally estimated by

Monte Carlo integration. Once the subspace is determined, the function can be

approximated through a Gaussian process on the reduced space, i.e. we replace

the original kernel k(x, x′) with a new kernel ǩ(x, x′) = k(PT x, PT x′). Because we as-

sume gradient information, dimensionality reduction based on active subspaces

is a natural pre-processing phase before applying D-SKI and D-SKIP.

7.4 Experiments

Our experiments use the squared exponential (SE) kernel, which has product

structure and can be used with D-SKIP; and the spline kernel, to which D-SKIP

does not directly apply. We use these kernels in tandem with D-SKI and D-SKIP

to achieve the fast MVMs derived in §7.3. We write D-SE to denote the exact SE

kernel with derivatives.

7.4.1 Eigenspectrum approximation

D-SKI and D-SKIP with the SE kernel approximate the original kernel well,

both in terms of MVM accuracy and spectral profile. Comparing D-SKI and

D-SKIP to their exact counterparts in Figure 7.1, we see their matrix entries are

very close (leading to MVM accuracy near 10−5), and their spectral profiles are

indistinguishable. The same is true with the spline kernel. Additionally, scaling

112

-10 -8 -6 -4

50 100 150 200 250 300

10-6

10-4

10-2

100

True spectrum
SKI spectrum

200 400 600 800 1000

10-4

10-2

100

True spectrum
SKIP spectrum

-10 -8 -6 -4

Figure 7.1: (Left two images) log10 error in D-SKI approximation and comparison
to the exact spectrum. (Right two images) log10 error in D-SKIP approximation
and comparison to the exact spectrum.

tests in Figure 7.2 verify the predicted complexity of D-SKI and D-SKIP. We show

the relative fitting accuracy of SE, SKI, D-SE, and D-SKI on some standard test

functions in Table 7.1.

2500 5000 10000 20000 30000

Matrix Size

10
-4

10
-3

10
-2

10
-1

10
0

M
V

M
 T

im
e

A Comparison of MVM Scalings

 O(n2)

 O(n)

 O(n)

SE Exact

SE SKI (2D)

SE SKIP (11D)

Figure 7.2: Scaling tests for D-SKI in two dimensions and D-SKIP in 11 dimen-
sions. D-SKIP uses fewer data points for identical matrix sizes.

7.4.2 Kernel learning on test functions

We consider several popular test functions in two and three dimensions to

illustrate that derivative information leads to higher accuracy. We compare D-

113

SKI to SKI, D-SE, and SE in Table 7.1. The fast regression of D-SKI allows us to

handle a larger training set in comparable time. As a result, D-SKI achieves the

lowest RMSE among all test functions.

Branin Franke Sine Norm Sixhump StyTang Hartman3
SE 6.02e-3 8.73e-3 8.64e-3 6.44e-3 4.49e-3 1.30e-2
SKI 3.97e-3 5.51e-3 5.37e-3 5.11e-3 2.25e-3 8.59e-3

D-SE 1.83e-3 1.59e-3 3.33e-3 1.05e-3 1.00e-3 3.17e-3
D-SKI 1.03e-3 4.06e-4 1.32e-3 5.66e-4 5.22e-4 1.67e-3

Table 7.1: Relative RMSE error on 10000 testing points for test functions
from [Surjanovic and Bingham, 2018], including five 2D functions (Branin,
Franke, Sine Norm, Sixhump, and Styblinski-Tang) and the 3D Hartman function.
We train the SE kernel on 4000 points, the D-SE kernel on 4000/(d + 1) points, and
SKI and D-SKI with SE kernel on 10000 points to achieve comparable runtimes
between methods.

7.4.3 Dimensionality reduction

We apply active subspace pre-processing to the 20 dimensional Welsh test func-

tion in [Ben-Ari and Steinberg, 2007]. The top six eigenvalues of its gradient

covariance matrix are well separated from the rest as seen in Figure 7.3(a). How-

ever, the function is far from smooth when projected onto the leading 1D or 2D

active subspace, as Figure 7.3(b) - 7.3(d) indicates, where the color shows the

function value.

We therefore apply D-SKI and D-SKIP on the 3D and 6D active subspace,

respectively, using 5000 training points, and compare the prediction error against

D-SE with 190 training points because of our scaling advantage. Table 7.2 reveals

that while the 3D active subspace fails to capture all the variation of the function,

the 6D active subspace is able to do so. These properties are demonstrated by

the poor prediction of D-SKI in 3D and the excellent prediction of D-SKIP in 6D.

114

1 2 3 4 5 6 7 8 9 10

-15

-10

-5

0

(a) Log Directional Varia-
tion

-1 -0.5 0

-5

0

5

(b) First Active Direction

-0.5 0 0.5

-5

0

5

(c) Second Active Direction

-1 -0.5 0

-0.5

0

0.5

(d) Leading 2D Active Sub-
space

Figure 7.3: 7.3(a) shows the top 10 eigenvalues of the gradient covariance. Welsh
is projected onto the first and second active direction in 7.3(b) and 7.3(c). After
joining them together, we see in 7.3(d) that points of different color are highly
mixed, indicating a very spiky surface.

D-SE D-SKI (3D) D-SKIP (6D)
RMSE 4.900e-02 2.267e-01 3.366e-03
SMAE 4.624e-02 2.073e-01 2.590e-03

Table 7.2: Relative RMSE and SMAE prediction error for Welsh. The D-SE kernel
is trained on 4000/(d + 1) points, with D-SKI and D-SKIP trained on 5000 points.
The 6D active subspace is sufficient to capture the variation of the test function.

7.4.4 Preconditioning

We discover that preconditioning is crucial for the convergence of iterative

solvers using approximation schemes such as D-SKI and D-SKIP. To illustrate

the performance of conjugate gradient (CG) method with and without the above-

mentioned truncated pivoted Cholesky preconditioner, we test D-SKI on the

2D Franke function with 2000 data points, and D-SKIP on the 5D Friedman

function with 1000 data points. In both cases, we compute a pivoted Cholesky

decomposition truncated at rank 100 for preconditioning, and the number of

steps it takes for CG/PCG to converge are demonstrated in Figure 7.4 below. It

is clear that preconditioning universally and significantly reduces the number of

steps required for convergence.

115

-2 -1.5 -1 -0.5 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

No preconditioner

-2 -1.5 -1 -0.5 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Pivoted Cholesky

0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1.5 -1 -0.5 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-2 -1.5 -1 -0.5 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 7.4: The color shows log10 of the number of iterations to reach a tolerance
of 1e-4. The first row compares D-SKI with and without a preconditioner. The
second row compares D-SKIP with and without a preconditioner. The red dots
represent no convergence. The y-axis shows log10(`) and the x-axis log10(σ) and
we used a fixed value of s = 1.

7.4.5 Rough terrain reconstruction

Rough terrain reconstruction is a key application in robotics, autonomous naviga-

tion, and geostatistics [Gingras et al., 2010, Konolige et al., 2010]. Through a set

of terrrain measurements, the problem is to predict the underlying topography

of some region. In the following experiment, we consider roughly 23 million

nonuniformly sampled elevation measurements of Mount St. Helens obtained

via LiDAR [Consortium, 2002]. We bin the measurements into a 970 × 950 grid,

and downsample to a 120× 117 grid. Derivatives are approximated using a finite

difference scheme.

We randomly select 90% of the grid for training and the remainder for testing.

We do not include results for D-SE, as its kernel matrix has dimension roughly

116

Figure 7.5: On the left is the true elevation map of Mount St. Helens. In the
middle is the elevation map calculated with the SKI. On the right is the elevation
map calculated with D-SKI.

4 · 104. We plot contour maps predicted by SKI and D-SKI in Figure 7.5 —the

latter looks far closer to the ground truth than the former. This is quantified in

the following table:

` s σ σ2 Testing SMAE Overall SMAE Time[s]
SKI 35.196 207.689 12.865 n.a. 0.0308 0.0357 37.67

D-SKI 12.630 317.825 6.446 2.799 0.0165 0.0254 131.70

Table 7.3: The hyperparameters of SKI and D-SKI are listed. Note that there are
two different noise parameters σ1 and σ2 in D-SKI, for the value and gradient
respectively.

(a) Ground Truth (b) SKI (c) D-SKI

Figure 7.6: D-SKI is clearly able to capture more detail in the map than SKI. Note
that inclusion of derivative information in this case leads to a negligible increase
in calculation time.

117

The Korean Peninsula elevation and bathymetry dataset is sampled at a

resolution of 12 cells per degree and has 180 × 240 entries on a rectangular grid.

We take a smaller subgrid of 17 × 23 points as training data. To reduce data

noise, we apply a Gaussian filter with σfilter = 2 as a pre-processing step. We

observe that the recovered surfaces with SKI and D-SKI highly resemble their

respective counterparts with exact computation and that incorporating gradient

information enables us to recover more terrain detail.

` s σ SMAE Time[s]
SKI 16.786 855.406 184.253 0.1521 10.094

D-SKI 9.181 719.376 29.486 0.0746 11.643

7.4.6 Implicit surface reconstruction

Reconstructing surfaces from point cloud data and surface normals is a standard

problem in computer vision and graphics. One popular approach is to fit an

implicit function that is zero on the surface with gradients equal to the surface

normal. Local Hermite RBF interpolation has been considered in prior work

[Macedo et al., 2011], but this approach is sensitive to noise. In our experiments,

using a GP instead of splining reproduces implicit surfaces with very high

accuracy. In this case, a GP with derivative information is required, as the

function values are all zero.

In Figure 7.7, we fit the Stanford bunny using 25000 points and associated

normals, leading to a K∇XX matrix of dimension 105, clearly far too large for exact

training. We therefore use SKI with the thin-plate spline kernel, with a total of

30 grid points in each dimension. The left image is a ground truth mesh of the

underlying point cloud and normals. The middle image shows the same mesh,

118

Figure 7.7: (Left) Original surface (Middle) Noisy surface (Right) SKI reconstruc-
tion from noisy surface (s = 0.4, σ = 0.12)

but with heavily noised points and normals. Using this noisy data, we fit a GP

and reconstruct a surface shown in the right image, which looks very close to the

original.

7.4.7 Bayesian optimization with derivatives

Prior work examines Bayesian optimization (BO) with derivative information

in low-dimensional spaces to optimize model hyperparameters [Wu et al., 2017].

Wang et al. consider high-dimensional BO (without gradients) with random pro-

jections uncovering low-dimensional structure [Wang et al., 2013]. We propose

BO with derivatives and dimensionality reduction via active subspaces, detailed

in Algorithm 1.

Algorithm 1 estimates the active subspace and fits a GP with derivatives in

the reduced space. Kernel learning, fitting, and optimization of the acquisition

function all occur in this low-dimensional subspace. In our tests, we use the

expected improvement (EI) acquisition function, which involves both the mean

and predictive variance. We consider two approaches to rapidly evaluate the

119

Algorithm 6 BO with derivatives and active subspace learning

1: while Budget not exhausted do
2: Calculate active subspace projection P ∈ RD×d using sampled gradients
3: Optimize acquisition function, un+1 = arg maxA(u) with xn+1 = Pun+1

4: Sample point xn+1, value fn+1, and gradient ∇ fn+1

5: Update dataDi+1 = Di ∪ {xn+1, fn+1,∇ fn+1}

6: Update hyperparameters of GP with gradient defined by kernel
k(PT x, PT x′)

7: end while
8: end

predictive variance v(x) = k(x, x)−KxXK̃−1
XXKXx at a test point x. In the first approach,

which provides a biased estimate of the predictive variance, we replace K̃−1
XX with

the preconditioner solve computed by pivoted Cholesky; using the stable QR-

based evaluation algorithm, we have

v(x) ≈ v̂(x) ≡ k(x, x) − σ−2(‖KXx‖
2 − ‖QT

1 KXx‖
2).

In the second approach, we use a randomized estimator as in [Bekas et al., 2007]

to compute the predictive variance at many points X′ simultaneously, and use

the pivoted Cholesky approximation as a control variate to reduce the estimator

variance:

vX′ = diag(KX′X′) − Ez

[
z � (KX′XK̃−1

XXKXX′z − KX′X M−1KXX′z)
]
− v̂X′ .

The latter approach is unbiased, but gives very noisy estimates unless many

probe vectors z are used. Both the pivoted Cholesky approximation to the

predictive variance and the randomized estimator resulted in similar optimizer

performance in our experiments.

To test this algorithm, we consider five instances of the 5D Ackley and 5D

Rastrigin functions randomly embedded in [−10, 15]50 and [−4, 5]50, respectively.

In Figure 7.8(a) and Figure 7.8(b), we show the performance of our algorithm

using the D-SKI kernel and the EI acquisition function. We fix d = 2, and at

120

0 100 200 300 400 500

-20

-15

-10

-5 BO exact

BO D-SKI

BFGS

Random sampling

(a) BO on Ackley

0 100 200 300 400 500

-40

-20

0

20
BO exact
BO SKI
BFGS
Random sampling

(b) BO on Rastrigin

Figure 7.8: In the following experiments, 5D Ackley and 5D Rastrigin are em-
bedded into 50 a dimensional space. We run Algorithm 1, comparing it with
BO exact, multi-start BFGS, and random sampling. D-SKI with active subspace
learning clearly outperforms the other methods.

each iteration we pick two directions in the estimated active subspace at random.

We also compare to three other methods: BO with EI and no gradients in the

original space; multi-start BFGS with full gradients; and random search. In both

examples, the BO variants perform better than the alternatives, and our method

outperforms standard BO.

7.5 Conclusion

Gradients are a valuable additional source of information for GP regression, but

inclusion of d extra pieces of information per point naturally leads to new scaling

issues. We introduced two methods to deal with these scaling issues: D-SKI

and D-SKIP. Both are structured interpolation methods, and the latter also uses

kernel product structure. We have discussed practical details — preconditioning

is necessary to guarantee convergence of iterative methods and active subspace

calculation reveals low-dimensional structure when gradients are available. We

121

presented several experiments with kernel learning, dimensionality reduction,

terrain reconstruction, implicit surface fitting, and scalable Bayesian optimization

with gradients. For simplicity, these examples all possessed full gradient informa-

tion; however, our methods trivially extend if only partial gradient information

is available.

122

CHAPTER 8

CONCLUSION

123

We have presented a series of improved Bayesian optimization (BO) methods

in this dissertation that we hope will contribute to the greater body of data-

driven global optimization literature. These methods largely concern BO in the

setting where there is an a-priori, known budget, also known as non-myopic BO.

In Chapter 3, we formulated this problem as a finite-horizon, infinite state and

action space Markov decision process (MDP), where the horizon of the MDP is

equivalent to the given BO iteration budget. We also showed in Chapter 3 that

the standard expected improvement (EI) acquisition is equivalent to a greedy

MDP policy, which explains its overly-exploitative empirical behavior.

High-dimensional MDPs, especially ones with an infinite state and action

space, are notoriously difficult to solve. In Chapter 4, we discuss rollout, a

tractable approximation to the optimal MDP policy. We apply a series of variance

reduction techniques, including quasi-Monte carlo (QMC), common random

numbers, and control variates, in order to further decrease the overhead of rollout.

We show that rollout leads to improvement BO performance of multi-modal

function, and identify the impact of model error as a key challenge to improving

the performance of non-myopic BO acquisition functions. We also investigate

policy search, an alternative approximation to the optimal MDP policy, in which

a best policy out of a parameterized policy class is chosen. In the context of BO,

this corresponds to selecting the best acquisition function that yields the highest

expected decrease in the objective function over the next h steps.

BO implicitly measures progress and convergence in terms of iterations,

which assumes that each function evaluation takes the same amount of time . In

Chapter 5, we show that this assumption is rarely true in practical problems, in

which the cost of evaluating the function varies across the optimization domain.

124

This cost may be money, time, or material consumption, and the problem of

BO with non-uniform evaluation cost and a-priori cost budget is known as cost-

constrained BO. We formulate cost-constrained BO as a constrained MDP (CMDP),

which is an MDP with an additional set of cost constraints, and similarly extend

rollout to the CMDP setting. We show that rollout yields improved performance

over traditional acquisition functions such as EI.

Unfortunately, the overhead of CMDP rollout is very large, rendering it un-

suitable for all but the most expensive problems. In Chapter 6, we introduce

cheap and straightforward, two-phase heuristic to tackle cost-constrained BO we

call cost apportioned BO (CArBO). The first is a cost-effective initial design phase,

during which we prioritize cheap exploration. The second is a cost-cooling phase,

during which the cost constraint is lessened over time to encourage expensive ex-

ploitation. We show that CArBO yields significant improvements over traditional

acquisition functions, both in the sequential BO and batch BO settings. We also

build cost models by counting flops and using robust regression to determine

flop constants, and show that using cost models with lower prediction error

increase cost-constrained BO convergence speed.

Finally, we consider BO in the setting where derivative information is avail-

able in Chapter 7. GP regression of both values and derivatives scales cubically

in both the number of data points and the dimension of the problem. We extend

existing scalable GP regression methods, structured kernel interpolation (SKI)

and structured kernel interpolation with product structure (SKIP) to include

derivative information, which we call D-SKI and D-SKIP respectively. We also

discuss dimensionality reduction through computation of the active subspace,

which is the span of the dominant directional derivatives, and show that BO

125

combined with gradient information and active subspace dimensionality reduc-

tion performs better than both BO without derivative information and randomly

restarted local optimization methods such as BFGS.

Global optimization is an important problem of ever-growing relevance, and

no doubt there will be much research progress made in the upcoming years con-

cerning global optimization methodologies. We hope this dissertation represents

a not-immodest step towards principled, data-driven global optimization under

a finite budget, and plan to continue this line of work beyond its publishing.

126

BIBLIOGRAPHY

[gpy, 2016] (2016). GPyOpt: A Bayesian optimization framework in Python.
http://github.com/SheffieldML/GPyOpt.

[Abdolshah et al., 2019] Abdolshah, M., Shilton, A., Rana, S., Gupta, S., and
Venkatesh, S. (2019). Cost-aware multi-objective bayesian optimisation. arXiv
preprint arXiv:1909.03600.

[Alom et al., 2018] Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike,
P., Nasrin, M. S., Van Esesn, B. C., Awwal, A. A. S., and Asari, V. K. (2018).
The history began from Alexnet: A comprehensive survey on deep learning
approaches. arXiv preprint arXiv:1803.01164.

[Altman, 1999] Altman, E. (1999). Constrained Markov decision processes, volume 7.
CRC Press.

[Azimi et al., 2010] Azimi, J., Fern, A., and Fern, X. Z. (2010). Batch Bayesian
optimization via simulation matching. In Advances in Neural Information Pro-
cessing Systems, pages 109–117.

[Back, 1996] Back, T. (1996). Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford university press.

[Bekas et al., 2007] Bekas, C., Kokiopoulou, E., and Saad, Y. (2007). An estimator
for the diagonal of a matrix. Applied Numerical Mathematics, 57(11-12):1214–
1229.

[Bellman, 1952] Bellman, R. (1952). On the theory of dynamic programming.
Proceedings of the National Academy of Sciences of the United States of America,
38(8):716.

[Bellman, 1961] Bellman, R. E. (1961). Adaptive control processes: a guided tour,
volume 2045. Princeton university press.

[Bemporad et al., 2002] Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E. N. (2002). The explicit linear quadratic regulator for constrained systems.
Automatica, 38(1):3–20.

[Ben-Ari and Steinberg, 2007] Ben-Ari, E. N. and Steinberg, D. M. (2007). Model-
ing data from computer experiments: an empirical comparison of kriging with
MARS and projection pursuit regression. Quality Engineering, 19(4):327–338.

127

[Bertsekas, 2005] Bertsekas, D. (2005). Rollout algorithms for constrained dy-
namic programming. Lab. for Information and Decision Systems Report, 2646.

[Bertsekas, 2010] Bertsekas, D. (2010). Rollout algorithms for discrete optimiza-
tion: A survey. Handbook of Combinatorial Optimization, D. Zu and P. Pardalos,
Eds. Springer.

[Bertsekas, 1995] Bertsekas, D. P. (1995). Dynamic Programming and Optimal
Control, volume I. Athena Scientific Belmont, MA, 4th edition.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex
optimization. Cambridge university press.

[Bull, 2011] Bull, A. D. (2011). Convergence rates of efficient global optimization
algorithms. Journal of Machine Learning Research, 12(Oct):2879–2904.

[Caflisch, 1998] Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo meth-
ods. Acta Numerica, 7:1–49.

[Chatterjee et al., 2006] Chatterjee, K., Majumdar, R., and Henzinger, T. A. (2006).
Markov decision processes with multiple objectives. In Annual Symposium on
Theoretical Aspects of Computer Science, pages 325–336. Springer.

[Consortium, 2002] Consortium, P. S. L. (2002). Mount Saint Helens LiDAR data.
University of Washington.

[Constantine, 2015] Constantine, P. G. (2015). Active subspaces: Emerging ideas for
dimension reduction in parameter studies. SIAM.

[Cutajar et al., 2016] Cutajar, K., Osborne, M., Cunningham, J., and Filippone,
M. (2016). Preconditioning kernel matrices. pages 2529–2538.

[Damblin et al., 2013] Damblin, G., Couplet, M., and Iooss, B. (2013). Numerical
studies of space-filling designs: optimization of latin hypercube samples and
subprojection properties. Journal of Simulation, 7(4):276–289.

[Deb, 2001] Deb, K. (2001). Multi-objective optimization using evolutionary algo-
rithms, volume 16. John Wiley & Sons.

[Deng, 2012] Deng, L. (2012). The MNIST database of handwritten digit im-
ages for machine learning research [best of the web]. IEEE Signal Processing
Magazine, 29(6):141–142.

128

[Di et al., 2013] Di, S., Wang, C.-L., and Cappello, F. (2013). Adaptive algorithm
for minimizing cloud task length with prediction errors. IEEE Transactions on
Cloud Computing, 2(2):194–207.

[Dolatnia et al., 2016] Dolatnia, N., Fern, A., and Fern, X. (2016). Bayesian opti-
mization with resource constraints and production. In Twenty-Sixth Interna-
tional Conference on Automated Planning and Scheduling.

[Dong et al., 2017] Dong, K., Eriksson, D., Nickisch, H., Bindel, D., and Wilson,
A. G. (2017). Scalable log determinants for Gaussian process kernel learning.
pages 6330–6340.

[Dua and Graff, 2017] Dua, D. and Graff, C. (2017). UCI machine learning repos-
itory.

[Eriksson et al., 2018] Eriksson, D., Dong, K., Lee, E., Bindel, D., and Wilson,
A. G. (2018). Scaling gaussian process regression with derivatives. In Advances
in Neural Information Processing Systems, pages 6867–6877.

[Falkner et al., 2018] Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Ro-
bust and efficient hyperparameter optimization at scale. arXiv preprint
arXiv:1807.01774.

[Forrester et al., 2008] Forrester, A., Keane, A., et al. (2008). Engineering design
via surrogate modelling: a practical guide. John Wiley & Sons.

[Forrester et al., 2007] Forrester, A. I., Sóbester, A., and Keane, A. J. (2007). Multi-
fidelity optimization via surrogate modelling. Proceedings of the royal society a:
mathematical, physical and engineering sciences, 463(2088):3251–3269.

[Frazier, 2018a] Frazier, P. I. (2018a). Bayesian optimization. In Gel, E. and
Ntaimo, L., editors, Recent Advances in Optimization and Modeling of Contempo-
rary Problems, pages 255–278. INFORMS.

[Frazier, 2018b] Frazier, P. I. (2018b). A tutorial on bayesian optimization. arXiv
preprint arXiv:1807.02811.

[Frazier et al., 2008] Frazier, P. I., Powell, W. B., and Dayanik, S. (2008). A
knowledge-gradient policy for sequential information collection. SIAM Journal
on Control and Optimization, 47(5):2410–2439.

[Gardner et al., 2018] Gardner, J. R., Pleiss, G., Wu, R., Weinberger, K. Q., and

129

Wilson, A. G. (2018). Product kernel interpolation for scalable Gaussian
processes. In Artificial Intelligence and Statistics (AISTATS).

[Garnett et al., 2010] Garnett, R., Osborne, M. A., and Roberts, S. J. (2010).
Bayesian optimization for sensor set selection. In Proceedings of the 9th
ACM/IEEE Conference on Information Processing in Sensor Networks, pages 209–
219.

[Gingras et al., 2010] Gingras, D., Lamarche, T., Bedwani, J.-L., and Dupuis, É.
(2010). Rough terrain reconstruction for rover motion planning. In Proceedings
of the Canadian Conference on Computer and Robot Vision (CRV), pages 191–198.
IEEE.

[González et al., 2016] González, J., Dai, Z., Hennig, P., and Lawrence, N. (2016).
Batch Bayesian optimization via local penalization. In Artificial Intelligence and
Statistics, pages 648–657.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep learning. MIT press.

[Goodman, 2020] Goodman (2020). Gaussian sampling tutorial.

[Harbrecht et al., 2012] Harbrecht, H., Peters, M., and Schneider, R. (2012). On
the low-rank approximation by the pivoted Cholesky decomposition. Applied
Numerical Mathematics, 62(4):428–440.

[Hernández-Lobato et al., 2014] Hernández-Lobato, J. M., Hoffman, M. W., and
Ghahramani, Z. (2014). Predictive entropy search for efficient global opti-
mization of black-box functions. In Proceedings of the 28th Conference on Neural
Information Processing Systems, pages 918–926.

[Hoffman et al., 2011] Hoffman, M. D., Brochu, E., and de Freitas, N. (2011).
Portfolio allocation for Bayesian optimization. In UAI, pages 327–336. Citeseer.

[Huang et al., 2010] Huang, L., Jia, J., Yu, B., Chun, B.-G., Maniatis, P., and Naik,
M. (2010). Predicting execution time of computer programs using sparse
polynomial regression. In Advances in Neural Information Processing Systems,
pages 883–891.

[Hutter et al., 2014] Hutter, F., Xu, L., Hoos, H. H., and Leyton-Brown, K. (2014).
Algorithm runtime prediction: Methods & evaluation. Artificial Intelligence,
206:79–111.

130

[Jones et al., 1998a] Jones, D. R., Schonlau, M., and Welch, W. J. (1998a). Effi-
cient global optimization of expensive black-box functions. Journal of Global
optimization, 13(4):455–492.

[Jones et al., 1998b] Jones, D. R., Schonlau, M., and Welch, W. J. (1998b). Effi-
cient global optimization of expensive black-box functions. Journal of Global
Optimization, 13(4):455–492.

[Kandasamy et al., 2017] Kandasamy, K., Dasarathy, G., Schneider, J., and Poc-
zos, B. (2017). Multi-fidelity Bayesian optimisation with continuous approxi-
mations. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1799–1808. JMLR. org.

[Kawaguchi et al., 2015] Kawaguchi, K., Kaelbling, L. P., and Lozano-Pérez, T.
(2015). Bayesian optimization with exponential convergence. In Advances in
Neural Information Processing Systems, pages 2809–2817.

[Keys, 1981] Keys, R. (1981). Cubic convolution interpolation for digital im-
age processing. IEEE Transactions on Acoustics, Speech, and Signal Processing,
29(6):1153–1160.

[Kingma and Ba, 2014] Kingma, D. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

[Kirk, 2012] Kirk, R. E. (2012). Experimental design. Handbook of Psychology,
Second Edition, 2.

[Klein et al., 2016] Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F.
(2016). Fast Bayesian optimization of machine learning hyperparameters on
large datasets. arXiv preprint arXiv:1605.07079.

[Klein et al., 2017] Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F.
(2017). Fast Bayesian Optimization of Machine Learning Hyperparameters
on Large Datasets. In Singh, A. and Zhu, J., editors, Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, volume 54 of
Proceedings of Machine Learning Research, pages 528–536.

[Klein and Hutter, 2019] Klein, A. and Hutter, F. (2019). Tabular benchmarks
for joint architecture and hyperparameter optimization. arXiv preprint
arXiv:1905.04970.

[Konolige et al., 2010] Konolige, K., Agrawal, M., and Sola, J. (2010). Large-

131

scale visual odometry for rough terrain. In Robotics Research, pages 201–212.
Springer.

[Lam and Willcox, 2017] Lam, R. and Willcox, K. (2017). Lookahead Bayesian
optimization with inequality constraints. In Proceedings of the 31st Conference
on Neural Information Processing Systems, pages 1890–1900.

[Lam et al., 2016] Lam, R., Willcox, K., and Wolpert, D. H. (2016). Bayesian
optimization with a finite budget: An approximate dynamic programming
approach. In Proceedings of the 30th Conference on Neural Information Processing
Systems, pages 883–891.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.
Nature, 521(7553):436–444.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

[Lee et al., 2020a] Lee, E. H., Eriksson, D., Cheng, B., McCourt, M., and Bindel,
D. (2020a). Efficient rollout strategies for bayesian optimization. arXiv preprint
arXiv:2002.10539.

[Lee et al., 2020b] Lee, E. H., Perrone, V., Archambeau, C., and Seeger, M. (2020b).
Cost-aware bayesian optimization. arXiv preprint arXiv:2003.10870.

[Li et al., 2017] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Tal-
walkar, A. (2017). Hyperband: A novel bandit-based approach to hyperparam-
eter optimization. The Journal of Machine Learning Research, 18(1):6765–6816.

[Macedo et al., 2011] Macedo, I., Gois, J. P., and Velho, L. (2011). Hermite radial
basis functions implicits. Computer Graphics Forum, 30(1):27–42.

[MacKay and Gibbs, 1997] MacKay, D. and Gibbs, M. (1997). Efficient imple-
mentation of Gaussian processes. Neural Computation.

[Meijering et al., 1999] Meijering, E. H. W., Zuiderveld, K. J., and Viergever, M. A.
(1999). Image reconstruction by convolution with symmetrical piecewise nth-
order polynomial kernels. IEEE Transactions on Image Processing, 8(2):192–201.

[Mockus et al., 1978] Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The ap-

132

plication of Bayesian methods for seeking the extremum. Towards Global
Optimization, 2(117-129):2.

[Morokoff and Caflisch, 1994] Morokoff, W. J. and Caflisch, R. E. (1994). Quasi-
random sequences and their discrepancies. SIAM Journal on Scientific Comput-
ing, 15(6):1251–1279.

[Morokoff and Caflisch, 1995] Morokoff, W. J. and Caflisch, R. E. (1995). Quasi-
Monte Carlo integration. Journal of computational physics, 122(2):218–230.

[Niederreiter, 1988] Niederreiter, H. (1988). Low-discrepancy and low-
dispersion sequences. Journal of number theory, 30(1):51–70.

[Osborne et al., 2009] Osborne, M. A., Garnett, R., and Roberts, S. J. (2009). Gaus-
sian processes for global optimization. In Proceedings of the 3rd International
Conference on Learning and Intelligent Optimization (LION3), pages 1–15.

[Owen, 2009] Owen, A. (2009). Variance reduction.

[Papageorgiou, 2003] Papageorgiou, A. (2003). Sufficient conditions for fast
quasi-Monte Carlo convergence. Journal of Complexity, 19(3):332–351.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

[Peise and Bientinesi, 2012] Peise, E. and Bientinesi, P. (2012). Performance mod-
eling for dense linear algebra. In 2012 SC Companion: High Performance Com-
puting, Networking Storage and Analysis, pages 406–416. IEEE.

[Piunovskiy, 2006] Piunovskiy, A. B. (2006). Dynamic programming in con-
strained Markov decision processes. Control and Cybernetics, 35(3):645.

[Poloczek et al., 2017] Poloczek, M., Wang, J., and Frazier, P. (2017). Multi-
information source optimization. In Advances in Neural Information Processing
Systems, pages 4288–4298.

[Powell, 2007] Powell, W. B. (2007). Approximate Dynamic Programming: Solving
the Curses of Dimensionality. Wiley, 2nd edition.

133

[Priya et al., 2011] Priya, R., de Souza, B. F., Rossi, A. L., and de Carvalho, A. C.
(2011). Predicting execution time of machine learning tasks using metalearning.
In 2011 World Congress on Information and Communication Technologies, pages
1193–1198. IEEE.

[Pronzato, 2017] Pronzato, L. (2017). Minimax and maximin space-filling de-
signs: some properties and methods for construction. Journal de la Societe
Française de Statistique.

[Pronzato and Müller, 2012] Pronzato, L. and Müller, W. G. (2012). Design of
computer experiments: space filling and beyond. Statistics and Computing,
22(3):681–701.

[Puterman, 2014] Puterman, M. L. (2014). Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.

[Qin et al., 2017] Qin, C., Klabjan, D., and Russo, D. (2017). Improving the
expected improvement algorithm. In Proceedings of the 31st Conference on
Neural Information Processing Systems, pages 5381–5391.

[Rasmussen and Williams, 2006] Rasmussen, C. E. and Williams, C. K. I. (2006).
Gaussian Processes for Machine Learning. MIT Press.

[Rios and Sahinidis, 2013] Rios, L. M. and Sahinidis, N. V. (2013). Derivative-free
optimization: a review of algorithms and comparison of software implemen-
tations. Journal of Global Optimization, 56(3):1247–1293.

[Roijers et al., 2013] Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R.
(2013). A survey of multi-objective sequential decision-making. Journal of
Artificial Intelligence Research, 48:67–113.

[Rudolph, 1996] Rudolph, G. (1996). Convergence of evolutionary algorithms
in general search spaces. In Proceedings of IEEE international conference on
evolutionary computation, pages 50–54. IEEE.

[Ryan and Morgan, 2007] Ryan, T. P. and Morgan, J. (2007). Modern experimen-
tal design. Journal of Statistical Theory and Practice, 1(3-4):501–506.

[Saad, 1992] Saad, Y. (1992). Numerical methods for large eigenvalue problems.
Manchester University Press.

[Saad, 2003] Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.

134

[Shah and Ghahramani, 2015] Shah, A. and Ghahramani, Z. (2015). Parallel
predictive entropy search for batch global optimization of expensive objective
functions. In Advances in Neural Information Processing Systems, pages 3330–
3338.

[Shahriari et al., 2016] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. (2016). Taking the human out of the loop: A review of Bayesian
optimization. Proceedings of the IEEE, 104(1):148–175.

[Singer and Nelder, 2009] Singer, S. and Nelder, J. (2009). Nelder-Mead algo-
rithm. Scholarpedia, 4(7):2928.

[Smola and Bartlett, 2001] Smola, A. J. and Bartlett, P. (2001). Sparse greedy
Gaussian process regression. In Advances in Neural Information Processing
Systems 13.

[Snelson and Ghahramani, 2005] Snelson, E. and Ghahramani, Z. (2005). Sparse
Gaussian processes using pseudo-inputs. pages 1257–1264.

[Snelson et al., 2004] Snelson, E., Ghahramani, Z., and Rasmussen, C. E. (2004).
Warped Gaussian processes. In Advances in Neural Information Processing
Systems, pages 337–344.

[Snoek et al., 2012] Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical
Bayesian optimization of machine learning algorithms. In Proceedings of the
26th Conference on Neural Information and Processing Systems, pages 2951–2959.

[Snoek et al., 2015] Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sun-
daram, N., Patwary, M., Prabhat, M., and Adams, R. (2015). Scalable Bayesian
optimization using deep neural networks. In Proceedings of the International
Conference on Machine Learning (ICML), pages 2171–2180.

[Solis and Wets, 1981] Solis, F. J. and Wets, R. J.-B. (1981). Minimization by
random search techniques. Mathematics of operations research, 6(1):19–30.

[Srinivas et al., 2010] Srinivas, N., Krause, A., Kakade, S., and Seeger, M. (2010).
Gaussian process optimization in the bandit setting: No regret and experimen-
tal design. Proceedings of the 27th International Conference on Machine Learning,
pages 1015–1022.

[Stein, 1987] Stein, M. (1987). Large sample properties of simulations using latin
hypercube sampling. Technometrics, 29(2):143–151.

135

[Surjanovic and Bingham, 2018] Surjanovic, S. and Bingham, D. (2018). Vir-
tual library of simulation experiments: Test functions and datasets.
http://www.sfu.ca/ ssurjano.

[Surjanovic and Bingham, 2020] Surjanovic, S. and Bingham, D. (2020). Virtual
library of simulation experiments: Test functions and datasets.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA, USA, 1st edition.

[Swersky et al., 2013] Swersky, K., Snoek, J., and Adams, R. P. (2013). Multi-task
Bayesian optimization. In Advances in Neural Information Processing Systems,
pages 2004–2012.

[Trefethen and Bau III, 1997] Trefethen, L. N. and Bau III, D. (1997). Numerical
linear algebra, volume 50. Siam.

[Wang and Jegelka, 2017] Wang, Z. and Jegelka, S. (2017). Max-value entropy
search for efficient Bayesian optimization. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 3627–3635.

[Wang et al., 2017] Wang, Z., Li, C., Jegelka, S., and Kohli, P. (2017). Batched
high-dimensional Bayesian optimization via structural kernel learning. arXiv
preprint arXiv:1703.01973.

[Wang et al., 2013] Wang, Z., Zoghi, M., Hutter, F., Matheson, D., De Freitas, N.,
et al. (2013). Bayesian optimization in high dimensions via random embed-
dings. In Proceedings of the International Joint Conferences on Artificial Intelligence,
pages 1778–1784.

[Wendland, 2004] Wendland, H. (2004). Scattered data approximation, volume 17.
Cambridge University Press.

[Wilson et al., 2015] Wilson, A. G., Dann, C., Lucas, C., and Xing, E. P. (2015).
The human kernel. In Advances in Neural Information Processing Systems, pages
2854–2862.

[Wilson and Nickisch, 2015] Wilson, A. G. and Nickisch, H. (2015). Kernel inter-
polation for scalable structured Gaussian processes (KISS-GP). pages 1775–
1784.

136

[Wilson et al., 2018] Wilson, J., Hutter, F., and Deisenroth, M. (2018). Maximiz-
ing acquisition functions for bayesian optimization. In Advances in Neural
Information Processing Systems, pages 9884–9895.

[Wu and Frazier, 2016] Wu, J. and Frazier, P. (2016). The parallel knowledge
gradient method for batch Bayesian optimization. In Advances in Neural
Information Processing Systems, pages 3126–3134.

[Wu and Frazier, 2019] Wu, J. and Frazier, P. (2019). Practical two-step lookahead
Bayesian optimization. In Advances in Neural Information Processing Systems,
pages 9810–9820.

[Wu et al., 2017] Wu, J., Poloczek, M., Wilson, A. G., and Frazier, P. (2017).
Bayesian optimization with gradients. pages 5273–5284.

[Yang et al., 2018] Yang, C., Akimoto, Y., Kim, D. W., and Udell, M. (2018).
Oboe: Collaborative filtering for AutoML initialization. arXiv preprint
arXiv:1808.03233.

[Yue and Kontar, 2019] Yue, X. and Kontar, R. A. (2019). Lookahead Bayesian
optimization via rollout: Guarantees and sequential rolling horizons. arXiv
preprint arXiv:1911.01004.

[Zinzen et al., 2009] Zinzen, R., Girardot, C., Gagneur, J., Braun, M., and Furlong,
E. (2009). Combinatorial binding predicts spatio-temporal cis-regulatory
activity. Nature, 462(7269):65–70.

137

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Background
	Multivariate Gaussian
	Gaussian processes and Gaussian process regression
	Kernel hyperparameters
	Derivative information

	Bayesian optimization
	Probability of improvement
	Expected improvement
	Lower and upper confidence bound
	Knowledge gradient

	Batch Bayesian optimization
	Batch acquisition functions
	Batch fantasizing

	Bayesian optimization with different cost metrics

	Markov decision processes and Bayesian optimization
	Introduction
	The Markov decision process
	Solving MDPs
	Optimality conditions
	Dynamic programming

	BO as an MDP
	Non-myopic BO
	Conclusion

	Efficient strategies for non-myopic Bayesian optimization
	Introduction
	Rollout policies
	Computational methods for rollout
	Efficient rollout via variance reduction
	Quasi-Monte Carlo (QMC)
	Common random numbers (CRN)
	Control variates

	Fast policy search
	Experiments
	Variance reduction experiments:
	Variance reduction ablation study
	Full rollout on synthetic functions:
	The impact of model mis-specification:
	Policy search: synthetic
	Policy search: NAS benchmark

	Conclusion

	Non-myopic, cost-constrained Bayesian optimization
	Introduction
	Motivation and Related Work
	Constrained Markov decision processes
	Feasible trajectories

	Cost-constrained BO as a CMDP
	CMDP rollout
	Experiments
	K-nearest neighbors
	Decision trees
	Random forest

	Conclusion

	CArBO: practical cost-constrained Bayesian optimization
	Introduction
	Batch BO
	CArBO: Cost Apportioned BO
	Cost-effective initial design
	Cost-cooling
	CArBO

	Experiments
	Additional Experiments
	Building better cost models
	Neural networks
	Robust regression
	Cost models for multi-layer perceptrons
	Experiments
	Cost models for convolutional neural networks
	Experiments

	Conclusion

	Bayesian optimization with gradients
	Introduction
	Background
	Conjugate Gradient and preconditioning
	Stochastic trace estimation
	Structured kernel interpolation
	Structured kernel interpolation for products

	Scalable GPs with derivatives
	D-SKI
	D-SKIP
	Preconditioning
	Dimensionality reduction

	Experiments
	Eigenspectrum approximation
	Kernel learning on test functions
	Dimensionality reduction
	Preconditioning
	Rough terrain reconstruction
	Implicit surface reconstruction
	Bayesian optimization with derivatives

	Conclusion

	Conclusion
	Bibliography

