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The analysis of numerical sequential data, such as time series, is a frequent practice

in both academic and industrial settings. Offline change detection segments the

data retrospectively and is useful for uncovering events and systematic behaviors

in data analysis tasks. It is applied in a variety of fields including finance, genomics

and energy consumption. Furthermore, in the potential presence of change points,

utilizing change detection prior to data modeling can help prevent building in-

appropriate models under the assumption of data homogeneity, and consequently

supports improved prediction and statistical inference. In this thesis, we propose

three methods that study the offline change point detection problem from different

aspects and application domains. The first method is a nonparametric procedure

that can provide computational speedups to simultaneously detect multiple change

points. The second method models the relationship between the different channels

of multivariate observations to detect change points and anomalies. The third

method focuses on the specific biomedical domain of cell culture monitoring to

detect the transition from cell growth to confluence. All proposed methods are

evaluated through simulations and real-world data applications.
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CHAPTER 1

INTRODUCTION

Change detection involves segmenting sequential data such that observations

in the same segment share some desired properties. In this thesis, we propose

three methods that study the offline change point detection problem from different

aspects and application domains. We describe these methods and evaluations in

following chapters.

In Chapter 2, we propose a pruning approach for approximate nonparamet-

ric estimation of multiple change points. This general purpose change point de-

tection procedure ‘cp3o’ applies a pruning routine within a dynamic program to

greatly reduce the search space and computational costs. Existing goodness-of-fit

change point objectives can immediately be utilized within the framework. We

further propose novel change point algorithms by applying cp3o to two popular

nonparametric goodness of fit measures: ‘e-cp3o’ uses E-statistics, and ‘ks-cp3o’

uses Kolmogorov-Smirnov statistics. Simulation studies highlight the performance

of these algorithms in comparison with parametric and other nonparametric change

point methods. Finally, we illustrate these approaches with climatological and fi-

nancial applications.

Multivariate change detection continues to be a challenging problem due to the

variety of ways change points can be correlated across channels and the potentially

poor signal-to-noise ratio on individual channels. In Chapter 3, we are interested

in locating additive outliers (AO) and level shifts (LS) in the unsupervised set-

ting. We propose ABACUS, Automatic BAyesian Changepoints Under Sparsity, a

Bayesian source separation technique to recover latent signals while also detecting

changes in model parameters. Multi-level sparsity achieves both dimension reduc-

1



tion and modeling of signal changes. The procedure is completely automatic and

returns both AO and LS changes separately, enabling users to directly assess each

type. We show ABACUS has competitive or superior performance in simulation

studies against state-of-the-art change detection methods and established latent

variable models. We also illustrate ABACUS on two real application, modeling

genomic profiles and analyzing household electricity consumption.

In Chapter 4, we focus on the specific biomedical domain of cell culture moni-

toring. Measurements of many biological processes are characterized by an initial

growth period, followed by a sustained equilibrium period. In practice, scientists

may wish to quantify features of the growth period, features of the equilibrium

period, and the timing of the change point where the growth period gives way to

equilibrium. In this work, we assume that the measurements during the growth

period are a smooth function of time and assume that the measurements during

the equilibrium period are characterized by a simple fractionally integrated time

series model. We propose a likelihood-based method to simultaneously estimate

the parameters of the growth and equilibrium processes and locate the change

point between the two. We find that this method performs well in simulations.

Throughout, we are motivated by the specific problems in the study of electrical

cell-substrate impedance sensing (ECIS) data. ECIS is a popular new technology

used to study cell behavior, which non-invasively measures cell behavior at a high

temporal resolution. Previous studies have found that different cell types can be

classified by their behavior during the equilibrium period, called confluence in the

ECIS literature. However, it can be challenging to identify when the equilibrium

period/confluence has been reached, and to quantify the relevant features during

this period. Our method allows us to obtain better estimates of measures of cell

behavior during confluence, and accordingly better cell classification. Addition-

2



ally, our method produces estimates of the change points themselves, which we

find offer additional gains in classification performance.
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CHAPTER 2

PRUNING AND NONPARAMETRIC MULTIPLE CHANGE

POINT DETECTION

Contents in this chapter are published in [66].

2.1 Introduction

The analysis of time ordered data, or time series, has become a frequent practice

in both academic and industrial settings. When analysis is performed it is gen-

erally assumed that the data adheres to some form of homogeneity. However, it

may not be appropriate, or practical, to apply the same analytical procedure to

many different types of time series. The resulting statistical bias from such model

misspecification is one of the reasons for the current resurgence of change point

analysis, which attempts to partition a time series into homogeneous segments.

A popular approach is to fit the observed data to a parametric model. In this

setting a change point corresponds to a change in the monitored parameter(s)

[43, 14]. Parametric approaches rely heavily upon the assumption that the data

behaves according to the predefined distribution model. Otherwise the degree of

bias in the obtained results is usually unknown [54]. In practice, it is almost always

difficult to test for adherence to these assumptions.

Nonparametric analysis is a natural way to proceed. Since nonparametric ap-

proaches make much weaker assumptions than their parametric counterparts, they

can be used in a much wider variety of settings; for example, the analysis of internet

traffic data, where there is no commonly accepted distributional model.

4



Another challenge in multiple change point analysis is that it can easily be-

come computationally intractable. There are OpT kq possible segmentations in a

length T time series containing k change points. Naive approaches to find the best

segmentation quickly become impractical. Moreover, the number of true change

points is usually not known.

In this work, we address the challenge of designing a customizable procedure

that can detect a wide range of changes while appropriately balancing detection

accuracy and speed. We introduce a new change point search framework called

cp3o (Change Point Procedure via Pruned Objectives). The cp3o framework is a

general purpose search procedure, which means it can be used with a large class of

goodness-of-fit metrics to detect change points. For instance, additional knowledge

about the data, such as the type of changes which are to be detected, or computa-

tional time considerations might direct a user to particular goodness-of-fit metrics.

This plug-and-play idea is similar to that in [5], such that the users can specify

their own goodness-of-fit metrics, or pick from available options based on perfor-

mance with training data. The cp3o procedure makes use of dynamic programming

with search space pruning. This allows the number of change points to be quickly

determined, while simultaneously generating all other optimal segmentations as a

byproduct.

We further propose two new change point algorithms, named e-cp3o and ks-

cp3o, by incorporating two popular nonparametric goodness-of-fit metrics, namely

E-statistics and the Kolmogorov-Smirnov statistic, within the cp3o search proce-

dure. Results from a variety of simulations show that in most cases the proposed

cp3o algorithms provide a good balance between speed and accuracy in comparison

with parametric and other nonparametric change point methods.

5



Both e-cp3o and ks-cp3o algorithms are freely available in the ecp R package

on CRAN.

2.2 Related Works

2.2.1 Multiple Change Point Detection Methods

Most existing procedures for performing retrospective multiple change point anal-

ysis can be classified as belonging to one of two groups: those that return approx-

imate solutions and those that return exact solutions.

Approximate search algorithms tend to rely heavily on a subroutine for finding

a single change point. Estimates for multiple change point locations are produced

by iteratively applying this subroutine. Examples include binary segmentation

and its adaptations such as the Circular Binary Segmentation approach of [51]

and the E-Divisive approach of [44]. Approximate procedures tend to produce sub-

optimal segmentations of the given time series, but have much lower computational

complexity than exact procedures.

Exact search algorithms return segmentations that are optimal with respect to

a pre-specified goodness-of-fit metric. In order to achieve a reasonable computa-

tional cost, the utilized goodness-of-fit metrics often satisfy Bellman’s Principle of

Optimality [8], and can thus be optimized through the use of dynamic program-

ming. Examples of exact algorithms include the Kernel Change Point algorithm,

[27] and [2], and the MultiRank algorithm [42].
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2.2.2 Pruning Methods

The runtime of traditional dynamic programming change point detection ap-

proaches is still at least quadratic in the length of the time series. However, many

of the calculations performed during the dynamic programs do not result in the

identification of a new change point. These calculations can be viewed as excessive

and they quickly compound to slow down analysis. One way to tackle this is by

continually pruning the set of potential change point locations. [57] proposes a

pruning method that can be used when the goodness-of-fit metric is convex. The

PELT method [38] is a parametric method which incorporates a pruning step in its

dynamic program, such that the expected running time is linear in the length of

the time series under certain conditions. However, these methods restrict the op-

tions of goodness-of-fit metrics that can be used due to requirements of convexity

and parametric objective formulations.

2.3 Problem Formulation

Let Z1, Z2, . . . , ZT P Rd be a length T sequence of independent d-dimensional time

ordered random variables. We denote k as the true number of change points, where

the change points are time indices 1 “ t0 ă t1 ă ¨ ¨ ¨ ă tk ă tk`1 “ T ` 1, such

that Zi
iid
„ Fj for tj ď i ă tj`1, and Fj ‰ Fj`1, for distributions Fj with 0 ď j ď k.

Given a series of such observations, the challenge is to select the number of

change points and change point locations so that the observations within each seg-

ment are identically distributed, and the distributions of observations in adjacent

segments are different. We approach this problem through the use of goodness-
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of-fit metrics, which are commonly used for exact search procedures. We also

incorporate the parameter w ě 1, which is a user-defined lower bound for the

distance between change points.

We refer to a partition of Z1, Z2, . . . , ZT with κ segmentation points as a κ-

segmentation. With segmentation points 1 “ τ0 ă τ1 ă ¨ ¨ ¨ ă τκ ă τκ`1 “ T`1, we

quantify the quality of the resulting κ-segmentation with the empirical goodness-

of-fit metric:
κ
ÿ

j“1

pgR pτj´1, τj, τj`1q

where pgR pa, b, cq “ pR
`

Zb´1
a , Zc´1

b

˘

and Zb
a “ tZiu

b
i“a, for a ă b ă c. Here pRp¨, ¨q is

a sample version of a given population measure Rp¨, ¨q of the dissimilarity between

the distributions of two random variables.

Empirical goodness-of-fit of the κ-segmentation of a length T sequence with k

change points is maximized at

pGT pκ,wq “ max
τ1,τ2,...,τκ

τi`wďτ`, iă`
τiPt1`w,...,T´w`1u

κ
ÿ

j“1

pgR pτj´1, τj, τj`1q

Calculating pGT pκ,wq requires maximization over all κ-tuples containing a strictly

increasing sequence of elements from 1`w to T ´w`1 (that are at least w apart),

and hence is computationally expensive. We next introduce an approximation

procedure that gives significant speed-ups.
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2.4 Proposed cp3o Procedure

We adapt the evaluation of pGT pκ,wq in two ways to increase computational effi-

ciency:

• Approximation of pGT pκ,wq to allow the use of dynamic programming,

• Pruning to reduce the dynamic program search space.

To obtain estimates κ and tτiu
κ
i“1 for the number of change points k and the

change point locations ttiu
k
i“1, we can calculate pGT pκ,wq for a range of values

1 ď κ ď K where K ě k is a user-defined upper bound for k, then select κ based

on a chosen rule which we propose in Section 2.4.3.

2.4.1 Dynamic Programming

Since there are OpT κq possible κ-segmentations, a direct computation of pGT pκ,wq

requires OpT κq evaluations of the goodness-of-fit metric. Instead, we employ dy-

namic programming in the following fashion. Define

Htpκ,w, τq “ rGτ´1pκ´ 1, wq ` pgR pAτ´1pκ´ 1q, τ, tq .

Then, in the κth iteration, for each subsequence tZiu
t
i“1 where 1 ď t ď T , we
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define

Atpκ,wq “ argmax
τPt1`κ˚w,...,t´w`1u

Htpκ,w, τq,

rGtpκ,wq “ max
τPt1`κ˚w,...,t´w`1u

Htpκ,w, τq,

where rGtpκ,wq denotes the approximation of the optimal goodness-of-fit for the

length t subsequence with κ segmentation points, and Atpκ,wq denotes the location

of the κth segmentation point in this approximation.

rGtpκ,wq is obtained by optimizing over all possible candidates for the κth seg-

mentation point, and approximating the previous κ´ 1 change points through A.

For example, if τ is the κth segmentation point, then we take Aτ´1pκ ´ 1q as the

pκ´ 1qth segmentation point

Each computation of rGtpκ,wq needs at most t evaluations of the goodness-of-fit

metric. Hence there are OpT 2q evaluations of the goodness-of-fit metric in the κ’s

iteration to obtain rGT pκ,wq. This is significantly lower than the OpT κq evaluations

prior to approximation.

2.4.2 Pruning

In the κth iteration of dynamic programming, Atpκ,wq and rGtpκ,wq require

searching for the optimal κth segmentation point of tZiu
t
i“1 from candidates

t1 ` κ˚w, . . . , t ´ w ` 1u. To cut computations further, we reduce this search

space by only searching in Stpκ,wq, defined below.

For the first iteration, we initialize Stp1, wq “ t1 ` w, . . . , t ´ w ` 1u which
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is the largest possible search space. For the pκ ` 1qth iteration, the search space

Stpκ ` 1, wq is the result of pruning the search space Stpκ,wq from the previous

iteration, as we want to iteratively pinpoint the most optimal change point before

t. The pruning rule is:

Stpκ` 1, wq “ tτ P Stpκ,wq :

Htpκ` 1, w, τq ě Htpκ` 1, w, t´ w ` 1qu.

In the above expression, the inequality compares the goodness-of-fit of two valid

pκ` 1q-segmentations for the length t subsequence, one with the last change point

at τ and the other at t ´ w ` 1. If the former is less than the latter, then τ is a

less optimal segmentation point than t´w` 1, hence τ can be pruned away from

the set of candidate change points.

We choose to benchmark the goodness-of-fit induced by τ against that induced

by t´ w ` 1 because t´ w ` 1 is the last possible change point location before t.

Keeping t´w` 1 in the search space would maximize the total number of change

points possible for the sequence.

2.4.3 Algorithm

We outline the complete cp3o procedure in Algorithm 1. Aside from the notation

described in Sections 2.4.1 and 2.4.2, we use cpstpκq to denote the set of κ change

points estimated for the subsequence tZiu
t
i“1.

The cp3o algorithm iterates through κ from 1 to a user-defined upper bound
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Algorithm 1 cp3o

Input : Data sequence z1, z2, . . . , zT P Rd

Upper bound on number of changes K
Minimum distance between changes w

Initialize: Search space Stp1q “ t1` w, . . . , t´ w ` 1u
Set of change points cpstp0q “ H
Previous change point Atp0q “ 1 before t

1 for κ from 1 to K do
2 for t from 2˚w to T do
3 τ˚ “ argmax

τPStpκq

Htpκ,w, τq

rGtpκ,wq “ Htpκ,w, τ
˚q

Update cpstpκq “ cpsτ˚pκ´ 1q Y tτ˚u
Update Atpκq “ τ˚

Update Stpκ` 1q “ tτ P Stpκq : Htpκ` 1, w, τq ě Htpκ` 1, w, t´ w ` 1q
4 end
5 end
6 Pick optimal number of change points κ˚

Output : cpsT pκ
˚q

K. In each iteration κ, for each subsequence tZiu
t
i“1, cp3o finds τ˚ as the κth

change point in the subsequence. The other κ ´ 1 change points are as found in

previous iterations. The goodness-of-fit rGtpκ,wq of the length t subsequence is

calculated with these κ change points, and cpstpκq is updated to save these change

points. In preparation for future iterations, the search set Stpκ` 1q is obtained by

discarding candidate points which produce a worse goodness-of-fit than segmenting

at t ´ w ` 1, which is the last possible segmentation point before t. Note that in

each iteration κ, when t “ T is reached, we obtain estimates for κ change points

for the entire data sequence.

We now describe the criteria for picking the optimal number of change points

κ˚. Empirically, rGtpκ,wq usually increases with κ, and tends to be kinked at k.

This is expected since partitioning beyond the optimal number of partitions should

not increase the goodness-of-fit at the same rate as before. We fit a piecewise linear

function with two pieces on the empirical rGtpκ,wq values, and estimate the number

of change points to be the κ at which the function transitions from one piece to
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the other. This is similar to techniques used to determine cutoff values from scree

plots.

2.5 Divergence Metrics

We now offer some guidelines for selecting the divergence metric R and its sam-

ple counterpart pR, then propose two metrics, namely the energy statistic and

A-distance, which satisfy these guidelines. The energy statistic and Kolmogorov-

Smirnov statistic, a special case of the A-distance, are incorporated into the cp3o

procedure. We refer to the two resulting algorithms as e-cp3o and ks-cp3o.

2.5.1 Selection Guidelines

We use the notation X
d
“ Y to mean X and Y are identically distributed.

Property 1. Convergence of empirical divergence to true divergence. Let Xn “

tXiu
n
i“1 and Y m “ tYju

m
j“1 be two sets of independent random variables; Xi

d
“ X

for all i, and Yj
d
“ Y for all j. pR pXn,Y mq

a.s.
ÝÝÑ R pX, Y q as the sample size

minpn,mq Ñ 8, where R pX, Y q ě 0, and equality holds iff X
d
“ Y .

Property 2. Single change point detection. For 0 ă γ ă 1, suppose

Z1, . . . , ZtγT u
d
“ X and ZtγT u`1, . . . , ZT

d
“ Y for a sequence of any length T . For

0 ă η ă 1, let A pηq “ tZiu
tηT u

i“1 and B pηq “ tZju
T
j“tηT u`1.

pR pApηq, Bpηqq
a.s.
ÝÝÑ

Θ1
0pη|γqRpX, Y q as T Ñ 8, where Θ1

0pη|γq maps from the interval p0, 1q to R, and

has a unique maximizer at η “ γ.

Property 1 concerns the convergence of the empirical divergence to the true
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divergence metric. It is reasonable to enforce that the non-negative divergence

be 0 when applied on two identically distributed random variables. Property 2

implies that for a large enough sample size with one change point, the empirical

divergence metric will attain its maximum value when the estimated change point

location η and true change point location γ coincide.

2.5.2 Energy Statistics

The E-statistics introduces by [60] are indexed by α P p0, 2q and allows for the de-

tection of any type of distributional change1. For a given α, the only distributional

assumption made is that the observations have finite absolute αth moments.

Suppose Xn “ tXiu
n
i“1 and Y m “ tYju

m
j“1 are iid samples from distributions

with probability measures FX and FY , respectively. Then the population distance

is

EpX, Y |αq “ 2E|X ´ Y |α ´ E|X ´X 1
|
α
´ E|Y ´ Y 1|α.

This is equivalent to

DpX, Y |αq “
ż

Rd
|φXptq ´ φY ptq|

2ωpt|αq dt

with an appropriately chosen positive weight function ω, where φX and φY are the

characteristic functions associated with distributions FX and FY , respectively.

1If the detection of only mean changes is desired α “ 2 is used.
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The empirical counterpart to EpX, Y |αq is

pEpXn,Y m|αq “
2

mn

n
ÿ

i“1

m
ÿ

j“1

|xi ´ yj|
α

´

ˆ

n

2

˙´1
ÿ

1ďiăjďn

|xi ´ xj|
α
´

ˆ

m

2

˙´1
ÿ

1ďiăjďm

|yi ´ yj|
α

Let γ denote the proportion of observations from FX in the limit as

minpn,mq Ñ 8. Then we define our divergence metrics as

RpX, Y |αq “ γp1´ γqEpX, Y |αq,

pRpXn,Y m|αq “
mn

pm` nq2
pEpXn,Y m|αq.

Theorem 1. Properties 1 and 2 are satisfied by the divergence metric based on

the E-statistic.

Proof. Using the result of [44, Theorem 1] we have that

pRpAppγq, Bppγq|αq
a.s.
ÝÝÑ pγp1´ pγqhppγ; γqEpX, Y |αq

where hppγ; γq “
´

γ
pγ
1
pγěγ `

1´γ
1´pγ

1
pγăγ

¯2

. Therefore, RpX, Y |αq “ γp1´γqEpX, Y q|αq

and Θ1
0ppγ|γq “

pγp1´pγq
γp1´γq

hppγ; γq, which can be shown to have a unique maximizer at

pγ “ γ.

By definition, DpX, Y |αq ě 0, with equality if and only if FX “ FY by the

uniqueness of characteristic functions. The rest of the proof follows from the

equality of DpX, Y |αq and EpX, Y |αq.
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Empirically, we use an incomplete U-statistic version of pR to reduce the num-

ber of samples needed the compute the pairwise distances. We define a win-

dow size δ, within which all pairwise distances are included, and outside which

only adjacent points have their pairwise distances included. That is, suppose

Xn “ tZa, Za`1, . . . , Za`n´1u and Y m “ tZa`n, Za`n`1, . . . , Za`n`m´1u, and de-

fine the following sets:

W δ
X “ tpi, jq : a` n´ δ ď i ă j ă a` nuY

n´δ´1
ď

i“0

tpa` i, a` i` 1qu

W δ
Y “ tpi, jq : a` n ď i ă j ă a` n` δuY

m´2
ď

i“δ´1

tpa` n` i, a` n` i` 1qu

Bδ
“ pta` n´ 1, . . . , a` n´ δuˆ

ta` n, . . . , a` n` δ ´ 1uqY
˜

m^n
ď

i“δ`1

tpa` n´ i, a` n` i´ 1qu

¸

The incomplete U-statistic rE is then

rEpXn,Y m|α, δq “
2

#Bδ

ÿ

pi,jqPBδ

|Xi ´ Yj|
α
´

1

#W δ
X

ÿ

pi,jqPW δ
X

|Xi ´Xj|
α
´

1

#W δ
Y

ÿ

pi,jqPW δ
Y

|Yi ´ Yj|
α

This reduces computation of pRpXn,Y m|αq fromO pn2
Ž

m2q toO pδ2 ` n
Ž

mq.

Letting δ ď Ct
?
T u for some constant C results in a computational complexity of
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OpT q. Note that δ ă w, so we set δ “ w ´ 1. It is shown [49] that a strong

law of large numbers result holds for incomplete U-Statistics, thus the incomplete

U-statistic version of pR shares the same almost sure limit as pR.

2.5.3 A-distance

The A-distance is introduced in [37]. It is a generalization of the Kolmogorov-

Smirnov statistic, which is often used to quantify the distance between two empir-

ical distribution functions.

We use the same notations as in Section 2.5.2. Let A be a collection of mea-

surable sets from their domain. Then the A-distance is defined as

dApFX , FY q “ 2 sup
APA

|FXpAq ´ FY pAq|

The empirical A-distance is

pdpXn,Y m|Aq “ 2 sup
APA

ˇ

ˇ

ˇ

ˇ

|xn X A|

n
´
|ym X A|

m

ˇ

ˇ

ˇ

ˇ

Let γ denote the proportion of observations from FX in the limit as

minpn,mq Ñ 8. Then we define our divergence metrics as

RpX, Y |Aq “ γp1´ γqdApFX , FY q,

pRpXn,Y m|Aq “
mn

pm` nq2
pdpXn,Y m|Aq.

In particular, for A “ tp´8, rq|r P Ru, pdpXn,Y m|Aq is the Kolmogorov-Smirnov
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statistic.

Theorem 2. Property 1 is satisfied by the divergence metric based on the A-

distance.

Proof. We note that pdpXn,Y m|Aq
a.s.
ÝÝÑ dApFX , FY q ifA has a finite VC-dimension.

From [37], for M “ minpn,mq,

P r|dApFX , FY q ´ pdpXn,Y m|Aq| ě εs ă πAp2Mq4e
´Mε2{4,

where for domain D, πApnq “ max t |tAXB : A P Au| : B Ď D and |B| “ nu.

For finite VC-dimension c, πApnq ă nc by Sauer’s Lemma. In particular,

A “ tp´8, rq|r P Ru has c “ 2. Hence,

P r|dApFX , FY q ´ pdpXn,Y m|Aq| ě υs ă p2Mqc4e´Mυ2{4.

We then note that for any υ ą 0,

8
ÿ

M“1

p2Mqc4e´Mυ2{4
“ 4p2cqLi´c

´

e´υ
2{4
¯

ă 8

where Li´cpxq is the polylogarithm function. Hence, pdpXn,Y m|Aq
a.s.
ÝÝÑ

dApFX , FY q ě 0, and if FX “ FY , then pdpXn,Y m|Aq
a.s.
ÝÝÑ 0.

The proof concludes with noticing n
m`n

Ñ γ.

Theorem 3. Property 2 is satisfied by the divergence metric based on the A-

distance.
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Proof. As minpn,mq Ñ 8,

pRpAppγq, Bppγq|Aq a.s.
ÝÝÑ pγ p1´ pγq g ppγ; γq dApFX , FY q

where g ppγ; γq “
´

γ
pγ
1
pγěγ `

1´γ
1´pγ

1
pγăγ

¯

. Therefore Θ1
0ppγ|γq “

pγp1´pγq
γp1´γq

g ppγ; γq “
´

1´pγ
1´γ

1
pγěγ `

pγ
γ
1
pγăγ

¯

, and it is maximized at pγ “ γ.

2.6 Simulation Study

To assess the performance of the segmentations, we use Fowlkes and Mallows’

adjusted Rand index [21]. This value is calculated by comparing an estimated

segmentation to the true segmentation. The index takes into account both the

number of change points as well as their locations, and lies in the interval r0, 1s,

where it is equal to 1 if and only if the two segmentations are identical.

We also include two measures of discrepancy between the true and estimated

change point locations as an assessment of estimation accuracy. T2E is the average

shortest distance from a true change point to the estimated change points, and E2T

is the average shortest distance from an estimated change point to the true change

points. A low T2E shows that all the true change points are well-estimated, and

a low E2T shows that all the estimated change points are close to true change

points.

For each simulation scenario, we apply various methods to 100 randomly gen-

erated time series, each with three evenly-spaced change points. We compare our

methods with E-divisive [35] and NPCP-F [31] (nonparametric, approximate/bi-

section search), and PELT [38] (parametric, exact/dynamic programming search).
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Figure 2.1: Color represent number of candidate change points in search space
Stpκq at each time index t and iteration κ. The darker the color, the higher the
number. Stpκq is at it’s maximum at κ “ 1, and is rapidly pruned in subsequent
iterations.

All methods were run with their default parameter values unless otherwise speci-

fied. For E-Divisive and e-cp3o this corresponds to α “ 1. For PELT, e-cp3o and

ks-cp3o, the upper bound of number of changes K was set to 5. For all methods,

the minimum segment size was set to approximately 1.5
?
T observations, that is,

w “ 30, 60, 90, 120 for time series of length T “ 400, 1600, 3200, 6000, respectively.

All experiments were run on a standard desktop computer.

2.6.1 Effects of Pruning

We demonstrate the effects of the pruning step within the dynamic program on

the search space Stpκq in Figure 2.1. The darker the color, the bigger the search

space. The search space is pruned significantly within a few iterations.
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(a) Simulation 1 with mean and variance changes in Gaussian distribution.

(b) Simulation 2 with distribution, mean and tail changes.

(c) Simulation 3 with changes in t and Cauchy distribution.

Figure 2.2: Average Rand index, discrepancy values and number of change points
detected against length of time series. True number of change points denoted by
black dotted line. Good performance is reflected by Rand close to 1, small T2E
and E2T, and estimated change point number close to 3.
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T e-cp3o ks-cp3o E-Div NPCP-F PELT

400 0.119 0.918 5.285 5.475 0.002

1600 1.811 77.869 118.672 85.288 0.020

3200 7.977 683.003 756.503 346.632 0.087

6000 27.855 4951.490 1841.570 1357.562 0.342

Table 2.1: Average runtimes (s) of the first univariate simulation from Section
2.6.2 with mean and variance changes in Gaussian distributions.

2.6.2 Simulation 1

This set of simulations consist of independent Gaussian observations which undergo

changes in their mean and variance. The distribution parameters were chosen so

that µj
iid
„ Unifp´10, 10q and σ2

j
iid
„ Unifp0, 5q.

As can be seen from Table 2.1 and Figure 2.2a, PELT was fast and suffered

little loss in accuracy in identifying change points in longer time series, as observed

from the Rand and discrepancy (T2E and E2T) values. At T “ 400, 1600 and 3200,

from the lower estimated number of change points and the higher values of T2E,

we notice that e-cp3o and ks-cp3o did not always detect all the changes. But

from the lower values of E2T, we see that the points which e-cp3o and ks-cp3o

did identify as changes are amongst the closest to the true changes. At T “ 6000,

e-cp3o and ks-cp3o performed comparably with the competing methods in terms

of segmentation quality.

The computation time of the ks-cp3o procedure did not scale well with time

series length because of the sorting step required to calculate the statistic. In the

ecp R package, we also provide a faster version of ks-cp3o which only computes

the Kolmogorov-Smirnov statistic using points within a window of size δ around
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each candidate segmentation point. Its average runtime at T “ 6000 is 14.483s,

but it detected a slightly lower average number of change points (2.620), and hence

is excluded from the reporting.

2.6.3 Simulation 2

Time series in this simulation study contain a change in distribution, mean, and

tail index. The data transitions from a exponential distribution Exp
`

1
3

˘

to a

normal distribution Np3, 1q to a standard normal distribution Np0, 1q. The tail

index change is caused by a final transition to a t-distribution with 2.01 degrees of

freedom.

We do not include PELT in the following experiments since it is a parametric

method that detects only mean and variance changes.

We expect that all methods included will be able to easily detect the mean

change and will have more difficulty detecting the change in tail index. Results for

this set of simulations can be found in Figure 2.2b. Runtimes are similar to those

in Table 2.1 with PELT excluded.

At T “ 400, 1600 and 3200, e-cp3o was not only significantly faster than all

other procedures, but also managed to generate the best segmentations on average.

While most procedures tended to miss the tail index change, e-cp3o detected the

most number of change points with averages within 0.05 of the true number 3.

e-cp3o had higher E2T since it picked out the third change point more often than

the other methods, but the accuracy of detecting the third change was not as high

as those for the first two changes. At T “ 6000, E-Divisive overtook in terms

of segmentation quality, but e-cp3o was much faster and hence provided a better
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balance between speed and accuracy.

2.6.4 Simulation 3

The data transitions from a t-distribution t0.1 to t1.9 to a Cauchy distribution

Cauchyp´2, 1q to Cauchyp0, 1q. We use α “ 0.09 instead since we need α ă 0.1

for the moment assumptions of E-statistics to hold. Complete results are shown

in Figure 2.2c. Runtimes are similar to those in Table 2.1 with PELT excluded.

In the short time series setting (T “ 400), NPCP-F and ks-cp3o performed

comparatively. In the long time series setting (T “ 6000), E-Divisive and ks-cp3o

performed comparatively. In general, ks-cp3o had the most consistent performance

by almost always achieving the highest Rand and lowest discrepancy values. In

fact, ks-cp3o picked out the correct number of change points in every sample series

from T “ 1600 onwards. It demonstrated great potential in change point detection

in general datasets where commonly desired distributional properties cannot be

assumed.

Due to the small value of α which makes the E-statistics smaller in magnitude

and therefore more difficult to distinguish, e-cp3o does not perform as well as the

other methods. Moreover, it is not straightforward to determine the best α to

use in practice, especially when extreme observations are present. Hence, it is

important to select a goodness-of-fit that is appropriate for the data.
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2.7 Applications to Real Data

2.7.1 Temperature Anomalies

We examine the HadCRUT4 dataset of [48]. This dataset consists of monthly

global temperature anomalies from 1850 to 2014. From looking at the plot of the

tropical land air anomaly time series it is suspected that there is some dependence

between observations. This assumption is quickly confirmed by looking at the

auto-correlation plot. As a result, we apply the change point procedure to the

differenced data which visually appears to be piecewise stationary. The auto-

correlation plot for the differenced data shows that much of the linear dependence

has been removed, however, the same plot for the differences squared still indicates

some dependence. We believe that this indicated dependence can be attributed to

changes in distribution.

The e-cp3o and ks-cp3o procedures were applied with a minimum segment

length of 5 years, corresponding to w “ 60; a maximum of K “ 5 change points

were fit. We chose default values α “ 1 for e-cp3o. e-cp3o identified change points

at April 1917 and April 1969, and ks-cp3o identified changes at February 1864,

May 1878 and September 1898. These are shown in Figure 2.3.

The May 1878 change point may be a result of a large climate disruption in

1877-1878, which may be caused by a major El Niño episode. The April 1969

change point occurs around the United Nations Conference on the Human En-

vironment. This conference, which was held in June 1972, focused on human

interactions with the environment.

e-cp3o used 3.659s and ks-cp3o used 376.138s. With the same parameters,
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Figure 2.3: Change in land air temperature anomalies for the Tropical climate
zone from February 1850 to December 2013. Estimated change point locations
indicated by dashed vertical lines.

competing methods E-divisive, NPCP-F and PELT used 135.795s, 111.377s and

0.078s respectively. Segmentation results vary and the true change points are

unknown, which make it difficult to compare methods. However, we note that

even though ks-cp3o took the longest time, it is the only method that identified

the 1864 change point, which visually does look like a true change.

2.7.2 Exchange Rates

We apply e-cp3o to a set of spot foreign exchange (FX) rates obtained through the

R package Quandl [47], and compare results with multivariate methods E-divisive

and NPCP-F. We consider the 3-dimensional time series consisting of monthly FX

rates for Brazil (BRL), Russia (RUB), and Switzerland (CHF) against the United
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States (USD). The time horizon spanned is September 30, 1996 to February 28,

2014, which results in a total of 210 observations. We look at the change in the

log rates, such that marginal processes appear to be piecewise stationary.

The e-cp3o procedure is applied with a minimum segment length of 12 obser-

vations (a year), which corresponds to a value of w “ 12. Furthermore, we have

chosen to fit at most K “ 5 change points, and default values of α “ 1 is used.

This specific choice of values resulted in change points being identified at December

1998, August 2002 and April 2008. These results are depicted in Figure 2.4.

Changes in Russia’s economic standing leading up to the 1998 ruble crisis may

be the cause of the December 1998 change point. The August 2002 and April 2008

change points may be the results of the 2002 South American economic crisis and

2008 financial crisis respectively. The change point identified at August 2002 also

coincides with an economic shift in Brazil. In January 1999 the Brazilian Central

Bank announced that they would be changing to a free float exchange regime,

thus their currency was no longer pegged to the USD. This change devalued the

currency and helped to slow the ongoing economic downturn.

e-cp3o used 0.026s, while E-Divisive and NPCP-F used 1.59s and 1.213s re-

spectively using the same parameters. e-cp3o and E-Divisive found similar change

points, but e-cp3o is much faster. NPCP-F seemed to have underestimated the

number of change points and only identified one whereas the other methods iden-

tified three or more.
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2.8 Conclusion

We have presented an approximate search procedure that incorporates pruning in

order to reduce the amount of unnecessary calculations and to dramatically reduce

computational costs. This search method can be used with almost any goodness-

of-fit metric in order to identify change points in univariate and multivariate time

series. In addition, this is accomplished without the user having to specify any

sort of penalty parameter or function.

By combining the cp3o search algorithm with E-statistics and Kolmogorov-

Smirnov statistics, we proposed e-cp3o and ks-cp3o algorithms, respectively. These

methods can perform nonparametric multiple change point analysis that can detect

any type of distributional change. The e-cp3o algorithm makes mild distribution

(moment) assumptions, and its runtime scales well with the length of time series.

The ks-cp3o algorithm makes no assumption about the data distribution. Although

it is less sensitive in detecting changes at the tails of the distribution and its runtime

does not scale as well with the series length, ks-cp3o is still valuable in detecting

changes in scenarios where we have no knowledge about the data distribution and

the runtime is reasonable on shorter time series.

As the simulation studies demonstrate, the cp3o procedures do not uniformly

record the best running time, average Rand values or average discrepancy values.

However, when accuracy and computation time are viewed together across different

data scenarios, the cp3o procedures are either better or comparable to almost all

other competitors. Moreover, greater care in choosing a goodness-of-fit metric

that is suitable to the data application is likely to improve performance further in

terms of accuracy and/or speed. Hence, we would advocate the cp3o procedure as

a general purpose change point procedure.
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(a) Brazil

(b) Russia

(c) Switzerland

Figure 2.4: Time series for FX spot rates for each of the three countries’ currencies
versus the USD. Estimated change point locations indicated by dashed vertical
lines.
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CHAPTER 3

UNSUPERVISED MULTIVARIATE CHANGE DETECTION VIA

BAYESIAN SOURCE SEPARATION

Contents in this chapter are published in [65].

3.1 Introduction

Change detection segments sequential data such that observations in each segment

share the same characteristics. We can view it as a specific form of clustering where

sequential data points tend to cluster together. Two common sequential orderings

are time and physical location. Change detection methods have been developed

for many types of data including video [63], social network [46] and numerical

time series [28, 44, 62]. Online change detection processes streaming data from a

system and raises an alert as soon as it estimates a state change. This is useful

for monitoring purposes such as fall detection [26], health monitoring and network

and machine monitoring [63, 67].

Offline change detection segments the data retrospectively and is useful for

uncovering events and systematic behaviors in data analysis tasks. It is applied

in a variety of fields including energy consumption [28], genomics [51] and finance

[20]. Furthermore, in the potential presence of change points, utilizing change

detection prior to data modeling can help prevent building inappropriate models

under the assumption of data homogeneity, and consequently supports improved

prediction and statistical inference.

In this work, we study offline multiple change detection in multivariate data,

specifically where the data exhibit mean changes that can occur simultaneously in
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Figure 3.1: Given observations generated by the linear mixing of signals contam-
inated by noise, ABACUS estimates the source signals and detect additive outliers
(AO, red) and level shifts (LS, blue). In M , darker and lighter cells represent
negative and positive values respectively, and medium gray cells represent zero.

several channels. The direction and magnitude of change can be different across

channels. Here, we refer to mean changes lasting a single time unit with an im-

mediate return as additive outliers (AO), and mean changes with duration two or

greater as level shifts (LS). We assume that the multivariate data are generated

by low-dimensional latent source signals through linear mixing according to the

model Y “MS`E, shown in Figure 3.1, similar to the general linear setting used

in the blind source separation literature [33, 45]. Notation-wise, M is the mixing

matrix, and Y , S and E are the observations, source signals and noise, respectively.

Observed mean changes manifest from the latent space, and we detect changes by

estimating these latent source signals, which possess ‘semantic’ meaning of the

underlying states and are free of noise.

Multivariate data are readily observed in many applications in today’s world,
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and mean changes are of particular interest since the mean is often a salient aspect

of the system state. Multivariate data can be observations from multiple channels

monitoring a single system, or a collection of univariate data streams from multiple

related systems. Examples of the first scenario include household power consump-

tion measured with sub-meters [28], and wine quality based on physicochemical

test variables [1]. Examples of the second scenario include array comparative ge-

nomic hybridization measurements from several patients with the same medical

condition [44]. In these and other examples, change points in multivariate data

sometimes occur simultaneously in multiple channels because the signals may be

driven by the same underlying processes. It is of interest to identify these shared

change points to further analyze the relationship between channels. Running uni-

variate change detection on each channel does not encourage identification of such

shared changes.

Finding changes in multidimensional data is known to be a difficult problem.

If the magnitude of change as measured by symmetric Kullback-Leibler divergence

is kept constant, detectability of the change worsens when the data dimension P

increases. This can hinder detection even at dimensions as low as P “ 10 [1].

Another issue arises when the data dimensions P exceeds the sample size N . If

one wishes to use hypothesis testing to test for homogeneity, naive calculations of

familiar test statistics such as the Hotelling’s t-squared statistic are prohibitive.

Several approaches tackle multivariate data by incorporating a dimensionality re-

duction step [63, 62], but these either project the data onto a single dimension or

require the user to select the reduced dimensionality.

Our main contribution is to successfully integrate sparse Bayesian blind source

separation with a change detection framework. No previous work on latent variable
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modeling explicitly considered source signals with unconstrained mean changes.

Bayesian variations of principle component analysis (PCA) are capable of auto-

matic dimensionality selection [9, 68], and shrinkage priors also achieve desirable

properties in trend filtering [39]. In our Bayesian latent model, we use horseshoe

priors to recover the lower-dimensional source signals and to simultaneously model

the change points. The two tasks complement each other since the source signals

exhibit changes. We propose ABACUS, Automatic BAyesian Changepoint Under

Sparsity, an automatic procedure that simultaneously detects additive outliers and

level shifts via estimating components from the source separation problem. Figure

3.1 gives an example where ABACUS recovers the true latent change space of size

three by estimating values in the appropriate dimensions of M and S to zero, and

ABACUS also locates relevant change points. We show through simulations and

real data applications that ABACUS achieves better performance in both change

detection and source recovery.

3.2 Related Works

3.2.1 Multivariate Change Detection

Change detection methodologies usually consider a data collection style where

either P or N may be varied depending on time and resource constraints. The

first scenario is common when the data consists a set of univariate data streams

of a fixed length, and more data streams can be collected if desired. The second

scenario happens when the number of observation channels is fixed, but the data

length can be varied by adjusting the sampling rate or by adjusting the scale of
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time or space for which the system is observed.

Authors of [11] formulated multivariate change detection as a group fused Lasso,

and showed empirically that detection probability approaches one with increasing

P when noise is small. Variants of binary segmentation produce approximately op-

timal segmentations by iteratively detecting single change points [51, 44]. Dynamic

programming with a suitable multivariate goodness-of-fit metric can recursively

segment the data [66]. The above methods directly segment the observations and

some assume independence across channels [62, 22]. We recover the latent change

space with prior belief that only the latent signals are independent given model

parameters.

Some works use a two-step procedure with data compression onto a low di-

mension K ! P followed by change detection. Projection onto a single dimension

enables univariate change detection [22]. For K ą 1, [55] applies univariate change

detection on each latent signal after Independent Component Analysis (ICA). Ran-

dom projection where the projection is either fixed or varied across time has been

paired with hypothesis testing [63]. Using compressive measurements, where the

projection matrix is a random projection or drawn from a Gaussian ensemble, [3]

derives the number of observations required for a target detection delay. For the

above methods, the user needs to specify the compression ratio through K. Our

proposed method ABACUS is more robust to the specification of K due to au-

tomatic dimensionality selection by our sparsity assumptions. In contrast to the

latent variable model that we employ, these methods also ignore estimating the

mixing matrix.

Bayesian approaches in change detection typically rely on using indicator vari-

ables to denote the presence of change points. The BCP method [20, 6] assumes
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that observations in each segment are independent and identically distributed as

Gaussian, and updates posterior segment means conditional on the segmentation

at each iteration of an MCMC scheme. A uniform prior Up0, qq is put on the change

point probabilities, and the user tunes the chances of discovering shorter or longer

segments through q. In [28], given the segmentation informed by the indicator

variables, a Wilcoxon rank sum test is performed at each index of the data and the

resulting p-values are modeled as a Beta-Uniform mixture. The data likelihood is

written as a composite marginal likelihood of the p-values. The formulation makes

no assumption on the distributional form of the data.

ABACUS similarly utilizes the sparsity of changes by applying horseshoe priors,

modeling the presence and absence of changes, but also the change directions and

magnitudes. We utilize the horseshoe prior as it is known for robustness and

superior shrinkage properties [12, 25]. Empirically, differences in neighboring non-

change location means are effectively shrunk to zero.

3.2.2 Latent Variable Model

We consider the following setting: Y “ MS ` E, and we would like to find the

decomposition of Y into the P ˆ r mixing matrix M , the r ˆ N source signals

matrix S, and the P ˆN noise matrix E. In general, the problem has no unique

solution. For any orthogonal matrix Q and solution pair M and S, MQ and QTS

is an equally viable solution. The true scaling of the source signals cannot be

recovered as well. There are a variety of relevant methods in the literature on

topics such as blind source separation and factor analysis, and their distinction

is mainly in the assumptions made on the decomposed components. No previous

work dealt specifically with our setup where S is piecewise-constant.
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Independent Component Analysis (ICA) is a popular approach in blind source

separation which assumes mutually independent non-Gaussian latent variables.

ICA recovers the latent signals by maximizing the non-Gaussianity of each signal

or minimizing the dependence between the signals. In contrast, Factor Analysis

(FA) assumes spherical Gaussian latent variables. This assumption is not valid in

our case where the source signals are assumed piecewise-constant. FA estimates M

using the covariance matrix of the observed variables, and cannot be used directly

when the covariance matrix is singular. Both ICA and FA require a user-specified

K as an estimate for r, and do not have any sparsity assumption on M . FA

does not work with large K since the covariance matrix does not have sufficient

information to estimate M [33].

PCA does not specifically model data variability from the noise component,

and is often used for the purpose of dimensionality reduction. Probabilistic PCA

(PPCA) [19], on the other hand, includes this component and can additionally be

used to recover latent signals. Both the latent variables and the noise are given

a spherical Gaussian distribution. PPCA estimates the parameters by maximum

likelihood estimation. Bayesian PCA (BPCA) [9] is a Bayesian treatment on the

basis of PPCA and further places a spherical Gaussian prior on each column of M ,

which automatically shrinks entire columns of M to recover the effective dimen-

sionality of the latent space. Further works include shrinking column i of M and

row i of S simultaneously by assigning them mean-zero spherical Gaussian priors

with the same covariance [68], and capturing sparsity only in S through a three

parameter Beta prior acting on the local, factor-specific and global level [23]. In

our case, the source signals are piecewise-constant, and hence not sparse, Gaussian

or independently and identically distributed. We apply the sparsity assumption

on the change magnitudes instead, and use multiple levels of sparsity on both the
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change magnitudes and M .

3.3 Problem Formulation

We observe Y P RPˆN , a P -dimensional data stream of length N . Each column

take the form Y¨n “MS¨n `E¨n, where M P RPˆr is the mixing matrix, S¨n is the

r-dimensional source signal, and E¨n is the P -dimensional noise vector, at index n.

This is the general formulation of the cocktail party problem with P microphones

and r conversations observed for N time points. Here, Y is not necessarily a time

series, but data which are indexed sequentially. S is assumed to have full row rank.

We assume that the source signals are piecewise-constant. Each segment can

be of any length, and adjacent segments have different means. Latent variables are

driven by the same underlying system state, and hence may share change locations,

but change directions and magnitudes are not necessarily the same. We assume

that the linearly-mixed signals are corrupted by independent Gaussian noise, but

noise variances are not necessarily the same across channels. In the cocktail party

analogy, this means that each microphone is subject to a different amount of noise

due to the environment and microphone quality. The Gaussian assumption is

standard in parametric change detection models [63, 51, 6].

We aim to decompose Y into its components without further information. Al-

though the decomposition solution is not unique, [23] reports that sparsity for-

mulations in their Bayesian latent variable model helped to stabilize fitting. We

similarly apply multiple levels of sparsity in our model, as described in the next

section.
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3.4 Proposed Method: ABACUS

We introduce our Bayesian data model and estimation method, as well as our

change detection approach which makes use of MCMC posterior samples.

3.4.1 A Bayesian Latent Variable Model

We decompose source signals further into components consisting of either addi-

tive outliers (AO) or level shifts (LS). Additive outliers are abrupt mean changes

lasting for only one index, while level shifts persist for two or more indices. This

decomposition allows us to naturally distinguish between the two types of changes,

such that they can be studied separately, e.g., a user may remove additive outliers

and retain level shifts for analysis. Let K be a user-specified upper bound for

rankpSq “ r such that r ď K ă P . Then our modified formulation is

Y¨n “MS¨n ` E¨n

S¨n “ Sp0q¨n ` S
p1q
¨n

Sp0q¨n “ V p0q¨n and 4Sp1q¨n “ V p1q¨n

where M is the P ˆK mixing matrix, S is the K ˆN source signal matrix, E is

the P ˆ N error matrix, Sp0q and Sp1q are the K ˆ N component matrices of S,

V p0q and V p1q are KˆN ‘sparse’ matrices, and 4 is the differencing operator. The

diagonal covariance matrix of E¨n is denoted by Ψ “ diag pψq, so E¨n „ N p0,Ψq.

We place sparse group priors on the columns of M and rows of V p0q and V p1q

for dimensionality reduction of the latent space. Furthermore, we place sparse
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group priors on the columns of V p0q and V p1q to select a subset of indices as change

locations. We also use elementwise sparsity on V p0q and V p1q to allow sparse changes

for each latent variable.

We choose to use horseshoe priors because the horseshoe-shaped shrinkage pro-

file discovers null values without diminishing strong signals. [12]. We extend the

global-local shrinkage hierarchy to impose sparsity in the model at the element

and group level.

For 1 ď i ď P and 1 ď h ď K and 1 ď n ď N and d P t0, 1u, we set priors as

M¨h|λ
p0q
h , λ

p1q
h , τ p0q, τ p1q,Ψ „ N

´

0, λ
p0q
h λ

p1q
h τ p0qτ p1qΨ

¯

V
pdq
hn |φ

pdq
n , λ

pdq
h , γ

pdq
hn , τ

pdq
„ N

´

0, φpdqn λ
pdq
h γ

pdq
hn τ

pdq
¯

ψi „ Γ´1 p1, 1q

τ pdq|ξpdq „ Γ´1
ˆ

1

2
,

1

ξpdq

˙

λ
pdq
h |η

pdq
h „ Γ´1

˜

1

2
,

1

η
pdq
h

¸

φpdqn |ω
pdq
n „ Γ´1

˜

1

2
,

1

ω
pdq
t

¸

γ
pdq
hn |ζ

pdq
n „ Γ´1

˜

1

2
,

1

ζ
pdq
hn

¸

ξpdq, η
pdq
h , ωpdqn , ζ

pdq
hn „ Γ´1

ˆ

1

2
, 1

˙

whereNpq denotes the Gaussian distribution and Γ´1pq denotes the Inverse Gamma

distribution. Marginally, the shrinkage parameters τ pdq, λ
pdq
h , φ

pdq
n and γ

pdq
hn are half-

Cauchy, as in the horseshoe setup. Given the shrinkage parameters, we impose

the prior belief that the source signals are independent, but the posterior is not

necessarily so.
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Let Dp1q be the matrix representation of 4 such that Sp1q
“

Dp1q
‰T
“ V p1q,

and let Dp0q “ I such that Sp0q “ V p0q. Now, we define the expression F “

SST ` diag
`

τ p0qτ p1qλp0qλp1q
˘´1

, which appears below.

For 1 ď i ď P , 1 ď n ď N , and d P t0, 1u, we derive the full conditionals for

the posterior distribution of the main model components below. Distributions of

all additional parameters are provided in the Supplementary Materials. First,

Mi¨|¨ „ N
`

F´1SYi¨, ψiF
´1
˘

ψi|¨ „ Γ´1
ˆ

1`
N

2
, 1`

1

2
pYi¨ ´Mi¨Sq

T
pYi¨ ´Mi¨Sq

˙

and for V
pdq
¨n , the full conditional distribution is

N
´

“

Bpnq
‰´1

MTΨ´1Cpnq
“

Dpdq
‰´1

¨n
,
“

Bpnq
‰´1

¯

where

Bpnq “MTΨ´1M
´

“

Dpdq
‰´T

n¨

“

Dpdq
‰´1

¨n

¯

`

diag
`

φpdqn λpdqγpdq¨n τ
pdq
˘´1

Cpnq “ Y ´MS `MV pdq¨n

“

Dpdq
‰´T

n¨
.

We use Gibbs sampling to approximate the posterior. The procedure is easily

parallelized. Furthermore, the number of model components and parameters de-

pend on K and correctly setting a small K can significantly reduce computational

time.
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In our modified Y “ MS ` E model, multiple levels of sparsity regulate the

transformations each solution pair M and S can take to reach a different solution

pair, but we cannot identify the sign and scaling of M and S. To recover the

components and parameters empirically, we use the median of the posterior samples

to provide robustness against possible movements of the sampling path between

different solutions.

3.4.2 Change Detection

In our data model, V p0q and V p1q contain the changes for each latent variable at

each index. The matrices are sparse since only entries which correspond to changes

are nonzero. Let f
pdq
n be the element with the largest magnitude in V

pdq
¨n . At any

index n, f
pdq
n is nonzero if and only if there is a change of type d in at least one latent

variable. Finding all such indices is equivalent to finding the change locations. We

use the median defined

pgpdqn “ median
´

pf pdqn

¯

for robustness with empirical samples.

Since we impose horseshoe priors on V pdq, the entries are shrunk to approx-

imately zero but not exactly zero. To identify the approximately zero values in

the estimated pgpdq, we apply kernel density estimation on |pgpdq| with a rectangular

kernel and set the cutoff to be at the first minimum in the density function such

that the minimum value is below threshold δ. The threshold ensures that the ap-

proximately zero and non-zero values are sufficiently different. We set δ “ 10´10

for all our experiments.
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3.5 Implementation

We fit the full Bayesian latent variable model in Section 3.4.1 by first fitting a

partial model. The partial model differs only in that it does not include Sp0q or V p0q

and their associated parameters, and hence we drop the superscripts when referring

to its components and parameters. Changepoints cpt detected by the partial model

are a mix of additive outliers (AO) and level shifts (LS), with the former being

detected as two consecutive mean changes of opposite signs in pg. We distinguish

between the two types of changes according to this observation with Algorithm

1, and produce additive outliers cpt0 and level shifts cpt1. We decompose the

estimated components and parameters from the partial model according to cpt0

and cpt1, and pass them to the full model as initialization. For example, V p0q is

initialized with values from pV at cpt0, and V p1q is initialized with values from pV

at cpt1.

Algorithm 1: Separating AO and LS changes

Data: Estimated pg, ordered change points cpt
Result: Additive outliers cpt0, level shifts cpt1

1 cpt0 “ cpt1 “ tu;
2 i “ 1;
3 while not at end of cpt do
4 condition 1: cptri` 1s ´ cptris “ 1;
5 condition 2: pg corresponding to cptris and cptri` 1s are of opposite

signs;
6 if condition 1 and 2 are True then
7 add cptris to cpt0;
8 i “ i` 2;
9 else

10 add cptris to cpt1;
11 i “ i` 1;
12 end
13 end

The partial model is smaller and hence can quickly estimate components and

parameters for initialization. This step stabilizes fitting the full model and helps to
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Figure 3.2: Implementation procedure. From observations Y, a partial model is
first fit and its estimations initialize the full Bayesian model. Final estimates of
source signals and change points are obtained from the median of MCMC samples.

achieve better distinction between the two types of changes. The entire procedure

is shown in Figure 3.2. The final two boxes in green indicate the final outputs for

change detection and source recovery.

3.6 Simulation Study

We conduct several experiments according to the model Y “ MS ` E described

in Section 3.3. We fix the latent space dimensionality r “ 3, and vary N and

P . Some methods require a user-specified K as an estimate for r, and we test

their robustness to the selection of K. Although r cannot be controlled in real

data applications, we also include an experiment where r is varied to simulate

different data generating processes. Entries of M are drawn independently from

Unifp´1, 1q, and each noise variance as ψi „ Unifp0.1, 5q. Given the number of

additive outliers and level shifts, change locations are sampled uniformly at random

from t2, 4, 6, . . . , N´1u. This ensures that level shifts are at least of length two and

that we do not unintentionally construct level shifts through consecutive additive

outliers. To construct sparse changes, at each change location, the number of latent

signals experiencing change is selected uniformly at random. Change magnitudes

are drawn from Unifp1, 5q with the sign being equally likely to be positive or
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negative.

We compare ABACUS against state-of-the-art change detection techniques and

popular latent variable models which are marked by ˆ and ˝, respectively, in plots

in this section. We use default parameters in software packages unless otherwise

specified. To find additive outliers, we set the minimum segment length param-

eter to one where possible in competing change detection implementations. The

detected changes are categorized into additive outliers and level shifts using Algo-

rithm 1 without Condition 2, except for TSO mentioned below which automatically

outputs different types of changes. For all MCMC procedures, number of iterations

is 3000 and burn-in is 500. Each simulation is run 100 times, and we report the

average performance according to the evaluation metrics in Section 3.6.1.

Amongst competing multivariate change detection methods, GFLseg [11] finds

candidate mean changes by group fused Lasso followed by selection via dynamic

programming. E-divisive [44] uses binary segmentation to iteratively locate each

single change point through measuring between-segment distance by the energy

statistic. We specify its moment index parameter α “ 2 to find level shifts, and

min.size “ 2 the smallest segment length allowed, which implies E-divisive is

unable to find additive outliers. BCP [20] is a Bayesian method which models the

presence of mean change at each location through an indicator variable and uses

MCMC sampling to infer the posterior probability of change. BCP outputs a set

of change points corresponding to each posterior sample, hence for evaluation we

compute the average metric across all these sets. We also combine BPCA [9] and

BCP to obtain a two-step Bayesian approach to first compress and then detect.

Inspect [62] transforms observations into a univariate series through cumulative

sum transformation before applying wild binary segmentation. We also test three
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univariate methods by first applying PCA to the observations. PELT [38] is a

popular parametric approach that uses dynamic programming to efficiently find the

segmentation that minimizes the negative log-likelihood plus a penalty. We refer

to the non-parametric version as np-PELT, which uses the empirical distribution

instead [30]. A third method, TSO, jointly estimates ARIMA model parameters

and change effects due to additive outliers and level shifts [15].

To fit the latent variable model, we tested against well-established methods

including Independent Component Analysis (ICA), Factor Analysis (FA) and

Bayesian Principal Component Analysis (BPCA). Note that ICA and FA do not

impose sparsity assumptions, whereas BPCA imposes sparsity on the columns of

M . For ICA, we use the FastICA implementation which measures non-Gaussianity

using negentropy [34]. For FA, we use the factanal function in R [56] which au-

tomatically checks for identifiability given K and does not fit a model if K is too

large to fit a unique model.

3.6.1 Evaluation Criteria

We evaluate the detection of additive outliers and level shifts separately since

some competing methods [44] detect one but not the other. We report precision

and recall, and treat an estimate as accurate if it is within w of a true change

location. We set w “ 1 for the small sample experiment in Section 3.6.2, and

w “ 3 for the larger sample experiments in Section 3.6.3, 3.6.4 and 3.6.5.

We evaluate the quality of model recovery through components M and S, and

noise variance parameter ψ. Given true mixing matrix M and estimate xM , we

center and scale each row of the matrices and measure their dissimilarity using the
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squared trace metric in [23],

εM “
1

P 2
Tr

´

MMT
´ xMxMT

¯

.

The metric εM is invariant to orthogonal rotation and allows cases where either

MMT or xMxMT is singular. Next, given true source signals S and estimate pS,

we measure their dissimilarity using a variation of averaged squared Euclidean

distance

εS “
1

r

r
ÿ

i“1

p1´ |ρi|q

where ρi is the Pearson correlation coefficient between Si¨ and some pSj¨, and each

pair is found greedily by descending magnitude of correlation. This measure is

invariant to sign and label switching. Finally, given true noise variance ψ and

estimate pψ, the difference is measured by their scaled squared norm

εE “
1

P
}ψ ´ pψ}22.

3.6.2 Simulation 1: Variations in P

We test the case of small sample size N “ 100 and varying P P t10, 30, 60, 90, 110u.

Each sample has two additive outliers and two level shifts, and K is set to 5.

As seen from Figure 3.3, competing methods have high precision but low recall

on additive outliers. As P increases, ABACUS can locate most of the additive

outliers, and is one of the best-performing methods for level shifts. Both precision

and recall on level shifts decrease as P increases for BCP, possibly because param-

eters such as the prior on change probabilities need to be adjusted. BPCA + BCP
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has more consistent performance, indicating the advantage of detecting changes on

latent signals. In terms of model recovery, our method also gives the lowest errors

for M , S and ψ, see Figure 3.4.

3.6.3 Simulation 2: Variations in N

We fix P “ 10 and vary N P t600, 800, 1000, 1200, 1400, 1600u. Each sample has

N
100

additive outliers and N
100

level shifts, and K is set to 5. Performance of all

methods is consistent across N , as shown in Figures 3.5 and 3.6. BCP shows

deteriorating performance in detecting level shifts just as it did in Section 3.6.2,

again possibly because model parameters need to be adjusted according to the

sample size. Overall, ABACUS offers the best balance of precision and recall on

additive outliers while all other competing change detection methods tend to miss

them. ABACUS has the highest recall for level shifts, and almost always has the

lowest errors for model recovery.

3.6.4 Simulation 3: Variations in K

We fix P “ 10 and N “ 1000. Each sample has ten additive outliers and ten level

shifts. We vary the user-specified estimate of the latent space dimensionality K

between 2 and 9. The true dimensionality r is 3. The horizontal lines in Figures

3.7 and 3.8 correspond to results of methods which do not have the parameter K.

According to Figure 3.7, the change detection results of ABACUS are consistent

across K. From Figure 3.8, ABACUS has much more consistent error εS in S

compared to competing latent variable models, whose εS increases sharply at K ě

r.
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(a) Additive outliers

(b) Level shifts

Figure 3.3: Average errors in change detection as data dimensionality P is varied;
N “ 100 and K “ 5 are fixed.

(a) Error εM for M (b) Error εS for S

(c) Error εE for ψ

Figure 3.4: Average errors in model recovery as data dimensionality P is varied;
N “ 100 and K “ 5 are fixed. FA does not support computations for P “ 110
due to non-identifiability.
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(a) Additive outliers

(b) Level shifts

Figure 3.5: Average errors in change detection as sample size N is varied; P “ 10
and K “ 5 are fixed.

(a) Error εM for M (b) Error εS for S

(c) Error εE for ψ

Figure 3.6: Average errors in model recovery as sample size N is varied; P “ 10
and K “ 5 are fixed.
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(a) Additive outliers

(b) Level shifts

Figure 3.7: Average errors in change detection as estimated latent space dimen-
sionality K is varied; fixed N “ 1000 and P “ 10.

(a) Error εM for M (b) Error εS for S

(c) Error εE for ψ

Figure 3.8: Average errors in model recovery as latent space dimensionality
parameter K is varied; N “ 1000 and P “ 10 are fixed. FA does not support
computations for K ě 7 due to non-identifiability.

51



(a) Additive outliers

(b) Level shifts

Figure 3.9: Average errors in change detection as latent dimensionality r is
varied; N “ 100, P “ 10 and K “ 5 are fixed.

(a) Error εM for M (b) Error εS for S

(c) Error εE for ψ

Figure 3.10: Average errors in model recovery as latent space dimensionality r
is varied; N “ 100, P “ 10 and K “ 5 are fixed.
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3.6.5 Simulation 4: Variations in r

We fix P “ 10, N “ 1000 and K “ 5. Each sample has ten additive outliers

and ten level shifts. We vary the latent space dimensionality r between 2 and

9. According to Figure 3.9, the change detection results of all methods are quite

consistent across r. In Figure 3.10, ABACUS has the lowest errors for model

recovery. For all methods, the error εM is lowest at r “ K, since otherwise the

dimensionality of the estimate xM is either overspecified or underspecified. As r

increases from 2 and 5, the error εS increases and peaks at r “ K since a higher

number of latent signal needs to be recovered. At r “ K, the estimated signals pS

needs to match the true signals pS in terms of correlation for each signal. As r ą K,

the average taken to calculate εS is only over the top K matching signals, hence

εS decreases slightly as there are more options in the true signals for matching.

3.7 Application to Real Data

In both data applications below we set K “ 5 and also study the robustness of

ABACUS to different K values.

3.7.1 aCGH Data

Array-based comparative genomic hybridization (aCGH) is a technique for study-

ing copy number alterations in event of diseases. We obtain the dataset from

the R package ecp [35], which has already removed sequences with more than 7%

missing values, and leaves 43 samples of different individuals with bladder tumor.
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Each sample has 2215 probes measuring the log2 ratio between the number of

transcribed DNA copies from tumorous cells and from a healthy reference [28]. A

negative ratio indicates deletion, a positive ratio indicates amplification, and zero

indicates an unaltered segment. We expect shared change locations for individuals

with the same medical condition.

To reduce computations and ease visualization, we thin the samples by taking

every 20th value. We arrive at a dataset with P “ 43 and N “ 111. ABACUS takes

approximately one minute to run on a standard desktop computer, and finds three

additive outliers and seven level shifts. An additive outlier here indicates a shorter

segment of genetic aberration compared to a level shift. A plot of all 43 samples

with the estimated change points overlaid is in the Supplementary Materials.

At least 99% of the variance of our estimated latent signals can be explained by

four principal components, while those found by ICA and FA require all five. As

observed in Figure 3.11, the third latent source signal recovered exhibits no evident

changes. We map the four other signals to unique sets of genetic aberrations in

different stages of bladder tumor in Table 3.1. For instance, patients with genetic

aberrations on chromosome arms 2q, 3q and 20p/q simultaneously tend to be in

tumor stage pT1, hence the changes detected can be indicative of diseases for new

patients. The mapping is established based on a bladder tumor research article [10]

which lists the frequent genomic alterations by chromosome arm in tumor stages

pTa, pT1 and pT2´4. Each stage is determined pathologically depending on the size

and location of the tumor.

ABACUS performs consistently across different K. Figure 3.12 shows that for

K P t10, 15, 20, 25, 30u, the change points and latent source signals recovered are

very similar to those found with K “ 5.
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Figure 3.11: aCGH: Latent source signals (1-5) recovered (black), and additive
outliers (red) and level shifts (blue) detected. Gray lines indicate the boundaries
between chromosome pairs.

S Chromosome arm with
changes

Tumor stage

1 2q, 3q, 20p/q pT1

2 17p/q, 18p/q, 19p/q,
20p/q

pT1

4 10q pTa, pT1, pT2´4

5 11p, 20p/q pT2´4

Table 3.1: aCGH: Genetic aberrations corresponding to changes detected on
latent source signals. To read the table, 20p is the short arm of chromosome 20,
and 20q is the long arm. Tumor stages range from a, 1 to 4 in order of severity.

(a) Additive outliers (red) and level shifts
(blue)

(b) Average correlation to latent signals at
K “ 5

Figure 3.12: aCGH: Changes and latent source signals recovered by ABACUS
are similar regardless of the specification of K.
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3.7.2 Electric Power Consumption Data

This dataset contains per-minute measurements of electric power consumption in

one household and is available on the UCI Machine Learning Repository [16].

The data has seven dimensions including global active power (GAP), global re-

active power (GRP), voltage (V), global intensity (GI), and three sub-meterings

corresponding to the kitchen (S1), laundry room (S2) and heating system (S3).

We expect shared change points since the seven dimensions are related arithmeti-

cally, and some electrical appliances tend to be used simultaneously. For instance,

1000
60

GAP´S1´S2´S3 is the power consumed by appliances outside of the kitchen,

laundry room and heating system. We analyze a full day’s worth of data, that is,

the observation matrix has P “ 7 and N “ 1440. ABACUS takes approximately

fifteen minutes to run on a standard desktop computer.

The Supplementary Materials contain a plot of the standardized data with

estimated changes overlaid. Although the data does not follow our model assump-

tions exactly since the amount of fluctuations or noise is more significant in the

first half of the day, and there are minor trend changes in the second half of the

day, ABACUS is robust and with post-processing it finds one additive outlier and

sixteen level shifts. We post-process by dynamic programming to prune the ini-

tially estimated level shifts. This is similar to GFLseg [11], except that we apply

the procedure on the latent source signals which are less contaminated by noise.

The change points are indicative of the household’s pattern of electricity usage,

which concentrates in the first half of the day as illustrated in Figure 3.13. The

fourth latent signal reflects the usage fluctuations and trends which differ across the

two halves of the day as measured by GAP and GI. ABACUS performs consistently

across different specifications of K. Figure 3.14 shows that for K P t2, 3, 4, 6, 7u,
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Figure 3.13: Power: Latent source signals (1-5) recovered (black), and additive
outliers (red) and level shifts (blue) detected.

(a) Additive outliers (red) and level shifts
(blue)

(b) Average correlation to latent signals at
K “ 5

Figure 3.14: Power: Changes and latent source signals recovered by ABACUS
are similar regardless of the specification of K.

the estimated change points and latent source signals recovered are similar to those

found at K “ 5.

Figure 3.15: Power: Additive outliers (red) and level shifts (blue) estimated vs
ground truth level shifts (green).

Since the sub-meterings S1, S2 and S3 demonstrate distinct level shifts when

the respective appliances are utilized, we extract ground truths for level shifts by
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(a) Precision (b) Recall

Figure 3.16: Power: Performance in estimating level shifts.

finding positions where these signals deviate from their base levels. Compared to

other change detection methods in Figure 3.15 and 3.16, ABACUS has the best

overall performance with precision “ 1 and recall “ 0.889.

3.8 Conclusion

In this work, we propose ABACUS, an automatic change detection procedure which

makes use of Bayesian latent variable modeling. Due to the separation of additive

outlier and level shift effects in the model, ABACUS naturally identifies these two

types of changes separately, unlike many competing approaches.

In simulations, ABACUS shows competitive or superior performance in both

change detection and model recovery. In two real data applications, ABACUS

found relevant change points and source signals. It is robust to over-specification

of K, an important property since the true value is rarely known to the user in

practice.
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3.9 Supplementary Materials

3.9.1 Posterior Distributions

Let Dp1q be the matrix representation of 4 such that Sp1q
“

Dp1q
‰T
“ V p1q. Also

Dp0q “ I such that Sp0q “ V p0q. We define the following expressions for the full

conditionals of the posterior distributions:

F “ SST ` diag
`

τ p0qτ p1qλp0qλp1q
˘´1

Gp0q “
p
ÿ

i“1

K
ÿ

h“1

M2
ih

2λ
p0q
h λ

p1q
h τ p1qψi

`

N
ÿ

n“1

K
ÿ

h“1

”

V
p0q
hn

ı2

2φ
p0q
n λ

p0q
h γ

p0q
hn

H
p0q
h “

p
ÿ

i“1

M2
ih

2τ p0qτ p1qλ
p1q
h ψi

`

N
ÿ

n“1

”

V
p0q
hn

ı2

2φ
p0q
n γ

p0q
hn τ

p0q

For 1 ď i ď P and 1 ď h ď K and 1 ď n ď N and d P t0, 1u, we derive the

full conditionals for the posterior distributions below. We leave out τ p1q and λ
p1q
h

since their full conditional distributions are similar in form to those of τ p0q and λ
p0q
h

respectively.
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Mi¨|¨ „ N
`

F´1SYi¨, ψiF
´1
˘

ψi|¨ „ Γ´1
ˆ

1`
N

2
, 1`

1

2
pYi¨ ´Mi¨Sq

T
pYi¨ ´Mi¨Sq

˙

τ p0q|¨ „ Γ´1
ˆ

1`Kpp`Nq

2
,

1

ξp0q
`Gp0q

˙

ξpdq|¨ „ Γ´1
ˆ

1, 1`
1

τ pdq

˙

λ
p0q
h |¨ „ Γ´1

˜

1` p`N

2
,

1

η
p0q
h

`H
p0q
h

¸

η
pdq
h |¨ „ Γ´1

˜

1, 1`
1

λ
pdq
h

¸

φpdqn |¨ „ Γ´1

¨

˚

˝

1`K

2
,

1

ω
pdq
n

`

K
ÿ

h“1

”

V
pdq
hn

ı2

2λ
pdq
h γ

pdq
hn τ

pdq

˛

‹

‚

ωpdqn |¨ „ Γ´1

˜

1, 1`
1

φ
pdq
n

¸

γ
pdq
hn |¨ „ Γ´1

¨

˚

˝

1,
1

ζ
pdq
hn

`

”

V
pdq
hn

ı2

2λ
pdq
h φ

pdq
n τ pdq

˛

‹

‚

ζ
pdq
hn |¨ „ Γ´1

˜

1, 1`
1

γ
pdq
hn

¸

For V
pdq
¨n , the full conditional distribution is

N
´

“

Bpnq
‰´1

MTΨ´1Cpnq
“

Dpdq
‰´1

¨n
,
“

Bpnq
‰´1

¯
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Figure 3.17: aCGH: Additive outliers (red) and level shifts (blue) detected by
ABACUS. Gray lines indicate the boundaries between chromosome pairs. Addi-
tive outliers correspond to shorter segments of genetic aberrations and level shifts
correspond to longer segments.

where

Bpnq “MTΨ´1M
´

“

Dpdq
‰´T

n¨

“

Dpdq
‰´1

¨n

¯

`

diag
`

φpdqn λpdqγpdq¨n τ
pdq
˘´1

Cpnq “ Y ´MS `MV pdq¨n

“

Dpdq
‰´T

n¨

3.9.2 Additional Plots for aCGH Data

Figure 3.17 plots all 43 samples with the estimated change points overlaid.

For comparison, we include again the recovered latent source signals with the

estimated change points overlaid in Figure 3.18.
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Figure 3.18: aCGH: Latent source signals (1-5) recovered (black), and additive
outliers (red) and level shifts (blue) detected. Gray lines indicate the boundaries
between chromosome pairs.

3.9.3 Additional Plots for Electric Power Consumption

Data

Figure 3.19 plots the standardized data from the electric power consumption

dataset with estimated changes overlaid. ABACUS is run on the standardized

dataset.

For comparison, we include again the recovered latent source signals with the

estimated change points overlaid in Figure 3.20.
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Figure 3.19: Power: Additive outliers (red) and level shifts (blue) detected by
ABACUS. The level shifts detected correspond well with appliance usages in sub-
meterings S1, S2 and S3.

Figure 3.20: Power: Latent source signals (1-5) recovered (black), and additive
outliers (red) and level shifts (blue) detected.
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CHAPTER 4

CHANGE DETECTION OF CELL CONFLUENCE WITH

LONG-MEMORY DEPENDENCE IN ECIS DATA

4.1 Introduction

We propose a model for time-series data that is characterized by two consecutive

regimes, which correspond to a highly nonstationary and nonlinear growth period

and a stable, equilibrium period. Often, researchers are interested in estimating

the features of each regime, as well as the timing of the transition or change point

between the two.

We are motivated by the analysis of data measured using electric cell-substrate

impedance sensing (ECIS). ECIS is a relatively new non-invasive method used to

study cell attachment, growth, morphology, function and motility [36]. Cells are

grown in medium within culture dish wells on top of small gold-film electrodes.

Alternating current is applied between the electrodes at different points in time,

and electrical impedance is measured. The electrical impedance measurements

can be interpreted as an indirect measure of cell growth; increasing impedance

indicates the presence of more cells covering the electrode. The ECIS technique

has been applied in numerous cell biology studies, such as cancer biology [32] and

cytotoxicity [52].

The ECIS data that we analyze in this paper consists of an initial growth

regime, followed by an equilibrium regime. During the growth regime, impedance

measurements increase as cells multiply and fill the well. Eventually, the cells fill

the well completely and confluence occurs. The equilibrium regime is characterized
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(a) MDCK normal cells
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(b) MDCK infected cells
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(c) BSC normal cells
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(d) BSC infected cells

Figure 4.1: Example of resistance measurements at 500 hertz for cell samples
cultivated in gel from Experiment 1 (black), 2 (red), 3 (green), 4 (blue). Growth
patterns differ across experiments, while cell behaviors after confluence are more
similar.

by a plateau in the measurements due to physical constraints preventing further

growth imposed by the well walls. Fluctuations of measurements after confluence

are caused by cell micromotion, and are believed to be less sensitive to initial

conditions and other sources of possible batch effects. The equilibrium regime

persists until the cells eventually exhaust their resources and begin to die. Figure

4.1 plots example samples from the MDCK and BSC cell lines that we analyze in

this work. Resistance measurements for the MDCK cells show distinct peaks while

regime transitions for BSC cells are less obvious visually, which also translate to

higher difficulty for change detection. The growth patterns differ across batches,

but cell behaviors after confluence are more similar.

It has been hypothesized that ECIS data can be used for cell classification.

For instance, features constructed from measurements after confluence have been

used for classification of cell lines [24], and to differentiate between cancerous and
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noncancerous cells [41]. After confluence, ECIS measurements have been found

to demonstrate long memory dependence, i.e. correlations that decay very slowly

over time [41, 61]. Long-memory dependence, which has also been observed in

wind speed and inflation data [29, 17] is often modeled as a Gaussian fractionally

integrated (FI) or long-memory process. Importantly, the FI process involves a

very small number of parameters - an overall mean µ, variance σ2, and a scalar long-

memory parameter d that governs how quickly temporal correlations decay. Ideally,

if these parameters could be estimated well, they might be useful for classifying

cells of different types. In our case, we classify infected versus normal cells as

plotted in Figure 4.1.

The long-memory parameter d is notoriously difficult to estimate in finite sam-

ples. Furthermore, the onset of confluence, which determines the amount of data

available to estimate d, is typically not precisely known in practice. Standard prac-

tice is use a fixed time point, e.g. 20 hours, as a conservative estimate of the start

of the confluence regime [61]. This under-utilizes the data, potentially resulting in

poorer estimates of the parameters of interest. Furthermore, such a conservative

estimate could incorrectly characterize the growth phase.

In this work, we focus on estimating the change point from growth to conflu-

ence, which consequently allows us to extract the growth trend and statistically

characterize the confluent state. By more accurately pinpointing the start of the

confluence regime, features can be extracted more accurately.

Identifying the change point from growth to confluence requires unsupervised

methods, because labeled data indicating the true change point are not available.

Among the unsupervised methods, we are not aware of existing work in detecting

the transition from a nonstationary model to a long-memory model. [18] detects the
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parameter change within a long-memory model. [13] detects outliers and changes

in ARMA (autoregressive moving-average) models, which are for short-memory

processes. Statistical time series change detection methods typically assume in-

dependent and identically distributed observations within a segment [44]. Some

methods restrict the distribution of the data [38], and some methods are only for-

mulated to find specific types of change points such as outliers and level shifts [65].

Change detection methods in the biomedical field are often domain-specific. In the

paper by Olshen et al., the authors propose circular binary segmentation to detect

DNA sequence copy number alterations [51], and in the paper by Nika et al., the

proposed method identifies important changes in serial magnetic resonance images

and rejects unimportant changes by comparing image representations against a

learned dictionary [50]. The data distributions assumed by these methods are not

suitable for the highly nonlinear and nonstationary growth processes we observe

in the ECIS data.

In Section 4.3, we propose a novel method named Growth-to-Confluence De-

tector (G2CD) for time series data that exhibit a strong growth pattern that tran-

sitions into a confluent state. We consider an exact search method which assumes

complete separation between the growth and equilibrium regimes, and an approxi-

mate search method which has better computational feasibility. The methods have

a likelihood-based formulation and model the long-range dependence structure in

the second regime with an FI process. The FI process and its generalizations

have been popularly applied in econometrics and climate science [4, 17, 29, 53].

The G2CD method can be naturally extended to multivariate data when replicate

samples are available. In Section 4.5, we demonstrate the performance of G2CD

in simulations. Finally, in Section 4.6 we demonstrate the performance of G2CD

on two real-world ECIS datasets. We further use the estimated change point and
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Figure 4.2: Overview of data generating process: growth phase consists of a non-
stationary time trend and heteroscedastic noise, and the confluence phase consists
of a stochastic temporal evolution and homogeneous noise.

long-memory parameter for a downstream task of classifying infected versus normal

cells, and achieve an increase in accuracy of over 18% and 7% for the two datasets,

respectively, compared to a feature-engineering method for cell classification [24].

4.2 Problem Formulation

We consider the data generating process motivated by observations from ECIS data

for cell growth. Let y1, y2, . . . , yT P R be a sequence of time-ordered observations

at t “ 1, 2, . . . , T , respectively. We assume that the measurements yt belong to

two successive regimes according to Figure 4.2.

Formally, let τ denote the change point, then:

yt “ f pt; βq ` ηt for t ă τ (4.1)

yt “ g pyτ , . . . , yt´1;µ, dq ` εt for t ě τ (4.2)

where ηt „ N p0, σ2
t q and εt „ N p0, ν2q. The noise terms are independent within
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and across the two regimes. They encompass both measurement errors as well

as random fluctuations due to continuous cell growth, motility, death and other

functions. The log-likelihood of yt is then:

` pytq “ `p1q pytq1tăτ ` `
p2q
pytq1těτ (4.3)

where `p1qpytq and `p2qpytq is the log-likelihood of yt under the first and second

regime, respectively. The dependencies on model parameters and historical values

of y are left out of the expression for simplicity.

During the first (growth) regime, the measurement at time t will be centered

around a growth curve f pt; βq which is a function of time t and fixed but unknown

parameters β. The noise terms ηt „ N p0, σ2
t q are possibly heteroscedastic, to

reflect different degrees of uncertainty in the measurements when the cell culture

undergoes different rates of growth. During the second (equilibrium) regime, the

measurement at time t will be centered about a function g pyτ , . . . , yt´1;µ, dq of

previous measurements yτ , . . . , yt´1 and fixed but unknown parameters µ, and d.

The noise terms εt „ N p0, ν2q are homoscedastic with fixed but unknown variance

ν2, since the cell culture is in equilibrium and not undergoing drastic changes.

4.3 Model

We describe our modeling choices of the two regimes in Section 4.2.
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4.3.1 The first regime: Growth

Resistance measurements in the first regime, or the growth phase, are characterized

by a trend of initial steep increase followed by a plateau, as well as heteroscedas-

ticity with higher variance at the stage of rapid cell growth. The growth curve is

denoted as f pt; βq. Depending on the growth trend, any appropriate parametric,

semi-parametric or nonparametric model can be used to fit the first regime. The

exact formulation of the growth curve can depend on the application domain and

the choice of the user. For the ECIS application that we focus on in this work, we

assume a smooth growth curve. This is in line with visual inspection of real ECIS

data in Figure 4.1, and that cell growth, motility, death and other functions are

continuous processes. We utilize penalized splines for their flexibility to capture

the ECIS growth trend, since it is highly nonstationary.

We similarly use penalized splines in modeling the noise variance. The het-

eroscedastic noise term is denoted ηt „ N p0, σ2
t q and we define the variance

σ2
t as a function of time and fixed but unknown parameters θ. In particular,

log pσ2
t q “ h pt; θq.

A spline of degree D with Q distinct interior knots tu1, . . . , uQu is a function

formed by connecting polynomial segments of degree D with the constraints [58]

that:

• the function is continuous,

• the function has D ´ 1 continuous derivatives over the entire range of the

data,

• the Dth derivative is constant between knots.
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We construct the spline from B-splines Bi,kpuq which can be defined recursively

by the Cox-de-Boor formula:

Bi,0 “

$

’

’

&

’

’

%

1 if ui ď u ă ui`1

0 otherwise

Bi,k “
u´ ui
ui`k ´ ui

Bi,k´1puq `
ui`k`1 ´ u

ui`k`1 ´ ui`1
Bi`1,k´1puq

Each Bi,Dpuq is non-zero on rui, ui`D`1q, and there are a total of Q`D ` 1 basis

functions.

We denote the matrix of B-spline basis functions Bi,Dpuq for the growth

regime as X P Rpτ´1qˆpQ`D`1q. Then the spline is sptq “ x1tβ for coefficients

β P R
Q`D`1, where xt is row t of X. We impose the smoothness penalty

λ
ş

ŝ2puq2du on the spline estimate. This is equivalent to assuming a mean-zero

prior distribution for the spline coefficients with covariance matrix λ´1M´1, where

Mij “
ş

B2i,DpuqB
2
j,Dpuqdu and λ ą 0 is a scalar that corresponds to how aggres-

sively smoothness is encouraged.

Let X denote the pτ ´ 1q ˆ pQf `Df ` 1q matrix of basis functions for the

trend, and let V be the pτ ´ 1q ˆ pQh `Dh ` 1q matrix of basis functions for the

log variances of the noise terms, and let xt and vt refer to row t of the corresponding

matrix X or V. The model for the first regime takes the form

yt “ x1tβ ` ηt

log
`

σ2
t

˘

“ v1tθ

where ηt „ Np0, σ2
t q, and priors β „ Np0, λ´1f M´1

f q, and θ „ Np0, λ´1h M´1
h q under
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the equivalent Bayesian formulation.

4.3.2 The second regime: Equilibrium

The second regime, or the confluence phase, is fit with a fractionally integrated

process to capture long-memory dependence of the observations at confluence. We

assume that the noise variance ν2 and mean µ of the FI process are constant.

We assume that

g pyτ , . . . , yt´1;µ, dq “ µ´
8
ÿ

i“1

ˆ

d

i

˙

p´1qi pyt´i ´ µq1t´iěτ , (4.4)

where the parameter d plays the role of the long memory parameter in a Gaussian

fractionally integrated (FI) model [59], which is used for time series data that

display long memory, i.e. slowly decaying correlations over time.

The FI process is stationary and invertible if |d| ă 0.5. The process is nonsta-

tionary for d ě 0.5. When d P p0, 0.5q, the process is said to have long memory,

and the autocovariance function exhibits hyperbolic decay: γk „ ck2d´1 as k Ñ 8

where c is a finite nonzero constant. When d P p´0.5, 0q, the process is said to

have anti-persistence, long-range negative dependence or to be ‘overdifferenced’,

and the inverse autocorrelations decay hyperbolically.

When d P p0.5, 1.5q, we follow the standard treatment of taking a first difference

of the series such that zt “ yt´ yt´1 is a zero-mean stationary FI(d̃) process where

d̃ P p´0.5, 0.5q [59].
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4.3.3 Multivariate scenario

A general extension to the multivariate case assumes different parameters for each

dimension. We impose the additional condition that a subset of the parameter set

for the second regime is the same across all dimensions. Let Y P RTˆp. We assume

that

yt,j “ f pt; βjq ` ηt,j for t ă τj (4.5)

yt,j “ g pyτ,j, . . . , yt´1,j;µj, dq ` εt,j for t ě τj (4.6)

where ηt,j „ N
`

0, σ2
t,j

˘

with log
`

σ2
t,j

˘

“ h pt; θjq, εt,j „ N
`

0, ν2j
˘

, and priors βj „

Np0, λ´1fj M´1
f q, and θj „ Np0, λ´1hj M´1

h q. This corresponds to the univariate model

for each time series on column j of Y, but with a shared long memory parameter

d.

In the ECIS application, each dimension is a replicate sample, and the shared

parameter reflects the shared behavior when the cells reach the confluence regime.

We do not enforce shared parameters in the first regime βj and θj or shared change

points τj because varying initial conditions, such as the number of cells deposited,

can be unintentionally introduced and can affect the growth rates and time of

transition between the two regimes.

4.4 Estimation

We describe parameter estimation for the model outlined in Section 4.3. We de-

scribe the methods in terms of the univariate scenario before moving on to the
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multivariate scenario in Section 4.4.3.

4.4.1 G2CD-exact: exact search

G2CD-exact is a version of the proposed G2CD method which performs an exact

search for the transition point between the two regimes that maximizes the log-

likelihood of the data.

In the univariate case, the log-likelihood of yt under the first regime with the

change point candidate c has the form:

´
1

2

˜

logp2πq ` hpt; θq `
pyt ´ f pt; βqqq

2

exp phpt; θqqq

¸

(4.7)

The conditional log-likelihood for yt under the second regime has the form:

´
1

2

˜

logp2πq ` logpν2q `
pyt ´ g pyc, . . . , yt´1;µ, dqq

2

ν2

¸

(4.8)

All parameters are functions of c and are estimated for each candidate change

point.

Fitting the first regime by likelihood maximization will result in overfitting.

Hence we enforce smoothness of the spline fits by regularization on the β and θ

parameters as described in Section 4.3.1, and select the regularization hyperpa-

rameters λf and λh by leave-one-out cross-validation. We use an iterative Feasible

Generalized Least Squares (FGLS) procedure [40] to estimate the spline coeffi-

cients β. A more detailed explanation of the FGLS procedure is provided in the

Supplementary Materials.
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Figure 4.3: RMSE on trend estimation by fitting the first regime with the entire
series versus the true first regime across 2000 simulated series (100 simulated series
for each of 20 d’s) per τ . Medians are plotted and error bars indicate the upper
and lower quartiles.

In G2CD-exact, we estimate β and θ for each candidate change point c. We

find that estimating the spline coefficients on the entire time series and fixing them

across c does not significantly degrade model fitting performance, and hence can

be considered as a faster alternative. The spline bases are flexible to fit local trends

and we show through simulations that fitting on the entire series is almost as good

as fitting on the true first regime in Figure 4.3. The simulation set-up is detailed

in Sections 4.5.1 and 4.5.2.

Given the candidate change location, we fit the second regime parameters d,

µ, and ν2 by maximum likelihood. Note that a cross-validation procedures is

not suitable for the second regime because the FI process is dependent on past

observations.

The estimate change point τ̂ is selected as the time index that maximizes the
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sum of the log-likelihood for the two regimes. In practice, it may be reasonable to

restrict the candidate change locations to c P rτa, τbs, where the lower and upper

bounds on the change point τa and τb are specified by the user.

4.4.2 G2CD-fast: approximate search

G2CD-fast models the step transition function between the two regimes with a

smooth transition function, and offers computational speed-ups since it does not

need to evaluate model fit at each candidate change point. We define w pt;αq to

be a continuous sigmoid or logistic function

wpt;αq “ sigmoid pα0 ` α1tq , (4.9)

where sigmoid pxq “ 1
1`e´x P p0, 1q. The function is parameterized by a pair of con-

tinuous, real-valued parameters α “ tα0, α1u such that the function monotonously

increases from 0 to 1. We can think of G2CD-fast as doing an approximate search

for the change point. Because the log-likelihood of the data can be differentiated

with respect to α, GCD-fast has the potential to be a computationally simpler

alternative to G2CD-exact.

Incorporating the transition function, then the objective function at yt becomes:

` pytq “ `p1q pytq p1´ w pt;αqq ` `
p2q
pytqw pt;αq (4.10)

where `p1qpytq and `p2qpytq is the log-likelihood of yt under the first and second
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regime, respectively, as in Equation 4.3. The expression for the FI process becomes:

g py1, . . . , yt´1;µ, dq “ µ´
8
ÿ

i“1

ˆ

d

i

˙

p´1qi pyt´i ´ µqw pt´ i;αq , (4.11)

First regime parameters are estimated in the same way as in G2CD-exact. The

remaining parameters are estimated by maximizing the log-likelihood jointly with

respect to α, d, µ, and ν2. The constraint that the gradual transition between the

two regimes lies between the user-specified lower- and upper-bounds τa and τb can

be enforced by adding a penalty Cpwpτb;αq´wpτa;αqq with fixed penalty parameter

C ą 0 to the objective function. Larger values of C more strongly encourage the

transition to occur within the user-specified range rτa, τbs by encouraging wpτa;αq “

0 and wpτb;αq “ 1. For a given application, C can be set to be on the order of the

log-likelihood component using an initial estimate of the transition function, such

as α̃0 “ ´
τa`τb

2
and α̃1 “ 1 so that w

`

τa`τb
2

; α̃
˘

“ 1
2
.

4.4.3 Multivariate Scenario

When there are p replicates of the sequences, the log-likelihood objective function

is a sum of the log-likelihoods of the individual sequences. The only constraint

is that the long-memory parameter d is shared across dimensions as described in

Section 4.3.3.

When change locations are allowed to differ across replicates, the number of

possible combinations for change locations is mp, where m is the number of time

indices in rτa, τbs. An exhaustive search for the best combination is often compu-

tationally prohibitive. For this reason, we use the following two-step procedure.
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First, we run G2CD-exact or G2CD-fast on each univariate sequence to obtain

estimates of βj, θj, τj, and an initial time series specific value of dj, µj, ν
2
j . Fixing

the estimates for βj, θj, and τj at these values, we then optimize over d having

initialized at the mean univariate estimate across all of the time series p´1
řp
j“1 d̂j.

The remaining parameters µj’s and ν2j ’s are re-estimated simultaneously with d.

4.5 Simulation Study

We test for the performance of the proposed G2CD methods in estimating τ and d

under difference scenarios, comprising both univariate and multivariate sequences.

We set up the simulations to be similar to the ECIS data described in Section 4.1.

For the univariate experiments, each simulated series has T “ 400 observations,

with time indices scaled to 70 hours to match the ECIS applications. The value for

τ ranges from 15-hour to 45-hour at intervals of 5, the exact value differs slightly

due to spacing of the time indices. The trend in the first regime is generated

using a degree-5 polynomial or Gaussian process. Heteroscedastic noise is added

to the first regime, where the standard deviation is between 0.1 and 2, with larger

standard deviation at higher value of the trend. The linear relationship is σi “

2´0.1
maxtyju

τ
tj“1´mintyju

τ
j“1

”

yi ´min tyju
τ
j“1

ı

` 0.1. In the second regime, the value for

d ranges from -0.45 to 1.45 at intervals of 0.2. The standard deviation of noise

is constant at ν “ 0.5. For each combination of τ and d, 100 simulations are

conducted. The candidate range of τ is set to r10, 50s. We use spline basis of degree

3 with knots at every integer value of t when fitting β, and knots at every integer

multiple of 5 when fitting θ. The regularization hyperparameters λf and λh are

found by leave-one-out cross-validation. We use the smooth.spline function in R
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[56] to fit the splines. The function optimizes for the regularization hyperparameter

through a Golden-section search routine. When implementing G2CD-fast, we fix

C “ 1000.

For the multivariate experiment, the dimensionality is set to p “ 3. The series

on each dimension is generated following the same procedure as in the univariate

experiments described above with the first regime generated using a Gaussian pro-

cess. The three series have different change locations, at 15, 25 and 45, respectively.

For each d, 100 simulations are conducted.

Since we are not aware of current methods tackling the change point problem

involving the transition from a non-stationary model to a long-memory process,

we compare the performance of G2CD with a 2-step procedure of change detection

and estimation of d, as well as methods which estimates d with a given change

location. Change detection is carried out using the popular E-Divisive algorithm

[44], a nonparametric procedure which uses the energy statistics as a distance

metric for binary segmentation. We use ECP and ECP.fdiff to denote the procedure

where E-Divisive is applied on the original and differenced sequence, respectively.

We specify ECP to find a maximum of 3 change points to have a higher chance

of finding a change point in the τ candidate range. The estimated τ is set to

be the first, which is also the most significant change point, found within the τ

candidate range. After τ is estimated, d is estimated with the MLE of FI(d). For

comparison, we also include FixedTau where the estimate of τ is fixed at the end of

candidate range τb “ 50, and TrueTau where the true change location is given and

used. TrueTau gives the best d estimate that can be attained through maximum

likelihood estimation. FixedTau sets the bar for estimating d with conservative

data usage.
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We present the simulation results collectively in Figure 4.4 and provide details

for each simulation experiment in the respective sections below. We discuss further

the performance of G2CD in Section 4.5.5.

4.5.1 The first regime generated via polynomial

The series component in the first regime is generated from degree-5 polynomials.

The coefficients are produced by drawing randomly from a normal distribution

Np0, 0.12q and further shrinking the output for coefficients corresponding to high

degrees. For degree j where j ě 3, the output is shrunk by a factor of 0.1j. This

ensures an expressive series that is not dominated by higher-order terms, since the

higher-order terms can result in the first regime being scaled disproportionately to

the second regime.

From Figure 4.4a, we see that the proposed G2CD methods recovers τ and

d better than the ECP methods. ECP assumes that observations in a segment

are independently and identically distributed, which does not hold for data in our

use-case, and tends to segment too early. This results in poor estimates for τ and

subsequently d. The G2CD methods obtain as good estimates of d as TrueTau

which is given the true value of τ used. This demonstrates that G2CD is capable

of additionally estimating τ without compromising the estimation for d. We notice

that G2CD-exact tends to overestimate τ , which is not surprising since splines are

capable of flexible fits. We discuss this phenomenon further in Section 4.5.5.

In terms of run-time, G2CD-fast roughly 10 times faster than G2CD-exact on

average, which makes it more comparable with ECP in term of computation time

while giving much better parameter estimates.
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(a) The first regime generated via degree-5 polynomials; the second regime generated
via FI(d).
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the second regime generated via FI(d).
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(d) Multivariate simulations with dimensionality 3, with change points at 15, 25, and
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Figure 4.4: Estimations for change location τ and long-memory parameter d,
and computation time across 100 simulated series per each combination of τ and
d for each simulation configuration. In plots for τ and d, medians are plotted and
error bars indicate the upper and lower quartiles.

82



4.5.2 The first regime generated via Gaussian process

The series component in the first regime is generated from a Gaussian process with

the squared exponential kernel KSEps, tq “ 10exp p´0.5ps´ tq2q. The sequences

generated from Gaussian process is more varied as compared to polynomials in

terms of trend. Performances as shown in Figure 4.4b are similar to those in

Section 4.5.1.

4.5.3 The first regime generated via Gaussian process, the

second regime generated via ARFIMA(1,d,1)

This set of experiments aims to test G2CD’s robustness to model misspecification

in the second regime. The series component in the first regime is generated from

a Gaussian process as described in Section 4.5.2. The series component in the

second regime is generated from ARFIMA(1,d,1) where the autoregressive and

moving-average coefficients are drawn from a uniform Unifp0, 1q distribution.

From Figure 4.4c, as compared to the results in Section 4.5.2 with no model

misspecification, we see here that the G2CD methods obtained similar performance

for estimating τ but show higher inaccuracy for the estimation of d. However, the

level of accuracy is still on par with TrueTau.

4.5.4 Multivariate scenario

In this experiment, each multivariate sample has dimensionality 3. Each of the 3

sequences are generated from a Gaussian process as in Section 4.5.2 for the first

83



0.0

0.1

0.2

0.3

-0
.4

5

-0
.2

5

-0
.0

5

0
.1

5

0
.3

5

0
.5

5

0
.7

5

0
.9

5

1
.1

5

1
.3

5

d

E
rr

o
r 

in
 d

 e
s
ti
m

a
te

method

multivariate

univariate

Figure 4.5: Absolute errors in estimates of d by univariate and multivariate
implementations of G2CD-exact. The pooled estimates reduced errors.

regime, and a FI process for the second regime, and has a change point at 15, 25,

or 45. The long-memory parameter d is shared across the 3 sequences.

For both ECP and G2CD, change points are detected independently for each

series. Figure 4.4d reflects that G2CD estimates τ more accurately than the ECP

methods, as in the univariate experiments. G2CD-exact’s estimation of d is com-

parable to TrueTau’s. G2CD-fast overestimates d slightly when d is just above 0.5,

but has computational time roughly 10 times as fast as G2CD-exact. Hence G2CD-

fast is still a viable option in providing balance between the quality of estimation

and computational speed.

We compare the absolute errors in the estimates of d by the univariate and

multivariate implementations of G2CD-exact in Figure 4.5, which demonstrates

the benefit of the pooled estimates in reducing errors across all values of d tested.
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4.5.5 Discussion

From the simulation experiments, we notice that G2CD-exact tends to overesti-

mate τ . We plot the τ estimated by both G2CD methods for the simulations in

Section 4.5.2. From Figure 4.6, we observe that the issue is more prominent in

G2CD-exact for larger values of d, as the second regime begins to show more vari-

ability which may be picked up by the splines as part of the growth curve. On the

other hand, G2CD-fast is affected to a smaller extend. The plot shows the time

index when the regime transition function is estimated to cross 0.5. Since G2CD-

fast imposes a smooth transition function, it captures uncertainty in segmenting

the sequence by estimating a less steep transition function. Figure 4.7 shows the

difference between the estimated transition functions for simulated sequences with

a small and a large d.

Repeating the analysis on the estimates of d, we see from Figure 4.8 that as

the change location τ increases, the estimates of d are slightly more noisy for both

G2CD-exact and G2CD-fast. This is expected since as τ increases, less data is

available for the estimation of parameters in the second regime.

We further compare the estimates of d by G2CD and the FixedTau method in

this same set of simulations in Section 4.5.2 to explore benefits of segmenting the

sequence on long-memory parameter estimation. FixedTau segments all sequences

at 50. Figure 4.9 plots the absolute errors in the d estimates. Compared to

FixedTau, the G2CD methods have lower errors when the ground truth τ is small.

In particular, the upper quartile of G2CD-exact error becomes higher than that

of FixedTau error only at τ “ 45, which is near the upper end of the candidate

change point range τb. At high values of τ , the G2CD methods may start to

segment earlier than the ground truth, causing the observations used for long-
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Figure 4.6: G2CD estimates of τ for simulation setup where the first regime is
generated via Gaussian process with squared exponential kernel and the second
regime generated via FI(d). G2CD-exact tends to overestimate τ for larger values
of d ą 0.5 due to non-stationarity of the second regime.
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Figure 4.7: G2CD-fast estimates for simulation setup where the first regime
is generated via Gaussian process with squared exponential kernel and the second
regime generated via FI(d). The blue and green overlaid lines are the fit by G2CD-
fast for the growth and confluence phase, respectively. The vertical red dashed line
marks the time index when the regime transition function is estimated to cross 0.5.
The estimated transition is less abrupt for large d.
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(a) Estimates of d by G2CD-exact.
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(b) Estimates of d by G2CD-fast.

Figure 4.8: G2CD estimates of d for simulation setup where the first regime is
generated via Gaussian process with squared exponential kernel and the second
regime generated via FI(d). Estimates of d are slightly noisier as τ increases and
less data is available for parameter estimation in the second regime.
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Figure 4.9: Absolute errors in estimates of d for simulation setup where the first
regime is generated via Gaussian process with squared exponential kernel and the
second regime generated via FI(d). Medians are plotted and error bars indicate the
upper and lower quartiles. G2CD reduced errors when the ground truth τ is small.
For larger τ , G2CD may underestimate τ , which increases errors in estimating d.

memory parameter estimation to be contaminated with first regime observations.

Between the two G2CD methods, G2CD-fast show this effect earlier since phase

transition is modeled with a smooth curve.

4.6 Application to ECIS Data

Two sets of data are used, the first is from Madin-Darby Canine Kidney (MDCK)

cells, and the second is from BSC cells of African green monkey kidney origin.

Both are model mammalian cell line used in biomedical research. Each dataset

consists 4 experiments. Each experiment uses a tray with 96 wells, of which some

are left empty to act as buffers between differently-treated cells. The wells differ by

the serum type (bovine serum albumin BSA vs gel) and the presence of infection

by mycoplasma. The effective configuration is 8 wells for BSA and uninfected, 8

wells for gel and uninfected, 12 wells for BSA and infected, and 12 wells for gel

and infected. The exception is that Experiment 2 for MDCK cell line has one less
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well for BSA and infected.

We study the measurements of resistance, a component of impedance, provided

at the frequency of 500 hertz. All wells are observed for at least 72 hours. Figure

4.10 and 4.11 plots the time series and spectrogram for a MDCK sample and a BSC

sample, as well as standardized residuals from model fitting with G2CD-exact. The

residuals from the first regime are scaled by σt estimated. The residual plots show

that the normal assumption for the noise terms is met.

For model fitting, the hyperparameter setups are the same as in Section 4.5

since the simulations are generated to assimilate the ECIS data, except that the

candidate change point range for the BSC cell line is set to an earlier period of

r5, 45s to capture the earlier peak observed in the dataset.

4.6.1 MDCK cell line

From Figure 4.10, we see that the resistance measurements for the MDCK cell line

tend to peak before slightly decreasing to reach a constant trend. The start of the

confluence phase is hypothesized to be at or slightly after the peak.

Table 4.1 summarizes the average d estimated by G2CD-exact and G2CD-fast

across experiments, serum types and infection status. Except for Experiment 2,

the average d for infected samples is always higher than that of normal samples.

Figure 4.12 plots the τ and d estimated by G2CD-exact for each of the MDCK

samples. The estimated change points are scattered within the candidate range of

r10, 50s, signifying varied initial conditions even in the same batch. All d estimates

are above 0.5, which means that the differenced series have intermediate or long-
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(a) Time series and spectrogram of resistance measurements recorded at 500 hertz. The
blue and green overlaid lines are the fit by G2CD-exact for the growth and confluence
phase, respectively.
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(b) Residual analysis of standardized residuals for the growth phase.
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(c) Residual analysis of standardized residuals for the confluence phase.

Figure 4.10: MDCK cell; infected and cultivated in gel.
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(a) Time series and spectrogram of resistance measurements recorded at 500 hertz. The
blue and green overlaid lines are the fit by G2CD-exact for the growth and confluence
phase, respectively.
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(b) Residual analysis of standardized residuals for the growth phase.
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(c) Residual analysis of standardized residuals for the confluence phase.

Figure 4.11: BSC cell; infected and cultivated in gel.

92



Expt Serum Infection
G2CD-exact G2CD-fast

Mean SD Mean SD

1

BSA
No 0.730 0.063 0.728 0.073

Yes 0.998 0.091 1.019 0.092

Gel
No 0.781 0.056 0.766 0.070

Yes 0.873 0.157 0.943 0.101

2

BSA
No 0.686 0.122 0.673 0.114

Yes 0.656 0.109 0.824 0.099

Gel
No 0.821 0.051 0.830 0.029

Yes 0.709 0.127 0.789 0.127

3

BSA
No 0.676 0.125 0.694 0.112

Yes 0.915 0.097 0.988 0.099

Gel
No 0.757 0.118 0.782 0.097

Yes 0.915 0.126 1.040 0.038

4

BSA
No 0.676 0.110 0.702 0.072

Yes 0.827 0.112 0.886 0.158

Gel
No 0.756 0.034 0.750 0.049

Yes 0.805 0.186 0.834 0.160

Table 4.1: MDCK: G2CD estimates of d. Average is taken for samples in the
same experiment, serum type and infection status.
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Figure 4.12: MDCK: G2CD-exact estimates for τ and d. Points are estimates
from the univariate version of the method, and horizontal lines mark estimates
from the multivariate version.

memory at confluence. We notice that Experiments 1, 3 and 4 are the most similar

in implying that infected cells tend to have d of larger magnitude. In particular,

when d ą 1, the differenced series demonstrate long-memory properties. The

only samples with d ą 1 are infected samples. When 0.5 ă d ă 1, the differenced

series demonstrate intermediate-memory. Experiment 2 is the most dissimilar from

the other experiments, reflecting the presence of batch effects. The horizontal lines

mark the d estimated by the multivariate version of G2CD-exact, which also reflects

that the d estimates for infected cells in Experiment 2 are lower than those in the

other three experiments.

4.6.2 BSC cell line

From Figure 4.11, we see that the resistance measurements for the BSC cell line

tend to increase sharply before plateauing. As compared to the MDCK cell line,
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the end of the BSC growth phase is less distinguishable due to fluctuations in

the resistance measurement even as it plateaus. This introduces more difficulty in

the change point detection problem, as well as the subsequent estimation of the

long-memory parameter.

Table 4.2 summarizes the average d estimated by G2CD-exact and G2CD-fast

across experiments, serum types and infection status. Contrary to the MDCK cell

line, the average d for the infected samples in the BSC cell line is lower than that

of normal samples in most cases.

Figure 4.13 plots the τ and d estimated by G2CD-exact for each of the BSC

samples. There is less distinct separation between the infected and normal cells.

Almost all d estimates are above 1, which means that the differenced series have

long-memory at confluence. In contrast to the MDCK cell line, the infected BSC

cells tend to have lower d than their uninfected counterparts as observed from Ex-

periments 1 and 2, signifying that the latter has stronger long-memory properties.

The horizontal lines mark the d estimated by the multivariate version of G2CD-

exact, which also reflects that the long-memory parameters between the infected

and normal cells are close in magnitude.

4.6.3 Classification for infection

To demonstrate the quality and usage of the estimated τ and d, we apply the two

estimated parameters as features in a downstream task. The task is to classify a

sequence by its infection status. We replicate the features and classifiers used in a

related work to classify cell lines from ECIS data [24]. The two classifiers tested are

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).
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Expt Serum Infection
G2CD-exact G2CD-fast

Mean SD Mean SD

1

BSA
No 1.101 0.077 1.102 0.076

Yes 1.003 0.056 1.017 0.044

Gel
No 1.098 0.050 1.106 0.054

Yes 1.036 0.101 1.015 0.077

2

BSA
No 1.057 0.092 1.057 0.083

Yes 1.018 0.085 1.041 0.079

Gel
No 1.089 0.063 1.079 0.066

Yes 1.021 0.069 1.012 0.047

3

BSA
No 1.056 0.051 1.085 0.080

Yes 1.079 0.063 1.072 0.053

Gel
No 1.057 0.092 1.064 0.095

Yes 1.042 0.050 1.043 0.043

4

BSA
No 1.101 0.051 1.106 0.065

Yes 1.130 0.063 1.131 0.055

Gel
No 1.114 0.060 1.119 0.045

Yes 1.089 0.073 1.086 0.055

Table 4.2: BSC: G2CD estimates of d. Average is taken for samples in the same
experiment, serum type and infection status.
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Figure 4.13: BSC: G2CD-exact estimates for τ and d. Points are estimates from
the univariate version of the method, and horizontal lines mark estimates from the
multivariate version.

The class discriminant scores for LDA (ρ “ 1) and QDA (ρ “ 0) in this binary

classification task are:

δc pXq “
`

X ´ sXc

˘T
pΣ´1c pρq

`

X ´ sXc

˘

` log |pΣcpρq| (4.12)

where

pΣcpρq “ p1´ ρqpΣc ` ρpΣ

for class c. QDA assumes that the features given the class is normally distributed

with a class mean and covariance, and LDA makes the further assumption that

the class covariances are equal for the two classes.

To account for batch effects between the 4 experiments for each cell line, we

test for robustness of the features by using each experiment as the test set in turn,
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Cell line Features
LDA QDA

Mean SD Mean SD

MDCK

Original 0.743 0.272 0.580 0.237

G2CD-exact 0.880 0.091 0.862 0.136

G2CD-fast 0.962 0.033 0.975 0.020

BSC

Original 0.563 0.060 0.588 0.072

G2CD-exact 0.650 0.098 0.630 0.113

G2CD-fast 0.675 0.108 0.644 0.085

Table 4.3: Classification accuracy for infection status. Average is taken by taking
each of the 4 experiments as the test set, and the other 3 as training set. Parameters
τ and d estimated by G2CD increased classification accuracy for both MDCK and
BSC cell line.

and training on the other 3 experiments. We report the mean test accuracy along

with the standard deviation in Table 4.3. The Original features [24] are

• Average resistance at a time fixed time-mark where the measurement tends

to peak;

• Maximum average resistance;

• Average resistance at the end of the sequence;

A simple moving average with window length 5 is taken to smoothen the sequence

to obtain more stable estimates of the features of interest. The time-mark used

for the first feature is 17-hour for MDCK and 2-hour for BSC, selected by visual

inspection of the data. The G2CD-exact features are a combination of the τ and

d estimated by G2CD-exact and a feature from the Original set that gives the

best training accuracy. The concept is the same for the G2CD-fast features. This

ensures that the same number of features is input into the classifiers.
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From Table 4.3, it is evident that the τ and d estimates from the G2CD meth-

ods are useful features that increase classification accuracy for both cell lines over

the Original features. For the MDCK cell line, using the LDA classifier, the Orig-

inal features have a mean classification accuracy of 0.743. Including G2CD-exact

and G2CD-fast features improved the mean classification accuracy by 18.4% and

29.4%, respectively. In the BSC cell line, using the QDA classifier, the Original

features have a mean classification accuracy of 0.588. Including G2CD-exact and

G2CD-fast features improved the mean classification accuracy by 7.1% and 9.5%,

respectively. As pointed out in Section 4.6.2, the change points for the BSC sam-

ples are less visually obvious, and hence the overall classification accuracy is not

as high as that for MDCK samples.

4.7 Conclusion

In this work, we proposed two versions of the method G2CD that automatically

segments measurements of cell activity through ECIS data into the growth and

confluence phase, as well as quantifies the long-memory behavior in the confluence

phase. This reduces the human supervision currently needed to manually segment

the data, and ensures that all samples are segmented using the same logic. Practi-

cal usage on the MDCK and BSC cell lines shows that G2CD recovers meaningful

change points and long-memory parameter in the confluence phase that improve

downstream tasks such as classification.
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4.8 Supplementary Materials

4.8.1 Feasible Generalized Least Squares

Heteroscedasticity is addressed through Feasible Generalized Least Squares

(FGLS). We adopt the following iterative procedure to fit the trend and noise

components:

1. Estimate the parameters β in f pt; βq assuming homogeneous noise by penal-

ized least squares;

2. Estimate the noise standard deviation tσtu
T
t“1 given β̂LS from step 1;

3. Re-estimate β given tσ̂tu
n
t“1 from step 2 through FGLS.

Let M denote the penalty on β. Then an application of FGLS [64] to the

penalized least squares problem is

β̂FGLS “
´

X 1
xW´1X ` λM

¯´1

X 1
xW´1y

where xW is an estimate of W . For the initial estimate of β, we set W “ I under

the assumption of homogeneous noise to obtain β̂LS. We then fit another spline to

the log squared residuals log
´

yt ´Xt¨β̂LS

¯2

, and finally taking the exponential of

the spline fit to obtain σ̂2
t . For the re-estimate of β, we set xWt,t “ σ̂2

t . Step 2 and

3 can be iterated till convergence.
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4.8.2 Profile log-likelihood of ARFIMA process

We consider the extension to an AutoRegressive Fractionally Integrated Mov-

ing Average (ARFIMA) process. From [17, 7], for process Yt following an

ARFIMA(p,d,q) model,

ΦpBqp1´BqdpYt ´ µtq “ ΘpBqεn

where ΦpBq “ 1 ´ φ1B ´ ¨ ¨ ¨ ´ φpB
p is the pth-order autoregressive polynomial,

and ΘpBq “ 1 ` θ1B ` ¨ ¨ ¨ ` θqB
q is the qth-order moving average polynomial in

the lag operator B. The orders p, q P Z`0 , and the degree of differencing d P R.

The difference in definition between ARFIMA and ARIMA models is that d P Z`0

in ARIMA models. The fractional difference operator p1 ´ Bqd is the binomial

expansion:

p1´Bqd “
8
ÿ

i“0

ˆ

d

i

˙

p´Bqi

The mean of the process is µt and the noise is independently and identically dis-

tributed εt „ N p0, ν2q.

Let τ denote the change location. For d P p´0.5, 0.5q, the profile log-likelihood

of the ARFIMA process in the second regime by expressing the covariance matrix

Σp2q in terms of Θp2q “ tν, µ, du is

`p2q
`

yτ`1, . . . , yT ; Θp2q
˘

“ ´
n´ τ

2
logp2πq ´

1

2
log

`

|Σp2q
`

Θp2q
˘

|
˘

´
1

2
pÝÑy ´ µq1

`

Σp2q
`

Θp2q
˘˘´1

pÝÑy ´ µq (4.13)
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Since the process is stationary, the covariance matrix is Toeplitz. For ARFIMA(p,

d, q) where p “ 0, the sth-autocovariance [59] is

γpsq “ ν2
q
ÿ

`“´q

ψp`q
Γp1´ 2dqΓpd` s´ `q

ΓpdqΓp1´ dqΓp1´ d´ s` lq

where Γpaq is the Gamma function Γpaq “
ş8

0
xa´1exdx, and

ψp`q “

minrq,q´`s
ÿ

i“maxr0,`s

θiθi´`

When p ‰ 0, the autocovariance function is a more complex form and we refer

readers to Sowell’s paper [59] for details.
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[28] Flore Harlé, Florent Chatelain, Cédric Gouy-Pailler, and Sophie Achard.

Bayesian model for multiple change-points detection in multivariate time se-

ries. IEEE Transactions on Signal Processing, 64(16):4351–4362, Aug 2016.

[29] John Haslett and Adrian E. Raftery. Space-time modelling with long-memory

dependence: Assessing Ireland’s wind power resource. Journal of the Royal

Statistical Society. Series C (Applied Statistics), 38(1):1–50, 1989.

[30] Kaylea Haynes, Rebecca Killick, Paul Fearnhead, and Idris Eckley. change-

point.np: Methods for Nonparametric Changepoint Detection, 2016. R package

version 0.0.2.

[31] Mark Holmes, Ivan Kojadinovic, and Jean-François Quessy. Nonparametric
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