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The economic lot scheduling problem (ELSP) surfaces from
competition among products for a scarce resource, usually machine
time. Standard approaches to the ELSP look only at scheduling
multiple products on a single machine. To put the scheduling problem
in proper context, we examine how scheduling decisions on a machine
affect and are affected by other decisions and the physical structure
of the system. This thesis addresses three important issues that put
the scheduling problem in the context of its physical setting and
range of parameters: idle time, the zero switch rule, and stochastic
input to a bottleneck machine.

In most scheduling heuristics, the reason for idle time is to
balance the cyclic production patterns. Idle time is also optimal in
solutions to problems with high setup costs. We show that the
condition for inducing idle time, given zero setup costs, is when one
product has dominant holding costs and the remaining products have low
machine utilization.

A common policy in scheduling is to start production only after

the inventory reaches zero. This policy is called the zero switch rule



(ZSR) and is regarded as a good scheduling policy. We show that the
condition when the ZSR is not optimal is when the ZSR solution yields
lumpy production patterns for a product with dominant holding costs.

| The standard approach to scheduling considers the input process
to be deterministic and ignores delivery of raw parts. This thesis
examines scheduling a bottleneck machine with stochastic inputs under
a variety of situations. First, we isolate the issue of scheduling
deliveries to a machine. We look at using state information to
schedule the pre-bottleneck machines. Next, we consider an aggregate
planning model to evaluate both lot scheduling and delivery and
develop an algorithm for solving this problem. We show that the
conditions when we should consider the delivery issue in conjunction
with the lot sizing issue are when the holding cost of raw parts is
high and when the variance of delivery times is high. Then we examine
a dynamic programming formulation and consider a variation of the

assembly model.
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CHAPTER 1

INTRODUCTION

The lot scheduling problem surfaces from competition among
products for a single scarce resource, usually machine time. Batch
production often is a natural consequence of manufacturing several
products on the same machine, unless setup times are negligible. When
scheduling production of batches in an environment having a single
constrained resource, two issues must be resolved: the size of the
production batches and the start times for production of each batch.
The solution to this problem is computationally difficult (Hsu, 20) and
therefore practical sclutions must be obtained using heuristic
techniques. This scheduling problem occurs so frequently that it has
led to a standardized characterization as the Economic Lot Scheduling
Problem (ELSP).

Standard approaches to the ELSP look only at the issue of
scheduling multiple products on a single machine. However, in a more
realistic setting, we must ask what is the real problem we are trying
to solve? Couched in this setting is a hierarchy of decisions that must
be made at different levels of management at different points in time
and at different locations within the manufacturing system. Hence, to
put the scheduling problem in the proper context, we must examine how
the scheduling decisions on that machine affect and are affected by

other decisions and the physical structure of the system.



The hierarchy of decisions for most manufacturing environments can
be broken into the following four levels:

Manufacturing Systems Planning (or Capacity Planning)

Production Planning

Flow Planning

and Scheduling.
The decisions made at these various levels range from design of
facilities down to real time detailed scheduling. Any modelling
approach to a manufacturing system should therefore address how the
model fits into the framework or structure of the overall decision
process as well as how the problems, issues, and decisions from that
model interact with the rest of the system.

The standard approach to lot scheduling considers the input
process to a machine to be deterministic. Therefore, the issue of
delivery of these raw parts is ignored when scheduling the machine. If
the delivery of the parts is indeed deterministic, then deliveries can
be scheduled to arrive just-in-time, and hence, the scheduling of a
machine can be looked at independently of its predecessors. However, if
the inputs to a machine are stochastic, that is, processing times on
the predecessor machines are variable or the overall delivery times are
inconsistent, then the schedule of the machine should be developed
considering the issue of delivery of raw parts to the machine.

A traditional ELSP assumption is that the demand process is

constant and continuous. An important issue in the physical context of



the machine environment which deviates from this assumption arises if
all different parts produced on a machine are subsequently assembled.
In the assembly model, the work-in-process (WIP) inventory is held
until all parts are available for assembly in addition to the normal
inventory accumulated due to batch production. In this case, we get a
different inventory pattern from the traditional ELSP sawtooth
inventory pattern. This requires a different approach for the assembly
model from the tradtional ELSP approach. Another variation occurs if
the demand process is dynamic and backlogging of demand and machine
capacity is permitted. These problems can be addressed in a general way
for arbitrary ranges of parameters, however for restricted ranges of
the parameters, a different method may work better.

Traditional approaches to the ELSP use the same solution technique
for all scheduling problems regardless of the range of the parameters
involved. If we place the problem in the context of the parameters
involved, an important concept to look at before addressing any given
scheduling problem is the notion of a dominant product. By this is
meant that one of the products has its parameters such that any
solution to the problem will always be dominated by that product. If
this is the case for a given problem, we can focus in on solution
approaches that take this into consideration. Using this notion, we can
get better solutions for the restricted class of problems without the

added effort of a generalized solution technique.



The concept of a dominant product plays heavily in looking at
whether to induce idle time into the lot scheduling problem. In most
heuristics, the reason for idle time is to balance the cyclic
production pattern to accomodate non-rotation cycles. Idle time is also
optimal in solutions to problems with artificially high setup costs,
that is, the cost of setup is higher than the imputed value of lost
machine capacity due to the setup time. Other than these cases, if we
agsume zero setup costs, then an optimal schedule would rarely have
idle time unless one product is dominant.

A common policy in scheduling is to start production of a
particular product only after the inventory of that product reaches
zero. This policy is called the zero switch rule (ZSR) (Maxwell, R4)
and has generally been regarded as a good scheduling policy. The ZSR
seems intuitively to be sound if we are trying to minimize inventory
costs. However, if we find an optimal solution restricted to the ZSR
policy, there are cases where we can improve the solution by
incorporating a non-zero switch, that is, for some product, start
production before its inventory reaches zero.

The remainder of this dissertation examines the aforementioned
issues of idle time, the ZSR, and stochastic input to a bottleneck
machine. In chapter 2, a review of relevent literature is provided.
This includes a discussion of the traditional ELSP and a review of
hierarchical models which have lot scheduling embedded in their

structure.



Chapter 3 looks at two important issues which have surfaced in the
traditional ELSP literature, idle time and the zero switch rule (ZSR).
In particular, we find that the conditions where inserting idle time
improves a solution to the ELSP, given zero setup costs, are very
restrictive. In addition, we verify that the ZSR is a good scheduling
policy for most problems and give explicit conditions to show instances
when we can do better with a non-zero switch.

In chapter 4, we examine scheduling a bottleneck machine with
stochastic inputs under a variety of situations. First, we isolate the
issue of scheduling deliveries to a bottleneck machine. We look at
using current state information to schedule the pre-bottleneck
machines. Next, we consider an aggregate planning model to evaluate
both lot scheduling and delivery to the bottleneck machine. Then we
examine a dynamic programming formulation under varying demand and
relax the constraint that all demand be satisfied during each period.
Finally, we consider a variation of the assembly model.

Chapter 5 develops an algorithm for solving the aggregate planning
model of chapter 4 and shows when the delivery issue is important as
well as the impact on the system of variability in the delivery
process.

Chapter 6 presents conclusions regarding scheduling idle time, the

ZSR, and scheduling a bottleneck machine with stochastic inputs.



CHAPTER 2

LITERATURE REVIEW

2.1 The Traditional Economic Lot Scheduling Problem (ELSP)

2.1.1 Background

The traditional ELSP addresses scheduling production of several
products on a single machine. Elmaghraby (11) provides an excellent
review of the traditional ELSP literature through 1977. The following
are common notation and assumptions (with i being the index referring

to a particular product):

r, demand rate in parts per unit time (constant, continuous)
P; production rate in parts per unit time (constant)
Py =Ty / 1 relative utilization of the machine by product i

(z p; <1 for feasibility)
S, setup time per production lot of product i

(assumed independent of sequence)

A, setup cost per production lot

(assumed independent of sequence)

hi holding cost per part per unit time
Ti length of repeatable production cycle for product i
H, = 1/2 hiri(l - pi) scaled holding cost when T, =1



-

The average cost for product i is

C.
i

i

A, / Ti + biri(l - pi)Ti / 2

= A, /T, + H, T. .
1 1 1 1

The objective of the ELSP is to find Ti and start times for each
product which give a feasible schedule at minimum possible cost. A
feasible schedule is one which can be defined on a Gantt chart over any
given time horizon such that the demand for each part is satisfied
throughout the time horizon and the machine is never scheduled for more
than one activity at any point in the time horizon. A schedule is
infeasible if the machine is required to work on more than one product

at any time.

2.1.2 Independent Solution (IS) to the ELSP

Suppose each product can be produced on independent machines with
the constraint that total machine time used is equivalent to one

machine. Assume inventory of each product follows the pattern

~ /
~.
~ /

Inventory

\I
0 T
FIGURE 2-1

One Product Inventory Pattern



_.8_.
Average inventory cost = hiriTi(l—pi)/Z = H.T. .
We can formulate this problem as

(2-1) minimize } H.T, + Y Ai/Ti
(2-2) subject to ¥ Si/Ti + 3 p; < 1.

First assume that (2-2) is not binding and solve (2-1) to get
o 1/2
T, = (Ai/Hi) .
If this solution is not binding in constraint (2-2), then the

theoretical optimum solution does not fully utilize machine capacity.

The machine capacity utilized in this solution is

uo= 5Py

Observe that the higher we set the values of Ai’ the less machine
capacity we use in the theoretical optimum solution. The theoretical

lower bound in this case is
*N 1/2
C(Ti) = 273 (AiHi) .

Zero setup costs.

In the case of zero setup costs, use Lagrangian relaxation on (2-1) and

(R-2) to get

{1 aspt?

7. = (s, /H,) i

SRR




-0

Which gives the lower bound on solutions of this form with zero setup

costs

{ ¥ (Hisi)uz}z

bt)

2.1.3 Basic Period (BP) Approach

The BP approach restricts each Ti to be an integer multiple of
some basic period w, that is, Ti = K w, where K is an integer. Several
authors have developed iterative algorithms using this approach, for
example, Elmaghraby (11), Doll and Whybark (10), Fijita (12), and
Madigan (23). These iterative techniques involve computing a basic
period w and rounding cycle times Ti to integer multiples of w, then
checking for feasibility. If feasibility is not achieved, they iterate
to a new basic period or modify the solution. A BP solution is feasible
if a cyclic production schedule can be found such that the requirements
in any given period, including setup and production time, do not exceed
the length of the base period w. Hsu (11) showed that the check for

feasibility is NP-hard.

2.1.4 Power—of-Two Restriction

Doll and Whybark (10), Delporte and Thomas (7), and Fujita (12)
recommended restricting cycle times to power-of-two times some base

period to simplify the search for a feasible schedule. Maxwell and
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Singh (28) showed that restricting cycle times in the ELSP to power-of-—
two times some base period would yield solutions within 6% of
unrestricted optimal cycle time solutions. Roundy (29) developed an
algorithm to perform the power-of-two roundoff of order intervals which
produced solutions within 6% of optimal solutions. Hence, the power-of-—
two roundoff technique provides a simple way to get solutions which are

very close to optimality.

2.2 ELSP Imbedded in the Hierarchy of Models

The key feature of hierarchical models is that decisions are made
at one level under consideration of their impact at other levels. The
linking of levels of decision making then leads to better overall
solutions to the system being modeled. In many hierarchical models
involving mathematical programming, this linking takes the form of
Lagrangian multipliers or changes to the constraints (see, for example,
Graves, 15). Maxwell, Muckstadt, Thomas, and VanderEecken (27) propose
a general modeling framework for production control consisting of the
following three phases: creating a master production p}an, planning for
uncertainty, and real-time resource allocation. Although they don't
present any detailed models, their approach shows how various models
and algorithms can effectively be placed in a hierarchical decision-
making structure. Hax and Meal (18) give reasons for using a
hierarchical approach and develop a model where decisions at the

aggregate level provide constraints for the lower levels. In this
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model, they link capacity planning decisions with detailed scheduling
decisions. Grave's model (15) decomposes a large scale production
planning problem into two subproblems corresponding to the Hax-Meal
model and also provides feedback between detailed scheduling decisions
and capacity planning decisions. Dempster, et al., (8), point out that
the two fundamental reasons for using a hierarchical approach are to
reduce the complexity of the solution process and to cope with
uncertainty. Bitran, Haas and Hax (2) present a hierarchical production
planning model where aggregate planning is done first followed by
sequential levels of disaggregation in the production planning process.
Maxwell and Muckstadt (26) develop a model that coordinates production
decisions, including capacity planning and detailed scheduling, with
transportation decisions. Hence, we see that the hierarchical approach
provides a link among various levels of decisions in a manufacturing

system.



CHAPTER 3

FURTHER CONSIDERATIONS ON THE TRADITIONAL ECONOMIC LOT
SCHEDULING (ELSP) PROBLEM

3.1 When to Induce Idle Time in the ELSP with Zero Setup Costs

3.1.1 Introduction

In the ELSP with zero setup costs, intuition suggests that machine
capacity should be fully utilized to minimize inventory holding costs.
Dobson (9) presented a counterexample in which an optimal solution has
idle time. This section addresses the conditions under which it is
desirable to induce idle time into solutions with guaranteed
feasibility. Analysis shows that these conditions can generally be
characterized as one product having dominant holding costs and the
other products having low machine utilization. We first develop the two
product case and then examine two production patterns of the three

product case. These lead to a generalization for multi-products.

3.1.2 Rationale for using zero setup costs.

Since the fundamental idea of the ELSP is scheduling multiple
products through a single machine, it seems onlj natural that the
dominant feature of the problem is the constrained resource of machine
capacity (see, for example, Karmarkar, 21). Therefore, the most
important impact of setup arises through the value of lost machine
capacity. Hence, in this section setup costs are set to zero and the

constraint on machine capacity is handled explicitly.

-12-
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3.1.3 An Aside on the Baker and Bomberger Problems.

The classical Baker and Bomberger problems (1,3) have high setup
costs, that is, the setup costs are higher than the value of machine
capacity lost in setup time. Hence the theoretical optimum solutions to
these problems have substantial idle time (see Appendix ). Because of
this idle time, several authors (7,10,11,13,14,23) have made
significant improvements in solving these problems with heuristic
algorithms. Clearly, the more idle time you induce by charging high
setup costs, the easier it is to construct feasible schedules that

approach the theoretical lower bound.

3.1.4 Two product case.

Consider two products produced on the same machine where one
product (call it product 1) has a higher holding cost. Suppose for a
length of time to of the cycle T, we produce product 1 exactly to meet
demand. That is, idle time is induced after producing each unit of
product 1 so that no inventory cost is incurred on product 1 during the
.interval (O,to) (see figure 3-1). Conceptually, you could also view
this as slowing down the machine during tO so that product 1 precisely

meets demand.
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Product 1

| T |

Inventory O to t0+t1 T

Product 2 T |

Inventory O t0+t1+s2 T
FIGURE 3-1

Two Product Inventory Pattern

The time parameters to, ti’ tz, and T are related as follows:

tz = pzT $production time for product 2%

-+
[

1= [pl/(1~p1)](p2T+sl+sz) jproduction time for inventory
cycle of product 1¢

t1+sz+t2+s = (p T+s +32) / (1- pl) $length of inventory
cycle of product 13

o
|

0= T - (t1+s +t +sl)

T(l’Pl‘Pz)/(i‘Pl) - (81+82)/(1_pl) .
Since to must be non-negative, the cycle length T is constrained by:

(1) T > (s,+3,)/(1-pp,)
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This leads to the overall cost expression we want to minimize:

. - 2
Average inventory cost = Hl(t1+32+t2+81) /T + HZT or

; 2 2 2
(@) ¢ = Hi{p2 T+2p2(81+82)+(81+82) /T}/(l pi) +OH,T .
To find the minimum of (2) with respect to T,
_ 2 2 _ R /¢4 _~ \Pme
(3) dc/dT = Hipz /(1~p1) H1(31+32) /(1 pi) ™ + Hz .

Observe that dzC/de > 0, hence we can set equation (3) equal to 0 and

*

solve for T to find the minimum of C(T).

x

T = (31+32) / {(1—p1)2H2/H1 + p22}1/2

Then constraint (1) is not binding and ty > 0 in the optimal solution of

(2) only if

oyrp) / {Camp P/ + 07} > (syvsp) / (1pyopy)

This gives the condition for inducing idle time

For example, if py = 0.6 and Py = 0.15, induce idle time only if
HZ/Hl < 1/4. Observe that since the right hand side of this inequality

is less than or equal to 1, a necessary condition for inducing idle

time for product 1 is
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Observe also that since the left hand side of this inequality is always

greater than or equal to 0, another necessary condition is

py < (1=p/R -

Hence, the general condition for inducing idle time in the two product
case is when the product with lower holding costs also has low machine
utilization.

Observe that the inventory costs using induced idle time may be
substantially lower than the theoretical lower bound calculated under
the assumption of full saw-tooth production inventory patterns.
Consider the two product case with H2 < Hl’ Py < (1~pl)/2, and
HZ/Hl < (1~pl—292)/(1~p1). Let Hz = H/k , H1 = kH , therefore,
HZ/Hl = 1/k2 where k > 1 , Sy =8, =8, p = 0.5, and p, < 0.25. For
this range of parameters, the lower bound from the independent solution

is

{(Hs/k)l/z + (kHs)l/z}

(1-.5-p )
2

LLB =

2Hs(k+1)® .

il

For the model with induced idle time,

T = 2s/ {(1;.5)2/k2 4 pgz}l/ 2

tks / {1+4k2p22}1/2
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and

c(r) = 8Hs{(1+4k2922)1/2 + 2kpa} i

Then we can compare C(T*) to LLB.

c(r) _ Hk(-pp) 2 2.1/2
= Y {(1+4k p, P 4 kaé}

If we take the case when Py is small, we get

Lim [C(T )/LLB] = 4k / (k+1)® .
p2 -+ 0

Hence in this case, when k > 1 (that is, H, < Hl)’ then the idle time

2
solution is less than the independent solution lower bound. If we take

the case when k is large (that is, H, << Hl)’ we get

R

Lim [C(T )/LLB] = 16p,(1-p,) -
k+ o

Hence in this case, when Po < .07, the idle time solution is less than
the independent solution lower bound. If we take the example where

Py = .05 and k = 5, we get C(T*)/LLB = .85, that is, the average cost
per year for the idle time solution is less than the corresponding cost

of the independent solution lower bound.
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In summary, we see that in the two product case, for a restricted
range of the parameters, we can get better solutions by inserting idle
time into the schedule. The restriction on the range of the parameters
can be expressed as one dominant product having higher holding costs

and the other product having low machine utilization.

3.1.5 Three product case.

We have seen for the two product case conditions under which it is
desirable to induce idle time into the schedule. Now consider three
products produced on the same machine where one product (product 1) has
higher holding costs. There are an infinite number of possible
production patterns we could consider. However, two examples of
production configurations will illustrate that the conditions for
inducing idle time in the three product case are similar to the two

product case.

3.1.5.1 Production Configuration 1.

For the first example of the three product case, we consider a
production pattern with two setups per cycle for the dominant product.
That is, we build up inventory of product 1 prior to the production of

each of the other products (see Figure 3-2).
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Product 1 g
Inventory O

\

Product R f T
Inventory O T
ta
Product 3 ; Y T
Inventory 0
t3
FIGURE 3-2

Three Product Inventory Pattern
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The time parameters tD’ tla’ t13, tz, t3, and T are related as follows:

t2 = pzT

t

3 = PaT

tio = Py(poTHs ts,) / (1-p))

t12+32+t2+s1 = (p2T+sl+sz) / (1—p1)

tig = P (pgTs +sy) / (1-p))

t13+33+t3+81 = (p3T+sl+33) / (1—p1)

tg = T(=py=pa=pg) /(1-p ) = (s ts,454)/(1-p) .

Since to must be non-negative, the cycle length T is constrained by

(4') T > (231+32+33) / (1"P1"92"P3) .

Average inventory cost.

Hy

R R
— {T(pz tpg I1Rp,(s +5,)+Rp (s +s,) +
(1-p)

C(T) =

(s +sz)2+(sl+33)2}
T

+ HzT + H3T

To find the minimum of C with respect to T,

R

_ 2 2,2 2,2
(5) dC/dT = Hl{p2 +p3 (81+82) /T (sl+33) /T } + H2 + H3 .
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Observe that d® C/dTa > 0. Hence we can set equation (5) equal to 0 and

*
solve for T to find the minimum of C(T).
(s,+s )2+(s +s )2 1/2
172 173

L) (1mp )%y + 00"}

x

T =

Condition for inducing idle time.

Then constraint (4) is not binding and tO > 0 in the optimal
solution only if

{(S1+32)2+(31+33)2}1/2 2s +s,ts
6) S WA A

1-p— Py Py’
2 2
{(H2+H3)(1-pl) /By +pgy +932}1/2 toRs

2 R11/2
Observe that (81+82) + (81+S3) > {(sl+82) + (sl+33) } .

Furthermore, note that
B 2 2, 2l1/2 o
Loy op Py + o 00 M < 1opipporg

only if (H2+H3)/H1 < 1. Hence a necessary condition for inducing idle

time is

(7) HytHy < Hy -

Since (H2+H3)/H1 > 0, another necessary condition is

{922+P32}1/2 < {(31+32)2 + (sl+s3)2}1/2‘

1~p1~p2-—p3 (31+82)+(31+S3)
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If we take the simple case where Po = Pg and Sy, = 83, this reduces to
potpg < (1-p))/R .
Note that this is similar to the two product case. The general

condition for inducing idle time is when the products with lower

holding costs also have low machine utilization.

3.1.5.2 Dobson's Counterexample

Dobson presented the following counterexample to show that under
certain conditons, it was optimal to have a schedule with idle time

(4, page 18):

h, =1, h

]

o h3 = 0, Iy =T, =Tg= 1, P, = 4, Py = Pg = M, 8 = 85 = 1,
s, = M, py = 1/4, Py = Py = 1/M, H1 = 3/8, and H2 H

L]
o
.

3

These parameters clearly satisfy the necessary condition (7),

that is, 0 + 0 < 1. Idle time should be induced if constraint (6) is
satisfied. This holds for values of M as small as 5. Hence, we don't
need to use extreme pathological cases to show the advantages of

inserting idle time.

3.1.9.3 Production Configuration 2

For the next example of the three product case, we consider a
production pattern where the dominant product is only set up once per
cycle. That is, we build up enough inventory in that one production run
to carry through the production time of the remaining products (see

figure 3-3).
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Product 1 ; Y T
Inventory 0 t T

Product 2
Inventory O

Product 3 \

I 1 T
Inventory O

g

FIGURE 3-3

Three Product Inventory Pattern
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The time parameters t tl’ t2’ t3, and T are related as follows:

0’

t, = p,T
t3 = p3T
ty = pl(patpg) TH(s tsyts)] / (1-py)

t1+sz+t2+s3+t3+sl = [(p2+p3)T+(81+32+33)] / (1—p1)
to = T(l"Pl"Pz’P3)/(1'P1) - (31+32+33)/(1“P1) .

Since tO must be non-negative, the cycle length T is constrained by
(8) T 2> (81+82+33) / (l_pl“pz—pS) .

Average inventory cost.

c(T) = HI{T(p2+p3)2+2(p2+p3)+(31+32+s3)2/T} / (1—91)2 + HZT + H3T

To find the minimum of C with respect to T,
dC/dT = H {(p.+p.) (s, +8,48.)°/T°% / (1-p.)% + H, + H
1 \P2™P3 1732733 P1 2 3"

*
Observe that d2 c/d T2 > 0, hence we can solve for T to find the

minimum of C(T).

. (31+32+33)

{hgrm mp Py + (oy0p7}/?
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Condition for inducing idle time.
Constraint (8) is not binding and to > 0 in the optimal solution

only if

Observe that since the right hand side of this constraint is less than

or equal to 1, a necessary condition for inducing idle time is

Since (H2+H3)/H1 2 0, another necessary condition is
p2+p3 < (1—91)/2 .

Note that this is the same as in the two product case. Hence, we see
that for general production configurations of the three product case,
the two necessary conditions for inserting idle time are that one

product has dominant holding costs and that the remaining products have

low machine utilization.

3.1.6 General criteria for inducing idle time.

Using the results derived in the two product case and the two
production configurations considered in the three product case, we can
formulate the following approach to determine if idle time should be

inserted into the schedule for a particular problem:

1. One product (product 1) has dominant holding costs.
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2. Remaining products have low machine utilization.
Y opy < U-pp/e.

i>1
If a problem meets these necessary conditions, use the following
procedure to determine if idle time should be induced:
3. Formulate a 'good’' production pattern (for example, see reference 6
for a heuristic technique to develop production sequences).
4. Define the relationships between time parameters ti and T (similar to
those defined in the two product and three product cases).
5. Formulate the average inventory cost as a function of T subject to
the constraint that tO is non-negative.
6. Solve for T to minimize C(T).

7. If the parameters of the problem make t0 > 0, then idle time should

be induced.

3.2 When the Zero Switch Rule (ZSR) is Not Optimal

3.2.1 Introduction.

In the Economic Lot Scheduling Problem (ELSP), the ZSR has
generally been regarded as a good policy for keeping average inventory
levels low (Maxwell, 24). This is supported by the fact that ZSR is
optimal with respect to inventory of a single product as will be
verified in the following section. Pathological cases have been
developed to prove the non-optimality of the ZSR (Delporte, 6). This
section addresses specific conditions under which the ZSR is non-

optimal. These conditions generally occur when the optimal solution
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with respect to the ZSR gives uneven production patterns to high cost

products.

3.2.2 General Approach.

The general approach we use to improve the ZSR solution is to look
at marginal adjustments to the current production pattern where we can

decrease the overall inventory costs.

3.2.2.1 Cost Savings from Balancing Production.

Suppose we have a solution to the ELSP that is optimal with
respect to the ZSR policy. Consider two adjacent production runs of one

of the higher cost products such that adjacent runs are not balanced.

!
Level t t,’! T

FIGURE 3-4

One Product Inventory Pattern

If we slightly adjust these production cycles, retaining the same
overall length T for both cycles, we can show the marginal savings in
average inventory costs. Consider the inventory of a given product

under the ZSR for two non-identical production runs.
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Inventory
Level

o —
-3

FIGURE 3-5

One Product Inventory Pattern

#

Average inventory r(i»p)[t12+(T~t1)2] / 2T

- r(l—p)[Ztlz/’I‘ +T-2t ] /2.

The minimum average inventory with respect to t, is achieved when t, =

1 1
T/2, that is, the production lots are balanced. Then the cost function

can be written as

C = hr(1~p)[2t12/T +T-2t]/2

- R _
or C(tl) = H[2t1 /T + T 2t1] .
The rate of change of C with respect to t1 is
dC/dt1 = 4H[t1 -T/R]1 / T.

Observe that if tl < T/2 , increasing tl decreases the average
inventory and decreasing tl increases the average inventory.
Conversely, if t1 > T/R , decreasing t1 decreases the average inventory
and increasing t1 increases the average inventory. Hence, balancing the

production cycles decreases the average inventory.
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3.2.2.2 Cost of Using a Non-zero Switch.

Consider two adjacent production runs of one of the products with
lower holding costs. Suppose we again alter the cycle to accommodate a

non-zero switch while retaining the same overall length T for both

cycles.
7~
7T
/7 ™o
7 ~
Inventory T T { T T +
Level 0 tl t1 t1+t2 T

Non-zero switch

FIGURE 3-6

One Product Inventory Pattern

If we fix T, increasing t1 decreases the length of the second
production run. We can show the marginal increase in average inventory

costs. Suppose inventory for a given product has the following pattern:

Inventory ({ T
Level . 0 . T

FIGURE 3-7

One Product Inventory Pattern
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The time parameters tl’tz’t t,, and T are related as follows:

3’74
t1+t3 = pT or t3 = pT - ti’ and
t2+t4 = (1-p)T or t4 = (1-p)T - t, -

Average inventory = { (p~r)t12/2 + [(p—r)t1+(p~r)t1~rt2]t2/2

2
+ [(p—r)tl—rt2+rt4]t3/2 + rt4 } / T

=ptt,/T - rt, + r(1-p)T/2 .

Observe that t1 < pT. Hence the coefficient of tz is always less than
or equal to 0. Because the inventory at the non-zero switch point must

be non-negative, we get the following constraint:

(p—r)t1 - rt, 2 0.

This constrains tz to

0 < tz < tl(p—r)/r .

Hence, average inventory of this product would be minimized with
respect to tz by t2 = tl(p—r)/r. That is, average inventory of that
particular product is minimized by following the zero switch rule. Note
also that average inventory of this product is then minimized with

respect to t2 (under the ZSR) when

t, = pT/2 .
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That is, average inventory is minimized when the production lots are

exactly balanced. Then the cost function can be written as

C = hipt t,/T - rt, + rT(1-p)/2} .

is

The rate of change of C with respect to t1

dC/dt, = hpt,/T .

3.2.2.3 Improving the ZSR Solution.

¥e can improve the ZSR solution in the following way. Take two
products that have two adjacent production runs in the ZSR solution.
Adjust their production times retaining ZSR for the high cost product
(product i) and incorporatiﬁg a non-zero switch for the lower cost
product (product j), as shown in Figures 3-4 and 3-6, such that we
don't affect the rest of the production cycle. We then make the
production pattern of the higher cost product more balanced at the
expense of using a non-zero switch policy for the lower cost product.

Then we should use the non-zero switch option if the marginal cost
savings from making production of product i more balanced exceeds the

marginal cost of using a non-zero switch on product j . That is

2H, (T,~Rt, )/T. > hipt o/T,

J J
or (9) R L U U tje
hj pj iTi72—tili Tj )
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Thus we see that we can improve a Z3R solution when that solution gives
a lumpy production pattern to a product with dominant holding costs.
By using a non-zero switch on some cheaper product, we can balance

production of the dominant product.

3.2.2.4 Delporte’'s Counterexample.

Delporte presented a counterexample to the optimality of the ZSR
(6, App IV, A Counterexample to the Optimality of the ZSR). The data

for this problem is as follows: p, = 1, r, = .2, Py = .2, Py = 1,

rg = .4, Pg = .4, h3 = .1, r -4, Py = .4, and h 100. The solution

1 - 1
to this problem with respect to the ZSR is given by Figure 3-8.

Product 2 ¢ T
Inventory

0 4 20

Product 3 Y T
Inventory
- 0 4 6.462 10.155 15.693 20

i I 1
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Product 1 ! f
Inventory
0 4 6.462 10.155 15.693 " RO

| ! 1

FIGURE 3-8

Three Product Inventory Pattern

Substituting this data into equation (9), we get 480 > 1.3. In this
example, we see that the ZSR solution is not optimal even if we take
less extreme values of relative holding costs, that is, as long as

hl/h3 > 370 , the ZSR solution is not optimal.

3.2.3 Conditions When the ZSR is not Optimal

Under what conditions is it likely that the ZSR is not optimal? We can
best answer that by asking when the inequality (9) is likely to hold.
Consider two products whose independent solutions for natural cycle
length are approximately equal, that is, using the Lagrangian

relaxation method, we obtain

r = {8 o0 G2 {16 )

Hence, these two products should be produced at roughly the same

- * x
relative frequency. Then Ti = Tj or Si/Hi = Sj/Hj‘ If we let
Ti = Tj and substitute into equation (9), we get
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Then under this situation, the ZSR solution is not optimal if

(a) Two products have roughly the same natural cycle length

while one of the products has both dominant
and setup time.

and

holding costs

(b) The ZSR solution gives uneven production patterns to the

higher cost product.

In summary, conditions (a) and (b) above describe when
likely to not be optimal and we may be able to improve
incorporating a non-zero switch. When these conditions
can safely conclude that the ZSR is a good policy. For
use a power—-of-two policy (Roundy, 29), all production
product are equal so we could not improve the solution

zero switch.

the ZSR is

the solution by
do not hold, we
example, if we
lots for a given

by using a non—



CHAPTER 4

STOCHASTIC INPUT TO A BOTTLENECK MACHINE

4.1 Introduction

Consider a bottleneck machine which processes several products
(see Figure 4-1). The traditional ELSP approach is to assign costs for
setup of each product and costs for holding inventory after processing
until the parts are demanded or consumed. It ignores the issue of
delivery of raw parts to the bottleneck machine and resulting holding
costs for those raw parts. If delivery of the raw parts is
deterministic, the delivery of each product could be scheduled to
coincide exactly with its start time. In this deterministic case, it is
reasonable to ignore the delivery issue when scheduling the bottleneck
machine. However, if the deliveries are not deterministic, that is if
there is variability in shipping time or processing time on the
predecessor machines, then ignoring this issue when scheduling the
bottleneck machine can seriously affect total operating costs. For
example, if delivery of the raw parts is requested too early, then
excessive work-in-process (WIP) inventory will accumulate before the
bottleneck machine. On the other hand, if delivery of the raw parts is
requested too late, then productive capacity of the entire system is
diminished because the bottleneck machine is delayed.

This chapter addresses the combined issues of scheduling delivery

of raw-parts to a bottleneck machine and scheduling lot sizes on that

-35-
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machine. Section 4.2 focuses on the delivery issue assuming the
production schedule has already been defined for the bottleneck
machine. Section 4.3 analyzes how state information can be used to
schedule the machines using real time data. Section 4.4 develops an
aggregate model for combining the issues of lot sizing and delivery
scheduling. Section 4.5 relaxes the constraint that all demand be
satisfied in each period and looks at a dynamic programming approach.
Section 4.6 looks at the special case of an assembly model with a

different inventory pattern.

Predecessor Machines

Bottleneck

Machine

FIGURE 4 - 1

Machine Network
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4.2 Scheduling Deliveries to a Bottleneck Machine

4.2.1 Simple Newsboy Model

Consider one particular production lot on the bottleneck machine

and focus only on the delivery issue. Suppose the machine will be

available and production of this lot is scheduled to start at a

specific time (reference this as time zero). Define the following

additional parameters:

requested delivery time of product i raw parts ,

random variable representing actual delivery time
(note: Di > 0 means the lot arrived late, Di <0
means the lot arrived early) ,

probability density of delivery time of product i
centered about mean zero (assumed independent of lot
size —— this assumption may not be valid in

certain cases, Karmarkar, 22) ,

cumulative distribution of fi(') .

holding cost at the bottleneck machine of raw part i
per unit time ,

lot size for product i , and

value of lost machine capacity per unit time .

Given that di is the requested delivery time, there are two possible

outcomes and costs incurred.
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Case 1. Early delivery (Di < 0)

D 0
i

ot Vv

The cost incurred is HiriTi(~Di) which is the inventory holding cost

of raw parts.

Case 2. Late delivery (Di > 0)

' D t
0 i

The cost incurred is X Di which is the value of lost machine capacity.
The expected cost, given that di is the requested delivery time, can be

formulated as

0 o

c(d) = Er.T X f(x - d) dx + A J

T3t b'e fi(x - di) dx .

0
Using a change of variable, y = x - di » we simplify this expression

to

__d w0

c(d.) = - E.r.T, _mi (v +d) £, dy + xJ' (v +4d) £.() dy

i

~d. ~d,
_ _ = i N = i
= ) di ( + hiriTi) J y fi(y) dy - (0 + hiriTi) di I fi(y) dy .

— had <]

To find the optimal requested delivery time, determine

dc = 4
——= % - (+h.,r.T.) j f(y) dy .
dd. 111 —®

- 1
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2
Since ¢

5 = O+ hiriTi) fi(—di) 20, Cis convex in d,.

d di

*x
Then the optimal requested delivery time is to choose di such that

-

* by
Fi(-d, ) = —
> + h.r.T.
ititi

This is the familiar solution to the newsboy problem. In this case, we
are balancing the expected value of lost machine capacity with the

expected value of inventory holding costs.

4.2.2 Stochastic Delivery with Two Random Variables

Consider one production lot (product i) scheduled to start at a
specific time, reference this as time zero, and another production lot

(product j) scheduled to start upon completion of product i (see

figure 4-2).
Scheduled <~ 77~ Pl > < Pj > :
' |
0 P. t
i
Actual <o Pi --------- > L Pj ~~~~~ ;
| T T T
0 D D.+ P, D ¢

Figure 4-2
Gantt Chart

If Di < 0, the production of lot i will start on time, that is, time
zero, and if Di > 0, it will start late. Conditioning on Di’ there are

again two possible outcomes and costs incurred due to product j.
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Case 1. Early Delivery, that is, Dj < Pi + max30, Dii .
The cost incurred is - hjroj(Dj - Pi - max3O0, Di§) .
Case 2. Late Delivery, that is, Dj > Pi + max3o, Dii .

The cost incurred is X (Dj - Pi - maxiO0, Dii) .

The expected cost, given that dj is the requested delivery time and fi
is the distribution of the start time of production lot i, can be

calculated as

© P.+y

c;(dy) = Io £,0) day [ jryT, j_; (x = Pim y) £(x - 4) &

(o2
+xj (x-P-y) f(x-d)d].
Pi+ y J J

Using a change of variable, z = x - dj’ this simplifies to

© P.+y - d.

Cj(dj) = Jo £,(v) dy [ —erjTj I“; I (z + d;- Py- ) fj(z) dz

w

+xJ' (z+d, -P-y) f.(z) dz ] .
Pi+ y - dj J J

The optimal requested delivery time dj is found using the following

equation:
de _ ®
= A-(+RrT) | f.(y)F.(P+y-d,) dy=0.
.; OBt [ ) @ty -4 dy = 0
dd 0
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0

»+ h.r.T. f. f.P.+y-d.)dy >0

T2 2 ( it5Ty) Io i) 1Pty -d) day 20,
Jj

Cj is convex in dj’ Then the optimal requested delivery time is to

*
choose dj such that

(o]
e R R N A D K A
0 A+ h.r.T

If fi represents the arbitrary start time of production lot i,
incorporating all random events up to that point, then the same form of

solution applies.

4.2.3 Three Echelon Machine Network

Suppose the inputs to the predecessors of the bottleneck are
stochastic (see figure 4 - 3). The issue is when to schedule deliveries
to machine i. If the delivery arrives early, WIP is added to the system
at machine i. If the delivery arrives late, the subsequent delivery
from i to the bottleneck might be late thereby causing a reduction in
capacity of the overall system. Since we know the rate of change of
cost at level i with respect to di’ this is the marginal rate at which

the overall system costs would be affected by a delay in delivery to i.
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Bottleneck

Machine

FIGURE 4 - 3

Machine Network

The overall expected system cost with respect to delivery from machine

ij can be expressed as

-

0

Cij(dij) = _hijrijTij f‘w b'e fij(x - dij) dx
- (¢3]
+ [ - O+ Br TOF (-d)] JO X £3,0c - ;) dx
= [»- (O + hiriTi) Fi(—di) ] dij
-[x+h””“-(x+hrfr)p(d)]j y £, dy
- [» + h,; JeX
Dn+ Byyrg Ty ¢ O ByryT) FiGa) ] I—m £, d

x

This yields the optimal delivery time dij that satisfies

. - (0 + E.r.T.) F.(—d.)
i‘](.‘le ) = .
x - (n + h, iTiTy ) F. ( -d, ) + hxg 1JT1J
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In summary, delivery times should be chosen to balance the expected
costs of holding inventory with the expected cost of lost machine
capacity. Having completed this analysis for cbmputing deliveries for
general points in time, we now develop a method that looks at the
current state of the machine network for real time scheduling of

deliveries.

4.3 Using State Information to Schedule Pre-Bottleneck Machines

4.3.1 General Formulation

Using the concepts developed in Section 4.2, we can then use
current information on the state of the system to schedule production
in the predecessors to the bottleneck machine. Suppose a given machine
i has finished production of a lot and sent it to the bottleneck
machine. When should we initiate a new production lot of i knowing
current state information, i.e. the status of the bottleneck machine
and other predecessors to the bottleneck? In general, the expected
delivery time of the raw parts should match the expected availability
of the bottleneck machine plus an allowance for some safety time. The
amount of safety time depends on the relative value of machine capacity
to the cost of holding parts.

Let gi(x | state) be the conditional distribution of the time the
bottleneck machine will be available again for product i, given the
current state of the system. Then the contribution of the delivery of

product i to the system cost can be formulated as



—4 4

@ X
c,(d) = JO g;(x | state) [-R.r.T, (5-x) £,(y-d)) dy

-

o]

+ 2 I (y-x) fi(y~di) dy ] dx .
'

The optimal solution is to choose di such that

® A
I gi(x | state) Fi(x—di) dx =  m——
0 >+ h.r.T
ititi
To shorten future notation, let Ri = i .
A+ hiriT1

4.3.2 Two Product Case

A two product case illustrates how current state information can
be used to schedule pre-bottleneck machines. Consider two machines A

and B which directly precede the bottleneck (see figure 4 - 4).

| B |

Bottleneck
Machine

FIGURE 4 - 4

Machine Network

Suppose machine A has finished and sent a production lot to the

bottleneck (see figure 4 — 5). When do we initiate production of A

again?
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Machine A < >
Machine B < T >
Bottleneck < T PA >< PB >
decision point available for A
FIGURE 4 - 5

Gantt Chart

¥e want to know how much work remains on the bottleneck, including the
distribution of possible delays as a function of state variables,

before the bottleneck will be available for product A again.

The possible states for A and B can be defined as follows:

Production lot A.
State 1. Finished on the bottleneck.
State 2. Started but not finished on the bottleneck.
State 3. Not started on the bottleneck.
Production lot B.
State 1. Started on the bottleneck.
State 2. Awaiting processing on the bottleneck.
State 3. Started but not finished on machine B.
State 4. Not started on machine B.
The state of the system can be expressed as (a,b) where a represents
the status of production lot A, and b represents the status of
production lot B. Observe that we don’'t need to consider state (1,2)
because B has nothing to wait for in this case and states (2,1) and
(3,1)'because of incompatibility. For each of the possible states, we

can then formulate an expression corresponding to the optimal requested

delivery time developed in Section 4.4.1. For each of these states, we
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will illustrate the results with exponential and uniform distributions
of processing times on machines A and B with constant deterministic

processing times on the bottleneck machine.

State (1,1). A has finished on the bottleneck, and B has started on

the bottleneck.

Let tb be the time B has already been processed on the bottleneck.

Bottleneck < T PB >
tb available for A
The optimal solution is to choose da such that Fa(PB— tb— da) = Ra .

Case 1. Exponential processing times for machines A and B.

Assume A and B have exponential processing times on the pre-bottleneck
machines, with deterministic processing times on the bottleneck

machine, that is, for machines A and B,

i
>
@

£,(x) e ™MX L, forx>0,

-2, X

and Fi(x) - e "i", for x>0, i= A and B.

1}
[

The optimal solution in this case is to choose da such that

- (Po— t,— d)
1 -6 2 B b “"a = R,

- - 1 _
or d, =Py -t + % log (1 Ra) .
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Since 0 < Ra <1, log(1 - Ra) < 0 . Observe that this corresponds to

matching the delivery time with the availability of the bottleneck
machine (in this case, PB - tb) plus allowing for allowing for safety

time (in this case, 1/xa log (1 - Ra))’

Case 2. Uniform processing times for machines A and B.

For machines A and B,

f,(x)

1/ 2ui , for 0<x < Zui .

[}

and Fi(x) x / 2ui , for 0 < x < Zui .

The optimal solution in this case is to choose da such that

(PB— tb— da) / 2ua = R
*
or da = PB - tb - 2uaRa .

Observe that this corresponds to matching the delivery time with the

a

availability of the bottleneck machine (in this case, PB— tb) plus

allowing for safety time (in this case, auaRa).

State (1,3). A has finished on the bottleneck, and B has started on

machine B.

Let tB be the time B has already been processed on machine B and

fB(x | tB) be the distribution of time remaining on machine B.

Machine B . < T >

Bottleneck < P >
available for A
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The optimal solution is to choose da such that
¢ 1]
J'O f(x | ty) F(x +Py=d) dx = R .

Case 1. Exponential processing times for machines A and B.

The optimal solution is to choose da such that

[1-e ]dx = R

fm e ~AgX —xa(x + PB— t- da)
0 a

* 1 a b 1 _
or da = Pp > log[ > ] + > log (1 Ra) .

Case 2. Uniform processing times for machines A and B.

Assume that the distribution fB(x | tB) is uniform (O, Zub—ZtB) .

The optimal solution is to choose da such that

J,2ub—2tB 1 [x + PB~ da] - R
0 2ub~2tB Zua a
or da = PB + ub— tB - ZuaRa .

State (1,4). A has finished on the bottleneck, and B has not started

on machine B.

Let fBl(x) be the distribution of start time on machine B.

Machine B <= X =Dl y )
Bottleneck < P >
available for A

The optimal solution is to choose da such that

(¢o]

(1]
JO fBl(x) IO fB(y) Fa(x +y 4 PB— da) dy dx = R_ .
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Case 1. Exponential processing times for machines A and B.

The optimal solution is to choose da such that

o “Agg X @ -AY -» (x +y+P,-t —-d)
I *g1@ *B1 J e B [1-e a B b a ] dy dx = R,
0 0
. A+ A+
or d = PB . logl 2 Xb] + —%— log[ 2 Xbl] + i log (1 - R)).
a Xa Xb a 1 a a

Case 2. Uniform processing times for machines A and B.

Assume that the distribution fB(x | tB) is uniform (O, Zub—ZtB).

The optimal solution is to choose da such that

2ub1 1 Zub 1 x +y+ PB— da B
2u LT Jdy dx = R,
0 b1 ¥0 b a
or da = PB + ub + ub1 - 2uaRa .

State (2,2). A has started on the bottleneck, and B is awaiting

processing on the bottleneck.

Bottleneck < T P >< PB >
t available for A

The optimal solution is to choose da such that
Fa(PA— ta+ PB— da) = R_ .

a

Case 1. Exponential processing times on machines A and B.

The optimal solution is to choose da such that

-2 (P,-t + P~ d)
1-¢ 2 A "a B a’ _ Ra
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*

- - L _
or da = PA ta + PB + e log (1 Ra) .

Case 2. Uniform processing times on machines A and B.

The optimal solution is to choose da such that

(PA— ta+ PB— da) / 2ua = Ra

or da = PA - ta + PB— ZuaRa .

State (2,3). A has started on the bottleneck, and B has started on

machine B.

Machine B < T >

Bottleneck <= P >< P >
t available for A

Then the distribution of the start time of B on the bottleneck is
defined by the maximum of the completion time of B on machine B and the

completion time of A on the bottleneck.

Let fsb(x | ta,tb) be the distribution of the start time of B on the

bottleneck and fsb(x | ta,tb) = Fb(x [ tb) for x = PA~ ta

fb(x l tb) for x > PA— ta .

The optimal solution is to choose da such that
Fb(PA— ta | tb) Fa(PA— ta+ PB— da)

(o]
+ JP » fb(x | tb) Fa(x + Py- da) dx = R_ .
A Ta
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Case 1. Exponential processing times on machines A and B.

In the exponential case, we get

fsb(x | o tb) = 1-e , for x = PA— ta .
xbe , for x > PA— ta .

The optimal solution is to choose da such that

- (P,- t) - (P,-t +P, - d)
[1-e 2t J[1-e ® A "a B a’
] =2 X -2 (x + P, -d)
+ I hge B [1-e¢ 2 B 2 Jax = R
a
P-t
A a
or
Y - (P,-t))
- 1 a0 TRBTY 1
d,. =P, tt P N log[1 o e 1+ = log (1—Ra).
a a a
Case 2. Uniform processing times on machines A and B.
In the uniform case, we get
PA_ ta
o bty = ¢ g, - forx =Pty
b b
—t for P-t < x 2u, —Rt
2u,- 2t A" ‘a S RupRty, -

The optimal solution is to choose da such that

PA- ta PA~ta+ PB_ da 2ub~2tb 1 x + PB— da
[ ]+ L o Jdx = R
a

B a p -t ~uTRby a
A Ta

* (PA”t a)z
or da = PB + U - tb+ ZTG;:EET - ZuaRa .
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State (2,4). A has started on the bottleneck, and B has not started

on machine B.

Machine B LT SR i S

Bottleneck <= P >< P >

t, A B available for A

fsb = the distribution of maxix + y, PA—ta§

Case 1. Exponential processing times on machines A and B.

In the exponential case, we get

~ Oty K
i

f,k | t) = 1 , for k=P,~t_.

=y Dk
(Mﬁﬁn)e ’fm‘k>11—ta‘

The optimal solution is to choose da such that

[1- e—(xb+xb1)(PA° ta)] [1 - e~xa(PA‘ tat Pp- da)]
o —(xb+xb1)x - (x + Py - d )
+ Ot ) 1-e ° ¥ Jax =R
jPA— 5 Mpthpg) € [ e ] dx a
or da* = P, - PB -t —%; log (1 - Ra)
by -, + P~ t
_ _%_ log[1 - a e (xb Xbl)( A a) ]

a Xa+xb+xb1 )
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Case 2. Uniform processing times on machines A and B.

In the uniform case, we get

k

fo(k|t) = —_—
sb a 2ub+2ub

) , for k = PA— ta .

1

2y, +:2u

, for P -t < k < 2u +Ru
b b1 A a b

bl ~°

The optimal solution is to choose da such that

PA— ta ‘ PB+ PA— ta* da ]+ 2ub+ 2ub1 1 [x + PB— da} - R
Zub+2ub1 2u a P -t Ru, + 2ub1 Zua a
A a
2
* (PA—t a)
or da = PB + o Tio + ub + ub1 - ZuaRa .

b " bt

State (3,2). A has not started on the bottleneck, and B is awaiting

processing on the bottleneck.

Bottleneck <— x >< PA ><& PB e
available for A

Let fal(x) be the distribution of the start time of the old lot A on

bottleneck. The optimal solution is to choose da such that

w
JO faq(O F (x + P, +Pp-d) dx = R_.

Case 1. Exponential processing times on machines A and B.

The optimal solution is to choose da such that

-\ X -2 (x+P,+P,~d)
J 18 al [1-e 2 A"'B a Jdx= R
Oa a
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. 1 1 Mt Mag
or da=PA+PB+ -i-;log(1~Ra)+-i;log(—-i-;——).

Case 2. Uniform processing times on machines A and B.

The optimal solution is to choose da such that

2ua1 1 (x + PA+ PB— da) .

2u Ru B Ra
0 al a
or da = PA + PB + ual_ 2uaRa .

State (3,3). A has not started on the bottleneck, and B has started on

machine B.
Machine B < y >
Bottleneck {=— X >< PA >< PB >
available for A
fsb(k) = the distribution of maxix + P,, yi.

Case 1. Exponential processing times on machines A and B.

In the exponential case, we get for k > P
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The optimal solution is to choose da such that

® —xa(k + PB— da)
J' £ () [1-e ]dk = R
p sb a
A
or
- P
by AN b A
* 1 al al"a e 1
d =P+ P~ — log| - ] + = log(1-R)).
a A B -Xa Xa1+ Xa (Xa+ xb)(xa+ Xb+ Xal) Xa a
Case 2. Uniform processing times on machines A and B.
The optimal solution is to choose da such that
f“b“ Yy [k 1 . __k L, [k + Pp~ da] i
0 Bual Bub-ztb- PA Zub— tb Zual Zua
A+ 2ua1 1 k + P — da
+ [ ] =R
2u - 2t Va1 cu a
b b
. 4ua1uaRa + 3(2ub— tb)PA
or da = PB - ) .
Zual— PA / (2ub~2tb— PA)

State (3.4). A has not started on the bottleneck, and B has not

started on machine B.

Machine B <= z =—>< y >

Bottleneck < X >< PA >< PB ————
available for A

fsb(k) = the distribution of max3x + PA’ y + z3

The optimal solution is to choose da such that

(e+]

IO fsb(k) Fa(k + PB— da) dk = Ra .
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Case 1. Exponential processing times on machines A and B.

Similar to state (3,3) except M is replaced by Myt Mg

Case 2. Uniform processing times on machines A and B.

Similar to state (3,3) except with added time delay at machine B.
In general, the use of state information to determine delivery time can
be characterized as matching the expected delivery time to the
availability of the bottleneck machine in addition to allowing for
safety time dependent on the relative value of machine capacity to

holding cost.

4.4 Aggregate Planning Model with Lot Sizes and Deliveries as

Variables.

In the previous sections, delivery times were determined when the
lot sizes were known. In this section, both delivery times and lot
sizes will be considered as variables. The traditional ELSP (relaxing

scheduling constraints) is formulated as follows:
minimize ) (HiTi + Ai/ Ti)
subject to Y (Si/ T, + pi) <1.

In this model, the optimal lot size is given by riTi’ The average

inventory cost when delivery times are random variables is

0

1 -
I o hrT, f -x f (x - d;) dx .
1 —m

To shorten future notation, let 8i(di) be the expected earliness given
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0
di’ that is, 8i(di) = I_m -x fi(x - di) dx ,

and Ti(di) be the expected delay given di’ that is,

(o]

7.(d) = J'O x £(x - d) dx .

Then the combined problem, relaxing scheduling constraints can be
formulated as follows:
minimize ) §HiTi + Ai/ T, + hirisi(di)i

subject to 3si/ T, +p; + Ti(di) / Ti§ < 1.

Assuming the constraint is binding, the Lagrangian relaxation of this

problenm is

T =3 §Hi'x‘i + Ai/ T, + hirici(di) + e[si/ T, +p; + Ti(di)/ Ti]i

where 6 > 0, the Lagrangian multiplier of the constraint, measures the
imputed value of machine capacity. The optimal lot sizes are

determined by solving

dr 1 _
I, - BT Aptes; er ()] = 0.
i T.
i
2
. d"z _ R . .
Since =~ [A, + 6s. + 67.(d.)] > 0, L is convex in T..
2 3 i i il i
d'T, T,
i i
- Ai + esi + BTi(d.)
Furthermore, T. = = .

i H.
i
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Observe that this is similar to the traditional ELSP solution with the

expected delay being added to the setup time. The optimal delivery

times are determined by

dz _ = _ O i ool _
el hor.F.(-d) + T, [1-F,(-d)] = 0.
a° z - o
Since = h.r.f,(-d.) + = f,(-d,) 20, Z is convex in d..
2 iiti i T. i i i
d d. i
i
Hence, we choose d, such that Fi(~di) = ————g————— .
o + hiriT1

Observe that this is similar to the solution developed in previous
sections with © being the value of machine capacity. To check

convexity in both variables,

P
d” z 8
SN S S _Tﬁ [1 - Fi(-di)] .

1

dd. dT. T
i i
The determinant of the Hessian is

2 - e
;Tﬁ [Ai + Gsi + efi(di)][hirifi(—di) + T; fi(’dl]
1
8 2

T,
i

which is positive if

[A;/6 + s + 7,(a)] [1+ B ;7,/8] > 1/2 [1 - Fi(-di)]z/ £.(-d) -
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Observe that the right hand side of this inequality gets very small in
the right tails of most distributions. For example, in the normal
distribution, at the 75th percentile this expression equals 0.10, at
the 90th percentile it is 0.03, at the 95th percentile it is 0.012, and
at the 99th percentile it is 0.004 . Since we are focusing on the
bottleneck machine, we can assume that deliveries will be scheduled to
arrive close to on—-time, hence we will be looking at the right tails of

the distributions.

4.5 A Dvnamic Programming Model.

4.5.1 General Formulation.

The traditional ELSP is infeasible if the capacity of the machine
is exceeded, that is, when X Py > 1. In this case, it is impossible
to satisfy the total demand. Suppose, however, that demand is dynamic
rather than constant and that, on the average, demand can be met.
Consider the following model where superscript notation is used to

denote specific periods.

Let bj be the backlog, or excess capacity required, at the end of
period j —— normalized by machine capacity, that is, (hours of
backlog)/(hours in period). We assume that backlog from a given period
uses capacity from the next period. Then we get the transition equation

jH1 J - jH1 jt+1 j+1 _
b b ) [pi + si/ TS 4 'fi(di )/ Ti] 1

or bJ+1 = bl + ) [Pg+1 + Si/ Tg+1 * Ti(di+1)/ Ti] -1
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Let k be the unit cost of exceeding machine capacity. The penalty

cost due to backlog (charged at the end of each period) is

p(bd) = { kbl , for bl >0,
0 , for b <0 .

The average cost for period j is

J_ Jeqg _ Adypd L1 L3 J J
c’ = ¥ [1/2 hiri(l pi)'ri + hirisi(di) + Ki/ Ti] .

Let ¢ 1-bd) = min o

subject to § [p) + s/ T + 7 (ad)/ Ml <1 -l nd

where b‘j"1 - bj is the relative capacity in period j used to diminish
the backlog. Then we can formulate the problem as a dynamic
programming problem.

Let Wj (bj_l) be the optimal cost of going to the end of the
planning horizon, given that we start period j with backlog b1, For
the last period, assume p" = 0, that is, we have no backlog at the end

of the planning horizon. Then for the last period, we have

wn(bn—l) - Gn(bn-l)

. n
min C

]

-

subject to ) [p? +Si/ T? + Ti(dg)/ T? ] < 1- po1

The solution to this is given by

* K, +6J [s;+ Ti(d?)]

n n
1/2 hiri (1 - pi)
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x*
n e
and F("d ) = - >
11 8+ h.T"
1 11

where 6 is chosen such that the constraint is satisfied. Observe that
larger values of bn—_1 make the constraint tighter, hence the imputed
value of machine time © becomes higher. This causes longer cycle times
and earlier deliveries and thus increases C". For the next to last

period, we get
Ve - win ™D 4 IR B 4 v g
bn-i

1

¥e only need to consider b £1~-% p? since we assume b" = 0. In

general, the following recursion exists:

Wod™) = piniped) + d@iTo by Wt eIy .

bY

We assume that the boundary conditions are b” = 0 and bo = 0.

4.5.2 A Special Case.

Consider the following special case of the general problem

developed in the previous section.

Let Ei =0 for all i, that is, ignore the delivery problem,

and let Ki =0 for all i, that is, setup costs equal zero.

Then for the solution to GJ(bjnl- b)) we get

b o J
Ty = J G/Hi Y s

bl
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where 6 is chosen to make the constraint binding. By substitution we

get
Y s, l B
o = % 1 ‘ i . . ;2
l Ls, [1-7F pg - pd7l 4 Yy
¥ ) s, l Hg
and TJ = .

g i .
1 [T [1-3p) - pd71 4 pI]

Let Bj = bju1 - bj . Then we can write GJ as
. [y BT LY s | H ]
¢d@)) = .

[t -7 p]-B]
GJ(BJ) is a strictly increasing function of BY up to B =1 - Y pg and
dcl/a) = J@YH /-7 pd - B .

Since BJ is restricted to be less than 1 - z pg , to minimize Gj

choose B as small as possible, or for any given bJ—l, choose b? as
large as possible. Looking at the overall problem for the last period,

we have

rrlwrrys, [o

wn(bn—l) _ Gj(bn—i)
[1-7 6} - "1

-

For the next to last period, we get

Yiet®) = nin ™Y 4 MR - ) 4 e g .

bn—i
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*
Assuming bn—1 2 0, we want to minimize

o, LTy o0

[1-7% pg-i _ bn—z + bn*i]

IS

[1-7p}-5""]

Mn"’l(bn_l) = k b

*
Observe that if b™ 1 < 0, the term k b™ ! drops out.

n-1 [y et rys, [ a0t
d M K i i i

q 1 [1-7 p?ﬁl - pPR bn—l] 4
[XJ ][ZSJ ]
[1—zp "1y
At 2l | W10 s, J ot
) bn_12 [1-7 p?—l _ bn~2 + bn—l] 3
Z[Z.l ][ZS.' ] .
2 .
n~zp T 5

Hence M ! is convex in ™! and a minimum with respect to b™ ! can be
b 3
found. Observe that if bn-1 < 0, the term k drops out of the first

derivative and the second derivative remains the same, hence convexity

is preserved.
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Conditions for backlogging.

Using the above results, we can then define the condition for

backlogging as

LI Jetyrys ety rplaacys [es
< —

[L-Left-""17 [1-3e 17

-

For example, if the penalty for backlogging k were very small, then it
might be advantageous to backlog capacity from one period to the next.
The condition for negative backlogging, that is, getting ahead of

demand, is

(pleTyrys, [t U Jeacys, [as

TR Rl [1-5p"1°%

This can be defined roughly as the ratio of scaled holding costs to
slack machine capacity. If this ratio is smaller for one period than
for the subsequent period, then it is advantageous to get ahead. The
conditions where no backlogging is optimal can be defined as anything
in between the two ranges described above. Suppose the optimal decision

in period n-1 is bn~1. Then for period n-2, we have

wn—z(bn"3) - min gp(bn"’Z) + Gn-—z(bn—G__bn-‘Z) + wn“'l(bn“Z)g

bn—Z

we LLETHZ 1015 [H07)

kb
[1-7 p?—z _ bn~3 + bn—2]
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NI ERE , ESISENES
+

[1-Ep ™2 4"l [1-5 00 -1

n-1 n-1 N

plus an additional termk d ~, if b 0. Observe that we can

define ranges for backlogging similar to that in period n-1.

4.6 Assembly Model

4.6.1 Introduction

The traditional ELSP assumes constant, continuous demand. An
extension to this is suggested by the OPT problem (5) in which several
parts are processed through a machine system and assembled. In this
case, inventory holding costs for WIP are charged until the finished
parts are assembled. There are three issues that must be addressed in

this assembly model:

lot sizing (and scheduling),
sequencing,

and inventory pattern.

The inventory pattern issue will be discussed in the following two

sections, with subsequent comments on lot sizing and sequencing.

4.6.2 Two Product Case

In the two product case (see Figure 4 - 6), we get an inventory

pattern as illustrated in Figure 4 - 7.
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Bottleneck
Machine

Assembly
FIGURE 4 - 6

Machine Network

pauapaT - /_—\
Product A

l |
Inventory uapaT a
pbabpr \ /
Product B T I | T ‘ 1
Inventory Sb abpr T

FIGURE 4 - 7

Two Product Inventory Pattern

In this inventory pattern, o, is the fraction of the production time of
i during which inventory is accumulated. During the other portion
1 - ai) of the production time all parts produced are used for

- assembly.

Note that pb(l - ab)pr = paaapaT and pa(l - ma)paT = pbabpr .

The cycle length is defined by

T paT + pr + Sa + S

b

il

(Sa+sb)/(1°‘pa-pb)’

where Si 2 s, Ti(di) , for i = a and b.
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Then we can formulate an expression for the average inventory, &, of

each part as follows:

& = (o0, T/ R)(exp T/ T + (px,p, DS, /T
+ (pxp T/ )1 - «)p T/ T]

= (p, / p) ap. /2 [epT (p+p) +2p S

S5 = Py, T / Ry T/ T+ (oS, /T

+ (P, T/ LA - 2 ))p T/ T]
= (p, /P —w)dp /2 ¥ - w)p T (p+ 1) +RpS. % .
The total average cost to minimize is
C = H(p, /py) ap, /2 [apT(p+p)+2pS]
+H(p, /o) - e, /2 [(1-o)p T (p+p) +2pS.]
tK, /T +K /T + rﬁaaa(da) + rEbsb(db)

subject to

Ta(da) ts < Sa
Tb(db) + 3y < Sb .

First we find the minimum with respect to Sa and Sb'

dC/d S, pra(l - oca)pa >0

dC/d Sy Hpop 20

Hence always choose Sa and Sb as small as possible, that is,

Sa = Ta(da) + s, > and similarly for B.
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This gives T = [7.(d) +s +7(d) +s]1/[1-p -p].
Now that we know how to choose Sa and Sb’ we can find the minimum

with respect to L
dc¢c/do, = H(@,/p)p, /2 [epT(+p)+2ps5]
+H (p, /o) wp, /2 [pT (p+pp)]
- H G, /p)p, /2 [(L-a)pT(p+p)+2pS]
- H )/ p)UU -« )p /2 pT (p+p)
= PP, / Py M L p T (p+p) +pS ]
- H [ -« )p T (p + p) + p 8,18
2

R =
¢ /de "= pop./p, (H+HIPE+p)pT20

Hence C is convex in L The optimal value of o is

* iy + Pp $ fy f&. M ER_ 2
a HJI% p{-%) HJI% pJ HJI% pg

*
Suppose that Ha = Hb and Sa = Sa’ Then « = 1/2. This gives us a
general solution to the two product case. However, an important
question is when does one product dominate the problem so that we never

carry any inventory of that product?

Conditions for dominant product.

Under what conditions should we never accumulate finished inventory of

»*
A, that is, aa < 0? These conditions can be summarized as



P 10

Eﬁ pa+ Py + Sa/ T Pt Py

> i 2
iy Sp /T 1=pa Py

This condition holds when the holding cost of A is much larger than the
holding cost of B. The last inequality is strict unless Sa = 0. For
example, if the machine utilization, Pa + Py equals 0.8, then Ha/Hb

must be at least 4. To find the minimum with respect to da’

dCc/d d. = pra(l - aa)pa {1 - Fa(—da)] - r haFa(—da) = 0.
2 2 _ _ _ = _
d*c/dd” = Hp (-oa)pf (=) + rhf(-d) 2 0

Hence C is convex in da’ Choose da such that

F(-d) = Hpp (1 - @ )p, )
a' a =
Hapa(1 - oca)pa +rh

To check convexity in da and LI

p - - -
dv ¢ / d da d X, = prapa[l Fa( da)] .
The determinant of the Hessian is positive if

p,p, / Py (H + HI(+p) p T [Hp (1-alpf (-d)+rhf (-d)]

2 R 2 2
> H*p. % 0 *[1 - F (-a)]
or
- 2
; Ha+ Hb Pt Py o § (L - ) 4 rh - [1 - Fa(~da)]
Hb pb a a prapa fa(-da)

Observe that the right hand side of this inequality is the same as that

developed in Section 4.4, and convexity again holds for reasonable

problems.
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4.6.3 Three Product Case.

Consider three products produced on a rotation cycle (see

Figure 4-8).

p aa apaT

Product A -\\\

[y
=3

o
-3

Inventory

Ppo%pPpT ~

Product B
Inventory

o
|91

pcqcch i\\\\
Product C \\\

I
Inventory O

FIGURE 4 - 8

Three Product Inventory Pattern

The average inventory of each part is
8 = (o pT/2) (xpT/T) + (poapT (5/T
+ e p, T/ 2 +p (1 -w)pT/2][(1-e)pT/T]
+ [p (1 - @ )p T) [(aqp T +S) / T]

+ [p (1 - @ )p,T /2] [(1 - «dp T / T
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8= [py(1 - o)p T /2111 -0a)pT /T, + (eypyD (S, /)
+ [« p Ty /p®) + 0 (15 a)p T /2]
- [ - @ )p T/ Tlp (1 - w)p T] [(ap T +S) / T]

8 =

o= Llgp T/ 2) +p (1 -x)pT /2] [ -wjpT/T]

+ (pap T/ R) (xp T/ T) .

The following is the total inventory cost:

C = Ha&a + Hbab + Hc&c .
C is convex in o and the determinant of the Hessian with respect to oy
and “j is positive, hence we have convexity in two variables.

—HaSb + ZHbSc - Hch :

Ha + Hb + Hc

pa
a pa+ pb

Py 1

1 -a)dp +
c’7c pa+ Py paT

H P, P
f e 1 @ = y$
a b c pc Pt Py

b 3

Suppose p_= P, =P » Sa= Sb= Sc , and Ha= Hb= Hc' Then x = /3 .

4.7.4 Sequencing When One Product is Dominant.

Suppose one product, call it product A, is dominant so that no
inventory of that product is ever accumulated. How should the remaining
products be sequenced? Consider a three product case with inventory

pattern shown in figure 4-9.



-7

Product A I | | l

Inventory 0 Sa paT

Product B ‘ | l/l-——__l\l

Inventory 0 \ Sb pr T

Prcduct C I ‘/' \

Inventory Sc pCT T
FIGURE 4 - 9

Three Product Inventory Pattern

The average inventory for B is
s, = GT/ D (pT/ D + r(5,/D + GT/2) (p,T/ D .
The average inventory for C is

8, = GT/2 (pT/MD + r(s,/D + GT/2) (p,T/ D
+ r[(Sb+pr)/T] .

Observe that the only term in these expressions that is dependent on

the sequence of B and C is r [(Sb + pr) / T]. Then using the
sequence dependent costs, B should follow C if

Hr [(s, + oD /T] < Hr [(S,+p.T) /T
This is similar to classic scheduling theory's weighted shortest

processing time rule except that here we use weighted longest

processing time with the weights being the inverse of holding costs.



CHAPTER 5
AGGREGATE PLANNING ALGORITHM

5.1 Algorithm Development

5.1.1 Background

Section 4.4 presented a model which combined the issues of
deliveries to a bottleneck machine and lot sizing. The optimal order

intervals and requested delivery times were as follows:

Ai+9(si+7i(di))
T, =
i H.
i
and
e
Fi(“di) = —_—, (D
o+th.r.T.
ii'i

where 6, the imputed value of machine capacity, is chosen such that the

machine capacity constraint is satisfied at equality, that is,

E§S,/T, + py + 7.(d)/T,% = 1

or

z;si + 'ri(di)i/'ri =1 - P - )]

If the setup cost is zero, that is, the value of setup consists only of

the value of lost machine capacity,

-3
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Substituting this into the capacity constraint (2), we have

S.+7.(d.)
g 1 i i 1 _ =P
Je l s.+7.(d.)
i ivi
v+ Hj
or
2
o z Hi(Si+7i(di)) -
1—Epi )

5.1.2 Alporithm

This leads to the following algorithm which iterates on the

unknown imputed value of machine capacity:
Step 1. Let Ti(di) =0 for all i.

Step 2. Compute 6 using (4).

2
. bX Hi(si+Ti(di))
1—Zpi
Step 3. Compute Ti for all i using (3).
S.+7.(d.
i 7ivi

T, =J® T .
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Step 4. Compute di for all i using (1).

P (-d,) = ..._:9___
oth.r.T,
iiti

The inverse of F(.) depends on the form of the distribution

distribution of delivery times.

Step 5. Compute Ti(di) for all i. 7 (.) depends on the form of

the distribution of delivery times.

Step 6. Go to step 2 until © converges. Convergence is assured by

the convexity verified in chapter 4.

5.1.3 Normal Distribution Assumption

If we assume that the delivery times to the bottleneck machine are

normally distributed, for step 5 of the algorithm we get

Ti(di) = g, f(-d i/oi) + di F(di /ci)
where f(.) 1is the standard normal density function and F(.) 1is the

standard normal cumulative distribution function. This algorithm is

coded in PASCAL in Appendix 1.
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5.2 Results

Two key questions to ask using this model are:

¥hen can we ignore the delivery issue in scheduling a machine and
what affect do the parameters of this model have on the overall
system? These questions can be answered by looking at the results of

various data input to the model.

5.2.1 Holding Costs for Raw Parts

We can assume that the ratio of holding costs for raw parts to the
holding costs for processed parts is between 0 and 1, that is, the
value of the raw parts lies somewhere between zero and the value of the
processed parts. We can compare the resulting lot sizes determined from
the aggregate model with the corresponding lot sizes determined
ignoring the delivery issue. The ratio of these lot sizes, call it the
S-ratio, is one when the value of raw parts is zero, hence we can
ignore the delivery issue in scheduling a machine when the relative
value of raw parts is small. In this case, we can carry sufficient
inventory of raw parts to keep the bottleneck machine fully utilized
because the raw parts inventory is very cheap. However, Figure 5-1
shows that as the relative value of raw parts increases, the
corresponding lot sizes in the aggregate model also increase. Hence, as
the relative value of raw parts increases, it becomes more important to

consider the delivery issue when scheduling a machine.
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TABLE 5 - 1

Data Used in Figure 5 - 1

Part Py 85 o, hi
0.25 3 60
0.33 2 40
0.33 1 20
1.4 —

1.3 — /////f/”

S-ratio 1.2 - ////

1.0 —= : |
0.0 0.2 0.4 0.6 0.8

[

FIGURE 5 - 1

Graph

5.2.2 Variance of Delivery Times

If the variance of delivery times is small, we can ignore the
delivery issue when scheduling a machine. To quantify how small the
variance should be, we can compare the standard deviation of delivery
time to the setup times. As shown in Figure 5-2, if the standard

deviation of delivery time is small relative to the setup times, we can
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ignore the delivery issue. We also notice from Figure 5-3 that the

total system costs go up at an almost linear rate with respect to the

standard deviation of delivery time. Hence the variance of the input

process plays a critical role in both lot sizes and overall costs.

Part

N o WD e

A-ratio

1.10

1.08

1.

1.

06

04

1.02

1.

00

TABLE 5 - 2

Data Used in Figures 5§ - 2 and 5 - 3

Pi 85 hy hy
0.200 3 5 4.0
0.250 2 1 0.8
0.125 1 2 1.6
0.250 3 3 2.4
0.111 2 4 3.2
///
//
///
-

P
S
-
[=¢]
[
o

FIGURE 5 - 2

Graph
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4800 —

4600 —
Cost 4400 — ////

S
4200 — Ve
/"/;
/«‘
4000 —
3800 — , [ , . o/s
0 2 4 6 8 10
FIGURE 5 - 3
Graph

Reducing Setup Times

Much of the literature purporting the advantages of the Japanese
philosophy of scheduling, just-in-time, support reducing setup times on
machines as a means to decrease lot sizes. However, if we look at
reducing setup times in the aggregate model, we find that the variance
of the input process plays a critical role in determining how much the
lot sizes can be reduced. As shown in Figure 5-4, reducing setup times
produces a corresponding reduction in lot sizes until the setup time
gets small compared to the variance of the input process. In Figure 5-

5, we see that the ratio of lot sizes determined from the aggregate
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model compared to the corresponding lot sizes determined ignoring the

delivery issue increases almost exponentially as the setup times

approach zero.

Hence, in trying to achieve just-in-time via small lot

sizes, the variance of the input process must be reduced as well as

reducing the setup time on the machine.

TABLE 5 - 3

Data Used in Figures 5-4 and 5-5

Part

Py s j by

0.25 60
0.33 40
0.33 20
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CHAPTER 6

CONCLUSIONS

If we put the lot scheduling problem in the context of the
hierarchy of decision models and look both at the physical setting and
the nature of the problem, we can get better solutions to a given
problem in a more realistic setting. Due to the inherent difficulty in
solving scheduling problems, the best we can usually hope for is
heuristics which provide good solutions over a reasonable range of
problems. However, if we encounter a problem with a dominant product,
we can make use of that fact to simplify the search for a solution.

The concept of a dominant product can be used to determine when
to insert idle time into a schedule. In this case, a dominant product
is one with dominant holding costs. If in a given problem we have a
dominant product and the remaining products have low machine
utilization, that is, we have slack machine time available, then we
can produce a better schedule by inserting idle time for the dominant
product.

The role of the dominant product also tells us when not to use
the zero switch rule (ZSR). ¥We can conclude that the zero switch rule
(ZSR) is a good scheduling policy for most problems. The exception to
this happens when the ZSR solution yields lumpy production patterns

for a dominant product. In this situation, we can sometimes improve

—-82~
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upon the ZSR solution by making the dominant product'’'s production
pattern more even while using a non-zero switch on another product.

In looking at the context of a machine being scheduled, if there
is variability in the input process to the machine, we can achieve
lower overall system costs by considering the issues of determining
delivery times and lot sizes concurrently instead of looking at each
independently. We can use this approach both in aggregate planning and
in real-time detailed scheduling. When determining the optimal
delivery times, we balance the cost of holding raw parts with the
value of lost machine capacity in a manner similar to the Newsboy
Problem. This approach can be extended to consider problems with non-
constant demand when we allow backlogging of demand and machine
capacity. However, we find that much of the time, we will still try to
satisfy current period demand with current period production.

The results of the aggregate model combining the issues of
delivery and lot sizes show that the conditions when we should
consider the delivery issue in conjunction with the lot size issue are
when the holding cost of raw parts is high with respect to the holding
cost of processed parts and when the variance of delivery times is
high with respect to the corresponding setup times. We find that the
overall system costs increase at an almost linear rate with respect to
the standard deviation of delivery times.

In summary, we find that by placing a given problem in its proper
contexf, we can more effectively derive solutions to the real problem

at hand.



APPENDIX 1

AGGREGATE PLANNING ALGORITHM

PROGRAM sp (INPUT,OUTPUT,mdata); 3*** TABLE OF CONTENTS

1 Declarations
2 Readin -— reads input data
3 Setup -- sets up in proper format
4 Norminv -— finds inverse of normal CDF
5 Normden —-— calculates density of std normal rv
6 Cum -~ computes value of the normal CDF
7 Thetacalc ~- calculates value of machine time
8 Results -— summarizes part schedules
9 Display -- writes results
10 CONTROLLING PROGRAM oK KKK KKK KKK KKK K
CONST p = 3; $number of parts$
n = 4; $number of iterations?
lead = 5; $lead time for delivery?
TYPE index = integer;
parray = array [1..p] of real;
VAR mdata: text; $input file}
r : parray; sdemand rate}
su : parray; ssetup time}
pr : parray; iproduction rates
ru : parray; jrelative utilization - r/pr$
h : parray; $holding cost after processing?
hb  : parray; $holding cost before processing?
sd : parray; $standard deviation of delivery time}
t : parray; $cycle length - time between production runs}
fcum : real; $fraction of deliveries on time}
comp : real; 31 - fcum}
ninv : real; inormal inverse of comp$
fden : real; $density of delivery dist'n}

d : parray; ischeduled delivery, neg = early, pos = late}
tau : parray; jexpected delivery delay}
mtau : parray; jexpected early delivery?

suml : real; $sum of sqrt(h) * (su + tau) $

sum? : real; $sum of su + tau ¢

sl : real; $slack = 1 - sum of ru }

theta: real; jvalue of machine time = sum1**2/(sum2*1**2)3}
cost : real; $cost of solution at last iteration?

i,j : index;

. -84-
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PROCEDURE readin; iread in datal
var i: index;
begin §readin}
reset(mdata);
for i := 1 to p do begin
read(mdata,r[i]);
read(mdata,suli]);
read(mdata,pr[i]);
read(mdata,sd[i]);
read(mdata,h[i]);
read(mdata,hb[i]);
end;
close(mdata);
end; 3$readin?

PROCEDURE setup; $setup data in proper format}
var i: index;
begin }setup?}
sl := 1.0;
for i := 1 to p do begin
ruli] := r[i] / prli];

sl := sl - ru[i];

tau[i] := 0; jintitializes tau to zero?}
end;
writeln("' slack capacity = ',sl);

end; $setup?

PROCEDURE norminv;}computes the appoximate inverse of the normal CDF
ireference: HANDBOOK OF MATHEMATICAL FUNCTIONS by
$Abramowitz and Stegun, error < .00045
igiven comp, where 0 < comp < .5 , finds
$complementary cumulative inverse ninv,

$where 1 - F(x) = comp
var t1,t2,nl1,d1,x: real;
begin 3norminv}

t1 := 1.0;

if comp > 0.5 then begin
t1 := -1.0;
comp := 1.0 - comp;
end;

t2 := sqrt(2*In(1.0/comp));
nl := 2.515517 + 0.802853*t2 + 0.010328*t2*t2;

WY WV A WY WY WV

dl := 1.0 + 1.432788*tR + 0.189269*t2*t2 + 0.001308*t2*tR2*t2;

x := t2 - ni/d1;
ninv = t1*x;
end; $norminv}
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PROCEDURE normden; fcalculates density of std normal rv 3}
var nl: real;
begin $normden}
n2 := —-(ninv*ninv)/2.0;
fden := 0.3989423 * exp(n2);
end; {normden}

PROCEDURE cum; $computes the appoximate value of the normal CDF ¢
$reference: HANDBOOK OF MATHEMATICAL FUNCTIONS by}
$Abramowitz and Stegun, error < .00001 3
$given ninv, finds value of the normal CDF, fcum 3
var t1,t2: real;
begin jcum}
if ninv > 0.0 then begin
t1 := 1.0 / (1.0 + 0.33267*ninv);
t2 := 0.4361836*t1 - 0.1201676*t1*t1 + 0.937298*t1*t1*t1;
fecum := 1 - fden*t2;

end
else begin
t1 := 1.0 / (1.0 - 0.33267*ninv);
t2 := 0.4361836*t1 - 0.1201676*t1*t1 + 0.937298*t1*t1*t1;
fcum := fden*t2;
end;

end; jcums

PROCEDURE thetacalc; fcalculates value of macine capacity}
var i: index;
begin jthetacalc}
suml := 0.0;
sum? := 0.0;
for i := 1 to p do begin

suml := suml + sqrt(h[i]) * (su[i] + tau[i]);
sum? := sum? + sul[i] + tau[i];
end;

theta := sumi*suml / (sl*sl);
end; jthetacalc?

PROCEDURE results; $summarize results}
var 1i: index;
cut: real; $truncated left tailg
begin

cost := 0.0;
for i := 1 to p do begin
if lead + d[i] - 3*sd[i] < 0.0 then begin
ninv := -lead / sd[i]; $truncates delivery to lead time}
normden; $computes density of normal rv}
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cum; jcomputes cumulative dist'n of ninv}
cut := sd[i] * fden + lead * fcum; jexpected early?
mtau[i] := mtau[i] - cut;
end;

cost := cost + h[i]*t[i] + nblil*r[i]*mtau[i];

end;

end;
PROCEDURE display; $write results?

var i: index;
begin  3display}

writeln('INPUT DATA');
writeln(’ r/p s sd h hb');
for i := 1 to p do begin

writeln(ru[i],su[i],sd[i],h[i],hb[i]);

end;
writeln('RESULTS');
writeln('Part No Order Int Delivery Time Expected Delay');
for i := 1 to p do begin

writeln(i,t[i],d[i],tauli]);

end;
writeln(' COST OF SOLUTION = ',cost);
end; $display?
begin $spt
writeln('Start program’);
readin; $read in data}
setup; isetup data in proper format}
writeln;
for i := 1 to n do begin
thetacalc; jcalculate value of machine time}
writeln('Iteration',i,"’ theta = ',theta);

for j := 1 to p do begin
t[j] :=sqrt(theta *(su[j]+taul[j])/h[j]); $production interval}
fcum :=theta / (thetatr[j]*hb[j]*t[j]); $deliveries on time?}

comp := 1.0 - fcum; jcomplementary cumulative of fcum?
norminv; $computes functional inverse of fcum$
dl[j] := - ninv * sd[j]; $scheduled delivery$
normden; jcomputes density of normal rvi
tau[j] := sd[j] * fden + d[j] * (1 - fcum); §expected delay}
mtau[j] := sd[j] * fden - d[j] * fcum; jexpected early?
end;
end;
results; $summarize results}
display; $write reslults?

end.

3sp}



APPENDIX 2
THE BAKER AND BOMBERGER PROBLEMS

The Bomberger problem (3) is defined by the following parameters:

*

1 85 A by p; Ps Ty

1 .125 15 .00065 30000 400 167.5
2 .125 20 .01775** 8000 400 37.7
3 .25 30 .01275 9500 800 39.3
4 .125 10 .01 7500 1600 19.5
5 .5 110 .2785 2000 80 49.7
6 .25 50 .02675 6000 80 106.6
7 1.0 310 .15 2400 24 204.3
8 .5 130 .59 1300 340 20.5
9 .75 200 .09 2000 340 61.4
10 .125 5 .004 15000 400 39.3

x 1/2
Ti = [Ai/Hi]

**Originally .01175, however all subsequent authors have used .01775.

For this problem, we get the following results:
Y p, =0.88

Y s,/T; = 0.07

Ys/T. +Y p. =0.95 (reference constraint (2-2)
i’ i i )
in Chapter 2).

Hence, only 95% of the machine capacity is utilized in the theoretical

optimum solution.
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The Baker problem (1) is defined by the following parameters:

i 8 A hy Py Pi B s

1 .08 75 .01 2500 .08 .92 9.03
2 04 30 -10 1000 .25 9.38 1.79
3 .02 25 .04 500 .20 1.60 3.95
4 12 35 .08 200 .35 1.82 4.39

* 1/2
T, = [Ai/Hi]

For this problem, we get the following results:
Z P = 0.88

Y s;/T; = 0.06

x*
Y s, /T. + 3 p. =0.94<1 (reference constraint (2-2)
i’ i )
in Chapter 2).

Hence, only 94% of the machine capacity is utilized in the theoretical

optimum solution.
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