
CREATING A BASIS FOR THREE DIMENSIONAL
SKETCHING

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

John DeCorato

February 2016

c© 2016 John DeCorato

ALL RIGHTS RESERVED

ABSTRACT

The design process usually starts with rough doodles and sketches to create a

basic visual representation of the solution to a problem. The processes from

this conceptual stage to more detailed specifications has often been segmented

between incompatible physical and virtual representations. This work explores

digital 3D sketching using large touch panel displays and active pen technology

for the use in the early stages of the design process. We focus on rendering high

quality 3D curves in a free-form sketching environment. There are two major

challenges we provide approaches for; transforming our low resolution input

data to a resolution independent format, and rendering dense curve represen-

tations at high quality in real time.

BIOGRAPHICAL SKETCH

The author was born in Manhattan, New York on August 21st, 1991. Currently,

he resides in Staten Island, New York. In 2009, he started undergrad at Cornell

University. After graduating with a Computer Science degree, he entered the

Program of Computer Graphics the following year.

iii

I dedicate this thesis to my family and friends whose support helped make this

possible.

iv

ACKNOWLEDGEMENTS

First, I would like to thank my parents, Douglas and Carolyn, my brother

Michael, and my girlfriend Athena for their constant support.

I am very grateful to Professor Donald Greenberg for providing me with

the opportunity to study at the Cornell Program of Computer Graphics. The

knowledge, experience, and opportunities I have gained throughout the degree

would not have been possible without someone as incredible as Don running

the show.

I would like to thank Professor Kavita Bala for introducing me to the field of

computer graphics, and for providing me with many opportunities to expand

my knowledge. KB has been a wonderful source of guidance and support. I

would also like to thank her for being an advisor on my thesis committee.

I would like to thank Joseph Kider, Nicholas Cassab-Gheta, and Andres

Gutierrez for their help in directing the work. I’d also like to thank Nick for

being the occasional test subject.

I’d also like to thank Hurf Sheldon, who provided help with multiple hard-

ware solutions for my thesis, including mounting a 55-inch touch panel onto a

structure to act as a digital drafting table.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction 1

2 Background / Related Work 4
2.1 Two-Dimensional Image Representation on Computers 4

2.1.1 Raster Graphics . 4
2.1.2 Vector Graphics . 6
2.1.3 Adaptively Sampled Distance Fields 8

2.2 3-D Sketching in CAD . 9
2.2.1 CATIA Natural Sketch . 10
2.2.2 EverybodyLovesSketch . 10
2.2.3 Hyve3D . 12

2.3 3-D Sketching in 3-D . 12
2.3.1 Virtual Reality / Augmented Reality 14
2.3.2 3-D Printing . 16

3 Input Technologies and Human Computer Interaction 18
3.1 Input Classifications . 19

3.1.1 Modality . 19
3.1.2 Direct and Indirect . 20

3.2 Input Devices . 21
3.2.1 Keyboard . 21
3.2.2 Pointing Devices . 22
3.2.3 Touch Screen Devices . 24
3.2.4 Summary of Input Technologies 33

3.3 Advanced User Interaction: Input using Gesture 33
3.3.1 Types of Gestures . 34
3.3.2 Multi Touch Gestures . 36
3.3.3 Pen Gestures . 38
3.3.4 Three Dimensional Gesture Recognition 40

3.4 Summary . 40

4 Creating a Sketch 41
4.1 Representation of a Sketch . 41

4.1.1 Understanding the Stroke Space 42
4.2 Spline Curves . 44

vi

4.2.1 Generating Splines From the Sample Data 45
4.2.2 Algorithm . 48

4.3 Summary . 50

5 Sketching in 3D 51
5.1 Ray Casting . 52

5.1.1 Generating the Ray . 54
5.1.2 Ray-Triangle Intersection 55

5.2 Acceleration Structures . 59
5.2.1 Bounding Boxes . 59
5.2.2 BVH Tree . 60

5.3 Summary . 63

6 Curve Rendering 65
6.1 Problems with Native Curve Rendering 65
6.2 Creating Joins From the Curve Definition 66

6.2.1 Curved Lines with Variable Width 70
6.3 Implementation . 71
6.4 Color . 74
6.5 Summary . 76

7 Conclusion 77
7.1 Implementation Details . 78
7.2 Extensions . 78

7.2.1 Color . 79
7.2.2 Improving Sketching on Non-Planar Geometry 79

7.3 Future Work . 80
7.3.1 Reducing Complexity . 80
7.3.2 Generating Geometry . 81
7.3.3 Simulating Physical Sketching 81

7.4 Summary of Contributions . 82

vii

LIST OF TABLES

3.1 A comparison of touch technology 34

6.1 Section Variables . 67

viii

LIST OF FIGURES

2.1 Zooming in on a raster graphics image 5
2.2 Creating a raster image in Sketchbook 6
2.3 Zooming in on a vector graphics image 7
2.4 An example of the infinite canvas in Mischief 9
2.5 Using Natural Sketch to add detailing to a car 11
2.6 Using Hyve3D to draw in a virtual environment 13
2.7 Augmented Reality Sketching using Gravity 14
2.8 Virtual Reality Sketching using Tilt Brush 15
2.9 3D-Drawing using a 3-D Printing Pen 16

3.1 A diagram of a resistive touch sensor 26
3.2 A diagram of a surface acoustic wave sensor 27
3.3 A diagram of a surface capacitive sensor 30
3.4 A diagram a projected capacitive sensor 32
3.5 The core set of gestures . 36
3.6 Examples of pen gestures . 39

4.1 Ideal curve sampling . 42
4.2 Sketch intent versus sketch input 43
4.3 Errors in spline generation from sampling 47
4.4 An artifact in spline generation . 47
4.5 Creating the subdivided polyline from the control points 49

5.1 Ray Tracing in Computer Graphics 52
5.2 Projecting a Stroke onto the Sketching Surface 53
5.3 Clip space and NDC space . 55
5.4 Generating the Ray . 56
5.5 AABB Intersection . 61
5.6 BVH Tree . 62
5.7 SAH Comparison . 64

6.1 Artifacts with GL LINES . 66
6.2 Flaws in GL LINES . 67
6.3 Round join diagram . 68
6.4 Miter join diagram . 69
6.5 Bevel join diagram . 69
6.6 Handling miter artifacts . 70
6.7 Line rendering . 71
6.8 Line Adjacency data structure . 72
6.9 Example polygonization of a line with miter joins. 73
6.10 Rotating drawn lines . 75
6.11 Overlapping colored Objects in 2D vector graphics 76

ix

CHAPTER 1

INTRODUCTION

The design process usually starts with rough doodles and sketches to create

a basic visual representation of the solution to a problem. The processes from

this conceptual stage to more detailed specifications has often been segmented

between incompatible physical and virtual representations. Unfortunately, the

answers to many important questions about the design are made during the

conceptual stage without all of the information the designer needs, because get-

ting this information requires a digital representation of the work that is cur-

rently too difficult to create during the rapid pace of the conceptual stage. His-

torically, there have been constraints to digitizing the conceptual design stage:

displays were too small and the forced use of the mouse and keyboard were

far more difficult to work with that the traditional methods of pen and paper.

However, with the advent of large touch panel displays (e.g., the 55-inch Surface

Hub Display), it is possible to implement a digital system that closely mimics a

traditional conceptual design process.

In this work, we implement the basis of a sketching interface that allows the

user to create drawings in three dimensions. The interface is capable of using

modern input devices to approximate the act of real world sketching as closely

as possible. These devices include a display capable of multi-touch input, as

well as a special electronic pen which relays extra information not sent through

regular touch input. For the sketch itself, we implement a spline-based data

structure in order to store high quality, three dimensional strokes, that can be

zoomed in without loss in quality. We also implement a three-dimensional line

rendering library, as native line rendering implementations are poor quality.

1

When creating a three-dimensional model, much of the work is done on a

computer using Computer-Aided Design (CAD) software specifically designed

for the unique application. For example, in the architecture profession, Rhino

and Revit are used to create building models. In the animation industry, Maya,

Blender, and 3DSMax are used to create character models and complex scenery.

In both cases however, the initial designs are still done using two-dimensional

sketches, rough drawings not intended as the finished work. Sketches are gen-

erally not highly detailed works, as they intend to only capture the essentials of

a final design. Through a number of rough sketches, a three-dimensional form

can be implied through the representations of perspective and volume. This

two-dimensional information is then used as a reference when designing the fi-

nal three-dimensional model. Details of modern approaches to content creation

on a computer are presented in Chapter 2.

Sketching is an old method of expressing ideas, and has a variety of tech-

niques associated with the practice. Many professionals have been reluctant

to use computer software, because the skills they have used and trained them-

selves in do not transfer to the digital medium. In recent years, technology has

advanced to where the creation of specialized user input devices can allow bet-

ter emulation of traditional sketching techniques. These devices are explored in

Chapter 3.

Once we decide on what tools we will utilize for our system, we need to

decide the interaction method. While there are a variety of approaches, we

wanted an approach that mimics real world sketching. In our interface, a user

sketches on a tablet device using an active pen. Displayed on the tablet is a

three-dimensional scene that can be manipulated using touch and gesture in-

2

put. This scene contains geometry of some form that the user can sketch on.

While the solution appears to be simple, there are a number of challenges one

must solve if one would like the end result to look good. A large challenge is

the data we receive from the pen device is an approximation of the actual input

stroke. While in traditional 2D computer sketching applications this would not

be a problem, in 3D moving the camera causes the sketch to lose it’s quality.

In Chapters 4 and 5, we discuss how the rough, two dimensional user input is

transformed into a high-quality, three-dimensional spline curve.

Once we have defined our three-dimensional curve, it is rendered using the

OpenGL Library. However, the native support for displaying curves is limited,

as many artifacts appear in the final curve when naively attempting to render

them. Details on the approach we use to display our curves in high quality is

discussed in Chapter 6.

3

CHAPTER 2

BACKGROUND / RELATED WORK

2.1 Two-Dimensional Image Representation on Computers

At it’s most basic form, a sketch can be described as an image usually drawn

on a planar two-dimensional surface. With computer displays, there are two

standard methods for generating two dimensional images: raster graphics and

vector graphics. The underlying data structures have a large impact on the types

of tools that can be designed to create, modify, and display the resulting images.

2.1.1 Raster Graphics

Raster graphics is an image format that uses a two-dimensional grid to repre-

sent each pixel in the image. A raster image is characterized by its width and

height in pixels and by its color depth, the number of bytes per pixel. The depth

value specifies the color for each pixel, usually by identifying the magnitude of

the pixel’s RGB components. The reasoning behind representing images by this

method is that today most computer monitors have bitmapped displays. Today,

although there are many standard formats, almost all displays consist of rectan-

gular arrays of square pixels, and the bandwidth from the display’s memory is

sufficient enough to dynamically render multi-megapixel images.

When creating and editing raster graphics images, the software directly ma-

nipulates pixel values, also known as pixel editing. This simplifies creating tools

for editing raster graphics, since each tool can manually define how pixels are

4

Figure 2.1: When we zoom in on a raster graphics image, we can see the
image degradation that occurs from the pixel based storage for-
mat. [25]

effected based on where and how an input occurs. Unfortunately, the ultimate

quality of an image based on raster graphics is limited by the fact that the pic-

ture is resolution dependent. The resolution of the image is independent of the

resolution of the display, and it is possible for raster images for contain very

large amounts of information, as can be seen from the Gigapixel Project [17].

However, even this still has it’s limits. If you were to continuously zoom in

on a raster image, eventually the image would eventually suffer from image

degradation. This resolution dependency also means that raster images are not

flexible for working with extremely detailed environments. It is possible for

multiple small details to be contained inside of a single pixel. Since a pixel can

only store one color, all of these small details are lost.

Examples of popular raster graphics software are Corel Painter [21], Adobe

Photoshop [23], Microsoft’s MSPaint [19], the open-source GIMP software [15],

and Autodesk’s Sketchbook [27].

5

Figure 2.2: An artist creates a raster image using Sketchbook. The software
comes with a variety of pen styles and tools to help simulate a
physical art studio. [27]

2.1.2 Vector Graphics

Vector graphics software uses geometrical primitives such as points, lines,

curves, shapes and polygons to represent an image. Each of these primitives

has a defined geometric coordinate within the work space and determines the

direction of the displayed vector. Vectors can also be assigned a variety of prop-

erties such as its color and thickness. Although the resolution is limited by the

computer’s numerical precision, it is independent of the actual display.

6

Figure 2.3: When we zoom in on a vector graphics image, we can see the
lines remain smooth, unlike in a similar raster graphics image.
(Figure 2.1.1) This is because of the underlying mathematical
representation of the shapes in the image. [25]

Because of the mathematical nature of vector graphics, they are theoreti-

cally similar to three-dimensional computer graphics, but the term specifically

refers to two-dimensional images; in part to distinguish them from raster graph-

ics. Vector graphics are primarily used for line art, images drawn with distinct

straight or curved lines. For example, early CAD systems mostly used calli-

graphic black and white displays and rendered images in vector graphics for-

mats. However, today, data in vector graphics form is now converted to raster

graphics formats when used outside of vector specific editing software.

Vector graphics data structures offer a number of advantages compared to

raster approaches. First, they are based on mathematical expressions, which

means they are resolution independent. Zooming in on the image does not

cause image degradation as in raster graphics; the image will remain smooth.

Second, objects made using vector graphics are independent from their visual

representation. This allows for easy and accurate editing of primitives, pro-

7

vided they are contained in a vector graphics workspace. For example, assume

we have an image of a circle covering a part of a square. In vector graphics,

the circle can be moved without effecting the square beneath, because the data

structure contains the information about both objects independently from their

visual representation. This type of editing is not possible in a single raster

graphics image, because the underlying pixel representation does not contain

the definition of objects in the image.

Examples of popular vector graphics editing software are Adobe Illustrator

[14], Corel Draw [8], and Inkscape [13].

2.1.3 Adaptively Sampled Distance Fields

In addition to the most commonly used data structures (raster and vector graph-

ics), methods combining the capabilities of both approaches are beginning to

emerge. An example of this is a new data structure called adaptively sampled

distance fields [10] (ADFs). A distance field is a scalar field that specifies the

minimum distance to a shape, where the distance may be signed to distinguish

between the inside and outside of the shape. In ADFs, distance fields are sam-

pled according to local detail and stored in a spatial hierarchy. ADFs are capable

of representing a large class of forms, while reducing the storage size to a frac-

tion of a traditional spatial data structure.

Mischief [9], a pseudo-vector graphics based drawing application. Although

its underlying shape representations are mathematical, similar to those in other

vector graphics applications, it does not allow for the precise editing of curves

and shapes as seen in traditional vector graphics programs such as Adobe Il-

8

Figure 2.4: An example of the infinite canvas in Mischief. The work space
can be continuously zoomed in upon without loss in quality.

lustrator. Instead it attempts to use vector graphics to simulate real world art

techniques, similar to Sketchbook. This is made possible by using ADFs to store

the complicated details and shapes of real world brushes. Mischief is also able

to utilize the efficient storage capabilities of ADFs for the implementation of

their ”infinite canvas”; their infinitely zoom-able, translatable workspace. This

unique data structure allows for Mischief to achieve incredible detail and un-

limited scale.

2.2 3-D Sketching in CAD

In order to overcome the limitations of 2D sketching, there have been many pre-

vious attempts to utilize 3-D sketching in the design process. In this section, we

will describe some of the better recent examples others have previously either

implemented or published. A common weakness in each of these methods is

that to date none of them implement a way to generate geometry directly from

the sketch.

9

2.2.1 CATIA Natural Sketch

Natural Sketch is a feature inside of the CATIA modeling software[4]. Natural

Sketch allows the user to draw on a virtual two-dimensional plane that can be

manipulated around the 3-D environment, a surface of an arbitrary 3-D model,

and a ”clipping plane”. It’s sketching features include the ability to alter the pen

style, to automatically change the camera view to align with the drawing plane

if one is being used, and to copy and alter individual strokes.

Natural Sketch uses a two-phase design system. First, the user creates a

”rough sketch”, where lines are rendered exactly as drawn. Afterwards, the

user can trace over their already drawn lines to produce smooth curves from

the initial sketch. As will be describer in Section 4.2, CATIA is based on spline

technology, which allows for this smooth curve generation. These curves also

contain a user defined number of editable geometric knots, which allow the

user to alter the shape of the traced curve. While this system closely has the

capabilities we would like to implement, it is currently only available in a solid

modeling environment, making it incompatible with many tools most designers

use to create early stage 3-D sketch models.

2.2.2 EverybodyLovesSketch

EverybodyLovesSketch [3] is a 3D curve sketching system from the University

of Toronto’s Dynamic Graphics Project Lab. It features a pen based gesture

system, allowing the user to execute functions using rapid strokes, circles, and

other predefined stroke patterns. Other features include dynamic sketch plane

selection using previously drawn strokes, single view definition of arbitrary ex-

10

(a) Details are added to a base model.

(b) A rough sketch can be traced with editable spline curves.

Figure 2.5: (a) An example of using Natural Sketch to add detailing on the
curved surfaces of an existing car model. (b) The rough sketch
can then be emulated with Catmull-Clark splines. [5]

11

trusion vectors, multiple extruded surface sketching, copy-and-project of 3D

curves, free-form surface sketching, and an interactive perspective grid. Every-

bodyLovesSketch is based off of previous work by the same lab, ILoveSketch,

which contains the base 3D sketching functionality.

2.2.3 Hyve3D

Hyve3D [7] is an infinite virtual sketching environment from the University of

Montreal. It uses two screens; a computer monitor to show the 3-D environ-

ment, and an iPad for the drawing surface. The sketching plane represented

by the iPad is shown in the virtual environment, and is manipulated by mov-

ing and rotating the iPad in the real world. The user then ”pins” the sketch

plane in place and proceeds to draw at leisure. The advantage of this system is

that it combines real world manipulation with virtual representation, eliminat-

ing the need for complex user interfaces and gestures. The disadvantage is that

this kind of movement has no one-to-one feedback between the real world and

the virtual world, meaning that it is difficult to judge how your movements of

the iPad effect the exact positioning of the drawing plane without confirming it

visually.

2.3 3-D Sketching in 3-D

3-D content creation on a traditional computer screen is implicitly constrained.

Any type of input or user interface is limited by the fact that one dimension

of the workspace will always be inferred due to the two dimensional output.

12

(a) A user using an iPad to sketch on a plane inside of the virtual environment.

(b) Manipulating the drawing plane by manipulating the iPad

Figure 2.6: (a) An example of using Hyve3D to draw inside of a virtual
environment. (b) The user utilizes an iPad as both the physi-
cal sketching surface and the tool to position the virtual sketch
surface. [7]

13

Figure 2.7: Augmented reality sketching using the Gravity tablet and
headset. The tablet is used to define the location of the sketch
plane in the ”virtual” workspace, which can then be drawn
upon. [22]

Work in this space explores alternative devices that work with methods of three

dimensional input. The result has been leveraging a number of emerging tech-

nologies that deal with input and output that is experienced in three dimen-

sions. While the output for the methods described in this section is either vir-

tual or physical, the input is provided in the same way; a user physically moves

a device in three-space to create content.

2.3.1 Virtual Reality / Augmented Reality

Recently, there have been two key technologies developed with the intention to

immerse the user in a virtual environment or combine virtual images with real

environment, termed augmented reality. Both of these involve head-mounted

14

Figure 2.8: Virtual reality sketching using Tilt Brush. The user can sketch
in a virtual environment in a manner similar to light painting.

displays (HMDs) that display two two-dimensional stereo images. Despite the

images being flat, the system takes advantage of how humans see, such that the

user feels the presence of actually being inside of the virtual or augmented real-

ity environments. The advantage to using these virtual systems is the parallax

from the stereo images allows the user to fully be immersed in the space they

are working in. Unfortunately for input tasks, the downside of these systems

is that their input methods are essentially drawing in midair; there is no tactile

feedback similar to a pen pushing against a piece of paper. An example of an

augmented reality approach to 3-D sketching is Gravity Sketch [22], and one

of a virtual reality approach is Tilt Brush [28]. Gravity sketch uses a tablet as

a sketching surface as well as a tool to manipulate the sketching environment.

Tilt Brush uses a game controller to draw in the air in a manner similar to light

15

Figure 2.9: 3-D drawing using a 3-D printing pen. [24]

painting.

2.3.2 3-D Printing

So far, we have implied 3-D sketching is only possible in virtual environments,

due to using the inherent two dimensional techniques artists have developed

for centuries. However, groups have experimented with using 3-D printing to

create pens that can sketch simple 3-D models; examples being the Polyes Q1

Pen [24] and the 3Doodler [1]. These pens work similarly to hot glue guns, ex-

cept instead of glue, the pens secrete ABS plastic that quickly hardens as it exits

the tip of the pen. Like the digital approaches, these pens lack tactile feedback,

and rely purely on the user’s sight to sketch. Unfortunately, between the appar-

ent structural instability of even small models created by the pen, as well as the

16

lack of flexibility in the way the pen can be used, it appears that this route is im-

practical for creating the types of large and intricate structures seen in modern

design.

17

CHAPTER 3

INPUT TECHNOLOGIES AND HUMAN COMPUTER INTERACTION

An important goal for any user interface is to have the human-computer in-

teraction be as intuitive and natural as possible. Natural interaction is critical for

a sketching interface; while younger, more technologically willing professionals

flock to digitized content creation software, those classically trained prefer to

stick to physical methods. In order to convince the latter to adapt to a new

system, the transition process must be as smooth as possible, so as many of

the techniques utilized in the physical system should be emulated as closely as

technology allows in the digital system.

A key element for bridging the gap between physical and digital tools are

input devices, computer hardware used to control electronic devices. For a

long time, the most common input devices for digital environments have been

the mouse and keyboard, which provide rather unintuitive ways to move and

control the computer. However, in recent years there have been a number of

advancements in the human-computer interaction field, which has produced a

wide array of input devices. In this chapter, we will discuss human-computer

interaction principles used to decide how to best utilize input devices, as well

as discuss the particular devices needed to create a good sketching system.

18

3.1 Input Classifications

3.1.1 Modality

In human computer interaction, a modality is a channel of sensory in-

put/output between the human and the computer. Modalities can be split into

two general types: human-computer, and computer-human modalities.

Human-computer modalities describe the ways humans input information

to the computer. These modalities are devices and sensors attached to the

computer. Common input device modalities are keyboards, pointing devices,

and touch screens, while more complex modalities are computer vision, speech

recognition, gesture recognition, and orientation. In sketching, the equivalent

of a human-computer modality is the sketch implement. Whether the tool is a

pen, pencil, charcoal, or something else, the artist provides ”data” to the sketch-

ing surface through his strokes by sending information like position, angle, and

pressure.

Computer-human modalities describe the ways the computer outputs infor-

mation to communicate with humans. This requires stimulation of one of the

human senses: sight, hearing, taste, smell, touch, balance, temperature, and

pain. Of these, modern input devices generally communicate using sight and

hearing, because they are capable of sending information at much higher speeds

and larger bandwidths, as well as being the more common ways humans com-

municate with each other. There are also small uses of haptics, general vibra-

tions or other movement, to provide feedback, but generally they are accompa-

nied by visual and auditory cues.

19

While working on this project, it became apparent that professionals are very

sensitive to a complex combination of input and output modalities, some of

which are not reflected well by current hardware capabilities. For example, an

architect commented while drawing on the large display that he felt uncom-

fortable because the digital pen pressing against the display didn’t feel like a

physical pencil brushing against a piece of paper. The difference in friction and

materials meant that he was unsure of how things like pressure and angles ef-

fected his drawing. This problem is a result of both the limitations of the input

device, as well not providing proper feedback for his actions. On this project,

we focus more on the input modalities, but for a truly realistic sketching sys-

tem, specialized hardware must be utilized in order to closely emulate these

intricacies.

3.1.2 Direct and Indirect

Direct and indirect input refer to how the input space corresponds to the display

space. With direct input, the two are directly correlated. For example, on a

touch screen, where you touch is where the input is recorded. With indirect

input devices, the input value is only relative to the input space. Moving a

mouse three inches can correspond to movement of any kind on the computer

screen. For example, in desktop settings, moving the mouse to the left three

inches can correspond to a variety of moments on the computer screen. In a

three-dimensional application it can cause the user to move left, or turn left.

Indirect input devices have the advantage of being more application inde-

pendent. However, this comes at the cost of accessibility. A mouse can do many

20

things, but the user must learn what it does in the current context. Direct input

methods tend to be intuitive while limited in scope. The user knows touching a

screen at a spot causes an action at that spot.

As will be described later, when physically sketching, most if not all inter-

actions are direct. There are minute indirect details such as different drawing

implements which can produce different strokes with the same input, but on a

high level there is a one-to-one spatial correlation between actions and results.

Therefore, for this project, it is important to minimize any indirect interaction

between the user and the system. For any indirect interaction, we should try to

minimize the complexity of the difference between the input and output spaces.

3.2 Input Devices

3.2.1 Keyboard

A keyboard is an indirect input device using an arrangement of buttons or keys,

acting as mechanical levels or electronic switches. Common keyboards are type-

writer style devices, with many buttons representing alphanumeric characters

as well as a small number of additional function keys. Desktop keyboards usu-

ally have from 100 to 105 keys, while laptop and other small device keyboards

contain less. All standard keyboards have a typing area used for letters of the

alphabet, numbers, punctuation, and other basic characters. However, there are

also composite devices that have keyboard like features, such as video game

controllers. Game controller buttons offer contextual and situational function-

ality depending on the application in use.

21

There are certainly auxiliary areas in good sketching software where a key-

board of some kind should see use; for example, saving files, but for the core of

the application, the user should never use one. Many design applications such

as Maya use a combination of function and character keys to perform actions,

bringing a significant learning curve in order to use these applications effec-

tively. This results in an interface that is unnatural, and requires application

specific skill-sets. For this project, we try to avoid use of the keyboard as much

as possible.

3.2.2 Pointing Devices

A pointing device is a device that more easily allows a user to input spacial data

to a computer. Many common input devices fall under this classification. CAD

systems and graphical user interfaces allow the user to control and provide data

to the computer using physical motion. These movements are then echoed on

the screen in some way, whether it be by an on-screen cursor, or some change

in the visual output. Pointing devices are usually controlled by either physical

movement of an object, or touching a surface. Examples of devices based on

motion are the mouse, trackball, and joystick, and those based on touch are the

graphics tablet, stylus, touchpad, and touch screen.

Mouse

A mouse is a small, hand-held device that is pushed over a flat, horizontal sur-

face. Older mice used a physical ball at the base of the device, combined with

sensors to detect when the ball rotates. When the mouse moves and rotation is

22

sensed, the distance and directional information is sent from the mouse to the

computer. A more modern approach is the optical mouse, which uses infrared

light instead of a roller to detect changes in position.

The mouse is the oldest pointing device, and used with every desktop com-

puter. The mouse works in an indirect space as the position of the mouse and

that of the cursor on screen are completely unrelated. When a mouse is moved

ten inches to the left, the movement of the mouse cursor on screen is not ten

inches, but some function with ten inches as input. As discussed previously,

we would like to eliminate indirect input where ever possible. While it will

be possible to use the mouse with our application, it should be seen as legacy

functionality.

Tablet

A graphics or digitizing tablet is a special tablet that is similar to a touchpad.

However, it is controlled with a digital pen or stylus that is held and used like

a normal pen. An alternative control device for tablets is called a puck. This

is a mouse-like device that can detect absolute position and rotation. Profes-

sional pucks used for detailed CAD work have a reticle which allows the user

to see the exact point on the tablet’s surface targeted by the puck. Graphics

tablets are commonly used to create 2D computer graphics because of their in-

put similarities to traditional drawing techniques. Tablets are very commonly

used for digital sketching applications. However, many graphics tablets are

used in combination with a screen, meaning there is still a visual and physical

disconnect between the sketch and the output.

23

Pen

As mentioned above, touch panels can be used with rigid styli to simulate the

experience of writing. However, the pen itself can also be computerized to cap-

ture additional information for various applications. An active pen is an input

device that includes electronic components and allows users to write directly

onto the display surface of a computing device. The active pen’s electronic com-

ponents generate wireless signals that are picked up by a built-in digitizer and

transmitted to its dedicated controller, providing data on pen location, pres-

sure and other functionalities. Additional features enabled by the active pen’s

electronics include palm rejection to prevent unintended touch inputs, and hover,

which allows the computer to track the pen’s location when it is held near, but

not touching the screen. Most active pens feature one or more function buttons

(e.g. eraser and right-click) that can be used in place of a mouse or keyboard.

3.2.3 Touch Screen Devices

A touch screen can be considered as an input device layered on top of a display.

Users provide input by touching the screen with one or more fingers, or with a

special stylus/pen. This method of input allows users to directly interact with

what is displayed, as opposed to using an indirect input device such as a mouse

or touchpad.

One major advantage touch screens offer over other input devices is ease

of use. While frequent computer users are familiar with using a mouse and

keyboard, touching icons on a screen is intuitive even for those with limited to

no computer experience. This ease of use can reduce the learning curve and

24

increase productivity when using these types of user interfaces. Touchscreens

are also faster to use than traditional input methods. When a user interacts with

a computer using a mouse and keyboard, there are many small adjustments the

user needs to make; they need to locate the pointer, and adjust for the mouse

acceleration. Direct interaction allows for users to interact with the computer

without worrying about correlating the interaction space to the virtual space.

There are many ways to build a touch screen. The key points in any im-

plementation are to recognize one or more input points touching a display, to

interpret the command these touches represent, and to communicate with an

application. The three main types of touch sensing technologies are resistive

sensing, surface acoustic wave sensing, and capacitive sensing.

Resistive Sensing

Resistive touch panels are composed of two thin, flexible sheets coated with a

resistive material and separated by a small gap. A resistive touch monitor fea-

tures a simple internal structure: a resistive panel is placed on top of a glass

screen, with a polyester film screen on top of the panel used as the contact sur-

face. Pressing the surface of the film screen causes the electrode-covered sheets

between the film and glass panels to come into contact, resulting in the flow of

electrical current. The point of contact is identified by detecting this change in

voltage. (Figure 3.1)

Resistive technology is low cost due to the simple structure of the touch

screen and controller circuit. Analog sensors have high resolution, the most

common being 4096 by 4096 dots-per-inch (DPI), as well as high accuracy, while

25

Figure 3.1: When a user interacts with a resistive touch panel, they press
against a protective polyester film. At the touch point, two
sheets of electrode covered film press against each other, caus-
ing an electric current. [12]

consuming low amounts of power during operation. This DPI refers to the num-

ber of sensing dots-per-inch, and is uncorrelated to the display DPI. Resistive

touch screens can be used with any object that can provide a pressure point,

since the system only requires contact. This allows for users to use pens and

gloves to interact with a device. Disadvantages include it’s poor responsive-

ness compared to other developed sensing methods, generally requiring harder

presses, providing lower light transmittance causing a reduction in screen qual-

ity, and a decrease in accuracy with large screen sizes (>24 inches). While high

26

Figure 3.2: A surface acoustic wave sensor transmits vibrations across the
surface of a glass screen. When the screen is touched, the vi-
brations are absorbed and attenuated by the touch object. [12]

resolutions would allow for more accurate and more detailed sketching, the

poor responsiveness would make resistive panels a poor substitute for tradi-

tional drawing media.

27

Surface Acoustic Wave (SAW) Sensing

Surface acoustic wave (SAW) technology was developed to achieve bright touch

panels displays with high levels of visibility; mainly to address the drawbacks

of low light transmittance in resistive film touch panels. These are also called

surface wave or acoustic wave touch panels. Aside from standalone LCD mon-

itors, these are widely used in public spaces in devices like point-of-sale termi-

nals, ATMs, and electronic kiosks.

These panels detect the screen position where contact occurs with a finger

or other object using the attenuation in ultrasound elastic waves on the surface.

The internal structure of these panels is designed so that multiple piezoelectric

transducers arranged in the corners of a glass substrate transmit ultrasound sur-

face elastic waves as vibrations in the panel surface, which are received by trans-

ducers installed opposite the transmitting ones. When the screen is touched, ul-

trasound waves are absorbed and attenuated by the finger or other object. The

location is identified by detecting these changes. (Figure 3.2)

The strengths of this type of touch panel include high light transmittance

and superior visibility, since the structure requires no film or transparent elec-

trodes on the screen. Structurally, this type of panel ensures high stability and

long service life, free of changes over time or deviations in position. Even if

the surface does somehow become scratched, the panel remains sensitive to

touch. Weak points include compatibility with only fingers and soft objects

(such as gloves) that absorb ultrasound surface elastic waves. These panels re-

quire special-purpose styluses and may react to substances like water drops or

small insects on the panel. This sensing method, like resistive sensing, is more

suitable for public displays that see heavy use. While high quality displays are

28

desirable, the relative inflexibility of input capabilities limit SAW powered dis-

plays for use in sketching applications.

Capacitive Sensing

Capacitive touch panels use the natural flow of electricity through the human

body, also called body capacitance, as the input signal. They are most com-

monly used in consumer level hardware such smart phones, tablets, and LCD

monitors. They are constructed from a wide variety of materials, such as cop-

per, Indium tin oxide (ITO), and printed ink. Unlike resistive film touch panels,

capacitive touch panels do not respond to touch by clothing or standard styli.

They feature strong resistance to dust and water drops and high durability and

scratch resistance. In addition, their light transmittance is higher, as compared

to resistive film touch panels allowing for higher quality displays. There are

two types of capacitive technology; surface capacitive and projected capacitive

systems.

Surface Capacitive Sensing is often used for larger sized displays (over 14

inches) that are used by the general public because of their high durability and

high screen quality. Surface capacitive displays can be seen on ATM machines,

ticket kiosks, arcade games, automation devices in factories and offices, and in

the medical industry.

A surface capacitive panel is constructed using a glass sheet. A transparent

conductive coating is placed over the sheet, and a glass protective coating is

29

Figure 3.3: In a surface capacitive sensor, a uniform electric field is gen-
erated over a glass panel from electrodes on the panel’s four
corners. When a user touches the panel, current flows from
each of the corners through the finger. [12]

placed above that. Electrodes are placed on the four corners of the panel.

If the same phase voltage is imposed to the electrodes on the four corners,

then a uniform electric field will be formed over the panel. When a finger

touches the panel, electrical current flows from each of the four corners through

the finger. The ratio of the electrical currents flowing from each of the four cor-

ners is measured to detect the touched point. The measured current values will

be inversely proportional to the distance between the touched point and each of

the four corners. (Figure 3.3)

30

A surface capacitive touch panel has a simpler structure than a projected ca-

pacitive touch panel (see below). This allows for lower cost in production, high

durability, and high visibility due to the main structure being a single glass

layer. However, it’s simplistic structure also means it is structurally difficult to

detect two or more contact points simultaneously. Surface capacitive can usu-

ally only detect bare finger touches, although some may detect touches through

a thin pair of gloves. Surface scratches can cause touch signals to get inter-

rupted. Some surface capacitive displays support pen writing, but not simulta-

neous pen and touch.

Projected Capacitive Sensing is often used for smaller screen sizes than sur-

face capacitive touch panels. They’ve attracted significant attention in mobile

devices. The iPhone, iPod Touch, and iPad all use this method to achieve high-

precision multi-touch functionality and high response speed. However, the

technology is also now being used for large display devices such as Microsoft’s

Surface Hub, a 55-inch projected capacitive display.

The internal structure of these touch panels consists of a substrate incorpo-

rating an IC chip for processing computations, over which is a layer of numer-

ous transparent electrodes positioned in specific patterns. The surface is covered

with an insulating glass or plastic cover. When a finger approaches the surface,

electrostatic capacity among multiple electrodes changes simultaneously, and

the position where contact occurs can be identified precisely by measuring the

ratios between these electrical currents. (Figure 3.4)

A unique characteristic of a projected capacitive touch panel is the fact that

the large number of electrodes enables accurate detection of contact at multiple

31

Figure 3.4: In a projected capacitive sensor, the display is covered by a
layer of numerous transparent electrodes positioned in specific
patterns. When a finger approaches the surface, electrostatic
capacity among multiple electrodes changes simultaneously.
[12]

points (multi-touch). Smaller projected capacitive multi-touch panels, such as

those found in smart phones and tablets, are made with indium-tin-oxide. How-

ever, the methods used to make small panels are poorly suited for use in large

screens, since increased screen size results in a slower transmission of electrical

currents across the panel, increasing the amount of error and noise in detecting

the points touched. Instead, larger touch panels use center-wire projected capac-

itive touch panels in which very thin electrical wires are laid out in a grid as a

32

transparent electrode layer. While lower resistance makes center-wire projected

capacitive touch panels highly sensitive, they are less suited to mass production

than ITO etching.

3.2.4 Summary of Input Technologies

In Table 3.2.4, we provide an overview of the touch technologies discussed in

the previous sections. For a pure 2-D sketching interface, comparing the capa-

bilities indicates that a resistive panel would likely be the best input device. It’s

high accuracy and resolution are very desirable traits for creating high quality,

accurate sketches. However, our system intends to use multi-touch gestures to

navigate the three-dimensional sketching environment. Therefore, we require

multi-touch capabilities that a resistive panel lacks. As a result, we design our

application around capacitive displays, as they have the best touch function-

ality. Their poor stylus support can be augmented by the use of active pen

technology specially designed for capacitive displays. In particular, we use Mi-

crosoft’s Surface Hub technology, which has a basic pen capability, upwards of

4K resolution, and support for up to a hundred touch points.

3.3 Advanced User Interaction: Input using Gesture

A gesture is a form of communication where visible body action communicate

particular messages. Common gestures are usually performed by hand and arm

movements. Other forms of physical non-verbal communication, such as purely

expressive display, proxemics, and joint attention differ from gestures, which

33

Method Resistive Capacitive SAW
Light Transmittance Poor Good Good
Finger Touch Excellent Excellent Excellent
Gloved Touch Excellent None Good
Stylus Touch Excellent Poor Good
Maximum Single User
Touch Points

One Ten Two

Accuracy Excellent Good Good
Durability Poor Excellent Excellent
Water Resistance Excellent Excellent Poor
Cost Reasonable Not reasonable Not reasonable

Table 3.1: A comparison of touch technology.

communicate specific messages. While some gestures are ubiquitous, such as

pointing, which differs little in intent from one application to another, many do

not have universal meanings and are defined differently in different disciplines.

3.3.1 Types of Gestures

In Gestures [18], Morris describes two main types of gestures: primary and inci-

dental.

Primary gestures are voluntary movements that a person uses with intent of

communicating a message. There are three main types:

1. Emblems: These are gestures that have a direct verbal equivalent. For

example, a waving of a hand upon an encounter means hello. Emblems

tend to form in situations where speech is challenging or impossible. For

example, airport controllers on runways communicate with gestures be-

cause the planes make it impossible to hear.

34

2. Illustrators: These gestures are closely linked with speech, and serve to

clarify, or add to the content of the message. Illustrators are made by hand

movements. A common example of an illustrator is pointing.

3. Reinforcers: There are gestures that help regulate the flow of conversation.

For example, a head nod during conversation can mean that the current

speaker should continue, or an upwards point might mean to wait to con-

tinue speaking.

Secondary, or incidental gestures are unintentional, but despite their lack of

a direct message, are still important in conversation. Gestures such as groom-

ing the hair, fidgeting, looking down or away, or looking at a clock are all ex-

amples of involuntary gestures. While they do not directly communicate, sec-

ondary gestures can still send information about the current state of their user.

This is called leakage, when true feelings or attitudes are revealed despite what

the overt signals are communicating. For example, a man in a rush might say,

”Yeah, I can talk” while looking at a watch. Secondary gestures are not impor-

tant for Human Computer Interaction, however care must be taken so involun-

tary gestures are not accidentally used as input.

Human computer interaction further distinguishes between types of ges-

tures, splitting them into two major categories.

1. Offline: These gestures are processed after the user interaction with the

object. For example, drawing a circle activates a menu.

2. Online: These gestures directly manipulate an object. A common example

is taking two fingers and spreading them while touching an object to zoom

in on the object.

35

Figure 3.5: A visual representation of the core set of touch gestures. [29]

3.3.2 Multi Touch Gestures

Multi-touch gestures are predefined motions used to interact with multi-touch

devices. Many modern consumer electronics like smart-phones, tablets, lap-

tops, or desktop computers feature functions triggered by multi-touch gestures.

They tend to be direct input methods with simple to understand functionality

heavily based on the gesture used, allowing non-technical people to quickly

36

configure and navigate multi-touch applications. This section will only discuss

core multi-touch gestures, and not the many subsets of unique gestures that

combinations of this set of core gestures can create. Visual representations of

how these gestures are performed can be seen in Figure 3.5

Tap

Taps are performed by quickly pressing and releasing a screen with a fingertip.

Most systems differentiate between single and double taps, performed by tap-

ping the screen once or twice respectively. Taps are generally used for selecting

items, with single and double taps offering different types of selection. Taps are

both online and offline gestures, since the number of taps need to be processed,

but directly interact with objects being tapped.

Drag

Drags are performed by moving a fingertip over a surface without losing con-

tact. An alternative type of drag is the flick, which is performed by the same

method as the drag, only faster. Drags are generally used to move elements,

making them online gestures.

Pinch and Spread

Pinches are performed by taking any number of fingertips and enclosing them

towards a point. Spread gestures are the inverse action. Generally these online

gestures are used for magnification.

37

Rotate

Rotate gestures are performed by moving two or more fingertips in a circular

pattern around a point. The rotation point is used as the input location. Rotation

is an online gesture.

Press

Presses are performed by touching a screen for an extended period of time.

Presses can be combined with other touch gestures to allow for a deeper level

of user interaction. Presses are offline gestures, since the duration of the press

must be processed. This action usually results in context menus which are used

for enhancing information about the object.

3.3.3 Pen Gestures

Pen gestures recognize certain shapes, not as handwriting, but as an indicator of

a special command. For example, a pig-tail shape (used often as a proofreader’s

mark) would indicate a delete operation. Depending on the implementation,

what is deleted might be the object or text where the mark was made, or the sty-

lus can be used as a pointing device to select what it is that should be deleted.

These types of gestures are offline. Pen gestures tend to be abstract, with func-

tionality not necessarily representative of the shape formed by the gesture. (Fig-

ure 3.6)

Pens can be used to perform many of the multi-touch gestures, but the pen is

just treated as a finger in these scenarios. In order for our project to incorporate

38

Figure 3.6: Examples of pen gestures and their associated functions. Note
that many gestures have shapes unrelated to their functional-
ity. [2]

pen gestures, the pen input would need to be preprocessed before it is projected

into 3-D space. While pen gestures are a useful tool, in a free-form sketching

environment it can be unclear if the user intends to make a stroke or a gesture,

even if using the same symbol. This can potentially confuse the user. We can

use touch gestures to accomplish similar results, and thus did not incorporate

pen gestures in our application.

39

3.3.4 Three Dimensional Gesture Recognition

While older forms of gesture recognition attempt to translate physical interac-

tion with an input device in order to form gesture based commands, more mod-

ern approaches directly interpret motions of the human body. This is accom-

plished using computer vision techniques, as well as different types of cameras

and sensors used to capture and understand a three dimensional environment.

Once this information is captured a variety of techniques can be used to analyze

the scene and detect gestural information. While 3-D gesture recognition is an

emerging area, and is beginning to see common use in a number of modern user

interfaces, it’s use for 3-D sketching is left to future work. Possible applications

are using 3-D gestures to manipulate the environment in conjunction with 2-D

gestures.

3.4 Summary

In this chapter we discussed how users interact with digital technology, an

overview of common and project related input devices, and why certain inter-

action methods are preferable for 3-D sketching. For our application, we chose

to support a subset of these techniques and devices in order to mimic real world

sketching as closely as possible. We use a capacitive touch display, which sup-

ports a very large number of touch input points as well as an active pen device.

From the active pen, we leverage the capability to detect sub-pixel input posi-

tion, as well as the ability to detect how hard the user presses on the screen with

the pen.

40

CHAPTER 4

CREATING A SKETCH

The most basic operation in any sketch-based modeling system is, of course,

obtaining a sketch from the user. The key characteristic of a sketch-capable in-

put device is that it allows freehand input. While a mouse is capable of this form

of input, devices that more closely mimic the feel of freehand drawing using a

pen, such as a digitizing tablet, are better for users to maximize their ability to

draw. Devices that serve as both an input device and a display device are par-

ticularly suited to this, because it most closely mimics traditional artist creation

methods by allowing direct interaction with the sketch space, as opposed to

tablets where the space between the input device and the display surface is rel-

ative. Because of this direct interaction method, it is important that our system

accurately translated the user’s sketch to the 3-D virtual space. In this chapter

we will discuss how we take the sketch input and create a smooth stroke that is

independent of the resolution of the input device.

4.1 Representation of a Sketch

At the bare minimum, an input device should provide positional information

in some two dimensional coordinate system, usually one based on the interac-

tion window. For sketch input, the representation must at least approximate

continuous movement (Figure 4.1). Sampling rates vary from one device to

the next. The samples themselves may also be spaced irregularly, with sample

points closer as users draw slowly or carefully, or further apart if the user draws

quickly.

41

Figure 4.1: In an ideal scenario, an input stroke (a) is provided to the ap-
plication as (b) a sequence of point samples.

We will refer to this sampled sequence of points as a stroke. Strokes are

stored as a list of points, objects containing coordinates from the sample space,

sorted by time. A sketch is comprised of a large number of these stroke objects.

We also support a simple layer system that can be used to segment a sketch by

allowing strokes to be contained in the active layer.

4.1.1 Understanding the Stroke Space

Before we discuss how to create smooth strokes, we need to understand how the

stroke input gets sent to the application. When the pen touches the screen, it’s

42

(a) The intended complicated stroke input
onto a sensing grid.

(b) A potential raw input detected by the sen-
sor.

Figure 4.2: When sketching, the user’s input is rasterized according to the
resolution of the sensor. This makes complicated sketch input
(a), difficult to understand from the limited resolution of the
input (b).

position is detected by the touch panel. This detected position is not necessarily

exactly the same as the real world positions of the pen. This is because the input

is rasterized according to the resolution of the sampling device. For example,

assume we are working with integer sample data, and we receive that the pen is

at pixel position (148, 148). The pen could actually be at (147.6, 148.2), or (148.2,

147.6), or any other position that samples to (148, 148) (Figure 4.1.1). This is an

issue because in our sketching application, we would like to be able to zoom in

to any surface. This means that small errors in sampling data, and as a result,

errors in spline generation, will be magnified. While the former isn’t really an

issue, the latter is.

43

4.2 Spline Curves

The input data represents an approximation of the stroke input from the user

since it is dependent on the sample resolution of the input device, and by ex-

tension, the resolution of the display. Although this would work decently well

assuming we are working with a static raster image, three dimensional sketch-

ing allows the user to move the camera. Moving the camera eventually results in

poor quality sketches using the stored stroke data due to the lack of sub-sample

information that accurately reflects the intent of the original stroke. To remedy

this, a mathematical representation of the curve is needed such that the ”sam-

pling rate” of the stroke is independent from the resolution of the input device.

In computer graphics, this is commonly accomplished with spline curves.

A spline is a collection of polynomial segments. These segments can be lin-

ear, cubic, or a polynomial function of any degree. Splines are a common so-

lution for modeling smooth curves from a small number of points. For this

project, we use a Bézier curve function for the spline pieces. A Bézier curve is

a parametric curve commonly used in computer graphics to model infinitely

scaling, smooth curves. The curve is defined by control points P0, P1, ..., Pn, and

is explicitly evaluated as follows:

B(t) =
n∑

i=0

(
n
i

)
(1 − t)n−itiPi (4.1)

= (1 − t)nP0 +

(
n
1

)
(1 − t)n−1tP1 + · · · (4.2)

· · · +

(
n

n − 1

)
(1 − t)tn−1Pn−1 + tnPn, 0 ≤ t ≤ 1 (4.3)

where (n
i) are the binomial coefficients, defined as(

n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
for all integers n, k : 1 ≤ k ≤ n − 1 (4.4)

44

with initial values (
n
0

)
=

(
n
n

)
= 1 for all integers n ≥ 0 (4.5)

The curve can also be evaluated recursively, by

BP0(t) = P0 (4.6)

B(t) = BP0P1...Pn(t) = (1 − t)BP0P1...Pn−1(t) + tBP1P2...Pn(t) (4.7)

What this equation means is that a Bézier spline of order n can be defined by

linear interpolation between two splines of order n − 1. For this project, we will

use a cubic Bézier function for the spline segments.

We must now determine a method for transforming our point sample data to

a spline curve. A naive approach would be to generate a spline curve that passes

through the all of our sample points in the sequential order in which they were

generated. Any series of any four distinct points can easily be converted to a

cubic Bézier curve that goes through all four points in the same order. While

this method guarantees that the generated curve passes through all of the input

sample points, it is not guaranteed to generate a curve that represents the intent

of the original stroke.

4.2.1 Generating Splines From the Sample Data

In theory, creating splines that are accurate to the original stroke would involve

generating a curve that passes through each of the sample points. However

in practice, generating a curve in this fashion is not as necessary as one would

think. As discussed in Section 4.1.1, the input data that we get is not necessarily

45

accurate to the actual shape of the sketch. Therefore, even if we were to cre-

ate a curve that perfectly passed through all of the input points, it is possible

that the output curve would still be unsatisfactory. One common example of

this is a user sketching a line diagonally through a screen. Perfect sample data

produces input in a staircase pattern, which would result in a wavy curve not

representative of the intent of the original diagonal line (Figure 4.3). Addition-

ally, because the sample distance between points is not consistent, it is possible

to produce a curve with artifacts that appear unnatural upon magnification (Fig-

ure 4.4). What we should actually try to accomplish with our curve generation

is to match the intent of the stroke.

The approach we take is using the input samples as control points to gen-

erate a piecewise spline curve. This method is better at dealing with extreme

changes in sample rates because the produced curve contains less convex and

concave changes. The curve generated will still not pass through the sampled

points, but if the sample rate is high, it will ultimately converge or be very close.

Thus using the input data as control points results in smooth reasonable curves

even when the control points are far apart. Additionally, to avoid any ”stair-

case” sampling issues (Figure 4.3(b)), we include a euclidean distance constraint

between the sample data based on the resolution of the input. By manipulating

the sample data this way, we are able to create curves that reasonably match the

intent of the user.

46

(a) (b) (c)

Figure 4.3: When a diagonal is drawn (a), the input gets rasterized into a
staircase pattern of input (b). This input produces curves that
do not adequately represent the intent of the original stroke (c).
While this effect would be unnoticeable when the diagonal is
originally drawn, zooming in onto the curve would reveal the
error.

Figure 4.4: Using sample data as geometric knots can result in oddities
in the curve generation if the knots have unusual spacing be-
tween them. This is very possible because no guarantee is
made in the spacing between sampled points.

47

4.2.2 Algorithm

We begin with a list of control points, numbered from 0 to N−1. Segment i of the

curve is influenced by control points i− 1, i, i+ 1, and i+ 2. Using this definition

we can generate N−3 segments from the N control points without falling off the

ends of the sequence.

Since we can’t render a spline, we need to approximate the curve by sub-

dividing it into small line segments. We’re going to divide each Bézier curve

into a set of connected linear components, with the intent that a large enough

number will look sufficiently smooth. To accomplish this, we use a de Caste-

jau construction, which ”splits” a Bézier curve into two smaller Bézier curves.

Subdivision of these segments occurs as follows:

1. Begin with points {P0, P1, P2, P3}, which define a Bézier curve.

2. Define P4 = (P0 + P1) ∗ 0.5, P5 = (P1 + P2) ∗ 0.5, and P6 = (P2 + P3) ∗ 0.5

(Figure 4.5(a))

3. Define P7 = (P4 + P5) ∗ 0.5, and P8 = (P5 + P6) ∗ 0.5 (Figure 4.5(b))

4. Define P9 = (P7 + P8) ∗ 0.5 (Figure 4.5(c))

5. Create two new Bézier curves using {P0, P4, P7, P9} and {P9, P8, P6, P3} (Fig-

ure 4.5(d))

6. Repeat steps 2 through 5 until a termination criteria is met. Possible crite-

ria include distance between control points, and distance between control

points P1 and P2 and the line between P0 and P3.

If the termination criteria is small enough, then the curve will appear very

smooth, even when zooming in to the curve. Our termination criteria checks the

48

(a) (b) (c)

(d) (e)

Figure 4.5: We begin with four points representing our spline: P0, P1, P2,
and P3. Three points are generated by taking the midpoints
of each adjacent segment of the control polygon (a). This pro-
cess is repeated using the newly created set of points until only
one point is generated (b) (c). From the points created through
these calculations, two new sets of four points each are cre-
ated (d). This process is repeated until a termination criteria
is reached. We check that the perpendicular distance between
two of the control points, P1 and P2, and the line between P0

and P3 is below a certain amount.

perpendicular distance between points P1 and P2 and the line the goes through

points P0 and P3. (Figure 4.5(e)) If both of the distances are below a threshold,

the subdivision terminates. This algorithm produces a smooth B-spline curve

starting at control point 0 and ending at N − 1.

49

4.3 Summary

In this section, we described how we convert user input over a set of pixel coor-

dinates into a curve approximating the intent of the stroke. We believe intent is

more important than perfect accuracy since in practice, replicating curves that

perfectly match input data results in poor quality curves. This is because of the

finite resolution of a pixel grid, where as in real world sketching, the concept of

’input resolution’ does not exist. Using a B-spline algorithm with cubic Bézier

components, we can calculate a smooth spline curve for our stroke input.

50

CHAPTER 5

SKETCHING IN 3D

In a typical 2-D sketching application on a graphical tablet, a user draws on

a two dimensional plane that mirrors the surface of the input device. However,

in a 3-D sketching application, the user draws on arbitrary three dimensional

planes and surfaces. The most basic example is a simple plane: a user can orient

a plane in three dimensional space, and the draw on the tablet. The strokes on

the tablet are then projected onto the plane, thereby creating a 3-D stroke.

The goal is to be able to perform real-time 3D sketching. We assume that our

model environment has been ”polygonalized” into triangles. The constraint

is that we need to draw on the image plane with the true perspective image

as seen from the observer’s position. Using a perspective image, as opposed

to an orthographic image, would give the best understanding of the drawing

environment, allowing us to mimic drawing in 3D space.

The difficulty is achieving this at interactive rates, at least as fast as a per-

son draws; roughly 30 frames per second. This is hard! We rely on techniques

implemented in rendering algorithms, specifically the ray casting methods uti-

lized in ray tracing. To obtain the speed, it is necessary to reduce the large num-

ber (N) of ray-triangle intersections for complex environments. Note that N is

large due to the decomposition into many small triangles. We utilize a spatial

tree data-structure containing a hierarchical bounding-box scheme to reduce the

computation time. We have been able to achieve this acceleration as shown in

Chapter 7.

In this chapter we provide detailed definitions of:

51

Figure 5.1: Ray Tracing in Computer Graphics

• The ray casting approach

• The method for ray-triangle intersections

• The hierarchical box and tree data structures:

• The heuristic Surface Area subdivision

We use all of the above to efficiently project two dimensional user input onto a

three dimensional sketching environment.

5.1 Ray Casting

Ray casting is the use of rays, a line with an endpoint and a direction, to test for

intersections with surface geometry. These computations are the fundamentals

52

Figure 5.2: When a user creates a stroke on the screen, the resulting curve
is projected onto the sketching surface.

of ray tracing computer graphics algorithms, used to solve a variety of prob-

lems.

Ray casting is commonly used for object selection in interactive 3-D appli-

cations. A pointing device provides user input on pixel (i, j), and the ”picked”

object is whatever is ”seen” though the pixel. Using ray casting, a ray is created

and sent in the virtual viewing direction. The origin of the ray is the position of

the camera in the virtual environment, and the direction of the ray is based on

the location of the user input. This is further explained in Section 5.1.1. If the

ray intersects with a surface, that surface is used as the drawing plane. We can

use a similar approach to project our strokes from the screen onto the surfaces

of objects. The ray casting algorithm is utilized as follows:

1. The user draws a stroke on a 2-D plane, giving a set of sample points

2. An imaginary plane is created in the virtual space representing the image

53

plane.

3. Rays are cast into the three dimensional scene from the imaginary plane

based on the sample positions.

4. The intersections with the scene geometry represent the new 3-D positions

of the stroke.

Once we intersect all of the sample points with the scene geometry, we can use

the spline techniques described in the previous chapter to create a 3-D curve

approximating the appearance of the projected 2D stroke.

5.1.1 Generating the Ray

OpenGL uses a projection matrix to project the 3D scene to the 2D computer

monitor. First, the matrix transforms points from view space to clip space, the

space that defines whether points are visible to the user. Then the matrix trans-

forms these points to normalized device coordinates (NDC), which causes any

visible point to be contained in a box with lower bound (-1,-1,-1) and upper

bound (1,1,1). (Figure 5.1.1) We want to create rays that match this behavior of

OpenGL perfectly, otherwise the user will not be able to draw properly on the

surfaces of objects. The easiest way to accomplish this is to invert the calcula-

tions OpenGL uses in order to calculate two points in world space that we can

use to generate the view ray.

When the user clicks on the screen, we take the screen point and normalize to

a point between (-1,-1) and (1,1). This represents the X-Y position of the screen

point in NDC. We then create two 3D points p0 and p1 with the XY values of

54

Figure 5.3: First, the projection matrix transforms points from view space
to clip space, the space that defines whether points are visible
to the user. Then the matrix transforms these points to normal-
ized device coordinates (NDC), which causes any visible point
to be contained in a box with lower bound (-1,-1,-1) and upper
bound (1,1,1).

the NDC screen point and z values -1 and 1 respectively to represent the upper

and lower bounds of the clip space. By multiplying these two points by the

inverse of the view-projection matrix, we can obtain two points in world space

(Figure 5.1.1). p0, the point with original z value -1, is the origin of the ray, and

the ray direction is equal to p1 − p0.

5.1.2 Ray-Triangle Intersection

Given a ray e + td, where e is the origin of the ray and d is the ray direction, we

want to find the first intersection with any object where t > 0. In this section,

55

Figure 5.4: Using a known point on a 2D screen, we can create a ray in
NDC space using the xy point and the z bounds of the space
(-1 and 1). Transforming these two points from NDC space to
world spaces gives us a line segment that represents what the
pixel ”sees” in the environment.

the intersection with the most basic computer graphics primitive, the triangle,

is discussed. The use of triangles is prevalent for two primary reasons. The

first is that in order to compute the actual ray-polygon intersection point, one

must ensure that it lies within the boundaries of the polygon. By using triangles,

one avoids the computational cost required for re-entrant polygons (polygons

with interior angles greater than 180 degrees). This simplifies the algorithm and

allows for hardware implementations. The second reason is that all surfaces,

including spheres or arbitrary parametric surfaces, can be easily approximated

using triangles. Thus, being able to rapidly intersect triangles will allow 3D

sketching on any object used for the application.

To demonstrate the algorithm utilized, we will intersect a ray with a para-

metric plane that contains the triangle. Once intersected, we use barycentric

56

coordinates to check if the intersection point is contained within the boundaries

of the triangle. Note we could eliminate this check if we want to draw on an

infinite intersection plane.

To intersect a ray with a parametric surface, a system of equations is created

where the Cartesian coordinates all match:

xo + txd = f (u, v) (5.1)

yo + tyd = g(u, v) (5.2)

zo + tzd = h(u, v) (5.3)

These three equations contain the three unknowns (t, u, and v). When the para-

metric surface is a parametric plane, the parametric equation can be written in

vector form. If the vertices of the triangle are a, b, and c, then the intersection

occurs when

e + td = a + β(c − a) + γ(c − a). (5.4)

β and γ are two of the three barycentric coordinates of the triangle. If β > 0, γ > 0,

and β + γ < 1, then the intersection point lies inside of the triangle; otherwise

it hits the plane outside the triangle. If there are no solutions, then either the

triangle is degenerate or the ray is parallel to the parametric plane.

To solve for t, β, and γ, Equation 5.4 is expanded from the vector form to

equations for each of the three coordinate planes.

xo + txd = xa + β(xb − xa) + γ(xc − xa) (5.5)

yo + tyd = ya + β(yb − ya) + γ(yc − ya) (5.6)

zo + tzd = za + β(zb − za) + γ(zc − za) (5.7)

57

This can be rewritten into a standard linear equation of the form Ax = b:
xa − xb xa − xc xd

ya − yb ya − yc yd

za − zb za − zc zd

β

γ

t

 =

xa − xo

ya − yo

za − zo

 (5.8)

This can be solved using Cramer’s rule: given a system of n linear equations for

n unknowns, represented as Ax = b, where the n × n matrix A has a nonzero de-

terminant, and the vector x = (x1, . . . , xn)T is the column vector of the variables,

the system has a unique solution. This solution is given by

xi =
det(Ai)
det(A)

i = 1, . . . , n (5.9)

where Ai is the matrix formed by replacing the i-th column of A by the column

vector b. Solving gives the solutions:

β =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xa − xo xa − xc xd

ya − yo ya − yc yd

za − zo za − zc zd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|A|

(5.10)

γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xa − xb xa − xo xd

ya − yb ya − yo yd

za − zb za − zo zd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|A|

(5.11)

t =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xa − xb xa − xc xa − xo

ya − yb ya − yc ya − yo

za − zb za − zc za − zo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|A|

(5.12)

where A is given in Equation 5.8, and |A| denotes the determinant of A.

58

5.2 Acceleration Structures

An acceleration structure must be used in order to give sub-linear time for ray

object intersection for complex objects. In a naive implementation, the ray caster

would iterate over all triangles in the scene to check for intersections, giving

O(N) performance. For sufficiently large values of N, this would be very slow;

thus a ”divide and conquer” algorithmic approach is used, creating an ordered

data structure to speed up the intersection process.

While many approaches exist, we implement a simple bounding volume hi-

erarchy (BVH) tree [26].

5.2.1 Bounding Boxes

A bounding box for a point set S in three dimensions is the box with the small-

est measure (volume) within which all the points lie. For this project, we use

axis-alligned bounding boxes (AABBs), which are constrained so their edges lie

parallel to the Cartesian coordinate axes (Figure 5.2.1). A key operation in any

intersection acceleration structure is computing the intersection of a ray and a

bounding box. Since we are interested in the actual ray-surface intersection, it

is not necessary to calculate where the ray hits the box, only if it is hit at all, as

the box itself is not an actual piece of geometry.

One of the fastest current methods for intersecting a ray with an AABB is the

slab method [20]. The idea is to treat the bounding box as the space contained

inside of N pairs of parallel planes. For each pair of planes, two pairs of t val-

ues, tmin and tmax are solved for the segment that is between the two planes. If

59

the largest tmin is smaller than the smallest tmax, then some portion of the ray is

contained within all three planes.

5.2.2 BVH Tree

Normally, for intersecting a ray with a scene, one needs to check for the ray’s in-

tersection on every piece of geometry. To reduce this rather costly computation

time, we utilize a bounding volume hierarchy (BVH). This is a binary tree data

structure superimposed on a set of geometric objects.

There are two main components to the BVH; the nodes, which make up the

structure of the tree, and the leaves, which sit at the bottom of the tree. The

leaves of the tree are sets of geometry of a predetermined maximum size. Ide-

ally, the objects contained in the leaves are very spatially close to each other.

Each node in the tree represents an axis-aligned bounding box in the 3D world.

The node’s shape is defined as the minimum sized bounding box that contains

all of the node’s children. This parental grouping occurs recursively until there

is a single bounding volume at the root of the tree. (Figure 5.6)

The algorithm used to construct a BVH can be basically described as follows.

First, we decide on a cost function that will check the quality of the object divi-

sion. Then, a bounding box is created for the current node. At the beginning of

the algorithm, this is the root of the tree containing all of our scene geometry.

We sort along all three axes and find the axis with the least cost according to our

chosen cost function. We then find a position along the cheapest axis that will

be used as the center of subdivision. Finally, the objects are divided based on

the chosen center into two sub-groups. Two child nodes are created from these

60

Figure 5.5: For 3D geometries, when checking if a ray intersects a bound-
ing box, the ray is intersected through three pairs of parallel
planes defined by the upper and lower bounds of the bound-
ing box. After calculating the pairs of intersection values, the
largest of the smaller number of the pairs is compared to the
smallest of the larger number. If the largest min is greater than
the smallest max, the ray intersects the box. For simplicity, the
figure is shown in two dimensions.

61

Figure 5.6: An example of a Bounding Volume Hierarchy (BVH). At each
node, if the contained number of objects is higher than our
predetermined maximum (in this example, two), the node
branches into two. For simplicity, the figure is shown in two
dimensions. [11]

sub-groups, and the algorithm repeats. When a small enough number of objects

are in each node, the algorithm terminates.

By using this data structure, we only need to traverse a small portion of the

total scene. For example, if the ray does not intersect the root bounding box of

the scene, we know that the ray does not intersect any of our scene geometry.

This reduces the computational complexity of a ray intersecting a scene from

linear time O(N) to logarithmic time O(log(N)).

A good BVH tree has the following properties:

• The nodes in a given sub tree should be close to each other. The lower

down the tree, the closer the nodes should be.

• Each node in the BVH should be of minimum volume.

62

• The sum of all bounding volumes should be minimized.

• The volume of overlap of sibling nodes should be minimized.

• The BVH should be balanced with respect to both its node structure and

its content. Balancing allows as much of the BVH to be pruned when not

traversed.

The quality of a BVH tree is mostly determined by how the objects are subdi-

vided between child nodes. One of most commonly used splitting heuristics

is the Surface Area Heuristic (SAH) [16]. The idea behind SAH is to balance

both the number of objects contained in a bounding volume while minimizing

the surface area of the volume itself. This is an exceptionally slow heuristic

when constructing the tree, but currently provides the fastest solution at run-

time. Thus the construction cost should be considered for use in real time ap-

plications. For our application, we decided to sacrifice the construction costs in

order to allow for higher polygonal complexity.

5.3 Summary

Using the algorithms described in this chapter, we have been able to project

our sketch strokes from the two dimensional input surface to the three dimen-

sional model environment. The acceleration structures allow the use of highly

complex models with high polygonal counts while maintaining a relatively fast

runtime. Using the above algorithm, we have been able to sketch on complex

three dimensional objects at interactive rates.

63

Figure 5.7: A comparison between the bounding volumes of a node us-
ing a naive heuristic(left) and a surface area heuristic (right).
Note that for SAH, the total area of the child bounding boxes is
much smaller than that of the naive approach. For simplicity,
the algorithm is shown in two dimensions.

64

CHAPTER 6

CURVE RENDERING

As a sketching application, it is important for curves to be rendered with

high quality. While graphics hardware has support for line rendering, it’s im-

plementation is only suitable for line segments, with significant issues when

trying to render curves. In this chapter, we discuss a new system which we

implemented for curve rendering.

6.1 Problems with Native Curve Rendering

OpenGL has support for a variety of line primitives: lines, line strips, and lines

with adjacency data. However, these primitives are not suited for rendering

curves at high quality. This is because OpenGL uses a rectangle between the

two segment points to render line segments. While this method is well-suited

for common uses of lines in 3D applications, for example wire frame images,

it does not extend to curve rendering because of the gaps that appear between

segments (Figure 6.1). It is reasonable to assume that if we use a curve that

is subdivided to a fine enough degree, then the gaps will be sufficiently small

that they would not be visible. However, in practice, in many cases even finely

subdivided lines have visible gaps around any curve (Figure 6.1).

To eliminate these artifacts, our project implements a custom line renderer

that constructs a triangle mesh from the line definition. Constructing a mesh

for the line allow allows the implementation of a wide variety of stroke types,

including strokes with various end caps or variable widths based on stroke di-

rection. Additionally, OpenGL lines have inconsistent support for anti-aliasing

65

Figure 6.1: Two line segments connected together, as displayed by the de-
fault GL LINES implementation. The dotted lines represent
the geometry created from the line definitions. Note the vis-
ible artifact at their intersection.

across all hardware. By switching to a triangle mesh, we leverage the native

anti-aliasing support for triangles without worrying about consistency. As we

can see in the above image, without anti-aliasing rendered lines can appear

jagged and of poor quality. In order for our system to be visibly appealing in

sketch mode, it is important to render the highest quality lines as possible.

6.2 Creating Joins From the Curve Definition

To improve the appearance of our curved lines relative to the native OpenGL

implementation, it is necessary to compute better methods for rendering the

66

Figure 6.2: An example of the flaws of using native line rendering in
OpenGL with GL LINES for rendering our sketch data. The
cause of the holes is the artifact in Figure 6.1.

Symbol Description
pn Ordered point on line in the range [0, 2]
w The width of the rectangular line segments
~nxy The normal to the line segment (px, py)
~tx Vector from p1 along nx1 with length w/2

Table 6.1: Section Variables

intersections between each of our line segments. For this project, we implement

three types of ”joins”: round, miter, and bevel. Miter and bevel joins are used

in conjunction with each other, while round joins are used alone.

A round join (Figure 6.3) is formed by rounding out the gap such that a

smooth curve is created. If both of our line segments have the same thickness,

then the join calculated by forming a circle whose center is located at p1, with a

radius of w/2. The total angle that needs to be filled can be calculated by ~t0 · ~t2,

67

Figure 6.3: Diagram of a round join with parameter labels. The smooth
curve is approximated with a triangularization.

and can be filled by rotating either ~t0 or ~t2 about p1.

Miter joins are formed by extending the lines in the line geometry parallel to

the original segment. The join is formed where these extended lines intersect,

as can be seen in Figure 6.4. To calculate this, we take the vectors defined by

(p0 + ~t0, p1 + ~t0) and (p2 + ~t2, p1 + ~t2) and compute their intersection. We call the

vector from p1 to this intersection ~v. We can then compute a polygon between

p1, p1 + ~t0, p1 + ~t2, and p1 + ~v, which creates the miter join.

Miter joins have the particular issue that artifacts can arise from exception-

ally sharp points in the line segments. We can detect these cases by checking

to see if v is larger than a certain length. If so, we use a bevel join instead. The

bevel join is formed by simply creating a triangle between p1, p1 + ~t0, and p1 + ~t2

(Figure 6.5).

68

Figure 6.4: Diagram of a miter join with parameter labels

Figure 6.5: Diagram of a bevel join with parameter labels

69

Figure 6.6: Left: An example of a miter join artifact from a sharp curve.
The boxed regions show the artifact. Right: The artifact is de-
tected by calculating the length of the miter join. If detected,
the join is replaced with a bevel join.

6.2.1 Curved Lines with Variable Width

Up until this point, we have worked under the assumption that the width of the

curved line is constant. However, we would like to support the ability to draw

curved lines that have variable width. To achieve this, each point on the curve is

given an independent width variable, wi. Assuming we work with three points,

we must also define new vectors t0, t01, t12, and t2 based on the normals of the line

segments and the widths at each of the curve points. Same adjustments need to

be made in the join calculations to account for this. The miter calculation needs

to take the new t vectors into account, turning (p0 + ~t0, p1 + ~t0) and (p2 + ~t2, p1 + ~t2)

into (p0 + ~t0, p1 + ~t01) and (p2 + ~t2, p1 + ~t12). For a round join, a linear interpolation

is used to calculate the radius at the points of triangularization. The bevel join

has no changes in calculation. The final triangulations also change accordingly.

70

Figure 6.7: Left: A curve using default GL LINES. Right: Implemented
system

6.3 Implementation

Creating this representation geometry can rapidly increase the size of the data,

especially as more and more lines are drawn. A simple polygonalization for a

robust miter and bevel join implementation can create as many as six polygons

for each pair of points on the curve. This does not take into account round joins,

as smooth circle approximations require an even larger number of small poly-

gons. By combining this characteristic with spline subdivision, we run the risk

of running into bandwith problems when transferring polygon data between

the GPU and the CPU for very large or complex strokes. To solve for this, we

implement these algorithms in a geometry shader using a line adjacency data

structure input (Figure 6.8). In order to reduce the number of branch operations,

we polygonalize each line segment in halves, taking care of the join calculation

71

Figure 6.8: Our geometry shader makes use of the line adjacency data
structure to generate the curve geometry. Each instance of the
geometry shader uses a set of four ordered points (p0, p1, p2,
p3) to generate geometry for the line segment (p1, p2)

for each side separately. An example of a polygonalized line segment can be

seen in Figure 6.9.

Using the routines described above, the system can now display polygonal-

ized, three dimensional lines efficiently. However, we still need to decide in

what plane we create the line geometry. The approach CATIA [4] takes is cre-

ating the line geometry on the screen and projecting it onto scene objects. With

this approach, lines only exist on the plane they are drawn on. As a result, it is

possible to turn the camera such that the camera is perpendicular to the draw-

ing plane and not see already drawn strokes. This approach is only suitable

for applications where a base geometry is already supplied, and therefore not

suitable for early stage design applications. Other shortcomings include the re-

72

Figure 6.9: Since geometry is only created for the line segment (p1, p2),
we need to polygonalize our geometry in such a way that the
entire line is rendered correctly. We do this by polygonalizing
half of the join for each line segment.

quirement of a large number of ray cast operations for each line created. Each

segment of the polygonalized curve requires a ray cast operation per polygon

vertex. This puts too much work on the CPU for a real time application.

We would like to allow for lines to be viewed from any direction, while still

retaining their original line width and quality. The approach our application

takes is to perform all of the calculations from creating line geometry in the

distorted image space, the space defined after the model is transformed by the

model, view, and projection matrices. By working in the distorted image space,

we can guarantee the geometry is always expanded in a plane parallel to the

73

view plane. The reason we work in the distorted image space as opposed to

view space, the space before the projection matrix is applied, is we would like

our lines to have a consistent width regardless of depth. This is because if we

were to combine depth altering width with variable sketching width the sense

of depth quickly becomes confusing. This choice is a design decision made after

speaking to various architects about the importance of being able to draw lines

with different widths.

Algorithm 1: Line Rendering Algorithm

for Line Adjacency data set {p0, · · · , p3} do

Convert world space line points {p0, · · · , p3} to the distorted image space

points {p0s, · · · , p3s}.

Compute normals for each of the line segments (pns, p(n+1)s). Normals are

enforced to be pointing towards the outer arcs of segment pairs.

Compute join parameters using image space variables and a defined line

width.

Triangulate for the line segment (p1, p2)

end for

6.4 Color

One might have noticed that all of the sketches shown so far have been done in

black ink. Unfortunately, colored ink is not possible in our current system.

Before talking about the 3D case, we should talk about the representation

of color in a vector 2D graphics environment. For example, assume we have

74

Figure 6.10: Even when rotating the drawing plane such that it is no longer
visible, our lines remain visible.

a vector image with two circles of different color overlapping each other. The

visibility of the circles is determined by their draw order. However, if we were

to look at this in anther way, what is happening is the circles are given a hid-

den depth value outside the 2D image plane that is related to the draw order.

This ”depth” allows for an easy way to determine visibility of colors in vector

environments. (Figure 6.11)

However, in a 3D sketching environment, this ”depth” cannot be used to ac-

complish the same result, as in a 3D environment, depth is already defined. In

our system, when two strokes intersect on the same surface, the 3D coordinates

are identical. In graphics hardware, the z-coordinate of a point in NDC space

determines visibility. When two transformed polygons have the same xyz co-

ordinates, we encounter an issue known as Z-fighting, where the two pieces

of geometry ”fight” over which one is visible. This manifests as flickering and

bizarre appearing geometry at intersections. When all of the strokes are the

same color, the artifacts exist but are not visible. Because of this, we cannot

75

Figure 6.11: When objects of two different colors overlap in a vector graph-
ics environment, a hidden depth value is used to determine
visibility.

sketch in multiple colors without including Z-fighting artifacts.

6.5 Summary

In this chapter we have described a method for creating geometry from a

sketched line defined by its input sample points. We have also described how

we create it’s representation as a 2-D geometry such that the representation is

visible from any 3-D direction. By creating our geometry exclusively on the

GPU, we minimize the bandwidth needed to transfer data from the CPU to the

GPU, allowing extremely detailed curves using our subdivided spline calcula-

tions.

76

CHAPTER 7

CONCLUSION

In the architecture world, more focus is being put on 3D digital represen-

tations of buildings. However, the design phase remains in two dimensions.

The focus of this thesis was to create the foundation of a user interface for sim-

ple three dimensional sketching. This includes utilizing different input devices,

converting the sketch data from 2D to 3D, and rendering high quality 3D curves.

In this final chapter, I will review the progress made towards this goal as well

as places the research can go from here.

While there are other modern input devices that provide richer ways for in-

teracting with 3D space, we decided that the best approach was to incorporate

sketching on a two dimensional screen, as this most closely mimics current tech-

niques. We also choose to incorporate touch technology, as it provides us with

a second modality of user input when combined with pen. The benefits of this

approach is direct interaction with the workspace, whereas in virtual reality the

interaction methods are more indirect.

In Chapter 4, we discussed the conversion of our pixelized input to resolu-

tion independent spline curves, as well as techniques to generate curves that

matched the intent of the original input over the raw data. In Chapter 5, we

showed how to move from the 2D screen space to a 3D environment using ray

casting, and how to use acceleration structures to speed up the process on com-

plex environments. In Chapter 6, we provided a technique to render high qual-

ity curves free of common artifacts in native graphics libraries. Our rendering

solution also allows for view independent curves that maintain a hand-drawn

quality.

77

Overall, this research creates a basis for creating a specialized user interface

for 3D sketching. While the current implementation is very bare bones, a new

user interface can easily be made as all of the tools have been provided.

7.1 Implementation Details

The project was implemented in C++ using the QT library. An extension was

written to allow pen and touch input on Windows devices. For testing, a 55-inch

perspective pixel touch screen was mounted onto a harness for use as a digital

drafting table. The attached computer used a 6th generation Intel processor

with a NVIDIA Titan graphics card.

The system runs in real time at at least 30 frames a second until about

1,000,000 curve points are stored. A complex curve of reasonable length can

have between 400 to 1000 points stored, while straighter curves are very cheap

to store (around 10 to 100). This number becomes smaller is the sketching sur-

face is using more complex geometry, but for these tests, a simple plane was

used. In testing, this was proven to be sufficient for small to medium complex-

ity sketches, but insufficient for very large, complex sketches. These numbers

can improve with better hardware, as they are GPU limitations

7.2 Extensions

This thesis lays the groundwork for 3D sketching. There are some natural ex-

tensions that would improve the current results.

78

7.2.1 Color

In 6.4, we discussed how it is not possible to use colored stokes in our system

because of Z-fighting artifacts. Being able to sketch in color without worrying

about z-fighting would involve a four dimensional representation of the sketch

space, where the forth dimension represents draw order.

One possible approach is to create a voxel structure in the sketch space, and

store the sketch in that. The voxels can store the color that is on ”top”. Work

would need to be done in order to use a voxel grid with high resolution at in-

teractive rates.

7.2.2 Improving Sketching on Non-Planar Geometry

Thus far, we have shown sketching on planar surfaces and relatively smooth

geometry. However, our system has issues with sketching around hard corners.

This is because of both the input system as well as our spline interpolation.

First, we will discuss the input related issues. Assume we have two planes

intersecting at a 90 degree angle, with the angle facing away from the camera.

In this scenario, drawing a straight line across the two planes results in a se-

ries of ray intersection points on the two planes, with none of them lying close

to the intersection. Using these points to calculate a spline will result in a sec-

tion of the curve passing through the sketch geometry at the area of the planes’

intersection.

These issues are a result of where we choose to interpolate the spline. Cur-

rently, we calculate the spline after we have intersected our input with the scene

79

geometry. Calculating the spline in 2D space and then projecting it onto the

sketch geometry Would handle many of these artifacts. However, this exponen-

tially increases the number of ray cast options. On complex, high polygonal

environments where these types of issues would likely arise, the performance

of our application drops. Improving the performance of the ray intersection

algorithm will allow for the spline to be calculated before the ray cast.

An alternate approach would be to ”push” the stroke onto the surface ge-

ometry using collision detection. However, major performance improvements

would be necessary for working with complex models.

7.3 Future Work

This thesis provides a groundwork on which future projects in 3D sketching can

be built upon. There are a number of areas for future work on this topic.

7.3.1 Reducing Complexity

Currently, when sketching, each curve is stored in its entirety, even when curves

are overlapping. For small sketches this is fine, but for larger sketches, removing

redundant curves would make it possible for more complex sketches.

80

7.3.2 Generating Geometry

In Chapter 1, we discussed the segmentation in the design process, as early

sketches are created using physical methods and then used as references to cre-

ate a 3D model. While in this work, we have presented an approach to digitizing

the early phase design process, we have not presented a method of easing the

transition between these two stages. Doing this would require generating a 3D

model from the sketch. As a first step, perhaps we can generate polygon data

from a single plane of sketching. Other sketching modes can also be imple-

mented to create simple geometry, such as a mode designed to sketch polygons

instead of curves using closed splines, where the first and last point of the spline

are connected.

7.3.3 Simulating Physical Sketching

Currently, actually using our application to a sketch is not comparable to a tradi-

tional drafting environment. Aside from the complexities of transitioning from

2D space to 3D space, many architects claimed that their were uneasy sketch-

ing with our application because drawing with an active pen lacked the tactical

feedback provided by using a traditional sketching implement on a piece of pa-

per. Work has been done in using haptic feedback to simulate the friction of

writing on surfaces [6]. However, the current toolkit is for an arc ball input de-

vice. A first step could be extending the work to planar surfaces, with haptic

technology integrated into the active pen.

81

7.4 Summary of Contributions

This research contributed to the field of computer graphics by creating a basic

toolset to do three dimensional sketching. This is a new area that has begun to

emerge due to new input devices allowing different methods of interacting with

a computer.

In summary, the work described in this thesis made the following contribu-

tions:

• Explored methods of converting rasterized input data to high-quality,

resolution independent Bezier curves. Due to the varying speeds a user

can sketch, our algorithm needs to be able to handle input data of un-

known spacing. As a result, we use our user input as control points to

generate the spline. We have found that even though this might produce

curves slightly different from the original input, users are pleased with the

results.

• Created an interface to convert 2D pen and touch data to 3D sketches.

We use a modified version of the QT library for our user interface frame-

work. Our version fixes the broken touch and pen support in the native

QT library, allowing our interface to be used with any Windows device.

We utilize modern ray tracing algorithms and data structures to project

our 2D sketch onto a 3D environment.

• Provided a low overhead solution to rendering high quality 3D curves.

This solves common issues with using OpenGL to render curves as op-

posed to line polygons.

82

These contributions provide a basis for creating a 3D sketching environment for

architectural design.

83

BIBLIOGRAPHY

[1] 3Doodler. Wobbleworks, Inc. URL: the3doodler.com.

[2] Jeroen Arendsen. Pen Gestures. 2006. URL: jeroenarendsen.nl/2006/

04/pen-gestures/.

[3] Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. “Every-

bodyLovesSketch: 3D Sketching for a Broader Audience”. In: UIST (2009).

[4] CATIA. Dassault Systmes. URL: www.3ds.com/products/catia.

[5] CATIA V6 — Industrial Design — CATIA Natural Sketch Showreel. 3dsCA-

TIA. Dec. 6, 2011. URL: www.youtube.com/watch?v=xXYCaabNHCo.

[6] Heather Culbertson and Juan Jose Lopez Delgado. The Penn Haptic Texture

Toolkit. UPenn Haptics Group. URL: http://haptics.seas.upenn.

edu/index.php/Research/ThePennHapticTextureToolkit.

[7] Toms Dorta, Michael Hoffmann, and Gke Knayolu. Hyve 3D. 2014. URL:

www.hyve3d.com.

[8] Draw. Corel. URL: www.coreldraw.com.

[9] Sarah F. Frisken. Mischief. Made With Mischief. URL: www.madewithmischief.

com.

[10] Sarah F. Frisken et al. “Adaptively Sampled Distance Fields: A General

Representation of Shape for Computer Graphics”. In: Proc. SIGGRAPH

(2000).

[11] Brad Grantham. Bringing a 1987 Ray Tracer Up to Date. URL: http://

plunk.org/˜grantham/ray1/.

84

[12] How Can a Screen Sense Touch? A Basic Understanding of Touch Panels. EIZO

Global. 2011. URL: www.eizoglobal.com/library/basics/basic_

understanding_of_touch_panel/.

[13] Nathan Hurst. Inkscape. Inkscape Project. URL: inkscape.org.

[14] Illustrator. URL: www.adobe.com/products/illustrator.html.

[15] Spencer Kimball and Peter Mattis. GNU Image Manipulation Program

(GIMP). The GIMP Development Team. URL: www.gimp.org.

[16] J. David MacDonald and Kellogg S. Booth. “Heuristics for Ray Tracing

Using Space Subdivision”. In: The Visual Computer (1990).

[17] Ronnie Miranda. Gigapixel Project. Active Computer Services. URL: www.

gigpixel.com.

[18] Desmond Morris et al. Gestures. Johnathan Cape, 1979.

[19] MSPaint. Microsoft.

[20] G. Scott Owen. HyperGraph. ACM SIGGRAPH Education Comittee.

URL: https : / / www . siggraph . org / education / materials /

HyperGraph/hypergraph.htm.

[21] Painter. Corel Corporation. URL: www . painterartist . com / us /

product/paint-program/.

[22] Daniella Paredes et al. Gravity Sketch. URL: www.gravitysketch.com.

[23] Photoshop. Adobe. URL: www.adobe.com/products/photoshop.

html.

[24] Polyes Q1. Future Make. URL: www.3dp.fm.

85

[25] Raster Images vs. Vector Graphics. The Printing Collection. URL: www .

printcnx . com / resources - and - support / addiational -

resources/raster-images-vs-vector-graphics/.

[26] S. Rubin and T. Whitted. “A 3D representation for fast rendering of com-

plex scenes”. In: Proceedings of SIGGRAPH (1980).

[27] Sketchbook. Autodesk. URL: www.sketchbook.com/.

[28] Tilt Brush. Skillman and Hackett. URL: www.tiltbrush.com.

[29] Luke Wroblewski. Touch Gesture Reference Guide. 2010. URL: www.lukew.

com/ff/entry.asp?1071.

86

