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1.0 Executive Summary 
 

Emperor penguins have several adaptations that allow them to survive the extreme Antarctic             
winter. Some of these adaptations are behavioral, such as huddling to reduce exposure and              
preserve body heat. While previous research has been done to estimate the metabolism of              
individual emperor penguins, these birds often group together, and thus less heat is lost than the                
equation suggests. The paper will focus on modeling a full penguin huddle where the penguins               
are exposed to ambient temperature and wind typical of Antarctica to see what spacing is               
necessary to maintain a typical body temperature and where the best place to stand in the huddle                 
is. The numerical solver used in this report is COMSOL, a multiphysics modeling software that               
allows for a high degree of flexibility and accuracy. Each penguin is modeled as a 2-D circle                 
with heat generation and insulation parameters determined by previous research. The penguin            
was copied 6,000 times to form a hexagonal huddle. The physics modeled are fluid flow and heat                 
transfer in fluids and solids. We found that a spacing of between 0.8cm and 0.951cm allows the                 
penguins in the penguin huddle to maintain the average body temperature of 38.2°C, the typical               
penguin body temperature (Le Maho, 1976). In addition, the optimal location of minimal heat              
loss was determined to be the middle towards the back. This simulation could allow for new                
insights and methods into research of how the huddling of the penguins preserves body heat and                
how changing conditions, due to climate change, could affect penguin behavior and survival in              
such a hostile environment. 
  
2.0 Introduction 
 

2.1 Background 
 

Emperor penguins live in Antarctica, the coldest continent on earth. During the Antarctic winter,              
ambient temperatures can drop as low as -40​°C and wind speeds can reach 140 km/h               
(McCafferty, 2013). Staying warm is key to both survival and reproduction, especially since             
emperor penguins are the only penguins with a breeding cycle during the Antarctic winter              
(McCafferty, 2013). In order to stay warm, emperor penguins form huddles to minimize their              
overall heat loss during periods of extreme cold and wind. The paper will analyze the               
relationship between individual penguin heat loss, individual penguin location in a penguin            
huddle, and ambient Antarctic air flow through the use of a numerical model. The numerical               
model will fully-couple heat transfer and fluid flow. 
 
Heat Generation, Insulation, and Huddle Formation 
 

Heat loss in emperor penguins is a function of the gradient between body and ambient               
temperature, which is dependent on heat generation, insulation, and surface area exposed to the              
ambient conditions. Emperor penguins generate heat to stay warm with a carefully regulated             
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metabolism, which is dependent on weight and ambient condition exposure (Gilbert, 2008).            
Breeding emperor male penguins weigh on average 30 kg and are 1.2 m tall (Gilbert, 2008). In                 
order to fuel this metabolism, penguins have to burn their body fat that they have been                
accumulating all summer. On average, grouped birds in free-ranging formation and loosely            
spaced formation are found to lose between 132 and 178 g/day (Gilbert, 2008). As a comparison,                
isolated birds on average lose 299 g/day, around double the value (Gilbert, 2008). Although this               
weight loss is insignificant in our simulation, it does show the immediate benefit of huddling to                
reduce the rate of heat generation in each penguin. The same review paper also compiled detailed                
equations on field metabolic rate, specific to different ambient condition exposure that will be              
used in this paper. 
 
Heat generation is important to staying warm, but it is also important that the heat generated does                 
not immediately transfer to the surroundings. To combat the rapid heat transfer, emperor             
penguins have excellent insulation from their skin, feathers, trapped-air, and down. Several            
studies have been done to model heat transfer through the insulating layers. A model based on                
physical scans of penguin skin and feathers was done to model thermal conductivity, the degree               
to which a material is able to conduct heat (Dawton, 1999). The model assumed evenly               
distributed feathers and found thermal conductivity to be 2.38 W/(m^2*K), comparable to the             
measured experimental value of 1.93 W/(m^2*K) (Dawton, 1999). To build on the previous             
model, a numerical model of penguin feathers and down was done (Du, 2007). The numerical               
model used a finite volume model and found thermal conductivity to be 1.73 W/(m^2*K) (Du,               
2007). Both studies argue that the thermal conductivity of feathers is accurate to represent the               
penguin’s insulation system as a whole. The argument is well-supported because empirically            
measured values are done on one layer of skin attached to the feather. However, a more recent                 
study has found that actual penguin feather distribution is more complicated than a single, evenly               
distributed layer. Analysis of emperor penguin carcasses lead to the discovery of more complex              
feather structures and greater contribution of down as insulation (Williams, 2015). Although true             
thermal conductivity of emperor penguin’s insulation system may be slightly different, we plan             
to use the empirically measured value of 1.93 W/(m^2*K) as it has been measured and is                
referenced in most papers on the subject. 
 
Amid drastic temperature drops and strong winds, heat generation, and insulation alone are             
insufficient to maintain the optimal temperature and huddling is needed to minimize heat loss.              
Smaller animals like emperor penguins benefit from huddles due to large combined surface area              
to combined volume ratio. Huddles last for minutes to hours, depending on ambient conditions              
(Waters, 2012). Depending on the ambient temperature, huddle density may be as high as 10               
penguins/m^2 and appear semi-static (Gu, 2018). In a penguin huddle, individual penguins            
approximately obtain equal access to the warmth of the huddle through complex reorganization             
movements. Penguin huddles have been observed to have extremely slow motion (Le Maho,             
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1977). A study by Le Maho concluded that the penguins with the most surface exposed               
windward slowly moved leeward (Le Maho, 1977). The windward-leeward movement is           
repeated and produces a slow, peeling movement in the penguin huddle as a whole (Le Maho,                
1977). However, Gilbert's (2007) study shows that cold induced huddling episodes lasted longer             
than wind induced huddling, which appear to continually break and reform (Gilbert, 2007).             
Therefore, huddling dynamics induced by ambient conditions appear to be more complex than             
previously thought. 
 
Previous Research 
 

Due to harsh conditions in the Antarctic, observational and experimental studies of emperor             
penguin huddles are complex and costly. The use of numerical models provides a viable              
alternative to investigate heat loss and movement in a penguin huddle. A numerical model              
approach is not common in penguin studies, but would be helpful in understanding the physics of                
heat transfer that drive the penguin huddle behavior. One previous study developed a numerical              
model of a shifting solid against fluid flow to model the movement of a penguin huddle in                 
Antarctic conditions (Gu, 2018). The Navier-Stokes equation for fluid flow was approximated            
using finite difference and smoothed particle hydrodynamics. The study accurately predicted           
how penguin huddles shift but does not take into account individual penguin nor penguin huddle               
heat loss. Another previous study developed a numerical model to model a penguin huddle and               
investigated heat loss and movement of the penguins as a group, see Figure 1 (Waters, 2012).                
The polygon was randomly generated but individual penguin’s movement was driven by the             
intent to minimize surface exposure, the penguin huddle does achieve an even distribution and a               
nearly uniform heat loss distribution. However, the model does not capture quantitative values of              
individual penguin heat loss and the effect of insulation.  
 

 
Figure (1)​. ​The temperature distribution around a polygon huddle of 100 penguins (Waters,             
2012). Red represents warmer temperatures, while blue corresponds to cooler temperatures. The            
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black circles represent penguins, white areas represent the polygonal interior of the huddle. The              
figure demonstrates an initial configuration pre-relocation. 
 
 
2.2 Problem Statement and Design Objectives 
 
We aim to build a numerical model of a penguin huddle to better understand these research                
questions: 
 

1. The effect of spacing between individual penguins on the temperature of the huddle. 
2. The optimal location within the temperature to balance heat loss with overheating from             

being too close to other penguins. 
 
Spacing between individual penguins will be varied to determine the ideal amount of spacing              
without the average huddle temperature overheating. To evaluate the average huddle           
temperature, this paper provides quantitative measures of body temperature and heat loss of             
individual penguins that depend on the gradient between penguin and ambient air temperature,             
ambient air speed, and penguin position within the penguin huddle. Each penguin is modeled as               
a 2-D concentric circle with heat generation in the middle and thermal insulation in the exterior.                
The numerical model of the penguin huddle will be able to quantitatively estimate heat transfer               
of individual penguins within a penguin huddle. 
 
3.0 Methods 
 

To investigate these research questions, a model was created to capture all the relevant and               
necessary physics as well as geometry. The section will outline the problem formulation and how               
the model will be implemented. 
 
3.1 Geometry 
 

Penguins form in large masses as shown in Figure 2 below. 
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Figure (2)​: Typical formation of an emperor penguin huddle. The general shape is polygonal and               
there are several thousand penguins in the photograph. ​Emperor penguin colony​, 2006,            
https://en.wikipedia.org/wiki/Emperor_penguin#/media/File:EmperorPenguinColonyClose.jpg​. 
 
To model this large mass of penguins, some assumptions and simplifications had to be made               
about the geometry. Penguins were assumed to be cylindrical, following the model assumptions             
done by Ning Du’s paper “An improved model of heat transfer through penguin feathers and               
down” (Du, 2007). In addition, the huddle can be modeled in a hexagonal shape as seen in                 
Gilbert et. al. 2008. Huddles contain thousands of penguins, usually 5,000 - 6,000 individuals              
(Le Mao, 1977, p. 681). The model here will contain 6000 penguins, arranged as seen in Figure                 
3. 
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Figure (3): ​The geometry as seen in COMSOL. The bottom right close-up represents the              
topmost portion of the hexagonal formation, and the upper close-up represents a closer look at               
individual cylinders. The penguin, represented by each cylinder, has a radius of 0.0951m (Du,              
2007) with the spacing between each penguin extending 0.008m. The outer circle of each              
penguin represents a feather layer of thickness 0.22mm (Du, 2007). The inflow boundary is the               
top of the rectangle and the outflow is the bottom and sides of the rectangle. 
 
3.2 Mesh 
 

For the computational model of the 6000 penguins in a huddle, the COMSOL preset “Normal”               
was chosen for the model, constructed using free triangular elements as seen in Figure 4.               
However, the number of edge elements per penguin was raised to 6 edge elements per quarter                
circle, or 24 total per penguin boundary shown in Figure 5. As a result of the geometry, the mesh                   
in the region around the penguins was much more dense than the region outside the huddle                
which is seen in Figure 6. This denser region was needed to handle the faster change in                 
temperature in the region immediately around the penguins. 
 

 
Figure (4): Full free triangular mesh for the penguin huddling model. We see that the mesh is                 
coarse on the edges and gets increasingly finer closer to and within the huddle. The element size                 
is calibrated for fluid dynamics. The maximum element size is 2.25 m and the minimum element                
size is 0.1 with a maximum element growth rate of 1.15. The number of elements is six edges,                  
which was chosen as a result of the results of mesh convergence. 
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Figure (5): Mesh around the edges of the modeled penguins (the feather region). Note the six                
edges and seven nodes per quarter circle (24 elements per circle). The number of edge elements                
directly correlates to total elements in the mesh. We changed the edge elements because of the                
interest in heat flux on the boundary; we are able to obtain a finer mesh on the surface. 
 

 
Figure (6): A zoomed in image of the change in mesh density. This comes from the region                 
around the penguins and the region in the bulk air outside the huddle. The figure shows that the                  
mesh is very dense around the penguins where the temperature and velocity will be changing the                
most. 
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3.3 Governing Equations 
 

The physics of this model can be described using two governing equations in three different               
domains. The domains are the penguin core, the feathers, and the ambient air. Heat transfer               
occurs in all three domains, and thus, the heat transfer governing equation must be solved in all                 
three areas through the use of Heat Transfer in Solids and Fluids COMSOL Physics. Fluid flow                
from wind occurs only in the air domain, and thus the fluid flow governing equation is solved                 
only in this domain through the use of Turbulent Flow COMSOL Physics 
 

Domain of Penguin Core for Heat Transfer in Solids and Fluids 
 

The objective of the model is to find the average body temperature and the heat flux of the                  
boundary of each penguin. The function describing temperature is ( , ) where r and are         T core r θ     θ  
spatial variables in cylindrical coordinates and describes the temperature of the penguin      T core        
core. Equation 1 gives the governing equation to be solved for the heat transfer in the penguin                 
core domain. 

                               
 
Here, it is assumed that the penguins are at steady state (temperature is not changing over time)                 
and that the only relevant types of heat transfer are conduction and generation. The heat               
generation term, Q, is the metabolic heat generation for each penguin. From Gilbert et. al. 2008,                
this generation is a function of ambient temperature, T​air ​, and the wind speed, v​air  
 

    
  
where M is the body mass in kg and b is given by 
 

                                           
 
where m is the body mass in g. Combining Equations 1, 2, and 3 gives the full heat transfer                   
equation in the penguin domain. 

Domain of Penguin Insulation for Heat Transfer in Solids and Fluids 
 

Similarly, the function describing the temperature of the feathers is where r and are          (r , )T f  θ     θ  
also spatial variables in cylindrical coordinates. The temperature term is related to thermal             
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conductivity , specific heat , and the density of the feathers. Equation 4 gives the kf    cf      ρf        
governing equation to be solved for the heat transfer in the penguin core domain. 
 

                       
 
Here, it is assumed that the temperature of the penguins is at steady state and that the only                  
relevant types of heat transfer are conduction and convection. 

Domain of Ambient Air for Heat Transfer in Solids and Fluids 
 

The surrounding air is also described by the temperature function where r and are          (r, )T air θ      θ  
spatial variables in cylindrical coordinates. Equation 5, the heat transfer equation for air, contains              
a convection term described by the velocity of the fluid air and . The temperature is related           ur  uθ      
to thermal conductivity , specific heat , and the density, , of air.kair ca  ρa  

  

      
 
Here, it is assumed that the heat transfer between the penguins and the air is at steady state and                   
that both conduction and convection are occuring. 
 

Domain of Ambient Air for Turbulent Flow 
 

The cold air flowing across the penguins is considered to be turbulent fluid flow modeled and the                 
velocity, and , are found using Equation 6 and Equation 7. The air enters the domain  u r    u θ               
flowing from top to bottom.  describes the viscosity of the air itself.μ  
 

    
 

   
 
Here, we assume that the fluid flow is at steady state and that there is constant pressure and                  
altitude. Thus we only need the inertia and viscosity terms in each direction. 

3.4 Boundary Conditions and Initial Conditions 
 

11 

https://www.codecogs.com/eqnedit.php?latex=%5Cdfrac%7Bk_%7Bf%7D%7D%7B%5Crho_f%20c_f%7D%5Cleft(%5Cdfrac%7B1%7D%7Br%7D%20%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%20(%20r%20%5Cdfrac%7B%5Cpartial%20T_%7Bf%7D%7D%7B%5Cpartial%20r%7D%20)%20%2B%20%5Cdfrac%7B1%7D%7Br%5E2%7D%20(%20%5Cdfrac%7B%5Cpartial%5E2%20T_%7Bf%7D%7D%7B%5Cpartial%20%5Ctheta%5E2%7D)%20%5Cright%20)%20%3D%20u_r%20%5Cdfrac%7B%5Cpartial%20T_%7Bair%7D%7D%7B%5Cpartial%20r%7D%2B%20%5Cdfrac%7Bu_%5Ctheta%7D%7Br%7D%20%5Cdfrac%7B%5Cpartial%20T_%7Bair%7D%7D%7B%5Cpartial%20%5Ctheta%7D%20%20%20%20%20%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B(4)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cdfrac%7Bk_%7Bair%7D%7D%7B%5Crho_a%20c_a%7D%5Cleft(%20%5Cdfrac%7B1%7D%7Br%7D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%5Cleft(r%20%5Cdfrac%7B%5Cpartial%20T_%7Bair%7D%7D%7B%5Cpartial%20r%7D%20%5Cright%20)%20%2B%20%5Cdfrac%7B1%7D%7Br%5E2%7D%20%5Cdfrac%7B%5Cpartial%5E2%20T_%7Bair%7D%7D%7B%5Cpartial%20%5Ctheta%5E2%7D%20%20%5Cright%20)%20%3D%20u_r%20%5Cdfrac%7B%5Cpartial%20T_%7Bair%7D%7D%7B%5Cpartial%20r%7D%2B%20%5Cdfrac%7Bu_%5Ctheta%7D%7Br%7D%20%5Cdfrac%7B%5Cpartial%20T_%7Bair%7D%7D%7B%5Cpartial%20%5Ctheta%7D%20%20%20%20%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B(5)#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho_%7Bair%7D%20%5Cleft(u_r%20%5Cdfrac%7B%5Cpartial%20u_r%7D%7B%5Cpartial%20r%7D%20%2B%20%5Cdfrac%7Bu_%7B%5Ctheta%7D%7D%7Br%7D%20%5Cdfrac%7B%5Cpartial%20u_r%7D%7B%5Cpartial%20%5Ctheta%7D%20-%20%5Cdfrac%7Bu_%7B%5Ctheta%7D%5C%3B%5E2%7D%7Br%7D%20%5Cright%20)%20%3D%20%5Cmu%20%20%5Cleft%5B%20%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%20%5Cleft(%20%5Cdfrac%7B1%7D%7Br%7D%20%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%20(r%20u_r)%5Cright%20)%20%2B%20%5Cdfrac%7B1%7D%7Br%5E2%7D%20%5Cdfrac%7B%5Cpartial%5E2%20u_r%7D%7B%5Cpartial%20%5Ctheta%5E2%7D%20-%20%5Cdfrac%7B2%7D%7Br%5E2%7D%20%5Cdfrac%7B%5Cpartial%20u_%7B%5Ctheta%7D%7D%7B%5Cpartial%20%5Ctheta%7D%20%5Cright%20%5D%20%20%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20(6)#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho_%7Bair%7D%20%5Cleft(u_r%20%5Cdfrac%7B%5Cpartial%20u_%7B%5Ctheta%7D%7D%7B%5Cpartial%20r%7D%20%2B%20%5Cdfrac%7Bu_%7B%5Ctheta%7D%7D%7Br%7D%20%5Cdfrac%7B%5Cpartial%20u_%7B%5Ctheta%7D%7D%7B%5Cpartial%20%5Ctheta%7D%20-%20%5Cdfrac%7Bu_%7Br%7D%20u_%7B%5Ctheta%7D%7D%7Br%7D%20%5Cright%20)%20%3D%20%5Cmu%20%20%5Cleft%5B%20%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%20%5Cleft(%20%5Cdfrac%7B1%7D%7Br%7D%20%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%20(r%20u_%7B%5Ctheta%7D)%5Cright%20)%20%2B%20%5Cdfrac%7B1%7D%7Br%5E2%7D%20%5Cdfrac%7B%5Cpartial%5E2%20u_%7B%5Ctheta%7D%7D%7B%5Cpartial%20%5Ctheta%5E2%7D%20%2B%20%5Cdfrac%7B2%7D%7Br%5E2%7D%20%5Cdfrac%7B%5Cpartial%20u_%7Br%7D%7D%7B%5Cpartial%20%5Ctheta%7D%20%5Cright%20%5D%20%20%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20(7)#0


In order to solve the governing equations outlined above, conditions for temperature and velocity              
at the boundaries of the model must be used in order to find the numerical solution for the fluid                   
flow and heat transfer in and around the huddle. The four relevant boundaries are the inlet, the                 
outlet, and the sides of the huddle, all sufficiently far away from the huddle shown in Figure 7. 
 

 
Figure (7): Schematic of the boundaries of the model geometry. Boundary 1 is the inlet where                
the wind flows into the domain. Boundaries 2, 3 and 4, act at outlets where wind and heat can                   
leave the system. The black hexagon shows the location of the huddle relative to these               
boundaries.  
 
At boundary 1, the temperature boundary condition is given by Equation 8, where is the             T fL   
average ambient temperature in Antarctica (Gilbert, 2008). The velocity equation at boundary 1             
is given by Equation 9, where  is the average velocity of the Antarctic wind (Gilbert, 2008).vwind  
 

      |T y=L = T fL                                         (8) 
      |v y=L = vwind        (9) 
 

At boundaries 2, 3, and 4, both the velocity and heat flux boundary conditions will be set as                  
outflow conditions. This tells COMSOL that there is continuity at the boundary and that the               
inflow must be equal to the outflow. However, since details are not known about how much heat                 
or air is leaving from each boundary, the general outflow condition must be used. 

Although initial conditions are not as important when running a steady state model, the initial               
conditions used in this model are given by Equations 10, 11, and 12. 
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0°CT penguin, i = 4       (10) 

T air, i = T fL       (11) 
 vair, i = vwind     (12) 

 
The rest of the material properties used in the model can be found in section 10.1 of the                  
appendix. 
 
 
3.5 Turbulence Modeling 
 

The turbulence model that was used is a RANS type model that uses the Reynolds-averaged               
Navier–Stokes equations to solve the equations of motion for fluid flow. Specifically, the k-​ε              
model was used as it is best for external flow around bluff bodies (​Frei, 2017​). The model solves                  
for the turbulence kinetic energy (k) and the rate of dissipation (ε) using several constants. We                
used the preset constants (given below) that are standard for this model. 
 

 .44  C ε1 = 1  
 .92  C ε2 = 1  
 .09  C μ = 0  

  σ k = 1  
 .3  σ ε = 1  
 0.41  κ v =   

.2  B = 5  
 

4.0 Results and Discussion 
 

Each penguin generates heat through metabolism but this alone is not enough to face ambient air                
temperature and velocity of the Antarctic. A penguin huddle of 6,000 is formed to maintain a                
critical penguin temperature of 38.2​°C (​Le Maho, 1976​)​. The penguin huddle reduces the surface              
area of the penguins as a whole that directly interacts with the ambient air temperature and                
velocity. The results below reflect that this reduced exposure to cold and wind allows the               
penguins to stay warmer than if they were alone. 

4.1 Velocity Profiles 
 

The air flows downward towards the penguin huddle at 5 m/s. The overall air velocity profile is                 
displayed in Figure 8 and highlights a stagnation point, a turbulent wake area, and two locations                
where the flow speeds up around a curved edge. The penguin huddle acts as a bluff body due to                   
the tight packing of individual penguins, which slows down the air velocity to zero to produce a                 
stagnation point in front of the penguin huddle. The air slows at the back of the penguin huddle                  
due to the blockage effect of the huddle.  
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Figure (8): The air velocity profile around the penguin huddle. The color scale gives the velocity                
in units of meters per second. The top boundary of the region shows the expected velocity of 5                  
m/s that was set as the boundary condition. The flow slows (blue) in two locations. One is at the                   
stagnation point at the top of the huddle (where the flow is completely blocked by the point of                  
the huddle). The other is in the wake of the huddle where flow is slow because the huddle blocks                   
air flow. The flow speeds up (red) around the top two corners of the huddle. 
 
After being in contact with the penguin huddle, the air increases turbulence and speeds up around                
the corners. This effect is seen most at the top two curved edges of the hexagon, which produce                  
two areas of increased velocity as shown in Figure 9. The air velocity does speed up between the                  
narrow spacing of penguins at the edge of the penguin huddle. In the middle of the penguin                 
huddle, however, the air velocity becomes zero due to the complete sheltering of air flow by the                 
surrounding penguins which is also seen in Figure 9 and Figure 10. 
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Figure (9): ​One of two areas of increased air velocity. The velocity is maximum as it passes over                  
the curved section of the corner because it has to speed up around the edge. There are areas of                   
increased velocity between individual penguins near the outer section of the penguin huddle.             
However, the effect is not apparent in the middle section of the penguin huddle. 
 

 
Figure (10): ​Closer look at one of two areas of increased velocity with the vector field. Each                 
vector is magnitude proportional. Velocity is maximum when air passes around the corner             
penguin. Additionally, velocity speeds up at the closest area between individual penguins. 
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4.2 Temperature Profiles 
 

The air flow enters the domain at -16.6 . The overall air temperature profile is displayed in       ℃          
Figure 11 and highlights that the aforementioned turbulent wake area (seen in Figure 9) heats up                
the most. As the air flow slows down at the back of the penguin huddle, heat convection from the                   
penguins to the air is also slowed down to produce a turbulent wake area where air and                 
individual temperature is high.  

 
 

Figure (11): ​The ​air temperature profile around the penguin huddle. The temperature around the              
huddle is the same as the initial and boundary temperatures of -16.6 . The air then heats up at           ℃        
the turbulent wake as the air passes around the penguins and gains heat through slow convection. 

The temperature profiles of penguins in several locations within the huddle is shown in Figure 12                
to highlight the warmest and the coldest locations. We see that the penguins are warmest at the                 
back end of the penguin huddle due to maximum shelter and maximum effect of turbulent wake                
area. The coldest penguins in the huddle are those at the top of the huddle that are exposed to the                    
most extreme cold and wind. 
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Figure (12): ​Temperature profiles of penguins for several locations in the huddle. The penguins              
at the front of the huddle have a red color and are thus the coldest while the penguins at the                    
bottom of the huddle are yellow and white so therefore are the warmest. This is consistent with                 
what is expected as penguins tend to shift towards the back of the huddle when they get too cold                   
(Gilbert, 2008). 

4.3 ​Temperature and Heat Flux with Different Penguin Huddle Spacing 
 

In order to see how the distribution of penguin body temperature within the huddle changes               
depending on spacing, the same model was run but the spacing was changed as a function of the                  
penguin radius. The original model had the penguins separated by the radius of the penguin               
divided by twelve; the closest COMSOL could mesh without having them touching. Figures 13              
and 14 show a representative sample of measured body temperatures and outer boundary heat              
flux of the penguins at different huddle locations for a penguin huddle with spacing between               
penguins of r.penguin/12 = 0.80[cm], r.penguin/10 = 0.951[cm], r.penguin/5 =1.902[cm],          
r.penguin/2=4.755[cm]. The magnitude of spacing was selected in relation to the penguin’s            
radius because there were limited references to penguin huddle spacing in literature.  
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Figure (13): Body temperature of penguins at various locations in the huddle. In each case, the                
temperature decreases as the spacing increases (except in the front where it stays relatively              
constant). The penguins in the front are always the coldest and the penguins sheltered in the back                 
are always the warmest. Tables of this data can be found in section 10.2 of the appendix. 

 
 

Figure (14): Heat flux of penguins at various locations in the huddle. The back penguins have a                 
relatively constant heat flux and seem unaffected by the change in spacing. The middle penguins               
are constantly gaining heat. The front penguin gains heat when the spacing is small because the                
velocity in the front is so low. However, when the spacing is larger, it loses heat because the air                   
is able to flow around and thus it loses heat by convection. Tables of this data can be found in                    
section 10.2 of the appendix. 
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We see that in each case, temperature increases as penguins move away from the front of the                 
huddle. In addition, the temperature of each penguin increases when the spacing is closer              
together due to increased conduction between the small amount of air between the penguins and               
the reduced air flow between them. The heat flux for each case is very similar for the penguins in                   
the back suggesting that their heat flux is not affected by the spacing. However, the penguins in                 
the front seem to benefit more when the spacing is reduced because they lose significantly less                
heat than penguins in the front of the huddles with wider spacing because the airflow is so slow                  
at the front. In addition, the penguins in the middle of the pack gain heat from the penguins                  
around them because there is no air flow to cool them.  
 
4.4 Optimal Spacing 
 

To determine the ideal spacing in a penguin huddle, we look to Table 1 for the average huddle                  
temperature. Ideally, penguins would like to maintain an ideal body temperature of about 38.2°C              
(Le Maho, 1976). The best spacing would be one where the average individual penguin body               
temperature is at or close to this value. We assume penguins are constantly moving around               
within the huddle (Gilbert, 2008), thus the average individual penguin body temperature,            
represented by the average huddle temperature, is close to the ideal body temperature. 

Table (1): ​Average temperature of all penguins in penguin huddles with different spacing. 

Penguin Huddle Spacing (m) Average Huddle Temperature (°C) 

r.penguin/12 = 0.80[cm] 42.919 

r.penguin/10 = 0.951[cm] 35.738 

r.penguin/5 = 1.902[cm] 13.641 

r.penguin/2 = 4.755[cm] 1.432 

The spacing of 0.80 cm has the highest average huddle temperature of 42.919°C. However, this               
is higher than the optimal penguin body temperature of 38.2°C. This body temperature would be               
achieved by a penguin huddle with a spacing between individual penguins of between 0.951 cm               
and 0.800 cm.  
 
4.5 Optimal Location Within the Huddle 
 

While it is hard to define an “optimal location” since environmental conditions can drastically              
change the temperature of the huddle, there is a most and least sheltered location, with a gradient                 
of shelter between them. This simulation shows the least sheltered location to be at the very front                 
of the huddle, and the most at a band towards the back of the huddle.  
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We can also find the penguins in the model that have an ideal body temperature (38.2°C). This                 
would most likely be the ideal location within the huddle because the penguin is able to maintain                 
the perfect body temperature at this location at steady state and would not need to move around                 
to warm up or cool down over time. Figure 15 below shows one location where the penguins                 
measured a body temperature of 38.2°C ​ ​± 0.2. 

 
 

Figure (15): ​One ideal location within the huddle. The penguins in this location (highlighted in 
blue) had a body temperature of ​38.2°C ​ ​± 0.2, the ideal emperor penguin body temperature ​(Le 
Maho, 1976)​. 

5.0 Mesh Convergence 

The simulation was subsequently performed using the range (2-10) number of edge elements             
while keeping the “Normal” setting. A mesh convergence analysis was performed at the point              
(4.42, 1.2) in the model by determining the number of edge elements required for the               
temperature change at this point to change the least between simulations, ideally remaining             
constant. Figure 16 shows that a mesh convergence occurs at approximately 6 edge elements, or               
around 1,673,254 elements total. While the mesh does seem to converge better at 8 edge               
elements, we limited the simulations to 6 edge elements due to computational time limits. 6 edge                
elements were chosen for the final simulation as a balance of accuracy and computational time. 
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Figure (16): A plot of temperature at point (4.42, 1.2), a point in the penguin core near the                  
boundary with the penguin outer circle. Temperature at the point is used to determine when the                
mesh converges, which is when edge elements are set to 6. The edge elements value was chosen                 
for the model, as seen in Figure 5,  to balance accuracy and computational time. 

The solver used was a direct solver for a segregated solution (Figure 17). COMSOL was allowed                
to choose the default solver method for this computation, which was direct. A segregated              
solution was used since the temperature change was considered negligible in changing velocity.             
Therefore, velocity was solved for first, then heat transfer afterwards which saved time in the               
final computation by reducing the size of the solution matrix. The solver used both MUMPS for                
fluid flow and PARDISO for heat transfer for the computations. 
 

 

Figure (17): A screenshot of the solver configurations for the model in COMSOL. The              
segregated tab indicates two separate solutions / solution matrices, and the two “Direct” tabs              
correspond to fluid flow and heat transfer computations. 
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6.0 Validation  
 

To validate our model experimental data from Le Maho et. al. 1976 is used for the average body                  
temperature of an emperor penguin. In their experiment, they assumed that the stomach             
temperature was the core temperature (Le Maho, 1976). The temperature was measured with a              
thermistor probe that was placed in the stomach of the birds (Le Maho, 1976). Stomach               
temperature was determined on eight birds during 36 measurements (Le Maho, 1976). The mean              
temperature for 36 measurements was determined to be 38.2​°C ​(Le Maho, 1976). To see how our                
model compares, we will use this value of body temperature and compare it to the numerical                
results of our model. This is shown in Figure 18 below. 
 

 

Figure (18): ​Penguin body temperature validation. ​This figure shows the comparison between            
the average body temperature of the penguins in the model (shown in orange and blue, leftmost                
bars in the graph) vs. the measured stomach temperature used in Le Maho et. al. 1976 (shown in                  
grey, rightmost bar in the graph). 
 
To quantify the difference between these two values and the experimental value, Equation 13 for               
percent difference is used. 
 

 
 
From this relation, we find that the percent difference between the 0.951cm spacing and the               
experimental value is ​6.66% and the ​percent difference between the 0.8cm spacing and the              
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experimental value is ​11.63%. Both of these differences are small ​when we take into              
consideration that this model makes several simplifications and assumptions. It shows that our             
model has penguins with body temperatures that, on average, are physiologically possible.            
Although the model results are not the same as the experimental ones, they are comparable, and                
we can confidently say that the ideal spacing is between these two values. Variations may be due                 
to the simplification of thermoregulation made in our model or differences in ambient conditions              
between what this model uses and the conditions of the measurements taken in the data from Le                 
Maho et. al. 1976. 
 
7.0 Verification 
 

We performed a sensitivity analysis on several parameters to determine how much the numerical              
solution depends on the values of the parameters used. To do this, a range of possible values was                  
determined for parameters used in our simulation. We want to see how much variation in these                
parameters would affect the average body temperature of the penguins since this is what our               
results are based on. The graphs below show the percent change in the generated numerical               
solution when the parameter was changed to the most extreme value within the range of possible                
data points. 
 

 
 

Figure (19): ​Sensitivity analysis for wind speed at 10 m/s and 1 m/s. The temperature increases                
a lot when the wind speed is made to be lower. The temperature is less affected by the increase in                    
wind speed. 
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Figure 19 shows that when the wind speed is decreased from 5 m/s to 1 m/s, it has a large effect                     
on the average body temperature of the penguins. This suggests that wind speed is a large reason                 
why they get so cold. When the wind speed is increased from 5 m/s to 10 m/s, the solution is less                     
affected (although a -17.17% change is still pretty different). This shows that above a certain               
threshold, the solution will be less affected by an increase in wind speed. We see that it is                  
important to know the exact conditions of the wind being modeled as it affects the average                
temperature of the penguins by a lot at the extreme ends of wind measured in Antarctica. 
 

 

Figure (20): ​Sensitivity analysis for ambient temperature at -15.5°C and -17.5°C. The average             
body temperature of penguins changes by over 4% for a 1°C change in temperature. 

Figure 20 shows that when ambient temperature fluctuates by a small amount, the huddle body               
temperature changes by a significant amount. Thus, knowing the exact ambient temperature we             
are interested in is important (which may fluctuate a little day to day). In relation to global                 
warming, an increase of just one degree warms the average huddle by 4.81%. This would impact                
the huddle spacing required in addition to how the penguins move within the huddle and could                
be an important area of future study. Figure 21 shows that C​p does not alter the average penguin                  
body temperature significantly, which assures that the value used for ​C​p in the model is adequate                
because these two values represent extreme, almost unrealistic specific heat for a penguin.  
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Figure (21): ​Sensitivity analysis for C​p = 3280​J/kg K and C​p = 3680​J/kg K. The average penguin                 
body temperature is not significantly affected by this change in Cp. 

 

Figure (22): ​Sensitivity analysis for the spacing between each penguin in the huddle. We see               
that for smaller changes, a change in spacing can impact the average body temperature by a lot.                 
By changing the spacing from 0.8cm to 0.951cm, the average temperature decreases by about              
17%, which is significant. In addition, we see that there is less of a change in temperature                 
between 1.902cm and 4.755cm even though there is more of a change in the spacing itself. When                 
the spacing gets much larger the impact on the overall body temperatures changes less. 
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One of our research questions (Section 2.2) focused on the ideal spacing for penguin huddles and                
how much the spacing affects the overall temperature of penguins within the huddle. It is               
assumed that penguins huddle as close as possible during huddles so our model has a very small                 
value for the spacing between penguins. However, it is important to get a sense of how much a                  
change in this spacing could change the results. In Figure 22, we see that changing the spacing                 
affects the results significantly. However, as the penguins get further and further apart, the              
spacing changes the results less.  

8.0 Conclusions 
The results show important data for the ideal spacing of penguins within a huddle and the ideal 
location to stand within the huddle. Individual emperor penguins would ideally form a penguin 
huddle between 0.951 cm and 0.800 cm to be warm enough but not overheat. The large variation 
of temperature in the steady state penguin huddle provides valuable insight into why individual 
penguins have to move around to regulate body temperatures. Most places within the huddle are 
either too warm or too cold so the penguins move to regulate their temperature. The warmest 
spot within the penguin huddle is found to be in the middle, towards the very back. The optimal 
location within the penguin huddle however, where an individual penguin could maintain an 
ideal body temperature without moving, is found to be in the middle, slightly to the back. 
 
All this data provides researchers with the reasoning behind why penguin huddles form, how 
they benefit the penguins, and why penguins move the way they do within the huddles. These 
conclusions combined with the sensitivity analysis provides further insight into how the 
conditions in Antarctica may influence penguin huddling behavior. We see that changes in wind 
speed and ambient temperature can affect the average body temperature of penguins 
significantly. This would cause a change in behavior as the penguins would have to modify their 
spacing and patterns of movement to maintain the same body temperature. There are further 
implications to this and it could be an important and insightful area of further research as 
conditions in Antarctica continue to change due to global warming. In addition, this model will 
hopefully provide valuable insight into the penguin heat transfer which will limit the number of 
in person experiments required to get the same data. This will save money, time, and prevent 
unnecessary exposure and risk to experimenters. 
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10.0 Appendix 
 

10.1 Model Parameters 
 
Used in Numerical Model 
 
Table A1: ​Parameters used in the model and where in literature they came from. A reference to                 
refer to as we worked. 

Air Expression Source and Notes 

rho.air 1.57025 (kg/m^3) From Table C.5. of Basu, P. (2018). 

visc.air 146.05E-07 (Pa*s) From Table C.5. of Basu, P. (2018). 

k.air 20.2e-3 (W/(m*K)) From Table C.5. of Basu, P. (2018). 

cp.air 1006 (J/(kg*K)) From Table of Gasses of Bejan, A. (2013). 

gamma.air 1.4 From COMSOL Material Properties. 

T.air -16.6 (°C) Average of 7 years from Gilbert, C. et. al. (2007). 

u.air 5 (m/s) Average of 7 years from Gilbert, C. et. al. (2007). 

 

Penguin Expression Source and Notes 

number.pengui
n 

6,000 (breeding 
pairs) 

From Le Maho, Y. (1977) and Regel, J. and Putz, K. 
(1997). 

shape nearly hexagonal From Zitterbart, P. et. al. (2011) and Waters, A. (2012). 

rho.penguin 1015 (kg/m^3) 

Assumption rho.penguin=rho.penguin.carcass. 
rho.penguin.carcass=mass.penguin.carcass/vol.penguin
.carcass. mass.penguin.carcass is 23.45[kg], average of 
22.2[kg] and 24.7 [kg] from Williams, L. et. al. (2015). 
vol.penguin.carcass 0.210[m^3] and 0.254[m^3] from 
Williams, L. et. al. (2015). 

mass.penguin 30 (kg) 
Average of 20[kg] from Gilbert, C. et. al. (2007) and 
40[kg] from Le Maho, Y. (1976). 

volume.pengui
n 0.0284 (m^3) Volume.penguin=weight.penguin/rho.penguin. 
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height.penguin 1 (m) 
Nationalgeographic.com/animals/birds/e/emperor-peng
uin. 

r.penguin 9.51 (cm) r.penguin=(volume.penguin/(height.penguin*pi))^0.5 

r.feather.pengui
n 2.2 (cm) 

Average of 24[mm] from Du, N. et. al. (2007) and 
18[mm] from Taylor, J. R. E. (1986). 

T.penguin 40 (°C) From Le Maho, Y. (1977). 

k.feather.pengu
in 1.725 (W/(m*K)) From Du, N. et. al. (2007). Lacking porosity. 

k.penguin 0.0373 (W/(m*K)) 

k.penguin=k.penguin_m2*(pi*r^2)/d where 
k.penguin_m2 is an average of 1.6[W/(m^2*K)] and 
1.3[W/(m^2*J)] from Le Maho, Y. et. al. (1977) 

cp.penguin 3480 (J/(kg*K)) From Schmidt-Nielsen, K. (1997). 

Q.penguin 38.7 (W) 

From Field Metabolic Rate Equation for loosely 
grouped penguins in Gilbert, C. et. al. (2007). Field 
Metabolic Rate Equation for loosely grouped penguins 
is 
Q.penguin=rho.penguin*[1.08-(.08*T.air)]+[(0.0092*(
weight.penguin^0.66)*(T.air+10)^0.32*u.air^0.5)/weig
ht.penguin]. Around 38.4[W] to 52.6[W] from Le 
Maho et. al. (1976). 

 
 
10.2 Result Tables 
 

Used in Figures 13 and 14 
 

Table A2: ​Temperature and heat flux representation at different huddle locations for a penguin              
huddle with spacing = r.penguin/12 = 0.80[cm]. 

Penguin Location Temperature (°C) Heat Flux (W/m^2) 

Front -3.923 -112.11 

Middle 35.980 -95.373 

Back 70.339 31.899 
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Table A3: ​Temperature and heat flux representation at different huddle locations for a penguin              
huddle with spacing = r.penguin/10 = 0.95[cm]. 

Penguin Location Temperature (°C) Heat Flux (W/m^2) 

Front -3.968 -82.888 

Middle 29.733 -115.76 

Back 61.772 31.801 

 
Table A4: ​Temperature and heat flux representation at different huddle locations for a penguin              
huddle with spacing = r.penguin/5 = 1.90[cm]. 

Penguin Location Temperature (°C) Heat Flux (W/m^2) 

Front -4.09 16.14 

Middle 10.853 -155.36 

Back 41.392 37.254 

 
Table A5: ​Temperature and heat flux representation at different huddle locations for a penguin              
huddle with spacing = r.penguin/2 = 4.76 [cm]. 

Penguin Location Temperature (°C) Heat Flux (W/m^2) 

Front -4.178 186.07 

Middle 0.472 -167.88 

Back 16.552 40.34 
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10.3 Numerical Implementation 
 

 

Figure (A1): ​The CPU time taken and the memory being used by a typical run of our model. 
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