Insecticide Resistance in Mosquitoes: Practical Guidance and Tips for Performing Your Own Monitoring Assays

Presented by:

James Burtis, Cornell University

John Shepard, Connecticut Agricultural Experiment Station

Monitoring Pesticide Resistance in Disease Vectors

James Burtis

Postdoctoral Associate

Cornell University

Important Points

- What is pesticide resistance and how does it emerge?
- How are resistance bioassay diagnostics created?
- How do you determine the resistance status of field-collected mosquitoes?
- How can the results of these resistance tests inform management?
- How do you collect mosquitoes quickly for resistance assays?
- How do you rear different mosquito species in the laboratory for resistance assays?

Why is Monitoring Pesticide Resistance Important?

- Many classes and modes of action are available, but few are used for mosquito control
- State regulations can further restrict the ability to cycle through different pesticides
- Resistance monitoring is necessary to maintain the efficacy of the few products that are available for vector control

Additional EPA Information About Pesticides for Mosquito Control

https://www.epa.gov/mosquitocontrol/controlling-mosquitoes-larval-stage

https://www.epa.gov/mosquitocontrol/controlling-adult-mosquitoes

Pesticide Classification

Acaricides (14 active ingredients)

Botanical Insecticides (5 active ingredients)

Carbamates (1 active ingredient)

Chlorinated Hydrocardbon Insecticides (2 active ingredients)

> **Formamidines** (1 active ingredient)

Fumigants (1 active ingredient)

Inorganic Insecticides (1 active ingredient)

Insect Growth Regulators (5 active ingredients)

Microbial Insecticides (3 active ingredients)

Neonicotinoids (1 active ingredient)

Organophosphates (6 active ingredients)

Pyrethroids (1 active ingredient)

Why is Monitoring Pesticide Resistance Important?

Control Methods in NE US

Pesticide Classification

Acaricides (14 active ingredients)

Botanical Insecticides (5 active ingredients)

Carbamates (1 active ingredient)

Chlorinated Hydrocardbon Insecticides (2 active ingredients)

Formamidines (1 active ingredient)

Fumigants (1 active ingredient)

Inorganic Insecticides (1 active ingredient)

Insect Growth Regulators (5 active ingredients)

Microbial Insecticides (3 active ingredients)

Neonicotinoids (1 active ingredient)

Organophosphates (6 active ingredients)

Pyrethroids (1 active ingredient)

Adulticides Used in Our Region

(Circle size reflects the relative importance of the mechanism on resistance)

Source: IRAC (2011) Resistance Management for Sustainable Agriculture and Improved Public Health

<u>Metabolic Resistance</u>: Components of an insect's metabolic system adapt to break down insecticides (*Esterases / Monooxygenases / Glutathione S-Transferases*)

<u>Altered Target-Site Resistance</u>: The site where the pesticide binds becomes modified and reduces efficacy (Knock Down Resistance / Modified Acetylcholinesterase)

Altering the binding site and preventing the pesticide from attacking

<u>Penetration Resistance</u>: Resistant insects absorb toxins more slowly, which occurs when the insects' outer cuticle develops barriers

How Does Resistance Emerge?

Resistance vs. Susceptibility

Susceptibility is determined by comparing mortality curves of field collected mosquitoes to a susceptible strain

Resistance vs. Susceptibility

Resistance can be defined by a threshold (diagnostic) concentration, dose, time, or resistance ratio based upon a susceptibility curve

Susceptibility Curves

Bti Susceptibility Curve

Probit analysis: a type of regression used to analyze a dose-response curve. Can be used to determine the pesticide concentration at which a give percentage of mosquitoes will die

Susceptibility Curves

Bti Susceptibility Curve

Defining Resistance

Defining Resistance

Defining Resistance

Common Detection Methods

Introduce mosquitoes to treated tube

After 1 hour transfer to clean tube

Insecticide class	Insecticide	Discriminating concentration (%) (1-hour exposure period)	5× ^a concentration (%) (1-hour exposure)	10× ^a concentration (%) (1-hour exposure)	Control paper
Carbamates	Bendiocarb	0.1	0.5	1	Olive oil
	Carbosulfan	0.4			Olive oil
	Propoxur	0.1			Olive oil
Organochlorines	DDT	4			Risella oil
	Dieldrin	0.4			Risella oil
		4			Risella oil
Organophosphates	Fenitrothion	1			Olive oil
	Malathion	5			Olive oil
	Pirimiphos-methyl	0.25	1.25	2.5	Olive oil
Pyrethroids	Alpha-cypermethrin	0.05	0.25	0.5	Silicone oil
	Cyfluthrin	0.15	0.75	1.5	Silicone oil
	Deltamethrin	0.05	0.25	0.5	Silicone oil
	Etofenprox	0.5	2.5	5	Silicone oil
	Lambda-cyhalothrir	0.05	0.25	0.5	Silicone oil
	Permethrin	0.75	3.75	7.5	Silicone oil
Phenylpyrazoles	Fipronil	2			Silicone oil
Synergist	Piperonyl butoxide	4			Silicone oil

Test Procedures for insecticide resistance monitoring in malaria vector mosquitoes, 2016

https://www.who.int/whopes/resources/who_cds_cpe_pvc_2001_2/en/

Common Detection Methods

CDC Bottle Bioassay

	Final	<i>Ae. aegypti</i> REX colony	<i>Ae. albopictus</i> LC colony	<i>Cx.</i> <i>molestus</i> colony	<i>Cx. pipiens</i> NY/Chicago colony		
Chemical	Concentration/Bottle µg/bottle	100% Mortality Expected (minutes)					
Chlorpyrifos	20	45	45	45	90		
Deltamethrin	0.75	30	30	120+	45		
Etofenprox	12.5	15	30	105	15		
Fenthion	800	TBD	TBD	30	75		
Malathion	400	15	30	30	45		
Naled	2.25	30	30	30	45		
Permethrin	43	10	10	30	30		
Prallethrin	0.05	120+	120+	120+	60		
Pyrethrum	15	15	30	120+	45		
Resmethrin	30	5	10	30	15		
Sumethrin	20	10	45	120	30		

Comparing Methods

CDC Bottle Bioassay

- + Materials are cheap and easily accessible
- + Procedure is simple and easy to follow
- + Only one test to scale resistance level
- Time consuming to collect data, if resistance is detected
- Level of resistance difficult to determine when using a diagnostic time

WHO Test

- + Only checked once (post-24 h) for each concentration used
- + Diagnostic doses are uniform and based on susceptibility curves
- Kits are difficult to obtain or build
- Must run multiple tests to detect different levels of resistance

Use two wax-lined paper cups

Fill the smaller cup with 74 ml of water and add 50 mg of fish food

Add 15 4th instar larvae to the small cups

Place smaller cup into the larger cup

Add 1 ml of larvicide Al to the small cup containing water and larvae

Place a piece of fine fabric over the top of the larger cup

Highest Concentration

Conduct probit analysis to determine the diagnostic dose

Test field populations at the diagnostic concentration

Mosquito Collection for Assays

Egg Collection

- + Age of mosquito known
- + Often easier to ID species
- Requires some space for rearing

Larval Collection

- + Age of adults known
- Age of larvae unknown
- Each individual must be identified
- Requires some space for rearing

Adult Collection

+ Only need to hold mosquitoes for short time

BEST OPTION!

- Age unknown
- Cannot test larvae
- Each individual must be identified

Factors Influencing Selection for Pesticide Resistance

<u>Genetic</u>

- Frequency and dominance of resistance genes
- Expression of genes
- Competition between individuals with and without resistance genes

Operational

<u>Chemical</u>

- Chemical nature of pesticide and similarity to other chemicals used historically
- Persistence o residues

<u>Application</u>

- Application threshold
- Life stage(s) targeted
- Mode of application
- Rotation of chemicals

Biological

<u>Reproductive</u>

- Generation time and reproductive output
- Mate once, multiple times, or not at all

<u>Behavioral</u>

- Distance traveled
- Diet type (specialist / generalist)
- Shelter

Managing Pesticide Resistance

Managing Pesticide Resistance

Management by Moderation

- Lower dosage and number of applications
- Use chemicals that are short lived
- Treat the minimal size area necessary

Management by Saturation

- Eliminating mosquitoes that have resistance genes at low levels before resistance emerges
- Use of synergists in the field

Management by Multiple Attack

- Mixture of chemicals
- Alternation of chemicals: rotations, mosaics

Low Use

Management by Multiple Attack

Rotation

- Switching between products with different modes of action
- This strategy should be paired with resistance monitoring for both products to detect emerging resistance

Mosaic

- Using different pesticides on geographically isolated mosquito populations
- Resistance testing for all populations and products is ideal for this method

Mixture of Insecticides

- Deploying a combination of two or more different pesticides to control mosquitoes at the same time
- Resistance testing for all products is necessary

♣

♣

Take it away John!

(We'll have time for questions at the end of the webinar)

Establishing and Maintaining Mosquito Colonies

John Shepard

Northeast Regional Center of Excellence in Vector-Borne Diseases

Department of Environmental Sciences Center for Vector Biology & Zoonotic Diseases The Connecticut Agricultural Experiment Station New Haven, CT

Establishing and Maintaining Mosquito Colonies

What do you need?

Space

Equipment

Resources

HHS Public Access

Author manuscript Bio Protoc. Author manuscript; available in PMC 2017 October 24.

Published in final edited form as: Bio Protoc. 2017 September 5; 7(17): . doi:10.21769/BioProtoc.2542.

Rearing of Culex spp. and Aedes spp. Mosquitoes

Elizabeth Kauffman¹, Anne Payne¹, Mary A. Franke¹, Michael A. Schmid², Eva Harris³, and Laura D. Kramer^{1,4,*}

¹Wadsworth Center, New York State Department of Health, Albany, New York, USA

²Rega Institute for Medical Research, Virology and Chemotherapy, Department of Immunology and Microbiology, University of Leuven, Leuven, Belgium

³Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA

⁴School of Public Health, State University of New York at Albany, Albany, New York, USA

https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5654580&blobtype=pdf

Open Access

- List of Supplies
- Techniques Covered in Detail

Resources

Manual for Mosquito Rearing and Experimental Techniques

Eugene J. Gerberg, Donald R. Barnard and Ronald A. Ward

American Mosquito Control Association Bulletin No. 5 (revised)

Everything you need to know

Compiles information and references from almost any colony work performed and documented up to early 1990s

Currently available from AMCA for purchase (\$28)

https://www.mosquito.org/store/ViewProduct.aspx?id=9520947

https://www.beiresources.org/

BEI Resources

- NIAID
- Repository
- **Registration Required**
- Eligibility
- Permits
- 4 Species available

Methods in Aedes Research (26 pp):

https://www.beiresources.org/Portals/2/VectorResources/Methods%20in%20Aedes%20Res earch%202016.pdf

Methods in Anopheles Research (408 pp):

https://www.beiresources.org/Portals/2/VectorResources/2016%20Methods%20in%20A nopheles%20Research%20full%20manual.pdf

Facilities

Short Term

- Dedicated Bench space
- "In Season"
- No control needed for temperature or photoperiod
- Area for trays of larvae and cages of adults
- May need to increase humidity for Adult Cages
 - Damp paper towels
 - Plastic sheeting

Long Term

- Dedicated space
 - Incubator or Growth Chamber
 - Walk-in Incubator or Climate Controlled Room
- Controls needed for temperature and photoperiod

Facilities

Growth Chamber or Incubator

- Free standing
- 1 or 2 colonies
- Temperature Control (25.5° C)
- Light Control (16:8 hr, L:D)
 - Fluorescent

Insectary

- Dedicated space
- More Space
- Humidity Control

Insectary

22 to 25° C 70% RH 16 hour light, 8 hours dark

- **Overhead Lights** • On 5:30 AM, Off 9:00 PM
- Lights on Shelf Units • On 6:00 AM, Off 9:30 PM

There are 2 Shelf Units in the room.

Each shelf has a light fixture

Dusk Simulation

Clip-on Work Light 10 W incandescent bulb On 5:00 AM, Off 6:30 AM On 9:00 PM, Off 11:00 PM

8 cu. ft. cage

Species

Multivoltine Species

Recommended

- Culex pipiens* or Cx. quinquefasciatus*
- Aedes albopictus*
- Aedes aegypti*
- Aedes triseriatus*
- Cx. pipiens form molestus (autogenous)*
- Aedes atropalpus (autogenous)#

More difficult

- Culiseta melanura*
- Culex restuans
- Culex salinarius[#]
- Culex tarsalis[#]
- Aedes japonicus[#]
- Anopheles quadrimaculatus

Univoltine Species

- Can sometimes rear larvae to adult
- Extremely difficult to colonize

Larvae **Develop** in **Containers**

Specimen Collection

Ovi-Trap

- 32 oz. "Casino Cup"
- 38 lb. Seed germination paper
- Aedes/Ochlerotatus species
- ID larvae as 2nd, 3rd or 4th instar

Photo: Greater Los Angeles County VCD

Container

- Gravid Trap Infusion as bait
- Culex egg rafts
- ID larvae as 1st or 2nd instar

Specimen Collection

Photo: John W Hock Co.

Dipper

- Multiple Aedes/Ochlerotatus species
- Vernal pool, salt marsh, floodwater
- ID larvae
- Rear to Adult in field collected water
- May need to feed up to 4th instar

Mechanical Aspirator

- Backpack Aspirator
- Similar to Landing Bite Counts
- Mated Adult Females
- ID females (immobilized by chilling)
- Offer bloodmeal
- Collect eggs, hatch, rear larvae

Rearing Larvae

- Larger pans work best
- White background
- Surface Area > Volume

Inexpensive Options 24 oz. Take Out Container

16 oz. Deli Container

Rearing Larvae

- Larger pans work best
- White background
- Surface Area > Volume

16 oz. Deli Container

Online : webstaurantstore.com

Larval Diets

Multiple Options

- TetraMin Tropical Fish Flakes
 - Finely Ground
 - Inexpensive, readily available
- Liver Powder: Brewer's Yeast (3:2 by weight)
- Pet food (Finely Ground and Sifted)
 - Koi Food
 - Dog Food
 - Cat Food
 - Rabbit Food Pellets
 - Rat Chow
- Various Combinations of the Above
- Useful to mix in a suspension (slurry)
 - Make fresh for use or store 1-2 days

Hatching Eggs

Water

- Distilled
- Reverse Osmosis
- Conditioned Tap (let sit at least 24 hr)

Add water (about 4 cm deep), eggs, larval food

• General rule = 1 larva/1-2 cm³ water (up to 5 larva/cm²) OR LESS

Hatching Eggs

Culex egg Rafts

- Each raft = 50 to 200+ eggs
- Make sure to orient in "head down"

Add to water (2 – 3 cm deep), larval food

• Eggs hatch in 24 – 48 hrs

Feeding Larvae

Feed Iarvae Mon, Wed, Fri

- Increase as Larvae develop from 1st to 3rd instar
- Skim surface with paper towel if "scum layer" develops
- Feed less if water is cloudy
- Decrease as when Pupae first develop

Transferring Pupae Pick pupae as they develop

5 to 7 DAYS after hatching eggs

Pipettes

- Need to cut tip
 - Glass
 - Plastic

Transfer Pupae

- **Mosquito Breeder**
- **Deli Cup**

Place into Cage

Optional Equipment

Fish Net For Straining Pupae and 4th instars

Cages for Adults

BioQuip Products

- 30 x 30 x 30 cm (1 cubic foot)
- Metal
- Plastic BugDorm

Inside the Cage

Sugar Source

- Table Sugar
- 10% solution
- Cotton balls in 1 oz Cup
- Cotton Wick in 50ml flask Raisins, Apple slices

Oviposition Dish

- Culex
 - Cup with water

- Aedes
 - Cup with water and fluted filter paper

BioQuip Products Large Mosquito Breeder

Aspirators

For removing Adults from cage for Pesticide Resistance Testing

> Battery Powered

Lung Powered

Blood Feeding

Required to Maintain a Colony Long-term

Live Animal

- Institutional Animal Care and Use Committee (IACUC) Approval
- Detailed Protocols
- Need to maintain animals appropriately
 - Guinea Pigs
 - Button Quail

Human Subjects

- Regulated by US Department of Health and Human Services Common Rule (45 CFR 46, Subpart A)
- Institutional Review Board (IRB) Approval
- Occupational Activity
- Achee et al. Considerations for the Use of Human Participants in Vector Biology Research: A Tool for Investigators and Regulators. Vector Borne Zoonotic Dis. 2015 Feb 1; 15(2): 89– 102. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340630/</u>

Blood Feeding

Human Subjects

- Many IRBs in the United States will follow the OHRP and NIH definition of human subjects research
 - o <u>https://grants.nih.gov/policy/humansubjects/research.htm</u>
- As a consequence, they will not consider direct mosquito feeding a human subjects activity that requires IRB approval, provided no individual data on participants is collected.
- It is recommended that investigators submit projects having a human feeding component to their appropriate IRB for determination that the proposed study activity should be deemed exempt.

Blood Feeding - Artificial

Blood from a supplier

- Defibrinated
- Variety of blood available (sheep, cow, chicken, etc.)

Artificial Membrane

Sausage Casing (sheep or pig intestine)
Blood warmed to 37°C (up to 40°C)

Sausage Casing Filled With Blood (r) and Unfilled

Kauffman et at. Bio Protoc

Artificial Membrane Systems

Hemotek System

Parafilm or Casing as Membrane

Glass Feeders

- Parafilm or Casing as Membrane
- Requires Circulating Water (37-40°C)

Discover Magazine: Will Betz/Seattle Biomed.

Vosshall Lab, Rockefeller Univ.

Storing Aedes Eggs

Oviposition 3-5 days after Blood Feeding

Dry on Paper **Towel** 15-30 mins

Fold with Eggs on the inside.

Place in Labeled Bag

The Connecticut Agricultural Experiment Statio Putting Science to Work for Society since 1875

Questions?

John.Shepard@ct.gov

Questions?

nevbd@cornell.edu jb766@cornell.edu

https://neregionalvectorcenter.com

John.shepard@ct.gov

https://portal.ct.gov/caes

