On Parity and Near-Testability:
P? = NT? With Probability 1
Lane Hemachandra*

87-852
July 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

>|‘Research supported in part by NSF grant DCR-8520597 and a Fannie and John Hertz
Fellowship.

On Parity and Near-Testability:
P4 £ NT4 With Probability 1

Lane A. Hemachandra*
Department of Computer Science
Cornell University

July, 1987

Abstract

The class of near-testable sets, NT, was defined by Gold-
smith, Joseph, and Young. They noted that P C NT C PSPACE,
and asked whether P = NT. This note shows that NT shares
the same m-degree as the parity-based complexity class ®P (i.e.,
NT =2 @P) and uses this to prove that relative to a random
oracle A, P # NT# with probability one. Indeed, with proba-
bility one, NT#4 — (NP* {J coNP#) # 0.

1 Introduction and Background

Definition 1.1 [GJY87a] A set § is in the class NT (“near-testable”) if
and only if

L={z| (¢€S5) ® (z, € §)} €P.

Here, @ denotes “exclusive or” and z, denotes the string that follows z
lexicographically.

*Research supported in part by NSF grant DCR-8520597 and a Fannie and John Hertz
Fellowship.

Goldsmith, Joseph, and Young ask if P equals NT, and as a partial
answer show that if one-way functions exist (equivalently, if P # UP, see
[GS84]), then P # NT [GJY8T7a|.

In their proof they identify parity as a powerful tool for dealing with
the class NT. This note goes further and suggests that parity is not only a
tool, but is the answer to the question, “Where does NT fall in the scheme
of standard complexity classes?”

Section 2 pinpoints the location of NT by proving that NT is many-
one polynomial-time equivalent to the standard complexity class ®P of
Papadimitriou and Zachos [PZ82,PZ83|. Since UP C @®P, the UP result of
[GJY8T7a] follows as an immediate corollary.

Section 3 notes that versions of near-testability defined in far more gen-
eral ways remain subsets of, and many-one equivalent to, ®P.

Section 4 notes that P* # NT# with probability one relative to a ran-
dom oracle A. This says that in almost every relativized world, NT and
P differ. Indeed, we show stronger probability one results for NT: with
probability one NT# contains sets not in NP4, coNP4, or even PP“. These
results are consequences of the probability one techniques of Bennett and
Gill [BG81], and of the fact that NT and @®P share an m-degree.

2 P = NT

2.1 &@P

The class ®P, “parity P,” is the class of languages that determine the
parity of the number of accepting paths of nondeterministic polynomial-
time Turing machines.

Definition 2.1 [PZ82,PZ83] P = {L | there is a nondeterministic poly-
nomial-time Turing machine N; such that [z € L <= N;(z) has an odd
number of accepting paths|}.

Papadimitriou and Zachos show that ®P®F = @P, and thus ®P has be-
havior that seems to differ from that of NP.

It is easy to note that:

Lemma 2.2 P C UP C @P C P#*Fll C P#*P_ where [1] indicates that on
any input only one oracle call is made.

2

UP [Val76,GS84,HH86] is Valiant’s uniqueness class and #P [Val79a,Val79b)]
is Valiant’s class of counting functions.

Proof: UP C @P as a UP machine for a language L instantly (since 0 is
even and 1 is odd) provides the machine N; required by Definition 2.1 to
prove that L is in @P. The other inclusions are immediate.

)

2.2 &P and NT have the same m-degree

We say that A is many-one polynomial-time reducible to B (4 <? B) if
there is a polynomial-time computable function f so that for all strings z,
€ A < f(z) € B[GJ79]. An m-degree is an equivalence class of sets
with respect to many-one polynomial-time reductions (see, e.g., [KMR86]).
This section shows that NT and &P share the same m-degree, and that
NT C @P.

Theorem 2.3 NT C @P.
Lemma 2.4 ¢P <P NT.
Theorem 2.5 NT =2, @P.

Proof of Theorem 2.5 The theorem follows immediately from Lemma
2.4 and Theorem 2.3.

[)
Proof of Theorem 2.3 Let L € NT. Let polynomial-time language L'
do the testing, i.e.,

z€l — ((:cEL)éB(a:+€L)).

Let N by the nondeterministic polynomial-time Turing machine that on
input z spawns, for each string y that is lexicographically less that z, a
path that accepts if and only if y € L'. Also, if the lexicographically first
string, €, is in L (this information is coded into Np), then let N always
have one additional path that mindlessly accepts. Now L € @P, taking
machine N to be the machine N; of Definition 2.1.

)

Proof of Lemma 2.4 Suppose L € @P, and let N; be the machine
(of Definition 2.1) that whose paths certify that L € ®P. We formal-
ize a “path” as a zero-one vector that contains the nondeterministically
“guessed” bits. Note that we can easily modify machine N; to create a

machine N; such that

1. N; certifies L € @P (i.e., z € L <= Nj(z) has an odd number of
accepting paths),

2. N; runs (for some fixed k that depends on L) in NTIME[n**+! + k],

and

3. machine N,(z) starts by nondeterministically guessing an |z|* bit
guess vector, and then (each of the 2" paths) proceeds determin-

istically.

Let L' = {z#path | |path| = |z|* and there are an odd number of
accepting paths of N;(z) that are lexicographically < path}.

Crucially, L' is in NT as (for all paths except the lexicographically first,
which is an easy case to handle):

[(z#path € L') & (z#path_ € L')] < path_ is an accepting path of
Nj(2),

where path_ indicates the path lexicographically preceding path. Also,
L <? @P: we reduce “c €L?” to “z#1™c L'?” This works as 1™" is the
lexicographically last path on input z, and by the definition of L', z#1m*
is in L' exactly when N;(z) has an odd number of accepting paths.
Thus we have many-one reduced a general language L in ®P to a lan-
guage L' in NT. So &P <2 NT.
()

Corollary 2.6 P = NT if and only if P = @&P.

As a consequence, we immediately know the effect of structural assump-
tions about classes bigger or smaller than ©P on the P=NT question. For
example, by Lemma 2.2, we can conclude that P # UP = P # NT
[GIY8Ta], and P = P** = P = NT. However, Theorem 2.5 is a more

4

general and powerful locator of the position and structure of ®P, and thus
forms our stepping stone for the probability one results of the next section.
It is routine to verify that the results of this section relativize.

Definition 2.7 @®P# = {L | there is a nondeterministic polynomial-
time Turing machine N; such that [z € L <= N{(z) has an odd number
of accepting paths|}.

Definition 2.8 A set S is in NT# if and only if
L={z| (z€S)® (z4+ € §)} € P,

Theorem 2.9 For all oracles 4, NT4 C ¢P4.

Lemma 2.10 For all oracles 4, §P# <? NT4.

Theorem 2.11 For all oracles A, NT* =2 @P4.

3 Generalizing NT

Goldsmith, Joseph, and Young suggest the possibility of a more general
notion of near-testability (GJY87b]. We show that their notion, and far
more general notions of near-testability, are still subsets of GP.

Definition 3.1 (See [Ko83,GJY87b] for related ideas.)

1. A total® ordering < on ¥* is polynomially well-founded and exponen-
tially length related if there is a polynomial p() and an exponential
function e() (i.e., for some k, e(k) = O(2™")) such that:

(a) y < z? is testable in ®P (i.e., {(y,z) | y <z} € ®P),
(b) z < y implies that |z| < p(|y|),

(c) thelength of a <-descending chain is shorter than e of the length
of its maximal element, and

(d) (Vz € Z* —€)[e < z].

In fact, Theorem 3.4 would hold even if we allowed our order to be a tree-like partial
order rooted at e.

2. We call such an ordering a nice ordering.

Note that NT is defined using standard lexicographical order, which is
a common example of a nice ordering. The new class NewT defined below
is defined in a quite general way. Nonetheless, like NT, NewT is a subset

of ®P.

Definition 3.2 A set S belongs to the class NewT if there is a nice order
< suchthat L={z | (z € S) ® (¢+ € S)} € ®P. Here, z, denotes the

immediate successor of = in our well-founded linear ordering <.

Note that this is a strong generalization of NT. We allow a general
ordering, for which < may not even be testable in polynomial time, and
our “xor” language itself, L above, may not be computable in polynomial
time. Both are allowed to be ®P computations. If both were restricted to
P computations (call the resulting class NewT'), we’d have the extension

of NT suggested in [GJY87b].
Lemma 3.3 NT C NewT’ C NewT.
Theorem 3.4 NewT C ®P.

Corollary 3.5 P =2, NewT =2 NewT’' =2 NT. That is, ®P, NewT,
NewT’, and NT have the same m-degree.

Proof Lemma 3.3: Immediate from the definitions.

[Y
Proof of Corollary 3.5 Immediate from Lemma 3.3, Theorem 3.4, and
Lemma 2.4.

e
Proof of Theorem 3.4: Our proof extends, but shares the spirit of, the

proof of Theorem 2.3. However, we must account carefully for the action of
the ®P computations that are now allowed as part of the NewT definition.

Assume L is an arbitrary language in NewT. We will show that L € @P.
We'll use the term @ P machine to denote a nondeterministic polynomial-
time Turing machine operating under the ®P acceptance mechanism—that
is, the machine is considered to accept if and only if it has an odd number
of accepting paths.

Let < be the ordering from the definition of NewT, let N; be the &P ma-
chine accepting {(y, z) | y < z}, and let N, be the @P machine accepting
(o] (z€L)® (2s € D)},

Without loss of generality, assume € ¢ L. (If ¢ € L, the same proof
works, except we add a dummy accepting path to the machine N, (below)
to flip its parity.)

Let N3 be the ®P machine that on input (a, b) starts simulating N;(a, b)
but on each path of N;(a, b) that is about to accept, N3(a, b) instead of
accepting simulates Ny(a).

Finally, here is the ®P machine, N,, that accepts L. On input z,
N4 nondeterministically makes a path, path,, for each string y such that
ly| < p(|z|), where p is the polynomial bound on the length-relatedness of
the nice ordering <. On path,, simulate N3(y, z).

Correctness: If y £ = then Ny(y,) has an even number of accepting
paths, so regardless of whether N,(y) has an even or an odd number of
paths, N3(y,z) will have an even number of paths and will not change the
parity of Ny(z). On the other hand, if y < z, then N;(y, z) will accept (i.e.,
have an odd number of accepting paths) if and only if (y € L) & (y; € L).
Since we guess all y along the unique maximal chain from z to €, and
€ ¢ L, we have z € L if and only if N4(z) has an odd number of accepting
paths (i.e., € was not in L, and an odd number of times along the chain we
switched between being in and out (or out and in) of L).

[)

4 Probability 1 Results for NT

Bennett and Gill [BG81] began the study of what happens when
complexity classes are relativized with a random oracle. A stream
of extensions and related work has followed their seminal paper
[Cai86b,Cai86a,Har85,Kur82].

In this section, we note that the characterization of NT developed in
the previous section, combined with the proof methods of [BG81], shows
that with probability one, NT# contains sets computationally hard sets.
Indeed, with probability one, NT# contains sets that are neither in NP4
nor in coNP4,

Lemma 4.1 Relative to a random oracle 4, P4 — PP# # 0 with proba-
bility one.

Theorem 4.2 Relative to a random oracle 4, NT4 — PP4 # § with prob-
ability one.

Corollary 4.3 Relative to a random oracle 4, NT# —(NP# {J coNP#) # 0
with probability one.

Corollary 4.4 Relative to a random oracle 4, NT# 2 P4 with probability
one.

Proof of Lemma 4.1 Theorem 3 of [BG81, p. 103] shows that
PP4 §PSPACEA with probability one. However, their proof in fact uses a
parity based language that not only is in PSPACE#, but also is easily seen
to be in ®P4. Thus, the proof of their Theorem 3 also proves the stronger
statement of our Lemma 4.1.

[)
Proof of Lemma 4.2 Let B we an oracle for which @P? — PP2 £ 0,
and suppose L is a language in @P? — PP2. By Lemma 2.10, there is
a language L' € NT? so L <2, L'. Since probabilistic polynomial time
is closed downwards under many-one reductions, it follows that L' ¢ PP,
thus NTB —PP3 +£ 0. It follows from this and Lemma 4.1 that for a random
oracle A, NT4 — PP4 +£ () with probability one.

[)
Proofs of Corollaries 4.3 and 4.4 Corollary 4.3 follows directly from
Theorem 4.2 and the fact that, for every oracle B, PPZ O (NP? J coNP?).
Corollary 4.4 follows from Corollary 4.3.

[)
Thus we have shown that, with probability one, NT contains hard lan-

guages.

Comment The proceeding theorems show that for a random oracle A,
there are languages in NT* that are not in NP# |J coNP# with prob-
ability one. Looking for a contrasting result, we can show by direct
diagonalization that there are relativized worlds B in which both NP®
and coNP? contain sets that are not in NTZ.

Theorem 4.5 There is an oracle B such that NP? — NT® £ 0 and
coNPZ — NTZ £ 0. 2
5 Summary

We noted that the class NT shares an m-degree with &P, and used
this to prove that with probability one relative to a random oracle, NT4
contains computationally hard languages.

6 Acknowledgements

I thank Professor J. Hartmanis and M. Novick for helpful comments.

?Proof Sketch For the NP case, set L = {1" | (3y, 2)[lyi=nAyE B Ay=1z]} €
NP2. By direct diagonalization (against the possible polynomial-time testing machines),
insure L ¢ NTZ. To knock out a testing machine, run it on 1™ for m much larger than
anything used in previous stages; whatever it replies make it wrong (if needed, toss a
length m string that was not touched in the run into oracle B).

For the coNP case, L is in coNPZ and T ¢ NT2 (as NT?® is closed under complement).
®

References

[BG81]

[Cai86a]

[Cai86b]

[GI79]

[GJY8Ta]

[GIY8Tb]

(GS84]

[Har85]

[HHS86]

C. Bennett and J. Gill. Relative to a random oracle A, P4 #
NP4 with probability 1. SIAM J. on Computing, 10:96-113,
1981.

J. Cai. On Some Most Probable Separations of Complezity
Classes. PhD thesis, Cornell University, Ithaca, NY, 1986.

J. Cai. With probability one, a random oracle separates
PSPACE from the polynomial-time hierarchy. In 18th ACM
Symposium on Theory of Computing, pages 21-29, 1986.

M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and

Company, 1979.
J. Goldsmith, D. Joseph, and P. Young. Self-reducible, P-

selective, near-testable, and P-cheatable sets: the effect of in-
ternal structure on the complexity of a set. In Proceedings 2nd
Structure in Complezity Theory Conference, pages 50-59, 1987.

J. Goldsmith, D. Joseph, and P. Young. Self-Reducible, P-
Selective, Near-Testable, and P-Cheatable Sets: The Effect of
Internal Structure on the Complezity of a Set. Technical Re-
port 87-06-02, University of Washington, Seattle, WA, June
1987.

J. Grollmann and A. Selman. Complexity measures for public-
key cryptosystems. In Proceedings 25th IEEE Symposium on
Foundations of Computer Science, pages 495-503, 1984.

J. Hartmanis. Solvable problems with conflicting relativizations.
Bulletin of the European Assoctation for Theoretical Computer
Science, 27:40-49, October 1985.

J. Hartmanis and L. Hemachandra. Complexity classes with-
out machines: on complete languages for UP. In Automata,
Languages, and Programming (ICALP 1986), pages 123-135,

10

[KMRS6]

(Ko83)]
[Kur82]

[PZ82]

[PZ83)]

[Val76]

[Val79a]

[Val79b

Springer-Verlag Lecture Notes in Computer Science #226, July
1986.

S. Kurtz, S. Mahaney, and J. Royer. Collapsing degrees. In
Proceedings 27th IEEE Symposium on Foundations of Computer
Science, pages 380-389, 1986.

K. Ko. On self-reducibility and weak P-selectivity. Journal of
Computer and System Sciences, 26:209-221, 1983.

S. A. Kurtz. On the random oracle hypothesis. In 14th ACM
Symposium on Theory of Computing, pages 224-230, 1982.

C. Papadimitriou and S. Zachos. Two Remarks on the Power of
Counting. Technical Report MIT/LCS/TM-228, Laboratory for
Computer Science, MIT, Cambridge, MA, August 1982.

C. Papadimitriou and S. Zachos. Two remarks on the power of
counting. In Proceedings 6th GI Conference on Theoretical Com-
puter Science, pages 269-276, Springer-Verlag Lecture Notes in
Computer Science #1435, 1983.

L. Valiant. The relative complexity of checking and evaluating.
Information Processing Letters, 5:20-23, 1976.

L. Valiant. The complexity of computing the permanent. Theo-
retical Computer Science, 8:189-201, 1979.

L. Valiant. The complexity of enumeration and reliability prob-
lems. SIAM Journal on Computing, 8(3):410-421, 1979.

11

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif

