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Sze Ting Kwan, Ph.D. 

Cornell University 2017 

The theory of developmental origins of health and disease proposes that many adult-onset 

metabolic diseases originate from fetal adaptations to an adverse prenatal environment. These 

responses often involve altered fetal physiology that affects normal organ functioning, thereby 

triggering the onset of diseases in later life. Placenta is increasingly recognized to play a central 

role in this theory. The placenta performs many functions including its major role which is to 

supply adequate nutrients to the fetus to support its growth and development. When the placenta 

fails to perform this function, the development of the fetus is adversely impacted. Placental 

nutrient supply is dependent on placental morphology and vasculature as well as placental 

nutrient metabolism and transporter abundance, all of which can be affected by the maternal diet 

during pregnancy. A higher maternal choline intake during pregnancy in animals is known for its 

beneficial effects on offspring development, in particular, the central nervous system. 

Nevertheless, its effect on factors that mediate placental nutrient supply remains largely 

unknown.  

Study 1 examined the impact of maternal choline supplementation on biomarkers of 

placental inflammation, apoptosis and angiogenesis as well as placental morphological and 

vascular indicators in mice during normal pregnancy. This study demonstrates that maternal 

choline supplementation modulates the abundance of inflammatory, apoptotic and angiogenic 

markers in the mouse placenta in a fetal sex- and gestational day-dependent manner. In addition, 

this study provides evidence of enhanced placental perfusion in response to maternal choline 

supplementation through increased luminal area of the maternal spiral arteries.  

Study 2 investigated the impact of maternal choline supplementation on placental nutrient 

transporter abundance and placental nutrient metabolism during late gestation of the mouse 
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pregnancy when fetal growth is maximal. This study indicates that maternal choline 

supplementation modulates the placental abundance of amino acid, fatty acid, glucose, choline 

and acetylcholine transporters as well as the placental metabolism of glucose and choline. More 

importantly, this study provides evidence showing that these choline-induced changes in the 

placenta alter nutrient availability in the fetal compartment, in particular fetal brain, suggesting 

that these placental changes may influence the development of the fetus and the normal 

functioning of its organs. 

Study 3 employed an untargeted approach to explore the impact of maternal choline 

supplementation on placental epigenetic markers during late gestation of mouse pregnancy. This 

study shows that maternal choline supplementation affects several placental epigenetic markers, 

including the amount of global DNA methylation, the expression of imprinted genes, as well as 

the abundance of microRNAs and the expression of their mRNA targets. Although these changes 

occur in a sexually-dimorphic manner, they all have similar downstream consequences on 

placental vascular development and nutrient supply system. We hypothesize that the choline-

induced changes in these epigenetic markers likely contribute to the improved placental 

development and functioning observed in Study 1 and Study 2. 

Taken together, this dissertation research shows a wide-range of effects of maternal 

choline supplementation on factors that influence placental nutrient supply and ultimately fetal 

development and its long term health. Data generated from this dissertation research support a 

growing body of work suggesting that women of reproductive age should increase their intake of 

choline-rich foods in order to improve pregnancy outcomes and the lifelong health of their 

children. 
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PREFACE 

 The placenta is a fetal-derived tissue responsible for providing nutrients to the fetus to 

support its growth and development. Any abnormal variation in its size, morphology or 

functional capacity can adversely impact placental nutrient supply, consequently altering the 

development of the fetus and its risk of disease. As such, the placenta is positioned to play a 

crucial role in programming offspring health in later life. A growing body of data indicates that 

suboptimal prenatal conditions (e.g., maternal malnutrition) impair aspects of placental 

development that affect nutrient supply, and that these placental phenotypes correlate with higher 

disease susceptibility in the offspring. The overarching goal of this dissertation research is to 

characterize the impact of maternal choline supplementation (MCS) on factors that determine 

placental nutrient supply efficiency. To accomplish this research goal, pregnant wild-type non-

Swiss Albino (NSA) mice were randomized to receive a diet containing 1X, 2X or 4X the 

recommended choline level and were sacrificed at one of four gestational days (E10.5, 12.5, 15.5 

or 18.5). Maternal liver, serum, placentas and fetuses were collected and used in several 

experiments to address the following specific aims: 

Aim 1: To test the hypothesis that MCS improves placental morphology and 

vascularization. This aim was accomplished by assessing the placental abundance of 

pro-angiogenic, anti-angiogenic, and pro-inflammatory proteins as well as evaluating 

placental morphology and vasculature. Results from these experiments are presented in 

Chapter 1. 

Aim 2: To test the hypothesis that MCS enhances the supply of nutrients to the developing 

fetus. In particular, we focused on quantifying the abundance of placental transporters 

involved in transporting macronutrients and choline metabolites as well as placental 

enzymes involved in metabolizing glycogen. Concentrations of the glycogen, choline 

metabolites and DHA were also measured in the placenta and/or fetal brain. Results from 

these experiments are presented in Chapter 2. 
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Aim 3: To test the hypothesis that MCS alters the epigenome of the placenta to regulate 

processes related to placental nutrient delivery. This aim was accomplished by 

employing an untargeted approach to examine placental global DNA methylation, 

placental expression of imprinted genes and placental abundance of microRNAs. Results 

from these experiments are presented in Chapter 3. 

This dissertation research yielded 1 published primary research article in a peer-reviewed journal 

(Chapter 1), one original research manuscript that is under peer review for publication (Chapter 

2), and one original research manuscript that will be submitted for publication within the next 

few months (Chapter 3). 
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CHAPTER 1 

Maternal choline supplementation during murine pregnancy modulates placental markers of 

inflammation, apoptosis and vascularization in a fetal sex-dependent manner* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Kwan STC, King JH, Yan J, Jiang X, Wei E, Fomin VG, Roberson MS, Caudill MA. Maternal 

choline supplementation during murine pregnancy modulates placental markers of inflammation, 

apoptosis and vascularization in a fetal sex-dependent manner. Placenta 2017 May;53:57-65. 
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ABSTRACT 

Introduction: Normal placental vascular development is influenced by inflammatory, angiogenic 

and apoptotic processes, which may be modulated by choline through its role in membrane 

biosynthesis, cellular signaling and gene expression regulation. The current study examined the 

effect of maternal choline supplementation (MCS) on placental inflammatory, angiogenic and 

apoptotic processes during murine pregnancy. Method: Pregnant dams were randomized to 

receive 1, 2 or 4 times (X) the normal choline content of rodent diets, and tissues were harvested 

on embryonic day (E) 10.5, 12.5, 15.5 or 18.5 for gene expression, protein abundance and 

immunohistochemical analyses. Results: The choline-induced changes in the inflammatory and 

angiogenic markers were a function of fetal sex. Specifically, 4X (versus 1X) choline reduced 

the transcript (P ≤ 0.05) and protein (P ≤ 0.06) expression of TNF-a and IL-1β in the male 

placentas at E10.5 and E18.5, respectively. In the female placentas, 4X (versus 1X) choline 

modulated the transcript expression of Il1b in a biphasic pattern with reduced Il1b at E12.5 (P = 

0.045) and E18.5 (P = 0.067) but increased Il1b at E15.5 (P = 0.031). MCS also induced an 

upregulation of Vegfa expression in the female placentas at E15.5 (P = 0.034; 4X versus 2X) and 

E18.5 (P = 0.026; 4X versus 1X). MCS decreased (P = 0.011; 4X versus 1X) placental apoptosis 

at E10.5. Additionally, the luminal area of the maternal spiral arteries was larger (P ≤ 0.05; 4X 

versus 1X) in response to extra choline throughout gestation. Discussion: MCS during murine 

pregnancy has fetal sex-specific effects on placental inflammation and angiogenesis, with 

possible consequences on placental vascular development. 
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INTRODUCTION 

The placenta is the organ of pregnancy that mediates nutrient and oxygen supply to the 

developing fetus, and is therefore a critical determinant of fetal growth and development. 

Efficient placental transport requires proper remodeling of the maternal uterine spiral arteries and 

the development of a vascular network within the chorionic villi (in human placenta) or labyrinth 

(in mouse placenta) [1, 2]. When placental vascularization is compromised, the placenta is 

unable to provide sufficient nutrients and oxygen to the developing fetus, which increases the 

risk of fetal growth restriction and abnormal birth weight [1].  

Normal placental vascular development is influenced by the balance of pro- and anti-

angiogenic factors. Pro-angiogenic factors such as vascular endothelial growth factor (VEGF) 

and placental growth factor (PGF) play a regulatory role in the growth and proliferation of 

endothelial cells, angiogenesis and vasodilation while anti-angiogenic factors such as soluble 

fms-like tyrosine kinase-1 (sFLT1) and soluble endoglin (sENG) interfere with normal pro-

angiogenic signaling, disrupt endothelial tube formation and damage the placental vasculature [3, 

4]. The inflammatory milieu also plays a role in placental vascular development. Heightened 

levels of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-a) and 

interleukin 6 (IL-6) have been shown to cause endothelial cell dysfunction, reduce vascular 

relaxation, inhibit trophoblast invasion into the maternal decidua and adversely affect placental 

vascularization [4-6].  

Abnormal angiogenesis and inflammation may be causal in pregnancy disorders such as 

preeclampsia. Aberrant expression of these proteins and others including interleukin 1 beta (IL-

1β) and interleukin 10 (IL-10) is detected among women with placental dysfunction [7-11]. 

Recent work also reveals that placental angiogenesis and inflammation may be a sexual 
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dimorphic phenomenon, underscoring the importance of considering fetal sex when studying 

these placental markers [12-14]. 

Choline is an essential micronutrient required for membrane biosynthesis and cellular 

signaling, and plays a regulatory role in gene expression via epigenetic processes (e.g., DNA and 

histone methylation) [15]. Consequently, choline may modulate physiological processes such as 

inflammation, angiogenesis and apoptosis that are central to placental function and fetal 

development [15-17]. Notably, we have shown an effect of choline on these processes in a cell 

culture model of extravillous human trophoblast cells where increasing choline concentrations 

decreased the abundance of pro-inflammatory, anti-angiogenic and pro-apoptotic markers [18]. 

Similarly, we found that supplementing the maternal diet of healthy pregnant women with extra 

choline (930 vs. 480 mg/d) throughout the third trimester of pregnancy decreased placental 

production and circulating concentrations of sFLT1 [19]. However, apart from the choline-

induced reduction in placental sFLT1 expression, it is unknown whether maternal choline 

supplementation (MCS) can influence inflammatory, angiogenic and apoptotic processes in an in 

vivo model of normal pregnancy. A better understanding of the functional role of choline in 

placental vascular development is also needed. Accordingly, we conducted a choline 

supplementation study in pregnant mice and examined biomarkers of placental inflammation, 

angiogenesis, and apoptosis at four gestational time points. We also conducted a preliminary 

histological investigation to examine the effect of MCS on vascular indicators within the 

maternal decidua and the feto-placental unit.  
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MATERIALS AND METHODS 

Mice and diets 

All animal protocols and procedures used in this study were approved by the Institutional Animal 

Care and Use Committees at Cornell University and were conducted in accordance with the 

Guide for the Care and Use of Laboratory Animals. Adult male and female non-Swiss Albino 

(NSA) mice were purchased from Harlan (Indianapolis, IN). The animals were housed in 

microisolator cages (Ancare) in an environmentally-controlled room (22-25°C and 70% 

humidity) with a 12-hour light-dark cycle. The mice in the breeding colonies were given ad 

libitum access to a commercially available rodent chow and water. After weaning at 3 weeks of 

age, both females and males were given ad libitum access to the AIN-93G purified rodent diet 

(Dyets no. 103345; Dyets, Bethlehem, PA) containing 1.4g choline chloride/kg diet (1X choline 

diet). This dietary regimen was continued until five days prior to mating at which time female 

mice were randomized to the 1X choline diet, a 2X choline diet containing 2.8g choline 

chloride/kg diet (Dyets no. 103346; Dyets, Bethlehem, PA), or a 4X choline diet containing 5.6g 

choline chloride/kg diet (Dyets no. 103347; Dyets, Bethlehem, PA). These dosages were selected 

based on our studies conducted in third-trimester pregnant women showing a choline lowering 

effect on sFLT1 with 2X choline supplementation [19] and evidence from rodent studies 

reporting improvements in brain development in the adult offspring whose mothers were 

supplemented with 4X choline [20]. Day of conception was determined by the presence of a 

vaginal plug and was defined as gestational day (E) 0.5. The female mice continued to consume 

their assigned diet until they were euthanized at one of four gestational time points (i.e., E10.5, 

E12.5, E15.5 or E18.5; n=6-8 dams/treatment group/time point). 
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Tissue collection and processing 

Maternal blood was collected by cardiac puncture into microtainer collection tubes with clot 

activator and SST gel (Becton Dickinson, Franklin Lakes, NJ), and was allowed to clot at room 

temperature for one hour. The sample was then centrifuged at 14,000 rpm for 6 minutes, and the 

serum was collected and stored at -80°C. Maternal liver was removed, immediately frozen in 

liquid nitrogen and stored at -80°C. The gravid uterus was removed, the fetuses and placentas 

were then carefully dissected and weighed. One-third of the placental disks were fixed in 10% 

formalin for histology analysis, while the remaining placental disks were cut in half across the 

chorionic plate and placed in RNAlater or immediately frozen in liquid nitrogen and stored at -

80°C. The fetuses were imaged to obtain crown rump measurements using the Image J Analysis 

Software (NIH). Fetal DNA was extracted and subjected to PCR using a commercial kit 

(Qiagen) for sex determination (Supplemental Table 1).  

 

Measurement of choline metabolites in maternal liver 

The concentrations of choline and its metabolic derivatives [betaine, dimethylglycine (DMG) 

and trimethylamine N-oxide (TMAO)] were measured in maternal liver obtained at the last study 

time point (i.e.: E18.5) by LC/MS according to the method of Holm et al [21] with modifications 

based on our equipment [22]. 

 

Quantification of placental transcript abundance 

Total RNA was extracted from the placental tissues fixed in RNAlater by TRIzol reagent 

(Invitrogen). Reverse transcription was performed using ImProm-II Reverse Transcription 

System (Promega) with the following reaction conditions: 25°C for 10 minutes, 42°C for 40 
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minutes and 95°C for 5 minutes. Quantitative PCR was performed using the SYBR Green 

system in Roche LightCycler480. All primers for the targeted genes (Tnf, Il1b, Il6, Il10, Nfkb1, 

Vegfa, Pgf, sFlt1, Eng, Mmp14) were designed using Primer-BLAST available on the NCBI 

website (Supplemental Table 1.1). These genes were selected because of their importance in 

placental development and association with adverse pregnancy outcomes [5, 7-11, 23, 24] and 

their responsiveness to choline in prior investigations [18, 19]. The reaction conditions were as 

follows: 95°C for 5 minutes, followed by 40 cycles with 15 sec at 95°C, 30 sec at 63°C, and 30 

sec at 72°C. To ensure the specificity of the PCR product, a dissociation stage was included at 

the end of the amplification cycles. Data are expressed by the ΔΔCt method, in which the 

expression level of the gene of interest is normalized by the expression level of the housekeeping 

gene as fold change before comparison between samples. TATA box binding protein, Tbp, was 

selected as the housekeeping gene because its expression is stable in placental tissue [25] and 

remains unchanged under different choline intake levels [17]. 

 

Quantification of placental protein abundance 

To evaluate the protein abundance of IL-1β, TNF-a and NF-κB in the placenta, frozen placental 

samples were homogenized in ten volumes of buffer [50 mM Tris-HCl pH 7.5, 150 mM NaCl, 

1 mM EDTA, and 0.5% IGEPAL CA-630 (Santa Cruz Biotechnology)] containing protease 

inhibitor cocktails (Sigma-Aldrich). The homogenates were centrifuged at 13,200 rpm for 25 

minutes at 4°C. The total protein concentration in the supernatant was quantified by the Bradford 

assay (Thermo Scientific Pierce). Protein was loaded onto SDS-PAGE gel, subjected to 

electrophoresis, and then transferred onto Immobilon FL PVDF membranes (EMD Millipore). 

Membranes were blocked in blocking buffer (LI-COR). The membranes were then incubated 
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overnight with primary antibodies for IL-1β (1:200; Santa Cruz Biotechnology), TNF-a, NF-κB 

or β-actin (1:200, 1:1000 and 1:5000, respectively; Cell Signaling Technology), after which 

secondary antibodies (IRDye 800CW goat anti-rabbit and IRDye 680RD goat anti-mouse (LI-

COR), 1:10,000) were added to the membranes. Protein bands were visualized and quantified by 

the Odyssey imaging system (LI-COR). Data are expressed as the ratio of the intensity of 

targeted protein to the intensity of β-actin and compared between samples. 

 

Measurement of circulating angiogenic factors in maternal serum 

Circulating concentrations of sFLT1 and sENG in the maternal serum were measured using 

commercial ELISA kits according to the manufacturer’s instructions (R&D Systems, 

Minneapolis, MN, USA). 

 

Assessment of placental apoptosis 

The placental tissues were fixed in 10% formalin, paraffin embedded and sectioned at 10µm. 

The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was 

conducted using a commercial kit (Millipore, Billerica, MA) to assess placental apoptosis. The 

total number of cells and the number of TUNEL-positive cells in the placenta were quantified by 

the Aperio ImageScope software to determine the percentage of TUNEL-positive cells.  

 

Assessment of maternal spiral artery area and placental labyrinth vasculature 

Some formalin-fixed sections were subjected to immunohistochemistry as described previously 

[26]. To identify maternal spiral arteries for area evaluation, the placental sections were 

incubated with a smooth muscle actin (SMA) antibody (1:50, DakoCytomatin, Glostrup, 
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Denmark), followed by incubation with a secondary antibody. All stained sections were imaged 

on an Aperio Scanscope (Vista, CA). The maternal spiral arteries were defined manually, and 

their areas were quantified using the Aperio ImageScope software. Data on the spiral artery area 

are presented as a ratio of the luminal area to the total vessel area.  

To evaluate the vascular structure in the placental labyrinth, the placental sections were 

incubated with isolectin (1:100, Vector Laboratories, Burlingame, CA), which is a marker of the 

endothelial cells and has been used to stain the vasculature in other mouse tissues [27, 28], and 

then counterstained with hematoxylin. The placental labyrinth compartment was defined 

manually, and the intensity of the isolectin staining was determined using the Aperio 

ImageScope software. Data are expressed as the staining intensity per unit area of placental 

labyrinth.  

 

Statistical analysis 

Fetal measurements and the placental transcript and protein data were analyzed separately for 

each gestational day and fetal sex using a mixed linear model. Because some fetuses were fixed 

in formalin together with their placentas, fetal DNA was degraded and was not available for sex 

genotyping. Therefore, histology data were analyzed without stratifying by fetal sex. All mixed 

linear models included choline treatment as an independent fixed effect and maternal 

identification as an independent random effect. Litter size was included in the model as a 

covariate when it achieved P ≤ 0.05. For the maternal measurements, data were analyzed 

separately for each gestational day using one-way ANOVA. The model included choline 

treatment as an independent fixed effect, and litter size as a covariate when it had a P ≤ 0.05. 

Correlations between the choline metabolites in maternal liver and placental inflammatory or 
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angiogenic markers at E18.5 were assessed using Pearson’s correlation analysis (with log-

transformed variables as needed). Bonferroni correction was used to adjust for multiple 

comparisons. Data are presented as means ± SEM. SPSS software, Version 23 (SPSS Inc, 

Chicago, IL) was used to perform the statistical analysis and differences were considered 

statistically significant when Padjusted ≤ 0.05. Given that we hypothesized (a priori) that 

supplementing the maternal diet with extra choline would influence the outcome variables, 

unadjusted P-values (Punadjusted) are also presented for variables whose significance was lost after 

adjusting for multiple testing.  
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RESULTS 

Concentrations of choline (and its metabolites) in the maternal liver 

Maternal liver concentration of choline was higher in response to MCS, but only the difference 

between 1X and 4X choline groups remained significant after adjusting for multiple testing (4X 

vs 1X choline: Padjusted ≤ 0.001; 4X vs 2X choline: Punadjusted = 0.02, Padjusted = 0.06; 2X vs 1X 

choline: Punadjusted = 0.032, Padjusted = 0.09; Figure 1.1A). Maternal liver concentrations of betaine, 

DMG and TMAO were higher in response to 2X and 4X choline (Padjusted < 0.05 vs 1X choline; 

Figure 1.1B-1.1D).  

 

 

Figure 1.1. Maternal hepatic concentrations of A) choline, B) betaine, C) dimethylglycine and 

D) trimethylamine N-oxide at E18.5 in response to three different choline treatments (1X, 2X 

and 4X). Data were analyzed using ANOVA followed by post-hoc Bonferroni corrections. 

Values are presented as mean ± SEM. *P ≤ 0.05, **P ≤ 0.001. 
#
 Punadjusted ≤ 0.05, Padjusted > 0.05. 
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Placental inflammation 

In the female placentas, MCS influenced the transcript abundance of Il1b with the 4X choline 

group having lower abundance at E12.5 (Padjusted = 0.045 vs 1X choline) and higher abundance at 

E15.5 (Padjusted = 0.031 vs 1X choline; Padjusted = 0.006 vs 2X choline). A lower Il1b transcript 

abundance in response to 4X choline was also detected at E18.5 (Punadjusted = 0.022 vs 1X 

choline), but this difference was lost after adjusting for multiple testing (Padjusted = 0.067 vs 1X 

choline) (Figure 1.2A). Protein concentrations of IL-1β exhibited expression patterns that 

mirrored those of mRNA abundance at E12.5 (4X vs 1X choline: Punadjusted = 0.039, Padjusted = 

0.11), E15.5 (4X vs 2X choline: Punadjusted = 0.041, Padjusted = 0.12), and E18.5 (4X vs 1X choline: 

Punadjusted = 0.022, Padjusted = 0.065) (Figure 1.2B-C). 

 

 

Figure 1.2. A) Transcript and B-C) protein abundance of IL-1β in the female placentas obtained 

from dams receiving 1X, 2X or 4X choline treatments at E10.5, E12.5, E15.5 and E18.5. The 
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transcript data are expressed as fold-change relative to the housekeeping gene Tbp and the 

protein data are expressed relative to β-actin. After normalization, the mean value of the control 

group at E10.5 was assigned a value of 1 and the mean values of the other groups were presented 

as a fraction of this value. Statistical analysis was done using the mixed linear model followed by 

post-hoc Bonferroni corrections. Values are given as mean ± SEM. *P ≤ 0.05. 
#
Punadjusted ≤ 0.05, 

Padjusted > 0.05. 
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Nfkb1 transcript abundance in the female placentas was higher at E18.5 in the 4X choline 

group (Padjusted = 0.014 vs 1X choline). Protein concentration of NF-κB exhibited an expression 

pattern similar to mRNA abundance but did not achieve statistical significance (4X vs 1X 

choline: Punadjusted = 0.059, Padjusted = 0.177) (Figure 1.3A-B). MCS had no detectable effects on 

the transcript abundance of Tnf, Il6 and Il10 (P ≥ 0.12) in the female placentas at any time 

points. Correlation analyses indicated a modest but significant negative correlation (r = -0.54, P 

= 0.02) of Il1b abundance in the E18.5 placentas with TMAO concentration in the maternal liver. 

The placental Nfkb1 transcript abundance at E18.5 was also positively associated with the 

concentrations of choline (r = 0.7, P = 0.001), betaine (r = 0.65, P = 0.004) and DMG (r = 0.48, 

P = 0.044) in the maternal liver. 

 

 

Figure 1.3. A) Transcript and B) protein expression of NF-κB in the E18.5 female placentas 

obtained from dams receiving 1X, 2X or 4X choline treatments. The transcript data are expressed 

as fold-change relative to the housekeeping gene Tbp and the protein data are expressed relative 

to β-actin. After normalization, the mean value of the control group was assigned a value of 1 

and the mean values of the treatment groups were presented as a fraction of this value. Statistical 

analysis was done using the mixed linear model followed by post-hoc Bonferroni corrections. 

Values are given as mean ± SEM. *P ≤ 0.05. 
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In the male placentas, 4X choline decreased the transcript abundance of Il1b at E18.5 

(Padjusted = 0.035 vs 1X choline) (Figure 1.4A). The protein abundance of the precursor form of 

IL-1β was also reduced in the 4X choline group (Padjusted = 0.01 vs 1X choline). Similarly, a 

reduction in the mature form of IL-1β was detected in the 4X choline group (Punadjusted = 0.035 vs 

1X choline) but statistical significance was lost after adjusting for multiple testing (Padjusted = 0.1 

vs 1X choline; Figure 1.4B). 

The male placentas in the 2X and 4X choline groups also had lower (Padjusted = 0.008 and 

0.033 vs 1X choline, respectively) transcript abundance of Tnf at E10.5. Similarly, the protein 

concentration of TNF-a was lower in the 2X and 4X choline groups at E10.5 (Punadjusted = 0.05 

and 0.02 vs 1X choline, respectively) but statistical significance was lost after adjusting for 

multiple testing (Padjusted = 0.15 and 0.06 vs 1X choline, respectively) (Figure 1.4C-D). MCS had 

no effects (P ≥ 0.1) on the transcript abundance of Il6, Il10 and Nfkb1 or the protein 

concentration of NF-κB in the male placentas. 
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Figure 1.4. mRNA and protein abundance of A-B) IL-1β and C-D) TNF-a in the male placentas 

obtained from dams receiving 1X, 2X or 4X choline treatments. The transcript data are expressed 

as fold-change relative to the housekeeping gene Tbp and the protein data are expressed relative 

to β-actin. After normalization, the mean value of the control group at E10.5 (for mRNA data) or 

the mean value of the control group (for protein data) was assigned a value of 1 and the mean 

values of the other groups were presented as a fraction of this value. Statistical analysis was done 

using the mixed linear model followed by post-hoc Bonferroni corrections. Values are given as 

mean ± SEM. *P ≤ 0.05. 
#
Punadjusted ≤ 0.05, Padjusted > 0.05. 
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Placental angiogenic markers 

In the female placentas, a higher expression of Vegfa was observed at E15.5 (Padjusted = 0.034 vs 

2X choline) and E18.5 (Padjusted = 0.026 vs 1X choline) in response to 4X choline (Figure 1.5). 

Correlation analyses showed significant modest correlations between Vegfa abundance in the 

E18.5 placentas and all four choline metabolites in the maternal liver (choline: r = 0.57, P = 

0.014; betaine: r = 0.48, P = 0.045; DMG: r = 0.51, P = 0.032; TMAO: r = 0.58, P = 0.011). 

MCS had no detectable effects on the transcript abundance of Pgf, sFlt1, Mmp14 and Eng (P ≥ 

0.1). 

 

 

Figure 1.5. mRNA abundance of Vegfa in the female placentas obtained from dams receiving 

1X, 2X or 4X choline treatments at E10.5, E12.5, E15.5 and E18.5. Data are expressed as fold-

change relative to the housekeeping gene Tbp. After normalization, the mean value of the control 

group at E10.5 was assigned a value of 1 and the mean values of the other groups were presented 

as a fraction of this value. Statistical analysis was done using the mixed linear model followed by 

post-hoc Bonferroni corrections. Values are given as mean ± SEM. *P ≤ 0.05. 
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In the male placentas, sFlt1 transcript abundance tended to be lower in response to 2X 

and 4X choline (Punadjusted = 0.07 vs 1X choline) at E18.5; however, this tendency was not 

detected after adjusting for multiple testing (Padjusted = 0.22 vs 1X choline). Other angiogenic 

factors in the male placentas remained unchanged (P ≥ 0.1) in response to MCS. 

 

Maternal circulating concentration of sFLT1 and sENG 

4X choline decreased sFLT1 concentration in the maternal serum at E18.5 (Punadjusted = 0.05 vs 

1X choline), but this difference was lost after adjusting for multiple testing (Padjusted = 0.15 vs 1X 

choline). MCS did not affect the concentration of sENG (P ≥ 0.5) in the maternal serum. 

 

Placental apoptosis 

Fewer TUNEL-positive cells were detected in the placentas of the 2X (Padjusted = 0.04 vs 1X 

choline) and 4X choline (Padjusted = 0.011 vs 1X choline) groups at E10.5 (Figure 1.6A-B). No 

effects of MCS (P ≥ 0.18) were detected on the apoptotic index in the placentas at any other time 

points (Figure 1.6A). 

 

Placental vasculature 

Placentas from the 2X and 4X choline groups exhibited a larger (Padjusted ≤ 0.05) maternal spiral 

artery luminal area across all four gestational time points as compared to the 1X choline group 

(Figure 1.6C-D). The isolectin staining intensity in the placental labyrinth did not differ in 

response to MCS at any of the gestational time points (P ≥ 0.13). 
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Figure 1.6. A) The percentage of TUNEL-positive cells in the placenta from dams receiving 1X, 

2X or 4X choline treatments at E10.5, E12.5, E15.5 and E18.5. B) Representative images of the 

apoptotic nuclei within the E10.5 placentas are shown. C) Arterial luminal area in the maternal 

decidua from dams receiving 1X, 2X or 4X choline treatments at E10.5, E12.5, E15.5 and E18.5. 

D) Representative images of the smooth muscle actin staining within the maternal decidua are 

shown. Data were analyzed using the mixed linear model followed by post-hoc Bonferroni 

corrections. Values are presented as mean ± SEM. *P ≤ 0.05, **P ≤ 0.001. 
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Phenotypic measurements of the fetus and the placenta 

Fetal weight and crown rump measurements were not affected (P ≥ 0.28 and P ≥ 0.6, 

respectively) by MCS. Maternal choline treatment also had no effects on placental weight (P ≥ 

0.23) or placental efficiency (the ratio of fetal weight to placental weight; P ≥ 0.19) 

(Supplemental table 1.2). 
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DISCUSSION 

Previous investigations from our group have shown that extra dietary choline during the third 

trimester of human pregnancy suppresses placental production of an anti-angiogenic factor 

sFLT1 [19] while choline inadequacy in a cell culture model leads to a molecular profile that 

impairs trophoblast function and in vitro angiogenesis [18]. In the current study, we show effects 

of MCS on placental markers of inflammation, angiogenesis and apoptosis, all of which can 

influence placental vascular development. We also demonstrate that most of these choline-

induced effects manifest in a fetal sex- and gestational day-dependent manner. Finally, we 

present preliminary in vivo evidence suggesting that a higher maternal choline intake during 

murine pregnancy improves remodeling of the maternal spiral arteries, a finding that merits 

additional investigation in the future. 

 

MCS alters the placental abundance of inflammatory and angiogenic markers in a fetal sex- 

and gestational day-dependent manner 

Choline is an essential nutrient known to have an important role in fetal development [15]. In 

rodent studies, offspring from dams who received 4X choline (as compared to 1X choline) 

during pregnancy have improved cognitive function and attenuated age-related memory decline 

[20]. These neuroprotective consequences of extra maternal choline have been associated with 

inflammatory and angiogenic processes in the nervous system [17, 29]. We extend these findings 

to the mouse placenta whereby maternal choline supply modulated these same biological 

processes but in a manner that was dependent on fetal sex and gestational time point. Because 

aberrant expression of the inflammatory and angiogenic markers is associated with placental 

dysfunction, the choline-induced changes of these markers shown in the present study may have 
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important clinical implications on pregnancy outcomes. 

One striking difference between male and female placentas in response to MCS was the 

expression of the pro-inflammatory cytokine Il1b. In the female placentas, 4X (versus 1X) 

choline induced a 40% reduction at E12.5, a 43% increase at E15.5, and a 30% reduction at 

E18.5. Although statistical significance was not achieved after adjusting for multiple testing, IL-

1β protein abundance exhibited an expression pattern that paralleled those of the transcript. In 

contrast, IL-1β expression remained largely unchanged in the male placentas until E18.5, when 

4X choline yielded a 26% reduction in Il1b transcript abundance and a 55% reduction in IL-1β 

protein abundance as compared to 1X choline. As some immune responses are shown to be more 

active and stronger in females compared to males [30], we speculate that the less pronounced 

effects of MCS on the expression of IL-1β in the male placentas may relate to the sex-specific 

differences in immune regulation. Notably, however, the sex-specific immune response to 

maternal choline may also be cytokine dependent, as suggested by the downregulation of Tnf 

expression in the male placentas at E10.5, but not in the female placentas, in response to 4X 

choline supplementation. 

The observed choline-induced downregulation of placental pro-inflammatory cytokines at 

several gestational time points may be beneficial to placental development. Excessive production 

of placental TNF-a and IL-1β have been shown to impair vascular remodeling [31] and increase 

the risk of adverse pregnancy outcomes in both animals [5] and humans [9, 32, 33]. Consistent 

with these data, pharmacological targeting of these pro-inflammatory cytokines in animal models 

reverses some of the placental vascular abnormalities and improves pregnancy outcomes [34, 

35]. Therefore, supplementing the maternal diet with extra choline may be a nutritional strategy 

for lowering the risk of developing pregnancy disorders characterized by an intensified placental 
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pro-inflammatory response. 

As our prior investigation in extravillous human trophoblasts [18] found that cells 

cultured in a medium deficient in choline have an increased abundance of NF-κB, we expected 

that placental Nfkb1 expression would be downregulated in response to MCS in the present 

study. Contrary to our hypothesis, the transcript abundance of Nfkb1 at E18.5 was 28% higher in 

the 4X choline group, and this change was detected only in the female placentas. Although 

statistical significance was not achieved, the protein abundance in these placentas also showed a 

30% increase, which was comparable to the change detected at the transcript level. The reason 

for this sex-specific difference and choline-induced upregulation of placental Nfκb1 is unclear. 

However, consistent with the greater investment of female placentas in the maintenance of 

pregnancy [36], we hypothesize this induction of a pro-inflammatory state during late gestation 

may facilitate nutrient transport to the rapidly growing fetus [37]. 

MCS also affected the transcript abundance of angiogenic proteins in the female 

placentas, as evidenced by an approximately 30% upregulation of the pro-angiogenic factor 

Vegfa in late gestation. VEGF promotes endothelial cell proliferation and new blood vessel 

formation, and stimulates relaxation of the vascular system by increasing the production of nitric 

oxide [4]. Notably, reduced expression of VEGF is observed in placentas from preeclamptic 

women as compared to placentas from normotensive women [38], and adenoviral-mediated 

delivery of Vegf in a mouse model of preeclampsia resolves the maternal preeclamptic 

phenotype [23]. Taken together, these data suggest that the choline-induced increase of Vegfa 

may beneficially influence placental angiogenic balance, vascular development and pregnancy 

outcome. 

Although the objectives of the present study did not focus on exploring the mechanisms 
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by which extra choline affects placental inflammatory and angiogenic processes, we suggest that 

some of these choline-induced effects are mediated by signaling pathways related to 

acetylcholine and protein kinase C (PKC). Choline is a precursor of acetylcholine and we have 

shown that MCS during pregnancy increased the placental concentration of acetylcholine and 

upregulated placental cholinergic receptor muscarinic 4 (CHRM4) expression [19, 22]. Others 

have shown that acetylcholine can signal through the alpha-7 nicotinic acetylcholine receptor, 

resulting in the recruitment of VEGF and blood vessel formation [39] as well as the reduction of 

pro-inflammatory cytokines [40]. Furthermore, biosynthesis of phosphatidylcholine from choline 

can prevent the accumulation of diacylglycerol and subsequent activation of PKC [15] which 

induces TNF-a production [41] and attenuates the actions of VEGF [42, 43]. In previous work, 

we demonstrated that the addition of a PKC inhibitor partially rescues aberrant IL1B expression 

induced by choline inadequacy in a cell culture model of extravillous human trophoblasts [18]. 

Because choline can be oxidized to generate the methyl donor betaine, it may be possible that an 

epigenetic mechanism is also involved in mediating these choline-induced effects. 

The reasons for the sexual dimorphic placental response to MCS are also unclear, but it 

may relate to different rates of fetal development and different strategies to meet nutrient 

demands [44]. Regardless, these observations are consistent with the theory of fetal 

programming suggesting that female fetuses tend to generate a more adaptive response to 

environmental triggers (such as maternal diet) and invest more resources in developing their 

placentas [44, 45]. 

 

MCS decreases placental apoptosis in early gestation 

Consistent with our prior investigation in extravillous human trophoblasts [18], we found that 
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supplementing the maternal diet with 2X and 4X choline decreased placental apoptosis at E10.5 

by 57% and 68%, respectively. This reduction may be beneficial because it could increase the 

survival of trophoblasts and endothelial cells thereby enhancing the development of the placental 

vasculature. 

 

MCS increases the luminal area of the maternal spiral arteries 

In the present study, we found that placentas from the 4X choline supplemented groups exhibited 

larger maternal spiral artery luminal areas than the 1X choline group. To the best of our 

knowledge, these data are the first in vivo evidence indicating extra maternal choline may 

improve remodeling of the maternal spiral arteries. Nonetheless, blood flow measurements are 

needed to determine if the choline-induced increase in luminal area leads to enhanced 

uteroplacental perfusion. 

 

Conclusion 

Supplementing the maternal diet of mice with extra choline influences placental inflammatory, 

angiogenic and apoptotic processes, with possible consequences on placental vascular 

development. Of note, most of these choline-induced effects occur in a fetal sex- and gestational 

day-dependent manner, highlighting the importance of these variables in studies that examine the 

effects of dietary manipulation on placental development. A higher maternal choline intake also 

increased the luminal area of the maternal spiral arteries, which may influence placental 

perfusion. Overall, our data provide additional support for increasing maternal choline intake 

during normal pregnancy as a nutritional strategy to improve placenta-related pregnancy 

outcomes. 
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Supplemental Table 1.1. Primers for PCR and quantitative PCR.  

 

 

 

Gene Forward Primer Reverse Primer 

Sry 5' TGGGACTGGTGACAATTGTC 3' 5' GAGTACAGGTGTGCAGCTCT 3' 

Tnf 5’ AAGTTCCCAAATGGCCTCCC 3’  5’ TGGTGGTTTGCTACGACGTG 3’ 

Il1b 5’ TGCCACCTTTTGACAGTGATG 3’ 5’ GCTCTTGTTGATGTGCTGCT 3’ 

Il6 5’ GGATACCACTCCCAACAGACC 3’ 5’ GCCATTGCACAACTCTTTTCT 3’ 

Il10 5’ TAATAAGCTCCAAGACCAAGGTG 3’ 5’ TCCAGCAGACTCAATACACACT 3’ 

Nfkb1 5’ AGCAACCAAAACAGAGGGGA 3’ 5’ TTTGCAGGCCCCACATAGTT 3’ 

Vegfa 5’ CACTGGACCCTGGCTTTACT 3’ 5’ ACTTGATCACTTCATGGGACTTCT 3’ 

Pgf 5’ TGTGCCGATAAAGACAGCCA 3’ 5’ TCGTCTCCAGAATAGGTCTGC 3’ 

sFlt1 5’ GTCACAGATGTGCCGAATGG 3’ 5’ TGGAGATCCGAGAGAAAATGGC 3’ 

Eng 5’ ATCAGTTTCCCGTCAGGCTC 3’ 5’ GTTCGATGGTGTTGGATGCC 3’ 

Mmp14 5’ GCCCTCTGTCCCAGATAAGC 3’ 5’ TTGGTTATTCCTCACCCGCC 3’ 

Tbp 5’ AGGAGCCAAGAGTGAAGAACAA 3’ 5’ AACTTCACATCACAGCTCCCC 3’ 
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Supplemental Table 1.2. Fetal and placental phenotypic measurements in response to three 

different maternal choline treatments (1X, 2X and 4X) at E10.5, E12.5, E15.5 and E18.5. Data 

were analyzed using a mixed linear model. Values are presented as mean ± SEM.  

 

 

 

Fetal Weight (g) E10.5 E12.5 E15.5 E18.5 

1X Choline 0.01 ± 0.001 0.08 ± 0.006 0.39 ± 0.01 1.16 ± 0.03 

2X Choline 0.02 ± 0.002 0.09 ± 0.007 0.39 ± 0.01 1.21 ± 0.02 

4X Choline 0.01 ± 0.001 0.09 ± 0.007 0.41 ± 0.01 1.21 ± 0.03 

P Value P = 0.550 P = 0.971 P = 0.482 P = 0.280 

Crown Rump (mm) E10.5 E12.5 E15.5 E18.5 

1X Choline 4.73 ± 0.13 9.07 ± 0.17 14.45 ± 0.25 23.98 ± 0.51 

2X Choline 4.67 ± 0.16 8.98 ± 0.20 14.17 ± 0.24 24.06 ± 0.50 

4X Choline 4.84 ± 0.13 8.92 ± 0.18 14.49 ± 0.26 23.74 ± 0.51 

P Value P = 0.689 P = 0.821 P = 0.619 P = 0.893 

Placental Weight 
(g) 

E10.5 E12.5 E15.5 E18.5 

1X Choline 0.03 ± 0.002 0.06 ± 0.002 0.08 ± 0.004 0.09 ± 0.004 

2X Choline 0.04 ± 0.002 0.06 ± 0.003 0.08 ± 0.004 0.09 ± 0.004 

4X Choline 0.03 ± 0.002 0.05 ± 0.003 0.08 ± 0.004 0.09 ± 0.004 

P Value P = 0.225 P = 0.278 P = 0.974 P = 0.661 

Placental 
Efficiency 

E10.5 E12.5 E15.5 E18.5 

1X Choline 0.39 ± 0.03 1.48 ± 0.07 5.04 ± 0.33 13.75 ± 0.56 

2X Choline 0.40 ± 0.04 1.45 ± 0.08 4.87 ± 0.32 13.77 ± 0.53 

4X Choline 0.39 ± 0.03 1.63 ± 0.07 5.33 ± 0.35 13.90 ± 0.56 

P Value P = 0.989 P = 0.191 P = 0.632 P = 0.977 
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CHAPTER 2 

Maternal choline supplementation modulates placental nutrient transport and metabolism in late 

gestation of mouse pregnancy* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Kwan STC, King JH, Yan J, Wang Z, Jiang X, Hutzler JS, Klein HR, Brenna JT, Roberson MS, 

Caudill MA. Maternal choline supplementation modulates placental nutrient transport and 

metabolism in late gestation of mouse pregnancy. Under Review. 
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ABSTRACT 

Background: Fetal growth is dependent upon placental nutrient supply, which is influenced by 

placental perfusion and transporter abundance. Previous research indicates that adequate choline 

nutrition during pregnancy improves placental vascular development, supporting the hypothesis 

that choline may affect placental nutrient transport efficiency. 

Objective: The present study sought to determine the impact of maternal choline 

supplementation (MCS) on placental nutrient transporter abundance and placental nutrient 

metabolism during late gestation when fetal growth is maximal.  

Methods: Pregnant mice were randomized to receive 1, 2 or 4 times (X) the normal choline 

content of rodent diets. The placentas and fetuses were harvested on embryonic day (E) 15.5 and 

18.5. The placental abundance of amino acid (Snat), fatty acid (Fatp), glucose (Glut), choline 

(Ctl1) and acetylcholine (Oct3) transporters, glycogen metabolic enzymes (Gys1, Gbe1, Pygm 

and Gsk3β) as well as placental concentration of glycogen were quantified. Concentrations of 

choline metabolites were also measured in the placentas and fetal brains. 

Results: In the female placentas, MCS downregulated Snat4, Glut1, Gys1 and Gbe1 but 

upregulated Fatp4 and Pygm at E15.5. At E18.5, MCS upregulated Snat1, Glut3, Gys1 and 

Gbe1, and increased glycogen concentration in the female placentas. In the male placentas, MCS 

decreased the abundance of Glut1 and Gys1 at E15.5, and increased the abundance of Snat1 and 

Fatp4 at E18.5. Higher placental Ctl1 and Oct3 expressions were also detected in response to 

MCS in both sexes, with subsequent effects on the concentration of choline metabolites in the 

placentas and fetal brains. 

Conclusions: These data suggest that MCS affected placental nutrient transporter abundance and 

nutrient metabolism in a fetal-sex specific manner during late gestation of mouse pregnancy.
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INTRODUCTION 

The theory of fetal programming posits that the intrauterine environment plays a key role 

in determining offspring health later in life. By functioning as a nutrient sensor, the placenta is 

positioned to play an integral role in fetal programming because it actively modifies processes 

involved in uteroplacental perfusion, placental nutrient transport and metabolism to modulate the 

efficiency by which nutrients are transported to the fetus (1). Numerous studies (2-9) have 

reported aberrant expression and activity of placental macronutrient transporters and metabolic 

enzymes in preeclampsia, intrauterine growth restriction, maternal obesity and gestational 

diabetes, all of which have adverse consequences on fetal development. 

Amino acids are essential for normal fetal growth because they are used in protein 

synthesis, energy production and signaling pathways (10). The placental system A amino acid 

transporters are responsible for the uptake of nonessential amino acids such as glycine, which 

can subsequently be used in exchange for the uptake of essential amino acids such as leucine via 

other transporters (1). Therefore, system A amino acid transporters are important for transporting 

both nonessential and essential amino acids. The major placental system A amino acid 

transporters are SLC38A1 (SNAT1), SLC38A2 (SNAT2) and SLC38A4 (SNAT4) (1). 

Long-chain polyunsaturated fatty acids (LCPUFAs) are also needed for fetal 

development. Not only do they provide energy, but they are also components of cell membranes 

and precursors to signaling molecules such as eicosanoids (11). Sufficient supply of LCPUFAs, 

particularly docosahexaenoic acid (DHA), is critical for normal development of the fetal nervous 

system, and has been correlated with better cognitive outcomes in postnatal life (11, 12). 

However, both the placenta and fetus have minimal enzymatic activity to generate LCPUFAs. 

Therefore, placental transfer of LCPUFAs from the maternal circulation is the major source of 
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fetal LCPUFAs (12). Placentas have several fatty acid transporters, but a study conducted in 

healthy pregnant women indicates that only SLC27A1 (FATP1) and SLC27A4 (FATP4) are 

correlated with placental and fetal DHA concentrations (13). 

Similar to fatty acids, the fetus has limited ability to synthesize glucose, which is the 

major energy substrate used in fetal metabolism. Consequently, the fetus relies on the placenta to 

transport glucose from the maternal circulation (1). Two major glucose transporters are found in 

the placenta: SLC2A1 (GLUT1) and SLC2A3 (GLUT3). Placental trophoblasts also store a large 

amount of glycogen (14) and express major enzymes in the glycogen metabolic pathway (8, 15, 

16). As such, placental glycogen can be mobilized to provide glucose to the developing fetus at 

times when fetal metabolic demand exceeds maternal supply (14). 

Many studies (15, 17-23) have demonstrated that different diet manipulations modulate 

the expression and activity of these nutrient transporters and enzymes. A higher maternal intake 

of choline, an essential micronutrient, during pregnancy has been shown to influence placental 

vascular development and offspring cognition (24-27), but its impact on placental nutrient 

transporters and metabolic enzymes remains largely unknown. Therefore, the current study was 

conducted to provide insights into the effect of maternal choline supplementation (MCS) on 

factors that mediate placental nutrient delivery and metabolism during late gestation of mouse 

pregnancy. 
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METHODS 

Animals and Diets 

All animal protocols and procedures used in this study were approved by the Institutional 

Animal Care and Use Committees at Cornell University and were conducted in accordance with 

the Guide for the Care and Use of Laboratory Animals. Adult male and female Non-Swiss 

Albino (NSA) mice were obtained from Harlan (Indianapolis, IN) and used for breeding during 

which time they were allowed ad libitum access to rodent chow and water. The offspring of the 

breeding pairs were weaned at 3 weeks old and provided the 1X choline diet (Dyets, Bethlehem, 

PA; Table 2.1). Five days prior to mating, female mice were randomized to receive the 1X 

choline diet, 2X choline diet or 4X choline diet (Dyets, Bethlehem, PA; Table 2.1). These 

dosages were based on previous studies indicating improved vascular development in the human 

placenta with 2X choline supplementation (26) and improved brain development in the mouse 

offspring with 4X choline supplementation (27). Presence of a vaginal plug indicated conception 

and was designated as gestational day (E) 0.5. The female mice continued to consume their 

assigned diet until they were euthanized at E15.5 or E18.5. These late gestational time-points 

represent periods of rapid growth and increased fetal nutrient demand. 

 

Table 2.1. Composition of the experimental diets. 
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Tissue Collection and Processing 

Both the placentas and fetuses were collected. The placentas were weighed, cut in half 

and placed in RNAlater or flash frozen in liquid nitrogen. The fetuses were weighed and flash 

frozen in liquid nitrogen. All tissues were stored at -80°C until analytical measurements were 

performed. Placentas and fetuses from 6-8 dams per each treatment group at each gestational 

time point were used for all the measurements. 

 

Analytical Measurements 

Sex genotyping 

DNA was extracted from the fetuses, and PCR was performed using a commercial kit 

(Qiagen) to determine fetal sex (Supplemental Table 2.1). 

 

mRNA abundance of placental transporters and enzymes 

Placental RNA was extracted using TRIzol reagent (Invitrogen). Reverse transcription 

was performed using ImProm-II Reverse Transcription System (Promega) with the following 

conditions: 25°C for 10 minutes, 42°C for 40 minutes and 95°C for 5 minutes. Quantitative PCR 

was performed using the SYBR® Green system in Roche LightCycler480 with the following 

conditions: 95°C for 5 minutes, followed by 40 cycles with 15 sec at 95°C, 30 sec at 63°C, and 

30 sec at 72°C. A dissociation stage was added at the end of the amplification cycles to evaluate 

the specificity of the final PCR products. Data are expressed by the ΔΔCt method where the 

expression of the targeted gene is normalized by the expression of the housekeeping gene as fold 

change before comparison between samples. Genes of interest include Snat1, Snat2, Snat4, 

Fatp1, Fatp4, Glut1, Glut3, Gys1, Gbe1, Pygm, Gsk3β, Ctl1 and Oct3. TATA box binding 
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protein, Tbp, was used as the housekeeping gene because its expression is stable in placental 

tissue (28) and under different choline intake levels (29). All primers were designed using 

Primer-BLAST available on the NCBI website (Supplemental Table 2.1). 

 

Transporter proteins abundance in the placental membrane 

Placental tissues were homogenized in ten volumes of Buffer A [50 mM Tris-HCl at pH 

7.5, 150 mM NaCl, 1 mM EDTA and protease inhibitor cocktails (Sigma-Aldrich)] and 

centrifuged at 800g for 5 minutes at 4°C. The supernatant was then centrifuged again at 17,000g 

for 15 minutes at 4°C. After centrifugation, the pellet, which contained the membrane-bound 

proteins, was resuspended in ten volumes of Buffer B [50 mM Tris-HCl at pH 7.5, 150 mM 

NaCl, 1 mM EDTA, 2% IPEGAL CA-630 (Santa Cruz Biotechnology) and protease inhibitor 

cocktails (Sigma-Aldrich)]. Total membrane protein concentration was determined by the 

Bradford assay (Thermo Scientific Pierce). 40μg of the extracts was subjected to SDS-PAGE 

electrophoresis and transferred onto Immobilon FL PVDF membranes (EMD Millipore). 

Membranes were blocked in LI-COR blocking buffer and then incubated overnight with primary 

antibodies for GLUT1 (ProteinTech; 1:200), GLUT3 (EMD Millipore; 1:1000) and β-actin (Cell 

Signaling Technology; 1:5000). Secondary antibodies (IRDye 800CW goat anti-rabbit and 

IRDye 680RD goat anti-mouse (LI-COR); 1:10,000) were added to the membranes and 

incubated for one hour. Protein bands were visualized and quantified by the Odyssey imaging 

system (LI-COR). Data are expressed as the ratio of the intensity of targeted protein to the 

intensity of β-actin before comparison between samples. 

 

Glycogen concentration in the placenta 
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Placental glycogen concentration was quantified using a commercial glycogen assay kit 

(Abnova) following the manufacturer’s protocol. Data are expressed as milligram of glycogen 

per gram of tissue. 

 

Placental concentration of choline metabolites 

Concentrations of choline, betaine, phosphocholine, phosphatidylcholine, 

glycerophosphocholine and sphingomyelin in the placentas were determined using LC/MS-MS 

according to Koc et al (30). Placental acetylcholine and trimethylamine N-oxide (TMAO) 

concentrations were determined using LC/MS-MS according to Holm et al (31) with 

modifications based on our equipment (32).  

 

Concentration of choline metabolites in fetal brain 

Choline, betaine, acetylcholine, phosphocholine, phosphatidylcholine and 

glycerophosphocholine concentrations in the fetal brain were determined using LC/MS-MS 

according to Koc et al (30).  

 

Concentration of DHA in fetal brain 

Fetal brain DHA analysis was accomplished as described previously (33). Briefly, fatty 

acids were extracted and methylated to generate fatty acid methyl esters (FAME) following a 

modified one-step hydrolysis and methylation protocol. Heptadecanoic acid (17:0) was added as 

an internal standard. FAME quantification was performed by a gas chromatograph with a flame 

ionization detector (GC-FID), and FAME identification was done using GC-covalent adduct 

chemical ionization mass spectrometry (GC-CACI-MS). DHA concentration was directly 
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calibrated to an internal standard and expressed as milligram of DHA per milligram of tissue. 

 

Statistical Analysis 

All data were stratified by gestational day and fetal sex, and then analyzed using a mixed 

linear model followed by post-hoc Fisher’s Least Significant Difference test. Choline treatment 

was included as an independent fixed effect, maternal identification as an independent random 

effect, and litter size as a covariate if it had P ≤ 0.05. All statistical analyses were performed 

using SPSS software, Version 23 (SPSS Inc, Chicago, IL). Data are presented as means ± SEM, 

and differences were considered to be statistically significant at P ≤ 0.05.  
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RESULTS 

Placental Amino Acid Transporters  

The expression of Snat4 in the female placentas at E15.5 was reduced in response to 2X 

choline (P = 0.005 vs 1X choline) and 4X choline (P = 0.025 vs 1X choline), but these effects 

disappeared by E18.5 and were not observed in the male placentas. MCS did not affect placental 

Snat1 expression at E15.5; however, 4X choline upregulated Snat1 expression in the male 

placentas (P = 0.023 vs 1X choline, P = 0.002 vs 2X choline) and in the female placentas (P = 

0.028 vs 1X choline) at E18.5. Placental Snat2 expression was unaffected by MCS (Figure 2.1). 
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Figure 2.1. Transcript abundance of the amino acid transporters (Snat1, Snat2, Snat4) in the 

placentas from dams in the 1X, 2X and 4X choline group at A) E15.5 and B) E18.5 (n=6-8 dams 

per group, per gestational day). Data are expressed as fold-change relative to the housekeeping 

gene Tbp. After normalization, the mean value of the male in 1X choline group for each gene 

was assigned a value of 1 and the mean values of the other groups were presented as a fraction of 

this value. Values are given as mean ± SEM. Means without a common letter are significantly 

different (P ≤ 0.05). NS = not significant. 
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Placental Fatty Acid Transporters 

Both 2X choline and 4X choline increased the abundance of Fatp4 in the female 

placentas at E15.5 (P = 0.017 and 0.011 vs 1X choline, respectively), but not at E18.5. The 

expression of Fatp4 in the male placentas was higher at E18.5 in response to 4X choline (P = 

0.05 vs 1X choline, P = 0.035 vs 2X choline) (Figure 2.2). Placental Fatp1 expression was 

unaffected by MCS (data not shown). 

 

 
Figure 2.2. Transcript abundance of the fatty acid transporter, Fatp4, in the placentas from dams 

in the 1X, 2X and 4X choline group at A) E15.5 and B) E18.5 (n=6 dams per group, per 

gestational day). Data are expressed as fold-change relative to the housekeeping gene Tbp. After 

normalization, the mean value of the male in 1X choline group was assigned a value of 1 and the 

mean values of the other groups were presented as a fraction of this value. Values are given as 

mean ± SEM. Means without a common letter are significantly different (P ≤ 0.05). NS = not 

significant. 
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Placental Glucose Transporters 

In response to 4X choline, lower Glut1 transcript abundance was detected in both the 

male (P = 0.028 vs 1X choline, P = 0.008 vs 2X choline) and female (P = 0.038 vs 1X choline, P 

= 0.024 vs 2X choline) placentas at E15.5. MCS also decreased the number of GLUT1 

transporter proteins in the membrane of both male (P = 0.041 for 4X choline vs 1X choline, P = 

0.043 for 2X choline vs 1X choline) and female (P = 0.023 for 4X choline vs 1X choline, P = 

0.039 for 4X choline vs 2X choline) placentas (Figure 2.3A). No detectable effects of choline on 

the transcript or protein abundance of GLUT1 were found at E18.5 (data not shown).  

Placental GLUT3 transcript and protein expression did not differ among the choline 

groups at E15.5 (data not shown). Although no changes in Glut3 transcript abundance were 

detected, more GLUT3 transporter proteins were found in the membrane of the female placentas 

from 4X choline group (P = 0.016 vs 1X choline) at E18.5 (Figure 2.3B). The effects of MCS 

were sex–specific since similar changes were not observed in the male placentas at this time. 
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Figure 2.3. A) Transcript and membrane protein abundance of the glucose transporter 1 

(GLUT1) in the placentas from dams in the 1X, 2X and 4X choline group at E15.5 (n=6-7 dams 

per group). B) Membrane protein abundance of the glucose transporter 3 (GLUT3) in the 

placentas from dams in the 1X, 2X and 4X choline group at E18.5 (n=7 dams per group). Gene 

data are expressed as fold-change relative to the housekeeping gene Tbp. Protein data are 

expressed as fold-change relative to β-actin. After normalization, the mean value of the male in 

1X choline group was assigned a value of 1 and the mean values of the other groups were 

presented as a fraction of this value. Values are given as mean ± SEM. Means without a common 

letter are significantly different (P ≤ 0.05). NS = not significant. 
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Placental Glycogen Metabolic Enzymes 

MCS reduced the expression of the glycogen synthesizing enzyme Gys1 (P = 0.046 for 

2X choline vs 1X choline, P = 0.05 for 4X choline vs 1X choline) in the male placentas at E15.5. 

In the female placentas, the expression of Gys1 (P = 0.024 for 2X choline vs 1X choline, P = 

0.04 for 4X choline vs 1X choline) and Gbe1 (P = 0.047 for 2X choline vs 1X choline, P = 0.04 

for 4X choline vs 1X choline) were downregulated in response to MCS. 4X choline also 

upregulated the expression of Pygm, an enzyme involved in glycogen breakdown (P = 0.027 vs 

2X choline) at this time point. No difference in the placental expression of Gsk3β was detected in 

response to MCS (Figure 2.4A). 

By E18.5, MCS upregulated the expression of these glycogen metabolic enzymes in the 

female placentas. Specifically, both 2X choline (P = 0.025 vs 1X choline) and 4X choline (P = 

0.004 vs 1X choline) increased placental Gys1 abundance. 4X choline also increased the 

placental abundance of Gbe1 (P = 0.024 vs 1X choline). The effects of choline were sex-specific 

since MCS had no comparable impacts on the expression of these enzymes in the male placentas. 

Placental Pygm and Gsk3β were unaffected by extra choline at this time point (Figure 2.4B). 
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Figure 2.4. Transcript abundance of the enzymes involved in glycogen metabolism (Gys1, Gbe1, 

Pygm and Gsk3β) in the placentas from dams in the 1X, 2X and 4X choline group at A) E15.5 

and B) E18.5 (n=6-8 dams per group, per gestational day). Data are expressed as fold-change 

relative to the housekeeping gene Tbp. After normalization, the mean value of the male in 1X 

choline group for each gene was assigned a value of 1 and the mean values of the other groups 

were presented as a fraction of this value. Values are given as mean ± SEM. Means without a 

common letter are significantly different (P ≤ 0.05). NS = not significant. 
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Placental Glycogen Concentration 

A generalized trend for a reduced glycogen concentration in the female placentas at 

E15.5 was detected in response to MCS, but it did not reach statistical significance (P ≥ 0.06). In 

contrast, glycogen concentration doubled in the female placentas from 4X choline group at E18.5 

(P = 0.01 vs 1X choline). Borderline higher concentrations of glycogen were also detected in the 

female placentas from the 2X choline group at E18.5 (P = 0.051 vs 1X choline). The glycogen 

concentration in the male placentas remained largely unaffected by MCS at either time point 

(Table 2.2). 

 

Table 2.2. Effect of maternal choline supplementation on placental glycogen concentration at 

E15.5 and E18.5.
1 

 
1
 Values are given as mean ± SEM. *P = 0.01 vs 1X choline. 

#
P = 0.051 vs 1X choline. 

 

 

 

 

 

 

 

 

 Male Female 

E15.5 
1X 

Choline 

2X 

Choline 

4X 

Choline 

1X 

Choline 

2X  

Choline 

4X  

Choline 

Glycogen 

Concentration  

(mg/g tissue) 

19.2 ± 2.6 17.1 ± 2.2 15.8 ± 2.6 19.1 ± 2.0 13.9 ± 1.9 14.4 ± 2.0 

E18.5 
1X 

Choline 

2X 

Choline 

4X 

Choline 

1X 

Choline 

2X  

Choline 

4X  

Choline 

Glycogen 

Concentration 

(mg/g tissue) 

9.8 ± 2.8 8.9 ± 2.8 10.4 ± 2.8 6.0 ± 2.0
 

10.9 ± 2.0 
# 

12.7 ± 2.0 
* 
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Placental Choline Transporters and Choline Metabolites Concentration 

Placental choline transporter Ctl1 was upregulated in the male placentas in response to 

4X choline at E15.5 (P = 0.036 vs 1X choline, P = 0.05 vs 2X choline) and at E18.5 (P = 0.002 

vs 1X choline, P < 0.001 vs 2X choline). In the female placentas, 2X choline (P = 0.055 vs 1X 

choline) and 4X choline (P = 0.015 vs 1X choline) increased Ctl1 expression at E15.5. Similar 

upregulation was observed at E18.5 (P = 0.049 for 2X choline vs 1X choline, P = 0.007 for 4X 

choline vs 1X choline) (Figure 2.5B). The expression of Oct3, which transports acetylcholine to 

the fetus, was higher in response to 4X choline in both the male and female placentas at E15.5 (P 

= 0.038 and 0.023 vs 1X choline, respectively) (Figure 2.5C). 

In the male placentas, 4X choline reduced the acetylcholine concentration (P < 0.001 vs 

1X choline and vs 2X choline; Figure 2.5E) at E15.5. The TMAO concentration in these 

placentas increased in response to both 2X choline (P = 0.007 vs 1X choline) and 4X choline (P 

< 0.001 vs 1X choline and vs 2X choline; Figure 2.5F). At E18.5, male placentas from 4X 

choline group had a lower concentration of choline (P = 0.032 vs 1X choline; Figure 5D) and 

phosphocholine (P = 0.028 vs 1X choline; Figure 2.5G), but a higher concentration for both 

acetylcholine (P < 0.001 vs 1X choline, P = 0.029 vs 2X choline; Figure 2.5E) and TMAO (P < 

0.001 vs 1X choline and vs 2X choline; Figure 2.5F). Male placentas from 2X choline group at 

E18.5 also had a lower phosphocholine concentration (P = 0.01 vs 1X choline; Figure 2.5G) as 

well as a higher acetylcholine (P = 0.034 vs 1X choline; Figure 2.5E) and TMAO (P = 0.025 vs 

1X choline; Figure 2.5F) concentration.  

The concentration of acetylcholine in the female placentas at E15.5 decreased in response 

to 2X choline (P = 0.034 vs 1X choline) and 4X choline (P < 0.001 vs 1X choline; Figure 2.5E), 

whereas a higher concentration of TMAO (P = 0.003 for 2X choline vs 1X choline, P < 0.001 for 
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4X choline vs 1X choline and vs 2X choline; Figure 2.5F) and glycerophosphocholine (P = 0.02 

for 4X choline vs 1X choline; Figure 2.5I) were found in these placentas. At E18.5, MCS 

upregulated the concentration of acetylcholine (P = 0.032 for 2X choline vs 1X choline, P < 

0.001 for 4X choline vs 1X choline and vs 2X choline; Figure 2.5E), TMAO (P = 0.009 for 2X 

choline vs 1X choline, P < 0.001 for 4X choline vs 1X choline and vs 2X choline; Figure 2.5F), 

phosphocholine (P = 0.015 for 2X choline vs 1X choline, P = 0.008 for 4X choline vs 1X 

choline; Figure 2.5G), and phosphatidylcholine (P = 0.006 for 2X choline vs 1X choline, P < 

0.001 for 4X choline vs 1X choline; Figure 2.5H) in the female placentas. 

MCS did not affect the concentrations of betaine and sphingomyelin in the male and 

female placentas at either study time point (data not shown). 
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Figure 2.5. A) Choline metabolic pathways. Transcript abundance of B) Ctl1 and C) Oct3 in the 

placentas from dams in the 1X, 2X and 4X choline group at E15.5 and E18.5 (n=6 dams per 

group, per gestational day). Data are expressed as fold-change relative to the housekeeping gene 

Tbp. After normalization, the mean value of the 1X choline group at E15.5 for each sex was 

assigned a value of 1 and the mean values of the other groups were presented as a fraction of this 

value. Concentration of D) choline, E) acetylcholine, F) TMAO, G) phosphocholine, H) 

phosphatidylcholine, and I) glycerophosphocholine in the placentas from dams in the 1X, 2X 

and 4X choline group at E15.5 and E18.5 (n=7 dams per group, per gestational day). Values are 

given as mean ± SEM. Means without a common letter are significantly different (P ≤ 0.05). NS 

= not significant. 

Kwan et al 

Figure 5 
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Placental and Fetal Weight 

No differences in the placental weight (P ≥ 0.66) or fetal weight (P ≥ 0.28) were found 

among the choline groups when the data were analyzed without stratifying by fetal sex (Table 

2.3; (24)). When the data were analyzed separately for each sex, a trend (P = 0.07) for a higher 

weight was detected in the female fetuses from 4X choline group at E18.5 compared to those 

from the 1X choline group. No difference was detected in the weight of their placentas. The 

weights of the male fetuses and their placentas were also unaffected by MCS (Table 2.3). 
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Table 2.3. Effect of maternal choline supplementation on fetal and placental weight at E15.5 and E18.5.
1
 

 
1
 Values are given as mean ± SEM. 

#
P = 0.07 vs 1X choline. 
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Choline Metabolites in Fetal Brain 

There was more choline in the brain of the male fetuses from 4X choline group at E15.5 

(P = 0.007 vs 1X choline; Figure 2.6A). More acetylcholine was also detected in their brain in 

response to 4X choline (P = 0.021 vs 1X choline, P = 0.08 vs 2X choline; Figure 2.6B). At 

E18.5, 4X choline increased the concentration of phosphocholine in the brain of the male fetuses 

(P = 0.026 vs 1X choline; Figure 2.6C). 

At E15.5, borderline higher acetylcholine concentration was detected in the brain of 

female fetuses from the 4X choline group (P = 0.052 vs 1X choline). The female fetuses from 

the 2X choline group also tended to have more acetylcholine in their brain (P = 0.08 vs 1X 

choline; Figure 2.6B). In response to 4X choline, higher concentrations of phosphocholine (P = 

0.05 vs 1X choline and P = 0.003 vs 2X choline) and betaine (P = 0.018 vs 1X choline) were 

found in the brain of the female fetuses at E18.5 (Figure 2.6C-D). 

MCS did not affect the brain concentrations of phosphatidylcholine and 

glycerophosphocholine in the female and male fetuses at either study time point (data not 

shown).  

 

DHA Concentration in Fetal Brain 

Because the placental Fatp4 expression was altered by maternal choline treatments, we 

also measured the concentration of DHA in fetal brain. DHA concentration in male fetal brains 

tended to be lower at E15.5 in the 4X choline group compared to 1X choline (P = 0.054) and 2X 

choline (P = 0.056), but no differences were detected at E18.5 among the choline groups. In 

female fetal brains, DHA concentration was significantly higher in response to 2X choline (P = 

0.013 vs 1X choline) and 4X choline (P = 0.028 vs 1X choline) at E18.5 (Figure 2.6E). Similar 
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results were obtained with the inclusion of fetal brain weight as a covariate in the statistical 

model (data not shown). 

 

 

Figure 2.6. Concentration of A) choline, B) acetylcholine, C) phosphocholine, D) betaine and E) 

DHA in the brain of fetuses whose mothers were in the 1X, 2X and 4X choline group at E15.5 

and E18.5 (n=7 dams per group, per gestational day). Values are given as mean ± SEM. Means 

without a common letter are significantly different (P ≤ 0.05). 
#
P = 0.08 vs 1X choline. 

†
P = 

0.052 vs 1X choline. 
҂
P = 0.054 vs 1X choline. 

‡
P = 0.056 vs 2X choline. NS = not significant. 

Kwan et al 
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DISCUSSION 

In the present study, we demonstrate effects of maternal choline supplementation during 

late gestation of mouse pregnancy on placental abundance of nutrient transporters and placental 

nutrient metabolism (i.e., glucose and choline). Notably, these choline-induced effects were a 

function of gestational day and were more pronounced in the female placentas than the male 

placentas.  

 

Maternal choline supplementation alters the placental abundance of macronutrient 

transporters and the placental metabolism of glucose  

Supplementing the maternal diet with extra choline decreased the number of Glut1 

transporters at E15.5 in both male and female placentas. A significant reduction in Snat4, an 

amino acid transporter, was also detected in female placentas at E15.5. Importantly, however, no 

adverse effects of extra choline were detected on placental or fetal weights at this time point, 

suggesting that another source of glucose, such as placental glycogen, was used to meet fetal 

glucose demands. Indeed, we found that MCS downregulated the expression of glycogen 

synthesizing enzymes Gys1 in both male and female placentas and Gbe1 in female placentas, 

while upregulated expression of the glycogen degrading enzyme Pygm was detected in female 

placentas. While speculative based upon statistical significance (P ≥ 0.06), we also detected a 

numerically lower glycogen concentration in the female placentas, indicating that placental 

glycogen was being broken down to maintain a constant glucose supply to the fetus. The 

mechanism by which choline reduced Glut1 and Snat4 abundance is unclear but may be a 

secondary response to enhanced placental perfusion (which would enhance nutrient delivery) in 

the choline-supplemented dams. In this regard, we previously reported that MCS significantly 
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increased the luminal area of the maternal spiral arteries in mice fed a diet containing the same 

choline concentration (24). The subsequent changes in glycogen metabolism are consistent with 

the tendency for regulatory systems to temporarily overshoot or overcompensate to maintain 

homeostasis (34) and to increase body capability to deal with more difficult metabolic challenges 

in the future (35). 

At E18.5, MCS upregulated Snat1 transporter in both male and female placentas, 

increasing the availability of substrates such as glycine, which can be used to generate glucose 

via gluconeogenesis (36, 37). In response to MCS, the number of GLUT3 transporters in the 

female placentas also increased, which would be expected to increase the amount of glucose 

supplied to the fetus. However, an upregulation in the glycogen synthesizing genes, Gys1 and 

Gbe1, was detected along with more glycogen in these placentas. The greater glycogen storage in 

MCS mice may be due to a glucose-sparing effect of glycine (36, 37). Alternatively, transport of 

glucose via the high-affinity GLUT3 transporter may be reversible when the fetus is 

hyperglycemic (38). Although speculative based upon statistical significant (P = 0.07), female 

fetuses in the 4X choline group tended to weigh more at E18.5 compared to those from the 1X 

choline group which is consistent with a hyperglycemic environment in the fetal compartment. 

Collectively, these data suggest that the transport of glucose from fetal circulation back into the 

placenta at E18.5 was favored in an attempt to avoid glucose surplus in the fetal compartment 

and fetal overgrowth. Additional studies employing labeled glucose methodology to measure 

glucose flux between the maternal, placental and fetal compartments will be needed to verify this 

hypothesis.  

In addition to altered expression of amino acid and glucose transporters, maternal choline 

supplementation increased the placental abundance of Fatp4 transporters, which mediates the 
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placental transfer of DHA to fetal circulation (1). The metabolism of choline and DHA intersects 

at the PEMT pathway which utilizes a phosphatidylethanolamine (PE) molecule enriched in 

DHA to make a phosphatidylcholine (PC) molecule enriched in DHA (i.e., PC-DHA). Notably, 

the PEMT pathway can be enhanced by choline supplementation (39, 40), subsequently 

increasing the production of PC-DHA to generate a supply of DHA for placental uptake and 

transport to the fetus by FATP4. Indeed, others have reported a strong correlation between DHA 

in maternal plasma phospholipids, placental phospholipids, cord blood phospholipids and 

placental FATP4 transcript abundance (13). Our finding of the choline-induced upregulation of 

Fatp4 transporter prompted us to measure DHA concentration in the fetal brain, which was 

significantly higher among female fetuses from the choline-supplemented groups at E18.5. 

Taken together, these data suggest that supplementing the maternal diet with extra choline 

upregulates placental Fatp4 in response to the choline-induced increase in PC-DHA production, 

ultimately increasing DHA supply to the developing fetus. 

 

Maternal choline supplementation impacts placental transport of choline and its metabolic 

derivatives 

Supplementing the maternal diet with extra choline increased the placental abundance of 

the choline transporter Ctl1 at E15.5 and E18.5, a finding indicative of enhanced placental 

choline uptake. Paradoxically, however, the placental concentrations of several choline 

metabolites were lower in the choline supplemented groups. For example, diminished 

concentrations of acetylcholine were detected at E15.5 in placentas obtained from the choline-

supplemented groups. Nonetheless, this lower placental concentration of acetylcholine coincided 

with a higher placental Oct3 abundance which transports acetylcholine from the placenta to the 
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fetus in mouse pregnancy (41, 42) and a higher acetylcholine concentration in the fetal brain. As 

such, these data collectively suggest that maternal choline supplementation increased 

acetylcholine delivery to the developing fetal brain during the early stages of late gestation, 

which would be expected to enhance neuron functioning (43) and may contribute to the 

neuroprotective effects of prenatal choline supplementation (27).  

Choline and its metabolic derivatives (Figure 2.5A) have important regulatory roles in 

placental development and function. As an example, acetylcholine modulates amino acid 

transport (44), which may explain the concurrent choline-induced changes of placental 

acetylcholine concentration and placental Snat abundance. Notably, the placental TMAO 

concentration was significantly higher in response to MCS. TMAO can be synthesized in the 

maternal liver, which was significantly higher in response to MCS in these mice (24), and then 

transported into the placenta. Alternatively, it may be produced by microbiota residing within the 

placenta tissue (45). Because TMAO is an osmolyte that maintains cell volume and stabilizes 

proteins and nucleic acids (46), a higher concentration of this metabolite in the placenta may be 

beneficial, rather than harmful, for normal placental development and function. Additional 

studies are needed to fully elucidate the functions of TMAO in the placenta. 

 

Conclusion 

In sum, maternal choline supplementation modulates placental nutrient transporter 

abundance as well as glucose and choline metabolism in late gestation of mouse pregnancy in a 

manner that is dependent on fetal sex and gestational day. Many of the choline-induced effects 

appear to be secondary responses that could be related to choline’s beneficial effects on placental 

perfusion and vascularization (24). We also provide evidence of altered nutrient availability in 
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the fetal brain in response to these choline-induced placental changes. As uteroplacental 

perfusion, placental nutrient transporters and metabolism affect nutrient supply to the fetus, these 

choline-induced placental responses may have lasting impacts on fetal organ development and 

functioning, with potential long-term health implications. 
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CHAPTER 3 

Maternal choline supplementation triggers fetal sex-specific changes in the epigenome and 

transcriptome of the mouse placenta* 
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ABSTRACT 

The placental epigenome regulates processes that affect placental and fetal development, and 

could be mediating some of the previously reported effects of maternal choline supplementation 

(MCS) on placental vascular development and nutrient delivery. As such, the present study 

employed an untargeted approach to examine placental global DNA methylation, placental 

expression of imprinted genes and placental abundance of microRNAs. DNA, mRNA and 

miRNA were extracted from placentas collected on gestational day 15.5 from mice fed the 1X or 

4X choline diet. Placental global DNA methylation was examined using LC-MS/MS. Placental 

transcriptome, imprintome and miRNA profiles were examined using genome-wide sequencing 

procedures. MCS increased placental global DNA methylation (P = 0.015), and led to sex-

specific changes in the placental transcriptome and imprintome. In female placentas, MCS 

altered the expression of 187 genes, four of which were imprinted genes (Ampd3, Tfpi2, Gatm 

and Aqp1; FDR ≤ 0.05). In male placentas, MCS affected 141 genes, including three imprinted 

genes (Dcn, Qpct and Tnfrsf23; FDR ≤ 0.01). MCS also reduced (FDR = 0.13) miR-2137 

abundance in the placenta, resulting in the upregulation (P < 0.05) of its target genes. Gene 

ontology analyses on the differentially-expressed genes revealed that many processes implicated 

in placental vascular development, placental nutrient delivery and fetal organ development were 

affected. Overall, these data indicate that the placental epigenome is responsive to maternal 

choline intake during pregnancy, which may be one mechanism mediating the beneficial effects 

of maternal choline supplementation on various placental and fetal outcomes.  
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INTRODUCTION 

Epidemiological evidence has shown that an adverse in utero environment is associated 

with a higher risk of developing obesity, metabolic syndrome, cardiovascular diseases and other 

chronic diseases later in life.
1-3

 These data have led to the fetal programming hypothesis, which 

suggests that the developing fetus will generate an adaptive response to the suboptimal prenatal 

environment in order to increase its survival. This adaptive response involves changing the 

development of the placenta,
4
 as well as the fetus and its organs, with permanent effects on their 

normal functioning.
3
 Although there is a growing body of evidence in support of this hypothesis, 

the molecular mechanisms mediating the programming phenomenon are less clear. One proposed 

mechanism linking prenatal exposure to later health outcomes is the modulation of gene 

expression via epigenetic processes.  

The best characterized epigenetic mechanism is DNA methylation, which adds methyl 

groups to the cytosine residues in CpG dinucleotides to modulate gene expression. One group of 

genes known to be regulated by DNA methylation is the imprinted genes, which are expressed 

according to parental origin.
5, 6

 Many of the imprinted genes are expressed in the placenta where 

they synthesize proteins to control the cell cycle, cell signaling, vascularization, nutrient uptake, 

utilization and storage,
5, 6

 ultimately affecting placental nutrient supply efficiency. As expected, 

aberrant expression of placental imprinted genes alters fetal growth and adversely affects birth 

weight.
5, 7

 The expression of placental imprinted genes may also serve as a biomarker for future 

health outcomes, such as infant neurodevelopment and bone health at the age of four.
8, 9

 

Another epigenetic mechanism that has received increased attention in recent years 

involves the microRNAs (miRNAs). These are small noncoding RNA molecules with 19-24 

nucleotides that post-transcriptionally regulate gene expression.
10

 Specifically, miRNA base-
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pairs with its mRNA targets in a sequence-specific manner to trigger mRNA transcript 

degradation and translational repression.
10, 11

 As such, a higher abundance of miRNAs will 

reduce the expression of its mRNA targets. The placenta produces many miRNAs, and their 

target genes are involved in cell proliferation, apoptosis, invasion and angiogenesis,
11, 12

 which 

are essential to normal placental morphological and vascular development. Some miRNAs also 

regulate immune cell development at the maternal-fetal interface and mediate immune response 

and maternal tolerance to the fetus.
12

 Given their roles in many aspects of placental development 

and function, it is not surprising that miRNA deregulation is associated with pregnancy disorders 

that impair fetal growth.
10, 13-15

  

Choline is an essential nutrient involved in one-carbon metabolism where its methyl 

groups are used in cellular methylation reactions such as DNA methylation.
16

 Our previous 

investigations indicate that maternal choline supplementation (MCS) improves placental 

vascularization and perfusion,
17, 18

 enhances placental nutrient supply efficiency
19

 and alters fetal 

growth.
20

 Given the roles of imprinted genes and miRNAs in these placental and fetal outcomes, 

we sought to test the hypothesis that these epigenetic processes could be mediating some of the 

aforementioned choline-induced effects on placental and fetal development.  
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METHODS 

Animals and Diets 

This study was an extension of an animal feeding study
17, 19

 where we examined the 

impact of MCS on placental vascularization and nutrient transport system. Briefly, non-Swiss 

Albino (NSA) mice (Harlan, Indianapolis, IN) that would be mated in subsequent experiments 

were fed a 1X choline diet (1.4g choline chloride/kg diet; Dyets #103345; Dyets, Bethlehem, 

PA) upon weaning at 3 weeks old. Five days prior to mating, female mice were randomized to 

one of three treatment groups: 1X choline group, 2X choline group (2.8g choline chloride/kg 

diet; Dyets #103346) or 4X choline group (5.6g choline chloride/kg diet; Dyets #103347). 

Presence of a vaginal plug was defined as gestational day (E) 0.5. Pregnant female mice 

continued on their diet until they were sacrificed at one of four gestational time points: E10.5, 

E12.5, E15.5 or E18.5. The present study used the tissues collected from dams in the 1X choline 

and 4X choline groups at E15.5 (n=3 dams per group, per fetal sex). The 4X choline group was 

chosen because our previous findings
17, 19

 indicate a pronounced effect of this dosage on 

placental development and function, while E15.5 was chosen because it represents the time when 

the placenta reaches its maximal size
21

 and the fetus is rapidly growing.
22

 To minimize decidual 

contamination, the maternal decidua was removed during the dissection. The remaining placental 

disks were cut in half across the chorionic plate. The fetuses were also collected during the 

dissection. Both the placental and fetal tissues were flash frozen in liquid nitrogen before storage 

at -80°C for further analysis. All animal protocols were approved by the Institutional Animal 

Care and Use Committees at Cornell University and were conducted in accordance with the 

Guide for the Care and Use of Laboratory Animals.  
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Fetal Sex Genotyping 

Fetal DNA was extracted using the DNeasy blood and tissue kit (Qiagen), and fetal sex 

was determined by PCR for the Sry gene, using forward 5’-TGGGACTGGTGACAATTGTC-3’ 

and reverse 5’-GAGTACAGGTGTGCAGCTCT-3’ primers. 

 

Placental DNA Extraction 

Genomic DNA was extracted from the placenta using the DNeasy blood and tissue kit 

(Qiagen), with the addition of RNase A (Qiagen) to remove any co-purified RNA. DNA 

concentration and purity were evaluated using a NanoDrop spectrophotometer.  

 

Global DNA Methylation Assay and Data Analysis 

Global DNA methylation was measured using LC-MS/MS, as described previously
23

 

with modifications based on our instrument.
24

 Briefly, 300ng genomic DNA was digested with 

nuclease P1, followed by digestion with phosphodiesterase 1, and digestion with alkaline 

phosphatase (Sigma-Aldrich). Samples were diluted with 0.1% formic acid in water and injected 

into the instrument for analysis. Global methylation is presented as a percentage of the amount of 

5-methyl-2’-deoxycytidine (5mdC) relative to the total amount of cytosine [i.e.: 5mdC/(dC + 

5mdC)]. One-way ANOVA was used to analyze the data, and statistical significance was defined 

at P ≤ 0.05. Data are presented as means with 95% confidence intervals. All the statistical 

analyses were done in the SPSS software, Version 23 (SPSS Inc, Chicago, IL). 

 

Placental RNA Extraction 

Total RNA was extracted from the placentas using Trizol (Thermo Fisher) according to 
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the manufacturer’s instructions with the following modifications: (i) an extra chloroform 

extraction step of the aqueous layer after the first phase separation; (ii) addition of 1uL Glyco-

blue (Thermo Fisher) before the isopropanol precipitation; and (iii) two washes of the RNA 

pellet with 75% ethanol. RNA concentration and purity were determined using a NanoDrop 

spectrophotometer. RNA integrity and presence of small RNAs (<<200 nucleotides) were 

determined with a Fragment Analyzer (Advanced Analytical).  

 

Placental mRNA Sequencing and Data Analysis 

NEBNext Ultra Directional RNA Library Prep Kit (New England Biolabs) was used to 

make libraries, which were sequenced on Illumina NextSeq500. After processing, reads were 

mapped to the reference mouse transcriptome (UCSC mm10) with Tophat, Version 2.0. FPKM 

values were generated and statistical analysis was performed using Cufflinks, Version 2.2. Genes 

were considered to have significantly different expression when the false discovery rate (FDR) 

was less than 0.2. Gene ontology was performed on the differentially-expressed genes using 

PANTHER, Version 11.1.
25, 26

 Differentially-expressed imprinted genes were identified as listed 

on the MRC Harwell Imprinting Webpages 

(http://www.har.mrc.ac.uk/research/genomic_imprinting/).
27

 

 

Placental miRNA Sequencing and Data Analysis 

Libraries were made using the NEBNext Small RNA Library Prep Kit (New England 

Biolabs), and were sequenced on Illumina HiSeq2500. After processing and mapping the reads 

to the reference mouse genome, reads were mapped to mature miRNAs (miRBase, Version 21) 

using MirDeep2, and differential expression was determined using EdgeR. Statistical 

http://www.har.mrc.ac.uk/research/genomic_imprinting/
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significance was defined at FDR < 0.2. Predicted mRNA targets of the differentially-expressed 

miRNA were identified using TargetScan, Version 7.1.
28

 Strong targets were defined similarly as 

in other investigations
29, 30

 and have a context++ score ≤ -0.2, where a more negative score will 

indicate a greater repression. Gene ontology was conducted for the mRNA targets using 

PANTHER, Version 11.1.
25, 26

 The expression of each of the mRNA targets identified from 

TargetScan was obtained from the mRNA sequencing dataset. 
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RESULTS 

Placental DNA Methylation 

Regardless of fetal sex, global DNA methylation was 21% higher (P = 0.015) in the 4X 

choline placentas compared to the 1X choline placentas (Figure 3.1). In the female placentas, 4X 

choline supplementation yielded 15% higher (P = 0.035) global DNA methylation than 1X 

choline. A nonsignificant (P = 0.086) higher abundance of global DNA methylation was also 

detected in the male placentas in response to 4X choline (vs 1X choline; Figure 3.1).  

 

 

Figure 3.1. Percentage of global DNA methylation in the placentas from dams in the 1X and 4X 

choline group. Data are presented as means with 95% confidence intervals. 
*
P ≤ 0.05. 

#
P = 

0.086. 
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Placental Transcriptome and Imprinting Profile 

4X maternal choline supplementation during pregnancy altered (FDR < 0.2) the 

expression of 131 genes in the placentas (data not shown). When the analysis was done 

separately for each sex, 44 genes were downregulated (FDR < 0.2) and 143 genes were 

upregulated (FDR < 0.2) in the female placentas in response to 4X versus 1X choline 

supplementation (Supplemental Figure 3.1). Among these 187 genes exhibiting differential 

expression, 4 were suggested to be imprinted genes: Aqp1 (FDR = 0.009), Tfpi2 (FDR = 0.009), 

Ampd3 (FDR = 0.009) and Gatm (FDR = 0.054). Their expression in the female placentas was 

all increased by additional maternal choline (Table 3.1). Overall, 26 biological processes in the 

female placentas were affected (P < 0.05; Table 3.2).  

 

Table 3.1. Differentially-expressed imprinted genes in the female placentas in response to 4X 

versus 1X maternal choline supplementation. 

 

 

 

 

 

 

 

Gene 

Symbol 

Gene  

Name 

Fold 

Difference 

FDR 

Value 

Aqp1 aquaporin 1 2.23 0.009 

Tfpi2 tissue factor pathway inhibitor 2 2.16 0.009 

Ampd3 adenosine monophosphate deaminase 3 1.62 0.009 

Gatm glycine amidinotransferase 1.65 0.054 
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Table 3.2. Selected biological processes in the female placentas affected by 4X versus 1X 

maternal choline supplementation. 

 

 

 

 

 

 

 

Biological Processes P Value List of Changed Genes 

response to external stimulus (GO:0009605) 0.0005 
Ambp, Ccl2, Cubn, Cuzd1, Fgb, F2, 

G6b, Kng1, Mgl2, Tfpi2 

vitamin transport (GO:0051180) 0.0009 Cubn, Cuzd1, Rbp4, Ttr 

protein metabolic process (GO:0019538) 0.0037 

Adamts5, Ambp, Apoa1, Apoa2, 

Apoa4, Cd109, Cd5l, Clgn, Cpn1, 

Cryab, Ctsk, Ctsm, Cubn, Cuzd1, 

C4b, F2, Galnt6, Galnt15, Hspb7, 

Htra1, Itih1, Itih2, Itih3, Itih4, Plg, 

Rimklb, Slpi, St6galnac1, Tfpi2, 

Ube2ql1, 

lipid metabolic process (GO:0006629) 0.0043 

Acsf2, Anxa1, Apoa1, Apoa2, 

Apoa4, Gdpd3, Hpgd, Hsd11b1, 

Hsd11b2, Lcn2, Slc27a2, St6galnac1 

cell adhesion (GO:0007155) 0.0078 
Cd5l, Col5a2, Cthrc1, Cubn, C9, 

Fga, Fgb, Fbln2, Mgl2, Msr1 

immune system process (GO:0002376) 0.0091 

Bai1, Ccl2, Cd109, Cd5l, Clec2h, 

Col5a2, Cryab, Cubn, C4b, C9, 

Fbln2, Fcgrt, G6b, Hspb7, Lphn1, 

Mgl2, Msr1, Pla2g4f, Slc27a2, Slfn4 

fatty acid metabolic process (GO:0006631) 0.0108 
Acsf2, Anxa1, Apoa1, Apoa4, Lcn2, 

Slc27a2 

transport (GO:0006810) 0.0144 

Afp, Alb, Apoa1, Apoa4, Aqp1, 

Arl4d, Bai1, Cd5l, Clgn, Cubn, 

Cuzd1, Lcn2, Lphn1, Mgl2, Mlph, 

Rbp4, Slc5a1, Slc7a8, Slc7a9, 

Slc13a3, Slc27a2, Slc43a2, Steap4, 

Tbc1d9, Ttc30b, Ttr 

amino acid transport (GO:0006865) 0.0195 Slc7a8, Slc7a9, Slc43a2 

carbohydrate transport (GO:0008643) 0.0480 Aqp1, Slc5a1 
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In the male placentas, 4X versus 1X choline decreased (FDR < 0.2) the expression of 79 

genes and increased (FDR < 0.2) the expression of 62 genes (Supplemental Figure 3.2). Among 

these 141 genes affected by 4X choline, 3 were suggested to be imprinted genes: Qpct (FDR = 

0.012), Dcn (FDR = 0.012) and Tnfrsf23 (FDR = 0.012). All of these imprinted genes were 

downregulated in the male placentas in response to additional maternal choline intake (Table 

3.3). Overall, 4X choline altered (P < 0.05) 12 biological processes in the male placentas (Table 

3.4). 

 

Table 3.3. Differentially-expressed imprinted genes in the male placentas in response to 4X 

versus 1X maternal choline supplementation. 

 

 

 

 

 

 

 

 

 

 

 

Gene 

Symbol 

Gene 

Name 

Fold 

Difference 

FDR 

Value 

Qpct glutaminyl cyclase 0.46 0.012 

Dcn decorin 0.58 0.012 

Tnfrsf23 tumor necrosis factor receptor superfamily, member 23 0.64 0.012 
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Table 3.4. All the biological processes in the male placentas affected by 4X versus 1X maternal 

choline supplementation. 

 

 

 

 

 

 

 

 

Biological Processes P Value List of Changed Genes 

immune response (GO:0006955) 0.0001 

Bai1, Ctsg, Eva1c, Gpr125, Gzmb, 

Gzmc, Gzmd, Gzme, Gzmf, Gzmg, 

Mcpt8, Nptx1, Prf1, Tnfrsf1b, Tnfrsf23 

immune system process (GO:0002376) 0.0002 

Bai1, Cd93, Cryaa, Ctsg, Eva1c, 

Gpr125,Gzmb, Gzmc, Gzmd, Gzme, 

Gzmf, Gzmg, Hspb7, Lbp, Mcpt8, 

Nptx1, Pla2g7, Prf1, Tnfrsf1b, Tnfrsf23 

protein folding (GO:0006457) 0.0063 Clip4, Cryaa, Hspb7, Htra1 

visual perception (GO:0007601) 0.0064 Ccbe1, Cryaa, Hsd11b2, Hspb7, Pde4b 

heart development (GO:0007507) 0.0132 Bai1, Eva1c, Gpr125, Hand2 

cholesterol metabolic process 

(GO:0008203) 
0.0160 Apold1, Hsd3b6, Lbp 

protein metabolic process (GO:0019538) 0.0225 

Adamts5, Clip4, Cryaa, Ctsg, Ctsk, 

Ggt6, Gzmb, Gzmc, Gzmd, Gzme, 

Gzmf, Gzmg, Hspb7, Htra1, Ipp, Lce1g, 

Mcpt8, Ptprn2, Rimklb, St6galnac1, 

4930486L24Rik 

cytokine-mediated signaling pathway 

(GO:0019221) 
0.0245 Cxcl12, Dcn, Tnfrsf1b, Tnfrsf23 

cell-cell signaling (GO:0007267) 0.0259 
Bai1, Cd93, Cxcl14, Doc2b, Eva1c, 

Nov, Raasl11b 

steroid metabolic process (GO:0008202) 0.0326 Apold1, Hsd3b6, Hsd11b2, Lbp 

cellular component movement 

(GO:0006928) 
0.0376 

Calm4, Cd93, Cxcl12, Cxcl14, Kif21b, 

Tnfrsf23 

cellular amino acid catabolic process 

(GO:0009063) 
0.0463 Aspg, Tdo2 
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Placental miRNAs Expression Profile 

Prior to controlling for false discovery rate, 10 placental miRNAs displayed differential 

expression (P ≤ 0.05) in response to 4X versus 1X maternal choline supplementation. When data 

were stratified by fetal sex, altered abundance of 30 miRNAs in the female placentas and seven 

miRNAs in the male placentas was detected (P ≤ 0.05). After adjustment for the false discovery 

rate, 11 miRNAs in the female placentas remained significantly different among the choline 

treatment groups (FDR < 0.2).  However, this differential finding may have been driven by one 

female placental sample in the 1X choline group (Supplemental Table 3.1), which had a lower 

miRNA-mapped read frequency than the other samples possibly due to sample degradation and 

increased background signaling. Upon excluding this sample, the new analyses showed that miR-

2137 was significantly downregulated (FDR = 0.125, Punadjusted = 2.05 x 10
-4

) in response to 4X 

versus 1X maternal choline supplementation. Although significance was not achieved upon 

stratification by fetal sex, both female and male placentas exhibited a 61% and 65% 

downregulation in the abundance of miR-2137, respectively. 

Based on TargetScan prediction, miR-2137 has 170 mRNA targets. These mRNA targets 

are related to 27 biological processes (Table 3.5). In response to 4X versus 1X choline, five of 

the predicted mRNA targets were upregulated (P ≤ 0.05) in the female placentas (Table 3.6). 

These included Cd109 (P < 0.01), Mt3 (P < 0.01), Plg (P < 0.01), Gja4 (P = 0.01), and Psrc1 (P 

= 0.05). In the male placentas, 4X versus 1X choline also upregulated (P ≤ 0.05) four of the 

predicted mRNA targets (Table 3.6), which were Pmaip1 (P = 0.02), Pcdh1 (P=0.04), Mt3 (P = 

0.04), and Cd28 (P = 0.05). 
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Table 3.5. All the biological processes affected by the predicted mRNA targets of miR-2137. 

 

 

 

Biological Processes 

Overrepresented by  

The Predicted 

Targets of miR-2137 

Processes P Values 

regulation of transcription from RNA polymerase II 

promoter (GO:0006357) 
<0.0001 

transcription from RNA polymerase II promoter 

(GO:0006366) 
<0.0001 

developmental process (GO:0032502) <0.0001 

muscle organ development (GO:0007517) <0.0001 

transcription, DNA-dependent (GO:0006351) <0.0001 

segment specification (GO:0007379) <0.0001 

nervous system development (GO:0007399) 0.0001 

system development (GO:0048731) 0.0001 

RNA metabolic process (GO:0016070) 0.0001 

mesoderm development (GO:0007498) 0.0002 

ectoderm development (GO:0007398) 0.0002 

pattern specification process (GO:0007389) 0.0003 

synaptic transmission (GO:0007268) 0.0033 

skeletal system development (GO:0001501) 0.0052 

heart development (GO:0007507) 0.0057 

nucleobase-containing compound metabolic process  

(GO:0006139) 
0.0073 

cell-cell signaling (GO:0007267) 0.0102 

dorsal/ventral axis specification (GO:0009950) 0.0169 

embryo development (GO:0009790) 0.0268 

female gamete generation (GO:0007292) 0.0290 

transmembrane receptor protein serine/threonine kinase  

signaling pathway (GO:0007178) 
0.0307 

response to endogenous stimulus (GO:0009719) 0.0401 

apoptotic process (GO:0006915) 0.0418 

death (GO:0016265) 0.0478 

cell death (GO:0008219) 0.0478 

behavior (GO:0007610) 0.0481 

tRNA metabolic process (GO:0006399) 0.0496 
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Table 3.6. Predicted mRNA targets of miR-2137 that displayed significant differential 

expression in the female and male placentas in response to 4X choline supplementation. 

 

 

 

Female Placentas 

Gene 

Symbol 

Gene 

Name 

Fold 

Difference 

Gja4 gap junction protein, alpha 4 1.33 

Psrc1 proline/serine-rich coiled-coil 1 1.49 

Cd109 CD109 antigen 1.55 

Mt3 metallothionein 3 3.85 

Plg plasminogen 3.91 

Male Placentas 

Pcdh1 protocadherin 1 1.25 

Pmaip1 
phorbol-12-myristate-13-

acetate-induced protein 1 
1.39 

Cd28 CD28 antigen 1.64 

Mt3 metallothionein 3 1.69 
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DISCUSSION 

To the best of our knowledge, this is the first study to survey the effects of maternal 

choline supplementation on placental epigenetic markers in an untargeted, genome-wide manner. 

We demonstrate choline-induced effects on global DNA methylation, imprinted gene expression 

and miRNAs abundance in mouse placenta, all of which could be mediating some of the 

previously observed beneficial effects of maternal choline supplementation on placental 

outcomes.  

 

Maternal choline supplementation alters the expression of numerous imprinted genes in 

the placenta 

Placental expression of several imprinted genes was altered in a sex-dependent manner in 

response to a higher maternal choline intake. In the female placentas, maternal choline 

supplementation upregulated the expression levels of Gatm, Tfpi2, Aqp1 and Ampd3. Because a 

lower placental Gatm abundance is associated with IUGR,
31

 the choline-induced upregulation in 

Gatm abundance in the present study suggests a possible benefit of MCS on fetal growth. The 

other choline-altered imprinted genes in the female placentas are implicated in processes 

essential to normal placental vascular development and thereby also affect fetal growth. 

Specifically, Tfpi2 inhibits the activity of matrix metalloproteinases and regulates placental 

perfusion.
32, 33

 Deficiency of Aqp1, a recently identified placenta-specific imprinted gene, causes 

aberrant placental vascularization and fetal overgrowth.
34

 Although the consequences of altered 

Ampd3 expression in placenta remain to be examined, Ampd3 deficiency in cancer cells has been 

shown to inhibit cell proliferation and invasion.
35

 Collectively, the choline-induced upregulation 

of all these placental imprinted genes would be expected to improve placental vascularization 
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and perfusion, likely contributing to the choline-induced beneficial effects reported previously.
17

 

The downregulation of the imprinted genes, Dcn and Tnfrsf23, in the male placentas in 

response to MCS may also result in an improved placental vascular network. Reduced placental 

Dcn expression enhances endothelial cell migration and remodeling of the placental 

vasculature
36

, whereas a lower expression of Tnfrsf23 reduces apoptosis
37

 and modulates the 

inflammatory responses during trophoblast invasion.
38

 Additionally, in the male placentas, 4X 

choline downregulated the abundance of Qpct, which controls placental nutrient delivery.
39

 An 

upregulation of Qpct is frequently detected in preeclamptic placentas,
40

 possibly as a 

compensatory response to poor placental perfusion. Therefore, the choline-induced 

downregulation of Qpct in the present study may indicate a sufficiently perfused placenta which 

is consistent with the previously reported choline-induced enlargement of the maternal spiral 

arteries. In sum, altered abundance of these placental imprinted genes in response to MCS may 

be one mechanism by which a higher maternal choline intake improves placental vascular 

development.
17

 

 

Maternal choline supplementation changes many processes important for fetal 

development 

Gene ontology analyses on all the differentially-expressed genes revealed that seven 

placental processes were similarly influenced in both female and male placentas. These 

processes related mostly to the metabolism of lipids (GO: 0008203, 0008202) and proteins (GO: 

0019538, 0009063, 0006457). In the female placentas, many processes impacted by MCS were 

also related to the transport and metabolism of macronutrients (GO: 0006865, 0008643, 

0006810, 0008652 and 0006633), which is consistent with our previous findings that MCS 
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altered the abundance of several macronutrient transporters and glycogen metabolic enzymes in 

these placentas.
19

 Furthermore, the analyses in the present study indicated that processes related 

to the transport of micronutrients such as vitamins A, B-12 and minerals (GO: 0051180, 0006820 

and 0006811) were affected by MCS. Interestingly, processes related to homeostasis (GO: 

0042592) and responding to stimulus (GO: 0009605, 0007596) were affected. Based on our prior 

work, we have proposed that the female placentas initiate changes in the placental vascular 

development as well as placental nutrient metabolism and transport in response to changes in 

maternal nutrient intake (e.g.: MCS) to maintain homeostasis.
19

 The finding on these three gene 

ontology in the current study supports our hypothesis. 

MCS also affected processes regulating nutrient delivery in the male placentas. However, 

rather than altering processes directly involved in nutrient transport and metabolism, MCS 

modulated processes in the male placentas that are largely implicated in normal placental 

morphological and vascular development, such as signal transduction (GO: 0007267, 0019221) 

and immune response (GO: 0002376, 0006955). Interestingly, one process altered by MCS was 

related to heart development (GO: 0007507). The programming effect of maternal undernutrition 

on the risk of cardiovascular diseases is well-illustrated by the Dutch Famine Cohort.
41-44

 

Furthermore, MCS is shown to normalize the blood pressure of adult offspring from dams fed a 

low-protein diet throughout gestation.
45

 According to our analyses, we hypothesize that the 

programming effects of maternal diets on future cardiovascular health may be mediated in part 

by a placental-cardiovascular axis.
46, 47

 Taken together, these data support a role of MCS in 

altering various placental processes in both female and male placentas that have subsequent 

impact on placental nutrient supply efficiency as well as the growth and development of the 

fetus. 
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Maternal choline supplementation increases global DNA methylation in the placenta  

Similar to our previous findings in humans,
24

 a higher global DNA methylation in both 

female and male placentas was found in response to additional maternal choline intake during 

pregnancy. Because DNA hypomethylation often leads to genomic instability that increases 

mutation frequency and disease susceptibility,
48

 the choline-induced hypermethylation in these 

placentas is expected to stabilize the placental genome, which minimizes any adverse effects on 

normal placental development and function. 

 

Maternal choline supplementation reduces placental miR-2137 abundance, with 

downstream effects on the expression of its target genes 

We identified that placental miR-2137 was downregulated by MCS. The bioinformatics 

analyses indicated that miR-2137 targets genes important to several developmental processes. 

For example, it affects processes related to cell death (GO: 0006915, 0016265, 0008219), which 

is crucial for normal placental morphological development. The processes related to cell 

signaling (e.g.: GO: 0007267, 0007178) are affected as well, including the transmembrane 

receptor protein serine/threonine kinase signaling pathway. This pathway includes proteins in the 

transforming growth factor-β (TGF-β) superfamily,
49, 50

 which are known to regulate placental 

vascularization.
51

 By modulating placental miRNA abundance, MCS indirectly affects these 

biological processes, possibly leading to improved placental vascularization as observed in our 

prior study.
17

 

miR-2137 also impacts processes related to the development and function of different 

organs (e.g.: GO: 0007517, 0007399, 0001501, 0007507), including the cardiovascular and 
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nervous system. These data support not only the existence of a placental-cardiovascular axis, but 

also a placental-brain axis
46

 that may explain the interactive effects of prenatal choline supply
52

 

and placenta
53

 on programming offspring neurodevelopment.  

Although miR-2137 has not been experimentally studied in the placenta, it has been 

examined in other tissues.
54-57

 Consistent with our bioinformatics analyses, these studies show 

that an altered miR-2137 abundance changes processes related to apoptosis as well as heart and 

brain functioning. Interestingly, micronutrient supplementation in a paternal undernutrition 

mouse model also changes miR-2137 expression in the offspring pancreas,
58

 indicating that this 

miRNA may be particularly sensitive to nutritional manipulation. In addition to the 

bioinformatics analyses, we found that the choline-induced miR-2137 downregulation led to 

higher expression of several predicted mRNAs. While different between the female and male 

placentas, these genes all play some roles in apoptotic, vascular, and TGF-β signaling processes. 

Taken together, changes induced by miR-2137 in response to MCS may benefit placental 

development and offspring health. 

 

Conclusion and Future Directions 

Findings from the present study add to the growing body of research that illustrates the 

responsiveness of the placental epigenome to maternal choline intake during pregnancy. 

Moreover, this study identifies several epigenetic markers that could be mediating some of the 

previously reported choline-induced effects on placental and fetal development. Additional 

studies are needed to explore the clinical relevance of these placental markers in predicting 

pregnancy outcomes and future offspring health. 
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Supplemental Figure 3.1. Differentially-expressed genes in the female placentas in response to 

4X choline supplementation. 

 
 

 

 

Gene  

Symbol 

Fold 

Difference 

Gene  

Symbol 

Fold 

Difference 

Gene 

Symbol 

Fold 

Difference 

Gene  

Symbol 

Fold 

Difference 

Ccr1 0.12 Ephb4 1.40 Mfi2 2.04 Slc39a5 3.19 

H2-Q7,H2-Q9 0.16 Cyp11a1 1.41 Krt16 2.07 Cubn 3.22 

Cd5l 0.26 Hist1h1c 1.42 Prl8a2 2.08 Cpn1 3.26 

Sycp1 0.27 Cdo1 1.46 Nrgn 2.10 Sfrp4 3.35 

Kap 0.27 Prl3a1 1.49 Doxl2 2.11 Ly6g6c 3.55 

Cuzd1 0.30 Vgf 1.49 Steap4 2.11 Igfals 3.83 

Fxyd1 0.30 F11 1.50 Crabp1 2.12 Mt3 3.85 

Lcn2 0.31 Fabp4 1.51 BC049730 2.12 Pi15 3.85 

Prap1 0.34 Tbc1d9 1.51 Htra1 2.13 Spink3 3.89 

Ltf 0.35 Adm 1.52 Spon1 2.13 Plg 3.92 

Tex13 0.40 Anxa1 1.54 Map7d2 2.15 Apom 4.01 

Ccl2 0.44 Fbln2 1.55 Cyp21a1 2.17 Fga 4.04 

Prl3d1 0.46 Antxr1 1.55 Tfpi2 2.17 Amn 4.08 

Arg1 0.47 Cd109 1.55 Tacstd2 2.17 Itih1 4.11 

Ccrn4l 0.52 Ctsk 1.56 Tmem98 2.20 Fgb 4.19 

Pi16 0.53 Rnase4 1.56 Chac1 2.20 Fgg 4.25 

Elk4 0.54 Fcgrt 1.56 Kng1 2.22 Pklr 4.43 

Gm8883 0.55 Cryab 1.58 Hpgd 2.24 Gjb1 4.52 

Trim68 0.56 Mfap5 1.59 Erv3 2.25 Mgl2 4.65 

Cbl 0.56 Hoxa10 1.60 Apoa4 2.25 Spp2 4.69 

Prl4a1 0.58 Ampd3 1.63 Aqp1 2.25 Serpinf2 4.84 

Gjb4 0.59 Ramp1 1.63 Ube2ql1 2.28 Clgn 4.88 

Msr1 0.59 Acsf2 1.64 Galnt15 2.29 Slc7a9 4.95 

Cthrc1 0.60 Slit3 1.64 Aspg 2.31 Fxyd2 4.96 

Crym 0.61 Col5a2 1.65 Prl5a1 2.35 Aass 5.05 

Trim12c 0.61 Gatm 1.65 Endou 2.36 Maob 5.15 

Zfp949 0.61 Hsd11b1 1.68 AU023871 2.40 Apob 5.35 

Evpl 0.62 Arl4d 1.68 C4b 2.41 Hgd 5.40 

C1qc 0.63 Trf 1.69 Epdr1 2.43 Serpina1a 5.44 

Hsd11b2 0.64 Fetub 1.71 Serpina1b 2.48 Apoa2 5.52 

9430008C03Rik 0.65 Slpi 1.72 Mamdc2 2.50 Clec2h 5.68 

Slfn4 0.65 Adamts5 1.73 Col6a5 2.56 Aldob 5.93 

Ctsm 0.66 Sphk1 1.73 Slc27a2 2.59 Ttr 6.09 

Gna14 0.66 Hspb7 1.73 Rbp4 2.60 C9 6.25 

Col6a3 0.67 Igfbp6 1.74 Lrp2 2.63 Olfr224 6.40 

Lphn1 0.67 Nccrp1 1.74 Tdo2 2.69 Afp 6.86 

Pla2g4f 0.67 Jph2 1.74 Bai1 2.70 Agt 7.46 

Mpzl2 0.67 Snta1 1.74 Slc13a3 2.75 St6galnac1 7.96 

Stox2 0.68 Sfrp5 1.75 Cfi 2.80 Psca 8.01 

Aldh1a3 0.68 1600015I10Rik 1.79 Slc5a1 2.80 2610035D17Rik 8.19 

Tnks 0.70 Mlph 1.82 Pdzk1ip1 2.83 Apoa1 9.23 

Eif2c2 0.71 F2 1.86 Itih4 2.87 Gc 9.86 

Galnt6 0.71 Rrm2 1.87 Trpm2 2.88 Gdpd3 12.80 

Herpud1 0.72 Rimklb 1.91 Bex2 2.88 Cps1 13.91 

Ccng1 1.38 Cldn1 1.94 Itih3 2.94 Itih2 14.41 

Slc7a8 1.38 Cldn10 2.01 Cdhr2 2.95 Alb 29.20 

Slc43a2 1.38 Ttc30b 2.02 Ambp 3.06   
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Supplemental Figure 3.2. Differentially-expressed genes in the male placentas in response to 

4X choline supplementation. 

 

 

 

 

Gene 

Symbol 

Fold 

Difference 

Gene 

Symbol 

Fold 

Difference 

Gene 

Symbol 

Fold 

Difference 

Ggt6 0.10 Cysltr2 0.53 Ccrn4l 1.56 

Ceacam18 0.20 Il1r2 0.53 Tspan2 1.56 

Mcpt8 0.21 Lum 0.55 Cd93 1.57 

Psca 0.23 Syngr1 0.55 Adamts5 1.59 

Npb 0.28 Gm9199 0.55 Lyve1 1.61 

Lect1 0.28 Eva1c 0.56 Ccbe1 1.61 

BC002163 0.29 Rbm38 0.57 Doxl2 1.63 

Nptx1 0.30 Ipp 0.57 Fst 1.63 

Klk15 0.32 Dcn 0.58 Prl2a1 1.64 

Scgb1a1 0.33 Tox2 0.58 Srek1ip1 1.67 

Ctsk 0.35 Serping1 0.58 Serpine1 1.68 

Alb 0.36 Gja4 0.58 Ramp3 1.69 

Zfp738 0.36 Kcnq4 0.59 Gm8883 1.71 

Ctsg 0.37 Eno2 0.59 Sfrp5 1.75 

Mtus2 0.37 Pla1a 0.59 Sphk1 1.80 

Ntrk2 0.39 Serpina3n 0.59 Sfrp4 1.82 

Bai1 0.40 Gda 0.60 Prl8a2 1.83 

Cryaa 0.40 Havcr2 0.61 Pde4b 1.84 

Klk4 0.40 Tnfrsf23 0.62 Hspb7 1.85 

Tmem45a 0.40 Hsd11b2 0.63 AW011738 1.87 

Egln3 0.41 Cxcl12 0.63 Htra1 1.89 

Gzmc 0.42 Plxdc2 0.63 Hand2 1.92 

Car12 0.42 Srgn 0.64 Igsf11 1.93 

Doc2b 0.43 Kif21b 0.64 Hhipl1 1.94 

Tdo2 0.43 Unc5a 0.66 Cldn10 2.00 

Cxcl14 0.43 Rasl11b 0.67 Golga7b 2.01 

Lbp 0.44 Gpr125 0.68 Krt16 2.05 

Hsd3b6 0.44 Cdo1 0.69 Apold1 2.15 

Cldn11 0.44 Col12a1 0.70 Fggy 2.22 

Gjb3 0.45 H2-D1 0.70 Ttc18 2.37 

Prf1 0.45 Tuft1 0.70 Clca5 2.38 

Nov 0.45 Lpcat1 0.71 Col6a5 2.41 

Gzmd 0.46 Sparcl1 1.38 Rimklb 2.44 

2610528A11Rik 0.46 Aqp8 1.38 Kcnj10 2.47 

Qpct 0.46 Prl7a1 1.42 Slc15a2 2.72 

Dio2 0.46 Tnfrsf1b 1.44 Clip4 2.75 

Gzmg 0.48 Add3 1.44 Wnt10a 2.79 

Gzmf 0.48 Gm14403 1.46 Trpm2 2.80 

Ceacam10 0.49 Prl7b1 1.47 Calm4 2.83 

Gzmb 0.50 Aspg 1.49 Ear11 2.83 

Selenbp1 0.50 Pla2g7 1.50 Crabp1 3.45 

Fgl2 0.50 Acpp 1.50 St6galnac1 3.46 

Gpr133 0.51 Gm14295 1.50 Gm3558 3.76 

4930486L24Rik 0.52 Igfbp3 1.53 Ifi202b 4.19 

Ptprn2 0.52 Tacstd2 1.55 Lce1g 8.00 

Gzme 0.52 Jam2 1.55 Gjb4 9.12 

Mal 0.52 Nccrp1 1.56 Ang2 11.00 
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Supplemental Table 3.1. Results from the miRNA-sequencing experiment when statistical 

analyses were performed including all the placental samples.
1 

 
1
Data are shown as normalized counts (per million miRNA reads). 

*
Sample 1 is the sample with 

lower miRNA-mapped read frequency. 

 

 

miRNA 
1X Choline Group 4X Choline Group 

FDR 
Sample 1* Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

miR-712-5p 187.53 1.06 1.12 <0.01 <0.01 0.41 0.019 

miR-6538 118.98 1.86 7.87 0.37 0.62 2.89 0.031 

miR-3470a 902.06 14.22 10.11 8.73 9.68 8.06 0.031 

miR-6240 1141.97 12.76 39.33 13.38 9.99 25.22 0.031 

miR-5126 31.04 1.33 3.37 0.37 0.31 0.83 0.033 

miR-3470b 1077.95 24.32 22.19 16.17 19.35 31.21 0.056 

miR-6380 18.11 1.33 0.56 0.37 0.31 <0.01 0.155 

miR-96-3p 9.05 9.57 11.80 11.89 23.73 19.02 0.160 

miR-3535 870.38 71.76 85.40 53.15 76.17 58.29 0.160 

miR-3471 15.52 0.53 0.70 0.19 0.31 <0.01 0.160 

miR-690 494.03 31.63 33.15 21.93 36.21 28.52 0.160 
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AFTERWORD 

The overarching goal of this dissertation research is to determine the effects of supplementing 

the maternal diet with additional choline on factors that influence placental nutrient supply, 

which determines fetal growth and development. Employing a multi-disciplinary research 

approach integrating nutrition, metabolism, biochemistry, genomics, and reproductive biology, a 

variety of biomarkers was analyzed in the placental and fetal tissues collected on four different 

gestational days from a healthy pregnant mouse model consuming three different levels of 

choline intake. The major findings and potential implications are discussed below. 

 

Maternal choline supplementation improves placental vascularization and perfusion 

This study sought to determine the impact of additional maternal choline intake during 

pregnancy on indicators related to placental vascularization and perfusion. The results show that 

maternal choline supplementation modulates placental inflammation, apoptosis and 

angiogenesis. The remodeling process of maternal spiral arteries is also more efficient in 

response to extra choline intake. As a result, placental perfusion is enhanced, which is one 

important factor for an adequate placental nutrient supply. Interestingly, the effects of choline on 

these processes are strongly dependent on fetal sex and gestational stage, highlighting the need 

for considering these variables when studying the effects of maternal diets on placental 

development. Because abnormal placental vascularization and insufficient placental perfusion 

are characteristics of many pregnancy disorders that impair fetal development, additional works 

are needed to explore the impact of maternal choline supplementation in preventing and/or 

ameliorating these pregnancy problems. 

 

Maternal choline supplementation alters placental nutrient transport and metabolism  

This study aimed to examine the impact of additional maternal choline intake during pregnancy 

on placental nutrient transporter abundance and placental nutrient metabolism. The findings 
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indicate that the metabolism and transporter abundance of the macronutrients as well as choline 

and its metabolites are all altered by maternal choline supplementation, again in a manner 

dependent on fetal sex and gestational stage. Most importantly, these choline-induced changes in 

the placental nutrient supply system affect the amount of nutrients available to the fetus for its 

growth and development. Because the abundance of these placental nutrient transporters and 

metabolic enzymes in response to a higher maternal choline intake is largely unknown in human 

pregnancy, more research is needed to determine the effect of choline on these markers in the 

human placentas. As the hypothesis of fetal programming proposes that the development of the 

placenta and fetus plays an important role in determining the offspring postnatal health and risk 

for different diseases, further studies are also warranted to examine the long-term impacts of 

these placental responses to a higher maternal choline consumption during pregnancy.  

 

Maternal choline supplementation modulates several epigenetic processes in the placenta with 

important consequences on placental and fetal development 

The objective of this study was to characterize changes in placental epigenetic processes in 

response to maternal choline supplementation with the long-term goal of better understanding 

mechanisms involved in choline’s beneficial effects on placental vascular development, placental 

nutrient delivery and fetal development. The data illustrate that maternal choline 

supplementation changes the global DNA methylation, imprinted and non-imprinted gene 

expression, and microRNA abundance in the mouse placenta. All these changes have subsequent 

impacts on many downstream processes important for normal development. Consistent with 

prior findings, these effects differ greatly between the females and males. As an untargeted 

experimental approach was employed, several potentially important epigenetic markers are 

identified, allowing future investigations to further elucidate their roles in mediating the effect of 

choline on different placental and fetal developmental outcomes. 
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In sum, findings from this dissertation research further advance our fundamental understanding 

regarding the role of choline in reproductive health. Not only do these data support our previous 

findings from a human feeding trial indicating that maternal choline supplementation improves 

placental vascular development, they also provide additional insights regarding the impact of 

maternal choline supplementation on other aspects of placental development and functions. 

Given the importance of these new insights in optimizing pregnancy outcomes and offspring 

health, future students in our research group can use these results as a justification for designing 

additional experiments in normal human pregnancy and in human pregnancy disorders. 

Altogether, results from this animal feeding study, along with our previous works conducted in 

healthy pregnant women, support the recommendation that women of reproductive age should 

increase their intake of choline-rich foods in order to improve pregnancy outcomes and the 

lifelong health of their children. 


