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5.1 Direct georeferencing of the lidar point 
Minsu Kim 

Lidar data processing is usually considered to be synonymous with the production of a digital elevation 
model (DEM). While this is obviously critical – and the topic of this section – some advanced ALB 
systems are radiometrically calibrated so that the data can also be used to estimate the optical properties 
of a water body and the reflectance of the ocean bottom, topics which will be treated in Sections 5.2, 5.3 
and 5.4. Still, the heart of the lidar system is to produce a georeferenced point cloud of laser bathymetry 
measurements. This introductory section is devoted to describing the georeferencing of the lidar point 
cloud. All modern airborne lidar imaging systems use direct georeferencing, using an IMU (inertial 
measurement unit) together with the GNSS (global navigation satellite system) in order to obtain position 
and orientation. The georeferencing of each lidar point then requires a sequence of coordinate 
transformations and translations between a series of reference frames. 

 Sensor modeling 

Airborne lidar systems use scanning devices to distribute observations on a surface, making the lidar an 
imaging system. There are several different types of scanning mechanisms, each of which distributes laser 
measurements in a different pattern. Examples (with the associated scanning patterns) are: oscillating 
mirror (zigzag), rotating polygon mirror (parallel lines), nutating mirror (overlapping ellipse), and rotating 
prism (overlapping circle).    

The first step in defining a mathematical model of a scanning system (scanner model) is to define a proper 
3D Cartesian coordinate system to describe the direction vector of the laser pulse propagation. This 
Cartesian reference coordinate system is defined based on the sensor body, and thus is called a sensor 
body frame (SBF). The simplest example of an SBF would be the case of a bidirectional oscillating 
scanning mirror. Figure 5.1.1 illustrates the scan pattern and the definition of the sensor model. Usually 
the sensor is installed on the aircraft so that x-axis and y-axis are aligned to the nose (forward) and the 
right wing (starboard) of the aircraft, respectively. Then, according to the right-hand rule, the z-axis 
points downward. 

 

 



  eCommons (2019)  https://doi.org/10.7298/98sb-4t84 
 
 
 AIRBORNE   LASER   HYDROGRAPHY  II  
 

148 

 

Figure 5.1.1  (a) scan pattern of the oscillating mirror scanner (b) laser pulse direction with scan angle 𝜃𝜃𝑎𝑎 in SBF (b) 
typical installation of the sensor with SBF extended on the aircraft 

The sensor model in this case is simply a function of the scan angle, 𝜃𝜃. The normalized direction vector 
directed toward the surface point 𝑂𝑂𝑤𝑤 in the SBF is defined as: 

This direction vector is valid only for a simple oscillating mirror. The exact direction vector depends on 
the sensor model for the specific scanning device. Describing the details for different types of scanning 
systems is beyond the scope of this document, but it is important to note that the determination of the 
precise scan angle, 𝜃𝜃, for each laser pulse is not a simple matter. Each scanner is equipped with an 
encoder that records the GNSS-synchronized time for the moment of encoding. For instance, if a system 
has a 30 Hz scanner rate, it records 30 GNSS times. However, the precise direction of the laser pulse 
propagation at the time of encoding is not known. As a result, the precise angular offset at the time of 
encoding is very difficult to measure. In addition, while the IMU system is installed so that its coordinates 
align as closely as possible to those of the optical sensor, there is always a small misalignment that must 
be accounted for (boresight procedure). It is also very difficult to make direct measurements of these three 
angles. Thus, in all lidar scanning system the boresight procedure (i.e., calculation of the angular offsets 
between the ALB system and the aircraft) includes this scanner offset angle as well as the usual three 
angular misalignment angles that are determined via optimization during calibration.  

 The position vector in the IBF 

The range, 𝑟𝑟𝑎𝑎, that the lidar system measures is from the SBF origin (O_SBF) to the surface that reflects 
the laser pulse. The position vector in the SBF is determined by: 

The 3-element position vector, 𝑿𝑿𝑂𝑂𝑤𝑤
𝑆𝑆𝑆𝑆𝑆𝑆, represents the SBF Cartesian coordinates of the lidar point,  

𝑂𝑂𝑤𝑤, from which the earth surface reflects the laser pulse back to the receiver. Coordinates expressed in 
SBF, however, are not useful by themselves (i.e., in the ALB reference system) because the reference 
system is not geo-referenced to a known datum. The position vector in SBF must be converted to the 
position vector in a global geodetic frame in a sequence of coordinate transformations. 

 𝐝𝐝𝑂𝑂𝑤𝑤
𝑆𝑆𝑆𝑆𝑆𝑆 = [0, sin𝜃𝜃, cos𝜃𝜃]𝑇𝑇      . (5.1.1) 

 𝑿𝑿𝑂𝑂𝑤𝑤
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑟𝑟𝑎𝑎 ∙ 𝐝𝐝𝑂𝑂𝑤𝑤

𝑆𝑆𝑆𝑆𝑆𝑆       . (5.1.2) 
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In order to convert a position vector in an arbitrary SBF into the position vector in a global geodetic 
frame, the information contained in the GNSS antenna position and the IMU orientation is used to 
establish an IMU body frame (IBF). The IBF is a 3D Cartesian frame whose origin (O_IBF) is at the IMU 
center, and the definition of the coordinate system is usually printed on the top surface of the IMU 
housing. The physical location of the lidar point is invariant, but the coordinate representation can change 
depending on which reference coordinate system is used. Thus, the position vector in SBF, 𝑿𝑿𝑂𝑂𝑤𝑤

𝑆𝑆𝑆𝑆𝑆𝑆, is 
transformed to the position vector in IBF using the following relationship: 

where, 𝑿𝑿𝑂𝑂_𝑆𝑆𝑆𝑆𝑆𝑆
𝐼𝐼𝐼𝐼𝐼𝐼  is the lever-arm vector to the SBF origin in the IBF, and 𝑹𝑹𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼  is a rotation matrix that 

transforms 𝑿𝑿𝑂𝑂𝑤𝑤
𝑆𝑆𝑆𝑆𝑆𝑆 to 𝑿𝑿𝑂𝑂𝑤𝑤

𝐼𝐼𝐼𝐼𝐼𝐼 is defined using three boresighting angles that represent roll (𝜔𝜔), pitch (𝜑𝜑), and 
yaw ( (𝜅𝜅)): 

  

 The position vector in the Local Geodetic Frame (LGF) 

The success of direct georeferencing depends on the accuracy with which the position and the orientation 
parameters are measured using the IMU-GNSS subsystem. Once the position vector in the IBF reference 
system, 𝑿𝑿𝑂𝑂𝑤𝑤

𝐼𝐼𝐼𝐼𝐼𝐼, is known, it is transformed into a new position vector in a local geodetic frame (LGF), 
𝑿𝑿𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿. An LGF is defined in reference to a global geodetic frame, such as WGS84. An arbitrary position 
on a local tangent plane is defined with a positive x-axis pointing to the local north (𝑁𝑁), a positive y-axis 
pointing to the local east (𝐸𝐸), and a positive z-axis pointing downward (𝐷𝐷) to the center of the ellipsoid. 
Thus, the arbitrary position follows a coordinate axes convention of a North-East-Down (NED) reference 
frame. The orientation of the IBF with respect to the LGF is described by three angles: roll (𝑅𝑅), pitch (𝑃𝑃),  
and heading (𝐻𝐻): 

 𝑿𝑿𝑂𝑂𝑤𝑤
𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑹𝑹𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 ∙ 𝑿𝑿𝑂𝑂𝑤𝑤

𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑿𝑿𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆
𝐼𝐼𝐼𝐼𝐼𝐼      , (5.1.3) 

 𝑹𝑹𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 = �
cos 𝜅𝜅 − sin 𝜅𝜅 0
sin 𝜅𝜅 cos 𝜅𝜅 0

0 0 1
� �

cos𝜑𝜑 0 sin𝜑𝜑
0 1 0

−sin𝜑𝜑 0 cos𝜑𝜑
� �

1 0 0
0 cos𝜔𝜔 −sin𝜔𝜔
0 sin𝜔𝜔 cos𝜔𝜔

� (5.1.4) 

 
= �

cos𝜑𝜑 cos 𝜅𝜅 sin𝜔𝜔 sin𝜑𝜑 cos 𝜅𝜅 − cos𝜔𝜔 sin𝜅𝜅 cos𝜔𝜔 sin𝜑𝜑 cos 𝜅𝜅 + sin𝜔𝜔 sin𝜅𝜅
cos𝜑𝜑 sin 𝜅𝜅 sin𝜔𝜔 sin𝜑𝜑 sin 𝜅𝜅 + cos𝜔𝜔 cos 𝜅𝜅 cos𝜔𝜔 sin𝜑𝜑 sin 𝜅𝜅 − sin𝜔𝜔 cos 𝜅𝜅
−sin𝜑𝜑 sin𝜔𝜔 cos𝜑𝜑 cos𝜔𝜔 cos𝜑𝜑

� 
 

 𝑹𝑹𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 = �
cos𝐻𝐻 − sin𝐻𝐻 0
sin𝐻𝐻 cos𝐻𝐻 0

0 0 1
� �

cos𝑃𝑃 0 sin𝑃𝑃
0 1 0

−sin𝑃𝑃 0 cos𝑃𝑃
� �

1 0 0
0 cos𝑅𝑅 −sin𝑅𝑅
0 sin𝑅𝑅 cos𝑅𝑅

� (5.1.5) 

 
= �

cos𝑃𝑃 cos𝐻𝐻 sin𝑅𝑅 sin𝑃𝑃 cos𝐻𝐻 − cos𝑅𝑅 sin𝐻𝐻 cos𝑅𝑅 sin𝑃𝑃 cos𝐻𝐻 + sin𝑅𝑅 sin𝐻𝐻
cos𝑃𝑃 sin𝐻𝐻 sin𝑅𝑅 sin𝑃𝑃 sin𝐻𝐻 + cos𝑅𝑅 cos𝐻𝐻 cos𝑅𝑅 sin𝑃𝑃 sin𝐻𝐻 − sin𝑅𝑅 cos𝐻𝐻
−sin𝑃𝑃 sin𝑅𝑅 cos𝑃𝑃 cos𝑅𝑅 cos 𝑃𝑃

� 
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Thus, the position vector 𝑿𝑿𝑂𝑂𝑤𝑤
𝐼𝐼𝐼𝐼𝐼𝐼 is transformed to the position vector in the LGF as follows   

Note that there is no lever-arm vector correction because the origin of LGF is identical to O_IBF. 

 Refraction into the water 

In case of ALB system only a small fraction of the laser pulse energy is reflected at the air-water interface 
to produce a surface return in the lidar waveform (Chapter 0). The majority of the energy is refracted into 
the water and propagates until it reaches the bottom where it is reflected back up to the system, producing 
a bottom return in the waveform. The two returns, one from the surface and one from the bottom, define 
the slant range in the water. By taking the refracted direction and the in-water range into account it is 
possible to calculate the 3D digital elevation model (DEM) of the ocean floor.  

 

Figure 5.1.2 Refraction at the air-water interface and the waveform 

It is important to note that it is only possible to calculate the refraction after the position vector is 
represented in LGF. This is because the x,y-plane of the SBF and IBF are not parallel to the water surface. 
There is also a slight mismatch between the local ellipsoid surface and the water surface; this inaccuracy 
is minimal for the purpose of in-water ranging. 

The position vector, 𝑋𝑋𝑂𝑂𝑤𝑤
𝐿𝐿𝐿𝐿𝐿𝐿 , is the vector from O_LGF to the surface point 𝑂𝑂𝑤𝑤 in Figure 5.1.2. The time of 

travel, 𝑡𝑡𝑎𝑎, from origin to the first peak of the waveform is related to the in-air range 𝐻𝐻𝑠𝑠 by the 
relationship, 𝐻𝐻𝑠𝑠 = 𝑐𝑐 ∙ 𝑡𝑡𝑎𝑎/2. Using the vector version of Snell's law, the air-incident angle is calculated as: 

Here, 𝐝𝐝a is a unit in-air direction vector and 𝐧𝐧 is an upward normal vector at the water surface. If we 
write 𝑿𝑿𝑂𝑂𝑤𝑤

𝐿𝐿𝐿𝐿𝐿𝐿 = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧] with 𝐧𝐧 = [0, 0,−1], then equation (5.1.7)  reduces to: cos 𝜃𝜃𝑎𝑎 = 𝑧𝑧 𝐻𝐻𝑠𝑠⁄ . 
Subsequently, the in-water refracted angle is calculated using the refractive index of water, 𝑛𝑛𝑤𝑤, such that 

 𝑿𝑿𝑂𝑂𝑤𝑤
𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑹𝑹𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝑿𝑿𝑂𝑂𝑤𝑤

𝐼𝐼𝐼𝐼𝐼𝐼     .  (5.1.6) 

 cos 𝜃𝜃𝑎𝑎 = −𝐧𝐧 ∙ 𝐝𝐝𝑂𝑂𝑤𝑤
𝐿𝐿𝐿𝐿𝐿𝐿    ,           𝐝𝐝𝑎𝑎 = 𝑿𝑿𝑂𝑂𝑤𝑤

𝐿𝐿𝐿𝐿𝐿𝐿/𝐻𝐻𝑠𝑠  .  (5.1.7) 

 cos 𝜃𝜃𝑤𝑤 = �1 − sin2 𝜃𝜃𝑎𝑎 /𝑛𝑛𝑤𝑤2    ,           sin2 𝜃𝜃𝑎𝑎 = −(𝑧𝑧/𝐻𝐻𝑠𝑠)2  .  (5.1.8) 

𝜃𝜃𝑎𝑎 

𝜃𝜃𝑤𝑤 
𝐝𝐝𝑤𝑤 

𝐝𝐝𝑎𝑎 𝐧𝐧 

𝑶𝑶𝒘𝒘 

𝐎𝐎_𝐋𝐋𝐋𝐋𝐋𝐋 

𝑶𝑶𝒃𝒃 

𝑡𝑡𝑤𝑤 𝑡𝑡𝑎𝑎 
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The unit direction vector of the in-water refracted beam is calculated as: 

Finally, the position vector at the ocean bottom point, 𝑂𝑂𝑏𝑏, is described by: 

where 𝑡𝑡𝑤𝑤 is the travel time in water. If the lidar point is at the ocean bottom, 𝐗𝐗𝑃𝑃𝑏𝑏
𝐿𝐿𝐿𝐿𝐿𝐿can be used in the place 

of 𝐗𝐗𝑂𝑂𝑤𝑤
𝐿𝐿𝐿𝐿𝐿𝐿 in the subsequent georeferencing calculations. 

 The position vector in the earth centered, earth fixed (ECEF) frame 

The position of the phase center of the GNSS antenna can be provided by either in an ECEF (earth 
centered earth fixed) frame (using Cartesian coordinates or geographic coordinates) or in global ellipsoid 
datum (using geographic coordinates). Once the position of the GNSS antenna phase center is known, 
then the lever-arm distances between the IMU origin and the antenna can be used to calculate the position 
of the O_IBF (which is same as O_LGF). Using the latitude 𝜙𝜙, longitude 𝜆𝜆, and ellipsoid height, ℎ, from 
O_LGF, it is possible to form a rotation matrix that transforms an arbitrary position vector in LGF to the 
position vector in ECEF: 

In addition to the rotation matrix, the geodetic position (𝜑𝜑, 𝜆𝜆,ℎ) of O_LGF itself can be transformed into 
the position in the ECEF coordinate using the following relationship: 

where, 𝑎𝑎 is the semi-major axis, 𝑒𝑒 is the eccentricity, and 𝑟𝑟𝑁𝑁 is the position in ECEF coordinates. We may 
now solve for the position vector in ECEF coordinates: 

The goal of georeferencing is achieved by calculating the position of the lidar point in ECEF. In practice, 
however, the ECEF reference system is not a convenient form for geospatial data. Most mapping products 
are in ellipsoidal reference systems (latitude/longitude/ellipsoid height). Thus, there is a need to convert 
the laser measurements from an ECEF reference system to an ellipsoidal reference system. The final 

 𝐝𝐝𝑃𝑃𝑏𝑏
𝐿𝐿𝐿𝐿𝐿𝐿 = (1 𝑛𝑛𝑤𝑤⁄ ) ∙ 𝐝𝐝𝑎𝑎 + [(1 𝑛𝑛𝑤𝑤⁄ ) cos 𝜃𝜃𝑎𝑎 − cos 𝜃𝜃𝑤𝑤] ∙ 𝐧𝐧.  (5.1.9) 

 𝐗𝐗𝑃𝑃𝑏𝑏
𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐗𝐗𝑂𝑂𝑤𝑤

𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑟𝑟𝑤𝑤 ∙ 𝐝𝐝𝑤𝑤  ,        ℎ𝑠𝑠 = 𝑐𝑐 ∙ 𝑡𝑡𝑤𝑤/(2𝑛𝑛𝑤𝑤)       , (5.1.10) 

 

𝑹𝑹𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

= �
cos 𝜆𝜆 − sin 𝜆𝜆 0
sin 𝜆𝜆 cos 𝜆𝜆 0

0 0 1
�

⎣
⎢
⎢
⎢
⎡ cos �−𝜑𝜑 −

𝜋𝜋
2
� 0 sin �−𝜑𝜑 −

𝜋𝜋
2
�

0 1 0
−sin �−𝜑𝜑 −

𝜋𝜋
2
� 0 cos �−𝜑𝜑 −

𝜋𝜋
2
�⎦
⎥
⎥
⎥
⎤
�
1 0 0
0 cos 0 −sin 0
0 sin 0 cos 0

� (5.1.11) 

 
= �

− sin𝜑𝜑 cos 𝜆𝜆 − sin 𝜆𝜆 − cos𝜑𝜑 cos 𝜆𝜆
− sin𝜑𝜑 sin𝜆𝜆 cos 𝜆𝜆 − cos𝜑𝜑 sin 𝜆𝜆

cos𝜑𝜑 0 − sin𝜑𝜑
� 

 

 𝑹𝑹𝑂𝑂_𝐿𝐿𝐿𝐿𝐿𝐿
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �

(𝑟𝑟𝑁𝑁 + ℎ) cos𝜑𝜑 cos 𝜆𝜆
(𝑟𝑟𝑁𝑁 + ℎ) cos𝜑𝜑 sin 𝜆𝜆

[(1 − 𝑒𝑒2)𝑟𝑟𝑁𝑁 + ℎ] sin𝜑𝜑
�   ,     𝑟𝑟𝑁𝑁 = 𝑎𝑎

�1−𝑒𝑒2 sin2𝜑𝜑
   , (5.1.12) 

 𝑿𝑿𝑂𝑂𝑤𝑤
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑹𝑹𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∙ 𝑿𝑿𝑂𝑂𝑤𝑤

𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑿𝑿𝑂𝑂_𝐿𝐿𝐿𝐿𝐿𝐿
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸    (5.1.13) 
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product may also need to be projected to a map coordinate system (e.g., Universal Transverse Mercator or 
local state plane), depending on the application.  

5.2 Inverse problems of lidar waveform processing 
V. Feygels, Yu. Kopilevich   

Retrieval of inherent optical properties (IOPs) of seawater from ALB data represents a supplemental 
application of bathymetrical lidar systems, along with bottom reflectance measurement. Bottom 
reflectance is considered later in Section 4.4. In this Section, a general approach to the inverse problem of 
lidar waveform processing (initially proposed in Kopilevich et al. (2005)), is discussed; the special 
problem of estimation of the diffuse attenuation coefficient is considered further in Section 5.3. 

As was discussed above in Section 4.3.1, processing of an experimentally obtained waveform, 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) 
(the output electrical signal from the receiver channel) in order to estimate environmental properties 
(bottom depth, reflectance, and IOPs) relies on a comparison of the experimental waveform with 
simulated waveforms. To perform the comparison in the optical domain using radiometric units, the 
electrical signal (in digital counts) must be transformed into the optical signal, 𝑆𝑆𝑅𝑅

𝑒𝑒𝑒𝑒𝑒𝑒 in Watts (“real 
waveform”, see Equation (4.3.12) 

where, 𝜒𝜒−1[∙] is the inverse of the channel Watt-count characteristic, 𝜒𝜒[∙] , which is determined from 
radiometric calibration of the receiving channel (Section 3.3.1).  

A (simulated) waveform, 𝑆𝑆𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡), may be calculated from a theoretically derived Impulse Response 
Function, 𝑆𝑆𝛿𝛿(𝑡𝑡), i.e. the lidar signal corresponding to an infinitesimally short (delta-function shaped) 
initial laser pulse (see Section 3.2.2). Following the same procedure presented in Section 3.3.2, 𝑆𝑆𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) 
may be calculated by convolving 𝑆𝑆𝛿𝛿(𝑡𝑡) with the effective sounding pulse shape (or the channel response 
function), 𝑅𝑅(𝑡𝑡): 

where 𝑅𝑅(𝑡𝑡), is determined from radiometric calibration measurements (see Section 3.3.1). 

Water IOPs are estimated by fitting the simulated signal, 𝑆𝑆𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡), to the actual experimental waveform, 
𝑆𝑆𝑅𝑅
𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡), on a time interval, 𝑡𝑡− ≤ 𝑡𝑡 ≤ 𝑡𝑡+, where 𝑡𝑡− corresponds to a near-surface horizon deep enough to 

obviate the need to account for surface effects, and 𝑡𝑡+ corresponds to a near-bottom horizon for which 
bottom reflection is still undetected. The problem formally reduces to minimizing the difference between 
the two functions using appropriate metrics. Using the least squares method, the functional of the pulse 
energy, 𝑄𝑄, may be written as: 

 𝑆𝑆𝑅𝑅
𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝜒𝜒−1�𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)�    , (5.2.1) 

 𝑆𝑆𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = � 𝑆𝑆𝛿𝛿(𝑡𝑡 − 𝑡𝑡′) ∙ 𝑅𝑅(𝑡𝑡′)𝑑𝑑𝑡𝑡′ ≡ 𝑆𝑆𝛿𝛿(𝑡𝑡) ∗ 𝑅𝑅(𝑡𝑡)
∞

−∞

     , (5.2.2) 

 𝑄𝑄 = � �𝑆𝑆𝑅𝑅
exp(𝑡𝑡) − 𝑆𝑆𝑅𝑅𝑠𝑠𝑠𝑠𝑚𝑚(𝑡𝑡)�

2
𝑡𝑡+

𝑡𝑡−  

𝑑𝑑𝑑𝑑     . (5.2.3) 
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In reality, one uses the discrete analogue of the functional, i.e., the sum of the squared differences 
between the experimental waveform samples, �𝑆𝑆𝑅𝑅

exp(𝑡𝑡𝑖𝑖)�, 𝑡𝑡− ≤ 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡  + , 𝑖𝑖 = 1, 2, . .., and the 
corresponding discrete values �𝑆𝑆𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑖𝑖)�. 

It should be recognized that the estimates obtained with the above algorithms, using simulated waveforms 
calculated for a homogeneous water column, ignore vertical stratification of water optical properties and 
thus correspond to effective (or “averaged”) values of the IOPs. The estimates are also subject to any 
inaccuracies of the accepted models: small-angle scattering approximation for the RTE, models used for 
emitted laser pulse and receiver channel, modeled VSF (Kopilevich, Kononenko, and Zadorozhnaya 
2011). Corresponding errors in the IOP estimates are difficult to assess.  

Unfortunately, a straightforward approach to the problem of minimization of the pulse energy functional 
(Equation (5.2.3)) as a variational problem using the absorption coefficient, 𝑎𝑎, backscattering coefficient, 
𝑏𝑏𝑏𝑏, forward-scattering coefficient, 𝑏𝑏𝑓𝑓, and VSF shape parameter 𝑚𝑚 (see Sec. 4.3.3, Equation (4.3.77) is 
mathematically ill-posed. However, it is possible to regularize the fitting problem using statistical 
relationships among the IOPs in order to restrict a priori the range of acceptable solutions (Dolin et al. 
1988). A practical realization of the approach consists of the following steps: 

Step 1. The beam attenuation coefficient, c, is taken as an independent variable in order to obtain an 
estimate, 𝑐𝑐∗, which minimizes the functional (4.2.3),  

All the other IOPs are calculated for a given value of 𝑐𝑐 via a set of regression relations. The single-
scattering albedo 𝜔𝜔0 (dimensionless)  is evaluated as (Levin & Kopelevich, 2003) via the beam 
attenuation coefficient, c, in 1/m: 

For the scattering coefficient, 𝑏𝑏 we use the relationship: 

The hydrosol (suspended particulate) volume concentration for large particles, 𝑉𝑉𝑙𝑙𝑙𝑙, in cm3/m3 is then 
evaluated using (Dorogin, Kopelevich, Levin, & Feigels, 1988):  

where b is measured in m−1, and 

Here, the specific scattering coefficients for small, 𝑏𝑏𝑠𝑠𝑠𝑠, and large, 𝑏𝑏𝑙𝑙𝑙𝑙, hydrosol particles, and the 
scattering coefficient for “pure” (hydrosol-free) seawater at 500 nm, 𝑏𝑏𝑤𝑤, are specified in Monin (1983)  
as:  

 𝑄𝑄(𝑐𝑐∗) = min
𝑐𝑐
𝑄𝑄(𝑐𝑐)   . (5.2.4) 

 ω0 = 0.944 − 0.048 𝑐𝑐⁄       , (5.2.5) 

 𝑏𝑏 = 𝑐𝑐ω0      . (5.2.6) 

 𝑉𝑉𝑙𝑙𝑙𝑙 = 1.44 ⋅ 10−2 + 1.68 ⋅ 𝑏𝑏     , (5.2.7) 

 𝑏𝑏 = 𝑉𝑉𝑠𝑠𝑠𝑠 ⋅ 𝑏𝑏𝑠𝑠𝑠𝑠 + 𝑉𝑉𝑙𝑙𝑙𝑙 ⋅ 𝑏𝑏𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑤𝑤      . (5.2.8) 

 𝑏𝑏𝑠𝑠𝑠𝑠 = 1.34 m−1 ;  𝑏𝑏𝑙𝑙𝑙𝑙 = 0.312 m−1 ;   𝑏𝑏𝑤𝑤 = 1.7 ⋅ 10−3 m−1. (5.2.9) 
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To be precise, equations (5.2.8) and (5.2.9) are established based on 500 nm and not 532 nm (Monin, 
1983) , but the corresponding error is negligible for the ALB case here. Knowing 𝑉𝑉𝑙𝑙 and 𝑉𝑉𝑠𝑠, it is possible 
to approximate the VSF,  β(θ), as proposed by Kopelevich & Mezhericher (1983):  

where the wavelength, λ =  532 𝑛𝑛𝑛𝑛. The functions, β𝑠𝑠𝑠𝑠(θ, 550) and β𝑙𝑙(θ, 550) are the VSF for water 
suspensions of small and large particles respectively, for unit concentrations of the suspensions; 
β𝑤𝑤(θ, 550) is the VSF for pure seawater. The values of these functions are tabulated in Monin (1983) for 
a range of scattering angles, θ. 

Integration of (5.2.10) over the appropriate solid angles gives the forward and backward scattering 
coefficients, 𝑏𝑏𝑓𝑓 and 𝑏𝑏𝑏𝑏:  

Finally, the values are used to obtain the VSF asymmetry coefficient, 𝑏𝑏𝑓𝑓 𝑏𝑏𝑏𝑏⁄ , and the average cosine of 

the scattering angle, cosθ; the latter is required for the parameter, 𝑚𝑚, in Dolin’s model VSF [see Dolin & 
Levin (1991) and Sec. 4.3.3, Equation (4.3.77]: 

Equation (5.2.10) also yields an estimate for the backscattering coefficient, βπ  = β(180°). Since (5.2.12) 
is based on in-situ measurements that do not cover angles greater than ~170°, the equation does not 
account for the angular dependence of the VSF for angles near 180°, where a pronounced "enhanced 
backscattering effect" can occur (Maffione and Dana 1996). For a more realistic estimate allowing for the 
backscattering effect, we may use  

with βπ  = β (180°) calculated from (5.2.10) and 𝐶𝐶 ={1.3-1.9} 

Step 2: consists of finding a better estimate of ω0
∗  than that given by equation (5.2.5) by varying the value 

of the single scattering albedo, ω0, at the fixed 𝑐𝑐 = 𝑐𝑐∗ : 

During this estimation, all the other IOPs (𝑎𝑎, 𝑏𝑏𝑏𝑏,  𝑏𝑏𝑓𝑓, and 𝑚𝑚) are assumed to be unambiguously defined 
by ω0 R using equations (5.2.6)-(5.2.8) and (5.2.10)-(5.2.12), with 𝑐𝑐 = 𝑐𝑐∗. This step of the fitting algorithm 
makes it possible to account for local peculiarities of the sea water optical properties, rather than simply 
using equation (5.2.5), which is a statistical average over various regions of the ocean.  

𝛽𝛽(𝜃𝜃) = �
550
𝜆𝜆
�
1.7

⋅ 𝛽𝛽𝑠𝑠𝑠𝑠(𝜃𝜃, 550) ⋅ 𝑉𝑉𝑠𝑠𝑠𝑠 + �
550
𝜆𝜆
�
0.3

⋅ 𝛽𝛽𝑙𝑙𝑙𝑙(𝜃𝜃, 550) ⋅ 𝑉𝑉𝑙𝑙𝑙𝑙 

+ �550
𝜆𝜆
�
4.3

⋅ 𝛽𝛽𝑤𝑤(𝜃𝜃, 550) ,    
(5.2.10) 

 𝑏𝑏𝑓𝑓 = 2π� β(θ) ⋅ sin

π
2�

0

(θ) 𝑑𝑑θ     ,     𝑏𝑏𝑏𝑏 = 2π � β(θ) ⋅ sin
π

π
2�

(θ) 𝑑𝑑θ    . (5.2.11) 

 𝑚𝑚 = [0.142 − 0.132 ⋅ cos 𝜃𝜃]−1 2�      . (5.2.12) 

 𝛽𝛽𝜋𝜋 = 𝐶𝐶 ⋅ 𝛽𝛽(180𝑜𝑜)    , (5.2.13) 

 𝑄𝑄(𝑐𝑐∗,𝜔𝜔0
∗) = min

𝜔𝜔0
𝑄𝑄(𝑐𝑐∗,𝜔𝜔0)    . (5.2.14) 
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It is important to emphasize that the algorithm described above is limited to  waters deep enough to 
provide an extended time interval (𝑡𝑡−, 𝑡𝑡+) for which the waveform is not subject to surface or bottom 
effects. In accordance with the waveform components considered in Sec. 4.2.2 [see Figure 4.2.6 – Figure 
4.2.8],  

where the “geometrical stretch” of the surface-reflected pulse, Δ𝑡𝑡𝑠𝑠𝑠𝑠, given by (4.2.4), depends on the lidar 
sounding geometry (i.e., it increases with the sounding angle, the emitter divergence, and the receiver 
field-of-view angle). Similarly, the reflected bottom pulse duration, Δ𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏, given by equation (4.2.5), is 
augmented by the small-angle scattering effect, and 𝜏𝜏𝑅𝑅 is the effective pulse duration. An additional 
constraint is the requirement that the received power, 𝑆𝑆𝑅𝑅

exp(𝑡𝑡+), exceed the output signal noise level, 
acknowledging the strong attenuation of the laser beam by seawater. 

5.3 Estimation of the diffuse attenuation coefficient from lidar waveform 
slope 
V. Feygels, Yu. Kopilevich   

The diffuse attenuation coefficient, 𝐾𝐾𝑑𝑑, is a key physical characteristic in the field of ocean optics, and is 
a prominent example of an apparent optical properties (AOPs) (see Section 3.3.1 and (Mobley, 1994)). To 
calculate 𝐾𝐾𝑑𝑑 in terms of the inherent optical properties (IOPs), the following relation proposed by Morel 
& Loisel (Morel & Loisel, 1998) may be applied: 

where 1.0395 is a theoretical constant; 𝜃𝜃𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠, is solar zenith angle in the water; and 𝑎𝑎𝑠𝑠 is the effective 
absorption coefficient. The coefficient 𝑎𝑎𝑠𝑠 defined in Section 4.3.2 as 𝑎𝑎𝑠𝑠 = 𝑎𝑎 + 2𝑏𝑏𝑏𝑏 (𝑎𝑎 is the absorption 
coefficient and 𝑏𝑏𝑏𝑏 is the backscattering coefficient) is to be identified with the property  𝑎𝑎 + 𝑏𝑏𝑏𝑏 used by 
Morel & Loisel (1998) and others. The ratio 𝐾𝐾𝑑𝑑 𝑎𝑎𝑠𝑠⁄  calculated for various solar zenith angles using 
equation (5.3.1), are presented in Table 5.1: 

 𝑡𝑡− ≥ 𝑡𝑡𝑠𝑠𝑠𝑠 +
Δ𝑡𝑡𝑠𝑠𝑠𝑠

2
+ τ𝑅𝑅           ;            𝑡𝑡+ ≤ 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏 −

Δ𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏

2
     , (5.2.15) 

 𝐾𝐾𝑑𝑑 = (cos 𝜃𝜃𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠)−1 ∙ 1.0395 ∙ 𝑎𝑎𝑠𝑠     ,   (5.3.1) 
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Table 5.1.   𝑲𝑲𝒅𝒅 𝒂𝒂𝒔𝒔⁄  calculated for various solar zenith angles using equation (4.3.1) 

solar zenith angle 

cos𝜃𝜃𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 1/𝜃𝜃𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 𝐾𝐾𝑑𝑑 𝑎𝑎𝑠𝑠⁄  in the air, 𝜃𝜃𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 
degree 

in the water, 𝜃𝜃𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 

Radian Degree 

0 0 0 1 1 1.0395 

5 0.0651 3.7292 0.9979 1.0021 1.041706 

10 0.13 7.4458 0.9916 1.0085 1.04834 

15 0.1944 11.137 0.9812 1.0192 1.05945 

20 0.2581 14.788 0.9669 1.0343 1.07511 

25 0.3209 18.384 0.949 1.0538 1.095406 

30 0.3824 21.909 0.9278 1.0778 1.12042 

35 0.4423 25.343 0.9038 1.1065 1.150196 

40 0.5003 28.665 0.8774 1.1397 1.1847 

45 0.5559 31.85 0.8494 1.1773 1.223753 

50 0.6085 34.867 0.8205 1.2188 1.266941 

55 0.6577 37.684 0.7914 1.2636 1.313506 

60 0.7027 40.262 0.7631 1.3105 1.362217 

In practical calculations, accounting for “reasonable” sun zenith angles for a given site latitude, the ratio 
𝐾𝐾𝑑𝑑 𝑎𝑎𝑠𝑠⁄  may be approximated by a constant. For example, an approximate relationship derived from 
equation (5.3.1) and Table 5.1 [see Tuell et al. (Tuell et al., 2005)]: 

Estimation of the diffuse attenuation coefficient from lidar sounding data consists in retrieval of the 
effective absorption coefficient, 𝑎𝑎𝑠𝑠, from the lidar waveform, and the application of equation (4.3.1) [or 
its approximate form analogous to equation (5.3.2)]. Formally, the value of 𝑎𝑎𝑠𝑠 may be estimated from the 
inverse problem described in Section 4.2 by fitting an experimental waveform with a simulated waveform 
that is calculated using a variable set of IOP values. For the specific task of estimating the diffuse 
attenuation coefficient, however, the general ill-posed problem may be regularized without invoking 
statistical relationships among the IOPs. The practical approach is based on the backscattered lidar signal 
model (see Sections 4.3.2 and 4.3.3) for an infinitesimally short pulse, which may be written in two 
equivalent forms [compare with (4.3.13)]:  

Here the slant depth, ℎ𝑠𝑠 is related to the time, 𝑡𝑡, as ℎ𝑠𝑠 = ℎ𝑠𝑠(𝑡𝑡) = 𝑐𝑐𝑐𝑐/2𝑛𝑛𝑤𝑤 (where 𝑐𝑐/𝑛𝑛𝑤𝑤 is the speed of 
light in the water); 𝑄𝑄 is the energy of the incident laser pulse (taking into account the attenuation over the 

 𝐾𝐾𝑑𝑑 = 1.17 ∙ 𝑎𝑎𝑠𝑠     , (5.3.2) 

 
𝑆𝑆𝛿𝛿
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝑄𝑄 ⋅ 𝜏𝜏𝐹𝐹2

Σ
(𝐻𝐻𝑠𝑠𝑛𝑛𝑤𝑤 + ℎ𝑠𝑠)2 𝛽𝛽𝜋𝜋

𝑐𝑐
2n𝑤𝑤

exp�−2ℎ𝑠𝑠 ∙ 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠(ℎ𝑠𝑠)� 

                       = 𝑄𝑄 ⋅ 𝜏𝜏𝐹𝐹2
Σ

(𝐻𝐻𝑠𝑠𝑛𝑛𝑤𝑤 + ℎ𝑠𝑠)2 𝛽𝛽𝜋𝜋
𝑐𝑐

2n𝑤𝑤
exp(−2ℎ𝑠𝑠 ∙ 𝑎𝑎𝑠𝑠) ∙ 𝐹𝐹𝐷𝐷(ℎ𝑠𝑠) 

(5.3.3) 
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atmospheric path and the transmission of the receiver system); 𝜏𝜏𝐹𝐹 is the Fresnel transmission of the 
water–air interface; Σ is the pupil area of the lidar receiver; 𝛽𝛽𝜋𝜋 is the backscattering coefficient of sea 
water; and 𝐻𝐻𝑠𝑠  is length of beam pass in the air (slant path of the lidar beam above sea level). The so-called 
“system attenuation coefficient”, 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 may then be expressed as  

The function 𝐹𝐹𝐷𝐷(ℎ𝑠𝑠) was introduced by Dolin & Savel’ev (1971) [see also Dolin & Levin (1991) to 
account for the effect of forward scattering on the decay of the lidar signal with water depth; 𝐹𝐹𝐷𝐷(ℎ𝑠𝑠) = 1 
at ℎ𝑠𝑠 = 0 and decreases with the water depth. The decay rate of the function increases with the small-
angle forward-scattering coefficient  𝑏𝑏𝑠𝑠 = 𝑏𝑏 − 𝑏𝑏𝑏𝑏 , and strongly depends on the lidar receiver field-of-
view angle Θ𝑅𝑅. Figure 5.3.1 illustrates the function 𝐹𝐹𝐷𝐷(ℎ𝑠𝑠), calculated for two CZMIL receiver channels: 
the wide-field channel (Θ𝑅𝑅 = 40 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and the narrow-field channel (Θ𝑅𝑅 = 1.9 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚). The IOP values 
used in the calculations were: 𝑎𝑎𝑠𝑠 = 0.075 𝑚𝑚−1; 𝑏𝑏𝑠𝑠 = 0.2 𝑚𝑚−1; VSF shape parameter in Dolin’s model, 
𝑚𝑚 = 7. In the case of the wide-field channel, the approximation 𝐹𝐹𝐷𝐷(ℎ𝑠𝑠) ≈ 1 may be used for small 
enough depth values, ℎ𝑠𝑠 ≤ ℎ𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝑏𝑏𝑠𝑠,Θ𝑅𝑅), with the additional condition (from (4.3.4) that 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠(ℎ𝑠𝑠) ≈ 𝑎𝑎𝑠𝑠 . 
According to equation (3.3.1, the backscattered signal 𝑆𝑆𝛿𝛿

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) for the wide-field receiver channel over 
the time interval, 𝑡𝑡 ≤ 𝑡𝑡𝑠𝑠𝑠𝑠(𝑏𝑏𝑠𝑠,Θ𝑅𝑅) ≡ 2ℎ𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝑏𝑏𝑠𝑠,Θ𝑅𝑅)/𝑛𝑛𝑤𝑤𝑐𝑐, (where 𝑡𝑡𝑠𝑠𝑠𝑠 is the upper limit of the 
backscattered signal argument that corresponds to a negligible impact of forward scattering) may be 
approximated with the exponential relationship: 

 
Figure 5.3.1. The function 𝐹𝐹𝐷𝐷(ℎ𝑠𝑠) calculated for the wide-field CZMIL channel with the field-of-view angle 
Θ𝑅𝑅 = 40 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (blue) and for the narrow-field channel with Θ𝑅𝑅 = 1.9 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (red); 𝑎𝑎𝑠𝑠 = 0.075 𝑚𝑚−1; 𝑏𝑏𝑠𝑠 =

0.2 𝑚𝑚−1; VSF shape parameter in Dolin’s model 𝑚𝑚 = 7.  

Figure 4.3.2 illustrates the backscattered signal decay with slant depth. The simulated backscattered 
components of the waveforms 𝑆𝑆𝛿𝛿

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) in each of the channels are shown as functions of the slant depth, 
ℎ𝑠𝑠 = 𝑐𝑐𝑐𝑐 2𝑛𝑛𝑤𝑤⁄ . It is seen that, for the narrow-field channel, the signal tends to zero at the upper limit of the 
time interval, 𝑡𝑡𝑠𝑠𝑠𝑠(𝑏𝑏𝑠𝑠,Θ𝑅𝑅), where the approximation (5.3.5) is accurate enough for realistic forward scattering. 
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 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠(ℎ𝑠𝑠) = 𝑎𝑎𝑠𝑠 + 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠′ (ℎ𝑠𝑠) = 𝑎𝑎𝑠𝑠 − ln𝐹𝐹𝐷𝐷(ℎ𝑠𝑠) (5.3.4) 

 𝑆𝑆𝛿𝛿
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) ≈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒[−2ℎ𝑠𝑠 ∙ 𝑎𝑎𝑠𝑠],         𝑡𝑡 ≤ 𝑡𝑡𝑠𝑠𝑠𝑠(𝑏𝑏𝑠𝑠 ,Θ𝑅𝑅) (5.3.5) 
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For water that is sufficiently deep, there exists a time interval 𝑡𝑡𝑠𝑠𝑠𝑠 + ∆𝑡𝑡𝑠𝑠𝑠𝑠 < 𝑡𝑡 < 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏 − ∆𝑡𝑡 (see Section 
5.3.2 for the notation) for which the effects of surface and bottom reflection may be neglected. In that 
case, the backscattered signal 𝑆𝑆𝛿𝛿

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) coincides with the ImpRF, 𝑆𝑆𝛿𝛿(𝑡𝑡) (the waveform corresponding to 
an infinitesimally short sounding pulse, see Section 3.3.2). In virtue of equation (4.3.5),  

The time interval specified in equation (5.3.6) exists (is not empty) only for clear water with weak enough 
scattering and absorption for 𝑆𝑆𝛿𝛿(𝑡𝑡) to be well above the noise level, if the receiver field of view is wide 
enough to ensure existence of the time interval specified in (5.3.6). 

 

Figure 5.3.2. Backscattered components, 𝑆𝑆𝛿𝛿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, of delta-function sounding pulse waveforms in the wide-field 
CZMIL channel with the field-of-view angle, Θ𝑅𝑅 = 40 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (blue) and for the narrow-field channel with Θ𝑅𝑅 =

1.9 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (red); 𝑎𝑎𝑠𝑠 = 0.075 𝑚𝑚−1; 𝑏𝑏𝑠𝑠 = 0.2 𝑚𝑚−1; VSF shape parameter in Dolin’s model 𝑚𝑚 = 7. Black lines 
correspond to exponential approximation, 𝑆𝑆𝛿𝛿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏~𝑒𝑒𝑒𝑒𝑒𝑒(−2𝑎𝑎𝑠𝑠ℎ𝑠𝑠). 

In order to estimate the effective absorption coefficient, 𝑎𝑎𝑠𝑠  , from the lidar waveform, it is essential that 
equation (4.3.6) yield a formula for the “real waveform”, 𝑆𝑆𝑅𝑅(𝑡𝑡) [equation (4.2.8)], similar to that 
retrievable from the output lidar signal: 

where 𝑅𝑅(𝑡𝑡) is the effective sounding pulse shape (see Section 4.3.1). In effect, equation (5.3.6) requires 
that:  
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 𝑆𝑆𝛿𝛿(𝑡𝑡) ≈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑐𝑐𝑐𝑐
𝑛𝑛
∙ 𝑎𝑎𝑠𝑠�      ,     𝑡𝑡𝑠𝑠𝑠𝑠 + ∆𝑡𝑡𝑠𝑠𝑠𝑠 < 𝑡𝑡 < min{𝑡𝑡𝑠𝑠𝑠𝑠(𝑏𝑏𝑠𝑠 ,Θ𝑅𝑅), 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏 − ∆𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏}   . (5.3.6) 

  𝑆𝑆𝑅𝑅(𝑡𝑡) = ∫ 𝑆𝑆𝛿𝛿(𝑡𝑡 − 𝑡𝑡′) ∙ 𝑅𝑅(𝑡𝑡′)𝑑𝑑𝑡𝑡′ ≡ 𝑆𝑆𝛿𝛿(𝑡𝑡) ∗ 𝑅𝑅(𝑡𝑡)      ,∞
−∞  (5.3.7) 

 � 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑐𝑐(𝑡𝑡 − 𝑡𝑡′)

𝑛𝑛
∙ 𝑎𝑎𝑠𝑠� ∙ 𝑅𝑅(𝑡𝑡′)

∞

−∞

𝑑𝑑𝑡𝑡′ = 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑐𝑐𝑐𝑐
𝑛𝑛
∙ 𝑎𝑎𝑠𝑠� ∙ � 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑐𝑐𝑐𝑐′
𝑛𝑛
∙ 𝑎𝑎𝑠𝑠� ∙ 𝑅𝑅(𝑡𝑡′)

∞

−∞

 (5.3.8) 
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in which case (5.3.6) and (5.3.7) yield 

Compared to equation (5.3.6), the time interval in equation (5.3.9) is reduced by the effective sounding 
pulse duration, 𝜏𝜏𝑅𝑅. 

Based on equation (5.3.9), the problem of estimating the effective absorption coefficient from the lidar 
waveform is reduced to the derivation of the {𝑆𝑆𝑅𝑅(𝑡𝑡)} values from output signal samples at discrete times 
in the interval specified in equation (5.3.8) and a linear regression of the values in logarithmic scale 
((5.3.2)). The estimate for 𝑎𝑎𝑠𝑠 is then easily obtained from the line slope regression. 

Note that the approach to estimating the diffuse attenuation coefficient from the lidar waveform calls for 
application of the receiver channel Watt-count characteristic (Section 4.3.1) obtained in the course of 
radiometric calibration of the receiver channel described in Section 4.4. Knowledge of the channel 
response to the laser pulse or effective pulse shape, 𝑅𝑅(𝑡𝑡), is not necessary. Applicability of the procedure 
described above is restricted by the limitations imposed by both environmental properties (water clarity 
and the sea depth) and lidar receiver characteristics (the receiver field of view, the effective sounding 
pulse duration). The procedure also assumes homogeneity of the water column. Thus, the estimates for 
the effective absorption and the diffuse attenuation coefficient obtained using this method relate to 
“effective averaged” values of the optical properties. It should be noted that other approaches to 
estimation of diffuse attenuation profiles from lidar waveforms are presented in Steinvall, Koppari, & 
Karlson (1993) and Smart & Kwon (1996). 

5.4 Bottom reflectance estimation 
Yuri Kopilevich and Chi-Kuei Wang  

The ability to estimate seafloor reflectance from ALB waveforms, first demonstrated by Lee and Tuell 
(Lee & Tuell, 2003), may have direct value in the analysis of bottom habitat type (Tuell et al., 2005). The 
lidar-derived bottom reflectance is also used (together with depth) as a constraint in inversion of airborne 
hyperspectral imagery data for benthic mapping applications (Park et al., 2010; Tuell et al., 2005; Tuell & 
Park, 2004). 

As indicated above in 5.1 (see also 4.3.1), processing experimentally obtained waveforms in order to 
estimate bottom reflectance requires a preliminary transformation from the output electrical signal from 
the receiver channel, 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) (in digital counts), into the optical signal, 𝑆𝑆𝑅𝑅

𝑒𝑒𝑒𝑒𝑒𝑒 in Watts (i.e., the “real 
waveform”, see Section 4.3.1). The channel Watt-count characteristic, 𝜒𝜒[∙] , used in the procedure, should 
be known from radiometric calibration of the receiving channel (Section 4.3.1).  

In shallow water, the bottom-reflected component of the lidar return is superimposed on the 
backscattering from the water column (Pe’eri & Philpot, 2007) as shown in Figure 5.4.1). In deep, clear 
water, the backscattered signal from near-bottom water layer can be below the noise level in which case it 
does not interfere with the bottom-reflected pulse (Figure 5.4.2). 

 
𝑆𝑆𝑅𝑅(𝑡𝑡) ≈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑐𝑐𝑐𝑐
𝑛𝑛
∙ 𝑎𝑎𝑠𝑠�      ,    

 𝑡𝑡𝑠𝑠𝑠𝑠 + ∆𝑡𝑡𝑠𝑠𝑠𝑠 + 𝜏𝜏𝑅𝑅 < 𝑡𝑡 < min{𝑡𝑡𝑠𝑠𝑠𝑠(𝑏𝑏𝑠𝑠,Θ𝑅𝑅), 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏 − ∆𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏}      . 
(5.3.9) 
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Figure 5.4.1. CZMIL waveform from the Cat Island region, Mississippi Coast; depth 6.5 m. The bottom-reflected 
peak rides on the background caused by backscattering from the water.    

 
Figure 5.4.2. CZMIL waveform from the Fort Lauderdale coastal zone, Florida; depth 39 m. The backscattered 

signal from the near-bottom layer falls below the noise level.  

In the shallow-water case, bottom reflectance can be extracted from the ALB “real waveform” (optical 
signal), provided that the bottom return can be decoupled from the volume scattering. Two common 
methods for bottom return extraction are described below and their schematic plots are shown in Figure 
5.4.3: 

1) Extrapolation approach: The exponentially-decaying signal of the volume scattering return is 
extrapolated toward the trailing end of the waveform, extending over the time bins of the bottom 
return. The residual signal, which is the difference between the bottom return (in the original 
waveform) and the extrapolated curve is then used to estimate bottom return signal (Wang & 
Philpot, 2007).  
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2) Gaussian deconvolution: The bottom return signal is decomposed into several parametric curves. 
Symmetrical Gaussian functions are often employed for representing the surface (air/water 
interface) and bottom returns; exponentially modified Gaussian function have also been 
employed in situations where the asymmetry of the returns are not negligible (Cottin, Forbes, & 
Long, 2009; Wong & Antoniou, 1991, 1994)  

 
Figure 5.4.3. The schematic plots of extrapolation approach (left) and Gaussian deconvolution (right), where the 

water volume is modeled as a quadrilateral function, for bottom return extraction. 

Modeling the water volume return is not trivial. As will be shown below, the modeling procedure can be 
well-described for a homogeneous water column; however, the assumption that the water column is 
vertically homogeneous is not always correct. Thus, linear, exponential, triangular, quadrilateral or 
successive Gaussian functions are all possible candidates for the modeling task (Abady, Bailly, Baghdadi, 
Pastol, & Abdallah, 2014; Collin et al., 2007; Wong & Antoniou, 1991). The selection of an appropriate 
function to model the volume scattering depends on the specific task of interest. The bottom return 
obtained by the Gaussian deconvolution approach provides a complete set of information, e. g., amplitude 
and shape, which can be useful for bottom classification. Nonetheless, the numerical instability and the 
computation cost are the major obstacles for conducting a Gaussian decomposition on ALB waveforms 
that contain a large number of laser measurements. 

The bottom return power decreases in concert with the backscattered signal (see Figure 5.4.4). In order to 
obtain the bottom reflectance, the bottom return signals must be normalized to remove the water 
attenuation, which is described by the exponential factor [Section 5.3, Equation (4.3.1]: 

where ℎ𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is the slant bottom depth, and 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 is the system attenuation coefficient described in details in 
Section 5.3. According to equation (5.3.4), the system attenuation coefficient may be expressed as:  

 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠�ℎ𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏� = 𝑎𝑎𝑠𝑠 − 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠′ �ℎ𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏� = 𝑎𝑎𝑠𝑠 − ln𝐹𝐹𝐷𝐷�ℎ𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏�     , (4.4.2) 

where 𝑎𝑎𝑠𝑠 is the effective absorption coefficient of the water, and the function 𝐹𝐹𝐷𝐷 accounts for the effect of 
forward scattering of laser beam in the water on lidar signal decay with depth (Dolin and Levin 1991). 
The function is described in Sections 4.3.3 and 5.3). In the case of clear water and moderate depth, it is 

 exp�2ℎ𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠�ℎ𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏��      , (4.4.1) 
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important to note that the contribution from forward scattering to the system attenuation coefficient may 
be neglected for a lidar receiver with wide enough field-of-view. As a result, 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 in equation (4.4.2) may 
be approximated (for homogeneous water column) by the effective absorption coefficient, 𝑎𝑎𝑠𝑠. Figure 
5.4.4 provides an example for such a case (i.e., a nearly exponential signal decay ~exp[−2ℎ𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑎𝑎𝑠𝑠] ). In 
the extremely clear water (𝑎𝑎𝑠𝑠 ≈ 0.05 𝑚𝑚−1), the forward scattering effect does not manifest itself in the 
decay rate of the waveforms from the CZMIL “deep channel” up to the depth of  ~ 40 m.  

Figure 5.4.4. Attenuation of backscattered signal and bottom-reflected peaks at various depths. Superposition of 
waveforms from Fort Lauderdale coastal zone, Florida, obtained with CZMIL “deep channel” (PMT in 

“logarithmic” mode). The abrupt change in the magnitude of the bottom return between 25-30 m is indicative of a 
change in the water properties. 

In the case under consideration (that is, in the situation when the forward scattering effect may be 
neglected), the exponential attenuation factor, exp[−2ℎ𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑎𝑎𝑠𝑠], may be derived using an estimate of an 
effective absorption coefficient – assumed to be approximately constant throughout the water column – 
obtained from the lidar waveform as described in Section 4.3 above. The water attenuation factor can also 
be obtained by regression of the bottom return signals from a range of depths of the same bottom type. 
The latter method requires depth information and assumes that bottom composition and morphology are 
uniform over the survey area (Philpot, 1989). In the example shown in Figure 5.4.4 calculating the 
attenuation coefficient assuming a constant bottom reflectivity is valid for depths up to 25 m, but at 
greater depths the bottom reflectivity falls noticeably. 

Earlier estimates of the bottom reflectance from SHOALS data were produced using a constant value of 
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 for the entire data set; specifically, an a priori value selected by the operator at the time of data 
acquisition was applied to the entire data set. Such estimates were called “pseudo-reflectance” (Lee & 
Tuell, 2003). In the more recent rapid environmental assessment (REA) processor of Optech, algorithms 
which estimate SHOALS 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 for each waveform were implemented, and these values were used to 
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improve the pseudoreflectance of the dataset (Tuell et al., 2005). The improvement in the resulting bottom 
images proved to be significant for seafloor areas with varying morphology, such as a series of reefs 
separated by regions of sand, seagrass, and mixed vegetation (Tuell & Park, 2004).  

Table 5.2.  Values of lidar parameters and environmental characteristics used in the waveform simulation 

Parameter & symbol Units Value 

The lidar carrier height above the sea surface, H m 400 

The nadir angle in the atmosphere, 𝜽𝜽𝒂𝒂 deg 20 

The sounding beam divergence (full plane angle), 𝚯𝚯𝑬𝑬 mr 5 

The receiver field-of-view (full plane angle) mr 40 

The pulse energy, Q mJ 3 

The effective sounding pulse duration (for 0.5 level), 𝝉𝝉𝑹𝑹 ns 3.5 

The bottom depth, 𝒉𝒉𝒃𝒃𝒃𝒃𝒃𝒃 m 20; 40 

The effective absorption coefficient, 𝒂𝒂𝒔𝒔 m-1 0.075 

The forward scattering coefficient, 𝒃𝒃𝒔𝒔 m-1 0; 0.2 

The VSF shape parameter in Dolin’s model, 𝒎𝒎 - 7 

The water surface reflectance, 𝝆𝝆𝒔𝒔𝒔𝒔 - 0.002 

The bottom reflectance, 𝝆𝝆𝒃𝒃𝒃𝒃𝒃𝒃 - 0.15 

 

In the general case (e.g., for more turbid waters), forward scattering of the sounding light beam may 
seriously affect the applicability of the above approach for bottom reflectance estimation. The impacts of 
forward scattering include: (1) departure of the waveform decay rate from a purely exponential 
dependence,  ~𝑒𝑒𝑒𝑒𝑒𝑒[−2ℎ𝑠𝑠 ∙ 𝑎𝑎𝑠𝑠], and (2) a stretch of the bottom-reflected pulse caused by the spread of the 
sounding laser beam (Tuell et al., 2005). The effects are illustrated in Figure 5.4.5 through Figure 5.4.8  
using simulated waveforms obtained with the CZMIL simulator (Section 4.3.3) and the lidar waveform 
model described in Section 4.3.2. The values of the lidar parameters and environmental characteristics 
used in the simulation are listed in Table 5.2. 

The effect of forward scattering in the water on the waveform decay rate was discussed in Section 5.3 
(Figure 5.3.2). Neglecting the waveform decay rate effect (in the case of deep / turbid enough water) will 
lead to underestimate of the bottom return decrease with depth, and a corresponding error in 
normalization of the bottom return signal for attenuation by the water column [Section 5.3, Eq. (4.3.1)]. 
As a result, bottom reflectance may be overestimated. In Figure 5.4.5 (forward scattering coefficient, 𝑏𝑏𝑠𝑠= 
0.2 m-1), the error does not exceed ~20%, at 20 m depth. However, for the deeper water example in Figure 
5.4.6; (depth 40 m, 𝑏𝑏𝑠𝑠 = 0.2 𝑚𝑚−1), the error reaches up to 200%. 
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Figure 5.4.5. Simulated CZMIL deep channel waveform for a bottom depth of 20 m. The red, solid line is the 
waveform calculated for the forward scattering coefficient, 𝑏𝑏𝑠𝑠𝑠𝑠 = 0.2 𝑚𝑚−1

P

 ; the black line corresponds to zero 
forward scattering (𝑏𝑏𝑠𝑠 = 0 𝑚𝑚−1) and demonstrate the “pure exponential” decay of backscattered signal, 

~𝑒𝑒𝑒𝑒𝑒𝑒[−2ℎ𝑠𝑠 ∙ 𝑎𝑎𝑠𝑠] . 

Figure 5.4.8 and Figure 5.4.9 demonstrate the bottom-reflected pulse stretch due to small-angle forward 
scattering of the laser beam in water (the “environmental stretch”). The stretch reduces the amplitude of 
bottom return. If the pulse stretch is not taken into account, the result may lead to significant 
underestimation of bottom reflectance. The pulse stretch effect increases with depth and water turbidity 

 

 
Figure 5.4.6. Simulated CZMIL deep channel waveform for a bottom depth of 40 m. Red, solid line is the waveform 

calculated for the forward scattering coefficient 𝑏𝑏𝑠𝑠 = 0.2 𝑚𝑚−1; black, dashed line corresponds to zero forward 
scattering, 𝑏𝑏𝑠𝑠 = 0 𝑚𝑚−1, and demonstrate “pure exponential” decay of the backscattered signal,  ~𝑒𝑒𝑒𝑒𝑒𝑒[−2ℎ𝑠𝑠 ∙ 𝑎𝑎𝑠𝑠]. 
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(with the forward scattering coefficient, 𝑏𝑏𝑓𝑓). The “environmental stretch” is observed against the 
background stretch of the reflected peak due to the ray-path geometry (“geometrical stretch”, Section 
4.2.1) and the effective pulse duration (“hardware-based stretch”, Section 4.2.2). Therefore, the effect of 
“environmental stretch” is the less prominent with wider effective pulses or at greater off-nadir 
(incidence) angles. 

Figure 5.4.7. A simulated CZMIL deep channel waveform over the time interval of the bottom-reflected signal for a 
bottom depth of 10 m. The black, dashed line corresponds to zero forward scattering (𝑏𝑏𝑠𝑠= 0 m-1), when the shape of 
bottom peak is determined only by the “geometric” and the “hardware-based” stretch. The red, solid line depicts the 

waveform calculated for the forward scattering coefficient 𝑏𝑏𝑠𝑠= 0.2 m-1 and demonstrates the additional 
“environmental stretch” of the peak. 

 

Figure 5.4.8. Simulated CZMIL deep channel waveform in the time interval of bottom-reflected signal for the 
bottom depth of 20 m. The black, dashed line corresponds to zero forward scattering (𝑏𝑏𝑠𝑠 = 0 𝑚𝑚−1), when the shape 

of bottom peak is determined only by “geometric” and “hardware-based” stretch. The red, solid line depicts the 
waveform calculated for the forward scattering coefficient, 𝑏𝑏𝑠𝑠 = 0.2 𝑚𝑚−1, and illustrates the additional 

“environmental stretch” of the peak. 
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To summarize, bottom return signals need to be inverted using an estimate of the water attenuation 
(Equation (4.4.1) in order to obtain bottom reflectance. The water attenuation coefficient can be obtained 
either by the regression of the bottom return signals over range of depths of the same bottom type or from 
the water volume return as a result from the waveform decomposition method. Previous studies for 
extracting bottom reflectance required depth information and assumes that bottom composition and 
morphology are uniform over the survey area. 

Caution must be exercised when compiling bottom reflectance maps using several flight lines. 
Environmental factors, such as water surface and bottom slopes may affect the reflectance estimation 
(Section 3.4). The light field is continuously varying over the transmission and return path (Section 5.3). 
Also, the laser beam undergoes focusing as the laser pulse enters the water, and defocusing as the return 
pulse exits the water. As a consequence, the magnitude and variability of the bottom return signal initially 
increases as the water depth decreases and may reach maximum values at a depth that is related to the 
water surface geometry. This is the phenomenon of double focusing (Abrosimov & Luchinin, 1999; 
Luchinin, 1987; McLean & Freeman, 1996)). Wang and Philpot (2007) showed using data from a study 
site near Egmont Key, FL, that the effect of double focusing can be reduced in turbid water. Nonetheless, 
the asymmetric shape of the water surface, typically in coastal areas, alters the light field differently for 
adjacent survey flight lines. As a result, the estimated bottom reflectance over the same area may have 
different values for adjacent survey flight lines. 

It is also important to note that bottom slope affects the shape of the bottom return, where the pulse is 
more stretched with increasing angle of incidence (Steinvall & Koppari, 1996). The benefit of employing 
the waveform decomposition method is that the complete information of the bottom return in that the 
shape of the bottom return is appropriately depicted by the Gaussian. On the other hand, using the peak 
value of the bottom return signal requires that the signal correction must rely on other simulation results 
or experiments (Tulldahl & Wikström, 2012; Wang & Philpot, 2007). 

5.5 Effects of forward scattering 
Minsu Kim 

When a laser pulse propagates through an attenuating (absorbing and scattering) medium, environmental 
parameters control the varying rate of the decreasing return, and may deform the position and shape of the 
surface reflection and bottom reflection peaks of the ALB waveform. Since these are used for estimating 
depth, the deformations introduce uncertainties in the depth estimate. The environmental parameters 
include atmosphere, air-water interface, water body, and the bottom surface characteristics. As will be 
demonstrated in this section, the most prominent factor among the environmental parameters is the 
scattering coefficient. Other environmental factors add only minor variations to that of the main scattering 
effect. Accordingly, we describe the scattering effect first and, since the scattering coefficient cannot vary 
independently from other inherent optical properties (IOPs), we introduce a single formula that constrains 
several inherent optical properties. 

 Effect of scattering and inherent optical properties 

As described in Section 3.3.2, it is possible to derive several environmental parameters using two 
fundamental IOPs, the absorption coefficient, 𝑎𝑎, and the volume scattering function (VSF). The scattering 
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coefficient, 𝑏𝑏, is obtained by integrating the VSF over the all possible directions (equation (3.3.7)). The 
lidar backscattering coefficient, 𝛽𝛽𝜋𝜋 (a.k.a. beta pi), is the value of the VSF in the exact backward 
direction. The degree of forward scattering – which is critical for understanding the beam spread – is also 
determined from the VSF. While it is possible that one parameter can vary independently of the other 
parameters, it is generally most reasonable to simulate IOPs assuming that they are mutually constrained. 
There is no unique relationship among IOPs, however, for convenience, we simulate IOPs with the 
following simple formula: we assume that the single scattering albedo (equation (3.3.16)), 
𝜔𝜔0 = 𝑏𝑏 (𝑎𝑎 + 𝑏𝑏)⁄ , is constant and that the lidar backscattering coefficient is determined by the scattering 
coefficient via  𝛽𝛽𝜋𝜋 = 0.005 ∙ 𝑏𝑏. 

Figure 5.5.1 illustrates waveforms computed using sets of IOPs for which the constant single-scattering 
albedo is 0.7, the scattering coefficient varies from 0.2 to 0.5 𝑚𝑚−1, and the rest of IOPs are derived using 
the formulas above. Based on simulation results, we are able to observe several fundamental 
characteristics of the waveforms: 

• As the scattering coefficient increases the bottom return is reduced dramatically due to the 
exponential increase in attenuation.  

• In relatively clear water (𝐾𝐾𝑑𝑑(532𝑛𝑛𝑛𝑛) < 0.1𝑚𝑚−1), the loss of laser pulse energy during 
propagation is due primarily to absorption.  

• Scattering becomes increasingly dominant as the water becomes more turbid, and can become 
comparable to absorption in its contribution to attenuation.  

• Backscattering has a relatively minor effect on the returns compared to absorption and forward 
scattering; the increased attenuation of the ALB returns is due primarily to forward scattering, 
spreading the beam as it propagates through the scattering medium, and redistributing the beam 
energy over the beam cross-sectional area.  

• The increase in attenuation with increasing scattering is particularly noticeable in the last 2/3 of 
the waveform. The bottom reflectance return decreases correspondingly. 

 
Figure 5.5.1. Changes in waveforms from 15 m deep water due to changes in the scattering coefficient (ranging from 

0.2 to 0.5 𝑚𝑚−1)  and related IOPs. 
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In order to investigate the effect of variation in the IOPs on the lidar depth accuracy, we also simulated 
the optical properties affecting the surface and bottom return. The Fresnel peak (fixed value) and the 
different backscatter curves are shown in Figure 5.5.2a. The combined Fresnel + backscatter curves are 
shown in Figure 5.5.2b. In both figures, the true geometrical position of the water surface is marked as a 
solid line at time 0 ns.  

It is important to note that the magnitude and position of the peak of the surface return is determined by 
two factors: the effective Fresnel reflectance and the lidar backscattering coefficient. In the simulation 
results shown in Figure 5.5.1, the effective Fresnel reflectance is constant, and the backscattering 
coefficient increases linearly with the scattering coefficient values. The superposition of a fixed, pure 
Fresnel peak and increasing volume backscattering has two consequences: greater peak magnitude and 
the shift of the maximum position to a later time (Figure 5.5.2b) 

Note also, that the surface return signal increases as the scattering coefficient increases because of the 
increased backscattering near the surface. However, as the laser pulse propagates through the medium, 
however, it loses intensity much more quickly because so much energy has been lost due to the high 
scattering and absorption. This is the reason for the apparent convergence of the curves near 30 ns in 
(Figure 5.5.2a). 

The bottom return peak also experiences a shift due to scattering dispersion. In Figure 5.5.3 the bottom 
peaks were normalized by the bottom peak energy (integrated power over the duration of bottom peak) in 
order to facilitate comparison. Clearly, the increase in the scattering coefficient, and the corresponding 
IOPs, not only lowers the magnitude of the bottom peak, but also shifts the peak position to an earlier 
time. The shift can be explained as follows. A laser pulse approaching the bottom at a substantial optical 
depth will have broadened significantly due to forward scattering. The increase in the rate of dispersion 
with optical depth is significant, so that, when a beam front intersects the bottom boundary, the later part 

 
Figure 5.5.2. Details of surface return data from Figure 5.5.1: (a) Fresnel peak (thick red line) and the variable 

volume backscattering; (b) superposition of the two components. 
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of the beam front (farther from the laser source) experiences more dispersion than the earlier part of the 
beam front (see Figure 4.2.4). The later signal is also further attenuated by absorption. As a result, the 
bottom peak always occurs earlier than the true geometric bottom (at 140 ns), defined as point at which 
the beam center meets the bottom.  

 Lidar depth estimation algorithm 

When a lidar waveform is generated by a laser pulse at a slant incidence angle, the slant distance between 
the two peaks is used as a close approximation to the true slant distance. An intuitive method to calculate 
the slant distance is based on the time separation of the two apparent peaks which we will call the "peak 
algorithm”. Another common practice is to calculate the distance based on the time separation of the two 
half-peaks where the waveform value is the half of the maximum, or the "half-peak algorithm”. With the 
peak algorithm it is assumed that the peaks occur close in time to the real surface and the bottom peaks. If 
the overall system response is short enough – having a short laser pulse duration, fast photo-detector and 
electronic response, and small incident angle for minimal geometrical stretch – the peak algorithm is an 
ideal approach. As these conditions are violated more and more, the peak algorithm will be subject to be 
subject to greater depth estimation errors.  

The key assumption in the half-peak algorithm is that the two peaks have the same width; however, 
different factors contribute to the widths of the two peaks. The geometric stretch of the surface peak is a 
combination of many system factors, such as beam divergence angle, receiver FOV, sensor altitude, and 
system response function. At shallow depths, the effective beam divergence angle and the FOV both 
decrease according to Snell's law, after refraction at the water surface. The width of the resulting bottom 
and surface return may be quite similar, despite the dispersion due to scattering. However, the ALB beam 
spreads rapidly as the optical depth increases, leading to significant stretching of the bottom return. Thus, 
depth estimation error for the half-peak algorithm will be closely related to the beam dispersion due to 
forward scattering. 

As an example of the two approaches, consider a model in which the two peaks of a waveform are 
represented using a Gaussian curve, with the FWHM being the measure of the peak width. In this 

 
Figure 5.5.3. Normalized bottom peaks using the bottom peak energy Lidar depth estimation algorithm 
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example, both the peak algorithm and the half-peak algorithm exhibit an increasing bias from the true 
surface arrival time, as illustrated in Figure 5.5.4.  

As the scattering coefficient increases (along with corresponding changes in the other IOPs), both the 
peak and half-peak estimates of the surface arrival time shift toward a later time. For 𝑏𝑏 = 0.5 𝑚𝑚−1, the 
position shift for the peak algorithm is slightly more than that of the half-peak algorithm. In contrast, the 
estimate of the bottom peak location shifts to an earlier time for both algorithms. For the same conditions, 
the bottom peak shift is about twice the surface peak shift; however, the half-peak shift of the bottom 
location is more than 10 times the surface half-peak shift. The combined error when 𝑏𝑏 = 0.5 𝑚𝑚−1 is a 
1.8 ns bias for the peak algorithm, while for the half-peak algorithm the combined error is a 4.5 ns bias. 
The increased total error demonstrates the greater vulnerability of the half-peak algorithm to beam 
dispersion by forward scattering. Depth estimation errors using the 2 algorithms for varying IOPs are 
calculated for several depths in Figure 4.5.5.  

The time difference (Δt) between two peak positions or half-peak positions is converted to the depth 
error, ∆𝑑𝑑, using the simple formula 

where 𝜃𝜃𝑤𝑤 is the incidence (sounding) angle in water. The resulting depth estimation error using the peak 
algorithm is much smaller than the error produced using the half-peak algorithm.  

 
Figure 5.5.4. Bias of estimates relative to the true locations of (a) the surface (∆𝑡𝑡𝑃𝑃

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and ∆𝑡𝑡𝐻𝐻𝐻𝐻
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), and (b) the 

bottom (∆𝑡𝑡𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 and ∆𝑡𝑡𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏), using the peak algorithm (P) and the half-peak algorithm (HP) as the scattering coefficient 
increases. The dashed lines represent the arrival times at the surface and bottom along the slant path. 

 ∆𝑑𝑑 = �
𝑐𝑐

2𝑛𝑛𝑤𝑤
�∆𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑤𝑤     , (4.5.1) 
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 Effect of the effective surface Fresnel reflectance 

Under most conditions (other than flat calm) there are many small facets of the complicated surface wave 
structure aligned such that a small portion of the laser pulse will be specularly reflected back to the 
receiver (Section 3.2). The effective Fresnel reflectance is then related to the probability of specular 
reflection. If the entire water surface were perpendicular to the beam axis, the effective Fresnel 
reflectance would be near 0.02 which is the Fresnel reflectance due to the normal incidence to the water 
with refractive index  𝑛𝑛𝑤𝑤 = 1.33. Thus, 0.02 is the theoretical maximum. Of course, if the water surface 
is covered with white caps due to breaking waves, the effective Fresnel reflectance can be much higher, 
but such a case is not considered. 

Figure 5.5.6a illustrates a set of waveforms produced using a range of effective Fresnel reflectance values; 
Figure 5.5.6b is a close-up of the surface peak region. The surface peak is the sum of the effective Fresnel 
reflectance and the volume backscattering. When the effective Fresnel reflectance is low, the contribution 
to the apparent surface peak by the surface reflection is small and the apparent surface peak occurs 
significantly later than the time when the true center of the beam passes the water surface. With high 
effective Fresnel reflectance, however, the surface peak is dominated by the Fresnel reflectance, and the 
apparent peak position occurs very close to the time when the true center of the beam passes the surface. 

 
Figure 5.5.5. Depth error for varying IOPs using (a) Peak and (b) Half-Peak algorithm. 
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Figure 5.5.6. Waveforms for varying effective Fresnel reflectance. 

 

An increase in the effective Fresnel reflectance has the effect of increasing the error in the depth 
calculation (Figure 5.5.7). As with the effect of IOPs on the surface peak, the error introduced by the peak 
algorithm is less than half of that introduced by the half-peak algorithm. On the other hand, the variation 
in the depth estimate produced by the half-peak position is less than that of the peak position. Thus, the 
depth error plot using the peak algorithm (Figure 5.5.7a) shows a wider range of error for varying 
effective Fresnel reflectance than the half-peak algorithm (Figure 5.5.7b) at any one depth. Interestingly, 
the range of uncertainties is nearly constant for any one depth when using the half-peak algorithm. This is 
because the effective Fresnel reflectance affects only the near surface part of the waveform. Thus, the 
bottom peak is not affected by the Fresnel reflectance regardless of the depth.  

The greatest apparent trend with increasing depths is due to the effect of beam dispersion due to 
scattering. As a result, the bottom peak stretching affects the depth error. To demonstrate this idea, we can 
generate a new error plot using a larger scattering coefficient. The first group of data was simulated using 
𝑏𝑏 = 0.2 𝑚𝑚−1.. The new data set was simulated using 𝑏𝑏 = 0.4 𝑚𝑚−1. Figure 5.5.8 shows two groups of 
error plots. It is evident that the Fresnel variation explains the width of the band and that the overall trend 
is due to the scattering. The upper group is for 𝑏𝑏 = 0.1 𝑚𝑚−1

P

 and the lower group is for 𝑏𝑏 = 0.2 𝑚𝑚−1. 
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Figure 5.5.7. Depth estimation error for varying effective Fresnel reflectance using (a) Peak and (b) Half-Peak 
algorithm. Note that the overall error of the peak algorithm is much less than the half-peak algorithm, and that the 

spacing of the peak curves (a) is nearly independent of depth while the half-peak curves (b) converge with 
increasing depth. 

 

Figure 5.5.8. Effect of the Fresnel reflectance for 2 different scattering coefficient. The upper group of curves is for 
b = 0.1; the lower group is for b = 0.2. 

  

 



  eCommons (2019)  https://doi.org/10.7298/98sb-4t84 
 
 
 AIRBORNE   LASER   HYDROGRAPHY  II  
 

174 

 Effect of the bottom reflectance 

A change in bottom reflectance affects nothing but the bottom peak; the surface return and the volume 
backscattering return are invariant while the bottom peak rises as the bottom reflectance increases. The 
effect is illustrated in Figure 5.5.9 in which the bottom peak represents the sum of the pure bottom peak 
and the volume backscattering. Since the volume backscattering is constant, the increase in bottom 
reflectance results in a bottom peak that is more representative of the bottom, resulting in a shift of the 
apparent peak or half-peak closer to the true values. The peak and half-peak positions are marked as dots 
in Figure 5.5.9b. Both peak and half-peak positions are delayed as the bottom reflectance increases and as 
the pure bottom peak becomes stronger than volume backscattering base. Convergence occurs rather 
quickly. It is worth keeping in mind, however, that even the strongest bottom peak position is still 
affected by the scattering attenuation, so that the converged peak is optically shifted from the true 
geometrical bottom (see Figure 5.5.3). As mentioned in the IOPs section, an overall quick increase of 
depth estimation error over the increasing depth is caused by the beam stretch of the forward scattering. 
Thus, the error caused by the bottom reflectance variation is represented by the small differences between 
the curves in Figure 5.5.10. 

 

Figure 5.5.9. The effect of increasing bottom reflectance:  a) full waveform, b) detail of the bottom peak 
with the peak and half-peak positions marked as dots. 
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Figure 5.5.10. Depth error for varying bottom reflectance using (a) Peak and (b) Half-Peak algorithm. 
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