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Dislocations and vacancies in two-dimensional mixed crystals of spheres and dimers
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In colloidal crystals of spheres, dislocation motion is unrestricted. On the other hand, recent studies of
relaxation in crystals of colloidal dimer particles have demonstrated that the dislocation dynamics in such
crystals are reminiscent of glassy systems. The observed glassy dynamics arise as a result of dislocation cages
formed by certain dimer orientations. In the current study, we use experiments and simulations to investigate
the transition that arises when a pure sphere crystal is doped with an increasing concentration of dimers.
Specifically, we focus on both dislocation caging and vacancy motion. Interestingly, we find that any nonzero
fraction of dimers introduces finite dislocation cages, suggesting that glassy dynamics are present for any
mixed crystal. However, we have also identified a vacancy-mediated uncaging mechanism for releasing dis-
locations from their cages. This mechanism is dependent on vacancy diffusion, which slows by orders of
magnitude as the dimer concentration is increased. We propose that in mixed crystals with low dimer concen-
trations vacancy diffusion is fast enough to uncage dislocations and delay the onset of glassy dislocation

dynamics.

DOLI: 10.1103/PhysRevE.82.041404

I. INTRODUCTION

Glassy dynamics are typically attributed to disordered
systems ranging from jammed granular packs [1-3] to disor-
dered spherical or anisotropic colloidal [4-8] and molecular
[9-13] systems. Recent studies of defects within two-
dimensional (2D) crystals of colloidal dimer particles have
revealed that the introduction of particle anisotropy can also
cause glassy relaxation within an ordered crystalline system
[14]. Colloidal dimers consisting of two connected spherical
lobes can fit into the same close-packed crystals that are
formed by free spheres, with each lobe occupying a spherical
crystal lattice position. This similarity implies that the study
of colloidal dimers can isolate how a small anisotropic per-
turbation to the spherical particle shape can lead to new de-
fect phenomena within a crystal.

Wojciechowski er al. were the first to study crystals of
hard Brownian dimers. Their numerical simulations demon-
strated that the ground state for 2D crystals of such particles
is highly degenerate in the configurations of particle orienta-
tions [15,16]. In this “degenerate crystal” ground state, the
dimer lobes occupy triangular lattice sites, but the particle
orientations are not aligned in any periodic pattern. Instead,
the particles are randomly oriented among the three underly-
ing lattice directions.

The first experimental studies of degenerate crystals of
dimers demonstrated that certain dimer orientations restrict
the motion of dislocations within the crystal [17,18]. Further
studies of mechanically perturbed degenerate crystals have
revealed that dislocations are caged by particles in these
glide-blocking orientations. Dislocation motion beyond such
particles has been experimentally observed to occur through
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multidefect mechanisms that allow the defects to hop be-
tween cages [14]. This slow cage hopping is reminiscent of
the motion of particles within a colloidal glass [5] and invites
the question of how this glassy state is approached from the
usual state of free dislocation motion in 2D crystals of
spheres.

In the current study, we investigate the geometric restric-
tions to dislocation glide in mixed crystals composed of both
spheres and dimers. Using numerical simulations we show
that as the fraction of dimers in a mixed crystal is increased,
the peak dislocation cage size decreases smoothly from in-
finity for pure sphere crystals down to several lattice con-
stants (LC) in pure dimer crystals. This smooth scaling of the
cage size suggests that glassy dislocation caging would be
present for any nonzero dimer fraction. However, experimen-
tal observations of mixed crystals with small dimer concen-
trations reveal a vacancy-mediated dislocation uncaging
mechanism where mobile vacancies can allow dislocations to
climb and circumvent obstacles. This mechanism is en-
hanced by vacancy diffusion, which we observe to slow dra-
matically with increasing dimer concentration. Nevertheless,
at low dimer concentrations, it may be rapid enough to alle-
viate glassy behavior.

II. EXPERIMENTAL SYSTEM AND NUMERICAL
SIMULATION DETAILS

The experimental system has been described in detail
elsewhere [ 14]. Briefly, sterically stabilized fluorescent silica
dimer shells with lobe diameter d=~1.3 um and lobe sepa-
ration /=~ 1.4 um are suspended in an index-matching aque-
ous solution of dimethylsulfoxide. The dimer shell particle
synthesis protocol is described in [17]. Also included in the
suspension are 1.3 um diameter silica spheres (Sekisui Mi-
cropearl Spacers, Dana Enterprises International, CA). The
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FIG. 1. (a) Optical microscope image of a mixed sphere and dimer crystal with ¢;,=0.4. Dumbbells are overlaid on top of the dimers for
clarity. The bright white sphere is an intruder particle. (b) Distribution of dimer orientations within the grain. Error bars are derived from

counting statistics.

described in the Appendix. The particles are viewed in the
“monolayer” region of the cell where the gap between the
two coverslips only accommodates a single layer of particles
lying flat. The density mismatch (~0.5 g/ml) between the
shells and the fluid is exploited to sediment the particles into
the monolayer region and to set the lobe area fraction to
~0.8, where the dimer shells and the spherical particles as-
semble into a crystalline phase [19].

The dimer particle synthesis produces samples with a
small fraction of misshapen “mutant” dimer particles that
have more than two lobes or are otherwise not dimer shaped.
These mutant particles inhibit crystallization of mixtures of
spheres and dimers. In order to form large mixed crystal
grains, we first combine dimer and sphere suspensions and
allow them to self-assemble into dense polycrystalline mix-
tures. To achieve complete crystallization into large mixed
crystal grains, we use an optically manipulated spherical “in-
truder” particle to push out mutant particles and add true
dimers to a crystal grain that is initially composed of mostly
spheres. The intruder particles are 1.3-um-diameter spheres
composed of sterically stabilized silica-coated polystyrene
[14]. The index mismatch between the intruder particles and
the suspending fluid allows an optical trap to exert a force on
the intruder particles with negligible effects on the silica
dimer shells and spheres. Dimer particles are added to the
mixed crystal grain until reaching a set dimer concentration
¢, defined as the number of dimer lobes divided by the total
number of lattice sites in the crystal grain. An example of
one mixed crystal grain prepared using this procedure is
shown in Fig. 1(a). While such mixed crystal grains are not
fully self-assembled, the dimers are nevertheless oriented
with approximately equal probability among the three lattice
directions, as can be seen in the distribution of dimer orien-
tations shown in Fig. 1(b).

This manual procedure for mixed crystal grain assembly
is very slow, typically taking 1 week for each grain. Once
such a grain is created, the distribution of dislocation cage
sizes can be computed by counting how far a dislocation
with any of the three possible Burgers vectors could glide
from each starting lattice position. While in principle it
would be possible to collect sufficient statistics on such cage
sizes by experimentally forming numerous large grains at
each dimer concentration ¢,, this is not feasible within a

reasonable time frame. Instead, we numerically simulate en-
sembles of large triangular crystal grains containing 10* to
1.6 X 10° lattice sites for each value of ¢,

Each simulated mixed crystal is initialized as a perfect
triangular lattice of unbonded sites with periodic boundary
conditions. In order to achieve the desired dimer concentra-
tion ¢, bonds are added at random between neighboring
lattice sites, creating dimers on the lattice. An example of
such a numerically calculated mixed crystal with ¢,;=0.3 is
shown in Fig. 2(a) (for clarity, only a subset of the 10* lattice
sites is shown). The distribution of dimer orientations, shown
in Fig. 2(b), demonstrates that the three lattice directions are
equally populated.

III. SCALING OF DISLOCATION CAGE SIZES
WITH DIMER CONCENTRATION

The distribution of dislocation cage sizes z, taken over an
ensemble of large mixed crystals for each dimer concentra-
tion, is plotted for ¢,={0.1,0.2,...,1.0} in Fig. 3. At least
10° individual cage sizes are included in the distributions for
each dimer concentration, and the error bars due to counting
statistics are comparable to the marker size. For clarity, the
inset of Fig. 3 shows the same distributions on a semiloga-
rithmic plot. We find that a functional form of p(z)
=Aze Y% fits the cage size distributions observed for every
dimer concentration. While this fit was empirically deter-
mined here, we note that the functional form is consistent
with exponentially decaying orientation correlations for
dimers on a triangular lattice [20]. Although the fit is not
perfect for small cage sizes z, it does accurately determine
the peak cage size z, for each dimer concentration.

We find that the peak cage size z. taken from the fit for
each distribution decreases smoothly with ¢, as shown in
Fig. 4. The line is the best-fit power law z.=Zy¢,“, with
Zy=6.3*=0.1 LC and =0.98 +=0.02. We note that the value
of the peak cage size for a crystal of pure dimers is consistent
with the previously reported average maximum glide dis-
tance of 6.2 LC [14]. This scaling of cage size with dimer
concentration can be understood by noting that a cage is
simply a row of lattice sites bounded by two parallel dimers
in the blocking orientation. We can describe z.. as the average
separation between such parallel dimers—that is, for every z.
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FIG. 2. (Color online) Example of a numerically calculated mixed crystal with dimer concentration ¢,;=0.3. (a) The lattice sites that are
dimer bonded are shaded in matching darker hues, while the sphere lattice sites are uniquely shaded lighter hues. Inset: zoomed-in view
illustrating the shade coding for dimers versus spheres. (b) The distribution of dimer orientations for this mixed crystal demonstrates that the
three lattice directions are equally weighted. Error bars are derived from counting statistics.

lattice sites on a crystalline row, there must be one dimer in
the blocking orientation. Since the probability of encounter-
ing any dimer lobe on a lattice site is ¢, and since each
dimer can be oriented in any of six directions, we would
expect that 1/z,=¢,/6. This prediction is plotted as a dotted
line in Fig. 4. Note that this prediction assumes that there are
no correlations between dimer orientations, an assumption
that is best for small ¢p; where dimers are separated by larger
distances so that their orientations are no longer correlated.
Indeed, Fig. 4 indicates that the agreement between this pre-
diction and the simulation data is strongest for lower ¢,.

IV. VACANCY-MEDIATED UNCAGING AND VACANCY
DIFFUSION

The distributions of cage sizes in the simulated mixed
crystals suggest that the transition into restricted dislocation

50 100 150 200
dislocation cage size z

FIG. 3. (Color online) The distribution of cage sizes from nu-
merically simulated mixed crystals for each dimer concentration.
Marker key—from top curve to bottom curve: ¢,=1.0 (solid black
stars), 0.9 (solid purple diamonds), 0.8 (solid blue triangles), 0.7
(solid green circles), 0.6 (solid yellow squares), 0.5 (open red stars),
0.4 (open purple diamonds), 0.3 (open blue triangles), 0.2 (open
green circles), and 0.1 (open yellow squares). The curves are fits as
described in the text. The distribution is also shown in a semiloga-
rithmic plot as the inset.

motion is characterized by smoothly decreasing dislocation
cage sizes. At zero dimer concentration, cages are infinitely
large, indicating that dislocation glide is completely unre-
stricted. Interestingly, the addition of any nonzero fraction of
dimers ¢, immediately introduces finite cage sizes, so that in
an infinitely large crystal, any dislocation is caged. This re-
sult is surprising because it suggests that there is some de-
gree of dislocation glassiness in the system even for very
small concentrations of dimers.

In pure dimer crystals, slow multidefect mechanisms in-
volving collaboration between multiple dislocations is re-
quired to uncage a dislocation [14]. However, we observe
another uncaging mechanism in experimental mixed crystals
with low dimer concentrations ¢,. Figure 5 depicts a dislo-
cation uncaging event that does not require the collaboration
of multiple dislocations. In Fig. 5(a), a dislocation glides
along a crystalline axis until it encounters a dimer in a block-
ing orientation along its path. While in crystals of pure
dimers such an obstruction would prevent the dislocation
from continuing any further, in this low ¢, mixed crystal, the
dislocation circumvents the blocking particle by climbing 1
LC to the next row [Fig. 5(b)]. Dislocation climb is more
energetically expensive than dislocation glide, and this
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FIG. 4. The peak cage size z.. as a function of dimer concentra-
tion ¢,. The solid line is the best-fit power law, as described in the
text. The dotted line is the theoretical prediction z,=6/¢,, which
ignores correlations between dimer orientations. Error bars derived
from counting statistics are comparable to the marker size.
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FIG. 5. (Color online) Time series micrographs of a climb event
in a very low dimer concentration mixed crystal. (a) A dislocation
gliding along a crystal plane is blocked by the dimer highlighted in
red (grey). (b) When the dislocation reaches the caging dimer, it
produces a vacancy (highlighted with a black circle) and climbs by
one lattice constant, thereby escaping the cage and continuing to
glide unobstructed.

mechanism typically involves either the emission or absorp-
tion of a vacancy. The vacancy emitted during the climb
event shown in Fig. 5 is highlighted with a circle in Fig. 5(b).

In order for the vacancy-mediated uncaging mechanism to
function in an equilibrated crystal, balance must be main-
tained between vacancy creation and vacancy loss. This bal-
ance requires that any vacancies produced during a climb
event must eventually leave the crystal, either by diffusing to
the grain boundary or by being absorbed during another
climb event. In order for such vacancy elimination to occur,
the vacancies must be free to move throughout the crystal on
the time scale of dislocation motion. While in principle climb
mechanisms involving vacancies could also occur in degen-
erate crystals of pure dimers, such events have not been ex-
perimentally observed [14,18]. In fact, experiments indicate
that vacancies in pure dimer crystals rarely move from their
initial lattice positions.

While it is difficult to experimentally isolate differences
in vacancy diffusion between crystals of pure spheres and
pure dimers, a rough estimate of vacancy hopping times in
two similarly prepared crystals can provide valuable intu-
ition. To this end, we prepare crystals in wedge cells tilted at
the same angle, so that the lobe area fraction in both the
sphere crystals and the dimer crystals is ~0.8. We find that
vacancies diffuse dramatically more slowly in dimer crystals.
The fraction f of vacancies that hop at least one lattice site
within a waiting time 7 is plotted for both crystals of dimers
and crystals of spheres in Fig. 6. The data indicate that va-
cancies in dimer crystals take approximately 10° times
longer to hop from one site to the next, suggesting that re-
strictions on vacancy hops caused by dimer particles can
have a dramatic effect on the resulting vacancy diffusion.

Figures 7(a) and 7(b) depict the only mechanism for va-
cancy diffusion that we have observed within experimental
pure dimer crystal grains. A vacancy hops from one lattice
site to a neighboring lattice site via the swinging motion of a
neighboring dimer. In principle, “sliding” moves, depicted
schematically by the motion of the dimer highlighted in Fig.
7(c), could also allow a vacancy hop. However, such moves
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FIG. 6. The fraction f of vacancies that have completed at least
one lattice hop within a waiting time 7 is plotted for both experi-
mental crystals of pure dimers (open circles) and experimental crys-
tals of pure spheres (closed circles). Error bars derived from count-
ing statistics are comparable to the marker size. The clear separation
between the two curves indicates that the hopping time is slower by
a factor of approximately 3 orders of magnitude in crystals of
dimers compared to crystals of spheres.

have not been experimentally observed within crystal grains,
probably because they are more energetically costly, as sug-
gested by the overlap volumes depicted in yellow in Fig.
7(c). Since only certain dimer orientations allow vacancies to
hop, we expect that vacancy diffusion is dramatically slower
in dimer crystals.

In order to isolate this phenomenon and study how this
slowed vacancy diffusion scales with dimer concentration,
we perform numerical Monte Carlo simulations of vacancy
motion on a lattice in mixed crystals with increasing concen-
trations of dimers. In these simulations at each time step, a
vacancy hop is attempted from the vacancy’s current lattice
site to any one of its six nearest-neighbor sites with equal
probability. The vacancy hop to that site is allowed if the
potential site is either occupied by a sphere or by a dimer
lobe that can swing into the current vacancy site. The hop is
not allowed if the potential site is occupied by a dimer lobe
that cannot swing into the current vacancy site. Vacancy dif-
fusion on the lattice according to these vacancy hop rules is

FIG. 7. (Color online) Mechanisms for vacancy diffusion in
pure dimer crystals. (a) and (b) In an experimental dimer crystal, a
vacancy hops one lattice site via the swinging motion of a neigh-
boring dimer. This is the only vacancy hop mechanism that has
been observed in the experiments. (c) A cartoon depiction of the
maximal overlap area during a simplified model of a dimer swing-
ing move and a dimer sliding move. The total overlap area required
for a sliding move is twice that for a swinging move.
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FIG. 8. (Color online) Vacancy mean-squared displacement in
simulated mixed crystals of dimers and spheres. Marker key—from
bottom curve to top curve: ¢,=1.0 (solid black stars), 0.9 (solid
purple diamonds), 0.8 (solid blue triangles), 0.7 (solid green
circles), 0.6 (solid yellow squares), 0.5 (open red stars), 0.4 (open
purple diamonds), 0.3 (open blue triangles), 0.2 (open green
circles), 0.1 (open yellow squares), and 0.0 (open black stars). Inset:
the best-fit scaled diffusion constant D/D, over the range 7
=1-10% simulation time steps is plotted as a function of dimer
fraction ¢, The solid curve is the theoretical prediction D/D=[1

-(3/5)p

recorded for mixed crystals containing 10* lattice sites for
each dimer concentration ¢,={0,0.2,0.4,...,1.0}.

The vacancy mean-squared displacement (MSD)=(Ar?)
for each dimer concentration is plotted in Fig. 8. Each MSD
data series is determined from over 10° vacancy hop at-
tempts, and the error bars due to counting statistics are on the
order of the marker size. The diffusion constant for vacancies
in pure sphere crystals (¢,=0), determined from the best-fit
curve of the form MSD=(Ar?)=4Dr, is found to be D,
=0.235+0.001 LC? per time step. As the dimer concentra-
tion increases, the diffusion constant decreases, reaching
0.031=0.001 LC? per time step for pure dimer crystals. The
best-fit scaled diffusion constant D/D; is calculated for each
dimer concentration and is plotted in the inset of Fig. 8.

The functional form of the decay of the scaled diffusion
constant with dimer concentration ¢, can be theoretically
predicted in the limit that correlations between dimer orien-
tations may be ignored. In this case, the probability that a
vacancy in a given lattice site will not make a successful hop
is the product of the probability that the site contains a dimer
lobe and the probability that the dimer is in one of the three
nonswinging orientations of its five possible orientations as
depicted by the red dashed thicker lines in Fig. 9. Thus, the
probability that the vacancy can successfully make the hop is
1-(3/5) ¢, This hopping probability causes the average step
size for vacancies diffusing in a mixed crystal to be smaller
by a factor of 1-(3/5) ¢, than the step size taken in a crystal
of spheres over the same time interval. Since the vacancy
diffusion constant scales as the square of the average step
size, in a mixed crystal the diffusion constant would be D
=[1-(3/5)¢,*D,. This theoretical prediction is plotted as
the solid curve in the inset of Fig. 9 and is consistent with the
simulated data.

PHYSICAL REVIEW E 82, 041404 (2010)

FIG. 9. (Color online) Schematic showing the possible dimer
orientations with one dimer lobe in a potential vacancy site. The
current vacancy site is marked with an open circle, and the potential
vacancy site is marked with a star. Of the five possible dimer ori-
entations shown with dashed lines, the three highlighted in red with
thicker dashed lines do not allow dimer swinging.

V. DISCUSSION AND CONCLUSIONS

The transition from unrestricted dislocation motion in
crystals of pure spheres to the glassy caged dislocation dy-
namics observed in crystals of pure dimers has been studied
both experimentally and with numerical simulations of
mixed crystals. We find that while cages restricting disloca-
tion glide are present for mixed crystals with any nonzero
dimer concentration ¢,, we also observe a vacancy-mediated
uncaging mechanism. This mechanism can release disloca-
tions from glide-restricted cages and has the potential to al-
leviate the glassy dynamics that arise from dislocation cag-
ing, ultimately driving the system out of the glassy state.
Vacancy diffusion is sufficiently fast in crystals of spheres to
maintain the balance between the rate of vacancy creation
and loss necessary for maintaining equilibrium. The addition
of a small fraction of dimers only reduces the vacancy dif-
fusion by a factor of [1-(3/5)¢,]* for small ¢, As the
dimer concentration approaches 1, vacancy diffusion be-
comes prohibitively slow and suppresses such vacancy-
mediated uncaging.

This study has fleshed out the details of both dislocation
and vacancy mobility as dimers are added to crystals of
spheres. Clearly the transition from the usual unrestricted
dislocation dynamics in crystals of spheres into the glassy
dynamics observed in pure dimers is complex and depends
on additional dislocation transport mechanisms besides
simple glide. Future experimental studies of the relaxation
responses of mixed sphere and dimer crystals should help to
elucidate whether this vacancy-mediated uncaging mecha-
nism is actually sufficient to drive the system out of the
glassy state. If so, such studies should determine whether
there is a crossover dimer concentration beyond which va-
cancy mobility is low enough that the dislocation dynamics
become glassy.

Our results illustrate the delicate interplay between dislo-
cations and vacancies that arises in mixed crystals of dimers
and spheres. We expect that these results will provide a
framework for interpreting defect restrictions and interac-
tions in crystals doped with dislocation constraining impuri-
ties and crystals comprised of other anisotropic particles
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[21-28]. Finally, this work highlights the importance of geo-
metrical constraints in determining not only individual defect
dynamics but also their interactions within the crystal.

ACKNOWLEDGMENTS

We thank Jim Sethna, Stefano Zapperi, Fernando Es-
cobedo, Umang Agarwal, Carl Franck, Stephanie Lee, Erin
Riley, and the Cohen group for helpful discussions. This re-
search was supported in part by the Department of Energy,
Basic Energy Sciences, Grant No. ER46517 (fabrication of
colloidal assemblies and manipulation with optical trap) and
in part by Award No. KUS-C1-018-02 from King Abdullah
University of Science and Technology (KAUST).

APPENDIX: METHODS—RAMP CELL CONSTRUCTION

The wedge-shaped confinement cells are constructed
using a 2”X3"” microscope slide with two No. 1.5
(170-um)-thick 20X 55 mm? coverslips. One coverslip is
bonded to the microscope slide using UV glue (Norland Ad-
hesive) to provide a structural base for the confinement cell
[Fig. 10(a)]. Both coverslips must be soaked for 30 min in a
base wash solution of NaOH (pH= 14) to remove the coat-
ing that is applied during manufacturing to prevent the cov-
erslips from sticking together. The coverslips are then indi-
vidually rinsed with DI H,O and dried using forced filtered
air.

After this washing procedure, the glass coverslips are
clean enough that when pressure is applied, two coverslips
will bond together. In order to achieve the wedge-shaped
geometry, before the two coverslips are bonded together,
small spacers are added to the coverslip on the slide by cur-
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FIG. 10. (Color online) Schematic of wedge-shaped confine-
ment cell construction. The wedge angle is exaggerated for clarity.
(a) One base-washed coverslip (blue) is bonded with UV glue to a
larger microscope slide (beige) to provide structural support for the
cell. (b) Small UV glue droplets (yellow) are placed in two rows on
the coverslip and are cured to become spacers for the cell. (¢c) A
second base-washed coverslip is placed on top of the first, and the
two are squeezed together until the two coverslips bond together
(bonded region shown in white). (d) UV glue (shown in yellow) is
then used to seal three sides of the cell, leaving an access gap for
inserting colloidal samples. Once the cell is filled with sample, this
gap is also sealed using UV glue.

ing two rows of tiny droplets of UV glue as depicted in Fig.
10(b). After the spacers are cured, the second coverslip is
placed on top of the first, and the two are squeezed together
until a bond forms at the end without spacers [Fig. 10(c)].
UV glue is then used to seal three sides of the cell, leaving an
access gap in the spacer end [Fig. 10(c)]. After a colloidal
sample is pipetted in through the top access gap, UV glue is
used to seal the cell. The region of the cell that only accom-
modates one layer of ~1-um-sized particles is typically
found several mm above the edge of the bonded region. The
slope of the wedge in the monolayer region is about 1 um
over 1 mm. Colloidal suspensions confined in such wedge-
shaped cells can be stored for long time periods exceeding 2
years without any sample evaporation or degradation.
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