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My research centers on Lp estimates for singular integral operators using techniques

from real harmonic analysis. In particular I use time-frequency analysis and os-

cillatory integral theory. Singular integral operators are frequently motivated by,

and have potential applications to, non-linear partial di�erential equations.

In my thesis I show a wide range of Lp estimates for an operator motivated

by dropping one average in Calderón's second commutator. For comparison by

dropping one average in Calderón's �rst commutator one faces the bilinear Hilbert

transform. Lacey and Thiele showed Lp estimates for that operator [11, 12]. By

dropping two averages in Calderón's second commutator one obtains the trilinear

Hilbert transform. No Lp estimates are known for that operator. The novelty in

this thesis is that in order to avoid di�culty of the level of the trilinear Hilbert

transform, I choose to view the symbol of the operator as a non-standard symbol.
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CHAPTER 1

INTRODUCTION

1.1 History

The k-th Calderón commutator, k ∈ {1, 2, 3, . . .}, is given by

C(k)A f(x) = p.v.

∫
R

1

x− y

(
A(x)− A(y)

x− y

)k
f(y)dy

where A is Lipschitz and A′ ∈ L∞(R). Calderón studied these operators in con-

nection with an algebra of pseudo-di�erential operators. He was also motivated by

possible applications to operators of the type

p.v.

∫
R

1

x− y
F

(
A(x)− A(y)

x− y

)
f(y) dy (1.1)

where F is an analytic function. The Cauchy integral on Lipschitz curves and

double layer potentials are examples of the previous operator. In 1965 Calderón

showed

C(k)A : Lp → Lp for 1 < p <∞

for k = 1 [2]. Coifman and Meyer extended his result in 1975 to k = 2, 3, . . .

[5]. The estimates obtained did not clearly indicate how the boundedness constant

depended on k. Building on the work of Coifman and Meyer, Calderón was able

to prove the above estimates with a boundedness constant that depended on k

exponentially. This way he was able to prove bounds for operators of the type

(1.1), as long as the Lipschitz constant was small. Finally, in 1982 Coifman,
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McIntosh and Meyer showed the above estimates with a boundedness constant

that depended on k polynomially [6] and were thus able to show a wide range of

Lp estimates for operators of the type (1.1).

1.2 Motivation

Calderón observed that one can write the following as an average

A(x)− A(y)

x− y
=

∫ 1

0

A′(x+ α(y − x))dα.

Using this trick and a substitution he rewrote his �rst commutator as

C(1)A f(x) =

∫ 1

0

∫
R
A′(x+ αt)f(x+ t)

1

t
dtdα.

He then asked if one dropped the average and �xed α whether Lp estimates could

be found for the resulting operator, uniformly in α. This motivated the de�nition

of the bilinear Hilbert transform

BHTα(f1, f2)(x) = p.v.

∫
R

f1(x+ αt)f2(x+ t)
1

t
dt.

In two papers from 1997 and 1999, Lacey and Thiele showed that the bilinear

Hilbert transform BHTα maps Lp×Lq into Lr when 1
p

+ 1
q

= 1
r
, 1 < p, q ≤ ∞ and

2
3
< r <∞ with a bound depending on α [11, 12]. Uniform boundedness of these

Lp estimates was resolved later [9, 19]. Note that r only goes down to 2
3
, not 1

2
as
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one would expect from Hölder type estimates. It is still an open problem whether

r can be pushed all the way down to 1
2
.

In a similar fashion then one can rewrite the second Calderón commutator with

two averages. Dropping both averages motivates the de�nition of the trilinear

Hilbert transform.

THT~α(f1, f2, f3)(x) = p.v.

∫
R

f1(x+ α1t)f2(x+ α2t)f3(x+ t)
1

t
dt

In contrast to the bilinear Hilbert transform then no Lp estimates are known for

the trilinear Hilbert transform.

In this paper we will study a trilinear operator motivated by C(2)
A in a similar

fashion as THT~α, except we drop one average, not two. De�ne

Tβ(f1, f2, f3)(x) := p.v.

∫
R

(∫ 1

0

f1(x+ αt)dα

)
f2(x+ βt)f3(x+ t)

1

t
dt. (1.2)

1.3 Known estimates

Benyi, Demeter, Nahmod, Thiele, Torres and Villarroya obtained a modulation

invariant bilinear T (1) theorem [1]. If one �xes f1 ∈ L∞(R) and looks at the

bilinear operator

(f2, f3) 7→ p.v.

∫
R

(∫ 1

0
f1(x+ αt)dα

)
t

f2(x+ βt)f3(x+ t)dt,
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one can apply their theorem to obtain the following Lp estimates for Tβ

Tβ : L∞ × Lp1 × Lp2 → Lp

for β /∈ {0, 1} if 1

p1
+

1

p2
=

1

p
, 1 < p1, p2 ≤ ∞ and 2

3
< p <∞. These are the only

known Lp estimates for Tβ.

1.4 Result

The main theorem of this paper establishes the following wide range of Lp estimates

for Tβ.

Theorem 1.1. Let β /∈ {0, 1}, 1 < p1, p2, p3 ≤ ∞,

1

2
< p :=

p1p2p3
p1p2 + p1p3 + p2p3

<∞ and
2

3
<

p2p3
p2 + p3

≤ ∞.

Then there exists a constant Cβ,p1,p2,p3 such that

‖Tβ(f1, f2, f3)‖p ≤ Cβ,p1,p2,p3‖f1‖p1‖f2‖p2‖f3‖p3

for all f1, f2 and f3 in S(R).

The theorem recovers all known Lp estimates for the operator. Known Lp estimates

for both the bilinear Hilbert transform and for Calderón's �rst commutator follow

as a corollary.

Compared to the theorem on the bilinear Hilbert transform, this theorem has

an extra condition.
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2

3
<

p2p3
p2 + p3

≤ ∞

This condition implies that we have not improved the previously known Lp esti-

mates for the bilinear Hilbert transform. We also require the condition 1
2
< p,

which is not the largest possible range of Lp estimates expected. Based on the

known estimates for the bilinear Hilbert transform one would expect to be able to

go all the way down to 2
5
. This remains an open problem.

Note that if β = 0, 1 then we obtain trilinear operators that only involve multi-

plication of functions and the �rst Calderón commutator. The Lp-bounds of these

operators are easy to determine.

1.5 Approach

The standard way of understanding the boundedness of the Calderón commutators

is to use the T (1) theorem. In order to use such an approach on Tβ we would need

some sort of a trilinear T (1) theorem. Despite the existence of some multilinear

T (1) theorems [4, 10] then there is no such appropriate theorem for Tβ. The

other canonical way of trying to understand Tβ would be to establish uniform Lp

estimates on the trilinear Hilbert transform. Since no Lp estimates exist, uniform

estimates are out of reach. The obvious approaches to �nd Lp estimates fail so we

need some novel ideas.

On the Fourier side it is equivalent to show Lp estimates for an operator Tβ

given by

5



Tβ(f1, f2, f3)(x) =

∫
R3

[∫ 1

0

sgn(αξ1+βξ2+ξ3)dα

]
f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)

e2πi(ξ1+ξ2+ξ3)xdξ1dξ2dξ3. (1.3)

where sgn is the usual sign function. The symbol
∫ 1

0
sgn(αξ1+βξ2+ξ3)dα has a

singularity around the line ξ1 = 0, βξ2+ξ3 = 0 in the sense that it is discontinuous.

This is similar to the bilinear Hilbert transform. Unlike standard symbols, which

are assumed to be smooth outside the set where they are singular, this symbol

is continuous but not di�erentiable on the planes ξ1 + βξ2 + ξ3 = 0 and ξ1 = 0

away from the previous line. We approach the symbol as a rough non-standard

symbol and use techniques in the spirit of the bilinear Hilbert transform. An

important ingredient in that approach are new proofs of the Lp estimates for the

Calderón commutators by Muscalu [13]. The techniques and notation are also

heavily inspired by Muscalu, Tao and Thiele [14, 15].

There exist theorems that give immediate Lp estimates for operators with stan-

dard symbols where the dimension of the singularity is strictly less than half the

dimension of the frequency space of the form associated to the operator [17]. Even

if our symbol had been standard outside the line then those kind of theorems would

not have been applicable because the line is degenerate.
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CHAPTER 2

NOTATION

We use A . B to denote the statement that A ≤ CB for some large constant

C and A� B to denote the statement that A ≤ C−1B for some large constant C.

Our constants C shall always be independent of the tiles ~P .

Given any interval I, let |I| denote the Lebesgue measure of I and let cI denote

the interval with the same center as I but c times the side-length. Also de�ne the

approximate cuto� function χ̃I by

χ̃I(x) := (1 + (
|x− xI |
|I|

)2)−1/2

where xI is the center of I.

De�ne 〈n〉 := 2 + |n| for n ∈ Z.
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CHAPTER 3

SYMBOL

The meaning of (1.2) is

lim
ε→0+

∫
|t|>ε

(∫ 1

0

f1(x+ αt)dα

)
f2(x+ βt)f3(x+ t)

1

t
dt (3.1)

where the limit exists. Assume f1, f2 and f3 are Schwartz functions on R. We will

show that (3.1) exists in that case and we will rewrite it in a convenient way.

Write (3.1) as

lim
ε→0+
N→∞

∫
ε<|t|<N

[∫ 1

0

∫
R
f̂1(ξ1)e

2πiξ1(x+αt)dξ1 dα

]
∫
R
f̂2(ξ2)e

2πiξ2(x+βt)dξ2

∫
R
f̂3(ξ3)e

2πiξ3(x+t)dξ3
1

t
dt

which is equal to

lim
ε→0+
N→∞

∫
ε<|t|<N

∫
R3

[∫ 1

0

1

t
e−2πi(−αξ1−βξ2−ξ3)dα

]
f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)

e2πix(ξ1+ξ2+ξ3)dξ1dξ2dξ3dt

The function being integrated, viewed as depending on ξ1, ξ2, ξ3 and t is clearly

absolutely integrable on R4 and by applying Foubini's theorem together with dom-

inated convergence we see that the formula becomes equivalent to
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∫
R3

[∫ 1

0

sgn(−αξ1−βξ2−ξ3)dα
]
f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)e

2πi(ξ1+ξ2+ξ3)xdξ1dξ2dξ3 (3.2)

which clearly exists since f̂1, f̂2 and f̂3 are also Schwartz functions.

A product of three functions satis�es a Hölder type inequality as we obtain in

Theorem 1.1. Since the product can be written as

∫
R3

f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)e
2πi(ξ1+ξ2+ξ3)xdξ1dξ2dξ3 (3.3)

and using sgn(−x) = −sgn(x) it becomes clear by subtracting (3.2) from (3.3) that

it is enough to consider Lp estimates for

T̃β(f1, f2, f3)(x) :=

∫
R3

[∫ 1

0

1R+(αξ1+βξ2+ξ3)dα

]
f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)

e2πi(ξ1+ξ2+ξ3)xdξ1dξ2dξ3. (3.4)

where 1R+ is the characteristic function for the positive real axis.

Similar to what was mentioned in the introduction then the symbol

∫ 1

0

1R+(αξ1+βξ2+ξ3)dα

is not continuous around the line ξ1 = 0, βξ2 + ξ3 = 0, continuous but not di�er-

entiable around the planes ξ1 + βξ2 + ξ3 = 0 and ξ1 = 0, away from the previous
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line, but smooth everywhere else. It is tempting to view the symbol as a trilinear

symbol of the variables ξ1, ξ2, ξ3. That would however result in a problem of the

same di�culty as the trilinear Hilbert transform. We choose thus instead to view

it as a non-standard bilinear symbol of the variables ξ1 and βξ2 + ξ3.
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CHAPTER 4

DISCRETIZATION

We will now come up with a "discretized" variant of the "continuous" form

associated to (3.4). We start by reviewing some standard de�nitions and comments

[15].

De�nition 4.1. Let n ≥ 1 and σ ∈ {0, 1
3
, 2
3
}n. We de�ne the shifted n-dyadic

mesh D = Dn
σ to be the collection of cubes of the form

Dn
σ := {2j(k + (0, 1)n + (−1)jσ)|j ∈ Z, k ∈ Zn}

We de�ne a shifted dyadic cube to be any member of a shifted n-dyadic mesh.

Observe that for every cube Q, there exists a shifted dyadic cube Q′ such that

Q ⊆ 7
10
Q′ and |Q′| ∼ |Q|; this is best seen by �rst verifying the n = 1 case.

De�nition 4.2. A subset D′ of a shifted n-dyadic grid D is called sparse, if for

any two cubes Q, Q′ in D with Q 6= Q′ we have |Q| < |Q′| implies |109Q| < |Q′|

and |Q| = |Q′| implies 109Q ∩ 109Q′ = ∅.

Observe that any subset of a shifted n-dyadic grid (with n ≤ 4 say), can be

split into O(1) sparse subsets.

De�nition 4.3. Let σ = (σ1, σ2, σ3, σ4) ∈ {0, 13 ,
2
3
}4, and let 1 ≤ i ≤ 4. An i-tile

with shift σi is a rectangle P = IP × ωP with area 1 and with IP ∈ D1
0, ωP ∈ D1

σi
.

A quad-tile with shift σ is a 4-tuble ~P = (P1, P2, P3, P4) such that each Pi is an

i-tile with shift σi, and the IPi = I~P are independent of i. The frequency cube Q~P

of a quad-tile is de�nied to be Π4
i=1ωPi

11



We sometimes refer to i-tiles with shift σ just as i-tiles, or even as tiles, if the

parameters σ, i are unimportant.

De�nition 4.4. A set ~P of quad-tiles is called sparse, if all quad-tiles in ~P have

the same shift and the set {Q~P : ~P ∈ ~P} is sparse.

Again, any set of quad-tiles can be split into O(1) sparse subsets.

De�nition 4.5. Let P and P ′ be tiles. We write P ′ < P if IP ′ ( IP and 5ωP ⊆

5ωP ′, and P ′ ≤ P if P ′ < P or P ′ = P . We write P ′ . P if IP ′ ⊆ IP and

107ωP ⊆ 107ωP ′. We write P ′ .′ P if P ′ . P and P ′ � P .

This ordering by Muscalu, Tao and Thiele [15] is in the spirit of that in Fef-

ferman [8] or Lacey and Thiele [11, 12]. The main di�erence from the previous

orderings is that P ′ and P do not quite have to intersect which turns out to be

convenient for technical purposes.

De�nition 4.6. Let P be a tile. An Lp normalized wave packet on P , 1 ≤ p <∞,

is a function φP which has Fourier support in 9
10
ωP and obeys the estimates

|φP (x)| . |IP |−1/pχ̃I(x)M

for all M > 0, with the implicit constant depending on M .

Heuristically, φP is Lp-normalized and is supported in P .

Now that we have the tools from Muscalu, Tao and Thiele [15] then let us start

decomposing. We start with two standard Littlewood-Paley decompositions and

write
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1(ξ1) =
∑
k1

Ψ̂k1(ξ1)

and

1(ξ2 + ξ3) =
∑
k2

Ψ̂k2(ξ2 + ξ3)

where as usual, Ψ̂k1(ξ1) and Ψ̂k2(ξ2 + ξ3) are bumps supported in the regions

|ξ1| ∼ 2k1 and |ξ2 + ξ3| ∼ 2k2 respectively. In particular we get

1(ξ1, ξ2 + ξ3) =
∑
k1,k2

Ψ̂k1(ξ1)Ψ̂k2(ξ2 + ξ3) (4.1)

By splitting (4.1) over the regions where k1 � k2, k2 � k1 and k1 ∼ k2 we obtain

the decomposition

1(ξ1, ξ2 + ξ3) =
∑
k

Ψ̂k(ξ1)Φ̂k(ξ2 + ξ3) + (4.2)

∑
k

Φ̂k(ξ1)Ψ̂k(ξ2 + ξ3) + (4.3)

∑
k1∼k2

Ψ̂k1(ξ1)Ψ̂k2(ξ2 + ξ3). (4.4)

where Φ̂k is a bump supported on an interval, symmetric with respect to the origin

of length ∼ 2k.

Note that Φ̂k(ξ2 + ξ3) is supported in R2 on a strip around the line ξ2 + ξ3 = 0

of width ∼ 2k. We can cover that strip with shifted dyadic cubes with side length

∼ 2k. Similarly then Ψ̂k(ξ2 + ξ3) is supported in R2 on two strips of width ∼ 2k

13



but this time away from ξ2 + ξ3 = 0. Again we can cover those strips with shifted

dyadic cubes of a similar scale.

Thus we come up with a decomposition

a(ξ1, ξ2, ξ3) =
∑
~Q∈~Q

φ̂Q1,1(ξ1)φ̂Q2,2(ξ2)φ̂Q3,3(ξ3) (4.5)

for each of the three cases (4.2), (4.3), (4.4) such that

1

10
< a(ξ1, ξ2, ξ3) < 10.

Here φQi,i is an L
1 normalized wave packet on a tile I ~Q ×Qi for i = 1, 2, 3, where

Qi is a shifted dyadic interval that depends on the decomposition in each of the

three cases and I ~Q is a dyadic interval such that |I ~Q| ∼ |Qi|−1 for i = 1, 2, 3.

Since ξ1 ∈ 9
10
Q1, ξ2 ∈ 9

10
Q2 and ξ3 ∈ 9

10
Q3 it follows that ξ1 + ξ2 + ξ3 ∈

9
10
Q1 + 9

10
Q2 + 9

10
Q3 and as a consequence one can �nd a shifted dyadic interval Q4

with the property that 9
10
Q1 + 9

10
Q2 + 9

10
Q3 ⊆ − 7

10
Q4 and also satisfying |Q1| =

|Q2| = |Q3| ∼ |Q4|. In particular there exists an L1 normalized wave packet φQ4,4

adapted to I ×Q4 such that φ̂Q4,4 ≡ 1 on − 9
10
Q1 − 9

10
Q2 − 9

10
Q3.

Thus (4.5) can be written as

a(ξ1, ξ2, ξ3) =
∑
~Q∈~Q

φ̂Q1,1(ξ1)φ̂Q2,2(ξ2)φ̂Q3,3(ξ3)φ̂Q4,4(−ξ1 − ξ2 − ξ3) (4.6)

where this time ~Q is a collection of shifted dyadic quasi-cubes in R4. Modulo a

�nite re�nement we can assume that a sum of the type

14



∑
~Q∈~Q

φ̂Q1,1(ξ1)φ̂Q2,2(ξ2)φ̂Q3,3(ξ3)φ̂Q4,4(−ξ1 − ξ2 − ξ3) (4.7)

runs over a sparse collection of tiles ~Q. In such a sparse collection, then for every

Q ∈ ~Q there exists a unique shifted cube Q̃ in R4 such that Q ⊆ 7
10
Q̃ and with the

diameter of Q similar to the diameter of Q̃. This allows us to assume that a sum

of the type (4.7) runs over a sparse collections of shifted dyadic cubes such that

|Q1| ∼ |Q2| ∼ |Q3| ∼ |Q4|. Let | ~Q| ∼ |Qi|, i = 1, 2, 3, 4, be the scale of the dyadic

cube.

Further we know that in all three cases (4.2), (4.3) and (4.4) then the scale

| ~Q| �xes the location of the tile Q1. Also in the case (4.2) where we are close to

the line ξ2 + ξ3 = 0 then the tiles Q2 and Q3 can be made to overlap while in the

second two cases (4.3), (4.4), when we are away from the line ξ2 + ξ3 = 0 then Q2

and Q3 can be made to be a couple of units of length | ~Q| away from another so

they don't overlap.

We will now study the quadlinear form associated to (3.4).

15



∫
R
T̃β(f1, f2, f3)(x)f4(x)dx

=

∫
ξ1+ξ2+ξ3+ξ4=0

[∫ 1

0

1R+(αξ1+βξ2+ξ3)dα

]
f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)f̂4(ξ4)dξ1dξ2dξ3dξ4

=
∑
~Q∈~Q

∫
ξ1+ξ2+ξ3+ξ4=0

[∫ 1

0
1R+(αξ1+βξ2+ξ3)dα

]
a(ξ1, ξ2, ξ3)

φ̂Q1,1(ξ1)φ̂Q2,2(ξ2)φ̂Q3,3(ξ3)

φ̂Q4,4(−ξ1 − ξ2 − ξ3)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)f̂4(ξ4)dξ1dξ2dξ3dξ4

=
∑
~Q∈~Q

∫
ξ1+ξ2+ξ3+ξ4=0

[∫ 1

0
1R+(αξ1+βξ2+ξ3)dα

]
a(ξ1, ξ2, ξ3)

φ̂Q1,1(ξ1)φ̂Q2,2(ξ2)φ̂Q3,3(ξ3)

φ̂Q4,4(ξ4)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)f̂4(ξ4)dξ1dξ2dξ3dξ4

(4.8)

We can write

[∫ 1

0
1R+(αξ1+βξ2+ξ3)dα

]
a(ξ1, ξ2, ξ3)

φ̂Q1,1(ξ1)φ̂Q2,2(ξ2)φ̂Q3,3(ξ3)

as

[∫ 1

0
1R+(αξ1+βξ2+ξ3)dα

]
a(ξ1, ξ2, ξ3)

̂̃φQ1,1(ξ1)
̂̃φQ2,2(ξ2)

̂̃φQ3,3(ξ3)φ̂Q1,1(ξ1)φ̂Q2,2(ξ2)φ̂Q3,3(ξ3)

where ̂̃φQ1,1⊗
̂̃φQ2,2⊗

̂̃φQ3,3 is identically equal to 1 on the support of φ̂Q1,1⊗ φ̂Q2,2⊗

φ̂Q3,3.

Now split
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[∫ 1

0
1R+(αξ1+βξ2+ξ3)dα

]
a(ξ1, ξ2, ξ3)

̂̃φQ1,1(ξ1)
̂̃φQ2,2(ξ2)

̂̃φQ3,3(ξ3)

as a Fourier series

∑
n1,n2,n3

C
~Q
n1,n2,n3

e
2πi

n1
|~Q|

ξ1
e
2πi

n2
|~Q|

ξ2
e
2πi

n3
|~Q|

ξ3
.

The coe�cient C ~Q
n1,n2,n3

is given by

C
~Q
n1,n2,n3

=
1

| ~Q|4

∫
R3

[∫ 1

0
1R+(αξ1+βξ2+ξ3)dα

]
a(ξ1, ξ2, ξ3)

̂̃φQ1,1(ξ1)
̂̃φQ2,2(ξ2)

̂̃φQ3,3(ξ3)

e
−2πi n1

|~Q|
ξ1
e
−2πi n2

|~Q|
ξ2
e
−2πi n3

|~Q|
ξ3
dξ1dξ2dξ3 (4.9)

Lemma 4.7.

|C ~Q
n1,n2,n3

| . C(n1, n2, n3)

where the implicit constant does not depend on ~Q.

This lemma is a consequence of lemma 6.2 that we prove in section 6. The main

point for now is that the Fourier coe�cient is bounded uniformly independently of

the dyadic cube ~Q.

We can now majorize (4.8) by
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∑
n1,n2,n3

C(n1, n2, n3)
∑
~Q∈~Q

|
∫

ξ1+ξ2+ξ3+ξ4=0

φ̂Q1,1(ξ1)φ̂Q2,2(ξ2)φ̂Q3,3(ξ3)φ̂Q4,4(ξ4)

f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)f̂4(ξ4)e
−2πi n1

|~Q|
ξ1
e
−2πi n2

|~Q|
ξ2
e
−2πi n3

|~Q|
ξ3
dξ1dξ2dξ3dξ4|

=
∑

n1,n2,n3

C(n1, n2, n3)
∑
~Q∈~Q

|
∫
R5

̂f1 ∗ φn1
Q1,1

(ξ1) ̂f2 ∗ φn2
Q2,2

(ξ2) ̂f3 ∗ φn3
Q3,3

(ξ3)

̂f4 ∗ φQ4,4(ξ4)e
2πi(ξ1+ξ2+ξ3+ξ4)xdξ1dξ2dξ3dξ4dx|

=
∑

n1,n2,n3

C(n1, n2, n3)
∑
~Q∈~Q

|
∫
R
(f1 ∗ φn1

Q1,1
)(x)(f2 ∗ φQ,22n2)(x)(f3 ∗ φn3

Q3,3
)(x)

(f4 ∗ φQ4,4)(x)dx|

Here the meaning of φniQi,i is that if φQi,i was an L1 normalized wave packet on

I ~Q × Qi then φniQi,i is an L1 normalized wave packet on Ini~Q × Qi where I
ni
~Q

is a

dyadic interval sitting ni units of length |I ~Q| away from I ~Q.

Split ~Q =
⋃
k∈Z

~Qk where ~Qk has cubes ~Q of scale | ~Q| = 2k and thus |I ~Q| = 2−k.

∑
~Q∈~Q

|
∫
R
(f1 ∗ φn1

Q1,1
)(x)(f2 ∗ φn2

Q,22
)(x)(f3 ∗ φn3

Q3,3
)(x)(f4 ∗ φQ4,4)(x)dx|

=
∑
k∈Z

∑
~Q∈~Qk

|2−k
∫
R
(f1 ∗ φn1

Q1,1
)(2−ky)(f2 ∗ φn2

Q,22
)(2−ky)(f3 ∗ φn3

Q3,3
)(2−ky)

(f4 ∗ φQ4,4)(2
−ky)dy|

=
∑
k∈Z

∑
~Q∈~Qk

∣∣∣|I ~Q| ∫ 1

0

∑
m∈Z

(f1 ∗ φn1
Q1,1

)(2−km+ 2−kγ)(f2 ∗ φn2
Q,22

)(2−km+ 2−kγ)

(f3 ∗ φn3
Q3,3

)(2−km+ 2−kγ)(f4 ∗ φQ4,4)(2
−km+ 2−kγ)dγ

∣∣∣ (4.10)

Now observe that for i = 1, 2, 3, 4 (where we take n4 = 0)

18



(fi ∗ φniQi,i)(2
−km+ 2−kγ) =

∫
R
fi(z)φniQi,i(2

−km+ 2−kγ − z)dz

=
1

|I ~Q|1/2

∫
R
fi(z)|I ~Q|

1/2φniQi,i(2
−km+ 2−kγ − z)dz

=
1

|I ~Q|1/2
〈fi, φ̃niQi,i,m,γ〉

where φ̃niQi,i,m,γ is a wave packet translated from φniQi,i by m steps in time and then

additionally shifted by γ steps. Note that φ̃niQi,i,m,γ is an L
2 normalized wave packet

since φniQi,i was L
1 normalized. Now (4.10) becomes

∫ 1

0

∑
~Q∈~Q

∑
m∈Z

|I ~Q|
1

|I ~Q|1/2
〈f1, φ̃n1

Q1,1,m,γ
〉 1

|I ~Q|1/2
〈f2, φ̃n2

Q2,2,m,γ
〉 1

|I ~Q|1/2
〈f3, φ̃n3

Q3,3,m,γ
〉

1

|I ~Q|1/2
〈f4, φ̃Q4,4,m,γ〉dγ

=

∫ 1

0

∑
~P∈~P

1

|I~P |
〈f1, φ̃Pn11 ,1,γ〉〈f2, φ̃Pn22 ,2,γ〉〈f3, φ̃Pn33 ,3,γ〉〈f4, φ̃P4,4,γ〉dγ

where P ni
i denotes the tile Ini+mPi

× Qi where I
ni+m
Pi

is a dyadic interval such that

|Ini+mPi
| ∼ |Qi|−1 for i = 1, 2, 3, 4 (again we have n4 = 0). Again then Ini+mPi

sits

ni +m units of length |I~P | away from IPi .

If we now �x n1, n2, n3 ∈ Z and γ ∈ [0, 1] then it is su�cient to study estimates

for the following discrete variant of (4.8)

∑
~P∈~P

1

|I~P |
〈f1, φPn11 ,1〉〈f2, φPn22 ,2〉〈f3, φPn33 ,3〉〈f4, φP4,4〉

Write
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Λ~P(f1, f2, f3, f4) :=
∑
~P∈~P

1

|I~P |
〈f1, φPn11 ,1〉〈f2, φPn22 ,2〉〈f3, φPn33 ,3〉〈f4, φP4,4〉 (4.11)

and de�ne T~P(f1, f2, f3) with

〈T~P(f1, f2, f3), f4〉 = Λ~P(f1, f2, f3, f4)

To compare our quadtiles with the tiles one faces in the bilinear Hilbert trans-

form then notice that if ~P = (P1, P2, P3, P4) then P1 is like a paraproduct tile, P2

and P3 might at a �rst glance seem just as in the bilinear Hilbert transform and

P4 is essentially as in the bilinear Hilbert transform, just potentially translated a

bit in frequency by P1. Note that the constant in the de�nition of .′ is 5 as op-

posed to 3 in [15]. We choose a bigger constant to make up for this extra possible

translation of P4. In the next chapter we will see in which cases we are essentially

as in the bilinear Hilbert transform case, and in which cases we have to be more

careful.
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CHAPTER 5

RANK (1, 0)

Recall a standard de�nition of rank [15].

De�nition 5.1. A collection ~P of quad-tiles is said to have rank 1 if one has the

following properties for all ~P , ~P ′ ∈ ~P:

• If ~P 6= ~P ′, then Pj 6= P ′j for all j=1,2,3,4.

• If P ′j ≤ Pj for some j = 1, 2, 3, 4, then P ′i . Pi for all 1 ≤ i ≤ 4.

• If we further assume that 109|I~P ′| < |I~P |, then we have P ′i .
′ Pi for all i 6= j.

This de�nition does not work for our collection of quadtiles because the paraprod-

uct tile P1 does not uniquely determine the other three tiles.

We only need a frequency or time interval from one of our tiles to determine P1,

while we need a whole tile Pj, j = 2, 3 or 4, to determine the other three. Motivated

by this fact and what ingredients are really important in a rank de�nition [17] we

give the following de�nition.

De�nition 5.2. Let {i1, i2, i3, i4} be some rearrangement of {1, 2, 3, 4}. A collec-

tion ~P of quad-tiles is said to have rank (1, 0) with respect to {{i1, i2, i3}, {i4}} if

one has the following properties for all ~P , ~P ′ ∈ ~P:

• If ~P 6= ~P ′, then Pij 6= P ′ij for all j=1,2,3 and if I~P = I~P ′ then Pi4 = P ′i4.

• If P ′ij ≤ Pij for some j = 1, 2, 3, then P ′ik . Pik for all 1 ≤ k ≤ 4.

• If we further assume that 109|I~P ′ | < |I~P |, then there exist at least two indices

τ1(ij), τ2(ij) ∈ {1, 2, 3, 4} \ {ij}, τ1(ij) 6= τ2(ij)

21



such that we have P ′τ1(ij) .
′ Pτ1(ij) and P

′
τ2(ij)

.′ Pτ2(ij). We call those indices

good indices with respect to ij and note that there might be up to three of

them. Here we understand P ′i4 .
′ Pi4 to mean ωP ′i4

∩ ωPi4 = ∅.

Note that the orderings ≤ and .′ do not make sense for our paraproduct tiles

because we have the relation ≤ between any two such tiles and thus .′ never

happens. These orderings work well on the bilinear Hilbert transform type tiles

where �exibility is helpful. We have to be more exact with the paraproduct tiles

and thus understand the relation ≤ to mean that the paraproduct tiles intersect

in frequency while .′ means that they don't intersect.

It is not hard to see that our collection of quadtiles is rank (1, 0) with respect

to {{2, 3, 4}, {1}} where a collection corresponds to exactly one of the three cases

we have. The �rst and second conditions are clearly ful�lled since knowing one

of the bilinear Hilbert transform tiles gives us complete information about all the

other tiles and since the paraproduct tile is completely determined by the time

interval. Modulo a �nite re�nement of our collection we can also see that the last

condition is ful�lled.

Assume we are in the case (4.2) and that we have 109|I~P ′ | < |I~P | and P ′2 ≤ P2.

We can not guarantee that P ′3 ≤ P3 since P2 and P3 are essentially the same tile

and similarly for P ′2 and P
′
3. However 109|I~P ′| < |I~P | guarantees that ωP ′1 ∩ωP1 = ∅

which along with the previous observation also guarantees that P ′4 .′ P4. The

other possibilities in this case go somewhat similarly. This particular example

shows how critical the paraproduct tile is in our analysis.

In the case (4.3) then P1 has minimal e�ect so we are essentially in the bilinear

Hilbert case so all the conditions above are ful�lled.
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Assume we are in the case (4.4) and that we have 109|I~P ′ | < |I~P | and P ′4 ≤ P4.

We claim that P ′2 .′ P2 and P ′3 .′ P3 so let us assume for contradiction that

P ′2 ≤ P2. The distance between the centers of the frequency supports of P1 and

P ′1 is roughly |ωP ′1| − |ωP1| < |ωP ′1 | which means, since P ′2 ≤ P2 and P ′4 ≤ P4, that

the distance between the centers of the frequency supports of P3 and P ′3 is at most

|ωP ′1| which gives P ′3 ≤ P3. This must be a contradiction and thus we have P ′2 .
′ P2

and P ′3 .
′ P3. The other possibilities in this case go somewhat similarly.
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CHAPTER 6

FOURIER COEFFICIENT

Recall from (4.9) that the Fourier coe�cient C ~Q
n1,n2,n3

is given by

C
~Q
n1,n2,n3

=
1

| ~Q|4

∫
R3

[∫ 1

0
1R+(αξ1+βξ2+ξ3)dα

]
a(ξ1, ξ2, ξ3)

̂̃φQ1,1(ξ1)
̂̃φQ2,2(ξ2)

̂̃φQ3,3(ξ3)

e
−2πi n1

|~Q|
ξ1
e
−2πi n2

|~Q|
ξ2
e
−2πi n3

|~Q|
ξ3
dξ1dξ2dξ3

Change variables and obtain

C
~Q
n1,n2,n3

=

∫
R3

[∫ 1

0

1R+(αξ1+βξ2+ξ3)dα

]
φ̂1(ξ1)φ̂2(ξ2)φ̂3(ξ3)

ã(ξ1, ξ2, ξ3)
e−2πin1ξ1

e−2πin2ξ2e−2πin3ξ3dξ1dξ2dξ3

where φ̂i(ξi) = ̂̃φQ1,1(| ~Q|ξ1) is a bump that is of scale 1 and ã(ξ1, ξ2, ξ3) =

a(| ~Q|ξ1, | ~Q|ξ2, | ~Q|ξ3) is also of scale 1 on the support of φ̂1(ξ1)φ̂2(ξ2)φ̂3(ξ3). To

see why the last statement is true we have to recall

a(ξ1, ξ2, ξ3) =
∑
~̃Q∈~Q

φ̂Q̃1,1
(ξ1)φ̂Q̃2,2

(ξ2)φ̂Q̃3,3
(ξ3)

and split into cases based on (4.2), (4.3) and (4.4). First note that for a term in

∑
~̃Q∈~Q

φ̂Q̃1,1
(ξ1)φ̂Q̃2,2

(ξ2)φ̂Q̃3,3
(ξ3)
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to contribute to the sum on the support of ~Q we must have Q̃i ∩ Qi 6= ∅ for

i = 1, 2, 3.

Start with the cases (4.2) and (4.4). For Q̃1 ∩Q1 6= ∅ we must have | ~̃Q| ∼ | ~Q|

because else φ̂Q̃1,1
and φ̂Q1,1 have disjoint supports.

The last case is (4.3). Assume we have ~̃Q and ~Q such that Q̃i ∩ Qi 6= ∅ for

i = 1, 2, 3. Let's now for symmetry assume we have | ~̃Q| � | ~Q|. We are in the case

where Q2 and Q3 are several units of length | ~Q| away from one another and Q̃2 and

Q̃3 are several units of length | ~̃Q| away from one another. However if Q̃2 ∩Q2 6= ∅

then we can't have Q̃3 ∩ Q3 6= ∅ which is a contradiction. Thus we must have

| ~̃Q| ∼ | ~Q|.

We now want to integrate by parts to obtain decay in n1, n2, n3. We do not

need to worry about derivatives hitting φ̂1(ξ1)φ̂2(ξ2)φ̂3(ξ3)
ã(ξ1,ξ2,ξ3)

which is smooth and of scale

1.

In the case (4.3) we do not catch the planes where our symbol is continuous

but not di�erentiable. In that case we can thus integrate by parts as often as we

want and obtain as much decay in n1, n2 and n3 as we want.

In the other cases, (4.2) and (4.3), we might catch the planes where our symbol

is merely continuous but in both cases we know that Q1 is away from the origin.

Thus we can write C ~Q
n1,n2,n3

as
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∫
R3

[
1

ξ1

∫ ξ1

0

1R+(α+βξ2+ξ3)dα

]
φ̂1(ξ1)φ̂2(ξ2)φ̂3(ξ3)

ã(ξ1, ξ2, ξ3)
e−2πin1ξ1

e−2πin2ξ2e−2πin3ξ3dξ1dξ2dξ3

=

∫
R3

[∫ ξ1

0

1R+(α+βξ2+ξ3)dα

] ̂̃φ1(ξ1)φ̂2(ξ2)φ̂3(ξ3)

ã(ξ1, ξ2, ξ3)
e−2πin1ξ1

e−2πin2ξ2e−2πin3ξ3dξ1dξ2dξ3 (6.1)

where ̂̃φ1(ξ1) = 1
ξ1
φ̂1(ξ1) is well de�ned and still smooth because ξ1 is always away

from zero. As in Muscalu's treatment of the symbol for the Calderón commutator

[13], which has a non-standard symbol, we get the following lemmas.

Lemma 6.1. One has the following identities

a) ∂2ξ3

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)

= δ0(ξ1 + βξ2 + ξ3)− δ0(βξ2 + ξ3)

b) ∂ξ2∂ξ3

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)

= β(δ0(ξ1 + βξ2 + ξ3)− δ0(βξ2 + ξ3))

c) ∂ξ1∂ξ3

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)

= δ0(ξ1 + βξ2 + ξ3)

d) ∂2ξ2

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)

= β2(δ0(ξ1 + βξ2 + ξ3)− δ0(βξ2 + ξ3))

e) ∂ξ1∂ξ2

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)

= βδ0(ξ1 + βξ2 + ξ3)

f) ∂2ξ1

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)

= δ0(ξ1 + βξ2 + ξ3)

Proof. This is straight forward. Let us verify a) for instance. One has

∂2ξ3

(∫ ξ1

0

1R+(α+βξ2+ξ3)dα

)
= ∂ξ3

(∫ ξ1

0

δ0(α+βξ2+ξ3)dα

)
= ∂ξ3

(∫ ξ1+βξ2+ξ3

βξ2+ξ3

δ0(α)dα

)
= δ0(ξ1 + βξ2 + ξ3)− δ0(βξ2 + ξ3)
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Lemma 6.2.

|C ~Q
n1,n2,n3

| . c1β
1

〈n3〉2
· 1

〈n1 − n3〉M2
· 1

〈n2 − βn3〉M3
+c2β

1

〈n3〉2
· 1

〈n1〉M2
· 1

〈n2 − βn3〉M3

+ c3β
1

〈n3〉M1
· 1

〈n1 − n2

β
〉M2
· 1

〈n3 − n2

β
〉M3

+ c4β
1

〈n3〉M1
· 1

〈n1〉M2
· 1

〈n3 − n2

β
〉M3

+ c5β
1

〈n3〉M1
· 1

〈n2〉M2
· 1

〈n3 − n1〉M3
· 1

〈n2 − βn1〉M4
+ c6β

1

〈n3〉M1
· 1

〈n2〉M2
· 1

〈n1〉M3

where 〈n〉 := 2 + |n| and M1, M2, M3, M4 are �xed large integers and c1β, . . . , c
6
β

are constants that only depend on β.

Proof. As mentioned before then this clearly holds in the case (4.3) since then the

symbol is smooth and we can integrate by parts as often as we want in the Fourier

coe�cient. In the other two cases (4.2) and (4.4) we must use lemma 6.1. The

idea is to integrate by parts in (6.1) in the ξ3 variable as often as we can. Since

both
∫ ξ1
0

1R+(α+βξ2+ξ3)dα and
̂̃
φ1(ξ1)φ̂2(ξ2)φ̂3(ξ3)

ã(ξ1,ξ2,ξ3)
depend on ξ3 then derivatives can

hit either of the terms. If the derivative hits the term
∫ ξ1
0

1R+(α+βξ2+ξ3)dα twice

then because of lemma 6.1 the ξ3 variable disappears and (6.1) collapses to

∫
R2

̂̃φ1(ξ1)φ̂2(ξ2)φ̂3(−ξ1 − βξ2)
ã(ξ1, ξ2,−ξ1 − βξ2)

e−2πi(n1−n3)ξ1e−2πi(n2−βn3)ξ2dξ1dξ2

−
∫
R2

̂̃φ1(ξ1)φ̂2(ξ2)φ̂3(−βξ2)
ã(ξ1, ξ2,−ξ1 − βξ2)

e−2πin1ξ1e−2πi(n2−βn3)ξ2dξ1dξ2

The integrands in both those terms are smooth and can be integrated by parts

as many times as we wish and all the derivatives are compactly supported on scale

1. This explains the appearance of the �rst two terms in the estimate for C ~Q
n1,n2,n3

.

If however the ξ3 derivative didn't hit the term
∫ ξ1
0

1R+(α+βξ2 + ξ3)dα two

times, even after running the procedure many times, this means that we already
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gained a factor of the type 1
〈n3〉M1

, at which point we stop integrating by parts in

ξ3 and start integrating by parts in ξ2. If ξ2 derivatives hit
∫ ξ1
0

1R+(α+βξ2+ξ3)dα

we face two possible cases, we either end up with ∂ξ2∂ξ3
(∫ ξ1

0
1R+(α+βξ2+ξ3)dα

)
or ∂2ξ2

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)
. Using lemma 6.1 then the integral collapses as

in the �rst case, that is ξ2 becomes − ξ3+ξ1
β

or − ξ3
β
. After that we are, as before,

integrating by parts a smooth function, obtaining an upper bound that explains

the appearance of the third and fourth terms in the estimate for C ~Q
n1,n2,n3

.

If however
∫ ξ1
0

1R+(α+βξ2 +ξ3)dα has not been hit two times by some com-

bination of ξ3 and ξ2 derivatives after running the procedure many times, this

means that we have already gained a factor of the type 1
〈n3〉M1

· 1
〈n2〉M2

at which

point we stop integrating by parts in ξ2 and start integrating by parts in ξ1.

If ξ1 derivatives hit
∫ ξ1
0

1R+(α+ βξ2 + ξ3)dα we face three possible cases, we

end up with ∂ξ1∂ξ3

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)
, ∂ξ1∂ξ2

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)

or

∂2ξ1

(∫ ξ1
0

1R+(α+βξ2+ξ3)dα
)
. Using lemma 6.1 the integral collapses as before,

that is ξ1 becomes −βξ2 − ξ3. After that we are, as before, integrating by parts

a smooth function, obtaining an upper bound that explains the appearance of the

�fth term in the estimate for C ~Q
n1,n2,n3

.

Last but not least, if no combination of ξ1, ξ2 or ξ3 derivatives hits
∫ ξ1
0

1R+(α+

βξ2 + ξ3)dα twice then this means that the derivatives keep hitting the smooth

function in which case we obtain an upper bound that explains the appearance of

the last term in the estimate for C ~Q
n1,n2,n3

.
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CHAPTER 7

DISCRETE OPERATOR

Let now ~P be a �nite collection of multitiles which is sparse and has rank

(1, 0). Consider also wave packets (φ
P
nj
j ,j

)~P∈~P for j = 1, 2, 3, 4 adapted to the tiles

P
nj
j respectively as before where n1, n2 and n3 are �xed and n4 = 0. Assume also

that they are all L2-normalized. The following theorem will be proven in detail in

section 9.

Theorem 7.1. Let γ1 and γ3 be positive numbers, smaller than 1 but very close

to 1, γ2 be a positive number smaller than 1
2
but very close to 1

2
. Let also E1, E2,

E3, E4 ⊆ R be measurable sets of �nite measure. Then there exists E ′4 ⊆ E4 with

|E ′4| ∼ |E4| such that for every |f1| . 1E1, |f2| . 1E2, |f3| . 1E3 one has

∣∣∣∫
R
T~P(f1, f2, f3)(x)1E′4(x)dx

∣∣∣ . ( 3∏
j=1

| log2(〈nj〉)|4
)
|E1|γ1 |E2|γ2|E3|γ3|E4|γ4

(7.1)

where γ4 is de�ned by γ1 + γ2 + γ3 + γ4 = 1. Moreover the implicit constant is

independent of the cardinality of ~P.

Using the interpolation theory by Muscalu, Tao and Thiele [17], the symmetries

of T~P and standard duality arguments then one can deduce the following theorem.

Theorem 7.2. If ~P is as before then T~P maps boundedly

T~P : Lp1(R)× Lp2(R)× Lp3(R) 7→ Lp4(R) (7.2)
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for any 1 < p1, p2, p3 ≤ ∞ and 2
5
< p4 < ∞ such that 1

p1
+ 1

p2
+ 1

p3
= 1

p4
and 2

3
<

p2p3
p2+p3

≤ ∞. Furthermore, the constant of boundedness depends on n1, n2, n3 and n4

in a way that can be bounded by
3∏
j=1

| log2(〈nj〉)|4.

Note that this is a stronger result than in theorem 1.1.

To prove Theorem 1.1 then let p1, p2, p3 and p4 be as in the theorem and recall

that in section 3 we commented that it is enough to show the theorem for T̃β. If

p4 ≥ 1 then standard arguments extend the theorem to T̃β. If however p4 < 1 let

fi ∈ Lpi(R), i = 1, 2, 3 and note

‖T̃β(f1, f2, f3)‖p4 = ‖T̃β(f1, f2, f3)
p4‖1/p41

. ‖

(∫ 1

0

∑
n1,n2,n3

C(n1, n2, n3)T~P,η(f1, f2, f3)dη

)p4

‖1/p41

. ‖
∫ 1

0

∑
n1,n2,n3

C(n1, n2, n3)
p4T p4~P,η(f1, f2, f3)dη‖

1/p4
1

This last step is only well de�ned if p4 > 1
2
because C(n1, n2, n3) includes terms

that contain 1
〈n3〉2 by lemma 6.2 and we need 1

〈n3〉2p4 to be summable. In that case

then theorem 7.2 and lemma 6.2, along with standard results on the convergence of

series of the type
∑
n

| log2(〈n〉)|4
〈n〉p where p > 1, can be used to conclude that theorem

1.1 holds true for T̃β and thus for Tβ.

Note that the reason why p4 > 1
2
might seem a bit naive. There exist methods

where all the T~P are treated simultaneously by picking in section 10 a common

exceptional set. It is not hard to check that these more advanced methods yield

the same condition on p4.
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CHAPTER 8

TREES

The standard approach to prove the desired estimates for the form Λ~P is to

organize the collection of quadtiles ~P into trees. We may assume, and will do so

for the rest of the thesis, that ~P is sparse and of rank (1, 0). We will now recall

basic de�nitions and comments for trees from [15]. The only change is that we will

not consider 1 trees at all. We will essentially ignore the �rst position when setting

up the trees. Also note that we set up the trees based on untranslated tiles.

De�nition 8.1. For any 2 ≤ j ≤ 4 and a quadtile ~PT ∈ ~P, de�ne a j-tree with

top ~PT to be a collection of quadtiles T ⊆ ~P such that

Pj ≤ PT,j for all ~P ∈ T, (8.1)

where PT,j is the j component of ~PT . We write IT and ωT,j for I~PT and ωPT,j

respectively. We say that T is a tree if it is a j-tree for some 2 ≤ j ≤ 4.

Note that T does not necessarily have to contain its top ~PT .

De�nition 8.2. Let 2 ≤ i ≤ 4. Two trees T , T ′ are said to be strongly i-disjoint

if

• Pi 6= P ′i for all ~P ∈ T , ~P ′ ∈ T ′.

• Whenever ~P ∈ T , ~P ′ ∈ T ′ are such that 2ωPi ∩ 2ωP ′i 6= ∅, then one has

I ~P ′ ∩ IT = ∅, and similarly with T and T ′ reversed.

Note that if T and T ′ are strongly i-disjoint, then IP × 2ωPi ∩ IP ′ × 2ωP ′i = ∅

for all ~P ∈ T , ~P ′ ∈ T ′.
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Given that ~P is sparse, it is easy to see that if T is an i-tree, then for all

~P , ~P ′ ∈ T and j 6= i, 2 ≤ j ≤ 4, we have

ωPj = ωP ′j

or

2ωPj ∩ 2ωP ′j = ∅

We pick trees for tiles ~P as in the bilinear Hilbert transform case but remember

that our wave packets are in general adapted to tiles P ni
i , i = 1, 2, 3, that are

translated in time by ni units of length |I~P |. Thus the e�ective trees we face are

translated and are furthermore not evenly translated.

Due to the dyadic structure of the trees and the dyadic structure of the trans-

lation applied to the tiles in the trees then one can see that we can do better than

saying that a translated tree, derived from a tree T , is supported on
ni⋃
j=0

IjT . As

Muscalu observes [13] (and can be seen from the argument in section 11) then in

fact the translated tree is supported on
⋃

j∈Fr(ni)
IjT where Fr(ni) is a set of indices

that contains for example 0, 1 and ni. We also know the following fact about the

cardinality of Fr(ni)

|Fr(ni)| . log2(〈ni〉).

We call
⋃

j∈Fr(ni)
IjT "IT and friends".
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CHAPTER 9

TILE NORMS

Let's recall the standard tile norms from the paper by Muscalu, Thiele and Tao

[15].

De�nition 9.1. Let ~P be a �nite collection of quadtiles, j = 1, 2, 3, 4 and let

(aPj)~P∈~P be a sequence of complex numbers. We de�ne the size of this sequence by

sizej((aPj)~P∈~P) := sup
T⊂~P

(
1

|IT |
∑
~P∈T

|aPj |2)1/2

where T ranges over all trees in ~P which are either one quadtile trees or i-trees for

some 2 ≤ i ≤ 4 such that j is a good index with respect to i, as in the de�nition of

rank (1, 0).

We also de�ne the energy of a sequence by

energyj((aPj)~P∈~P) := sup
n∈Z

sup
T

2n(
∑
T∈T

|IT |)1/2

where T ranges over all collections of strongly j-disjoint trees, 2 ≤ j ≤ 4, in ~P

such that

(
∑
~P∈T

|aPj |2)1/2 ≥ 2n|IT |1/2

for all T ∈ T and
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(
∑
~P∈T ′

|aPj |2)1/2 ≤ 2n+1|IT ′|1/2

for all sub-trees T ′ ⊂ T ∈ T.

We will use those de�nitions for aPj = 〈fj, φPnjj ,j
〉. Note that the restriction to

i-trees for some 2 ≤ i ≤ 4 such that j is a good index with respect to i, as in

the de�nition of rank (1, 0), means that whenever such trees exist then we can

attempt to use square function estimates on our collection of Pj tiles that come

with those trees. In other words, the Pj tiles stack up similarly as in the bilinear

Hilbert transform case.

Recall the John-Nirenberg inequality [15].

Lemma 9.2. Let ~P be a �nite collection of quadtiles, j = 1, 2, 3, 4 and let (aPj)~P∈~P

be a sequence of complex numbers. Then

sizej((aPj)~P∈~P) ∼ sup
T⊂~P

1

|IT |
‖(
∑
~P∈T

|aPj |2
1I~P
|I~P |

)1/2‖L1,∞(IT )

where T ranges over all trees in ~P which are either one quadtile trees or i-trees for

some 2 ≤ i ≤ 4 such that j is a good index with respect to i, as in the de�nition of

rank (1, 0).

The proof carries exactly over due to our choice of possible trees in the de�nition

of size.
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CHAPTER 10

PROOF OF DISCRETE OPERATOR THEOREM

Proposition 10.1. Let ~P be a �nite collection of quadtiles. Then

|Λ~P(f1, f2, f3, f4)| . size((〈f1, φPn11 ,1〉)~P∈~P)
4∏
j=2

(size((〈fj, φPnjj ,j
〉)~P∈~P))θj

(energy((〈fj, φPnjj ,j
〉)~P∈~P))1−θj

for any 0 ≤ θ2, θ3, θ4 < 1 with θ2 +θ3 +θ4 = 1, with the implicit constant depending

on the θi.

This proposition will be proven in section 14.

Lemma 10.2. Let ~P be a �nite collection of quadtiles, j ∈ {1, 2, 3, 4} and E be a

set of �nite measure. Then for every |f | ≤ 1E one has

size((〈f, φ
P
nj
j ,j
〉)~P∈~P) . log2(〈nj〉) sup

~P∈~P

1

|I~P |

∫
E

χ̃MI
P
nj
j

for all M > 0, with the implicit constant depending on M .

Lemma 10.2 will be proven in section 12.

De�ne the shifted dyadic maximal operator Mn as follows [13]

Mnf(x) := sup
x∈I

1

|I|

∫
R
|f(y)|χ̃In(y)dy

where the supremum is taken only over dyadic intervals.
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Lemma 10.3. For any n ∈ Z the shifted maximal function Mn maps boundedly

Lp(R) into Lp(R) with a bound of the type O(log2(〈n〉)). It also maps boundedly

L∞(R) into L∞(R) and L1(R) into L1,∞(R) with a bound of the type O(log2(〈n〉)).

Lemma 10.3 will be proven in section 11.

Lemma 10.4. Let ~P be a �nite collection of quadtiles, j ∈ {2, 3, 4} and f ∈ L2(R).

Then

energy((〈f, φ
P
nj
j ,j
〉)~P∈~P) . (log2(〈nj〉))2‖f‖2

Lemma 10.4 will be proven in section 13.

We can now prove theorem 7.1.

Proof. Fix E1, E2, E3, E4, γ1, γ2 and γ3 as in the hypothesis of theorem 7.1. The

goal is to �nd E ′4 ⊆ E4 with |E ′4| ∼ |E4| such that for every |f1| . 1E1 , |f2| . 1E2 ,

|f3| . 1E3 one has

∣∣∣Λ~P(f1, f2, f3, 1E′4)
∣∣∣ . ( 3∏

j=1

| log2(〈nj〉)|4
)
|E1|γ1|E2|γ2 |E3|γ3|E4|γ4

where we recall that γ4 is de�ned by γ1 + γ2 + γ3 + γ4 = 1.

Using the dilation symmetry of Tβ, which translates naturally to Λ~P, one can

clearly assume wlog that |E4| = 1. De�ne then the set Ω by

Ω :=
3⋃
j=1

(
{x : Mnj

(
1Ej
|Ej|

)
(x) > C log2(〈nj〉)}

)
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and observe that |Ω| � 1 if C is a large enough constant. Then set E ′4 := E4 \ Ω

and notice that |E ′4| ∼ 1 as desired.

Then for any d ≥ 1 de�ne the collection ~Pd by

~Pd := {~P ∈ ~P : 2d−1 ≤
dist(I~P ,Ω

c)

|I~P |
≤ 2d}

and let P0 be the collection of quadtiles which intersect Ωc. Clearly
⋃
d≥0

~Pd = ~P.

We can write

Λ~P(f1, f2, f3, 1E′4) =
∞∑
d=0

∫
R
T~Pd(f1, f2, f3)(x)1E′4(x)dx (10.1)

Fix d ≥ 0 and consider the inner quad linear form of (10.1). It can be estimated

by proposition 10.1. Using lemma 10.2 and lemma 10.3 we obtain

size((〈f, φ
P
nj
j ,j
〉)~P∈~Pd) . log2(〈nj〉) sup

~P∈~Pd

1

|I~P |

∫
E

χ̃MI
P
nj
j

. (log2(〈nj〉))2 min(1, 2d|Ej|)

. (log2(〈nj〉))22d|Ej|aj

for any 0 < aj < 1, j = 1, 2, 3.

Using lemma 10.4 we also obtain for j = 2, 3

energy((〈f, φ
P
nj
j ,j
〉)~P∈~P) . (log2(〈nj〉))2|Ej|1/2.
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Using lemmas 10.2, 10.4 and 10.3 for the fourth position, using n4 = 0, we note

that since |E4| = 1 we obtain

size((〈f, φ
P
nj
j ,j
〉)~P∈~Pd) . 2−Md

and

energy((〈f, φ
P
nj
j ,j
〉)~P∈~P) . 1.

Putting all this together then proposition 10.1 allows us to bound the corre-

sponding quad linear form in (10.1) for a �xed d ≥ 0 by

2−#d|E1|a1(|E2|a2)θ2(|E2|1/2)1−θ2(|E3|a3)θ2(|E3|1/2)1−θ3 · 1

= 2−#d|E1|a1|E2|a2θ2+
1
2
(1−θ2)|E3|a3θ3+

1
2
(1−θ3)

where # is a strictly positive integer. Then we can make a1 arbitrarily close to 1,

a2θ2 + 1
2
(1− θ2) arbitrarily close to 1

2
by choosing θ2 close to 0 and a3θ3 + 1

2
(1− θ3)

arbitrarily close to 1 by choosing θ3 close to 1 and a3 also close to 1.
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CHAPTER 11

ESTIMATES FOR THE SHIFTED DYADIC MAXIMAL FUNCTION

We will now recall the proof of lemma 10.3 from [13].

Proof. Observe that it is su�cient to prove the estimates for the "sharp" shifted

dyadic maximal function M̃n de�ned by

M̃nf(x) := sup
x∈I

1

|I|

∫
In
|f(y)|dy

where the supremum is taken only over dyadic intervals.

To see this, �x x and I so that x ∈ I. One can write

1

|In|

∫
In
|f(y)|dy .

∑
#∈Z

[
1

|In+#|

∫
In+#

|f(y)|dy
]

1

〈#〉100
.

In particular, using the above and assuming the theorem holds for M̃n, one has

‖Mnf‖p .
∑
#∈Z

1

〈#〉100
‖M̃n+#f‖p

.
∑
#∈Z

1

〈#〉100
log2(〈n+ #〉)‖f‖p

.
∑
#∈Z

1

〈#〉100
log2(〈n〉〈#〉)‖f‖p

. log2(〈n〉)‖f‖p

as desired. We are then left with proving the theorem for M̃n.
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Let now λ > 0. We claim that we have the following inequality

|{x : M̃nf(x) > λ}| . log2(〈n〉)|{x : Mf(x) > λ}| (11.1)

whereM is the classical Hardy-Littlewood maximal operator. Assuming (11.1) the

theorem for M̃n follows from the Hardy-Littlewood theorem in the case L1(R) 7→

L1,∞(R). The case L∞(R) 7→ L∞(R) is trivial. All the other estimates we obtain

then by interpolating between those two cases.

To prove (11.1) denote by Iλn the collection of all dyadic and maximal, with

respect to inclusion, intervals In, for which

1

|In|

∫
In
|f(y)|dy > λ.

Note that all of them are disjoint and one also has

⋃
In∈Iλn

In = {x : Mf(x) > λ}.

For every such selected, maximal, dyadic interval In, then it has at most log2(〈n〉)

friends as in the tree case. More precisely then there are at most log2(〈n〉) disjoint

dyadic intervals In1 , . . . , I
n
N of the same length as |In|, so that the translate with

−n corresponding units of any subinterval of In becomes a subinterval of one of

these intervals. Now we claim

{x : M̃nf(x) > λ} ⊆
⋃

In∈Iλn

(In1 ∪ . . . ∪ IN1 ).
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To see this, pick x0 so that Mnf(x0) > λ. This means that there exists a dyadic

interval J containing x0 so that 1
|Jn|

∫
Jn
|f(y)|dy > λ. Because of the previous

construction, one can for sure �nd one selected maximal interval of the type In so

that Jn ⊆ In. But then this means in particular that J itself will be subset of one

of In1 , . . . , I
n
N which implies the claim.

It is now easy to see that this claim together with the disjointness of the max-

imal intervals In along with the fact that N ≤ log2(〈n〉) imply (11.1).
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CHAPTER 12

SIZE ESTIMATES

We will now prove lemma 10.2.

Proof. Fix j ∈ {1, 2, 3, 4}, nj, E and |f | . 1E as in the lemma. Since ~P is a �nite

set of tiles there exists a tree T̃ such that the supremum in the size is attained. If

the tree is just one quadtile then the proof is trivial. Let's thus assume that T̃ is

an i-tree for some 2 ≤ i ≤ 4 such that j is a good index with respect to i, as in

the de�nition of rank (1, 0).

size((〈f, φ
P
nj
j ,j
〉)~P∈~P) = (

1

|IT̃ |
∑
~P∈T̃

|〈f, φ
P
nj
j ,j
〉|2)1/2

≤
∑

i∈Fr(nj)

(
1

|IT̃ |
∑
~P∈T̃
I~P⊆I

i
T̃

|〈f, φ
P
nj
j ,j
〉|2)1/2 (12.1)

Now for each i ∈ Fr(nj) take ~P ∈ T̃ such that I~P ⊆ I i
T̃
and pick from that

collection of tiles trees that are maximal with regards to inclusion and such that

they contain their top. Call that collection ~Ti for each i ∈ Fr(nj). Then we can

bound (12.1) with

∑
i∈Fr(nj)

∑
T∈~Ti

(
1

|IT̃ |
∑
~P∈T

|〈f, φPj ,j〉|2)1/2

Note that the trees in ~Ti are disjoint and in particular

∑
T∈~Ti

|IT | ≤ |IT̃ |.
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Thus for a �xed i ∈ Fr(nj) we have

∑
T∈~Ti

(
1

|IT̃ |
∑
~P∈T

|〈f, φPj ,j〉|2)1/2 ≤

sup
T∈~Ti

 1

|IT |
∑
~P∈T

|〈f, φPj ,j〉|2
1/2

 1

|IT̃ |
∑
T∈~Ti

|IT |

≤ sup
T∈~Ti

 1

|IT |
∑
~P∈T

|〈f, φPj ,j〉|2
1/2

Since ~P is a �nite set of tiles then for each friend there exists a tree T which is

an i-tree for some i 6= j, 2 ≤ i ≤ 4, such that

sup
T∈~Ti

 1

|IT |
∑
~P∈T

|〈f, φPj ,j〉|2
1/2

∼ 1

|IT |

∥∥∥∥∥∥∥
∑

~P∈T

|〈f, φPj ,j〉|2
1I~P
|I~P |

1/2
∥∥∥∥∥∥∥
1,∞

Here we have also used the John-Nirenberg inequality in lemma 9.2. Clearly it is

enough to prove that

∥∥∥∥∥∥∥
∑

~P∈T

|〈f, φPj ,j〉|2
1I~P
|I~P |

1/2
∥∥∥∥∥∥∥
1,∞

.
∫
R

1Ej χ̃
M
IT

and use the fact that |Fr(nj)| ≤ log2(〈nj〉).

Decompose the real line as a union of intervals

R =
⋃
n∈Z

InT

43



where |InT | = |IT | for every n ∈ Z, I0T = IT and all InT are disjoin except for the

endpoints. We think of InT as being n units of length |IT | to the right of IT if n > 0

and to the left if n < 0. Then split f as

f = f · 15IT + f · 1(5IT )c .

Since the expression

(∑
~P∈T
|〈f, φPj ,j〉|2

1I~P
|I~P |

)1/2

is a square function, it is bounded

from L1 into L1,∞ and as a consequence

∥∥∥∥∥∥∥
∑

~P∈T

|〈f · 15IT , φPj ,j〉|2
1I~P
|I~P |

1/2
∥∥∥∥∥∥∥
1,∞

. ‖f · 15IT ‖1

which can be majorized by the expression in the right hand side of the lemma.

We are left with estimating

∥∥∥∥∥∥∥
∑

~P∈T

|〈f · 1(5IT )c , φPj ,j〉|2
1I~P
|I~P |

1/2
∥∥∥∥∥∥∥
1,∞

which is clearly smaller than

∑
|n|≥3

∑
~P∈T

〈|f · 1InT |, |φPj ,j|〉
|IP |1/2

|IP | .
∑
|n|≥3

∑
~P∈T

〈|f | · 1InT , |χ̃
M
I~P
|〉

for any big number M > 0. In order to complete the proof it is enough to prove

that
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∑
~P∈T

〈|f | · 1InT , |χ̃
M
I~P
|〉 . 1

〈n〉M

∫
R

1Ej1InT

but this is an easy consequence of the fact that the sum on the left hand side runs

over P for which IP ⊆ IT . This ends the proof of lemma 10.2.
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CHAPTER 13

ENERGY ESTIMATES

We will now prove lemma 10.4.

Proof. Fix j ∈ {1, 2, 3, 4} and f ∈ L2(R). Let also n and T be as in de�nition

of energy such that the supremum in the de�nition is attained. We want to show

that

2n

(∑
T∈T

|IT |

)1/2

. ‖f‖2 (13.1)

If we square the left hand side of (13.1) and use the properties of the trees in T

we can write

2n

(∑
T∈T

|IT |

)1/2
2

= 22n
∑
T∈T

|IT |

. 22n2−2n
∑
T∈T

∑
~P∈T

|〈f, φ
P
nj
j ,j
〉|2
 =

∑
T∈T

∑
~P∈T

|〈f, φ
P
nj
j ,j
〉|2


and this expression is supposed to be smaller than ‖f‖22. We can also write

∑
T∈T

∑
~P∈T

|〈f, φ
P
nj
j ,j
〉|2 = |〈

∑
T∈T

∑
~P∈T

〈f, φ
P
nj
j ,j
〉φ

P
nj
j ,j

, f〉|

. ‖f‖2‖
∑
T∈T

∑
~P∈T

〈f, φ
P
nj
j ,j
〉φ

P
nj
j ,j
‖2

so it is enough to prove that
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‖
∑
T∈T

∑
~P∈T

〈f, φ
P
nj
j ,j
〉φ

P
nj
j ,j
‖2 .

∑
T∈T

∑
~P∈T

|〈f, φ
P
nj
j ,j
〉|2
1/2

(13.2)

The square of the left hand side of (13.2) becomes smaller than

∑
T,T ′∈T

∑
~P∈T
~Q∈T ′

|〈f, φ
P
nj
j ,j
〉||〈f, φ

Q
nj
j ,j
〉||〈φ

P
nj
j ,j

, φ
Q
nj
j ,j
〉| := I + II (13.3)

where I contains the part where T 6= T ′ while II contains the T = T ′ part.

We �rst estimate I. Observe that if ~P ∈ T and ~Q ∈ T ′ then, in order for

〈φ
P
nj
j ,j

, φ
Q
nj
j ,j
〉 to be non-zero, we must have ωPj ∩ ωQj 6= ∅ and so we either

have ωPj ⊆ ωQj or ωQj ⊆ ωPj . Because of the symmetry we can assume that we

always have ωPj ⊆ ωQj . Then, since T and T ′ are strictly disjoint, this means that

I ~Q ∩ IT = ∅ for any such a ~Q.

Fix now T , T ′, ~P ∈ T and ~Q ∈ T ′ so that ωPj ⊆ ωQj . Using the properties of

the trees T ∈ T, we can write

1

|I~P |1/2
|〈f, φ

P
nj
j ,j
〉| . 2n .

1

|IT |1/2

∑
~̃P

〈f, φ
P̃
nj
j ,j
〉|2
1/2

from which we can deduce that

|〈f, φ
P
nj
j ,j
〉| .

|I~P |1/2

|IT |1/2

∑
~̃P

〈f, φ
P̃
nj
j ,j
〉|2
1/2

. (13.4)

Similarly we have
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|〈f, φ
Q
nj
j ,j
〉| .

|I ~Q|1/2

|IT |1/2

∑
~̃P

〈f, φ
P̃
nj
j ,j
〉|2
1/2

. (13.5)

Using (13.4) and (13.5) we can bound I in (13.3) with

∑
T,T ′∈T

∑
~P∈T
~Q∈T ′

ωPj⊆ωQj

 |I~P |1/2|IT |1/2

∑
~̃P

〈f, φ
P̃
nj
j ,j
〉|2
1/2


 |I ~Q|1/2|IT |1/2

∑
~̃P

〈f, φ
P̃
nj
j ,j
〉|2
1/2



|〈φ
P
nj
j ,j

, φ
Q
nj
j ,j
〉|

=
∑
T∈T

∑
~̃P∈T

〈f, φ
P̃
nj
j ,j
〉|2
∑

~P∈T

∑
T ′∈T
T ′ 6=T

∑
~Q∈T ′

ωPj⊆ωQj

1

|IT |
|I~P |

1/2|I ~Q|
1/2|〈φ

P
nj
j ,j

, φ
Q
nj
j ,j
〉|

.
∑
T∈T

∑
~̃P∈T

〈f, φ
P̃
nj
j ,j
〉|2
∑

~P∈T

∑
T ′∈T
T ′ 6=T

∑
~Q∈T ′

ωPj⊆ωQj

1

|IT |
|〈χ̃I

P
nj
j

, χ̃I
Q
nj
j

〉| (13.6)

Fix T and look at the corresponding inner sum in (13.6).

∑
~P∈T

∑
T ′∈T
T ′ 6=T

∑
~Q∈T ′

ωPj⊆ωQj

1

|IT |
|〈χ̃I

P
nj
j

, χ̃I
Q
nj
j

〉| (13.7)

It is clearly enough to show that this expression is O((log2(〈nj〉))2|IT |).

Fix ~P ∈ T and recall

|〈χ̃I
P
nj
j

, χ̃I
Q
nj
j

〉| .

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)−M
|I ~Q|.
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Set ~Q~P = { ~Q ∈ T ′ : T ′ ∈ T, T ′ 6= T, ωPj ⊆ ωQj}. Pick ~̃Q from ~Q~P such

that I
Q̃
nj
j

is maximal with respect to inclusion and place all
~̃̃
Q ∈ ~Q~P such that

I ˜̃Q
nj
j

∩ I
Q̃
nj
j
6= ∅ and

~̃̃
Q 6= ~̃Q into S ~̃Q. Then observe that

∑
~Q∈S ~̃Q∪{Q̃}

|〈χ̃I
P
nj
j

, χ̃I
Q
nj
j

〉| .
∑

~Q∈S ~̃Q∪{Q̃}

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)−M
|I ~Q|

.

(
1 +

dist(I
P
nj
j
, I
Q̃
nj
j

)

|I~P |

)−M ∑
~Q∈S ~̃Q∪{Q̃}

|I ~Q|.

Here we use the fact that |I~P | > |I ~Q| for all ~Q ∈ ~Q~P . Now note that the I ~Q for all

~Q ∈ S ~̃Q are disjoint and they can only come from the friends of I ~̃Q so

∑
~Q∈S ~̃Q∪{Q̃}

|I ~Q| . log2(〈nj〉)|I ~̃Q|

Now place ~̃Q into ~Q∗~P and throw away S ~̃Q ∪
~̃Q from ~Q~P and iterate the selection

process. Since P is �nite then our selection process will take �nitely many steps.

We can bound (13.7) from above with

∑
~P∈T

∑
~Q∈~Q∗

~P

log2(〈nj〉)

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)
|I ~Q| (13.8)

where all the I ~Q for ~Q ∈ ~Q∗~P are disjoint.

Now split (13.8) in the following way
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log2(〈nj〉)
∑
~P∈T

4nj |I~P |≥|IT |

∑
~Q∈~Q∗

~P

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)
|I ~Q|

+ log2(〈nj〉)
∑
~P∈T

4nj |I~P |<|IT |

∑
~Q∈~Q∗

~P

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)
|I ~Q|.

Pick all ~P ∈ T with |I~P | of the same length such that 4nj|I~P | ≥ |IT |. Then for

a �xed ~P we can estimate

∑
~Q∈~Q∗

~P

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)
|I ~Q| . |I~P |

and since the I~P are all disjoint for ~P ∈ T of the same scale then when we add up

|I~P | for all of them we get something less than |IT |. Now note there are at most

O(log2(〈nj〉)) scales of ~P such that 4n|I~P | = 2log2(4nj)|I~P | > |IT | and thus

log2(〈nj〉)
∑
~P∈T

4nj |I~P |≥|IT |

∑
~Q∈~Q∗

~P

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)
|I ~Q| . (log2(〈nj〉))2|IT |.

Now look at ~P ∈ T with 4nj|I~P | < |IT |. Those ~P , that are less than 3nj units

of length |I~P | away from the endpoints of IT , might interact with ~Q ∈ ~Q∗~P and for

those we estimate

∑
~Q∈~Q∗

~P

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)
|I ~Q| . |I~P |.
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Note that for a given scale there are at most 6nj of them. For those that are

l > 3nj units of length |I~P | away from the endpoints of IT then I~P ∩ I ~Q = ∅ for all

~Q ∈ ~Q∗~P . Thus we estimate

∑
~Q∈~Q∗

~P

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)
|I ~Q| . (1 + (l − 3n))−M |I~P |.

For a given such scale of ~P , say |I~P | = 2k, we get

log2(〈nj〉)
∑
~P∈T
|I~P |=2k

∑
~Q∈~Q∗

~P

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)
|I ~Q|

. (log2(〈nj〉))

(
6nj|I~P |+ |I~P |

∞∑
l=3n+1

1

(1 + (l − 3nj))M

)

. log2(〈nj〉)(6nj + 1)|I~P |

Now if we sum up over all scales such that |I~P | <
|IT |
4nj

we get

log2(〈nj〉)
∑
~P∈T

4nj |I~P |<|IT |

∑
~Q∈~Q∗

~P

(
1 +

dist(I
P
nj
j
, I
Q
nj
j

)

|I~P |

)
|I ~Q| . log2(〈nj〉)(6nj + 1)

|IT |
4nj

. log2(〈nj〉)|IT |.

We are now left with the diagonal term II from (13.3) where the sum runs over

T = T ′. If ~P , ~Q ∈ T and ωPj ∩ ωQj 6= ∅ then we must have ωPj = ωQj . We can

majorize II with
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∑
T∈T

∑
~P∈T

|〈f, φ
P
nj
j ,j
〉|2 1

|I~P |

 ∑
~Q∈T

ωPj=ωQj

|〈χ̃I
P
nj
j

, χ̃I
Q
nj
j

〉|


and it is su�cient to show that

∑
~Q∈T

ωPj=ωQj

|〈χ̃I
P
nj
j

, χ̃I
Q
nj
j

〉|

is O(log2(〈nj〉)|I~P |) but that follows immediately from the fact that all the I ~Q for

which ωPj = ωQj are disjoint.

This concludes the proof of lemma 10.4.
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CHAPTER 14

PROOF OF PROPOSITION 10.1

We will now prove proposition 10.1. Fix the collection ~P of quad-tiles and the

functions f1, f2, f3, f4. As mentioned before then we assume that ~P is sparse

and of rank (1, 0) and assume it is with respect to {{2, 3, 4}, {1}} without loss of

generality.

Denote for simplicity

Sj := size((〈f, φ
P
nj
j ,j
〉)~P∈~P)

for j ∈ {1, 2, 3, 4} and

Ej := energy((〈f, φ
P
nj
j ,j
〉)~P∈~P)

for j ∈ {2, 3, 4}.

Proposition 14.1. Let j ∈ {2, 3, 4} and ~P′ ⊆ ~P, n ∈ Z so that

size((〈f, φ
P
nj
j ,j
〉)~P∈~P′) ≤ 2−nEj.

Then one can decompose ~P′ = ~P′′ ∪ ~P′′′ such that

size((〈f, φ
P
nj
j ,j
〉)~P∈~P′′) ≤ 2−n−1Ej

and ~P′′′ can be written as a disjoint union of trees T ∈ T such that
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∑
T∈T

|IT | . 22n

Proof. Our rank (1, 0) collection of quadtiles has all the relevant features in com-

mon with the collection of tritiles in the bilinear Hilbert transform so the proof

from there works here. For completeness we will recall a standard proof of this

result.

For a tile P we denote by ξP the center of ωP . Then, if P and P ′ are tiles, we

write P ′ .+ P if P ′ .′ P and ξP ′ > ξP . Similarly we write P ′ .− P if P ′ .′ P

and ξP ′ < ξP .

We perform the following algorithm. We �rst consider the set of all possible

trees T , which are either one quadtile trees or of type i 6= j, 2 ≤ i ≤ 4 and j a

good index with respect to i, such that they are "upwards trees" in the sense that

Pj .
+ PT,j

for all P ∈ T and which satisfy

∑
P∈T

|〈f, φ
P
nj
j ,j
〉|2 ≥ 2−2n−2|IT ||Ej|2.

If there are no such trees we end the algorithm. Otherwise, we chose T among

all of them such that the center ξPT,j of ωPT,j is as big as possible and then as a

secondary goal we make sure that T is maximal with respect to set inclusion. Once

we have such a tree T we also de�ne
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T ′ = {P ∈ ~P′ \ T : Pj ≤ PT,j}

which is a j-tree. We remove both T and T ′ from ~P′ and add them to our collection

of trees T. Since ~P′ is �nite the algorithm will end after �nitely many steps

producing pairs of trees T1, T ′1, T2, T
′
2, . . . , Tn, T

′
n.

We claim that the trees T1, T2, . . . , Tn are strongly j-disjoint. Suppose for con-

tradiction that there exist P ∈ Tk, P ′ ∈ Tk′ such that 2ωPj ∩ 2ωP ′j 6= ∅. Since ~P

was assumed to be sparse this clearly can not happen unless |ωPj | 6= |ωP ′j |. By the

sparseness assumption and without loss of generality we may assume |ωPj | � |ωP ′j |.

If either tile Pj or P ′j coincides with the top of its respective tree then it is clear

that both tiles P and P ′ would have been selected at the same stage which is a

contradiction. This takes care of the case where either tree is a single quadtile. If

that is not the case then we observe that |ωPj | � |ωP ′j | implies that ξPTk′ ,j < ξPTk,j

which in turn implies by our selection algorithm that k < k′. This means that Tk

was selected before Tk′ . However since |ωP ′j | is so much bigger than |ωPj | we see

that P ′j ≤ PTk,j which in particular means that P ′j ∈ T ′k so P ′j should have been

selected earlier than at stage k′, which contradicts our assumption.

Using the de�nition of energy for f/|Ej| we see that

n∑
k=1

|ITk | . 22n.

Since Tk and T ′k have the same top we can see that

∑
T∈T

|IT | . 22n.
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Consider now the set of the remaining tiles in ~P′. Clearly, we must have

∑
P∈T :Pj.+PT,j

|〈f, φ
P
nj
j ,j
〉|2 < 2−2n−2|IT ||Ej|2

for all trees T ∈ ~P′ because else our algorithm would have continued.

To complete the proof we repeat the algorithm but replace the condition .+

by the condition .− and select T such that ξPT,j is minimized.

By iterating the previous result we obtain the following corollary.

Corollary 14.2. Let ~P be a �nite collection. Then one can split ~P as

~P =
⋃
n∈Z

~Pn

where for each n ∈ Z and j = 2, 3, 4 we have

size((〈f, φ
P
nj
j ,j
〉)~P∈~Pn) ≤ min(2−nEj, Sj).

Also one can cover ~Pn by a collection of trees T ∈ Tn for which

∑
T∈Tn

|IT | . 22n.

Lemma 14.3. Let T be an i-tree, i = 2, 3 or 4, in ~P and f1, f2, f3, f4 �xed

functions, then
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∑
~P∈T

1

|I~P |
|〈f1, φPn11 ,1〉||〈f2, φPn22 ,2〉||〈f3, φPn33 ,3〉||〈f4, φPn44 ,4〉|

≤ |IT |
4∏
j=1

size((〈f, φ
P
nj
j ,j
〉)~P∈T )

Proof. Say T is a 2-tree and assume without loss of generality that 1 and 4 are

good indices with respect to the index 2. This is for example the case for our

particular operator when we are in the case (4.2) as discussed in section 5. We can

bound the left hand side by

∑
~P∈T

|〈f1, φPn11 ,1〉|

1/2(
sup
~P∈T

|〈f2, φPn22 ,2〉|
|I~P |1/2

)(
sup
~P∈T

|〈f3, φPn32 ,3〉|
|I~P |1/2

)
∑

~P∈T

|〈f4, φPn44 ,4〉|

1/2

Since 1 and 4 are good indices with respect to 2 we clearly have for j = 1, 4

∑
~P∈T

|〈fj, φPnjj ,j
〉|

1/2

≤ |IT |1/2size((〈f, φPnjj ,j
〉)~P∈T ).

Since trees that consist of a single quadtile are also used in the de�nition of size

then we clearly also have for j = 2, 3

sup
~P∈T

|〈fj, φPnjj ,j
〉|

|I~P |1/2
≤ size((〈f, φ

P
nj
j ,j
〉)~P∈T ).

In a similar manner one can verify the lemma for all other possible trees.
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We now have the tools to complete the proof of proposition 10.1.

Proof. Using the corollary and lemma above then the proof runs as in the bilinear

Hilbert transform case. For completeness we will recall a standard proof of this

result.

First, we can renormalize f2, f3, f4 by rewriting the left hand side of (10.1) as

E2E3E4 · |Λ~P(f1,
f2
E2

,
f3
E3

,
f4
E4

)|

which means that we need to prove that

|Λ~P(f1,
f2
E2

,
f3
E3

,
f4
E4

)| . S1

(
S2

E2

)θ2 (S3

E3

)θ3 (S4

E4

)θ4
(14.1)

for all permissible θ2, θ3, θ4.

By applying Corollary 14.2 and Lemma 14.3 we can decompose ~P and majorize

the left hand side of (14.1) by

∑
n∈Z

size((〈f1, φPn11 ,1〉)~P∈~P)

[
4∏
j=2

size((〈 fj
Ej
, φ

P
nj
j ,j
〉)~P∈~Pn)

]
·
∑
T∈Tn

|IT |

.
∑
n∈Z

size((〈f1, φPn11 ,1〉)~P∈~P)

[
4∏
j=2

size((〈 fj
Ej
, φ

P
nj
j ,j
〉)~P∈~Pn)

]
· 22n (14.2)

On the other hand we know that

size((〈 fj
Ej
, φ

P
nj
j ,j
〉)~P∈~Pn) . min(2−n,

Sj
Ej

)
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and we also know that as long as 2−n is larger than max( S2

E2
, S3

E3
, S4

E4
) then ~Pn is an

empty collection.

Assume for example that we have

S2

E2

≤ S3

E3

≤ S4

E4

(14.3)

Since 2−n must be smaller than S4

E4
we have three possible cases.

The �rst case is if S3

E3
≤ 2−n ≤ S4

E4
or equivalently E4

S4
≤ 2n ≤ E3

S3
. In this case

we can majorize the right hand side of (14.2) by

∑
n∈Z

S1 ·
S2

E2

· S3

E3

· 2n . S1 ·
S2

E2

· S3

E3

· E3

S3

= S1 ·
S2

E2

which, given (14.3), is clearly smaller than

S1

(
S2

E2

)θ2 (S3

E3

)θ3 (S4

E4

)θ4
.

The second case is if S2

E2
≤ 2−n ≤ S3

E3
≤ S4

E4
. This time we have E3

S3
≤ 2n ≤ E2

S2
.

Now the right hand side of (14.2) can be majorized by

∑
n∈Z

S1 ·
S2

E2

· 2−n · 2−n · 22n = S1 ·
S2

E2

∑
n

1 (14.4)

where n runs through a set of indices and we must determine how big that set of

indices can be. Since
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E3

S3

≤ 2n ≤ E2

S2

we have at most

log(
E2

S2

)− log(
E3

S3

) = log

(
(E2

S2
)

(E3

S3
)

)

indices. In particular (14.4) is smaller than

S1 ·
S2

E2

log

(
(E2

S2
)

(E3

S3
)

)

which is smaller than

S1 ·
S2

E2

·
(E2

S2
)ε

(E3

S3
)ε

= S1(
S2

E2

)1−ε(
E3

S3

)ε

for every ε > 0, with an implicit constant depending on it. Then our �nal obser-

vation is that

S1(
S2

E2

)1−ε(
E3

S3

)ε ≤ S1

(
S2

E2

)θ2 (S3

E3

)θ3 (S4

E4

)θ4
if ε is chosen well enough.

The last case is if 2−n ≤ S2

E2
≤ S3

E3
≤ S4

E4
. In this case we can majorize the right

hand side of (14.2) by

∑
n

S1 · 2−n · 2−n · 2−n · 22n = S1

∑
n

2−n . S1 ·
S2

E2
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which is clearly smaller than S1

(
S2

E2

)θ2 (
S3

E3

)θ3 (
S4

E4

)θ4
. This concludes the proof.
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CHAPTER 15

THE WATER WAVE PROBLEM

In the 2-d water wave problem, Wu showed that if one starts with small initial

data then classical solutions exist for a long time [20]. In a natural way she came

across operators of the following type

f 7→ p.v.

∫
R

F

(
A(x)− A(y)

x− y

)
Πn
i=1(Bi(x)−Bi(y))

(x− y)n+1
f(y) dy

and had to obtain Lp estimates for them. For such operators Lp estimates are

known if A′, B′i ∈ L∞(R) for i = 1, . . . , n and f ∈ L2(R). The novelty in Wu's

paper was that she faced B′1 ∈ L2(R), which indicated that the operator should be

viewed as a multilinear operator.

It is clear that operators similar to Wu's appear in PDEs. Just as Calderón

commutators appear very naturally in many applications in PDEs and the bilinear

Hilbert transform also appears in applications, such as the AKNS systems [16],

it is natural to anticipate that operators of a similar type as Wu faces, but with

an average dropped, will appear. Thus it is of interest to obtain Lp estimates for

operators of the following type

(A, b, f) 7→ p.v.

∫
R

F

(
A(x+ t)− A(x)

t

)
b(x+ βt)f(x+ t)

1

t
dt

where F is an analytic function. The �rst step would be to obtain Lp estimates

for
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(A, b, f) 7→ p.v.

∫
R

(
A(x+ t)− A(x)

t

)m
b(x+ βt)f(x+ t)

1

t
dt

with polynomial bounds in m. Theorem 1.1 is the �rst step in showing a wide

range of Lp estimates for such operators when m = 1.

63



BIBLIOGRAPHY

[1] Benyi, A., Demeter, C., Nahmod, A., Thiele, C., Torres, R. and Villarroya, P.,
Modulation invariant bilinear T (1) theorem, Anal. Math. 109 (2009), 279�352.

[2] Calderón, A. P., Commutators of singular integral operators, Proc. Nat. Acad.
Sci. 53 (1965), 1092�1099.

[3] Carleson, L., On convergence and growth of partial sums of Fourier series,
Acta Math. 116 (1966), 135�157.

[4] Christ, M., Journe, J.-L., Polynomial growth estimates for multilinear singular
integral operators, Acta Math. 159 (1987), 51�80.

[5] Coifman, R. R. and Meyer, Y., On commutators of singular integrals and
bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315�331.

[6] Coifman, R. R., McIntosh, A. and Meyer, Y., L'integrale de Cauchy de�nit
un operateur borne sur L2 pour les courbes Lipschitziennes, Anal. Math. 116
(1982), 361�387.

[7] Duong, X. T., Grafakos, L. and Yan, L.,Multilinear operators with non-smooth
kernels and commutators of singular integrals, Trans. Amer. Math. Soc. 362
(2010), 2089�2113.

[8] Fe�erman, C. L., Pointwise convergence of Fourier series, Ann. Math. 98
(1973), 551�571.

[9] Grafakos, L. and Li, X., Uniform bounds for the bilinear Hilbert transforms I,
Ann. Math. 159 (2004), 889�933.

[10] Grafakos, L. and Torres, R. H., Multilinear Calderón-Zygmund theory, Adv.
in Math. 165 (2002), 124�164.

[11] Lacey, M., Thiele, C., Lp estimates on the bilinear Hilbert transform for 2 <
p <∞., Ann. Math. 146 (1997), pp. 693�724.

[12] Lacey, M., Thiele, C., On Calderon's conjecture., Ann. Math. 149 (1999), pp.
475�496.

[13] Muscalu, C., Calderón commutators and the Cauchy integral on Lipschitz
curves, revisited I. First commutator, in preparation.

64



[14] Muscalu, C., Tao, T., Thiele, C., Lp estimates for the biest I. The Walsh case,
Math. Ann. 329 (2004), 401�426.

[15] Muscalu, C., Tao, T., Thiele, C., Lp estimates for the biest II. The Fourier
case, Math. Ann. 329 (2004), 427�461.

[16] Muscalu, C., Tao, T., Thiele, C., Multilinear operators associated to simplexes
of arbitrary length, arXiv:0712.2420v1.

[17] Muscalu, C., Tao, T., Thiele, C., Multilinear operators given by singular sym-
bols, J. Amer. Math. Soc. 15 (2002), 469�496.

[18] Palsson, E. A., Lp estimates for a singular integral operator motviated by
Calderón's second commutator, in preparation.

[19] Thiele, C., A uniform estimate, Ann. Math. 157 (2002), 1�45.

[20] Wu, S., Almost global wellposedness of the 2-D full water wave problem, In-
ventiones Mathematicae. 177 (2009), 45�135.

65


