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ABSTRACT 

Haplotype phasing and genotype imputation have become commonly used for genetic 

studies of all types, but especially for genome wide association studies and as a tool in 

plant breeding programs. As the ability of labs of all sizes to implement genome wide 

association studies increases, the skills and knowledge needed for preparing these data 

must be more commonly taught to students through all levels of higher education. This 

document is meant to serve as an introduction to the underlying concepts and show an 

example of the basic implementation and troubleshooting of haplotype phasing and 

genotype imputation for genetic studies. 
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Introduction to Imputation: Usage & History 

Imputation Basics: What Is It, Why Use It? 

In the vast majority of situations, access to knowledge of what nucleotides are 

present at most loci of a genome is simply not feasible. The creation of a reference 

genome is in itself a significant endeavor that requires resources unavailable to most 

labs, and any given reference genome will not necessarily capture the full extent of 

variation within a species. The time and cost of genotyping has fallen precipitously in 

the past 20 years, but the level of read coverage needed for full genome assemblies is 

still not viable for projects like plant breeding programs or GWAS, where the number 

of individuals to be genotyped is often in the hundreds or thousands. 

To get around these limitations, haplotype estimation and genotype imputation 

are now standard practice in many genetics studies. At their core, these techniques use 

a higher read coverage reference panel to infer missing information from lower read 

coverage sequences in another individual or set of individuals (Marchini & Howie, 

2010). More specifically, the reference panel is composed of individual haplotypes 

that have been sequenced at many SNPs with high read coverage (relative to the study 

individuals). Through the haplotype estimation step, also known as phasing, study 

individuals’ SNPs are used to estimate which segments of their genomes correspond to 

haplotypes in the reference panel (Marchini & Howie, 2010). Once the haplotypes of 

the study individuals have been estimated, a statistical model can be applied that will 

try to find the most likely allele at any SNP that was in the reference panel, but not in 

the study individual's original genotyped sequence (the imputation step). It is 
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important to recall that these are estimates and therefore come with a certain amount 

of uncertainty; however it is well worth the uncertainty considering the astronomical 

costs of achieving a similar level of coverage otherwise. 

As costs for sequencing have fallen, the use of genotype imputation has 

allowed for a simultaneous expansion in the number of individuals that can be 

genotyped for a project and the level of marker coverage that each individual can be 

sequenced to, which in turn significantly increases the power of methods like GWAS 

that benefit from larger sample sizes. Additionally, the statistical methods used in 

imputation pipelines allow for the use of datasets that were originally genotyped using 

different DNA microarrays, which aids with setting up reference panels as well as 

allowing for more data transferability between experiments (Zhou et al., 2017). This 

transferability also allows for use of population-specific reference panels to help 

identify rare or low-frequency variants (Mitt et al., 2017). Imputation is not just for 

finding missing genotype data in the context of GWAS though - the same methods can 

be applied to increase the precision of QTL-mapping, to help find non-SNP variation 

(such as copy number variants), or as an additional step to reduce genotyping methods 

error rates (Marchini & Howie, 2010). 

History of Imputation in Genetics 

Like many concepts in quantitative genetics, the theory behind genotype 

imputation has existed for significantly longer than the technical ability to successfully 

do so. The concept of maximum-likelihood estimators originated in  the late 17th 

century but was first popularized in genetics by Ronald Fisher in the 1910’s and in his 

seminal work Statistical Methods for Research Workers (Fisher, 1925). By the 1970’s, 
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statisticians were starting to develop algorithms for maximum-likelihood methods, 

which would later form the basis of haplotype estimation and genotype imputation 

(Dempster et al., 1977). The first among these was the EM algorithm, an iterative 

method to find the most likely parameters in a statistical model where the equations 

cannot be solved directly due to missing data. While the EM algorithm and others like 

it provide good estimators, at that time the larger issues in using imputation for genetic 

sequence prediction were the sparseness of actual genetic data (due to very high 

sequencing costs) and the computational power needed to derive estimators using 

iterative methods. 

With the development of high-throughput sequencing in the 1990’s and rapidly 

decreasing computation costs, genetic markers became more commonly used in 

studies across the fields of biology, although most labs still could not afford to 

sequence at their desired read coverage. This in part led to the formation of the 

HapMap project, which in 2005 published the first human haplotype maps for general 

use to the scientific community (Altshuler & Donnelly, 2005). The first haplotype map 

for maize was soon after, which involved the genotyping of parent lines used in the 

creation of a nested association mapping population (Gore et al., 2009). The most 

recent version was used as the reference panel for this project (Bukowski et al., 2018). 

With the development of haplotype maps such as these for use as reference panels, the 

usage of GWAS for both trait mapping and plant breeding programs has risen 

dramatically over the past decade. 
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An Example of Imputation for Speed Breeding 

Outline of the Project 

The goal of this project is to combine imputation with speed breeding to 

substantially increase the rate of genetic gain in a sweetcorn breeding program. So far, 

a sweetcorn association panel of several hundred lines has been composed to compare 

against a combination of larger diversity panels, which was used to perform a GWAS 

seeking causal variants for nutritional content. These GWAS results were then used to 

create a model that chose 9 parental lines that form the program’s F2. Because there 

are so few parental lines, they can be sequenced to a very high density, which will 

allow for the building of a Practical Haplotype Graph that can be used for imputation 

during the speed breeding portion of the program (Buckler Lab, n.d.). 

The F2 onwards will be grown using speed breeding, which is a set of 

techniques meant to reduce the intergenerational time of the program significantly. 

This is done through a combination of a controlled environment with artificially 

lengthened daylight, early seed harvesting, and artificial seed drying, among other 

possible factors, and allows for production of 4-6 generations per year instead of 1-2 

(Watson et al.,2018). These F2 populations will be narrowed down to 5 F2:3 

populations, which will then undergo single seed descent for another few generations. 

The derived lines’ genotypes will be imputed using this same pipeline but adapted to 

work with the practical haplotype graphs, which will impute genotypes for use in a 

genomic selection model, bypassing the need to grow plants to maturity for 

phenotyping. In short, this should allow for a program to progress from selecting F2 
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parents to planting F5 field trials in one to two years. The component of the project 

outlined below is an elaboration of the earlier steps, specifically that this script will be 

adapted into the Practical Haplotype Graph for the speed breeding component of the 

project. 

How the Imputation Was Done 

The imputation was done on a dedicated lab server running a standard 

environment used by the Cornell Computational Biology Service Unit. Third party 

software packages were used: BCFtools version 1.11, Tabix version 1.11, Beagle 

version 5.0, and vcftools version 0.1.16 (Danecek et al., 2021; Browning et al., 2018; 

Danecek et al., 2011). Imputation of SNPs in the study data was performed as follows: 

1) Downloading and preprocessing of data and reference panels 

2) Formatting of the haplotype map components 

3) Formatting of the study individuals data 

4) Generation of the completed reference panel 

5) Imputation 

For a student who has never done genotype imputation before, this might seem like a 

surprising amount of formatting and preprocessing before the actual imputation step 

(which using modern programs, is actually relatively simple to code). When working 

with genotype data, especially at scales seen in modern breeding programs, formatting 

is paramount to be able to align or compare sequences. Much of this process involves 

consideration of the experimental design and origin of the data, as can be seen in 

figure 1, where most steps involve the filtering or reformatting of the original data. 
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Figure 1. This flowchart shows the steps involved in preparing the data and imputing 
the SNPs of the noSeed_denovo_sweetcorn dataset. Files are shown as nodes, while 
filtering, estimating, and imputation steps are annotated on edges. 
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Downloading and preprocessing of data are relatively simple steps that will 

vary from project to project. In this case, the data to be retrieved were used to generate 

the reference panel in step 4 - the maize HapMap 3.2.1 (unimputed), and the maize 

282 association panel found on the Panzea project Cyverse server. HapMap 3.2.1 is 

composed of whole genome sequences from 1,210 maize lines and has approximately 

83 million SNPs, while the 282 panel has the same markers from a subset of lines that 

had higher coverage sequencing data (Bukowski et al., 2018). The preprocessing for 

these two files screen for errors in downloading, such as a truncated or corrupted copy 

of the file and re-compresses and re-indexes the .vcf.gz files. The preprocessing of the 

study genotype data is similar, but must also separate genomes into chromosome 

specific files. This isn’t necessary per se (so long as the reference panel files are 

formatted the same), but having each chromosome as a separate file allows for faster 

compute times and easier troubleshooting if there are errors downstream. 

The formatting of the haplotype map will vary by project, but generally the 

goal of this step is to make sure the haplotype map is formatted the same as the study 

data. The haplotype map will be more thorough than the study data, so this step 

essentially filters out unwanted information. In this instance, the 282 panel is also a 

subset of the HapMap 3.2.1 data, so it is important to remove any individuals in the 

former from the latter to prevent double-counting. Once there is only one record per 

individual, the HapMap 3.2.1 data is filtered to remove indels and only include 

high-confidence SNPs (approximately 30M of the 83M total). These SNPs would only 

be kept if they were homozygous, missing in fewer than half of the genotyped 

individuals, were biallelic, and had a minor allele frequency above 1%. These 
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parameters can change from project to project, so make sure to consider what the 

intention for the dataset is when formatting the haplotype map. The majority of other 

header information in the file (read depths, genotype posterior probabilities, etc.) is 

irrelevant to later imputation steps and are removed at this stage. 

Once the HapMap 3.2.1 data is formatted, a file can be made that contains just 

the chromosome number and position of each SNP that has been retained. To format 

the 282 panel, once the unnecessary header information and heterozygous sites have 

been removed, it is filtered to keep the loci listed in the position file generated from 

the formatted HapMap 3.2.1 data. The study data is similarly formatted, but again 

filtering to only keep biallelic sites (it is not a safe assumption that a site that was 

biallelic in the reference panel will be biallelic in your data set). 

The merging of the reference panel components combines the HapMap 3.2.1 

and 282 datasets. The script also includes optional commands to ensure data is not 

altered in the merge and that the general alignment of the sequences is maintained. At 

this point the reference panel has a full list of all the biallelic sites that have met the 

previous criteria, but still has gaps in the sequence. 

The imputation step is composed of two parts, both of which use Beagle. 

Beagle uses an imputation method based on a Hidden Markov Model (HMM). This 

model, given a set of reference alleles and haplotypes, tries to find the most likely 

haplotype for an individual by iteratively estimating and resampling haplotypes while 

taking the most parsimonious solution at each step. Because it is iterative and only 

accepts “better” solutions, it eventually converges on a most likely set of solution 

parameters, but it is generally very time and computationally intensive. Even on a 
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relatively powerful computer this process can take hours or even days depending on 

the dataset. The first part of imputation here is to perform the haplotype estimation 

(phasing) in the reference panel. Because they are from a NAM population and 

thoroughly genotyped, the 282 and HapMap 3.2.1 data are compared to estimate the 

haplotypes that make up the reference panel, producing the haplotype map. The 

second part of the step uses that haplotype map of the reference panel to impute the 

SNPs in the study data. This second imputation step uses this output and a genetic map 

file derived from the NAM population, which contains information anchoring genetic 

distances to physical distances on the chromosome. Beagle can then use this data to 

determine what the most likely SNP is in a given stretch of sequence for the study 

data, given that that stretch is of a certain haplotype. Once complete, the final step 

generates an index for the imputed file and extracts the positions, major allele 

frequencies, and estimated squared correlations between the estimated allele dose and 

the true allele dose (DR2). 

This final dataset will undergo a few quality assurance steps once compiled, 

such as filtering to only keep loci with a major allele frequency ≥ 1% and  DR2 ≥ 0.8, 

as this is ultimately going to be used for a breeding program. These data will be used 

as the basis for at least two different models. The first is a mixed linear model GWAS 

using all the SNPs that have been imputed and retained so far. The second is a 

multi-locus mixed model GWAS, which requires kinship coefficients (estimated using 

markers that are not in LD with each other) and filtering out of markers that are in full 

LD (r2 > 0.99). This can give a better idea of causative SNPs for highly additive or 

polygenic traits, which are important for plant breeding decisions. 
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Tips for Performing Your Own Genotype Imputation 

Knowing Your Tools 

In the above example, multiple third party software packages were used to 

manipulate the data. It is important to become familiar with the software packages’ 

capabilities before starting on the scripting, so as to know what each is capable (or 

incapable) of. The best resource is the software package’s website, particularly any 

How-To’s or Vignettes that are available on it. Seeing how a piece of code works in 

action will always help with trying to figure out how to tackle a problem, and many of 

these sites will also provide links to papers where the software was used for various 

manipulations or analysis, which can be helpful resources when trying to implement 

one's own code. This will also give the opportunity to see if maybe there are better 

software packages available for what you are specifically looking to do. While 

software like Tabix is relatively simple and used for basic manipulation of files, the 

software that actually performs filtering, modeling, or analysis tends to leave a lot of 

choice up to the user. At the moment, there’s roughly a dozen different packages for 

haplotype estimation and genotype imputation, each with a different set of functions 

and utilities, as well as different methods of performing them, which can have an 

impact on your final dataset (Moorthy et al., 2019). 

Additionally, it is always advisable to use actively supported versions of the 

software (although note that there are instances where the data being worked with may 

require you to use older versions). That said, just because something is deprecated 

does not mean it will not work, simply that one must be mindful of its limitations and 

bugs. For example, in this project, vcftools was used for several filtering steps, even 
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though it has been officially replaced by BCFtools. This led to many warning 

messages early in the project, though through digging into old forum posts, we were 

able to elucidate that it was actually just a formatting quirk in the headers that vcftools 

perceived as an error, and it could be safely ignored. The fact that vcftools was 

deprecated software meant this was a bit harder and had never been fixed since 2015, 

which leads to the final piece of advice. 

Troubleshooting Advice 

When in doubt, read the manual. When presented with an unusual error 

message, search engines are almost always able to find someone who has had the same 

problem in the past. If the problem is specific to a piece of software, check its website, 

StackOverflow (or similar software forums), or its Github repository (if it has one), for 

information from other users on how they’ve dealt with the issue. 

If the problem is not one that produces a clear error message, oftentimes the 

best way to assess your script is to make a stripped down version that you can run step 

by step. For example, just using the smallest chromosome and purposely setting the 

burn in/iterations to 1 for imputation or phasing steps can let you test a script in just a 

few minutes as opposed to hours if you were to run it normally. Most of the software 

involved generates log files, which can be immensely helpful in identifying issues, but 

when it doesn’t, it can be just as viable to make your own using the grep command. If 

a problem seems “untraceable” to a specific step, consider starting from the top of the 

script and looking at your input files - “garbage in, garbage out” as they say. And 

finally, if all else fails, go for a walk: sometimes (especially with coding) a solution is 

easier to find with a fresh pair of eyes and some time away from the keyboard. 
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