BUFFER CONTENT OF A LEAKY BUCKET SYSTEM WITH
LONG-RANGE DEPENDENT INPUT TRAFFIC
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ABSTRACT. Leaky bucket is a flow control mechanism that is designed to re-
duce the effect of the inevitable variability in the input stream into a node of a
communication network. In this paper we study what happens when an input
stream with heavy tailed work sessions arrives to a server protected by such
a leaky bucket. Heavy tailed sessions produce long range dependence in the
input stream. Previous studies of the systems without flow control suggested
that such long range dependence can have dramatic effect on the system per-
formance. By concentrating on the expected time till overflow of a large finite
buffer we show that leaky bucket flow control does make the system overflow
less often, but long range dependence still makes its presence felt.

1. INTRODUCTION

The study of traffic on data networks has changed substantially since the ap-
pearance of modern communication systems, which are essentially different from
the traditional voice traffic networks. The main difference that appears in modern
networks is the dependence structure of the data. While traditional models are
based on assumptions of short range dependence, recent measurements (see Leland
et al. (1994), Paxson and Floyd (1994), Cunha et al. (1995), Crovella and Bestavros
(1996)) show the presence of long range dependence and self similarity in the data
of network traffic. Presently it is believed that these phenomena are caused by
the presence of heavy tails in the distribution of the service times, which cause the
long-range dependence. We consider a fluid version of a leaky bucket flow control
protocol, with an input process in which the distribution of the session lengths is
heavy tailed, causing it to be long-range dependent. We will consider two types of
input processes: an On—Off process and a Poisson process. Recently there has been
a lot of work concerning fluid models fed by On—Off or Poisson processes (see, for
example, Heath et al. (1997, 1999), Jelenkovi¢ and Lazar (1999), a survey in Boxma
and Dumas (1998) and a recent study in Zwart et al. (2000)). The main concerns
of these studies have been motivated by design and performance issues, but most of
these studies ignore the fact that actual networks usually have some kind of polic-
ing mechanism (like TCP or the leaky bucket). In this paper we concentrate on
certain design and performance issues related to the presence of a specific policing
mechanism: the leaky bucket. Queuing systems with such control mechanism have
been studied before, in particular in a series of papers of A. Berger and W. Whitt
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(Berger and Whitt (1992c¢,b,a, 1994)). However, to the best of our knowledge only
the paper Vamvakos and Anantharam (1998) looked at how the leaky bucket input
control performs in the presence if a long range dependent input. Their conclusion
was that the leaky bucket input control does not eliminate long range dependence.
The general message from the results in the present paper is similar: long range
dependence in the input stream still affects the system performance even when the
leaky bucket input control is present. However, while Vamvakos and Anantharam
(1998) concentrated only on the rate of decay of correlations, we look directly at sys-
tem performance, specifically at the expected time until overflow of a large buffer.
We show that the buffer still overflows much more often then in the “classical” case,
without heavy tailed sessions, hence long range dependent input. In spite of that
the leaky bucket input control will reduce the frequency at which the buffer over-
flows, in comparison with a system with the same input stream but without input
control. We should also mention that, unlike the previous authors, who looked at
discrete time systems, we investigate a fluid-type, continuous time system.

This paper is organized as follows. In section 2 we describe the system in detail
and all the assumptions we are making about the parameters and the processes
involved, and in section 3 we calculate the asymptotic expected time until a buffer
of finite capacity overflows.

2. DESCRIPTION OF THE SYSTEM

Consider a model of a network server with a leaky bucket policing mechanism
defined as follows. Work arrives to the system according to some input process.
We are going to consider two types of input processes: an On—Off process and a
Poisson-type, or M/G/co type process. For the On—Off process each session lasts
a random length of time. The distribution of an On session’s length is F,, and the
distribution of an Off session’s length is F,g. Both distributions have finite mean:
Lon and p.g respectively. The lengths of different sessions are independent of each
other. In the second case we are going to consider sessions arriving according to
a Poisson process with rate A > 0. Each session lasts a random length of time
with distribution F' that has a finite mean y. The lengths of different sessions are
independent of each other and of the Poisson arrival process.

In both cases a session generates work at unit rate. This work arrives at the infi-
nite buffer of the leaky bucket. The departure of work from this buffer is controlled
by tokens that arrive at a buffer of fixed size C' at rate y. Arriving work can be
transmitted instantaneously to the server by consuming tokens. If the token buffer
is empty, the work has to wait for the generation of new tokens. Stored work is
transmitted immediately upon the generation of new tokens. The work that can-
not be processed immediately by the server is collected in a buffer. The server is
capable of processing r > 0 units of work per unit of time.

This system can be described by the following system of equations:

dX(t) = (E(t) — rlx()>0))dt
(2.1) dY (1) = (N(t) — B(t))dt
dZ(t) = (Ylz(y<c) — E(t))dt

E(t) = N(t)W(z(t)>0) + (Vv (1) >0) + min(N(t), 7) Ly (1y=0)) Liz(=0),
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FiGURE 1. Fluid version of a leaky bucket flow control protocol.

where Y (t) is the leaky bucket’s buffer content, Z(¢) is the token’s buffer content,
X(t) is the server’s buffer content and N(t) is the input process at time ¢ > 0.
Finally, E(t) is the instantaneous rate at which work moves from the leaky bucket’s
buffer to the server’s buffer. In the On-Off case N(¢) is 1 during an On session
and 0 otherwise, and in the Poisson case N(¢) is the number of sessions running at
time ¢ > 0. Note that in the Poisson case N(t) can be viewed as the number of
customers in the system at time ¢ in a M/G/oo queue, in which the sessions are
customers and their lengths are their job requirements.

Assume that, in the On—Off case, the session length distribution for the On
periods has a regularly varying tail. That is,

1—F,.(z) =z"%"L,,(z), as z — oo,
where L, is a slowly varying function, and a,, > 1.
A function is said to be slowly varying if

lim L{az)

Z—00 (m)

=1, for all a > 0.

This assumption is a common way to model heavy tails of session lengths. The
assumption «a,, > 1 assures finite mean session lengths (but sometimes infinite
variance, when «,, < 2) and hence makes it possible for the system to be stable if
the service rate r is high enough. In the Poisson case assume that

1-F(z)=z"%L(z), as z — oo,

where L is a slowly varying function, and a > 1.
In the Poisson-type case we assume from now on that

(2.2) O<ap<r<y<l
and in the On—Off case, if we let 8 := L, then
Mon + Moﬂ

(2.3) 0<f<r<y<l
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The first part of these assumptions is a way of making sure that there is a
stationary version of the process, since for this we need the mean amount of work
arriving into the system (Ap or #) to be less than the rate at which the server works
(r). The assumption v > r assures that the server is never idle when there is work
to be done, which seems like a reasonable assumption in a system of this kind.
The assumption v < 1 assures that when one session is running the content of the
leaky bucket’s buffer immediately begins to increase, so one session is enough to
change the direction of the drift. In the Poisson-type case one can conjecture, based
on previous studies of these systems without any flow control mechanism (Heath
et al. (1999), Zwart et al. (2000)) that similar results may be expected in the case
v < 14 Ap, since when one long session is running the other sessions bring in work
at rate Ap.

It can be shown that the five-dimensional process describing the state of the
system, {(X(t),Y(¢), Z(t), N(¢t), E(t)),t > 0}, turns out to be a nice regenerative
process based on a non-terminating renewal process with finite mean interarrival
times. In particular, the process has a stationary distribution. We do not pur-
sue this point here since the initial distribution of the system does not affect the
expected time until overflow.

3. EXPECTED TIME UNTIL BUFFER OVERFLOW

The following is our main theorem. It shows that under our assumptions the
rate at which expected time until buffer overflow grows, roughly, 1/ (1 —F..(H )) in
the case of the On—Off input and 1/(1 - F(H)) in the case of Poisson input, where
H is the size of the buffer.

Theorem 3.1. For the On—Off input process, if for some p > 1 the p-th moment
exists for the Off session length distribution, then

. Cw v- 0 Qon
3.1 lim H “"L, (H)ET(H) = (tton o _ .
(1) Jim (EBr(H) = (o 10) (=t
For the Poisson input process,
o 1 YA
(3.2) lmnEIQL@UEﬂHj:-(l——E>
H—o00 A y—r
Remark 3.1. The results of Theorem 3.1 should be compared to the corresponding
performance results without the leaky bucket input control. Then

1 Gon
g E Loy (H)Br () = o + o) (1

H—o00 1—7r

for the On—Off input process (see Theorem 2.3 of Heath et al. (1997) ) and
N | 1 “

lim H-*L(H)ET(H) = — | ————

Hoo (H)Er(H) A<1—T+MJ
for the Poisson input process; see Proposition 4 and the subsequent comment in
Resnick and Samorodnitsky (1999). One can immediately see that, while the leaky
bucket input control does not change the order of magnitude at which the expected
time until buffer overflow grows, it does make this expected time longer.

Furthermore, since the expression in the right hand sides of (3.1) and (3.2) are

decreasing functions of v, the buffer will overflow less often if v is chosen as close
to r as possible, which is entirely consistent with the logic of flow control.
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Before proving Theorem 3.1 we establish some lemmas that are going to be used
to prove the main result.

Lemma 3.1. If A(t) = fot N(s)ds is the amount of work received by the system in
a time interval of length t with the On—Off or Poisson input process, then

A(l) R {9 for the On—0Off input

a.s. asl — oo.

l Ap for the Poisson input

Proof.
We start with the Poisson case. We may assume, without loss of generality, that
N(0) = 0. Consider the following regeneration times of the process {N(t),¢t > 0}:

Ny =0,

N; = inf {t > Ni_1: N(t)=0, sup N(s)> 0} , fori>1.
Nz'—lSSSt

These times are the ends of busy periods in an M/G /oo queue with a finite mean
service time distribution and, hence, EN; < oo.
Now define the following random variables

N;
A = A(N;) — A(Ni_1) =f N(s)ds, fori > 1.
NA

These random variables are iid since {N;,7 > 0} are renewal times. Let {a;} be
the arrival times of the Poisson process (that is, a; is an Erlang random variable
with ¢ degrees of freedom, ¢ > 1), and let [; be the length of the session arriving at
time a;. Now consider the following filtration, where

fn:U(ll,... Jn, a1y, .. ,an,an_H), n=01,....

Then
My =mf{i >1: ajt1 >a;+1;,j=1,... 1}
is a stopping time with respect to that filtration, and by Wald’s lemma EM; =
AEN; < oc. So, using Wald’s lemma once again, we obtain

Ny
EA, =E < N s)ds) = (Zz ) = EMyEl; = A\uEN;.
0

By the law of large numbers we have that

ZAi — A, a.s. as n — 00.

3.3
( ) nEN1 i1

Let Nj, be the biggest of the renewal times less than or equal to [. Then we have
that, as I — oo,

11 [N
Ap = 1li A; = N(s)ds <
H= li{& kIENl Z l—>oo k:ENl l / (S) 5=

(3.4)

A(l A(l)
< hmlnf / N(s)ds = hmlnf l( ) < lim sup l( = hm sup / N(s)ds <

=0
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k+1

1 L LM s = 1 A=)
S N o — L N Ao
= S (k+ 1)EN, 1/0 (s)ds = lim Gy EN, 2 i

i=1

since — las! — oo, and N(s) >0 for all s > 0. So we finally get that

kEN;
A(l
# — A\, a.s. as | — oo.

Similarly, in the On—Off case we define N; to be the time when the z-th On
session starts, 2 = 0,1,..., and Ny = 0. Now define the following random variables

N;
Ai = A(N;) = A(N; 1) :/ N(s)ds, fori > 1.
N;

These random variables are iid since the lengths of the On and Off sessions are
all independent and the On sessions have all the same session length distribution
as do the Off sessions. Moreover,

N,

EA, =FE ( N(s)ds) = fhon = 0 (Lhon + Hot)-

0

So, by the law of large numbers we have that

: 1 ~
(3.5) . ZAi — 0, a.s. as n — oo.

n(uon + /»l/oﬂ' i=1

Now the remaining part of the lemma follows from (3.5) in the same way as its
first part followed from (3.6).

Q.E.D.

t
Note that this lemma implies that for A(t —to) = / N(s)ds, where & is fixed,
to

we have that

A(t—to) _ A(t)  Alt) L Je-o
t—t() t—t() t—t() )\,LL—O

@  for the On—Off input
= . . as t — oo.
Ap for the Poisson input

Let 7(H) = inf{t > 0: X(¢) > H} be the time until the server’s buffer content
reaches the level H (overflows). We are interested in the behavior of ET(H) as
H — oco. We introduce two additional random times. Let Ty be the first time a
session (an On session in the On—Off case) of length at least H starts and define
T2(H) as follows. Eliminate the leaky bucket, and let all the work go instantaneously
(as opposed to in a fluid manner) to the server’s buffer. Let 75 (H) be the first time
until the content of the server’s buffer under the modified scenario reaches the level

H.
Lemma 3.2. For € > 0 small enough

lim P(ry(H) < Ten) = 0.
H—o00
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Proof.

In order to prove the statement we are going to consider a simpler process, and
we will prove that a buffer does not overflow before a session of length at least e
occurs.

Consider a modified system in which the input process results from truncating
the On sessions at eH. That is, if an On session is longer than eH then we just
let it be of length eH. On the event of interest, {7‘2 (H) < TGH}, the original and
modified processes coincide until time 7 (H).

In the modified system there is no leaky bucket, and all the work goes immedi-
ately into the server’s buffer. Furthermore, the way the work is added and removed
from that buffer is different now. In the On Off case, when an On session starts
(say, of length [,, in the original process, so that it is of length lN(m = min(l,,,eH)
in the modified process) then the amount l;,,(l —7) is added immediately to the
server’s buffer. On the other hand, when an Off session starts(say, of length l,g)
the buffer content goes down by [ ,gr immediately if there is that much work left,
otherwise it just goes down to zero. Similarly, in the Poisson case, when a session
ends (after time I = min(l,eH)) the buffer content goes down by Ir immediately
if there is that much work left, otherwise it just goes down to zero, where I is the
next interarrival time (note that I ~ exp(})).

Clearly, under the new rules the content of the server’s buffer will reach level H
not later than the time 75 (H), and we will still use the same notation, 7 (H), to
denote the time the content of that buffer reaches level H.

In the argument below the reader should mentally substitute F' for F,, and «
for a,, any time one considers the Poisson input case as opposed to the On—-Off
input case.

Now we are going to break up the probability we want to calculate into ”cycles”.
Consider the following stopping times:

Ry =0,

R; = inf {t >R 1:X(t)=0, sup X(s)> 0} , fori > 1,
R,-_lgsft

where {X(t),t > 0} is the modified process as described before. Then we have

P(ry(H) < Teg) =Y _ P(Rn 1 < 75(H) < Rn,ma(H) < Tenr),
n=1
where T,y is the time we have to wait in the original system to see a session of
length at least e H. Now, by the Strong Markov Property
P(Rn_l < Tz(H) < Rn,Tg(H) < TeH) =
= P(r2(H) > Ry, R1 < T.gg)" 'P(12(H) < Ry, 72(H) < Tenr).
So we have that
P(TQ(H) S Rl,’Tg(HJ < TeH) <
1-— P(TQ(H) > Rl,R1 < TeH) -
< P(’Tz(H) S Rl,’Tz(H) < TGH)
- 1—F,.(eH) ’
since P(m2(H) > Ri,R1 < Ten) < P(R1 < Ten) is bounded from above by the
probability that the length of the first arriving session does not exceed eH.

P(ry(H) < Terr) =
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In order to prove that this expression goes to zero we want to know how P(m(H) <
Ry, 7(H) < Tem) behaves as H — oo, since we know that

1—F,.(eH) = Lo.(eH)(eH) %", as H — oo.

Consider a random walk defined as follows. In the On-Off case, let (IZ,) and
(lf)ﬂ) be two independent sequences of iid On times, truncated at eH, as above, and
Off times, accordingly. Let Zy = 0 and Z; = I’ (1 — r) — ligr, for i > 1. In the
Poisson case, let (l~1) be an iid sequence of session lengths, truncated at e H as above,
and (I") independent from it, an iid sequence of exponential random variables with
parameter A. Let Zy, =0, Z; = I — I'r, for i > 1. Then the random walk defined
by these Z’s, Y=, Z;, is a negative drift random walk, since EZ; < 0. We are
interested in the probability that this random walk reaches the level H (we will call
that probability Pg), since

P(Tg(H) S R]_,Tg(H') < TeH) S P(TZ(H) S Rl) =
= P(the random walk of the Z’s reaches H before reaching zero) < Pg.

Now, in order for the random walk to reach level H, it has to first reach level
eH. Since each step of the walk is at most eH, when we first reach level eH the
walk can at most be at level 2¢H, so we have that

Py = P,y P(the random walk reaches H|reached eH) <

< PGHP(l—Ze)H < PE(Ili—G)/ZG_

Then,
P(Il_I_e)/Ze
li P H T. < h €4 . .
Am P(ry(H) <Tem) < lim Lon(eH)(eH) —on

If the walk wasn’t truncated we would have that, by Embrechts and Veraverbeke
(1982), Py is regularly varying with exponent a,, — 1, and notice that truncating
in our case the steps of the walk at e can only make P,y smaller. Therefore, for
€< gt

lim P(r(H) < Teg) =0.

H—o00

Q.E.D.

Lemma 3.3. Forany 0 <e< 1
lim P(r(H) < Tp(1- =
Hl (T( ) < B(1 E)H) 07

where
5= % for the On-Off input.
% for the Poisson input.
Proof.

For any 4 > 0 we have
P (r(H) < T gnm) <
< P(r2(eH/2) < Tsu) + P (Tsa < 7(H) < Tg1—eyu, 72 (eH/2) > Tsp) .
Now, by Lemma 3.2, as long as §/e is small enough,

(3.6) Jlim P (s(eH/2) < Tym) = 0.
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Furthermore, for H > 0 let Vg be the first time after time Ty that both buffers
are empty and the leaky bucket is full. Then we have

P (Tsu < 7(H) < Tp(1—e u 72(€H/2) > Tsg) =
=P (Tsg < 7(H) < Tp-eyu,72(eH/2) > Tsu,7(H) < Vo) +
+P (T5H <7(H) < Tg(1—eym,T2(eH/2) > T5g,7(H) > V5H) =
= q1(H) + q2(H).
Observe that by the Strong Markov Property
q2(H) < P(Tsg # Tp-eyu,Vor < 7(H) < Tga-en) <
< P (Tsm # Tpa-gu) P (1(H) < Tsa-gn) -

Therefore,
P(my(eH/2) < Tsp)+ q1(H)
P (Tsp = Tp1-on)

P(r(H) < Tpa—an) < :
For every 6 > 0
lim P (Tsg =Tpa-gn) =1s > 0.

H—o00

Therefore, it follows from (3.6) that the statement of the lemma will follow once
we show that for all § > 0
(3.7) lim ¢ (H) =0.

H—o00 i

To this end let us introduce some additional notation. Consider first the case of
the On—Off input. For H > 0 let Xg be the length of the On session arriving at
time Ty, and let Wg be the first time after time Ty + X g (end of transmission of
that session) that buffer ¥ is empty.

We increase the probability gi(H) by moving, at time Ts5g, the entire content
of buffer Y to buffer X, and making the leaky bucket full. Note that, on the event
whose probability is ¢; (H), this results in the content of buffer X being less than
eH/2. We now work with the modified system (but we use the old notation). We
have

q(H) < P (T(H) < Tg—em, 7(H) < Wsn) +
(3-8) +P (1(H) < Tg(1—eyu,Won < 7(H) < Vsg) :=
= P (B (H))+ P (B12(H)) := quu(H) + q12(H).

Consider first the event described by B (H ) Obviously, from time Tsg to time
Tsu + Xsu the content of buffer X goes up. At the latter time the content of buffer
Y is

. : C
Y(Tsa + Xsu)=(1—17) <X5H — m) =(1—-9)Xsg —C,

while the content of buffer X is

X(Tsu + Xsm) =X(T5H)+(1_T)1_7

= X(Tsm)+ (v —r)Xsm + C,
provided that H > C/§. Note that, on our event, for H > 0 large enough,

X (Tsm) + (v = )Xo+ C < G-+ C 4 (y = 1)B(1 — ) H <



10 B. GONZALEZ AREVALO AND G. SAMORODNITSKY

(1—e(y=9)
(y=r)(1-19)
Hence, the content of buffer X cannot reach level H before time T5y + Xsg.

Note, further, that the content of buffer X also goes up from time Ts5yg + Xsg
to time Wsg. Let Dsg = Wsg — (TgH + XgH) be the length of that time interval.
Notice that, on the event Bi1(H), for large H > 0,

%
3§H+(y—r) H<H.

1 1-— C
(3.9) Dsg > ~Y (Tsg + Xom) = — Xogr — — >
Y Y Y
1-— 1-—
>y S5 1%y
¥ ¥ 2y

For ¢t > 0 let /Nl(t) be the total amount of work brought in by the On sessions
starting in the time interval [Tsy + X515, Tsg + Xon +t]. By Lemma 3.1, for every
p>0
(3.10) flim P (A(s) > (8 + p)s for some s > t) =0.

L— 00

Write, for p > 0,
(3.11) g1 (H) = P (Bu(H) N {A(Dszr) > (60 +p)Dsn } ) +
+P (Bn(H) N {A(DJH) <(0+ P)DJH}) = qu1(H) + qui2(H).
It follows immediately by (3.9) and (3.10) that for any p > 0
H—o00

Note, further, that

_ Y(Tsu + Xsm) + A(DJH)
v
On the event whose probability g;12(H) measures, we have, therefore,
< Y(Tsa + Xsu)+ (0 4+ p)Dsu
— /_y k)

Dsg

Dsy

and so, as long as p < v — 0,

1 . 1-—

Dsg < ———Y (Tsug + Xsm) < 77)(51{ <
y—0—p y—0—p
1-7 (1=¢lr=0),

Ty=0-p(y-r)(1-10)

(recall that X5 < B(1 — €)H). Therefore, at time Wsg the content of buffer X is
X(Wsu)=X(Tsg + Xsu)+ (y—r)Dsg <

2 790 =) =0) \ _
<a (5 +u- oty - 0n IR =

for some 0 < d < 1 as long as p is small enough. Therefore, for all p small enough,

(3.13) lim qi12(H) =0,
H—00

and it follows from (3.12) and (3.13) that
(3.14) lim g1 (H) = 0.
H—o0



LEAKY BUCKET SYSTEM WITH LONG-RANGE DEPENDENCE 11

It remains, therefore, to consider the probability ¢i5(H). The same decomposi-
tion as that in (3.11) shows that we can write for any p > 0

qi2(H) =P (Blz(H) N {A(DJH) > (0 +p)DJH}) n

+P (Blz(H) N {A(DJH) <(8+ P)DSH}) = q121(H) + qu22(H).
We have, once again,
(3.15) lim qi91(H) =0,
H—o00

by (3.9) and (3.10). Furthermore, we have already checked that, as long as p is small
enough, we have X (Wsg) < dH for some 0 < d < 1. We increase the probability
Q122 (H ) by modifying the system as follows. At time Wsg we remove the leaky
bucket and buffer Y. Then the probability gi22(H) is bounded from above by
the probability that the standard system without the leaky bucket control reaches
level H starting from level dH before hitting zero. Now allow buffer content to be
negative (service takes place not only when there is work in the buffer, but always).
Then g¢122(H) does not exceed the probability that the state of this new system
ever reaches level (1 —d)H, starting at zero. This probability however, goes to zero
as H — oo because of the negative drift. To see this simply notice that this latter
probability is the same as the probability that the random walk we constructed in
the proof of Lemma 3.2 ever reaches level (1 —d)H.

Hence,
(316) hm qlgg(H) = 0,
H—o00
and so

by (3.15) and (3.16). Now (3.7) follows from (3.14) and (3.17). This finishes the
argument in the case of the On—Off input.

In the case of the Poisson input, the notation is similar. For H > (0 let Xy be
the length of the session arriving at time T, Wy the first time after time Ty + X g
(end of transmission of that session) that buffer Y is empty, and, additionally, let
Ry be the total of the remaining lengths of all sessions running just prior to time
Ty.

As in the On-Off case, we increase the probability ¢;(H) by moving, at time
Tsm, to buffer X the entire content of buffer Y as well as the total of the remaining
lengths of all sessions running just prior to time 75y and making the leaky bucket
full. Once again, on the event whose probability is g; (H ), this results in the content
of buffer X being less than eH /2, we work with the modified system and use the old
notation and, finally, (3.8) is still valid. The reader will observe that the remainder
of the argument below is quite similar to that above in the On—-Off case, with several
required modifications. Consider once again the event described by Bii(H). For
t >0 let /Nll(t) be the total amount of work brought in by the sessions starting in
the time interval (T5q, T5m + t] and let Ag(t) be the total amount of work brought
in by the sessions starting in the time interval [T5g + Xsm, Tsg + Xsm +1]. By the
remark following Lemma 3.1, for every p > 0

(3.18) 75]im P (fL(s) > (A + p)s for some s > t) =0,:1=1,2.
g el . :
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Write
(3819)  gu(H) =P (Bu(H) N {4i(Xsm) > O+ p)Dsn }) +

4P (Bll(H) N {Al (Xsz) < (M + p)D(;H}) -

= P (Bu11(H)) + P (B112(H)) := quu1(H) + qu12(H).
It follows immediately from (3.18) that for any p > 0
H—o00

Counsider now the probability g112(H). We will increase this probability by mov-
ing, at time T5y + X;5p, all the remaining work in sessions running at that time
( these sessions must have arrived in the time interval (Ta w,Tsa + Xow] ) to buffer
Y. On the event we are considering, the amount of work being thus deposited
to buffer Y does not exceed (Ap + p)Xsm. Observe that from time Ty to time
Tsg + Xspg the content of buffer X goes up. At the latter time the content of buffer
Y (including the work added instantaneously to it, as described above) satisfies

, ) . C ) . .
Y (Tsg+Xsm) < (1—7) (XJH - m) +(M+p)Xsag = (1—v+Ap+p)Xsa—C,

while the content of buffer X is

X(Tsu + Xsm) =X(T5H)+(1—r)lc +(y=r) (X(;H_ L) —

l—o
= X(Tsmg)+ (v —r)Xsm + C,
provided that H > C/§. Note that, on our event, for H > 0 large enough,

X(To) + (v = 1) Xsn +C < S+ C o (v = )p(1l—)H <

(1—e)(y—Au)
-
Hence, the content of buffer X cannot reach level H before time Tsg + Xsg.

Note, further, that the content of buffer X also goes up from time Tsg + Xsg
to time Wsg. Let Dsgg = Wsg — (T(;H + X,;H) be the length of that time interval.
Notice that, on the event we are considering, for large H > 0,

2
S§H+(7—T) H<H

1 1— 7+ c
(3.21) Dsp > ;Y(TEH + Xsn) = — L Xsg — — >
> 1_—76H— ¢ > 1_—75H.
¥ ¥ 2y
Write, for p > 0,
(322)  qua(H) =P (Bus(H) 0 {Ao(Dsr) > (At + p)Dorr }) +

+P (an(H) N {Az(DJH) < (Ap+ P)DSH}) = qui21(H) + q1122(H).
It follows immediately by (3.21) and (3.18) that for p > 0
H—o0
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Note, further, that, since at time Tsg + X5z there are no sessions present in the
system,

Y (Tsg + Xsm) + As(Dsy)
vy

On the event whose probability g;122(H) measures, we have, therefore,
Y (Tsu + Xsu) + (A +p)Dsn
,Y )

Dsy =

Dsg <

and so, as long as p < v — Ay,

1 o1y Au+
Dsg < Y(Tsu + Xsm) < MX&H <
Y—Au—p Y—Ap—p
< L—y+dutpd—elr=M)
Y= Ap—p y—r

(recall that Xsu < B(1 — €)H). Therefore, at time Wsg the content of buffer X is
XWsu)=X(Tsg + Xsu)+ (y—7r)Dsua <

SH(%+(1—6)(7—/\u)+(1—€)(1_H;iu>\:p_)gy_)\u)> = dH,

for some 0 < d < 1 as long as p is small enough. Therefore, for all p small enough,

(3-24) Hlljﬂoo Q1122(H) =0,

and it follows from (3.20), (3.23) and (3.24) that
H—o00

It remains, therefore, to consider the probability gi2(H). But using the same
arguments as for the On-Off case we get that

(3.26) Jim g1 (H) = 0.

Now (3.17) follows from (3.25) and (3.26).
Q.E.D.

We are ready now to prove the main result.

Proof of Theorem 3.1

For the upper bound it is enough to show one way in which the buffer can
overflow. Now, in order to get a sharp upper bound we want to consider the most
likely scenario in which the buffer will overflow. We will prove that in this case,
in the presence of heavy tails and having v < 1, what usually causes the buffer to
overflow is one single very long session.

One overflow scenario could be the following. Consider a long session of size S
that arrives at the system at a renewal time. We can assume that the session arrives
at a renewal time since if it doesn’t then the buffer will overflow even sooner, and
we are just looking at an upper bound. As it turns out , this will not matter even
for the lower bound, since asymptotically what is going to matter is how long it
takes for this long session to arrive.

We start with a heuristic calculation of just how long this long session of size
S has to be in order to cause buffer overflow. Consider, for the moment, a long

session of size § arriving at time zero. Then Z (%) =0, since Z(-) decreases at

rate 1 — v, and X (%) = %, since X (*) increases at rate 1 — r when Z(t)
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is positive. After time %, X(') grows linearly at rate v — r for as long as the

1
buffer of the leaky bucket is not empty. Since we are interested in the result when
H — oo, we can safely assume that % < H.

If X(*) continues to grow linearly at the same rate, which will happen if S is

large enough (we will see in a moment just how large it has to be), then the time it
takes from the beginning of the long session until the buffer overflows, z, satisfies

the relation
C(l—7r v o H-C
H—Mz(y—r)(wo——>=>m0= ,

11—+« 1—9v y—r
which results from letting X (-) grow at rate 1 — r until time % and then grow at
rate 7 — r until the buffer reaches level H.

Now we need to calculate how large S has to be in order for the scenario we
just described to happen. In the On—Off input case, observe that after this long
session ends the amount of work coming into the system until time z, is about
the expected amount of work, that is # times the length of the time interval. In
particular, for any 0 < € < #, the amount of work coming into the system since the
long On session ends during a long time interval is unlikely to be less than (6 — €)
times the length of the interval (this is, below the mean expected amount of work
for that period of time) and in that case the buffer of the leaky bucket will not
become empty until Y (S)/(y — 0 + €) units of time later, during which time the
content of buffer X continues to grow at rate v — r. (Note that for this to happen
it is enough that the amount of work coming into the system in Y(S)/v or more
units of time after the end of the long session is at least (§ — €) times the length
of the interval, since the buffer of the leaky bucket will not become empty before
that.) Since

C
(3.27) Y(S) = (1-7) (S - —) ,
then the minimum length of session so that the buffer overflows must satisfy

c
(1-1) (S—E) . <H—C S)
(y=0+¢  ~\v-r '
Figure 2 provides a graphical description of the above discussion. Solving for S
implies that the minimum length of session so that the buffer overflows, S(H), is

y—0+e€ 0—r—ce
==+ T ona=o+9°

That is, we expect that if a session of the size S > S(H) arrives at time zero,
the buffer will overflow no later than at time z,.

To calculate the corresponding required session length in the Poisson case we
observe that after time % the amount of work coming into the system until the
buffer overflows is about the expected amount of work, that is Ay times the length

(3.28) S(H) =

of the time interval. In particular, for any 0 < € < Ay, if the amount of work
coming into the system after time % during a long time interval is unlikely to be
less than (Au — €) times the length of the interval (this is below the mean expected
amount of work for that period of time) and in that case the buffer of the leaky
bucket will not become empty until Y (S)/(v — Au + €) units of time after the long
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H Ay
i
(1-ric Y13
-7 1op 1 &=y
Y1)
i N 5 Xz %

1- 7
— —

FIGURE 2. Shortest session S that makes a buffer of size H >> 0
overflow in the On—Off case.

H ARy
T-r
(1-r)C Y15
1- ¥ 1o 1AL AL=y
Y (1)
0 & 5 X 7
17

FIGURE 3. Shortest session S that makes a buffer of size H >> 0
overflow in the Poisson case.

session ends, during which time the content of buffer X continues to grow at rate

y=r.
Since we have additionally, under this scenario,

Y(S)> (14 \—vy—¢ (s_%»
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then it is enough for the minimum length of session to satisfy (see figure 3)

C

(1+)\,u—7—e)(5—m) H-C
(v = A +e) Z(v—r )

See Figure 3 for graphical presentation of the above argument.
Solving for S implies that a session of the length S(H) given by

Ap—e—r(l+Ap—vy—c¢))
D R

will cause the buffer X to overflow. That is, we expect that a session of size
S > S(H) given in (3.29) arriving at time zero will cause the buffer to overflow no
later than at time z.

Clearly, a session as long as that given by either (3.28) or (3.29) does not arrive

(3.29) S(H) = H+

Yy—Au+e
P

at time zero, so we need to know how long we have to wait for such a long session
to occur. In the On—Off case, we know that

P(l,., > S(H)) ~ S(H)"%"L,,(S(H)),
so we need to wait for approximately
1 S(H)%on

P(lon > S(H)) — Loa(S(H))

On sessions for this to happen. We need now to calculate how long we have to wait
to get that many On sessions. Since each On session is followed by an Off session,
we expect to have to wait for (% — 1) (Mon +uog) units of time for %
On sessions. Then, if H is big enough and if after the end of the long session the
work arrives to the system at the rate of at least (# —¢), then we do not expect the
time until overflow to exceed

S(H)%n

(Hon + o) + To.

An identical reasoning shows that in the Poisson input case we do not expect
the time until overflow to exceed
S(H)"

7)\L(S(H)) + zp.

(3.31)

Finally, if, in the On—Off input case, the rate at which the work arrives to the
system after the end of the long session over the relevant time interval happens to
be less than (¢ — €) (this is the minimal rate we expected), or if the rate at which
work arrives to the system after time % over the relevant interval happens to be
less than (Ap—e) (this is, once again, the minimal rate we expected), we just empty
the system at that time and wait again for a long On session to come.

Now we provide a rigorous argument. In the On—Off input case, let

1(H) = S(H) - =

with S(H) given by (3.28). Note that I(H) ~ constH — oo as H — oo. Let
pr = P(A(l) > (8 — €)l for all > I(H)). By Lemma 3.1 we have that pg — 1 as
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H — co. Let us agree to call any session whose length is at least S(H) in (3.28) a
sufficiently long session. Let
H-C
’I'(H) = - S(H)
v

—r

be the time after the end of a shortest possible sufficiently long session after which
the server buffer is guaranteed to overflow if the work keeps arriving at the minimal
rate we expect. Let Wi, and V}, be, correspondingly, the arrival time and the end
time of the kth sufficiently long session, k£ > 1, and Vj = 0. Define events

By, = {W}, — Vk_1 > r(H) and the amount of work arriving in s units of time
after the end of the kth sufficiently long session is at least (6 — €)s for every
I(H)<s<r(H)}, for k> 1.

Note that these events are independent, and
P(By) > P(Wy > r(H))pg, for all k.

Since pg — 1 and P(W1 > r(H)) —» 1 as H — oo, we see that P(B;) — 1 as
H — oco.

The random variable N defined to be equal to k on B N (ﬂ;:ll B]C) (and infinite
outside of the union of these events) is a.s. finitely valued, and 7(H) < Wy + 0.
Therefore,

(3.32) Er(H) < zo+ EWy.

Similarly, in the Poisson input case, we let pg := P(A(l) > (Ap —e€)l, for all [ >
S(H)), where A is the total input process defined in Lemma 3.1 and, as before, by
Lemma 3.1 we have that pg — 1 as H — oco. Let us agree to call any session whose
length is at least S(H) in (3.29) a sufficiently long session. Let W}, be the arrival
time of the kth sufficiently long session, k > 1, and W, = 0. Define events

By, = {W}, — Wj_1 > S(H) and the amount of work arriving in s units of time

after the arrival of the kth sufficiently long session is at least (Au — €)s for

H
every S(H) < s <

_C}, for k£ > 1.

Note that these events are independent, and
P(By) > P(Wy > S(H))pm, for all k.

Since pg — 1 and P(W; > S(H)) —» 1 as H — oo, we see that P(By) — 1 as
H — oo.

As before, we define a random variable N to be equal to k£ on B, N (ﬂ?;llB;)
(and infinite outside of the union of these events) is a.s. finitely valued, and 7(H) <
Wy + zo. In particular, (3.32) still holds.

In both On—Off and Poisson input cases,write

N %)
EWy =FE Z(Wk —Wy_1) | = EW; + ZE (W — W) In>p) <
=k k=2

< EW; + (_E(Wf))”?i (P(N > k)7,

k=2
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(choose 1 < p < « as in the statement of the theorem in the On—Off input case)
and 1/p +1/q = 1. Note that

S(H)>on .
EW, < I«,ET)(QH))(M"“ + plogg) for the On—Off input
- % for the Poisson input
and we will check below that
(3.33) (E(WP)V/P < O(EW1> as H - co.
Finally,
k—1
¢ : Vh—1
P(N>k)=P|()B§|=01-PB))" ",
j=1

which implies that EWyx ~ EW; as H — oo, and so in the On—Off input case,
: S(H)“on -
1 ————(fhon + Jo EWwy <1
in sup (LOH(S(H,)) (Kon =+ p ﬂ)) N <

Using (3.32), the expression (3.28) for S(H) and the fact that zy grows linearly
fast with H, we conclude that

. _ . y—0+e¢ Gon
limsupH “*L,,(H)ET(H) < (tton + Mo .
g (DB < e +100) (5 25

Letting € — 0 we obtain the upper bound
. B v- ] Qon
3.34 limsupH “L,,(H)ET(H) < (fton + 1o (—) .
( ) H_)oop (H)ET(H) < (p Mot ) (y—r)(1-19)

An identical argument gives

) s ) 1 /y—=\“
(3.35) lim sup H L(H)ET(H)§X< )

H—o00 Y—-r

in the Poisson input case. For the lower bound note that for 1 < p < a the p-th
moment exists, both for the On and Off session length distributions in the On—Off
input case and for the session length distribution in the Poisson input case. In
either case, for any 0 < e < 1

ET(HJ > E(T(H)H(T(H)ZTgu—e)H)) > E(Tﬁ(lff)H]I("'(H)ZTﬁ(l—e)H)) =

= E(Tpa-ou) — E(Tpa—e)a Lir(m)<Tos_oym) )

where 8 = % in the On Off input case and 8 = % in the Poisson input

case. Using Holder’s inequality we get that
1
E(Tpa-0aWr(m <tp_om) < (E(Tsa-am))P(EW 0 n,, 0

= (E(Tpa-gn)")P(P(r(H) < Tga-ou )"
where, as before, 1/p+1/qg = 1.
By Lemma 3.3 we know that I}im P(1(H) < Tg(1—¢yg ) = 0, so now, if we prove
—r00 :

)))1/q =

that (E(Tﬁ(l,e)H)p)l/p is of the same order as ETg(;_¢ g as H — oo, then we have
proved (3.33) and that

> 1.

Er(H
liminf 27
H—o0 ETﬁ(l—e)H
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In the On—Off input case note that

Lo.(H)

Therefore, we would conclude that

ETy > ( - 1) (Hon + Prost)-

o oy Al
lim inf H~%" L,, (H) E(H) > (1~ ¢) (Mon+ﬁ‘°ﬂ)<(7_7«)(1—9)> '

And since this is true for all 0 < € < 1 we would get that
. . —u — 0 Qon
1 tH %L, (H)ET(H) > —
i BT 2 G 100) (=)

and this would give us the lower bound matching the upper bound in (3.34), and
so complete the proof of the theorem. An identical argument in the Poisson input
case would give us

«
liminf H-*L(H)Er(H) > (7 =M ) ,
H—00 A\ y—r
and so give us, once again, the lower bound matching the upper bound in (3.35),
and so complete the proof of the theorem in that case as well.
So we are interested in estimating E(Tﬁ(l_e)H)p. In the Poisson input case
observe that Tj3(;_q g is an exponential random variable with mean ATIP(S >

B(1 — €)H). Therefore,
_ MT(p+1)
~(P(S1>B(L—e)H))”

which is of the right order. In the On—Off input case we can write

E(Ts(1-em)"

M
Ta1—eag = Z Zj,
j=1

where the Z;’s are iid and consist of the sum of two independent random variables:
one that is drawn from the Off distribution and the other that is drawn from the
On distribution conditioning on it being less than 3(1 —€)H. So EZ? is uniformly
bounded from above by a constant independent of H. On the other hand M is
a geometric random variable, independent of the Z;’s, with success probability
1— F,.(B(1 — €)H). By Holder’s inequality we have that

o e sy 1/a
Tpa-om < |2 27| | 217 =
j=1

i=1

M
P /
(Tsa—om)? < | Y20 | MP/* =
i=1

7P Mp/qlM —

E(Tsa-gu)) < E | E J

M&

J

I
-

—E (E(Z{’)Mlﬂ’/q = E(ZP)E(MP).
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Since E(Z?) is uniformly bounded from above, all we need to prove is that
E(MP) is of the order of (EM)? as H — oo. If welet p=1—F,,(3(1 —€)H) then
k+1

E(MP) =Y p(1—p)'k* < pZ/ (1= p)* taPds =
k=0 k=07

=L (1—p)%zPda = L aPe=*(55) dz =
IL—=pJo I—=pJo

_ pL(p +1)
(1-p) (ln %,,)H

Therefore, we have the desired result in all cases.

~p Pl (p+1).

Q.E.D.
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