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The relationship between the midlatitude eddy-driven jetstream and extreme

atmospheric phenomenon, such as blocking anticyclones, atmospheric rivers,

droughts, floods, and more, motivate concern from the meteorological and cli-

mate community to the general public and policy makers. Poleward or equator-

ward shifts in the jetstream may persist for a week to nearly a month, emerging

as the leading mode of midlatitude dynamics and weather. The persistence that

the north-south fluctuations in the jetstream contains is standardly analyzed

through principal component analysis, where the leading mode of variability is

the shift in jet latitude of the jetstream and is referred to as the annular modes,

or zonal index. Comprehensive climate models have been shown to exhibit bi-

ases in the time scales associated with the annular modes. This is attributed to

biases in climatological jet latitude, with important implications for projections

of future climates and midlatitude weather events. Specifically, equatorward

biases lead to the modeling of overly persistent jet shifts leading to erroneous

projections into future climates.

The eddy-mean flow interaction that characterizes the persistent anomalous

state of the midlatitude jet depends on processes associated with the lower-

tropospheric source of vertically propagating Rossby waves and processes as-

sociated with upper-tropospheric wave propagation and breaking. Although

these mechanisms will not be explicitly detailed in this thesis, more details on



the effect that different physical processes has on the annular mode time scales

and eddy-mean flow feedbacks can be found in [17]. Instead, the effect of model

resolution and truncation will be analyzed in the Geophysical Fluid Dynamic

Laboratory’s dry, atmospheric model to find consistencies across different grid

configurations. A variety of climate change-like thermal forcings are used to

generate a range of meridional shifts in the midlatitude eddy-driven jet. These

thermal perturbations are used to mimic idealized greenhouse gas warming and

El Niño/Southern Oscillation variability, both of which increase the equator-to-

pole temperature difference (∆T ), and Arctic amplification (AA) which reduces

∆T . This produces a range of jet latitudes with which to examine annular mode

variability. It is shown that along with a decrease in the time scales of jet vari-

ability, there is also a reduction in the eddy momentum feedback strength with

an increase in jet latitude. These results are in agreement with many other mod-

eling efforts including phase 3 and phase 5 of the Coupled Model Intercompar-

ison Project.

Recent proposals linking AA to increases in extreme events have received

scrutiny from the scientific community for the lack of dynamical insight. It is

believed that the reduction in ∆T leads to a less meridionally confined, ampli-

fied jetstream leading to enhanced advection of heat (cold or warm) and mois-

ture. With an enhanced persistence, these events can lead to extreme weather.

To test this hypothesis further ∆T can be directly increased (polar cooling) or

decreased (polar warming) in a highly idealized model to determine the effect

on midlatitude dynamics and extreme weather. Two methods will be used to

define a blocking anticyclone and to classify isolated extreme weather events.

Classically, blocking describes persistent, large amplitude, Rossby wave break-

ing in the middle to high latitudes leading to midlatitude easterlies and stalled



weather systems. It will be shown that by decreasing ∆T , the midlatitude jet-

stream weakens and shifts equatorward along with eddy fluxes of heat and mo-

mentum. Following this, the blocking response shifts equatorward and weak-

ens indicating a reduction in persistent blocking patterns. The climatological

finite amplitude wave activity also reduces at all latitudes. These results are

corroborated by using a more subjective definition of extreme events and show

that the AA hypothesis does not hold true for this idealized model.



BIOGRAPHICAL SKETCH

My name is David Burrows. I was born in Opelika, Alabama, where as a child I

became immensely fascinated with weather especially thunderstorms and tor-

nados. After receiving a foot of snow in southern Alabama from the blizzard of

‘93, my family and I moved to Syracuse, New York, (the lake effect snow capital

of the world) where I was raised. My second great passion of math came in my

years of highschool, particularly a math teacher at Fayetteville-Manlius high-

school, Mr. Stedman. Having developed a passion for math, I entered Castleton

State College (now Castleton University) in 2006 to earn a bachelors of art in

mathematics in 2009. In the process of filling out applications to enter graduate

school for math, I realized how boring of an existence it would be to study the-

oretical math the rest of my life. I threw away my applications and instead ap-

plied for another undergraduate degree in meteorology. With a few options for

undergraduate school, I chose the Metropolitan State College of Denver (now

the Metropolitan State University of Denver) where I completed introductory

classes in meteorology, Synoptic, Climate, Radar, and Instrumentation. This

set me up to apply for graduate school and was accepted to study at Cornell

University under my advisor Gang Chen. I completed my masters in 2013 and

continued on with doctoral research. This thesis is a culmination of this doctoral

research.

iii



The family.

iv



ACKNOWLEDGEMENTS

I want to acknowledge the EAS community at Cornell University, particularly

my research group whose weekly meetings helped broaden my interest in atmo-

spheric dynamics. Specifically, I want to thank Doctors Stephen Colucci, Lantao

Sun, Mike Kelleher, Huang Yang (Caesar), and Daniela Domeisen as well as

my committee member Doctors Natalie Mahowald, Peter Diamessis, and Peter

Hess. I also acknowledge the 2011 through 2016 undergraduate, atmospheric

community who alllowed me to practice and develop my teaching skills and

Mark Wysocki for interesting conversations and always providing a laugh. I

mostly want to acknowledge my advisor, Doctor Gang Chen, who gave me the

tools, advice, and support needed to make it through the long journey of grad-

uate school.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1
1.1 General Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Midlatitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Annular Modes . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Persistent Wave Events . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Model and Wave Activity 10
2.1 Model Configurations and Perturbations . . . . . . . . . . . . . . 10

2.1.1 Tropical Tropospheric Warming (TTW) . . . . . . . . . . . 14
2.1.2 Tropical Upper-tropospheric Warming (TUW) . . . . . . . 17
2.1.3 Arctic Surface Warming/Cooling (ASW/C) . . . . . . . . . 17

2.2 Finite-Amplitude Wave Activity . . . . . . . . . . . . . . . . . . . 19
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Annular Mode Time scales 22
3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Extremes 37
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Blocking 52
5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusion 60
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 70

vi



LIST OF TABLES

2.1 A list of the numerical values used in the thermal perturbation
runs. For the TTW and TUW runs, the parameters in Eq. (2.1) are
altered: F(p) and W(φ, φ0) set the vertical and meridional struc-
ture of the heating, where φ0 is the latitudinal width of the warm-
ing perturbation and δφ = 5◦ sets the meridional sharpness of the
thermal perturbation boundary. For the ASW/C runs, an addi-
tional heating rate is specified by ∂T

∂t |AS W/C with F(p) = 0. For all
the runs, A0 is the magnitude of the heating, and p0 is 1000hPa.
Notice the ASW have positive A0, and ASC have negative val-
ues. All the simulations are run at the R30 resolution, and the
bold numbers in TTW indicate the simulations conducted at R60,
T42, and T85 resolutions. . . . . . . . . . . . . . . . . . . . . . . . 11

vii



LIST OF FIGURES

1.1 Schematic depicting the large-scale general circulation features
on Earth. L stands for low pressure or low heights, and H stands
for high pressure or high heights. Lines with arrows indicate the
direction of the surface flow with easterlies in the tropics, west-
erlies in the midlatitudes, and eastlerlies in polar regions. The
white cloud looking features in the equatorial regions represent
regions of deep convection. The circulation features on the left
side of the figure represent the vertically rotating cells. All other
features are identified in the figure. . . . . . . . . . . . . . . . . . 2

2.1 Responses in temperature (shades with a 2 K interval) and zonal-
mean zonal wind in m s−1 (black contours) between ∆T runs and
the control run for (a) ∆T = 40 K, (b) ∆T = 50 K, (c) ∆T = 70 K,
and (d) ∆T = 80 K. Dashed contours are negative, and the vertical
gray line in each plot indicates the climatological jet latitude for
the control run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Same as Fig. 2.1 but also includes the response in the radiative-
equilibrium-temperature profiles (green contours at 4 K, 8 K, and
12 K) for (a,b) tropical tropospheric warming (TTW) runs, (c,d)
tropical upper-tropospheric warming (TUW) runs, and (e,f) Arc-
tic surface warming and cooling (ASW/C) runs. For the TTW
and TUW runs, 10◦ wide runs are in the left column, and 30◦

wide runs are in the right column. For the ASW/C runs, the left
column is warming, and the right column is cooling. Each forced
run uses the quadrupled value of A0 which shows the biggest
forced response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Climatological jet latitude as a function of forcing strength for
(left) tropical temperature warming (TTW) runs, (middle) tropi-
cal upper-tropospheric warming (TUW) runs, and (right) Arctic
surface warming/cooling (ASW/C) runs. Closed circles indicate
broad warming runs (e.g. φ0 = 30◦) for the TTW and TUW runs
(left and center) and also for ASC runs (right) (e.g. negative val-
ues of A0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Top panel: the zonal index (leading principal component time
series of the vertical- and zonal-mean zonal wind) as a function
of model day. Middle panel: daily jet latitude (calculated as the
latitude at which the climatological jetstream maximizes at the
850 hPa level) as a function of model day. Bottom panel: scatter-
plot of the daily values of the zonal index and the jet latitude. . . 23

viii



3.2 Control run climatology (contours) and lag 0 regressions onto
the zonal index (shades), representing the leading mode of vari-
ability, for (a) zonal-mean zonal wind and (b) eddy momentum
flux convergence and Eliassen-Palm vectors. Negative contours
are dashed. The contour intervals for the regression in (a) are
0.5 m s−1 and (b) are 0.2 m (s day)−1. Climatology contour inter-
vals are indicated in the figure. (c) Lagged autocorrelation of the
zonal index from Fig. 3.1. The horizontal dashed line is the value
of the e-folding time scale. . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Control run lagged-regressions onto the zonal index for (a)
zonal-mean zonal wind (m s−1) vertically averaged from 1000
hPa to 100 hPa and (b) eddy momentum flux convergence (m
s−1 day−1) vertically averaged from 500 hPa to 100 hPa. Negative
lags indicate eddy-time series lead the zonal index, while pos-
itive lags the zonal index leads. Negative contours are dotted.
The horizontal gray line in each plot indicates the climatological
jet latitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Control run eddy momentum flux convergence of (a) the lagged
covariance of eddy time series in Eq. (3.3) onto the zonal index
(units: (m s−1)2 day−1) and (b) feedback strength. Vertical lines
in (b) indicate the 95% confidence intervals based on 1,000 boot-
straps (see text for calculation details.) . . . . . . . . . . . . . . . . 28

3.5 R30 truncation: (a) Zonal index lagged-autocorrelation (only
positive lags shown). The horizontal black dashed line indicates
the e-folding time scale. (b) e-folding time scale as a function of
climatological jet latitude. (c) Lagged-covariance of mup in (3.3)
with the zonal index for positive lags when zonal index leads
mup. (d) Eddy momentum flux convergence feedback strength,
bup, as a function of positive lag. The colorbar, marker colors, and
line colors for all plots indicate the latitude of the jet with warmer
(red) colors for equatorward jet latitudes and cooler (blue) colors
for poleward jet latitudes. Black lines and shapes represent the
control run. Shapes for (a,c,d) are indicated in (a), and shapes for
(b) are indicated in (b) with non-filled shapes representing nar-
row warming runs and filled shapes representing broad warm-
ing runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Eddy momentum feedback streghth, bup, averaged over lags +10
to +18 days as a function of jet latitude. Colors are the same
as Fig. 3.5. Black line is a linear best fit line. Error bars are
computed from 1000 iterations using the bootstrap method; see
text for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



3.7 As in Fig. 3.5, except that the diagnostic is applied to dif-
ferent horizontal resolutions and truncations. In all the plots,
open circles indicate the narrow tropical tropospheric warming
(TTW) runs, closed circles indicate the broad TTW runs, and di-
amonds indicate the control runs for each resolution including
R30, R60, T42, and T85. Experiments with the standard heating
and quadruple heating are used (see bold numbers in Table 2.1).
In (b), data points are not color coded by jet latitude, as in (a), (c),
and (d), but are color coded by their resolution and truncation as
indicated by the legend. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 An illustration of the extreme event definition presented in [32]
for a positive extreme event (top row) and negative extreme
event (bottom row). An event is defined to occur on day t0 in
the middle column and day t0 − 2 to t0 + 2 are also shown across
each row. Within each panel, the shades are the time-mean T850
anomalies (2 K contour interval), black horizontal contour is the
climatological jet latitude, black box represents the 30◦ latitude-
by-longitude box used to define an extreme event (see text for
details). The subtle green dots throughout the domain show
where other extreme events are occuring. . . . . . . . . . . . . . . 39

4.2 R60 control run mean extreme event statistics. Top row is the av-
erage number of events occuring at a particular grid point over
a 100 day period for warm (left) and cold (right) extreme events.
The contour interval and units for the top row are 2 events per
100 days. The bottom row shows the zonal average of the top
panels for warm (red) and cold (blue) extremes. The climatolog-
ical jet latitude is also plotted in all panels as a black contour. . . 40

4.3 850 hPa temperature (T850) statistics (described below) as line
plots in the left column and a shaded plot in the right column.
For the right column, each experiment’s statistic as a function of
latitude is placed at its jet latitude along the x-axis with physical
latitude as the y-axis and extrapolated to form a contour plot.
The colors of the lines in the left column and x’s in the right col-
umn indicate the experiment with red for ∆T = 40 K and blue for
∆T = 80 K. Black lines and diamonds represent the control run
(∆T = 60 K). The first row, (a) and (b) is the time- and zonal-mean
T850 in K; the second row, (c) and (d), is the meridional gradient
of the first row (T850) in K(100 km)−1; the third row, (e) and (f), is
zonal-mean standard deviation of T850; and the fourth row, (g)
and (h), is the zonal-mean skewness of T850 in K. The thin black
lines in the right column indicate the one-to-one line for physical
latitude and jet latitude. The contour intervals for (b) are 5.5 K,
(d) 0.3 K(100 km)−1, (f) 2 K and (h) 0.4 K. . . . . . . . . . . . . . . 43

x



4.4 The extremes statistics are shown in a similar fashion to Fig. 4.3
with each experiment shown as a contour in the left column and
shaded in the right column. Positive extremes are in the top
row with negative extremes in the bottom row. Experiments are
again stacked at the latitude of the jetstream in the right panel.
Colors, markers, and lines are described in Fig. 4.3. The units
for the right column are number of events per 100 days with a
contour interval of 1.6 events per 100 days. . . . . . . . . . . . . . 46

4.5 Same as Figure 4.4 but the tropical-temperature warming (TTW)
runs have been added (see Table 2.1 for details). The TTW runs
are added as circles, and the markers and lines are colored by
jet latitude, redder lines for equatoward jets and bluer lines for
poleward jets. Open circules are the narrow TTW runs, and filled
circles are the broad TTW runs. The units for the right column
are number of events per 100 days with a contour interval of 1.6
events per 100 days. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Same as Figure 4.5, but the lines in the left column and the exper-
iments in the right column are ordered by jet speed with faster
jets in blue and slower jets in red. The maximum in the latitudi-
nal distribution of extreme events are all stacked near 45◦. Note
the broad TTW runs are not filled here for figure clarity. The
units for the right column are number of events per 100 days
with a contour interval of 1.6 events per 100 days. . . . . . . . . 49

5.1 The 7 day evolution of a blocking anticyclone as defined in [42]
and described in the text. Day t0 represents the first day that
a particular grid point was marked as blocked. The black con-
tours are the Z500 field; shades are time- and zonal-mean Z500
field that has been normalized by the latitudinal maximum in
the zonal-mean standard deviation of Z500 (contour interval of
0.4 m); pink contours is the same field but marking when it ex-
ceeds a certain sigma value (B matrix in text), 1.5 sigma here; red
contours delineate large-scale reversal in the Z500 field. . . . . . 54

5.2 Same as Figure 4.2 but for the 500 hPa geopotential height (Z500)
statistics using the blocking algorithm from [42]. Blocking fre-
quencies are presented as the percentage (%) of time that a par-
ticular point (left panel) is considered blocked and the zonal
mean of this quanity (right panel) as the percentage of days that
a particular latitude is considered blocked. . . . . . . . . . . . . . 55

5.3 Same as Figure 4.3 but for the 500 hPa geopotential height (Z500)
statistics. The contour intervals and units for (b) are 80 m, (d) 4
m (100km)−1, (f) 24 m and (h) 0.3 m. . . . . . . . . . . . . . . . . . 56

xi



5.4 The block response is shown in a similar fashion to Fig. 5.3
with each experiment shown as a contour in the left column and
shaded in the right column. Colors, markers, and lines are de-
scribed in Fig. 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 (a) Time-mean finite-amplitude wave activity, A, as contour plots
for each ∆T run and (b) a shaded plot that combines each ex-
periment as a function of physical latitude and experimental jet
latitude. Markers and colors are the same as Fig. 4.3. . . . . . . . 63

6.2 Top row: the amplitude of the maximum value of the T850
meridional gradient (dTdy) (left panel) and latitude of this max-
imum value (right panel) as a function of climatological jet lati-
tude. Bottom row: the same T850 gradient values but as a func-
tion of jet speed. Markers and colors are the same as Fig. 4.3.
Correlation coefficients are shown as floating numbers for each
respective panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Same as Fig. 6.2 but the tropical temperature warming (TTW)
runs have also been added. Colors have been removed. Circles
represent the TTW runs, x’s the ∆T runs, and the diamond is the
control run. Closed circles indicate the broad TTW runs. . . . . . 65

6.4 Same as Fig. 4.6 but for the R30 simulations. Included in the
plots are the tropical temperature warming (TTW) runs (circles),
the tropical-upper tropospheric (TUW) runs (triangles), the Arc-
tic surface warming/cooling (ASW/C) runs (stars), and the ∆T
runs (x’s). For figure clarity, the broad TTW and TUW runs have
not been filled. The contour interval and unit for the right col-
umn are 2 events per 100 days. . . . . . . . . . . . . . . . . . . . . 67

xii



CHAPTER 1

INTRODUCTION

1.1 General Circulation

The large-scale general circulation of the atmosphere, generated through the

unequal meridional heating of a rotating, spherical Earth and depicted in Fig.

1.1, necessitates mechanisms to transport the excess of heat from the equato-

rial regions. In the tropics, a thermally direct Hadley circulation removes heat

from the equatorial regions with surface easterlies throughout the tropics and an

upper-level, westerly jet (angular momentum conservation) in the subtropics.

The down-welling branch of the Hadley circulation pattern coincides with the

subtropical dry zones. In midlatitude regions where poleward flowing warm,

moist air and equatorward flowing cool, dry air converge, the strong baroclinic

zones generate a westerly jetstream.

With the imminent advance of large-scale climate change, concern rises over

the evolution of the general circulation in the future. The climate system’s re-

sponse due to greenhouse gases (GHG), such as carbon dioxide (CO2), may take

many years to fully reveal itself, as the oceans take time to absorb and release the

additional heat added into the climate system, as well as the long-lived nature

of CO2. In general, from the Clausius-Clapeyron relation, the water vapor hold-

ing capacity increases with rising temperatures, leading to more intense and ex-

treme precipitation events [96, 47]. As the mean temperature on Earth changes,

the general circulation and its dynamical constituents displays a poleward shift

in both the Hadley circulation e.g. [61, 83] and the midlatitude jetstream and

storm tracks [100, 55, 22, 58]. It is thus essential to understand the general circu-
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Figure 1.1: Schematic depicting the large-scale general circulation features
on Earth. L stands for low pressure or low heights, and H
stands for high pressure or high heights. Lines with arrows
indicate the direction of the surface flow with easterlies in the
tropics, westerlies in the midlatitudes, and eastlerlies in polar
regions. The white cloud looking features in the equatorial re-
gions represent regions of deep convection. The circulation fea-
tures on the left side of the figure represent the vertically rotat-
ing cells. All other features are identified in the figure.

lation’s response to climate change and how heat and moisture transport may

have been or may be altered in a past or future climate.
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1.2 Midlatitudes

Focusing on the midlatitudes, the jetstream exhibits multiple time scales of vari-

ability that describes the north-south fluctuation of the jetstream on the hemi-

spheric scale [94]. On a daily time scale, the variability of this jetstream is

intimately related to the sensible weather in the midlatitudes, such as rain-

storms, snowstorms, thunderstorms, and more, most prevalent in the pre-

ferred storm tracks downstreams of the continents in the Northern Hemisphere

[45]. On a subseasonal to seasonal time scale, the jetstream, on average, may

contain persistent anomalies where the jetstream and associated weather pat-

terns are shifted poleward or equatorward of their climatological positions

[45], such as the North Atlantic Oscillation pattern. This persistence is an

eddy momentum feedback on the jet shift that prolongs the north-south shift.

The zonal jet vacillation and its associated eddy feedback are important for

stratosphere-troposphere coupling and tropospheric predictability [2, 33], tro-

pospheric blocking patterns [99], Rossby wave breaking e.g. [13, 31, 87], and

the extratropical circulation responses to El Niño [52, 22] and ozone depletion

[38, 71, 86]. Although the annular modes describe a hemispheric scale of vari-

ability, regional jet variability also exists and is related to features in midlatitude

dynamics such as persistent wave events or blocking.

This paper will focus first on the hemispheric scale variability associated

with the annular modes, then turn to the regional scale of variability associated

with wave events such as blocking anticyclones and persistent cyclones. These

high amplitude anticyclone events are linked to extreme weather such as cold

air outbreaks in Tibet [90] and the eastern half of the United States in January

2014 [80], steering of post-Hurricane Sandy into the East Coast of the United

3



States [8], 2003 heat wave and drought in Europe [14], and the 2010 Russian

heat wave [27, 66]. These events are associated with persistent blocking-like

patterns that lead to large-scale advection of either cold or warm temperatures,

or persistent steering in the case of Sandy, for an extended period of time under-

lying the importance of blocking to midlatitude weather and extremes. Poor air

quality also results from stagnant weather patterns and large-scale subsidence

associated with the high pressure systems [92]. Thus, it is highly important from

the research community to the public to the policy makers to understand how

blocking or large amplitude events may change in future climates and their re-

lationship to extreme weather events. The following two sections will describe

current research associated with the annular modes and persistent wave events.

1.2.1 Annular Modes

The north-south fluctuation of the midlatitude jetstream about its climatological

position, also known as the zonal index, describes the leading mode of extrat-

ropical atmospheric variability [94]. Because there is a link between jetstreams,

sensible weather, and extreme weather events, it is essential to understand the

trends in the zonal index to determine which latitudes or regions may be im-

pacted by global climate change, e.g. [43]. Particular focus in the literature

has been given to the response of midlatitude dynamics to Arctic amplification

(AA). AA describes the unequal heating of the globe, from global warming, due

to the melting of the Northern Hemisphere’s sea-ice which will accelerate heat-

ing in the high latitudes compared with the midlatitudes or equatorial regions.

The effect reduces and shifts temperature gradients across the midlatitudes af-

fecting jetstream variability and has led to contradicting viewpoints as to the
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midlatitude’s dynamical response in observations [30, 53, 91] and in modeling

efforts [42, 32]. With the context of these conflicting viewpoints of the midlati-

tude’s response to climate change, this paper focuses on modeling the midlati-

tude’s response to idealized climate change by shifting the latitude of maximum

baroclinicity and/or changing the magnitude of the baroclinic zone.

Observations show a trend toward the positive phases, or poleward shift,

of the Northern and Southern annular mode with time [94, 93, 63]. Model-

ing studies have confirmed that the response to GHG forcing [49] and ozone

depletion [38] induce this poleward shift in the midlatitude jetstream system,

whereas the response to ozone recovery is an equatorward shift consistent with

a contraction of the Hadley circulation [86]. These results are confirmed with in-

tegrations from the Intergovernmental Panel on Climate Changes (IPCC) fourth

assessment report [61, 83, 100, 55], other climate models [22, 58] and Phase 5 of

the Coupled Model Intercomparison Project (CMIP) models [7] demonstrating

a poleward shift of the general circulation. As these modes of jetstream vari-

ability coincide strongly with distributions of Rossby wave breaking [13, 31],

which influence the characteristics of atmospheric rivers and blocking events

[13, 64, 87, 39, 68, 77], subseasonal to seasonal variability is essential to reveal

the midlatitude’s response to climate change.

The zonal jet variability can be simulated in a wide variety of models

from quasigeostrophic models [50, 101] to idealized primitive equation models

[36, 21] to comprehensive general circulation models [34, 5]. While the spatial

structure of a meridional shift in the jet is well understood, the time scale as-

sociated with the jet shift is more complicated and warrants further inspection

due to its implication for predictability and climate sensitivity [37]. The annu-
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lar mode, or shift in the midlatitude jet, is well described by the vertical- and

zonal-mean zonal wind that is driven by eddy momentum forcing and damped

by friction [21]. The associated eddies contain power in short time scales that

rapidly initiate an annular mode response and power at longer time scales that

maintain a shifted jet [56]. This low-frequency variability of the eddy momen-

tum flux sustains a zonal wind anomaly against frictional damping, and this

contributes to the persistent zonal wind anomaly associated with the annular

modes [29, 76, 36, 40, 54].

Even as models become ever more complex, including coupling between

biogeochemistry processes, atmospheric dynamics, oceanic feedback, and more,

they still experience biases in the large-scale mean state of the atmosphere lead-

ing to other biases related to atmospheric dynamics. Nearly fifty years after first

simulating the midlatitude variability [62], phase 3 and 5 of CMIP still produce

biases in the mean state jet system, which is often simulated equatorward of

its observed location [48, 89]. This equatorward bias has at least two main im-

plications. [37] has shown that this bias in jet latitude manifests itself into an

overly persistent midlatitude jet system. The forced response relating to climate

change in phase 3 of CMIP also displays greater sensitivity for jets biased equa-

torward [48]. The dynamical consequence may lead to erroneous conclusions

relating to the large-scale modes of variability, blocking, atmospheric rivers, and

Rossby wave breaking that are essential to midlatitude dynamics and their as-

sociated extremes. Recent work [59] demonstrates that models with resolutions

approaching 50 kilometers are able to simulate the observed midlatitude jet-

streams location and intensity. Similarly, more realistic statistics with increasing

model resolution for blocking [67, 46], atmospheric rivers [97, 25], and internal

mode variability[37, 1] have been identified. This demonstrates that midlatitude
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variability may suffer from low resolution models, so this analysis will discuss

time scales of jetstream variability with two different truncations and two dif-

ferent resolutions (one high and one low). Chapter 3 will be dedicated to further

modeling efforts and discuss the sensitivity of model resolution and truncation

to annular mode time scales.

1.2.2 Persistent Wave Events

First defined in [73, 74], large amplitude anticyclones can develop in the mid-

latitudes which may reverse the westerly jetstream leading to stalled weather

systems, especially over the North Atlantic and North Pacific. Slow moving

weather systems make up a large part of the climate system and are shown to

be associated with extreme weather events such as cold air outbreaks [90, 80],

heat waves and droughts [14, 27, 66] and air quality issues [92].

Owing to this relationship between blocking and extreme weather events

and its relationship to a large part of climate-related damage [43], it is essential

to understand the response of persistent wave events, or blocking, to climate

change. Blocking statistics are sensitive to blocking detection algorithms, obser-

vational datasets used, and time periods used for the analyses which may mask

recent observations of trends in blocking statistics [7, 24]. As mentioned above,

recent studies suggest that declining sea-ice over the Arctic regions has led to

an increase in blocking across the Northern Hemisphere due to the reduction

in north-south temperature gradient and a slowdown in the midlatitude flow

[53, 30]. However, models in both phase 3 [10] and phase 5 [9] of CMIP agree

that while a slight seasonal dependence on blocking occurs, a general decrease
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in blocking for future climates is expected, contradicting [53, 30]. Two distinct

modeling methodologies also showed that with idealized AA, a reduction in

the number of extreme events occurs [42, 32]. With the controversary in the

literature, a hierarchical approach with a highly idealized numerical model is

warranted to determine the midlatitude response to idealized climate change.

This paper will initially test the midlatitude’s response in terms of extremes

and blocking events to a highly idealized AA signature. It will be shown that the

results from [42] and [32] can be recovered if the model is ran at a sufficient res-

olution and for a sufficient length of time. The results will then be extended to

generalize the AA results to different types of idealized global climate change.

It will be shown that an increase in jet latitude does correspond to an increase

in extreme events, but it will also be shown that an increase in jet speed also

leads to an increase in extreme events. Two studies were able to remove the de-

pendence on jet speed, and thus isolate the effects of jet latitude [42, 32], giving

similar results to a subset of the experiments considered here, which include

changes in both jet speeds and latitudes.

1.3 Outline

The outline of the thesis is as follows. Chapter 2 introduces the idealized model

used throughout the study. The climate change-like thermal perturbations and

the mean state response, e.g. the temperature and wind profiles, are also dis-

cussed. Chapters 3, 4, and 5 describe the annular mode response, extreme event

response, and blocking response to idealized climate change, respectively, and

will all begin with that chapter’s methodology followed by results. Each chap-
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ter will conclude with a brief summary of the main points presented in that

chapter. Chapter 6 will synthesize the results presented throughout this study,

discuss its significance in the current literature, and provide details of future

work that could be conducted. The copyright of the content in Chapter 2 and

Chapter 3 has been transferred to the American Meteorological Society.
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CHAPTER 2

MODEL AND WAVE ACTIVITY

2.1 Model Configurations and Perturbations

Recent studies hypothesize that the north-south meandering of the midlatitude,

eddy-driven jetstream and associated weather patterns may increase as the Arc-

tic regions heat faster than the midlatitude and equatorial regions (known as

Arctic Amplification - AA hereafter), thus decreasing the midlatitude-to-pole

temperature difference [53, 30]. However, using an idealized dry model, [42]

have shown that with a decrease in the equator-to-pole temperature difference,

∆T , the opposite is true. When a decrease in ∆T is forced, Fourier decomposition

suggests a robust decrease in meridional wave amplitudes and related blocking

statistics. Using an idealized dry model, [32] have shown that an equatorward

shift of the jetstream (without changing the jet speed) leads to a reduction in

the number of extreme events, which again is inconsistent with the AA theory.

Following this hierarchical approach, various thermal perturbations are used to

mimic global climate change in an idealized model configuration to deduce the

response of the midlatitude jetstream dynamics.

The Geophysical Fluid Dynamics Laboratory (GFDL) dry atmospheric dy-

namical core is used to take advantage of its physical simplifications (e.g. no

water, topography, seasonal cycle or diurnal cycle). Following [44], the control

run is driven by a relaxation toward a zonally symmetric radiative-equilibrium-

temperature profile with linear frictional damping in the planetary boundary

layer. Climate change-like thermal perturbations allow a systematic shift of the

climatological jet, either equatorward or poleward of the control run. A rhom-
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Experiment Description φ0 A0

Tropical Tropospheric Warming (TTW) 10◦, 30◦ -0.015625
F(p) = A0 10◦, 30◦ -0.03125

W(φ, φ0) = 0.5{1 − tanh[(|φ| − φ0)/δφ]} 10◦, 30◦ -0.0625
10◦, 30◦ -0.125
10◦, 30◦ -0.25

Tropical Upper-Tropospheric Warming (TUW) 10◦, 30◦ -0.015625
F(p) = A0 exp

[
−(p/p0 − 0.3)2/(2 × 0.112)

]
10◦, 30◦ -0.03125

W(φ, φ0) = 0.5{1 − tanh[(|φ| − φ0)/δφ]} 10◦, 30◦ -0.0625
10◦, 30◦ -0.125
10◦, 30◦ -0.25

Arctic Surface Warming/Cooling (ASW/C) - 0.125/-0.125
∂T
∂t |AS W/C = A0 cos15(φ − π/2) exp[6( p

p0
− 1)], (φ > 0) - 0.25/-0.25

F(p) = 0 - 0.5/-0.5
- 1.0/-1.0
- 2.0/-2.0

Table 2.1: A list of the numerical values used in the thermal perturbation
runs. For the TTW and TUW runs, the parameters in Eq. (2.1)
are altered: F(p) and W(φ, φ0) set the vertical and meridional
structure of the heating, where φ0 is the latitudinal width of the
warming perturbation and δφ = 5◦ sets the meridional sharpness
of the thermal perturbation boundary. For the ASW/C runs, an
additional heating rate is specified by ∂T

∂t |AS W/C with F(p) = 0.
For all the runs, A0 is the magnitude of the heating, and p0

is 1000hPa. Notice the ASW have positive A0, and ASC have
negative values. All the simulations are run at the R30 reso-
lution, and the bold numbers in TTW indicate the simulations
conducted at R60, T42, and T85 resolutions.

boidal 30 (R30) spectral harmonic truncation with 20 vertical levels is primarily

used with eighth-order horizontal hyperdiffusion with a damping time scale

of 0.1 day for the smallest resolved scales. The model is integrated for 12,000

days using the last 11,500 days after spin-up. The parameters for this study are

presented in Table 2.1 and described in more detail below. Note the bold num-

bers in the φ0 and A0 columns indicate simulations that are run at the different

resolutions and truncations.
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More specifically, the radiative-equilibrium-temperature profile is given as

Teq = max
{

200,
[
315 − ∆T sin2 φ − ∆T F(p)W(φ, φ0) − δz log

(
p
p0

)
cos2 φ

] (
p
p0

)κ}
(2.1)

where φ is latitude, p is pressure, p0 = 1000 hPa, ∆T = 60 K, and δz = 10 K.

F(p) and W(φ, φ0) are functions, see below for more details, that set the vertical

and horiztonal thermal structures, respectively. For the [44] control configura-

tion, F(p) is set to zero in Eq. (2.1). Four types of thermal perturbations are

outlined below including altering ∆T as in [42], tropical tropospheric warm-

ing, tropical upper-tropospheric warming and Arctic surface warming/cooling

[19, 88, 17]. The first perturbation is very simply an increase and decrease in

the ∆T term in Eq. (2.1). ∆T values are 40 K, 50 K, 70 K, and 80 K, where 40 K

represents a decrease in the equator-to-pole temperature difference and 80 K an

increase. The next two perturbations are imposed by altering the parameters in

the radiative-equilibrium-temperature, Eq. (2.1), and the third one is introduced

by an additional heating rate, ∂T
∂t |AS W/C.

Jet latitudes and speeds are used extensively throughout this study. The 850

hPa time- and zonal-mean zonal wind is linearly interpolated to a resolution of

∼ .22◦ to get a higher resolved representation of the jet statistics. For example,

the R30 data has a meridional resolution of ∼ 2.5◦. When calculating the jet lat-

itudes at this resolution, many of the experiments would be grouped into the

same jet latitude. By using the interpolated field, a more accurate representa-

tion of the jet latitude can be determined. Using the interpolated field, the jet

speed is simply the maximum wind speed. The jet latitude is defined as the

latitude at which the jet speed is calculated. This method for jet speeds and lat-

itudes is consistent with a polynomial fit definition used in [33]. The vertical

gray lines in the four panels of Figure 2.1 illustrate a jet latitude of about 43◦ for
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Figure 2.1: Responses in temperature (shades with a 2 K interval) and
zonal-mean zonal wind in m s−1 (black contours) between ∆T
runs and the control run for (a) ∆T = 40 K, (b) ∆T = 50 K, (c) ∆T
= 70 K, and (d) ∆T = 80 K. Dashed contours are negative, and
the vertical gray line in each plot indicates the climatological
jet latitude for the control run.

the control simulation. The responses of the zonal wind and temperature from

the control run are also shown in Fig. 2.1 for the ∆T runs. The response to in-

creasing ∆T produces a cooling pattern in the Arctic regions and throughout the

midlatitudes. The mean wind response is a poleward shifted jet latitude with

a strengthening midlatitude jetstream and the development of a well separted

subtropical jet. In contrast to this, an Arctic warming signature, i.e. by reduc-
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ing ∆T , the midlatitude jet shifts equatorward, weakens, and merges with the

subtropical jet. Concurrent with the equatorward shift and weakening of the

jetstream with AA, there is a strong reduction in both the fluxes of eddy mo-

mentum and eddy heat (not shown). In all, AA produces a warming signature

at high latitudes, equatorward and decelerated jetstream, merging of the eddy-

driven and subtropical jet, and reduction in the eddy fluxes, consistent with

[42]. The next subsections will describe the more realistic thermal perturbations

used.

2.1.1 Tropical Tropospheric Warming (TTW)

The functions F(p) and W(φ, φ0) in Eq. (2.1) are designed to increase the

radiative-equilibrium-temperature of [44] in the tropical troposphere without

altering the stratospheric temperature. As mentioned above, F(p) defines the

vertical structure of the thermal perturbation, and W(φ, φ0) = 0.5{1 − tanh[(|φ| −

φ0)/δφ]} is a weighting function that sets the meridional structure with φ0 setting

the boundary of the warming and δφ = 5◦ setting the sharpness of the boundary.

A narrow warming with φ0 = 10◦ and a broad warming with φ0 = 30◦ are used

and described in Table 2.1.

To produce a warming signature that is independent of height in the tropi-

cal troposphere, F(p) in Eq. (2.1) is set to a constant, A0, and thus it produces

a warming throughout the depth of the troposphere. This thermal structure

does not alter the stratospheric temperature profile. Similar to Fig. 2.1, Fig.

2.2a,b plots the zonal wind and temperature response compared to the con-

trol run for both narrow (φ0 = 10◦) and broad (φ0 = 30◦) warmings compared
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with the control run. These two examples have used the quadrupled param-

eter of A0 = −0.25 with the radiative-equilibrium-temperature profile change

indicated by green contours, see details of A0 below. The prescribed radiative-

equilibrium-temperature change produces local warming plus an indirect re-

mote temperature change associated with the change in dynamics of the general

circulaton, i.e. the tropical and midlatitude circulations. The response of the

zonal wind, shown in black contours, is an equatorward shifted and strength-

ened jetstream, while the broad warming produces a poleward shift and similar

strengthening, both in response to an increase the midlatitude temperature gra-

dient and variability. [88] have shown that this opposite response in jet shifts

for the TTW cases can be explained as a tug-of-war between the low-level baro-

clinity and an increase in subtropical wave breaking which can alter both the

magnitude and latitude of the eddy momentum fluxes. There is also an increase

in the zonal wind in the tropics and subtropics for the narrow and broad warm-

ing cases, respectively.

The magnitude of the heating is altered for both narrow and broad ex-

periments, in order to produce experiments with a systematic shift in jet lati-

tude. This is done by quartering, halving, doubling, and quadrupling the stan-

dard perturbation simulation (i.e., A0 = −0.0625). Runs are performed with

A0 = −0.015625 for the quarter run, A0 = −0.03125 for the half run, A0 = −0.125

for the double run, and A0 = −0.25 for the quadruple run. This produces ten ex-

periments with jet latitudes ranging from about 40◦ to 50◦. Although the eddy-

driven jet does not reach latitudes as far poleward as the SH eddy-driven jet,

i.e. about 52◦, these model settings are used to obtain a variety of possible jet

latitudes to analyze eddy-mean flow feedbacks and extreme event statistics.
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Figure 2.2: Same as Fig. 2.1 but also includes the response in the radiative-
equilibrium-temperature profiles (green contours at 4 K, 8 K,
and 12 K) for (a,b) tropical tropospheric warming (TTW) runs,
(c,d) tropical upper-tropospheric warming (TUW) runs, and
(e,f) Arctic surface warming and cooling (ASW/C) runs. For
the TTW and TUW runs, 10◦ wide runs are in the left column,
and 30◦ wide runs are in the right column. For the ASW/C
runs, the left column is warming, and the right column is cool-
ing. Each forced run uses the quadrupled value of A0 which
shows the biggest forced response.

16



2.1.2 Tropical Upper-tropospheric Warming (TUW)

In order to produce a tropical warming that depends on height, F(p)

is no longer set to a constant but is allowed to vary as F(p) =

A0 exp
[
−(p/p0 − 0.3)2/(2 × 0.112)

]
in Eq. (2.1) to produce a tropical upper-

tropospheric warming (TUW) signature [19, 88, 17]. The temperature and wind

field responses are shown in Fig. 2.2c,d. In contrast to the TTW runs, the re-

sponse of the climatological zonal wind is a poleward shift for both narrow and

broad warming cases in comparison to the control run. The zonal wind shift

is much smaller and weaker for the narrow warming. [88] have shown that the

shift in zonal wind for a broad warming can be explained by an increase in effec-

tive diffusivity associated with enhanced irreversible potential vorticity mixing

in the subtropics, consistent with poleward shifts in both cyclonic and anticy-

clonic wave breaking for the broad warming scenario [60] and poleward shifted

eddy momentum forcing. As for the TTW runs, the magnitude of the heating is

altered by quartering, halving, doubling, and quadrupling the standard pertur-

bation runs for both narrow and broad experiments, and thus a range of changes

in jet latitude are produced, see Table 2.1.

2.1.3 Arctic Surface Warming/Cooling (ASW/C)

An Arctic amplification-like signature is generated by using a thermal forcing

from [19]. A thermal forcing is applied to the Northern Hemisphere by prescrib-

ing the additional heating rate as

∂T
∂t
|AS W/C = A0 cos15(φ − π/2) exp[6(

p
p0
− 1)], (φ > 0) (2.2)
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with p0 = 1000 hPa. The equivalent change in Teq can be inferred by multiplying

the heating rate with the radiative relaxation time scale. The interpretation of a

heating rate is that if the heating rate is equal to 1 day, the temperature profile

would be exactly relaxed to the equilibrium temperature profile, erroding all

general circulation features. Instead, the heating rate value is large, since it is

one over the heating rate in the temperature tendency equation, and slowly

relaxes the temperature profile over many time steps allowing the evolution of

the general circulation. The temperature and wind field responses are shown in

the bottom row of Fig. 2.2. As in [19], a low-level warming in the Arctic shifts

the jet equatorward, and conversely, cooling in the Arctic shifts the jet poleward.

Similar to the TTW and TUW runs, five magnitudes of Arctic surface warming

(ASW) are applied, including A0 = 0.125 for the quarter run, A0 = 0.25 for the

half run, A0 = 0.5 for the standard run, A0 = 1 for the double run, and A0 = 2 for

the quadruple run. Also, five Arctic surface cooling (ASC) runs are conducted

by reversing the sign of A0, which produces jet shifts in the opposite direction.

This leads to ten ASW/C runs. In all of these simulations, ∆T , TTW, TUW,

and ASW/C runs, the climatological jet system is characterized by a blurred

subtropical and eddy-driven jet except for the farthest equatorward jets that

merge the two jet systems together.

[88] have found that the responses of zonal wind to idealized thermal per-

turbations are qualitatively similar at higher resolutions, although the magni-

tude of the responses in zonal wind is smaller, as expected from the fluctuation-

dissipation theorem [75, 37], due to the change in annular mode time scales

with resolution. Given the qualitatively similar results at high resolutions, here

we focus on the R30 simulations that can be used to explore a wide range in

the model parameter space. Selected simulations are verified at R60, T42 and
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T85 resolutions, see Table 2.1. A discussion will follow the main chapters and

will describe sensitivities that the annular mode timescales and extreme event

characterization have due to resolution and truncation.

In the interest of recreating this work or extending this work in the future,

a brief description of the computational requirements is described. The model

is ran using the National Center for Atmospheric Research’s Yellowstone su-

percomputer. For the low resolution simulations (R30 and T42), the model

is ran on a single node with sixteen tasks or processors per node. With this

computational configuration, 6000 output days are processed in approximately

three hours for seven output variables. For every 500 days of daily data, one

variable is 0.25 gigabytes. For the higher resolved simulations (R60 and T85),

the model is ran on two nodes with sixteen tasks per node. For 6000 days of

daily data, it takes four hours to generate the output for seven output variables.

For every 500 days of daily data, one variable is nearly one gigabyte. I would

like to acknowledge high-performance computing support from Yellowstone

(ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information

Systems Laboratory, sponsored by the National Science Foundation.

2.2 Finite-Amplitude Wave Activity

The finite-amplitude wave activity (FAWA) framework introduced by [69] is

used but applied to the 500 hPa geopotential height (Z500) field as in [20]. The

waviness of Z500 contours is defined as

A =
1

2πa cos φe

(∫ ∫
Z500<Ẑ,φ≥φe(Ẑ)

Z500dS −
∫ ∫

Z500≥Ẑ,φ<φe(Ẑ)
Z500dS

)
(2.3)
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where A is the wave activity and dS= a2 cos φdλdφ. The equivalent latitude, φe,

corresponds to the Z500 contour, Z500 = Ẑ, such that the area enclosed by the

Ẑ contour toward the North Pole is equal to the area enclosed poleward of φe

[18]. A physical interpretation of wave activity is to consider a Z500 field that

is zonally symmetric and decreasing toward the pole. This would provide a

wave activity of zero, whereas Z500 contours with excessive north-south un-

dulations provide a positive definite quantity of wave amplitude. Larger wave

amplitudes correspond to larger values of A. The motivation for applying the

FAWA formalism to the Z500 field is that [20] have shown that the wave activity

responds to the low-level baroclinicity which is intimately related to the eddy-

driven jetstream, see Eq. (9) in [20]. Wave activity is used in Chapter 6 to link

changes in wave amplitudes to changes in the number of extreme events.

TTW

A
0

je
t l

at
itu

de

 

 

−0.2 −0.1 0

40

42

44

46

48
control
φ

0
=10°

φ
0
=30°

TUW

A
0

je
t l

at
itu

de

 

 

−0.2 −0.1 0

40

42

44

46

48
control
φ

0
=10°

φ
0
=30°

ASW/C

A
0

je
t l

at
itu

de

 

 

−2 −1 0 1 2

40

42

44

46

48
control
ASW
ASC

Figure 2.3: Climatological jet latitude as a function of forcing strength for
(left) tropical temperature warming (TTW) runs, (middle) trop-
ical upper-tropospheric warming (TUW) runs, and (right) Arc-
tic surface warming/cooling (ASW/C) runs. Closed circles in-
dicate broad warming runs (e.g. φ0 = 30◦) for the TTW and
TUW runs (left and center) and also for ASC runs (right) (e.g.
negative values of A0).
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2.3 Summary

Figure 2.3 summarizes the direction of the jet shift with respect to the magnitude

of the individual thermal forcings that have been elaborated in Section 2. Note

the ∆T runs are not shown here but exhibit a linear increase in jet latitude with

increasing ∆T . The jet latitude response in Fig. 2.3 is approximately linear to

the magnitude of the forcing, yielding a range of jet latitudes. Again, these jets

do not reach latitudes as far poleward as the SH eddy-driven jet, but the experi-

ments were designed to provide a range of possible jet latitudes to analyze. The

response to the TTW narrow warmings is an equatorward shift of the zonal jet

and to broad warmings a poleward shift. Both narrow and broad warmings for

the TUW runs shift the jets poleward. The ASW scenarios shift all the jets equa-

torward, while the ASC scenarios shift the jets poleward. As the mechanisms of

the climatological jet responses to tropical warming have been examined in [88]

and [60], the question now becomes, how does the climatological jet latitude

affect the time scales associated with the annular mode?
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CHAPTER 3

ANNULAR MODE TIME SCALES

As discussed in the Introduction, the jetstream varies in jet latitude in response

to various observed and modeled forcings. No matter which latitude the mid-

latitude jetstream resides at, it is important to understand how the internal dy-

namics of the jet system will respond to changes in its latitude. This chapter will

utilize principal component analysis and feedback analysis [84, 70] to determine

changes in the time scales of the north-south meandering of the eddy-driven jet-

stream to idealized climate change scenarios. The chapter will have three main

sections. The first section will use the control run to describe the methodology

used to analyze jetstream time scales. A section will follow to determine the

effect jet latitude has on persistent shifts in the midlatitude jetstream. Namely,

if the climatological jetstream is located at a higher latitude (say due to green-

house gas forcing), how will this affect the time scales of persistent jet shifts?

The results are tested for model resolution and grid truncation to determine if

sensitivities exist from this analysis. The chapter concludes with a brief sum-

mary.

3.1 Method

As is common in annular mode variability analyses, the principal component

time series of the vertical- and zonal-mean zonal wind in the extratropics (be-

tween 20◦ to 70◦ latitude), weighted by
√

cos φ following [3], is used to describe

the north-south shifting of the midlatitude jetstream from climatology and is

referred to as z, the zonal index. Before describing the dynamics of z (Eq. 3.3
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Figure 3.1: Top panel: the zonal index (leading principal component time
series of the vertical- and zonal-mean zonal wind) as a function
of model day. Middle panel: daily jet latitude (calculated as
the latitude at which the climatological jetstream maximizes at
the 850 hPa level) as a function of model day. Bottom panel:
scatterplot of the daily values of the zonal index and the jet
latitude.
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below), Fig. 3.1 demonstrates what z describes. It is clear that there is a strong

relationship between the eddy jet latitude and z, where positive z indicate a pole-

ward shifted jet (in comparison to its climatology) and a negative z value for

an equatorward shifted jet. This is further demonstrated in the bottom panel,

which shows a scatterplot of the daily z and jet latitude values, showing a strong

correlation between the two. For this reason, the z and jet latitude may be used

interchangeably.

The associated empirical orthogonal function (E) structure, in ms−1, is

demonstrated in Fig. 3.2 as a regression onto the standardized z values. As

in the SH observations [56], the poleward shift of the jet in the positive phase

of the annular mode is associated with a similar poleward shift in the eddy mo-

mentum flux convergence (in panel (b)), an eddy momentum feedback at lag

+10 days (not shown). The low-level baroclinic source also shifts poleward in

association with the poleward jet shift, also an eddy feedback at lag +10 days

(not shown). As reviewed in the Introduction, previous studies have attributed

either the upper-level wave propagation and wave breaking or the lower-level

baroclinic source to the poleward jet shift in the SH as well as the extended per-

sistence of the anomalous zonal wind [56, 70]. The time scale of jet variability

for the control run is also demonstrated in the right panel of Fig. 3.2. Observa-

tions show an intraseasonal variability of the e-folding time scales ranging from

about 6 to 20 days in the troposphere for both the NH and SH [4]. With regard

to the [44] system, [37] found the annular mode time scale converges to 20 to 25

days at sufficiently high horizontal and vertical resolutions. The autocorrelation

of z is shown along with a horizontal line depicting the e-folding time scale. For

the control run, a decorrelation time scale of 43 days (the number of positive lag

days it takes for the z autocorrelation to fall below 1/e in Fig. 3.2c) suggests the

24



Figure 3.2: Control run climatology (contours) and lag 0 regressions onto
the zonal index (shades), representing the leading mode of
variability, for (a) zonal-mean zonal wind and (b) eddy mo-
mentum flux convergence and Eliassen-Palm vectors. Nega-
tive contours are dashed. The contour intervals for the regres-
sion in (a) are 0.5 m s−1 and (b) are 0.2 m (s day)−1. Climatology
contour intervals are indicated in the figure. (c) Lagged auto-
correlation of the zonal index from Fig. 3.1. The horizontal
dashed line is the value of the e-folding time scale.

model dynamics are far too persistent and may result from model resolution or

a lack of zonal asymmetries in this model configuration [37].

This analysis will just analyze the eddy feedback as a whole and not its indi-

vidual constituents, see [17] for this. It is well recognized that the vertical- and

zonal-mean zonal wind is driven by eddy momentum flux convergence and

damped by surface friction (e.g. [56]) and can be written as

∂ < u >
∂t

=< M > − < Fr > (3.1)

where M = − 1
a cos2 φ

(u′v′ cos2 φ)φ is the eddy momentum flux convergence on the

sphere, and Fr is the frictional damping acting on the zonal wind, u. The vertical

average for a variable X is calculated as < X >= (1/ps)
∫ 1000hPa

100hPa
Xdp where < X >

is the vertical average of X. Using the fact that the eddy momentum is mainly
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Figure 3.3: Control run lagged-regressions onto the zonal index for (a)
zonal-mean zonal wind (m s−1) vertically averaged from 1000
hPa to 100 hPa and (b) eddy momentum flux convergence (m
s−1 day−1) vertically averaged from 500 hPa to 100 hPa. Nega-
tive lags indicate eddy-time series lead the zonal index, while
positive lags the zonal index leads. Negative contours are dot-
ted. The horizontal gray line in each plot indicates the climato-
logical jet latitude.

confined above 500 hPa, Eq. 3.1 can be simplified to

∂ < u >
∂t

≈< M >up − < Fr > (3.2)

where the vertical average for u and Fr is calculated from 100 hPa to the sur-

face and M is averaged from 100 hPa to 500 hPa. The vertical average for M is

calculated as < M >up= (1/ps)
∫ 500hPa

100hPa
Mdp.

Before moving on to the annular mode time scale analysis, a brief descrip-

tion of the eddy feedback will be given. To better understand the temporal

evolution of eddy momentum forcing associated with the annular mode vari-

ability, lagged-regressions of < u > and < M >up onto z are performed. Figure 3.3

demonstrates a lagged-regression of u (left panel) and < M >up (right panel) onto

the zonal index time series. The zonal wind is highly persistent, with lifetimes

beyond ± 50 days, in agreement with the decorrelation time scale presented
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above. The right panel shows that the zonal wind shift is initially eddy driven

because the zonal wind shift occurs after the eddies (indicated by a negative lag

in Fig. 3.3) and subsequently eddy prolonged (positive lags). This eddy feed-

back extends the persistence of an eddy-driven jetstream and shows that the

annular modes are very useful for weather predictability, e.g. if a shift in the

jetstream is predicted, there can be some confidence suggesting it may persist

in this location for upwards of 40 days in this control simulation.

Although each component in the eddy feedback mechanism, such as

barotropic mixing, baroclinic pumping, and wave transience, is not analyzed,

the feedback associated with the total eddy momentum feedback is described

to understand changes in the jetstream time scales. A compact analysis of eddy

feedback mechanisms, as in [84] and [70], can be demonstrated by first com-

puting the eddy time series through projecting < X > onto the leading E as

x(t) = < X > WE/EWE, where x indicates the portion of < X > that projects

onto E, and W is the diagonal weighting matrix of cos φ [3]. It follows that the

zonal-mean zonal wind tendency equation (Eq. (3.2)) can be projected onto the

annular mode as [70]

∂z
∂t

= mup −
z
D

(3.3)

where mup is a time series that denotes upper-level eddy momentum flux con-

vergence. D denotes the time scale of frictional damping acting on the annular

mode. Equation 3.3 is a zonal index tendency equation that describes the north-

south fluctuation of the eddy jetstream demonstrated in Fig. 3.1. A positive mup,

momentum convergence, corresponds to a poleward shift in jet latitude and a

negative mup, momentum divergence, to an equatorward shift.

A lagged-covariance structure between the eddy forcing time series in Eq.
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Figure 3.4: Control run eddy momentum flux convergence of (a) the
lagged covariance of eddy time series in Eq. (3.3) onto the zonal
index (units: (m s−1)2 day−1) and (b) feedback strength. Vertical
lines in (b) indicate the 95% confidence intervals based on 1,000
bootstraps (see text for calculation details.)

(3.3) and z is displayed in Fig. 3.4a, where a positive value indicates an eddy

forcing that supports a poleward jet, and positive lags indicate z leads the eddy

forcing time series, a feedback. As for the observed annular mode [56], the

eddy momentum flux convergence contributes positive values in both negative

and positive lags that separately drive the jet poleward and sustain the jet at a

poleward position, similar to Fig. 3.3. A secondary peak in eddy momentum

is observed near lag +10 days and indicates that the eddies are sustaining the

zonal wind against frictional damping to extend its persistence. This feedback

increase has received much attention in the literature dating back to [56, 57].

In comparison with the lagged-covariance between the eddy forcing and z

in the observed southern annular mode variability (cf. Fig. 2 of [70]), these re-

sults are qualitatively similar yet exhibit some quantitative differences. First,
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as mentioned above, the time scale is overly long, indicating too much persis-

tence, as a result of the idealized model physics and coarse model resolution.

This leads to an overall momentum forcing strength that is excessively strong

and supports the highly persistent poleward wind shift. This is not evident in

the observations.

Finally, a recently developed technique designed to quantify eddy feedback

to jetstream persistence ([84, 70]) is used. [56] suggests that the forcing of z can

be separated into two components such that mup in Eq. (3.3) can be parame-

terized as the random component m̃up that initiates a zonal wind shift plus the

linearly dependent, eddy feedback part bupz, where bup represents the feedback

strength. Decomposing the eddy momentum forcing time series, mup, into its

components gives

mup = m̃up + bupz. (3.4)

[84] have shown that the individual contributions from synoptic-scale and

planetary-scale waves to eddy feedback can be estimated through lagged-

regression analysis. Regressing the time series of mup and z onto z with a lag

of ∆t implies that mup(t + ∆t) ≈ β∆t
m z(t) and z(t + ∆t) ≈ β∆t

z z(t), where β∆t
m and β∆t

z

are the regression coefficients of mup and z at lag ∆t, respectively. At large lags,

the random component of the eddy forcing, m̃up, should be nearly zero since

the eddy forcing is mainly driven by the zonal flow at these lags. Substituting

these values into Eq. 3.4 and solving for the feedback strength implies that the

feedback strength can be computed as b∆t
up = β∆t

m /β
∆t
z .

Figure 3.4b gives these feedback strengths as a function of lag. The relatively

constant feedback strength indicates the validity of this linear model. A positive

feedback indicates a supporting role in maintaining a jet shift, while a negative
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feedback indicates a dampening of z. Also provided in the plot are the 95% con-

fidence intervals associated with the bootstrap method described in [84]. The

method randomly samples the daily data with replacement to compute con-

fidence intervals of the feedback strength. For each lag day, 1000 bootstraps

are performed to provide a large sample of possible feedback values. The two-

tailed, confidence intervals are then determined for the 1000 random samples,

indicated by vertical lines for each process and lag. Looking at positive lags

when the zonal wind anomaly reinforces the eddies, the black line indicates

a positive feedback that sustains a poleward shifted jetstream, consistent with

Fig. 3.3. Overall, there is good agreement between the modeled variability and

the observed annular mode variability [70]. The following section will use these

z and eddy feedback calculations to determine the response of annular mode

time scales to changes in jet latitude.

3.2 Results

Having demonstrated the eddy forcing covariances in Fig. 3.4a, the feed-

back calculation in Fig. 3.4b, and the calculation of τ, the decorrelation time

scale of the zonal index, this section will report the same analysis on all the

idealized thermal perturbations including the tropical tropospheric warming

(TTW), tropical-upper tropospheric warming (TUW), and Arctic surface warm-

ing/cooling (ASW/C). Starting with the low resolution (R30) model output, the

zonal index autocorrelations in Fig. 3.5a for the 30 thermally perturbed runs

and the control run indicate a range of decorrelation time scales (e.g. when the

autocorrelation falls below the e-folding threshold) from about 20 to 100 days.

These values are plotted against climatological jet latitude in Fig. 3.5b and in-
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dicate a strong trend with jet latitude, consistent with other modeling efforts

[37, 6, 33]. In this idealized configuration, jetstreams located near 40◦ may per-

sist for nearly 60 days in a poleward location. Whereas, a jetstream located near

50◦ may only take 20 days to recover to its climatological jet latitude.

This demonstrates that with climate change, it is expected that the midlati-

tude jetstreams in both hemispheres will shift poleward in a warming climate.

If this is the case, midlatitude weather predictability could be limited as the

decorrelation time scales are so much lower. But on the other hand, ozone de-

pletion has the opposite effect, and it is shown in the SH observations that a

reduction in stratospheric ozone has led to a poleward shift in the jet latitude.

Modeling efforts have shown that as ozone recovery continues, the eddy jet will

tend toward an equatorward shift [86]. The limits of predictability may be en-

hanced in this case. AA also has the effect of shifting the jetstream equatorward,

hence increasing the limits of predictability. Again, it will be the tug-of-war be-

tween these climate drivers that ultimately determines the midlatitude jet lati-

tude, decorrelation time scales, and predictability limits.

The zonal index persistence feature can be noted in Fig. 3.5c which plots

the lagged-covariance of mup in Eq. (3.3) with respect to z for large positive lags

where eddy feedbacks are expected. Consistent with the τ calculations, there is a

general tendency to reduce the eddy forcing strength on the annular mode with

an increase in jet latitude, where a poleward jet is reinforced by a much weaker

eddy forcing compared with an equatorward jet. The total feedback strength as-

sociated with the eddy momentum flux convergence, bup = β∆t
m /β

∆t
z , in Fig. 3.5d

exhibits this same feature. The more equatorward the jet latitude, the stronger

the eddy feedbacks are. For the majority of the experiments these feedback val-
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Figure 3.5: R30 truncation: (a) Zonal index lagged-autocorrelation (only
positive lags shown). The horizontal black dashed line indi-
cates the e-folding time scale. (b) e-folding time scale as a func-
tion of climatological jet latitude. (c) Lagged-covariance of mup

in (3.3) with the zonal index for positive lags when zonal in-
dex leads mup. (d) Eddy momentum flux convergence feed-
back strength, bup, as a function of positive lag. The colorbar,
marker colors, and line colors for all plots indicate the latitude
of the jet with warmer (red) colors for equatorward jet latitudes
and cooler (blue) colors for poleward jet latitudes. Black lines
and shapes represent the control run. Shapes for (a,c,d) are
indicated in (a), and shapes for (b) are indicated in (b) with
non-filled shapes representing narrow warming runs and filled
shapes representing broad warming runs.
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Figure 3.6: Eddy momentum feedback streghth, bup, averaged over lags
+10 to +18 days as a function of jet latitude. Colors are the
same as Fig. 3.5. Black line is a linear best fit line. Error bars
are computed from 1000 iterations using the bootstrap method;
see text for more details.

ues are nearly constant over this lag period and give confidence that this linear

model is sufficient to quantify eddy feedback strengths. The most poleward jet

latitudes may suffer slightly from nonlinearities due to the rapid decorrelation

time scales. Taking the average of these feedback strengths from lag +10 to +18

days and plotting them as a function of jet latitude in Fig. 3.6 further demon-

strates the dependence between increasing jet latitude and decreasing annular

mode decay time scales. Collectively, these results corroborate the reduction in

feedback strength with an increase in jet latitude found in the phase 3 of CMIP

models [5], and that the relationship is controlled by the large-scale eddy-mean

flow interactions in the atmosphere.

Figure 3.7 summarizes the same diagnostics as Fig. 3.5, except for varied hor-

izontal resolutions, each resolution consisting of five simulations. The zonal in-

dex autocorrelations indicate a range of decorrelation time scales ranging from

about 15 to over 100 days. The higher resolution runs with poleward jet lati-
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tudes allowed for the time scales to converge to that in the observations [4]. The

z autocorrelations show a general trend for bluer (more poleward) jets to have

shorter decorrelation time scales. These values are plotted against jet latitude in

Fig. 3.7b and are now colored by their respective resolution and truncation. By

focusing on one truncation and one resolution at a time, it is clear that each con-

figuration demonstrates a reduction in annular mode time scales with higher

jet latitude. There is also sensitivity where the poorly resolved, equatorward

shifted jets exhibits time scales that are nearly an order of magnitude too large

compared with higher resolved runs. But in general, each truncation and res-

olution configuration shows a reduction in the annular mode time scales with

an increase in jet latitude. This is also corroborated by enhanced eddy forcing

in panel (c), as evident in the lagged-covariance between the eddy momentum

forcing and z, and the strength of the feedback parameter at different positive

lags in panel (d).

3.3 Summary

The response of the annular mode decorrelation time scale to idealized cli-

mate change-like thermal perturbations is analyzed using a highly idealized,

dry dynamical model from the Geophysical Fluid Dynamics Laboratory. By us-

ing different thermal perturbations, such as a tropical tropospheric warming, a

tropical-upper tropospheric warming, and an Arctic surface warming/cooling,

a wide range of jet latitudes are created. This allows for the analysis of the

response of the decorrelation time scales to jet latitude, and it is corroborated

that these idealized model configurations can model the midlatitude jetstream

variability well, i.e. jet latitude, speed, annular mode time scales [56, 57], and
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Figure 3.7: As in Fig. 3.5, except that the diagnostic is applied to differ-
ent horizontal resolutions and truncations. In all the plots,
open circles indicate the narrow tropical tropospheric warm-
ing (TTW) runs, closed circles indicate the broad TTW runs,
and diamonds indicate the control runs for each resolution in-
cluding R30, R60, T42, and T85. Experiments with the standard
heating and quadruple heating are used (see bold numbers in
Table 2.1). In (b), data points are not color coded by jet latitude,
as in (a), (c), and (d), but are color coded by their resolution
and truncation as indicated by the legend.
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produce a decrease in time scales with an increase in jet latitude. Consistent

with the reduction in time scales is a reduction in the eddy momentum feed-

back strength as the jet latitude increases leading to less persistent jet shifts.

These results are tested for sensitivity to model truncation and resolution, and

although sensitivities to which resolution is used (R30, R60, T42, and T85) exist,

the general trend of a decrease in decorrelation time scales with an increase in

jet latitude is robust. This reduction in time scales is again consistent with a

reduction in the eddy momentum feedback strength.
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CHAPTER 4

EXTREMES

A major question driving atmospheric research is whether the recent increase in

certain types of midlatitude extreme weather events can be attributed to global

climate change [23, 72]. Particular attention is currently being given to the ef-

fect that Arctic amplification (AA) will have on midlatitude dynamics. There

is strong evidence that a major component of global climate change will be an

AA signature whereby the high latitudes warm faster than the rest of the North-

ern hemisphere [81]. The effect of the unequal warming of the Northern hemi-

sphere would be to reduce the equator-to-pole temperature difference, ∆T , thus

leading to a reduction in the midlatitude meridional temperature gradient. It is

proposed in [30, 53] that this reduction in ∆T would lead to a less meridionally

confined jetstream. It is argued that by reducing ∆T , the jetstream would not

be locked into a tight gradient and would be able to meander farther meridion-

ally leading to a slower jetstream, amplified wave patterns, and more extreme

weather. These types of slow moving, persistent weather patterns (e.g. blocking

anticyclones) have been shown to concur with extreme weather events includ-

ing cold air outbreaks e.g. [16] and heat waves e.g. [14, 27].

The AA hypothesis and its relationship to more extreme weather was di-

rectly tested in an idealized model configuration. By using a blocking definition

based on a normalized 500 hPa geopotential (Z500) anomaly, it is determined

that by reducing ∆T , a reduction in wave amplitudes and a robust reduction in

persistent anomalies (i.e. anticyclonic blocks) occurs, an opposite response to

that proposed in [30, 53]. Similar results are found in [32] who uses an idealized

model configuration that allows the latitude of the jetstream to shift without
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affecting the speed of the jetstream. Through an extreme event analysis, it is

shown that with a reduction in the latitude of the jetstream (similar to the effect

AA would have on the observed midlatitude jet), there is a robust reduction

in the number of extreme events, again in opposition to [30, 53]. However, us-

ing multiple reanalyses datasets and multiple blocking algorithms, [7, 11] could

find no clear hemispheric increase or decrease in wave amplitudes or blocking

over the past 30 years (the time period of rapid sea-ice loss). [98] also analyzed

four Coupled Model Intercomparison Project Phase 5 (CMIP5) models that ex-

hibited the best blocking climatologies in the Atlantic sector and found no clear

evidence suggesting a link between Arctic sea-ice loss, AA, and blocking over

Greenland and Europe. Even if a trend can be detected in changes in persistent

events, the internal variability of the climate system and the short observational

record may mask changes in these events, as suggested in [82, 79]. With the com-

plexities of the coupled climate system, multiple hypotheses for the change in

persistent events, and the relationship between persistent and extreme events,

a hierarchical approach can simplify the analysis.

This study extends the results in [42, 32] and analyzes both the effect jet lati-

tude has on extreme events and the effect that jet speed has on extreme events.

The following section discusses how to define an extreme event following the

methodology of [32]. The second section is dedicated to the results using the

R60 truncated data. The experiments being used in this section are the temper-

ature difference, ∆T , runs and the tropical-temperature warming runs. A final

section summarizes the results and describes sensitivies to resolution that are

not found in the annular mode analysis.
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Figure 4.2: R60 control run mean extreme event statistics. Top row is the
average number of events occuring at a particular grid point
over a 100 day period for warm (left) and cold (right) extreme
events. The contour interval and units for the top row are 2
events per 100 days. The bottom row shows the zonal average
of the top panels for warm (red) and cold (blue) extremes. The
climatological jet latitude is also plotted in all panels as a black
contour.

4.1 Method

This section describes the procedure from [32] on how to compute an extreme

event. The anomalies from the time-mean of the 850 hPa temperature field

(T850, hereafter) are computed. The anomalies are then sorted from highest

to lowest for every grid point in the domain. A threshold is then determined as

the top and bottom 1% of the anomalies. The top 1% would correspond with

positive temperature anomalies and the bottom 1% for negative temperature

anomalies. For the R60 control run, the values of the 1% threshold are 11.0

40



K for the warm anomalies and -10.6 K for the cold anomalies. Two logical

matrices are created from the three-dimensional (time, latitude, and longitude)

anomaly matrix, one for each point exceeding the top 1% and one for each point

falling below the bottom 1%. Each of these logical matrices are analyzed sepa-

rately starting from the largest anomaly and ending with the anomaly that just

exceeds the given threshold. Two criteria must be met in order for an anomaly

to be considered an extreme event. The event must be spatially and temporally

isolated. An anomaly must be spatially isolated in latitude and longitude by

30◦. For a given anomaly that occurs on day t0, the algorithm then checks from

t0−2 to t0 +2 to determine if the event is temporally isolated. This eliminates the

issues of serial correlation by removing duplicate events that are long lasting in

time. Unlike many blocking algorithms that have a strict persistence criterion,

this extreme event algorithm is an isolation algorithm. If there is more than

one event occurring within this spatial and temporal criterion, only the largest

magnitude anomaly is kept.

Figure 4.1 illustrates both a positive anomaly extreme event (top panel) and a

negative anomaly extreme event (bottom panel) from day t0−2 to t0 +2. Starting

with a positive extreme event, day t0 (middle column) shows an event occur-

ring near 200◦ longitude and 40◦ latitude. The event is occurring near or just

poleward of the climatological jet latitude. As waves grow along the eddy jet

latitude, poleward fluxing air crosses the jet latitude and brings with it warm

subtropical air. This air enters a region of climatologically cooler air and be-

comes a large anomaly. The same feature can be noted for a cold event where

cold equatorward fluxing air enters a region of climatologically warmer tem-

peratures and becomes a large cold anomaly. This is why the structure of the

anomalies is warm extremes on the poleward flank of the jet latitude and cold
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extremes on the equatorward flank of the jet latitude, shown below. Starting on

day t0 − 2 in Fig. 4.1 for the warm extremes, the event is associated with a hemi-

spherically amplified wave pattern and the actual event is a growing warm-air

pool that penetrates to the poleward flank of the jet latitude. This algorithm is

sensitive to the size of the 30◦ box. Clearly, the larger the search box is the fewer

extreme events there will be. The algorithm has been tested using a standard-

ized anomaly definition and using different percentile thresholds.

This is the first place where we see that a blocking algorithm is different

from this extreme event algorithm. In a longitude-by-longitude blocking algo-

rithm such as early definitions from e.g. [26, 95] and newer definitions from e.g.

[42], the event in the top row of Fig. 4.1 would not be considered a persistent

anomaly event. The anomaly propogates through the longitude very rapidly

and would not persist long enough to be defined as a longitudinally isolated

block. More recently, blocking algorithms have been developed to track either

large wave breaking events (such as [12, 65]) or anomalies (such as [78, 24]).

A tracking algorithm allows blocking statistics to be broken down into actual

events that contain both requirements for a blocking event, i.e. large-scale and

quasi-persistent. For the extreme event considered here (top row of Fig. 4.1), it is

difficult to determine which type of blocking algorithm would identify this par-

ticular grid point as a persistent anomaly. This is, in essense, the strength of this

extreme event definition from [32] which will only remove an event if it is not

spatially or temporally isolated. A blocking algorithm, however, can remove

events for many different reasons. A weakness of the extreme event definition,

defined in the text above, is that it does not have any predictive power to un-

derstand persistent wave events, such as the annular modes or blocking events.

Nevertheless, the extreme event diagnostic will be applied to the R60 runs to
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Figure 4.3: 850 hPa temperature (T850) statistics (described below) as line
plots in the left column and a shaded plot in the right column.
For the right column, each experiment’s statistic as a function
of latitude is placed at its jet latitude along the x-axis with phys-
ical latitude as the y-axis and extrapolated to form a contour
plot. The colors of the lines in the left column and x’s in the
right column indicate the experiment with red for ∆T = 40 K
and blue for ∆T = 80 K. Black lines and diamonds represent the
control run (∆T = 60 K). The first row, (a) and (b) is the time-
and zonal-mean T850 in K; the second row, (c) and (d), is the
meridional gradient of the first row (T850) in K(100 km)−1; the
third row, (e) and (f), is zonal-mean standard deviation of T850;
and the fourth row, (g) and (h), is the zonal-mean skewness of
T850 in K. The thin black lines in the right column indicate the
one-to-one line for physical latitude and jet latitude. The con-
tour intervals for (b) are 5.5 K, (d) 0.3 K(100 km)−1, (f) 2 K and
(h) 0.4 K.
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determine the response in events to changes in jet latitude and speed.

Figure 4.2 demonstrates the mean extreme event statistics for the R60 control

run. The time-mean, latitude-by-longitude cross section of the warm (left) and

cold (right) extreme events shows a clear geographic dependence between the

jet latitude and extremes. As mentioned above, the warm extremes are predom-

inately situated on the poleward flank of the jetstream and cold extremes on

the equatorward flank of the jetstream. Taking the zonal average of this plot in

the bottom row of Figure 4.2 makes it clear how the jet latitude geographically

marks the transition from cold to warm extremes. Each type of extreme has

about 10 to 12 events occurring over a 100 day period (a seasonal time scale).

The remainder of the experiments will be analyzed in the next section.

4.2 Results

This section will discuss the mean state response of the temperature difference,

∆T , runs followed by a discussion of the response of extreme events to other

idealized thermal perturbations. Since the extreme event analysis utilizes the

T850 field, a description of the T850 statistics will be given in Fig. 4.3. Each of

the experiments is presented as a line plot in the left column. The right column

then takes those five contour lines as a function of latitude and stacks them in

a latitude band at their jet latitudes. This matrix is then plotted as a function of

physical latitude space and jet latitude space. In panel (a), by reducing ∆T be-

tween the equator and pole, the temperatures are increased throughout much of

the hemisphere with the most heating occurring in the polar regions. This has

the effect of shifting the jet latitude equatorward, reducing the T850 meridional
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gradient, and weakening the zonal wind speed, shown below. Concurrent with

the reduction in T850 gradient and zonal wind speed is a weakening and equa-

torward shifting of the eddy heat and momentum fluxes (not shown). Panel

(d) shows that the T850 gradient maximizes on the equatorward flank of the jet

and supports a jetstream about 5◦ poleward of the maximum. In the regions of

greatest T850 gradient, the variability of the field is also maximized where an

AA signature (scanning from the blue line to the red line in the third row) leads

to a reduction in the standard deviation. The variability is also maximized on

the equatoward flank of the eddy driven jetstream.

Lastly, the fourth row plots the zonal-mean skewness. For T850, a positive

skewness would indicate a long positive tail in the T850 distribution (more

warm anomalies) and a negative skewness a long negative tail (more cold

anomalies). As has been demonstrated before, T850 tends to be positively

skewed on the poleward flank of the jet and negatively skewed on the equa-

torward flank. This feature is consistent with the bottom panel of Fig. 4.1 which

shows that the warm extremes occur predominately on the poleward flank of

the jet in regions with positive T850 skewness. The opposite is also demon-

strated where in regions of cold extremes, the T850 is negatively skewed indi-

cating cold temperature extremes. Now, in terms of an AA signature, the T850

response is to reduce the skewness on the poleward flank of the jet indicating

a reduction in warm extreme events with AA, opposite to proposals from [30]

and in agreement with results from [42, 32]. While the positive skewness tends

to decrease on the poleward flank of the climatological jets as the jets shift equa-

torward, the negative skewness on the equatorward flank do not show the same

trend. This may be an artifact of the jet latitudes that are being sampled, i.e. not

enough poleward jets to see the trend.
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Figure 4.4: The extremes statistics are shown in a similar fashion to Fig.
4.3 with each experiment shown as a contour in the left col-
umn and shaded in the right column. Positive extremes are in
the top row with negative extremes in the bottom row. Exper-
iments are again stacked at the latitude of the jetstream in the
right panel. Colors, markers, and lines are described in Fig.
4.3. The units for the right column are number of events per
100 days with a contour interval of 1.6 events per 100 days.
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In a similar fashion to Fig. 4.3, the top row of Fig. 4.4 shows the number of

positive (negative) extremes per 100 days in the top (bottom) rows, respectively.

Positive extremes occur just on the poleward flank of the jet latitude, while neg-

ative extremes occur on the equatorward flank of the jet latitude. From the

two panels in the top row, it is clear that with a reduction in the T850 gradient

and variability across the midlatitudes with AA, there is also a reduction in the

number of extreme events occurring. This is in agreement with the skewness

discussed previously. The same can be said about negative extremes where a

reduction in negative extremes is associated with an AA signature, although

the skewness pattern did not exhibit the same trend. In summary, AA leads

to a reduction in the T850 variability that is concurrent with a reduction in the

T850 meridional gradient, reduction in jet speed, decrease in jet latitude and

reduction in both positive and negative extreme events.

At this point, it would appear that extremes are linearly related to both jet lat-

itude and jet speed and as both jet latitude and speed reduce so do the extremes.

So far, the simplest experiments have been analyzed where there is just a simple

change to the radiative-equilibrium-temperature profile. It is important to test

these results with other thermal perturbations. Continuing to analyze extreme

events, the bold TTW runs in Table 2.1 are looked at. Figure 4.5 reproduces Fig.

4.4 but includes the four extra TTW runs. Firstly, the left column demonstrates

that as a jetstream is displaced poleward, the extreme events are also shifted

poleward indicating that the jetstream’s latitude sets the latitude of transition

between positive and negative T850 extremes. The right column orders the ex-

periments by jet latitude and plots them as a function of physical latitude and

the latitude of the jetstream. Now, focusing just on jet latitude, it appears there is

no relationship between the latitude of the jetstream and the number of extreme
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Figure 4.5: Same as Figure 4.4 but the tropical-temperature warming
(TTW) runs have been added (see Table 2.1 for details). The
TTW runs are added as circles, and the markers and lines are
colored by jet latitude, redder lines for equatoward jets and
bluer lines for poleward jets. Open circules are the narrow
TTW runs, and filled circles are the broad TTW runs. The units
for the right column are number of events per 100 days with a
contour interval of 1.6 events per 100 days.
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Figure 4.6: Same as Figure 4.5, but the lines in the left column and the ex-
periments in the right column are ordered by jet speed with
faster jets in blue and slower jets in red. The maximum in the
latitudinal distribution of extreme events are all stacked near
45◦. Note the broad TTW runs are not filled here for figure clar-
ity. The units for the right column are number of events per 100
days with a contour interval of 1.6 events per 100 days.

events. The previous relationship between jet latitude, jet speed, and extreme

events does not appear when considering other types of thermal perturbations.

The same number of events can occur for a jetstream located near 40◦ and for a

jetstream located near 50◦. This can be said for both the positive and negative

extremes.
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The question becomes, why does this relationship break down when con-

sidering other thermal perturbations, such as the tropical temperature warming

runs described above? In [33, 32], a careful set of numerical experiments is uti-

lized with the express purpose of shifting the jet latitude without changing the

speed of the jetstream. This leads to jet latitudes ranging from about 30◦ to

50◦ but all with the same speed. Looking more carefully at Fig. 4.5b and d,

it becomes apparent that the TTW experiments (especially the low latitude jet-

streams near 40◦) show more extremes compared with the temperature gradient

runs at the same latitude. In contrast to the ∆T runs where strong gradients con-

cur with a poleward jet, the TTW runs here have a strong temperature gradient

but an equatorward displaced jetstream. So this suggests that both jet latitude

and speed impact the number of extreme events. Figure 4.6 recreates the previ-

ous figure. The left column calculates the latitude at which the maximum num-

ber of extreme events occur for each experiment. It then centers the latitudes of

maximum for each experiment into a central latitude near 45◦. The experiments

are then colored by jet speed where a bluer color represents a faster jetstream,

and a redder color indicates a slower jetstream. Looking at the negative ex-

tremes in the first column, a relationship between jet speed and extremes starts

to occur. There is a tendency for the slower jetstreams (redder lines) to have

less extreme events compared with the faster jetstreams (bluer lines). This can

be better seen by arranging all the experiments by jet speed and plotting them

in shades. It is now clear that slower jetstreams (experiments to the left in the

second column) exhibit fewer extreme events compared with faster jetstreams.

There are two effects occurring: as the latitude of the jetstream increases, there

is a tendency to increase the number of extreme events. However, an equa-

torward displaced jetstream may also experience an increase in the number of

50



spatially and temporally isolated extreme events, if it also has a faster jetstream

with more eddy generation and greater variability.

4.3 Summary

This chapter extends the results of [32] and analyzes the response of extreme

events to a range of jetstream latitudes and jetstream speeds in an idealized dry,

dynamical model from the Geophysical Fluid Dynamics Laboratory. Through

the use of two specific thermal perturbations, one altered the equator-to-pole

temperature difference, ∆T , and the other placed heating profiles in the tropics,

it is shown that the relationship between jet latitude and extreme events from

[32] breaks down when a jetstream is displaced equatorward and accelerated.

It is this acceleration of the equatorward displaced jetstream that leads to an in-

crease of extreme events for that configuration. Instead of arranging the model

runs by jet latitude, these runs were sorted by their jet speed. It is discovered

that, no matter the jet latitude, if the jetstream is slow, it has less extreme events,

and if a jetstream is fast, it has more extreme events. This both corroborates [32]

and extends it to include jet speed.

Further discussions will follow in the final chapter.
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CHAPTER 5

BLOCKING

This chapter will continue with the theme of idealized climate change and the

response of extreme events, such as blocking, to different thermal perturbations.

The first section describes the methodology presented in [42] to describe per-

sistent, anticyclonic geopotential height anomalies. A section is dedicated to

results followed by a discussion and summary.

5.1 Method

A second measure is used to quantify persistent anomalies following the block-

ing algorithm from [42]. The algorithm computes the anomaly from the time-

and zonal-mean of the 500 hPa geopotential height (Z500) field at each grid

point. This field is then standardized by the maximum of the zonal-mean stan-

dard deviation of the Z500 field in time (see Fig. 5.3e). This standardizing

value decreases with AA (see values in Fig. 5.3e) implying that the standard-

ized anomalies are increased and are more likely to be considered a block. A

threshold is chosen as a sigma level of 1.5. The standardized anomaly field is

then analyzed to verify that the anomalies are both spatially large and tempo-

rally persistent. 1) First, any point exceeding the given sigma level is stored in

a matrix B(t0,φ0,λ0). This matrix identifies large magnitude anomalies. 2) The

spatial criterion is set by analyzing the surrounding grid points ± about 6◦ of

longitude and latitude. Unlike [42], the grid spacing is not interpolated to 2.8◦

for concerns this may affect the outcome of the blocking statistics. For this rea-

son, when using the rhomboidally truncated data, the search box may not be
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necessarily a square surrounding (t0,φ0,λ0). The effect of this has not been ana-

lyzed but when looking at these large-scale structures, it should not affect the

statistics. A large-scale criterion is satisfied if at least 75% of the surrounding

grid points also are in B(t0,φ0,λ0) and this point is stored in a matrix S(t0,φ0,λ0).

3) After the spatial criterion is met, the temporal criterion needs to be satisfied.

If a point, (t0,φ0,λ0), is not in S on (t0 − 1,φ0,λ0) but is in S on (t0,φ0,λ0) then S is

searched on day t0 + 1. This search forward in time continues until the point

is no longer in S (t0 + lag,φ0,λ0), at some lag. If lag is greater than or equal to

the duration criterion, D, a matrix E is set to 1 from (t0:t0 + D -1,φ0,λ0). Here a

duration, D, of 10 days is used. 4) A final criterion requires a reversal in the

Z500 field of a least 1 day on the equatorward flank of the block, about 8◦ to

15◦ equatorward of the blocked latitude. This reversal criterion will not be used

in this analysis to increase the number of events. This will be explained more

below.

An example of a typical blocking anticyclone using the above blocking de-

tection method is shown in Fig. 5.1. From left to right, the three panels depict

the seven day evolution of a midlatitude block. t0 represents the initial day that

a particular grid point was deemed blocked, namely about 100◦ longitude and

60◦ latitude. The block (green contours) is associated with a large-scale anticy-

clone (black contours and shades) on the poleward flank of the jetstream. On

day t0, the reversal criterion is already satisfied with a large-scale cutoff Z500

contour. By day t0 + 3, the anticyclone has grown even larger and has a sig-

nature of a Rex block [73, 74] with a triplet of low height, high height, to low

height. These features remain stagnant and persistent for another three days

(and even longer) before eventually decaying toward zonal flow.
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Figure 5.2: Same as Figure 4.2 but for the 500 hPa geopotential height
(Z500) statistics using the blocking algorithm from [42]. Block-
ing frequencies are presented as the percentage (%) of time that
a particular point (left panel) is considered blocked and the
zonal mean of this quanity (right panel) as the percentage of
days that a particular latitude is considered blocked.

Although this blocking diagnostic is applied to anticyclones that are usually

associated with warm temperature and ozone extremes, there is still the distinct

possibility for a stagnant anticyclone which could produce cold air outbreaks,

as is demonstrated in the literature [90, 80]. The winter of 2014 is an example of

this situation as a persistent ridge dominated the West coast of the United States

for months leading to record deficits in snowfall across the western mountain

ranges. This lead to a persistent, strong cold air advection from polar regions to

plunge across Canada into the eastern half of the United States e.g. [80]. This

same feature is noted in the modeled block where downstream of the block is

very strong persistent equatorward advection of colder air, see Fig. 5.1. If this

air is able to penetrate the jet latitude into regions of climatologically warm air,

a cold extreme may be encountered as easily as a warm extreme associated with
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Figure 5.3: Same as Figure 4.3 but for the 500 hPa geopotential height
(Z500) statistics. The contour intervals and units for (b) are 80
m, (d) 4 m (100km)−1, (f) 24 m and (h) 0.3 m.

poleward advection of warm air on the upstream side of the block. These fea-

tures, persistent, strong temperature advections, are why blocks have received

so much attention in the scientific community, the policy makers, and the gen-

eral public.
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As is done in the previous chapter, Fig. 5.2 depicts the mean statistics asso-

ciated with the R60 control run simulation. Blocks tend to predominately occur

on the poleward flank of the jetstream, as is seen in Fig. 4.2 and occur in re-

gions of warm extremes, where large anticyclones are able to grow without the

influence of the jetstream. These extremes have been observed to coincide with

large amplitude, quasi-stationary anticyclones and be concurrent with temper-

ature extremes e.g. [14, 27, 66] and ozone events e.g. [92]. The zonal-mean of

this panel again shows that the maximum blocked frequency is situated on the

poleward flank of the jetstream, much like the warm extremes. The following

section will consider the response of blocking frequency to idealized climate

change.

5.2 Results

This section will begin with a discussion of the 500 hPa geopotential height

(Z500) statistics. These statistics are very similar to the T850 statistics described

in the previous chapter but will be described here for completeness. The time-

mean Z500 structure in the first row of Fig. 5.3 shows that by decreasing ∆T

there are two main responses. Firstly, the entire Z500 structure increases in

height, and secondly, the increase in heights are mostly concentrated in the

polar region, where heights increase the most. Concurrent with the redistri-

bution of heights across latitudes is a reduction and equatorward shift in the

time-mean Z500 meridional gradient with AA (second row of Fig. 5.3). This gra-

dient maximizes just at or slightly equatorward of the climatological jetstream

and is nearly halved by reducing ∆T from 80 K to 40 K. This reduction in the

meridional gradient coincides with a reduction in the variability of the Z500
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field which also maximizes at or just equatorward of the jet latitude (third row).

On the equatorward flank of the jetstream, the field is negatively skewed in-

dicating regions of low heights associated with cold temperatures. On the pole-

ward flank of the jetstream, the field is positively skewed in regions of warm

temperature skewness and warm extremes. As a function of jet latitude, the

equatorward flank of the jet indicates a slight reduction in the low height/cold

temperature skewness as the jet latitude increases. However, there is a clear in-

crease in Z500 skewness, similar to T850 skewness, on the poleward flank of the

jetstream as the jet latitude (and jet speed) increase. These results are consistent

with the T850 field and the response of the distributions’ tails to changes in jet

latitude and jet speed.

Considering the ∆T simulation cases and the control simulation in Fig. 5.4,

the blocked frequency is calculated using a value of 1.5 sigma and a duration of
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10 days. Similar to the response of extremes to idealized AA, there is a clear re-

duction in the frequency of persistent anticyclones as ∆T is reduced, consistent

with [41]. Along with the reduction in block frequency, there is an equator-

ward shift in the location of maximum blocked frequency that is situated on the

poleward flank of the climatological jet in the right panel. However, sensitivities

abound for this blocking defintion, particularly the two threshold requirements.

If one relaxes either the duration or threshold criterion by a small amount, say

consider a sigma value of 1 and a duration of 8 days, the results are reversed,

and AA leads to an increase of smaller amplitude, less persistent events. A tran-

sition is occurring as the jet is displaced poleward, where the eddies become

not ony stronger but more persistent. It will be these stronger, more persistent

events that may lead to an increase in the number of extremes with a faster,

more poleward jet location in a future climate.

5.3 Summary

The response of blocking frequency to idealized climate change is analyzed

using the Geophysical Fluid Dynamics Laboratory’s dry, dynamic atmosphere

model. The temperature difference, ∆T , runs are considered, and the value of

∆T is altered from 40 K to 80 K in 10 K increments. ∆T = 40 K produces an

Arctic amplification (AA) signature that includes an equatorward shifted, slow

jetstream compared with the control run (i.e. ∆T = 60 K). A blocking defintion

from [41] is used which describes persistent, anticyclonic 500 hPa geopotential

height anomalies. It is shown that associated with this new jetstream configu-

ration, there is a reduction in the frequency of blocking with AA, opposite to

[53, 30] and in agreement with [41, 32].
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CHAPTER 6

CONCLUSION

This study employs the Geophysical Fluid Dynamics Laboratory’s dry, atmo-

spheric dynamical model to examine the effect of climatological jet latitude

and jet speed on eddy feedback strengths, annular mode time scales, extreme

temperature events, and blocking anticyclones. Idealized thermal perturba-

tions are used to mimic climate responses such as changing the equator-to-pole

temperature difference, ∆T , tropical temperature warming (TTW) analogous to

ENSO, tropical-upper tropospheric warming (TUW) analogous to greenhouse

gas warming, and Arctic surface warming/cooling (ASW/C) analogous to Arc-

tic amplification (AA) [19, 88, 60]. These diabatic perturbations can shift the

climatological jet latitude both equatorward and poleward of the [44] system

and gives a range of jet latitudes from about 40◦ to 50◦.

Over this range of jet latitudes, it is shown that as the latitude of the jetstream

increases, the annular mode decay time scales become smaller and converge to-

ward the observed values [4, 37]. It is also demonstrated that, although there

is sensitivity to model resolution and truncation, the R30, R60, T42, and T85 all

show this dependence between jet latitude and annular mode decay time scales.

Furthermore, a feedback analysis following [84, 70] allows the quantification of

feedback strengths that effect the annular mode time scales. Concurrent with

the reduction in annular mode time scales, there is a reduction in the eddy mo-

mentum forcing and feedback that support a shift in the midlatitude jetstream.

Without the support of an eddy feedback, a shifted jetstream cannot support

itself against friction and other processes, so it shifts back toward climatology.

These high latitude jetstreams (which are predicted to occur with general green-
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house warming) may reduce the predictability limit of midlatitude dynamics.

This response in the eddy feedback is also shown to be generally consistent

across the truncations and resolutions considered here.

Next we diagnose the response of extreme events (both warm and cold

extremes) and blocking anticyclones to idealized climate change following

methodologies presented in [32] and [41], respectively. First, the response to ex-

tremes and blocking is analyzed using model simulations that only changed ∆T .

In these runs, ∆T is altered between 40 K and 80 K in 10 K increments where a 40

K run has a strong AA signature. In agreement with [41, 32], it is shown that an

AA-like signature leads to an equatorward shifted, slow jetstream, equatorward

and weakened eddy fluxes, a reduction in the T850 and Z500 gradients, variabil-

ities (defined as the standard deviation), and skewness, and lastly a reduction in

the number of extreme events and blocking frequency. Also, concurrent with an

equatorward shifted jetstream is the equatorward shift in both extreme events

and blocking where the jetstream sets the transition between cold events on the

equatorward flank of the jetstream and warm events on the poleward side of

the jetstream with blocking anticyclones also on the poleward flank of the jet.

Although it was not done in this analysis, it would be expected that persistent

cyclones (defined as persistent, negative Z500 anomalies) would also follow the

north-south shift in the climatological jetstream and be situated on the equator-

ward flank of the jet. This may not be the case though, as many cyclones persist

for many days in the subpolar regions, especially in the lower resolved models.
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6.1 Discussion

Through a Fourier spectral decomposition, [41] shows that an idealized AA sig-

nature leads to a reduction in the meridional wave amplitudes, which are the

north-south wave amplitudes associated with blocking-like wave structures.

Using the recently developed finite-amplitude wave activity [69] (presented in

Chapter 2), a similar conclusion can be drawn and is illustrated in Fig. 6.1. Con-

sistent with a reduction in the number of warm and cold extremes with AA and

a reduction of blocking anticyclones with AA, there is a large reduction in wave

amplitudes at all latitudes and especially at the latitude of the jetstream. Both

panels demonstrate that as the Arctic regions heat faster than the equatorial

and midlatitude regions, a reduction in wave amplitudes occurs which is con-

sistent with a reduction in the T850 skewness, extreme events, Z500 skewness,

and blocking anticyclones. Independent to model resolution and truncation, to

blocking definition, to duration criterion, to block amplitude, to block size, etc.

by just looking at the climatological wave amplitudes, one can deduce the re-

sponse to extreme events and blocking. Considering the length of time it takes

to compute these quantities, especially the blocking algorithm, it would save

considerable computation time and personal time to instead compute the time-

mean wave activity. On the negative side, the time-mean wave activity does not

provide details of blocking dynamics, block size, or block duration.

This point can be further elucidated and simplified by considering the

meridional T850 profile. The majority of this thesis has been dedicated to de-

scribing profiles of T850 and extreme events by the latitude or speed of the

eddy-driven jetstream. Taking one step back, Fig. 6.2 plots two quantities that

summarize the T850 gradient profile. The magnitude of the T850 gradient is
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Figure 6.1: (a) Time-mean finite-amplitude wave activity, A, as contour
plots for each ∆T run and (b) a shaded plot that combines each
experiment as a function of physical latitude and experimental
jet latitude. Markers and colors are the same as Fig. 4.3.

calculated as the maximum value in Fig. 4.3 for each simulation. The latitude

of this maximum is taken as the latitude of maximum T850 gradient. These val-

ues are plotted as a function of jet latitude and jet speed in Fig. 6.2. Note the

only runs shown here are the ∆T runs. For this particular set of simulations, it

is important to recognize that as the latitude of the jet increases, the speed of

the jet linearly increases. So for this reason, all of the correlations (presented as

floating numbers in each panel) are nearly one. So as the baroclinic zone (and

hence the jetstream) shifts poleward, it also strengthens and supports a faster

jetstream with more extreme events (Fig. 4.4) and more blocking (Fig. 5.4).

However, this is not the case when considering a strengthened baroclinic

zone that shifts the jet latitude equatorward. Figure 6.3 now considers the R60

TTW runs. In these TTW runs, a narrow TTW profile actually strengthens the

baroclinic zone and shifts the jet equatorward, opposite to angular momentum
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considerations but consistent with the Pacific Ocean’s merged subtropical and

eddy-driven jet at 30◦ with a speed of nearly 50 m s−1 [28]. The panels in Fig.

6.3 are the same as in Fig. 6.2. It clarifies the mechanisms that set the jetstream

characteristics, i.e. jet latitude and jet strength. There is no longer a strong re-

lationship between the amplitude of the T850 gradient and the jet latitude and

a weaker relationship between the latitude of the maximum T850 gradient and

the jet speed. In [41], the only experiments considered are the ∆T runs shown
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in Fig. 6.2. In these runs, as mentioned above, the relationship between jet lat-

itude and jet speed is linear. In [33, 32], the model experiments are carefully

designed such that the latitude of the eddy-driven jet could be altered without

altering the speed of the jetstream itself. Both papers show the same results that

with an increase in jet latitude, there is an increase in both the number of persis-

tent anomaly signatures (blocks) and the number of isolated extremes events.

However, neither report considers the case where an equatorward displaced

jetstream is stronger than a poleward displaced jetstream. The current results

shown here both corroborate these results and extend these results to consider

both changes in jet latitude and jet speed.

In order to conserve computing space and time, the TTW, TUW, ASW/C,

and ∆T runs were initially conducted at an R30 resolution in order to produce a

wide variety of thermal perturbation structures, thermal perturbation strengths,

and jet latitudes. To test the robustness of the results, a subset of TTW simula-

tions are performed at R60, T42 and T85 truncation and resolution. The annular

mode time scale and feedback results were corroborated with the higher reso-

lution simulations. However, when beginning the analysis of extreme events

from [32], the results were not reproducible. Deciding that resolution may be

the issue, the ∆T runs were rerun at the R60 truncation level for extreme events,

and now the results from [32] were reproduced. The main results presented in

Fig. 4.6 are recreated with the R30 data utilizing the TTW, TUW, ASW/C, and

∆T runs in Fig. 6.4. Again, the latitudinal profile of extremes is stacked at a sin-

gle latitude and the colors indicate the jet speed (red for slow and blue for fast).

It becomes very evident in the right panel of the figure that there appears to be a

maximum in extreme events for jets with an intermediate speed, and that both

slower and faster jets have less extreme events. This feature needs to be noted

66



shifted latitude

ev
en

ts
 (

10
0 

da
ys

)−
1

(a) T850 Pos. Extremes

20 30 40 50 60 70
0

5

10

15

20

25

jet speed

sh
ift

ed
 la

tit
ud

e

(b) T850 Pos. Extremes

 

 

8 10 12 14 16
20

30

40

50

60

70

0

5

10

15

shifted latitude

ev
en

ts
 (

10
0 

da
ys

)−
1

(c) T850 Neg. Extremes

20 30 40 50 60 70
0

5

10

15

20

25

jet speed

sh
ift

ed
 la

tit
ud

e
(d) T850 Neg. Extremes

 

 

8 10 12 14 16
20

30

40

50

60

70

0

5

10

15
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to use caution when looking at low resolved models. For these experiments,

selecting a few simulations with more poleward and equatorward jet latitudes

to verify results is warranted.

6.2 Future Work

Nearly 15 years ago, the first and second mode of midlatitude variability were

analyzed using principal component analysis [56]. The first mode represents the

north-south fluctuation in the jetstream, the annular modes. The second mode

describes the strengthening and weakening of the jetstream. This mode of vari-

ability is shown to not exhibit an eddy momentum feedback demonstrating that

the eddy feedback is essential for developing the first mode of variability, i.e. the

annular modes. The second mode of variability accounts for the strengthening

and weakening of the eddy-driven jetstream in the Southern Hemisphere [56].

If the research presented in this thesis using an idealiezd model are realizable in

the observations, this implies that the second mode of variability may be inti-

mately linked to extreme events and blocking. Since the annular mode has time

scales near 6 to 20 days, it comes out as the leading mode of variability. Blocking

has time scales of 4 to 8 days, about half the time scale of the annular mode. It

seems fitting that blocking may come out as the second mode of variability. This

would provide a succinct physical interpretation of both modes of variability.

In order to determine the relevance of this work to the real world, it would

be important to test these ideas using the observations and further extend them

to CMIP runs. Firstly, it would be good to verify these results in observations.

A methodology will be suggested here. Consider the Atlantic basin and the cor-
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responding North Atlantic Oscillation, which describes the north-south fluctu-

ation of the eddy-driven jetstream. The jetstream is classically characterized by

its latitude and speed. To test the proposed hypothesis in this paper, one could

take the top and bottom 1% of the jet latitudes and jet speeds and determine

the probability that blocking is occuring in certain regions across the Atlantic,

e.g. the Greenland blocking region or the European blocking region. My expec-

tations are two fold. Considering jet latitude and jet speed separately, I would

expect that if jet latitude is high and jet speed is normal that there would be

enhanced slow moving weather systems due to enhanced variability, as shown

with modeling efforts in [32]. On the other hand, if jet latitude is normal and

jet speed is high, I would also expect increased slow moving weather systems,

as shown with modeling efforts in [42]. The Pacific jetstream exhibits both an

equatorward located jetstream (near 30◦), a very fast jetstream (nearly 50 m s−1),

and a merged subtropical and eddy-driven jetstream [28]. In this situation, it

would be a balancing act between equatorward jetstreams and less extremes

and fast jetstreams and more extremes. If this is the case, I would expect the jet

speed to be the dominating factor, where the faster the jet speed, the more slow

moving weather systems develop, again due to the enhanced variability.
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