A Fully Abstract Semantics for a Functional
Language with Logic Variables

Radha Jagadeesan
Prakash Panangaden
Keshav Pingali*

TR 89-969
May 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This research is supported by NSF Grant CCR-8702668, and by grants from the Math Sciences Institute,
Cornell and from the General Electric Corporation.






A Fully Abstract Semantics for a
Functional Language with Logic Variables

Radha Jagadeesan Prakash Panangaden Keshav Pingali *
Computer Science Department
Cornell University

May 9, 1989

Abstract

We present a novel denotational semantics for a functional lan-
guage with logic variables intended for parallel execution. The in-
tuition behind this semantics is that equations represent equational
constraints on data. Thus a system of equations can be viewed as
defining a set of, possibly inconsistent, constraints. The semantics is
couched in terms of closure operators on a Scott domain. This al-
lows one to abstract away from all the complexities associated with
operational reasonong expressed in terms of concurrent threads of ex-
ecution. We define a structural operational semantics for the language
that expresses precisely the concurrent execution model that we have
in mind. We show that the abstract denotational semantics is fully
abstract with respect to the operational semantics. This is surpris-
ing given how very different the two semantic descriptions are. It
also shows that thinking in terms of constraints is an accurate substi-
tute for thinking in terms of explicit parallel execution. The proof of
full abstraction is complicated by the fact that there are potentially
infinite objects in the domain.

*Keshav Pingali is supported by NSF grant CCR-8702668, and by grants from the
Math Sciences Institute, Cornell and from the General Electric Corporation.



1 Introduction

Programming languages can be divided into two categories: imperative and
declarative. The semantics of imperative languages like Fortran and Pas-
cal rely on an updatable global store and are tied intimately to the von
Neuman model of sequential computation. In contrast, declarative lan-
guages, such as functional and logic programming languages, can be given
semantics using abstractions such as values, functions and relations. This
has two advantages. Clean semantics result in simple proof rules; hence,
declarative language programs are easier to verify than imperative language
programs. More importantly, the absence of sequentiality in the semantics
of declarative languages makes these languages promising candidates for
programming parallel machines. For these reasons, much research has been
done in both functional and logic programming languages over the past
decade.

One area of special interest is the integration of functional and logic pro-
gramming. From the viewpoint of logic programming, such an integration
is mandatory for efficiency. Although anything computable can be com-
puted using pure Horn clauses, the represention of integers, for instance,
as terms built from the functors zero and successor is not recommended
for programmers who worry about how fast their programs run. Every
‘real’ logic programming language includes functions for doing arithmetic
and logical operations, as well as an operator (such as s or :=) for binding
an identifier to the result of performing such an operation. We consider
these to be functional constructs that have been grafted on to a logic pro-
gramming language. From the viewpoint of functional programming, the
utility of such an integration is somewhat more subtle. Logic programming
offers two features that are not present in functional languages: automatic
back-tracking (or OR-parallelism, its analog in parallel logic programming
languages) and the logic variable (i.e., variables that are bound incremen-
tally by constraint intersection). Unfortunately, it is difficult to implement
OR-parallelism efficiently and the logic programming community is investi-
gating a number of alternatives such as commited choice non-determinism.
At this point, there is no consensus about the best alternative and it does
not seem very fruitful to incorporate any form of OR-parallelism into func-
tional languages.

Logic variables, on the other hand, can be introduced quite easily into

2



a functional language (basically, by replacing pattern-matching by unifi-
cation) and the merits of doing so have been remarked on by many re-
searchers [2]. Among other things, logic variables permit elegant coding of
constraint-based algorithms such as Milner’s polymorphic type deduction
algorithm and of symbol-table management algorithms in compilers. Our
interest in integrating logic variables into a functional language arises from
the observation that logic variables can be used to define data structures in-
crementally. In a pure functional language, a data structure is a value (just
like an integer or floating point number) which is produced as the result
of evaluating a single applicative expression. This is satisfactory when the
data structure is built bottom-up (as lists are): first, the components of the
data structure can be constructed, and then these components can be as-
sembled together to produce the desired data structure. However, this does
not work for ‘flat’ data structures, such arrays and matrices which are very
important in many problem domains such as scientific computation where
they are used in finite-element calculations to hold the values of physical
variables such as pressure or temperature. Constructing such arrays and
matrices functionally is difficult because usually, there is no uniform rule
for computing matrix elements; for example, the computation of boundary
elements may be quite different from the computation of interior elements.
In such situations, writing a single applicative expression for defining the
entire matrix can be inefficient and the resulting program may be quite
obscure. An alternative is to compute the desired matrix as the limit of a
sequence of matrices which differ incrementally from each other. Unfortu-
nately, the absence of an update operation in functional languages means
that each matrix in this sequence is a different value, and the construction
of a matrix of size n X n may involve making n? copies of the matrix! Logic
variables provide an elegant solution to this problem because they allow
the programmer to define an array incrementally without making numer-
ous intermediate copies. To construct a large matrix, the programmer first
allocates a matrix of the desired size. Each element of this matrix can be
thought of as containing an uninitialized logic variable. These logic vari-
ables can be bound incrementally in the program; for example, the array
can be passed to two procedures, one of which instantiates variables on
the boundary while the other instatiates variables in the interior. In this
way, large data structures can be constructed without the copy overhead
of functional data structures. This is similar to the use of difference-lists in



pure logic programming.

These observations motivated the design of Id Nouveau, which is a func-
tional language with arrays that behave like first-order terms in logic pro-
gramming languages[6]. Id Nouveau is a parallel programming language
and has been implemented on a dataflow simulator. Several large scientific
programs such as SIMPLE and particle-in-the-cell have been coded in this
language. In this paper, we provide a formal description of the first-order
subset of Id Nouveau. This subset is introduced informally in Section 2
through two programming examples which illustrate the subtle interaction
between logic variables and concurrency. To concentrate on the essentials,
we define in Section 3 a core language called Cid. Any first-order Id Nou-
veau program can be translated into a Cid program in a straight-forward
manner. In Section 4, we give a Plotkin-style structural operational seman-
tics for Cid. The operational semantics is an interleaving of reduction (as
in functional languages) and constraint-solving (through unification). The
interaction between concurrency and logic variable instantiations (which
are like globally visible side-effects) is fairly subtle and it is a non-trivial
problem to give an abstract denotational semantics for this language. In
Section 5, we present a denotational semantics for Cid which abstracts away
from operational details and which is couched in terms of equation solving.
In Section 6, we show that the denotational semantics is fully abstract with
respect to the operational semnatics [4,7] thus showing that the abstract
semantics fits precisely with the concrete operational semantics. This last
section is rather long and contains the hard technical proofs that are needed
to establish full abstraction.

2 Informal Introduction to the Language

Id Nouveau can be thought of as a functional language augmented with
array manipulation primitives from logic programming languages. This
section introduces the language and the operational semantics informally
through a number of programming examples. The operational semantics
we present in this section is a simplified version of the formal operational
semantics in Section 4. For a complete description of Id Nouveau, we refer
the reader to [6]. We assume that the reader is familiar with functional
languages; therefore, we will begin by describing the constructs for ma-



nipulating arrays. The programs in this section illustrate the differences
between functional and logical arrays, and also highlight the subtle inter-
action between concurrency and logic variable instantiation.

2.1 Logical Arrays

To augment a functional language with logical arrays, we introduce three
constructs for allocating, storing into and reading from arrays. An array is
allocated by the expression

array(e)

where e is an expression that must evaluate to a positive integer. As is
usual in functional languages, an array can be named via a definition; for
example, the definition A = array(5) allocates an array of length 5 and
names it A. When an array is allocated, its elements are undefined - in logic
programming parlance, each element of the array is a logic variable which
is uninstantiated. An element of an array A can be given a value by a
definition of the form

Afi] = v

Intuitively, this has the effect of storing v into the i’th element of the array
A. More precisely, the value v is unified with the value contained in A[i]
and the resulting value is stored into A[i]. Thus, if A[i] was undefined,
the execution of this definition results in the value v being stored in A[i].
Otherwise, if it contained some value v1, the result of unifying v and v1 is
stored into A[i]. If unification fails, the entire program is considered to be
in error.
An element of an array may be selected by using the expression

A[i]

To put these constructs together and to introduce our operational model,
we discuss a program to solve the inverse permutation problem: given an
array B of lengthn containing a permutation of the integers 1..n, build a
new array A of lengthn such that A[B[i]] = i. This is called an inverse
permutation because the result array A contains a permutation of the inte-
gers 1..n, and when the operation is repeated with A as an argument, the

5



original permutation is returned. It is straight-forward to write a program
for this problem in our language.

def inverse-permute(B,n) =

{A = array(n);

for i from 1 to n do
A[B[i]] = i
od;
in A}

As in functional languages, the loop construct should be thought of as
syntactic sugar for tail recursion. To introduce the operational model, we
discuss the execution of the call inverse-permute([2,1,3], 3) where the
expression [2,1,3] denotes an array of three elements in which the first
element is 2 etc. In the first step, the body of the function is expanded out,
and the actual parameters are substituted for the formals. This results in
the expression

{ A = array(3);

for i from 1 to 3 do ----(1)
Al[2,1,3][i]1] = i

od;

in A}

The rewrite rule for the array(n) construct is array(n) — [L1,...,Ln]
where the identifiers L1, ...,Ln are new identifiers. Intuitively, this rule
models the allocation of an array of lengthn in which each element is a
distinct, uninstantiated variable. The for-loop can be replaced with copies
of the loop body in which the identifier i is replaced by the integers 1
through 3. This results in the expression

{ A =1[L1,L2,L3];

A[[2,1,3][1]1] = 1;

A[[2,1,3][2]] = 2; -—==(2)
A[[2,1,3] [3]] = 3;

in A}

The rewrite rule for array selection is [X1,...,Xn][i] — Xi provided
iis an integer between 1 and n. Using this rewrite rule, our expression can
be rewritten to



{A=[L1,L2,L3];

Al2] = 1;

A[1] = 2; ----(3)
A[3] = 3;

in A}

Substituting for A and using the rewrite rule for array selection gives

{A=[L1,L2,L3];

L2 = 1;

rt=2, eeea- (4)
L3 = 3;

in A}

which, after a few more steps, produces the result [2,1,3].

Unlike in functional languages, the array A has not been produced as
the result of evaluation of a single expression - instead, it has been de-
fined incrementally by the co-operation of a number of definitions in the
program. Abstractly, this process can be viewed in terms of constraint in-
tersection. Consider, for example, expression (3). Each of the definitions
in this expression can be thought of as constraints on the array A. The
first definition is a constraint that asserts that A is an array of length3.
The second definition is a constraint that asserts that the second element
of Ais 1. In this way, each definition can be interpreted as a constraint
on the value of A and the resulting value of A is obtained by intersecting
all these constraints together. The evaluation of an Id Nouveau program
involves both constraint solving (through unification) and reduction (such
as replacing 2 + 3 by 5). A definition of the form A[e1] = e2 plays no role
in constraint solving until e1 and e2 have been reduced to a value such an
integer; in other words, this definition does not contribute to the value of A
until el and e2 have been reduced to values. Some languages, such as CLP,
have a more complex notion of constraint solving - for example, given the
definitions x = 2; x = y+1, they would deduce that the value of y must
be 1. In our language, the definition x = y+1 plays no role in constraint
solving until the value of y has been produced by some other portion of
the program. At that point, the value of y+1 (call it v) is computed, and
the definition x = y+1 is rewritten to x = v. The two constraints on x are
now solved by unifying 2 with v. Incorporating a more general notion of

7



constraint solving into the language would complicate it enormously; more-
over, we have not found any pressing need to do so in our domain of interest
(scientific computing).

As 1s common in logic programming languages, we permit an unbound
variable to be returned as the result (or part of the result) of executing a
program. For example, if A in the inverse-permute problem was defined to
be an array of length n+1, the n+1t* element of A would not be defined.
In our system, the resulting array would be a perfectly acceptable result
(although its connection to inverse permutations is somewhat obscure!).

The inverse permutation program is simple enough that it can be exe-
cuted ‘sequentially’ just like a FORTRAN or PASCAL program for solving
the same problem. In general, an Id Nouveau program cannot be executed
sequentially since the execution of a sub-expression may have to be sus-
pended until some variable has been instantiated by another part of the
program. The following program illustrates this.

{A = array(10);
Al1] = 2;
fill-even(A,5);
fill-odd(A,5);
in A}

def fill-even(X,h) = {for i from 1 to h do
X[2*1i] = X[2*i-1]*2
od}

def fill-odd(X,h) = {for i from 1 to h do
X[2*%i+1] = X[2*i]*2
od}

This program produces an array of length10 in which the 7’th element is
2. Procedure fill-even fills in the even elements of array A by reading the
odd elements and multiplying them by 2. Procedure £ill-odd fills in the
odd elements of A in a similar way. Attempting to execute this program
sequentially would lead to incorrect results since the second iteration of
the loop in procedure fill-even needs the value of X[3], but this value
is produced by procedure fill-odd which has not yet been invoked. To



produce the desired result, the interpreter must interleave the execution
of procedure fill-even with the execution of procedure fill-odd. The
Id Nouveau interpreter achieves this by selecting (non-deterministically)
sub-expressions that can either be reduced or can take part in unification.
In effect, the computation of X[3]*2 in procedure fill-even is suspended
until X[3] is instantiated to 8 as a result of executing sub-expressions in
procedure £ill-odd. This program shows that an abstract semantics for
the language cannot be obtained merely by adding some notion of state
to the semantics of the functional subset of the language. Fortunately,
the viewpoint of constraints provides a nice way to mask the operational
complexity - we can think of fill-even and fill-odd as constraining the
even and odd elements of the array A, and of the array A as being produced
by the intersection of these constraints with the constraints A = array(10)
and A[1] = 2. We will exploit this idea in Section 4 to give an abstract
denotational semantics for Id Nouveau.This semantics shows that one can
think about the execution of Cid programs in terms of solving simultaneous
equations rather than in terms of interleaved execution sequences.

3 Cid: a subset of Id Nouveau

Id Nouveau is a fairly large language since it is intended to be a real pro-
gramming language. For the purpose of this paper, we define a core of this
language, called Cid, which is rich enough that any Id Nouveau program
can be translated straight-forwardly into a Cid program. Working with
Cid reduces the number of cases to be considered for the operational and
denotational semantics.

program ::=
def F1(id) = {def-list in exp}
def F2(id) = {def-list in exp}
def Fn(id) = {def-list in exp}
exp

def-list ::= def | def;def-list



def ::= id = exp

expression ::= constant | id | expl op exp2 |
cond(exp1,exp2,exp3) |
array(exp) | expi[exp2] | Fi(exp1)

Figure 1: Syntax of Cid

Figure 1 describes the syntax of Cid. The main differences between
Id Nouveau and this core language are as follows. The loop construct is
eliminated since a loop can be replaced by a tail recursive procedure. In Id
Nouveau, some procedures, such as inverse-permute return a result, while
others, such as fill-even are ‘pure side-effect’ procedures that instantiate
variables in their arguments but do not return any results. To simplify
notation, we will require that all procedures return a result (a procedure
like fill-even can return a dummy value such as 0). It is convenient to
assume that the left-hand side of a definition is an identifier; a definition
in Id Nouveau of the form e1[e2] = e3 can be replaced by two definitions
x = el[e2]; x = e3 where x is a new identifer. With these modifications,
the fill-even procedure becomes

def new-fill-even(X,h,i) = {t = X[2*i];
t = X[2i-1]%2;
in if i+1 > h then 0
else new-fill-even(X,h,i+1)

}

To side-step issues regarding the scopes of variables, we follow the logic
programming convention: the body of a procedure is a single scope and the
formal parameters of the procedure are in the same scope. Finally, to elim-
inate the need for ellipses and subscripts, we will require that a procedure
have exactly one formal parameter and that its body have exactly one local
variable. For example, the three parameters of procedure new-fill-even
can be eliminated in favor of a single parameter A, and occurrences of X,h
and i in the body of the procedure are replaced by A[1], A[2] and A[3]
respectively. Thus, the three parameters get replaced by an array of three

10



elements. In the same way, a procedure body can be transformed so that
there is exactly one local variable. If F is a function, argr, localg, defsp and
expr denote the formal parameter, local variable, definitions in the body
and the return expression of F.

4 Operational Semantics of Cid

In this section, we give an operational semantics for Cid using Plotkin-style
rewrite rules. First, we give an informal introduction to the operational se-
mantics. Rather than rewrite expressions directly (as we did in Section
2), it is convenient to work with configurations. A configuration is a triple
< D, exp,p, FL > where D is a set of definitions, ezp is an expression, p is
the syntactic environment and FL is the free-list. Intuitively, D contains
definitions whose right-hand sides have not yet been completely ‘reduced’ to
a base value - that is, an identifier, constant or array. The syntactic environ-
ment p is a non-empty set of alias-sets where an alias-set is an equivalence
class of base values. For example, {z,y,z}, {z,y,4} and {z,y, (L1, L2]} are
alias-sets. If b1 and b2 are two base values in the same alias-set, then oc-
currences of b1 in D and e may be replaced by b2 without changing the
meaning of the program.

Configurations are rewritten by reduction and by constraint solving.
For example, an occurrence of 2 + 3 in D or in e can be replaced by 5
in a reduction step. Once the right-hand side of a definition in D has
been reduced to a base value, the definition is removed from D and unified
with the environment. If unification fails, the configuration is rewritten
to ‘Error’ and computation aborts. Otherwise, the resulting environment
replaces the old one in the configuration, and rewriting continues.

4.1 Syntactic Categories

We define some syntactic categories required for the operational semantics.
z,Le Id = countable set of identifiers

ce Constant = set of constants

11



Are Array = [zq,...,2,)

Be Base-value ::= z|c|Ar

Ae Alias-set := {B,, ..., B,}

pe Environment ::= ¢|{E,, ..., E,.}

FLe Free-list = P(Id)

ee expression (defined by the syntax of the language)
De Defs ::= ¢|defy, ..., def,

Ce Configurations ::= < D,e,p, FL > |Error

The notation [z, ..., z,] for arrays represents a sequence of one or iden-
tifiers. The length of an array is the number of elements in this sequence.

4.2 Unlification

The unification algorithm we use is similar to the one in Qute[8]. This is
an algorithm for the unification problem in the domain of regular infinite
trees. Hence, no occurs check is performed and infinite data structures
are considered to be legitimate objects of computation. In a functional
language, infinite data structures arise from the use of non-strict functions;
for example, if cons is non-strict, the definition y = cons(1,y) defines y
to be the infinite list of 1’s. Similarly, in Id Nouveau, the programmer can
write the set of definitions

x = array(2);
x[1] = 1;
x[2] = x;

In this program, x is intended to be an ‘infinitely nested’ array. The unifi-
cation algorithm we discuss in this section respects this intended meaning.

12



Definition 1. Two base values are said to be inconsistent if they are dis-
tinct constants, or if one is an array and the other is a constant, or if
they are arrays of different lengths. This extends naturally to alias-sets
and environments: an alias-set is said to be inconsistent if it contains two
base values which are inconsistent, and an environment is inconsistent if it
contains an alias-set that is inconsistent.

The unification algorithm is described in terms of a binary relation ~»
on environments.

Definition 2. ~» is a binary relation on environments defined as follows:

1. If Al and A2 are members of an enviroment p, and Al and A2 have
an identifier in common, then p ~ (p - {A1} - {A2}) U {A1 U A2}.

2. If {[z1,...,2n), (Y1, -, Yn]} C Ae€p then p~» pU {{z1,u1}, -, {zn,un}}.

Intuitively, these are two transformations on environments that leave
the meaning of an environment unchanged. The first clause says that in
any environment, two alias-sets that contain the same identifier can be
merged. The second clause says that if two arrays of the same length are
in an alias-set, their elements must be in alias-sets as well.

If p1 ~ p2 and p; ¥p,, we say that p; reduces to p,. In this case, p, is
said to be reducible; otherwise, it is irreducible. Let ~>be the reflexive and
transitive closure of ~».

Theorem 1. The relation ~>has the following properties [8]:
1. If p1~5p; and p1~5rp3 then py~ispy and p3~5rpy for some p,.

2. There is no infinite sequence of distinct enviroments p; such that
Pi ™~ Pit1 for all 1.

3. For any environment p, there is a unique, irreducible p; such that
pop1.

The first property states that reduction of environments has the Church-
Rosser property. The second property states that an environment cannot
be reduced indefinitely. The third property is an immediate consequence
of the first two.

13



Recall that a configuration is a quadruple < D,e,p, FL >. When the
right-hand side of a definition in D has been reduced to a base value, the
definition can take part in constraint solving. If the definition is z = b, it can
be viewed as an alias-set {z,b}. The alias-set is added to the environment
p and this environment is reduced completely. The resulting environment
incorporates all the constraints in p and in the definition.

Definition 3. If p is a syntactic environment and A is an alias-set, let
U(p, A) denote the unique, irreducible environment such that (pU {A}DS ;.
we will say that U(p, A) is the result of unifying p and A.

4.3 Rewrite rules

The rewrite rules for configurations are specified in terms of a binary re-
lation — on the set of configurations. In any program P, let ezpp be
the expression to be evaluated. The initial configuration for program P
i1s < ¢,expp,¢,Id >. In this configuration, D, the set of definitions to be
reduced, is empty. In the initial environment, the environment is the empty
set and the free-list is Id, the set of all identifiers. A terminal configuration
is one from which no transitions are possible.

We will need an operation that is similar to environment look-up in
functional languages. In a functional language, an environment is consid-
ered to be a function from identifiers to values. Can we view the syntactic
environment p the same way? The rewrite rules have been designed so that
in any configuration that is not Error, the environment is irreducible. This
means that every identifier that is not in the free-list of p is an element of
exactly one alias-set. This leads to the following definition.

Definition 4. If < D,e,p, FL > is a configuration and z is an identifier
not a member of FL, let A be the (unique) alias-set that contains z. The
function p(x) is defined by cases on A:

1. All the elements of A are identifiers. In that case, p(x) is undefined.

2. At least one element of A is a constant c. Since A is consistent, the
elements of A are either identifiers or the constant c. We define p(x)
to be c.

14



3. At least one element of A is an array. Since A is consistent, the
elements of A are either identifers or arrays of the same length. p(x)
could be defined to be any one of these arrays. To be precise, place a
lexicographical ordering on identifiers and let p(x) be the array whose
first element is the least in this ordering,.

The intuition behind this definition is the following. During the rewrite
process, occurrences of an identifier z will be replaced by p(z) if p(z) is
defined. There is not much point to replacing one identifier with another;
hence if all the elements in the alias-set of r are identifiers, we may as well
make p(z) undefined. If A contains one or more arrays, x could be replaced
by any one these arrays, because the irreducibility of p guarantees that the
elements of these arrays are themselves in alias-sets. We make p(z) unique
by our (fairly arbitrary) condition.

The Plotkin-style operational semantics for Cid is given in Figure 2.
Most of the clauses in this semantics are self-explanatory. Function ap-
plication is somewhat subtle. When a function application F(e) is carried
out, the actual parameter e need not be a base value. Unlike in functional
languages, the function application cannot simply be replaced by a copy of
the body of the function in which occurrences of the formal parameter are
substituted by copies of the actual parameter. Consider the Id Nouveau
function

def F(x) = {x[1] = 1;
x[2] = 2;
in x}

When F is passed an array, it stores 1 and 2 into the first and sec-
ond components of the array. Consider the expression F(array(2)). If
array(2) is simply substituted for x in the body of the body of the func-
tion, the resulting expression is quite different from what one gets by first
reducing array(2) to a base value and then performing the substitution.
Looked at another way, our language is not referentially transparent and
substitution must be defined carefully or we will get inconsistent results.
We permit an occurrence of an identifier to be replaced by an expression
only if the expression is a base value.

With this explanation, the rule for function application should be clear.
A function application F(e) is rewritten by replacing it with expr, and

15



adding the definitions in defsp to the definitions in D. The formal param-
eter and local variable of the function are first renamed to new identifiers
(say x and y respectively) to avoid name clashes. Since the actual parame-
ter e need not be a base value, a definition x = eis added to the definitions
in the configuration.

4.4 Properties of the Rewrite Rules

Theorem 2. Let —, be the subset of the relation — obtained by deleting
the rule for function application. There is no infinite sequence of configu-
rations Co, Cy, ... such that for all 7, C; —, C;y;.

Proof: We define a weight function W for configurations and show that
if C; —, Ciy1, W(Ciz1) < W(C;). This establishes the required result.
Informally, the weight of a configuration < D,e,p, FL > is obtained by
counting 1 for each identifier in D or e that is not inside array brackets,
counting 2 for each operator symbol in D or e, and summing up over the
configuration. More precisely,

W(< D,e,p, FL >) = C(D) + C(e)

C(Ds,...,Dn) = C(Dy) + ... + C(D,)

C(id = exp) = C(id) + C(ezp)

C(constant) = 0

C(id) =1

C(el op €2) = 2 + C(el) + C(e2)
C(cond(el,e2,e3)) = 2 + C(el) + C(e2) + C(e3)
C(array(e)) = 2 + C(e)

C(el[e2]) = 2 + C(el) + C(e2)

C(F(exp)) = Cezp)

It is straight-forward to verify that if C1 —, C2, then W(C2) < W(C1).

16



Expressions:
Identifiers:
1. <D,z,p,FL> — < D,p(z),p,FL > (if p(z) is defined)

Basic Operations:
1 < D,ey,p,FL > < D*, e}, p*, FL* >
"< D,eropeyp, FL> — < D*efopeq,p,FL >

!

<D,ey,p,FL> — < D* €5, p*",FL* >

2. <D,ejopeyp,FL> — <D* e opes,p,FL* >
3. <Dmopn,p,FL> — < D,r,p,FL > (where r = m op n)
Conditional:

1 <D,ey,p,FL> — < D* e}, p",FL* >
" < D,cond(ei,e3,€3),p, FL > — < D* cond(e3, e3,€3),p°, FL* >

2. < D, cond(true,ez,e3),p, FL > — < D,ey,p, FL >
3. < D,cond(false,ez,e3),p,FL > — < D,e3,p,FL >

Array:

1 <D,e,p,FL> — < D* e* p*,FL* >

" < D,array(e),p, FL> — < D* array(e”),p*, FL* >

2. < D,array(n),p, FL> — < D,[L1,...,Ln],p*, FL* >
(where L1,....Ln ¢ FL
p” = p U {{L1},..{Ln}}
FL* =FL - {L1,..Ln})

Array Selection:
1 <D,ey,p,FL> — < D" e}, p*",FL* >
"< D,eiles],p, FL > — < D* ejles], p*, FL* >

<D,eyp,FL> — < D* e, p*", FL* >

2. < D,eiles],p, FL > — < D* ei[e3], p*, FL* >

3. < D,[L1,...,Ln][s),p,FL> — < D,Li,p,FL > (where 1 <i < n)

17



Application:

1. <D,F(e),p, FL> — < D*,ey,p*,FL* >

(where D* = D U {z = ¢} Udefsp(z/argr]y/localF] (z,yeFL)
e1 = expr[z/arg]ly/localF)

p* = p U {{z},{y}}

FL* = FL - {z,y})

Definitions:

1 <D,e,p, FL >»< D*,e*,p*, FL* >

<Du{z=¢e},e1,p, FL>><D*U{z=e¢,e,p", FL* >

2. <Du{z=y},e,p,FL>>< D,e,U(p,{z,y}),FL >
(if U(p, {z,y}) is consistent)

<DuU{z=y},ep, FL >— Error (otherwise)

3. <DU{z =c},e,p, FL>—< D,e,U(p,{z,c}),FL >
(if U(p,{z,c}) is consistent)

<DU{z =c},e,p, FL >— Error (otherwise)

4. <DU{z=[L1,..,Ln]},e,p,FL >—< D,e,U(p, {z,[L1, ey Ln]}),FL > -
(if U(p, {z,[L1,..., Ln]}) is consistent)

<DuU{z=[L1,...,Ln}},e,p, FL >— Error (otherwise)

5 Denotational Semantics

As we have discussed in the previous sections, the way to think about pro-
grams that use logic variables is in terms of constraints. Thus a definition
of the form z = e is viewed as providing a constraint on z. Given this view,
the meaning of a constraint is the set of values satisfying the constraint.
Two questions then naturally arise; what are appropriate sets of values,

18



and what is the ordering between such sets?

Normally one thinks of defining a powerdomain to describe sets of val-
ues taken from a domain. Indeed, the Smythe powerdomain [10), consisting
of upward closed sets, is designed to describe sets of values satisfying con-
straints of the form = C a. However, the constraints we are interested in
expressing are equational constraints. The set of values in a domain satis-
fying an equational constraint is not, in general, an element of the Smythe
powerdomain. Consider the constraint z = y. What sets of pairs satisfy
this constraint? Certainly not an upward closed set because, for example,
(L, L) satisfies the constraint but (2, L) does not satisfy the constraint.

The basic mechanism by which constraints get imposed in Cid is through
unification. Each time unification is performed new constraints are imposed
on some variables. This always add information, thus we need to describe
the imposition of a constraint via a function that adds to the “information
content” of its argument. Such functions are just eztensive functions, i.e.
functions that satisfy Vz.z C f(z). Clearly we want these functions to be
monotonic and continuous as well since the process of generating constraints
is supposed to be computable. A final natural requirement is that the
imposition of the same constraint a second time has no further effect. Thus
the functions modeling the imposition of constraints should be idempotent.
Such functions are called closure operators.

The set of fixed points of a closure operator, f, on a domain D, i.e. the
set {f(z)|z € D}, is the set of values that satisfy the constraint expressed
by f. It turns out that ranges of closure operators are the simplest way to
characterize the sets that arise. These are discussed in Scott’s paper “Data
Types as Lattices” [9)].

Definition 5. A closure operator, f, on a domain V is a continuous function
satisfying, (i) Vz € V.z C f(z), (ii) fo f = f.

The least closure operator on a domain is the identity function. The
collection of closure operators themselves forms a complete partial operator.
An important point about closure operators is that one can find common
fixed points for any number of closure operators at once. The construction
is quite simple. Suppose that f and g are closure operators on some domain
D. The function f o g is also extensive, continuous and monotonic. The
least fixed point of f o g is the least common fixed point of f and g. Itis
easy to check this by a simple calculation.

19



The domain of values that we use in modeling Cid is the domain of
nested arrays. We give a formal account of this domain in the next sub-
section. Intuitively, the domain, called V, has a top element T to model
inconsistent constraints. The arrays have arbitrary finite length and each
array may have components that are fully defined atoms or undefined. Thus
an array may be partially defined. Indeed, because the arrays are nested,
the elemnts of an array may be partial elements. The arrays of different
size are not related to each other so the entire domain decomposes into
an infinite separated sum. This is possible to formalize using the ¥ type-
constructor but we can give a much simpler account of the domain.

In defining the abstract semantics of expressions in Cid we shall use
closure operators. These will be closure operators on the domain V x ENV
where V' is the domain of values and ENV is the domain of environments.
Thus, the meaning of an expression will be a function of type (ENV x
V) = (ENV x V). The evaluation of an expression adds information
about the value of the expression by imposing a constraint on it and may
put constraints on other variables as well. These other constraints are
expressed via the environment that is returned.

Intuitively one may read these meanings in the following way. Each
expression is supplied with an environment and an estimate of the resulting
value. The semantics refines the environment to incorporate the effect of
any new constraints that may result from the evaluation of the expression
and refines the value supplied to incorporate the effect of the expression
evaluation. It is important to keep in mind that this does not correspond
to the operational semantics it is simply an intuitive way of thinking about
the closure operators.

To illustrate these ideas we shall describe a simple example. Consider
the equations z = array(2), z[1] = 1,z[2] = 2. These may be part of a Cid
program. We view these as imposing constraints. The first equation says
that z is an array of size 2. The closure operator that represents this can
be defined as follows. The array [L, 1] is the least array of size 2, let us
call this element 1,. Now the closure operator is just Au.ull L,. Similarly
the closure operators representing the next two constraints are Av.v U (1, 1]
and Av.v U [L,2]. The composite of these three functions is Au.u U [1,2].
Clearly the least fixed point of the composite function is [1, 2]. A less trivial
example is obtained by having z = array(2),z[1] = z[2]. The closure
operator representing these two constraints is Au.let v = u[1]Uu[2] in [v,v].

20



To obtain an element of the set of values that satisfy this constraint we
supply an approximation, say [a,b], and we will get as result [a Li b,a U b],
which clearly satisfies the constraint.

5.1 The Semantic Domain

The basic data structuring mechanism available in Cid is the array data
type. The arrays can be nested and, because evaluation is done in parallel,
the array constructor is non-strict. This allows arrays to be nested infinitely
deeply. Thus the domain we use cannot be the simple array construct seen
in most text-books but has to involve solving recursive domain equations
[11]; as is done, for example, with infinite streams. However, one cannot
simple adapt the solution used for streams or lazy S-expressions as we shall
discuss below.

As we have already indicated, the need for T becomes clear when we
consider the meaning of constraints like ¢ = 2,z = 3. Mathematically, the
necessity of top manifests itself in that very few closure operators can be
defined on a domain without a top element. Consider the “usual” domain
of integers, N,, i.e. the flat domain with a bottom element but with no
top element. A closure operator, say f, has to satisfy £ C f(z). Thus, a
closure operator on N, has to take each defined integer to itself. On the
other hand, f has to be monotonic as well. Thus, if f(L) is any value other
than L, say n, then Vz € N, we must have f(z) = n which is impossible if
f is to be a closure operator. Thus, the only closure operator definable is
the identity function from N, to itself.

It is worth understanding why we cannot view arrays as syntactic sugar
for S-expressions. It is easy to solve the following recursive domain equation
for S-expressions:

S=A+S5S xS

We could think of an n-array as an appropriately nested S-expression. How-
ever, we would like to have as a possible constraint on a variable z in Cid
the stipulation that it be an array of some fixed size, say k. The least
element satisfying this constraint is the k-array with none of its entries
defined. Thus we would like to have an element, 1 for each k, such that
L is less than any other k-array and for any k and &’ such that k # &’
we have 1, and L4 have no upper bound other than the greatest element.

21



This would not be the case is we used nesting of S-expressions to encode
arbitrary size arrays.

To define the domain of arrays we use a standard construction for defin-
ing a domain of (possibly infinite) terms in logic programming, see, for ex-
ample, Lloyd [3]. First we need some notation. Let w be the set of natural
numbers. We use w* for the set of finite sequences of integers. A sequence
is written [i1,...,4,]. If s and t are sequences then [s, ] denotes their con-
catenation, if s is a sequence and n is a natural number then [s,n] is the
sequence s with n added to the end. The size of a set X is witten |X| and
the size of a sequence s is written |s|.

Definition 6. A tree T is a subset of w* satisfying
1. Vs € w* and Vi, j € w we have ([s,7] € TAj < i) = (s € TA[s, ] € T).
2. |{z|[s,i] € T}] is finite for all s € T.

These define finitely branching trees that may be infinitely deeply nested.
The sequences are the tree addresses of the nodes of the tree. We define
br(s,t) to be the number of successors of the node s in the tree ¢, is the tree
is clear from context we will write br(s). If this number is 0 we have a leaf.

The domain V is defined in two stages. First we define a domain W
and then we add a top element, written T. The domain W is defined as
follows. Let Atom be a given domain of atomic values and let Arrays be -
the set of array constructors written in infix form as {[],[,],[,,],...} or for
ease of reference as {array;, arrays,ldots, }. Let A = Atom U {Q} U Arrays
where 2 stands for the undefined element.

Definition 7. An element of W is a function f : ¢t — A where ¢ is a non-
empty tree. The function f satisfies

Vs € t.br(s) =0 = f(s) € (Atom UQ) A br(s) =n # 0 = f(s) = array,

The ordering between elements of W is defined as follows: f T g iff
dom(f) C dom(g) and Vs € dom(f).br(s,dom(f)) # 0 = br(s,dom(g)) =
br(s,dom(f)) A br(s,dom(f)) = Oandf(s) # Q = g(s) = f(s).

The ordering between elements of W allows one to replace occurrences of
§} with other elements to obtain a larger element. This domain describes

22



infinitely deeply nested arrays but all arrays must have finite “width”. Note
that if two arrays have different widths they are incomparable. Thus the
domain decomposes into subdomains corresponding to different array sizes.
It is straightforward to check that the domain is algebraic and consistently
complete, though we never make use of these properties.

5.2 The Denotational Semantics of Cid

In defining the denotational semantics, we need an environment that as-
signs to identifiers values in V; we shall typically use env to stand for an
environment, the type of env is Id — V. The type of the semantic function
£ is
Ezp — (ENV x V) —»¢ (ENV x V)

One can understand this as follows. The meaning of an expression is a
closure operator that takes an environment and a value and treats that
value as an approximation to the value of the expression being computed. A
new value is produced, this being the refinement to the value supplied. New
constraints on the logic variables are incorporated into the new environment
produced. We will usually use the curried form getting a type for £ of

Ezp — (ENV = V) =¢ (ENV x V)

where the subscript on the arrow signifies that we are looking at the domain
of closure operators rather than the domain of all continuous functions.

We assume that the environment contains one distinguished binding,
namely the one for the single function name that is permitted in a Cid
program. Strictly speaking then, the type of ENV is modified so that an
environment is the sum of an ordinary environment as described above and
afunctional environment. We will not make this explicit in the semantic
clauses below except when we define the meaning of the function expression.
In a subsequent paper, we plan to discuss the semantics of programs with
higher-order functions; for the present paper we are only looking at the
first-order case so this rather naive treatment of the functional expressions
is not problematic. The point is that the expressions in Cid do not place
constraints on the functional expression so we can safely factor out the
treatment of this case.

23



The pair returned is formed with the a special pair constructor, written
(,), which is strict with respect to T. We use the notation lcs to stand for
the least common solution of a set of equations. Because the functions used
are all extensive one easily show that they have a least common solution.
Some of the constraints appear to be inequalities rather than equalities.
However, the inequalities are all of the form a C z, where a is a constant
and z is being constrained. These can be rewritten as z = a U z. We also
assume that the basic operations op are strict, with respect to L and 7.

The semantic clauses are:
E[const] env a
Elz] env a =

Eleroper] env a =

Elarray(e)] env a =

EM[L1,L2,... ,Ln]] env a =

E[cond(ey, e2,€3)] env a =

(env, K(const) U a) (1)

(env[z = (env(z) U a)], env(z) U a) (2)
env C env’

les env’ v, = E[e;1] env' vy

env’, v, = Efex] env’ v,
r=(viopv)Ua
in (env',r) (3)
env C env’
les ¢ env',n = E[e] env’ n
r = Array(n)Ua

in (env’,r) (4)
( env C env’
alr
' -
lesd € [L1] = r[1]

env'[Ln] = r[n]
( 7= (viopvy)Ua
in (env’,r) (5)

les env C env’
env’,b = E[e;] env’ b

in

24



tf bthen E[e;] env' a
elseflles] env’' a (6)
Eleilez]] env a =

env C env’
aCr
les ¢ env', v, = Efe1] env’ vy
env’,v; = Efey] env’ v,

(%] [vg] =T
in (env’,r) (7)
E[F(e)] env a =
env C env’
aCr
les (env’,v) = €[] env’ v
env',v,r = Ep[F] env’ v r
in (env’,r) (8)

The last semantic clause above uses the auxiliary function £r. This
function defines the meaning of functional expressions. We assume that all
functions have exactly one argument in order not to clutter up the notation.
The function £ takes an environment and looks up the definition in the
functional part of the environment giving a closure operator on the function
space, i.e. an element of (V — V) —¢ (V — V). This element is given by
the function F[F]. This function is defined below using a least fixed point
operator, written u, on the space of closure operators on the function space.
We assume that the symbol F is bound to F[F] in all the environments
used in the definition of £.

FIF] = pfA(env,v,a).
{z—v,y—L,F f}
C env’
alr
env C env’
env’ = C[def — list] env’
| (env',r) = E[exp] env' r

in (env'[z],T)

les ¢

The semantic function C, in the above definition of F, defines the effect

25



of declarations. The declarations take the form of equations, ide = exp,
and are viewed as constraints on the value of ide. These constraints are
expressed in the environment as follows:

Clz =¢] env =
env C env’
les ¢ env',r = Ee] env' r
env'[z] =r
inif r =T then envr else env’
Cldefi; def,] env =
env C env’
les ¢ env’ = C[defi] env’
env’ = C[[def;] env’

in env’

The first of the above two equations says that if the constraint is in-
consistent then the entire environment becomes inconsistent, in the sense
that every identifier is bound to T. Thus the effect of an inconsistency is
propagated throughout the computation.

This abstract semantics for Cid expresses the effect of program con-
structs as closure operators on the domain V. The effect of parallel com-
putations is captured by viewing each of the computations as putting con-
straints on data values. It is critical that the formalism allows for the
simultaneous solution of several fixed point equations; using closure oper-
ators allows just this. Of course, the denotational semantics given here
needs to be related to the operational semantics in order to verify that
these abstract semantic descriptions really do correspond to the execution
of Id programs.

6 Relating the Two Semantics

In defining the denotational semantics of a programming language it is
important to ensure that the denotational semantics and the operational
semantics “correspond” in some appropriate way. Ideally, this correspon-
dence takes the form of a full abstraction theorem [4,7]; i.e. every phrase
in the programming language is assigned a meaning by the denotational
semantics in such a way that two phrases are given equal meanings iff they

26



have the same operational behavior when inserted in all contexts. Recent
work on this problem has indicated that fully abstract models are very diffi-
cult to come by [1,12] so one often searches for a less stringent requirement.
An example of such a correspondence is Wadsworth’s theorem, which shows
that, in the D, model of the A-calculus, terms are assigned L iff they fail
to terminate under head-reduction.

In our case we cannot simply insist that 1 model non-termination. The
presence of parallel evaluation means that we need to express the possi-
bility of a subcomputation returning a value while other subcomputations
are still in progress. Furthermore, in our abstract semantics the partial
order represents increasingly constrained values, thus 1 ought to represent
complete lack of constraint. It is possible that one can have a terminating
computation that does not impose any non-trivial constraints; for example,
T = z does not impose any constraint and terminates immediately. Thus,
in order to get a correspondence between L and non-termination one needs
another denotational semantics that models “quiesence” of dataflow com-
putations. Such a semantic account is under development, we will not
discuss it further here.

The proof of the full abstraction theorem is carried out in three stages.
First, we show that a single reduction step preserves meaning. This is
a basic soundness result for the denotational semantics. Next, we show
that we can always construct a reduction sequence that attains the value
specified by the denotational semantics. The proof of this involves the
costruction of an inclusive predicate to relate semantic values and syntactic
expressions. These two results establish the ‘adequacy’ of the denotational
semantics. Finally, we define a suitable operational preorder, as in Berry,
Curien and Levy [1], and establish the full abstraction theorem. For this it
is important that the closure operators form an algebraic cpo.

6.1 One-step Reduction Preserves Meaning

In this section we show that the reduction relation preserves meaning, as
given by the abstract semantics. This shows that if a sequence of rewrites
leads to a value that cannot be reduced any further this value is the one
predicted by the abstract semantics. For this we need to translate the syn-
tactic environment and the unresolved constraints into a set of equations.
We formalise this notion first.



A syntactic environment p is a collection of alias sets and each alias
set is a set consisting, in general, of identifiers and terms. Suppose that p
is a syntactic environment, we shall write EQ(p) for the set of equations
generated from p. We define EQ(p) as the reflexive, transitive and sym-
metric closure of the union of the equations generated from each alias set
Al,A2,... in p. We use the same notation, i.e. EQ(A) to stand for the
equations generated from a single alias set. Given an alias set A, we have
three possibilities, (i) A consists entirely of identifiers, (ii) A has a single
constant or array and (iii) A has several constants or arrays.

In generating EQ(A) we first generate a set of equations from the ex-
plicit representation of the alias set and then we close under transitivity,
reflexivity and symmetry. The first two cases are easy to handle. Suppose
that we have case (i),i.e A = {z1,...,zN}. Then EQ(A) = {z1 = 22,z1 =
z3,...,72 = z3,...}. Suppose that we have case (ii) above, with the single
non-identifier being ¢ then we proceed as in case (i) except that we add
the equations {z1 = ¢,z2 = ¢,...}. In case (iii) we have the possiblity of
an inconsistency. If we have an inconsistent alias set 4, and {z1,...,zN}
are all the identifiers in A then EQ(A) = {¢1 =T,22=T,...,zN = T}.
If we have a consistent alias set then the terms must all be arrays of the
same size or identifiers. For simplicity we consider the case where there are
two arrays of size two and no identifiers. If A = {[L1, L2],[L3, L4]} then
we set EQ(A) = {L1 = L3,L2 = L4}. If we have identifiers, say z and y
in A as well, we add the equations z = y,z = [L1,L2],y = [L1,L2],z =
[L3,L4],y = [L3, L4] to EQ(A). If the equations induced by equating array
components involve two arrays then the resulting equations are also added
to EQ(A). Thus EQ(A) may contain infinitely many equations. It should
be clear that EQ(A) is defined to express all the semantic consequences of
a given set of equations and is not intended to be an effective procedure.
The next lemma says that all the equations added by unification do not
change the meaning of the configurations they merely change the way the
equations are being represented, in other words the relations ~»preserves
the meaning.

Lemma 1. If p5p' then EQ(p) = EQ(p').

Proof: We know, by theorem 1, that the sequence of ~+ steps terminates,
thus we need only show that if p ~ p’ then EQ(p) = EQ(p'). We can now

28



consider the two cases in definition 2. In the first case, the new equations
that result from the merging of the two alias sets were already added when
we performed the transitive closure of EQ(p). In the second case, the
equations that result from creating the new alias sets are present when we
perform the decomposition of the arrays described in case (iii) above. Thus
we generate the same set of equations.

In order to show that one-step reduction preserves meaning we need to
associate meanings with the basic entities used in the operational semantics,
ie. with configurations. In the following the semantic function M assigns
to configurations a closure operator over the domain V x ENV. We use the
semantic functions £, F and C defined previously and the same notational
conventions.

M[(D,e,p,FL)] env a =

env C env’
1 aCr
=\ env' = C[DU p] env’
env’,r = Efe] env' r
in (r, env’)

We require that the semantic environment env and the syntactic envi-
ronment p satisfy

Dom(env)NFL=9-----. *

so that there will be no conflicts occurring when the rewriting needed for
array allocation is performed. The function M, defines the meaning of
expressions in the context of resolved constraints (represented by p) as
well as equations representing constraints that have not been resolved yet
(represented by equations in D). Thus, it is intended that M represents
the effect of the complete computation on a configuration. The theorem we
will prove shows that as we rewrite a configuration the meaning as given
by M will not alter. Since M assigns a closure operator to an operational
configuration, this is equivalent to saying that the set of fixed points of the
closure operator assigned to an operational configuration is preserved under
reduction of the configuration. More precisely, we prove that the part of the
environment that is initially relevant is preserved by the one-step reduction.
The reason we need this restriction is that some of the rewrites may cause
new variables to be generated; in that case one clearly cannot hope that

29



the environments are identical. We use the notation lbu(p) to mean that the
resulting environment is restricted to the variables that were bound in the
environment p.

The following theorem states that all the solutions of the constraints are
the same before and after a rewrite step provided one ignores new variables
that may have been introduced by the rewrite.

Theorem 3. Suppose that the following rewrite is possible:
<D,e,p,FL> — < D' e, p,FL' >

then V env satisfying the condition * with respect to both p and p’ and
YVaeV
M[(D,z,p, FL)] env aloy,) = env albu(p) =

M[I(DI, 6', p', FLI>]] ENV a|bv(p) = €env albv(p)

Proof:
The proof proceeds by induction on the size of the proof that the one-step
reduction applies. The base cases are the unconditional rewrites.

<D,z,p,FL> — < D,plz],p,FL >

Using the definition of M we get:

M[(D,z,p, FL)] env a =
env C env’
alCrf
env’ = C[D U p] env’
env',r' = E[z] env’ r!
in (env’,r')

lcs

So, M[(D,z,p, FL)] env a = env a can be equivalently stated as

env’ = C[DUp] env'

env',a = E[z] env' a
Assuming that p[z] = e, our aim is to prove that the above is equivalent to
env'’ = C[DU p] env’

env';a = E[e] env’ a

30



This reduces to proving that

env' = Clz =e] env’
env';a = E[z] env' a
and
env' = Clz =e] env’
env';a = Efe] env' a

are equivalent. Note that C[z = ¢] env is defined as

env C env’

les$ env',r = Ee] env’ r
env'[z] =1

in if 7 = T then envr else env’

So Cz = €] env'= env’ splits up into the following two cases:

1. ( env’ # envr)
In this case

env',;r = E[e] env' r
env'lz] = r
imply that env',r = (env'[z — env/[z]|]r],env’[z]|Jr). Hence, we

have env’[z] | |r = r = env/[z]. Hence, (env’,a) is a solution of one set
of equations if and only if it is so of the other.

2. (env = envr)

In this case, since the pairing function is strict with respect to
T, envr, we note that (envy,T) = T is a solution of both sets of
equations.

The next case we need to consider is the basic binary operation.

<D,ey,p,FL> — < D* e},p*",FL* >
<D,e;opeypp, FL> — < D* ejopes,p,FL* >

Basic Operations:

31



The meaning of the configuration M[(D, e; op ez, p, FL)] env a is

M[(D,e1 0p ez,p,FL)] env a =
env C env’
alCr
env’ = C[D U p] env’
env’,v] = E[e1] env’ v}
env’, vy = Efe;] env’ v}
. r'=(viopvi)Ua
in (env’,r’)

lcs {

UL W N

The meaning of the configuration after the rewrite is

M[(D,e; op ez,p, FL)] env a =

env C env” 7

alCr” 8

env” = C[D* U p*] env” 9
env”, vy = Ee;] env” v 10
env”, vy = Efles] env” vi 11
{ " = (v{ opvy)Ua 12
in (env”, ")

les (¢

The two systems of equations are identical except for the fact that we
have D* instead of D and similarly for e; and p. The induction hypothesis
allows us to conclude that the two sets of equations have the same set of
solutions.

The reasoning for the conditional is similar. The only subtlety is that the
evaluation does not proceed until the predicate has been fully reduced. This
is important because if we were to evaluate both arms of the conditional
in parallel before waiting for the result of the boolean evaluation there
could be inconsistent constraints imposed on variables and the result of the
computation would be T'.

The next case we need to consider in detail is the case of the array. The
rewrite rule is

<D,e,p,FL> — < D* e p*",FL* >
< D,array(e),p, FL > — < D* array(e*),p*,FL* >
2. < D,array(n),p,FL > — < D,[L1,...,Ln],p*, FL* >
where L1,....Ln € FL

Array: 1.

32



p~ = puU {{L1},...{Ln}}
FL* = FL — {L1,..Ln}

We first consider the first transition. The proof reduces to showing that
env' = C[DUp] env’
env',n' = E[e] env’ n'
r' = Array(K(n))| |7
and
env” = C[D*Up*] env”

env”, n" Ele*] env” n”

r" = Array(K(n)) U r”

have the same set of solutions. The result follows from the induction hy-
pothesis on the operational transition < D,e,p, FL > — < D* e* p*, FL* >.

The second rewrite rule is applicable when the expression e has reduced
to an integer. The meanings of the two configurations are

M[(D,array(n),p, FL)] env a =
env C env’
alCr
env’ = C[D U p] env’
r' = Array(K(n))Ua
in (env’,r’)

lcs

=W N -

and

M[(D,array(n),p, FL)] env a =
env C env”
alr”
env” = C[D U p] env”
env”[L1] = r'[1]

0 3 O Lt

Ics <

©

(| env”[Ln] = r'[n]
in (env”,r")

In these expressions, the constraints are identical, except for the constraints
on r’ and r”. In both cases, however, all that the constraints require are

33



that the result be an array of size n with values above those prescribed
in a. The new environments env’ and env” will differ in that the former
will have no bindings for the identifiers L1,...,Ln but the operational
semantics ensures that these are new identifiers, hence the environments
env’ and env” will agree on the variables that had been defined before the
rewrite occurred. Showing that the rewrite rules for array selection preserve
meaning is straightforward.

The final case that we look at is function application. The operational
rules are.

Application:
< D,F(e),p,FL> — < D* e, p*,FL* >
where D* = D U {z = e} Udefsp[z/argr|[y/localr|(z,y € FL)
e1 = expr(z/arg][y/localf]
p=p" U {{z},{y}}
FL* = FL - {z,y}

The meanings of the configurations are given by

M[(D,F(e),p,FL)] env a =

env C env’ 1

alr 2

les{ env' =C[DUp] env’ 3

(env',v') = Ee] env' v' 4

(v, ") = F[F'r' 5

in (env’,r’)
and
M[(D*,e1,p*, FL*)] env a =

env C env” 6
1 aCr” 7
1 e = C[D*Up’] env” 8
(env”,r") = Eei] env” " 9

in (env”,r")

34



We need to show that as far as the constraints that affect the old vari-
ables are concerned, the solutions of the equations

M[(D,F(e),p,FL)] env a = env,a
M[(D*,e1,p*, FL*)] env' r = env',r

are identical. We need to show that all solutions of 8 and 9 co-incide with
solutions of 3,4 and 5 and vice-versa.

Equation 8 contains all the equations implicit in 3 as well as the new ones
obtained by adding the definitions in F to the configuration. The constraint
on the argument to the function contained in equation 4 is contained in
equation 8 because the rewrite rule explicitly puts the equation z = e into
D*. The two systems of equations express the same constraints, thus M
assigns the same meanings to the two configurations.

The final issue that we need to address is the soundness of the rewrite
rules that use unification to incorporate new identifiers into the collection of
alias sets i.e to show that the cases labeled “definitions” in section defining
the operational semantics preserve the meanings of configurations. These
are as follows.

Definitions:

1 <D,e,p, FL >—>< D* e*,p*, FL* >

<Du{z=e¢e},e;,p,FL>><D*U{z=¢},61,p, FL" >

2. <DU{z=y},e,p,FL>—< D,e,U(p,{z,y}),FL >
(if U(p, {z,y}) is consistent)

<DU{z=y},e,p,FL >— Error (otherwise)

3. <DU{z=c},ep,FL>>< D,e,U(p,{z,c}),FL >
(if U(p, {z,c}) is consistent)

<DuU{z=c},e,p, FL >— Error (otherwise)
4. <DU{z =[L1,..,Lnl},e,p,FL >—< D,e,U(p, {z, L1, wyIn]}), FL >
(if U(p, {z,[L1, ..., Ln]}) is consistent)

35



<Du{z=[L1,..,Ln]},e,p, FL >— Error (otherwise)

The reasoning is quite straightforward now. There are four sub-cases to
consider. The first case follows immediately from the inductive hypothesis.
In the second case, we add the equation = = y to p and thus to EQ(p) but
it was already present in D thus it was present as a constraint in computing
the meaning of the configuration. Similarly, if there is an inconsistency in-
troduced by the unification process then there were inconsistent constriants
present in computing the meaning of the original configuration and setting
the meaning to T preserves meaning. The third case is exactly like the
second. For the fourth case, we note that the new equations generated by
unification were present in the combined constraints imposed by D and p.

6.2 Adequacy of the Denotational semantics

In this section we prove that the operational semantics actually attains
the values predicted by the denotational semantics. This together with
the last theorem says that the denotational semantics and the operational
semantics match exactly; this is usually called adequacy. Of course we still
will have to prove that this correspondence persists in all contexts. Since
infinite objects are present in the semantic domain we cannot say that -
if the denotational semantics predicts a value then that value is actually
attained by a finite reduction sequence. What we say instead is, roughly
speaking, that there is a reduction sequence to every finite approzimant of
the predicted value.

6.2.1 Some operational facts

We first develop the tools that we need for the proof. The proofs in this
subsection are quite routine and are omitted.

Definition 8. (Dy, ey, p1, FL,) and (D,, e, p2, FL,) are alpha-equivalent if
Jzy...2, € FLy,;y1...yn € FL, such that FL, - {z1...2,} = FL, -
{y1-..yn}, and replacing z;...z, by y; ...y, in Dy, ey, pr gives D, ey, py
respectively.

36



We assume the existence of a — rule for renaming.

Lemma 2. If (Do, g, po, FLy) — conf, and (Do, €q, po, F Lo) — con f,,
then

1. If conf, = error , conf, — error
2. If conf, = error , conf, — error

3. confi = (D1, e, p1, FLy), conf, = (D2, €2, pa, F Ly), and
(FLo — FLi)(\(F Lo — FL;) = 0, then one of the following holds:

(a) confy = conf,
(b) confi — error, conf, —serror

(C) 3 (D3a €3, P3, FL3> such that (D17 €1, P1, FLI) - (D3’ €3, P3, FLB)
and (D, ey, p2, F Ly) — (D3, €3, p3, F L3)

Proof: The proof is by induction on the length of the proofs of
<D07 €o, Po, FL0>_—') COTlfl

and
(Do, €0, po, F Lo)— conf,.

The next lemma generalizes the previous lemma to arbitrarily long re-
duction sequences. It is essentially a Church-Rosser theorem.

Lemma 3. If (Do, e, po, FLo) — conf; and (Do, eg, po, F Lo) — confs,
then

1. If conf, = error , conf; — error
2. If conf, = error , conf; — error
3. confy = (Dy,e1,p1, FLy), conf, = (Da,eq,p2, FL,), and
(FLy —FLI)n(FLO —FL,) =0,
3(Ds, es, p3, F L3)suchthat(Dy, ey, pr, F L)
(D3, €3, p3, F L3)and(Ds, €2, ps, F L) — (D3, e3, p3, F L3)

37



The proof is by induction on the length of reduction sequences.
We now introduce an operational notion of approximation between en-
vironments.

Definition 9. p; is an APPROXIMATION to p, if EQ(p1) C EQ(p,)

Lemma 4. (Do, eo, po, FLo) — (Dh,eq,p1, FL,) = po is an approxima-
tion to p;

The proof is by examining the definition of the reduction relation.

The following lemma states that parallel reductions do not interfere.
This can be viewed as a sort of “monotonicity” property; adding constraints
does not disable a reduction that is enabled.

Lemma 5. If (Do, €9, po, FLo) — confi, then

1. If conf, = error, then

(DoUD, e, po, F Lo)—— error

2. If conf, = (D, e1,p1,FL,), then
(DOUDveOsPOaFLO)
—:—) (DIUDael’plaFLl)

Proof: Induction on the number of one step reductions.
The next two lemmas state that the equations generated from the con-
straints are consistent with the reduction rules.

Lemma 6. If r = y € EQ(DoU po) and (Do, o, po, F Lo) — conf; , and
Do, € are got from Dy, g by replacing all occurrences of y by z, and FL, =
FLoU{y}, and po = U(po, {z,y}) from which all occurrences of y have been
removed, then

1. conf, = error, then (ljo,eb,p'o, F'Lo)—'—+error
2. confy = (D1, e1,p,FL,), then

® (Do, €, po, F Ly) — error, or

38



° (Do,e'o,pb,FLO) —;(Dl,e'l,p'l,Fll), where D, €, are got from
D, e; by replacing all occurrences of y by z, and FL, = FL, U{v},
and py = U(p1, {z,y}) from which all occurrences of y have been
removed.

The final lemma in this section states that if a reduction can be carried
out in a certain syntactic environment it can also be carried out in an envi-
ronment that defines more equations modulo possible renaming of finitely
many variables.

Lemma 7. If (Do, o, po, FLo) — (D1, e1,p1,FL,), and EQ(p,) is an ap-
proximation to EQ(p;), and FL, C FL,, then

(Do, €0, p2, F Ly) = (Dy, €1, p1, FLl), where there is a finite set of equa-
tions E = {z; = y;|t = 1...n}, such that

o {z;li=1...n} =FL, — FL,
o {yili=1...n} =FL, - FL,
¢ Replacing y; by z; in Dy, €, gives Dy, e;, and

p2 = U(pr, {{zi,u1} .. {zn,yn}})

from which all occurrences of y; ...y, have been removed.

6.2.2 The Inclusive Predicate

Inclusive predicates are key components in many adequacy proofs [5,13].
They relate the semantic values with syntactic expressions. They are pri-
marily used to establish that a predicted sematic value is actually attained
by rewriting. For defining the inclusive predicate, we need to develop no-
tation that relates syntactic and semantic environments.

The following definitions capture the notion of an expression dominating
a value or of a syntactic environment dominating a semantic environment.
They are defined in terms of configurations that have no unresolved con-
straints. They are needed for the definition of the inclusive predicate, which
is defined for general configurations, that appears in the third definition be-
low.

39



Definition 10. po COVERS envy, if (Vz)

1. envg [z] = b, where b is a basic value, —>

(0,e,p, FL)—(0,b, p, FL)

2. envq [z] = A, where A is an array, =—>
(envg [A(s)] = b)== ((0,z(s), po, FLo) — (0,5, po, F Lo))
where b is a basic value, and s is any finite sequence.

Definition 11. Let e be an expression and r a semantic value. We say
that e COVERS r IN p,, if

1. r = b, where b is a basic value, =
({0, €, po, FLo) — (B,b, po, F Lo))

2. r = A, where A is of type array, =—
(A(s) = b) = ((0, e(s), po, FLo) — (0,5, po, F Lo))
where b is a basic value, and s is any finite sequence.

Now, we define the inclusive predicate.

Definition 12. Fy < e if when py COVERS envy and Fy envo L = z.

1. =T = (0, e, po, FLy) — error

2. z=(ry, envy), 71 # T, env; # envt =
((9, e, po, F L) —error) vV
(Y((rsin, envysin) T (r1, env,)) =
(3 (D1,e1,p1, FLy): (0, eq, po, F Lo) —(D, e1,p1, FL,))
A (pr COVERS envy;,) A (e, COVERS Ttin IN p1))

Roughly speaking, £ < e means that when e is evaluated the resulting
expression has a meaning that dominates the semantic value z. The signif-
icance of the inclusive predicate is that adequacy is the statement that the
meaning of an expression is related to the expression by <.

40



6.2.3 Proof of adequacy

First, we state a couple of technical results that are used in the proof, and
whose proof follows from the definition of the inclusive predicate immedi-
ately.

Lemma 8. If po is an APPROXIMATION to p; and po COVERS env, then
p1 COVERS env.

Lemma 9. If
eo COVERS r in po, and (Do, eo, po, FLo) — (D, e1,p1,FL,), then e,
COVERS r in p;.

The difficult aspect of an adequacy proof is that one has to construct
a reduction sequence from semantic information. In our case we use the
special properties of fixed-points of closure operators to carry out this con-
struction. In some sense, this is the key to the whole adequacy proof.
Suppose that f and g are two closure operators that correspond to the
imposition of two constraints. Suppose that we know how to construct re-
duction sequences corresponding to the resolution of each these constraints
individually. Then, because we know that the least commmon fixed-point
of f and g is the least fixed-point of f o g, we can construct an interleaved
reduction sequence that corresponds to computing the iterates of fog. In
other words, the special form of the fixed-point iteration provides guid-
ance about how one can construct the interleaved reduction sequence. The
following lemma formalizes this intuition and is given below in detail.

Lemma 10. If Fj < e, F| < ¢;, then F < (eo op €1), where
env vy = Fyenv vy
env v, = Fjenv oy,
aCr

Fenva=Ics vo op 11E 1
envCenv

in (eniv, r)

41



Proof: Since there are no other constraints on r, we have,

env vy = Fyenv L
env vy = Fyenv L
Fenv L =lecs envCernv

in (eniv, vo op v;)

Define
Fy(env,vo,v1,v) = (env’,v},vy,v)
Fi(env,vo,v1,v) = (env’,vg,v},v)
Fy(env,vo,v1,v) = (env,vq,v1,v]] (v 0p v1))
where
Fyenvvy = env' v}
Flenvv, = env' v}

These functions Fy, Fy, F, each represent the stages in computing F in a
particular interleaved computation.

Let pr be the projection function of a 4-tuple on the first and last
(fourth) arguments. Note that F env a =

pr(les [Fo(env, L, L,a), Fy(env, 1,1,a), F(env, L, 1,a)]).
So, in particular, we have

Fenv L = pr(les [Fo(env, L, L, 1), Fi(env, L, 1, 1), Fy(env, L, 1, 1)]).

Let p cover env. Let vg, vy, envy be finite.
We shall prove by induction on k that

Proposition 1. 1. (envy,vo,v1, v 0p v1)C (Fro0Fy0Fy)*(env, 1, L, 1) =

(a) (®,e0 0p e1,p, FL) — error, or
(b) For j = 1...2 x k, we have reductions, (Dj, eo; op eij, pj, FL;)
— (D(j+1), €o(j+1) 9P €x(j+1)s A(j+1)> F L(j41)), where

42



® Dy = ¢, epo = €g, €10 = €1, po = p
e If j is even, e); = e;(j)

o If j is odd, eg; = eg(j+1)

® €o(2xk)s €1(2xk) COVET Vg, VU In poxk
® paxk COVETS envy

2. T E (F2 (o] Fl o Fo)"(env, _L,J_, .L) =
(¢7 €o 0P €1, P, FL) — error

This proposition describes exactly the interleaved reduction sequences for
the two subexpressions of eqope;. We first give a proof of the lemma as-
suming the above.

Since T is a finite element,

TC (F0 Fy o0 Fo)f{env, L, 1, 1) =

(®,e0 0p €1,p, FL) — error.

Otherwise let envg, vy CF env, L. Hence, there are k, vo, vy, all finite, such
that (env, vo, v1,v0 0p v1) E (Fr0 Fyo Fp)*(env, L, 1, 1), where v;C vg op v;.
If we do not have a reduction to error, (®,eo op €;,p, FL) — an opera-
tional configuration (D(;xk), €o(2xk) 0P €1(2xk)s P(2xk)s F L(2xk)), such that

® p(2xk) COVErS envy.

o If vy = 1, the proof is complete. If not, since op is strict, both vg, v,
are base values(integers). Since vy, v; are covered by €o(2xk)s €1(2xk)
respectively in p(;xk), result follows by application of the reduction
rule that reduces the operator symbol and lemma 9.

Now, we prove the first half of the proposition. The proof of the second
part is analagous and is omitted.

e The base case, when k& = 1. First recall that if a continuous function,
when applied to an argument a, produces a finite output then some
finite approximation of a suffices to produce the same output. Now,
from the continuity of op, Fy, Fi, F; and from the explicit form of
their definitions, we deduce the existence of vy, v;, both finite, such
that

(envs,vo,v1,v5) T Fy(envy,vg, vy, L)
(envy,vo,v1,1) T Fi{envy,vo, L, L)
(envy,vo, L, L) C Folenv, L, 1, 1)

43



The result now follows from the hypothesis on Fj, F|, by first per-
forming the reductions on eq, followed by the reductions on e; and
finally using the reduction rule for op.

The inductive case is no harder in principle but there are tedious
details that need to be checked. The idea is exactly the same, we in-
terleave the computations of the subexpressions with the reductions
of op to produce the required reduction sequence. Assume the result
for some k£ > 0. Let p cover env. Let

(envyo, vo, v1,v0 0p 1) (Fp 0 Fy 0 Fo)+ D (env, 1, 1, 1). From conti-
nuity of op, Fy, Fi, F; and their definitions, we deduce the existence
of env’, env”, v}, v} such that

— env’, env”, env", vy, vj, are all finite.

— (envyo, vo, v1,v0 0p v1) T Fy{envyo, vo, v, L)

— (envyo, vo,v1, L) T Fi(env’,vo, v}, L)

— (env',vo, v}, L) C Fy(env”, v}, v}, L)
(

env”, vy, vy, L) C (Fy 0 Fy o Fo)*(env, L, 1, L
0 U1

First, we reason that v, v can be replaced by L. Let v} # L.
Note that the second coordinate of the 4-tuple is altered only by
Fo. Ifv) # L, let j < k be the least such that (L,v0,L,1) C
Fyo (Fy0 Fyo Fo)(env, L, 1,1). Let (env*,v3,v},v*) = (Fyo F, o
Fo)*(env, L, L, 1). It follows from the continuity of Fy that there
exists finite envs,C env* such that (L, vo, L, L) C Fo(envyy, L, L, 1).
Similar reasoning can be adopted for v} also. Thus, by choosing of
envy = | Jlenvyso, envyy, envy,], we deduce the existence of env’, env”

such that
— env’, env” are all finite.
— (envy, vo, v1,v9 0p v;) C Fy(envy, vo, vy, L)
(envg,vo, vy, L) T Fy(env’, vy, L, L)
— (env',vo, L, L) C Folenv”, L, 1, 1)
(env”, L, 1, 1) E (F; 0 Fy o Fy)*(env, L, 1, 1)

From the induction hypothesis, either

44



— (®,e0 0p €1,p, FL) - error, or
- (@,60 op el’p’FL) — (D,566 op ell’p'aFLl)
such that, p’ covers env”.

In the first case, we are done. For the latter case, consider
(env’, v, L, L) Fo(env”, L, 1, 1).
From the hypothesis on F{, e,

— (®, 0, p', FL) — error, or

~ (®,e0,p', FL) — (D", e}, p", FL") such that, p” covers env’, and
ey covers vg in p”.

Note that we need e, instead of eg in the left hand side of the above.
This is achieved through the use of the lemmae proved on the op-
erational semantics. From finitely many applications of Lemma 7 ,
(3(D*, e, p*, FL*)) such that

(D", eg,p", FL") — (D**,eg*, p**, FL**) where there is a finite set of
equations £ = {z; = y;|i = 1...n}, such that Replacing y; by z; in
D™, ey gives D', (), and

o= U™, {{z1, 11} . {zn yn}})

from which all occurrences of y; ...y, have been removed. Using the
diamond property, we deduce that one of the following holds:
- (D**UE,ey*, p*, FL**) = error
_ (Du UEa ean’p"’ FL") _‘_) (D”', 66”, pm’ FL///) and <D", 66’,/)", FL//)
LN <DIII 66” o FL",).
Using Lemma 6, we get,

- (D', e}, p', FLY — error, or
- (D', eq,p', FL) — (D",ef,p", FL") such that, p” covers env’,

and ej covers v in p”.

Exactly similar reasoning used on (envy, vo, v1, L) C Fy(env’,vg, L, L)
gives us the (2 x (k + 2))th set of reductions, which in this case cor-
respond to reductions on the right argument of op.

45



Next, we consider the conditional. This is rather similar to the case of
the binary operator so we only sketch the proof.

Lemma 11. If Fy < €9, F; < €1, F; < ey, then F < cond (eo, €1, €2)
where

Y

envb= Fyenvb
Fenva=Ics envCenv
in if b then Fy env a elseF, env a

Proof: Since there are no other constraints on b, we have

envb= Fyenv L
Fenvl =lcs envCenv
in if bthen Fy env L elseF; env L

Let po COVER env. Let (envy, r) C F env L. We have the following cases:

1. (b= true)

From continuity of all functions involved and algebraicity of Vx ENV,
(Jenvy) (envy : finite) (env;C env) such that

envg, r C F)env, L

envy, true C Fyenv L

From hypothesis, one of the following holds:

(a) (GTL’UI = ean) == (07 €o, pOaFLO> - error
(b) ({0, eo, po, F Lo) —error) V

((3 (DS’CG’ PS,FLS)): <@3603p03 FLO) ":—'}(DSa 667p3a FL3))
A (p3 COVERS envy) A e COVERS true IN ps.

o (0,eq,po, FLy) — error
= (0,cond (60 y €1 ,62), Po, FLO) = error
o If ((3 (D3, €5, p3, F L3)): (D, €o, po, F Lo) — (D3, true, p3, F L3)00)

Sl (0$ cond (60 »€1, 62)7 Po, FLO) "‘—’ <D37 €1, pP3, FL3))
and the result follows from hypothesis that F;, < e,

46



2. (b= false). Identical to the above, with F, used in the place of Fj.

3. (b: T) Fo = e
= (0, eo, po, F Lo) — error
= (0, cond (e , €1 ,€2), po, FLo) — error

4. (b= 1) . Result follows from hypothesis F, < e
The array constructor is considered in the following lemma.
Lemma 12. If F; < e, then F < array (e,), where

envn = Fyenvn
aCr
F enva=Ilcs array (n)C r
envCenv
in (ertv, 1)

Proof: Since there are no other constraints on n, we have,

envn= Fyenv L
array (n) =r
envCenv

in (eriv, r)

Fenv.L:lcs{

Let po COVER env. Let (envy, r4) C(env, r). We have the following
cases:

1. (Tf = T)
= (n=T)
= (0, o, po, F Lo) — error (as Fy =< eg)
= (0, array (eo), po, F Ly) — error

2. (7'! = J_)
= (n=1)
Since Fy <X eg, one of the following holds:

o (envy = envt) = (0, eq, po, FLy) — error

47



* ((0,e0, po, FLy) — error) Vv
(3 (DlaelaphFLl): <0,603p0,FL0) 'L’ (DlvelaplaFLl))
A (p1 COVERS env;)

So, we have

o (envy = envt) = (0,array (eo), po, F L) — error
[ ]

((@’ array (60)7 Po, FL0>—L>err0r)V

(3(D1, e1,p1, FLy) : (0, array (eo), po, FLo)—
(D1, array (e1), p1, FL1)) A (pr COVERSenvy)
3. (Tf;é_L/\T‘f;éT)
(envy, n) T (eriv, n) and s finite. Since, Fy < eo, one of the following
holds:
e (envy = envr) = (0, e, po, F Ly) — error

* ({0, o, po, FLg) —>error) V
(3 <Dl’81,P1,FL1)3 (w,eo,po,FL()) = (Dlael,pl,FLl))
A (p1 COVERS envy) A (eg COVERS n IN p,)

So, we have

o (envy = envr) = (0,array (eo), po, F Ly) — error
* ((0,array (eo), po, F Ly) — error), or
o (3(D1,e1,p1, FLy): (0,array (eo), po, FLo) — (D1, array (e1), pr, FLy))

A (p1 COVERS envg) A (e COVERS n IN p;)

= (3 (D1, e1, p1, F L)) such that

(0,array (eo), po, FLo) — (Dy, [L1...Ln], py U{{L1}...{Ln}, FL,-
{L1...Ln})

A (p1 COVERS envy)

The final case is that of function application. It is done by fixed-point
induction. We need the folowing two facts about closure operators. The
proofs are easy and are omitted.

48



Lemma 13. Suppose that u is the lcs of the equations
= (@)
z = g(z)
where g(z) is computed as the lcs of the equations

r C o,

($1,y) = h(l‘l,y)
(z1,9) = Kk(z1,y)

with z, returned as the result. Then u can be computed as the les of all
the equations taken together.

Lemma 14. Suppose u is computed as the lcs of the equations

= f(z)

where g = Lng,-. Then,
U:LZJICS{ IE-—“‘-f(IL')

Lemma 15. (Ve*a subexpression of F' (eo) : £[e*] 2 %) = E£[F(eo)] <
F(eo)

Proof: We use the notation a < b to mean a is a subexpression of b.
env v = Eleg ertv v
envvr = Ep[Flenvuvr

alCr
envCenv

E[F(eo)] env a = lcs

in (eriv, r)

49



where
{to— v, i L,..., yu— L, F s f}Cenv
env = Cldef — list] env
envr = Elexp] env r
Er[F] = uf. X (env, v, a) lcs aCr
envCenv

in (eriv, v, )

So, we get,
env v = Eleg] eriv v
envvr= 3 Ep[F]ervuvr
E[F(eo)] env a = lcs atr
envCenv
in (eniv, r)
where
1. SF[F(]] = I
2.
{.’Eo = v, Y — -La' sy Yn 1, F— EF[E]}Een{)i-H
enviy; = Cldef — list] enviy,
enl},'+1 Tiy1 = 5[exp] en'l},'+1 Ti+1
Er[Fiyn] = A (env, v, a)lcs aCr;ipy

envCend;

in (envit1, v, rit1)
From Lemma 14,

env; v; = Eleo) entv; v;
env; v; r; = Ep[Fj] eriv; v; r;

U GE'I‘,'
E[F(eo)] enva = 7 lcs envCeriv;

in (677:1),', T‘,‘)

50



Let
env; v; = E[E] env; v;
en'v,- Vi Ty = “:F[R] en’v,' Vi Ty
alr;

7:[F] env a = lcs ,
i[E] envCenv;

in (en'v.-, 7‘,‘)

Note that £[F(eo)] env a = IEJ Ti[eo] env a. We shall prove by induction
on i that £ < F(eo) => 7;[E] < F(E). This will complete the proof as

(envy, r4) C LzJ Tileo) env L = (3i)(envy, rs) C 7i[eo) env L, and we
have 7;[eo] < F(eo)

e (Base: i = 0).
Let po COVER env. Let x = (envy, ry).

{ envg vo = E[E] eng v
C ’
TO[E] env 1 = lcs envl_envg

in (en'vg, ro)

From the operational semantics,

(0, F(E), po, FLo) — ({z = E}, e*,p1, FL;), where

*

e* = ezxpslz/arg][z1/y1]. .. [2n/Yn]

o= pUl{z}, {21} (=)}
FL, = FL—-{z, z1,...2,}

Note that ry = L. Since E < F(eg) = E£[E] < E, we have,

— (envy = envy) = (0, E, po, FLy) —— error

- ({9, E, po, F Loy) —error) V
(3 (Dlael,plyFLl>: (0,E,p0,FLO> —‘-)(Dl’El’pl’FLl))
A (p1 COVERS envy)

51



However, we have,
- (m’EapC)aFLO) - error
= ({z = E},e*,p1, FL;) — error

- (3 (DlaElvplaFLl>: (03 EOapO,FLO) ;*(D17E17p17FL1>)
A (p1 COVERS envy)
== ({1: = E},e*,PlaFLl) _‘_) ({.'1,' = EI}UDI,e*’plaFLl)
A (p1 COVERS envy)

Since ry = 1, e* COVERS ry IN p, is vacuosly true.
¢ (Induction: 7[E] X F(E) => 7;41)[E] X F(E) )

endiyy viy1 = E[E] envipy vipy
ENViy) Vig1 Tig1 = EF[F£+1] eNnYiyy Vit1 Tig1
Ti+1[E] env L = les envCent;y,

in (endt1, Tiy1)
From Lemma 13,

enviyy vip1 = E[E] endiyy vigr

envCendv;y,
{ro—=vip, i L., yn = L, F s Ep[F]}Centiy,
Tit+1[E] env L = lcs entiy, = Cldef — list] env;y, '

enviyy Tiy1 = Elexp] enviy ripy

in (en¥;41, riy1)

From Lemma 13,

( endiyy vip1 = E[E] enviyy vipy
envCenv;;q
{zo—vig, ;i Ly, yu— L, F Ep[F]}Cendiy,
) entiy1 = Clz; = ezp;] enviyy

Ti+1[E] env L = lcs :
entiy1 = Clzm = exp,] enviy,
{ envipy i1 = Elezp] endiyy ripy

in (enviy1, Tit1)

52



Since there are no other constraints on r;;;, we have,

( emi,-+1 Vi1 = S[E] em},~+1 Vi+1

envCenv;;,
{zo— vig, i— L., yo = L, F s Ep[F]}Centiy,
) entiyy = Clz1 = ezpy| endiy
Tit1[E) env L = lcs :
entiyr = Clzm = exzpn| enviyy
{ envit1 riy1 = Elexp] endiy; L

in (enviy1, rig1)

From the hypothesis of the lemma, we have

(Vem < F(eo)) £[e**] X e**. From the induction hypothesis, (VE <
F(eo)) Ti[E] % E[F(E)]. All occurrences of F in the right-hand side
of the equation for 7;4;[E] are bound to £[F;]. So, if F(e) occurs
in any of exp, expi,...erpm, we have 1;[e] < F(e). Using Lemmas
9,10, 11, 12

Elezp] X expy

Elezpm] =X
Elexzp] =X exp
when all occurrences of F' in exp, exp,...exp, are bound to Er|Fy).
Proof now is similar to the Lemma 10 , except that the operational
rule (Do, e, po, FLo) —*—*(Dl, e1, p1, F L) = (Do U{z = e}, e*, po, F'Lo)
(DoU{z = e1}, €%, p1, FL,) is used after the reduction sequences cor-
responding to E[ezp]. .. E[ezpn].

These lemmas complete the cases of the structural induction nneeded
for the adequacy proof.

Theorem 4. (Ve: E[e] <e).

Proof: ( By structural induction).

53



¢ (Base cases)

1. e=c. Let pp COVER env.
E[c] env L = (env, c). Since no basic constant denotes T, it
suffices to note that (Do, c, po, F Lo) satisfies required properties.

2. e=y. Let po COVER env.

— (env[y] = L). (Do,y, po, F Lo) satisfies required properties.

— (env[y] = b). (Do, y, po, FLo) — (Do, b, po, F L) which sat-
isfies required properties.

— (env[y] = A). Follows from the fact that py COVERS env.

¢ (Induction). Use Lemmas 9, 10, 11, 12, 15.

6.3 Proof of full-abstraction

In full-abstraction we aim to establish that the denotational semantics is an
accurate guide to program behaviour in all contests. Since the interpreter
works with operational configurations, the contexts available to the inter-
preter are definition and expression contexts. Let D[] denote a definition
context with one hole. Let C[] denote an expression context with one hole.
We define an operational preorder that expresses the relative contextual
behaviour of syntactic expressions as follows.

Definition 13. ¢;C,, e, if for all definition contexts D[] and for all expres-
sion contexts C|],

¢ (Dle1],C[e1], ®, FL) — b, where b is a integer implies
Dle;], Cles], ®, FL) — b or (Dle;], Cles], ®, FL) — error.
)
)

(

(

¢ (Dle;],Cle1], ®, FL) — error implies
(Dlez2]), Clea], ®, FL) — error

The basic results of this section are that the approximation relation between
the meanings of terms in the domain accurately reflects the operational
preorder. The first theorem below states that the denotational order implies
the operational preorder. This is essentially a consequence of the fact that
one-step reduction preserves meaning.

54



Theorem 5. The denotational semantics is inequationally adequate i.e

5[[61]] cC 8[[62]] = 81;@62
Let £e1] E £[e;] and (Dle1], Clei], ®, FL) — b. Consider
M[(Dle1),Cles,®, FL)] L 1.

Since one step reduction preserves meaning,
M[(Dle,],Cle1,®, FL)] L L = env,b for some env.
Since the context operations are monotone, we have
env,bC M[(Dley],Cles], ®, FL)] L L.

Let z; = Ey[],... ., = E,[] be the equations in the definition context
D[]. Define a function F(z,,...,z,) as follows:
F((L‘l,...l‘n) =
T, =E [62]
Tp = En[eg]
in C[Cz]

Note that (®, F(zi,...2,),®, FL) — (Dley],Cles], ®, FL). Hence, we have
E[F(z1,...72)] L L = M[(Dle),Cles, & FL)] L L

because one-step reduction preserves meaning. Hence,

1,6C E[F(zy,...2,)] L L

Hence, we have, either
o (®,F(zy,...2,),®, FL) - bor
o (®, F(z1,...7,),9,FL) — error

From the Church-Rosser property of the operational semantics, we have
one of

e (Dley],Cleq],®,FL) — bor
o (Dles],Cles], ®, FL) — error

55



The equivalence of the two orders is full-abstraction. It is essentially
a consequence of the fact that all the finite elements of the domain are
expressible as the meanings of expressions, as in Plotkin’s proof of full-
abstraction for PCF [7]. The crux of the proof below is the construction of
contexts that can semantically distinguish two different expressions.

Theorem 6. The denotational semantics is fully-abstract i.e

Eler] € Eller] <= e1Cope2

Proof

The forward implication was proved in the previous theorem. For the re-
verse impication consider the case when E[e;] Z £[e;]. Since the semantic
domains are algebraic

8[[61]] Z 8[[62]] -

(I{envy,v1), (enve,vs))

[f(envl,vl):(envg,vg) C Eﬂe{]] A f(envl,vg)?(epvz,vg) Z Efe2])

where f(envl, v1)={envy, v) 1 the step function in V. x ENV = V x ENV
defined as

f(envl, v2)=(envy, vy) MYV =
env,v if envy,v; Z env,v
env|]env,, v| v, otherwise

Since env, is finite, it can be represented by a finite set of equations,
say E. Similarly, since v, is a finite value the semantic equation ¢ = v; can
be coded as a finite set of syntactic equations that set z to v;. Let this set
of equations be named E’. For the same reasons, there is an operational
expression that corresponds to v; C z A env, C env, say C|z].

In the light of the previous remarks the following function definition is
a valid expression in the syntax of Id-Noveau.

F(z) =
E
El
in if C[z] then 0 else 1.

56



We shall prove that (®, F(-),®, FL) is the required operational context
to distinguish e; and e,. The proof proceeds in two stages:

o First, we deduce that (®, F(e;),®,FL) reduces to 0 or to error.
E[F(e))] L L =M[(®,F.,8FL)] L L=
M[(G,if E'thenOelsel,¢,FL)] L L,
where G = E|J E' U{z = e;}. However, we have

M[(G,if E'thenOelsel,¢,FL)] L L =
E[E]env = env
Clz = e1] env = env
E[E]env = env
E[C[z]] env a=a

in (env, a)

lcs

=W N -

Equation 1 merely asserts that env, C env. Equation 3 ensures that
v1 € env[z]. Now equation 2 ensures that env, C env and env[z] C v,.
So, we deduce that env;,0 C E[F(e;)] L L . Also, (env,,0) is a
finite element in V x ENV. So, we deduce that the result part of
E[F(e1)] L LisO0orT. Hence, (®, F(e;),®, FL) reduces to 0 or to

€rror.

o Let (®, F(ez), ®, FL) reduce to error. This meansthat E[F(e;)] L L =
T. That implies that the least common solution of equations 1, 2 and
3is T. Hence, we deduce that £[e;] env; v; = T, which contradicts
the fact that f(envl,vl)zz»(envg,vg) Z Efezx]. So, (P, F(ez),®,FL)

does not reduce to error.

o Let (®, F(ez),®, FL) reduce to 0. This meansthat 1,0 C £[F(e;)] L L.
That implies that the least common solution of equations 1, 2 and 3 is
greater than (env,, v;). Hence, we deduce that env,, v, C Efes] env; vy,
which contradicts the fact that f(envl, v1)=(envy, vg) Z £[ez]. Hence,

(®, F(ez), ®, FL) does not reduce to 0.

This completes the proof of full abstraction for Cid.

57



7 Conclusions

There are three main results in this paper. First, we gave an operational
semantics for such a language using Plotkin-style structural operational
semantics. Second, we gave an abstract, denotational semantics using clo-
sure operators. The denotational semantics is couched in terms of solving
equations and is rather different from the operational semantics. Finally,
we showed that the denotational semantics is fully abstract with respect
to the operational semantics, thus showing that the abstract semantics fits
precisely with the concrete operational semantics. We feel that this is the
first satisfactory abstract semantic account of what it means to add logic
variables to functional languages. Lindstrom’s account of logic variables,
while couched in denotational formalism, encoded operational notions, such
as the propagation of demand tokens, in the denotational semantics [2].
There are a number of ways in which these results can be extended. It
may be possible to extend the denotational semantics to a higher-order lan-
guage. The full abstraction result will, however, much harder to establish
for such a language. Another problem we have not considered is modeling
termination. Termination is important operationally because a program
may produce the value 2, for example, at its output and then ‘refine’ it to
the error value later in the execution, if some unification operation fails.
Thus, until it is known that the program has terminated, we cannot know
whether an output is final or is subject to further refinement as computa-
tion proceeds. It would be interesting to extend our semantics to capture
this notion of termination. Finally, there remains the problem of reasoning
about functional languages with logic variables. The soundness of the proof
rules in such a system can be verified using our denotational semantics.

References

(1] G. Berry, P. L. Curien, and J. J. Levy. Full abstraction for sequential
languages; the state of the art. In M. Nivat and J. Reynolds, editors,
Algebraic Methods in Semantics, chapter 3, pages 89-132. Cambridge
University Press, 1985.

58



[2] G. Lindstrom. Functional programming and the logic variable. In
Proceedings of the Twelfth Annual Symposium on Principles of Pro-
gramming languages, 1985.

3] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
g g
1984.

(4] Robin Milner. Fully abstract models of typed lambda-calculi. Theo-
retical Computer Science, 4(1):1-23, 1977.

[5] K. Mulmuley. Full Abstraction and Semantic Equivalence. ACM Dis-
tinguished Dissertation Series. MIT Press, 1987. CMU Ph.D. disser-

tation.

(6] R. Nikhil, K. Pingali, and Arvind. Id Nouveau. Technical Report CSG
Memo 265, MIT Laboratory for Computer Science, 1986.

[7] Gordon Plotkin. LCF considered a programming language. Theoretical
Computer Science, 5(3):223-256, 1977.

(8] M. Sato and T. Sakurai. Qute: a functional language based on unifica-
tion. In Logic Programming: functions, relations and equations, 1986.

[9] Dana Scott. Data types as lattices. SIAM Journal of Computing,
5(3):522-587, 1976.

(10] M. B. Smyth. Powerdomains. Journal of Computer and System Sci-
ences, 16:23-36, 1978.

(11] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of
recursive domain equations. SIAM Journal of Computing, 11(4), 1982.

(12] Allen Stoughton. Fully Abstract Models of Programming Languages.
PhD thesis, University of Edinburgh, 1986. Available as CST-40-86.

[13] J. E. Stoy. Denotational Semantics. MIT Press, 1977.

59






	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif

