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This paper represents a contribution to the statistical 

and mathematical theory of orthogonality of latin squares and 

of F-squares. Orthogonal F-squares are useful in designing 

experiments wherein the number of treatments is less than the 

number of rows and columns and wherein several sets of treatments 

are applied either simultaneously or sequentially on the same set 

of experimental units. Hedayat, Raghavarao, and Seiden (1975) 

showed how to construct complete sets of orthogonal F-squares of 

order n = sm where S is a prime number, m is a positive 

integer, and the number of symbols in each square is the same 

constant number. We show how to construct complete sets of 

orthogonal F-squares of order m n = S , where the F-squares in 

the sets have differing numbers of symbols. We demonstrate also 

the relationship between orthogonal latin squares and orthogonal 

F-squares, in particular we show how to decompose complete sets 

of orthogonal latin squares into complete sets of orthogonal 

F-squares. 
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1. Introduction and Definitions 

An F-square has been defined·by Hedayat (1969) and 

Hedayat and Seiden (1970) as follows: 

Definition 1.1. Let A = [Q .. ] 
.1J 

be an n x n matrix and 

let I= {A1 , .A2 , ••• , Am} be the ordered set of m 

distinct eleme~ts .or symbols of A • In addition, suppose 

that for each k = 1, 2, ••• , m, ~ appears exactly ).k 

times ().k .?:, 1) in each row and column of A • Then A 

will be called a frequency square or, more concisely, an 

F-square, on I of·order n and frequency vector 

().1 ,).2 , ••• ,).m) • The notation we use to denote this 

and that when ). = 1 
k 

of order -n results. 

for all k and m = n , a latin square 

As with latin squares, one may consider orthogonality of a 

pair. ofF-squares of the same.order. ~he above cited authors 

have given .the following definition to cover this situation: 

and an F-square F2 (n; u1 , u2 , ••• ,ut) , we say F2 is an 

orthogonal mat·e for· F1 (and write F2 1 F1) , if upon super-

position of F2 on F1 , A. 
.1 

appears )..u. times with B .• 
.1 J J 
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Note that when A. = 1 = u. for all i and j and 
~ J 

k t 
I A . = n = I u. I we have the familiar definition of the 

i=l 1 j=l J 

orthogonality of two latin squares of order n • 

The definition of a set of orthogonal F-squares is given as: 

Definition 1.3. Let {F1 , F 2_, ••• ,Ft} be a set of two or more 

·F-squares of order n > 3 • The F-squares in this set are called 

orthogonal, and we refer to {F1 ,F2 , •.. ,Ft} as an orthogonal 

set, provided that F. 
~ 

and F. 
J 

are orthogonal for each i ~ j 0 

If F1 , F2 , ... ,Ft are all latin squares of order n then a set 

of t mutually orthogonal latin squares results and is denoted 

as OL(n,t). 

If a complete set of orthogonal latin squares of order n 

exists, then t = n - 1 and the set is denoted as OL(n,n-1) . 

If a complete set of orthogonal F-squares of order n exists, the 

number will depend upon the number of symbols in each F-square. 

This leads to the following definition which is a generalization 

of the one given by Hedayat and Seiden (1970) : 

Definition 1.4. A complete set of t orthogonal F-squares of 

order n is denoted as CSOFS(n,t), where t = 
n 
I 

i=2 
N. I 
~ 

the number of F(n; A1 , A2 , ·~·' Ai)-squares in the set 

(i.e., N. 
~ 

is the number of squares with i distinct 

N. 
~ 

is 



elements), 
i 
I. Ah = 

h=l 

n 
The fact that r 

i=2 

3 

n 

n ' and I 
i=2 

N. (i-1) 
1 

2 = n-1) • 

N. (i-1) = (n-1) 2 
1 

in order to have a 

CSOFS follows directly from analysis of variance theory and 

from factorial theory in that the interaction of two n-level 

factors has 
2 (n-1) degrees of freedom and from the fact that 

only interaction degrees of freedom are available to construct 

F-squares. For each F(n; l 1 ,12 , ••• ,.li)-square, there are 

(i-1) degrees of freedpm associated with the i distinct 

symbols of an F-square, there are N. F-squares containing 
1 

symbols, and hence 
2 n 

(n-1) = I N. (i-1) • 
. 2 1 1= 

2. One-to-One Correspondence Between Factorial Effects and 

Orth~gonal Latin Sguares and Orthogonal F-Squares. 

i 

From results in Bose (1938) and {1946), we may write the 

following theorem on the construction of the complete set of 

orthogonal latin squares from a symmetrical factorial experiment. 

Theorem 2.1. Let n = Sm where S is a prime number and m 

is a positive integer. The pomplete set of orthogonal latin 

squares of order n , i.e. the OL(n,n-1) set, can be constructed 

m 2 
from a {S ) symmetrical factorial experiment, i.e. a symmetrical 

factorial experiment with 2 factors each at sm levels. 
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A similar theorem for F-squares due to Hedayat, Raghavarao, 

and Seiden (1975), is: 

Theorem 2.2. Le~ S be a prime number and m be a positive 

integer. For any.in.teger·p, that is a.divisor of·m, the complete 

·set of (Sm-1) 2 I csP-1) orthogonal F (Sm; sm-p I sm-p I ••• ,sm-p)-
2m 

squares can be constructed from a (Sp),r symmetrical factorial 

experiment, i.e. a symmetrical factorial experiment with 

2m 
p 

factors each a sP levels. 

3. Decomposing Latin .. Squares . into F-Squares 

The following is a theorem on the decomposition of latin 

squares into orthogonal F-squares. 

Theorem 3 .• 1. Each .latin square in the set of orthogonal latin 

squares, OL(Sm, sm-1) , can be decomposed into (Sm-1)/(S-1) 

th 1 F(sm sm-1 5m-l sm-1) d h or ogona : , , ••• , -squares, an t e 

entire OL(Sm, sm-1) set can be decomposed into (Sm-1) 2/(S-1) 

th 1 F(sm,. sm-1 5m-l sm-1) or ogona , , ••• , -squares. 

Proof: Consider a (S) 2m symmetrical factorial experiment, 

i.e., a symmetrical factorial experiment with 2m .factors 

eact at S levels. Taking p = 1 in theorem 2.2, we can 
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construct from the unconfounded-with-rows-and-columns pencils 

m 2 k = (S -1) /(S-1) , the complete set 

f k th 1 F(sm,. 5m-l 5m-l 5m-l) o or ogqna . , , ••• , . -squares. It 

is also true from theorem 2.1, since s 2m = (Sm) 2 , that we 

may construct the complete set of n - 1 = Sm - 1 orthogonal 

latin squares of order m n = S , i.e. the OL(n,n~l) set, from 

the unconfounded-with-rows-and-columns pencils 01 , o2 , ••• ,Qn-l 

in a symmetrical fa~torial experiment with 2 factors, each at 

sm levels. 

up of 

Since it is true that each pencil Q. 
l. 

is made 

orthogonal Q.'s, we have that each latin 
J 

square of order n = Sm , is made up of, or decomposes into, 

( m ) I ( ) h 1 F (Sm,. Sm-1, m-1 m-1) S -1 S-1 ort ogona S , ••• ,s -squares. 

Hence we have that the entire OL(Sm, Sm-1) set decomposes 

(sm_1 )2/(S-l) F(Sm,. 5m-1 1 m-1 m-1 into orthogonal S , ••• ,s )-squares. 

The second decomposition theorem is a generalization of theorem 3.1: 

Theorem 3.2. If p is a divisior of m , then each latin square 

in the set of orthogonal latin squares, OL(Sm, sm-1), can be 

squares, and the entire OL(Sm, Sm-l) set can be decomposed into 

orthogonal m m-p m-p m-p F(S ~ S , S , ••. , S )-squares. 
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Proof. Consider a (Sm) 2 symmetrical factorial experiment, 

i.e., a symmetrical factorial experiment with 2 factors each 

at Sm levels. By theorem 2.1, we can construct from the 

unconfounded-with-rows-and-columns pencils 01 , o2 , ••• ,Qn-l , 

where n = Sm , the complete set of n - 1 orthogonal latin 

squares of order n , i.e.,- the OL{n,n-1) set. It is also 

2m 
true from theorem 2.2, since s2m = (SP)P , that we may 

construct the complete set of k orthogonal 

m m-p m-p m-p F (S ; S , S , ••• S )-squares, where 

from the unconfounded-with-rows-and-colurnns pencils 

o1 , o2 , ••• ,Qk in a symmetrical ~actorial experiment.with 

2m 
p 

factors each at levels. Since it is true that each 

pencil:_ Qi is made up of Q.'s,we 
J 

have that each latin square of order m n = S , is made up of, or 

decomposes into, (Sm-1)/(Sp-1) orthogonal 

m m-p m-p m-p F{S ; S , S , ••• ,s )-squares. Hence we have that the 

ent~re OL(Sm, Sm-1) t d . t (Sm 1) 2/(Sp 1) • se ecomposes ~n o - -

orthogonal m m-p m-p m-p F(S ; S , S , ••• ,s )-squares. 

A third decomposition theorem illustrates how each latin 

square in an OL(Sm, sm-1) set may be decomposed into F-squares 
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with two different numbers of symbols. 

Theorem 3.3. Each latin square in the set of orthogonal 

latin squares, m m OL(S , S -1) , can be decomposed into one 

F(sm,. S S S) ' ' ... ' plus Sm-1 F(Sm,. 5m-l 5m-l 5m-l) ' ' . . . 
orthogonal F-squares of order Sm , and the entire OL(Sm, sm-1) 

set can be decomposed into (Sm-l)F(Sm; s,s, ••• ,S) plus 

sm-l(Sm-l)F(Sm; sm-l,sm-l, ••• ,sm-l) orthogonal F-squares 

of order sm • 

Proof. Consider a (s) 2m symmetrical factorial experiment, 

i.e., a symmetrical factorial experiment with 2m factors 

each at S levels. Taking p = 1 in theorem 2.2 we can 

construct from the unconfounded-with-rows-and-columns pencils 

k h 1 F(sm,. m-1 5m-1 m-1) art ogona S , , ••• ,s -squares. There 

exists (Sm-1) sets of (Sm-l_l}/(S-1) Q. 'S that form 
1 

(Sm-1) pencils each with Sm-l - 1 degrees of freedom. We 

can use these to form orthogonal m F(S ; S, S, ••• ,S)-squares. 

Hence we have formed a set of (Sm-l)F(Sm; s,s, ... ,S) plus 

5m-1( 5m_1 ) F(Sm; 5m-l,Sm-l, ••• , 5m-l) . 
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orthogonal F-squares of order Sm. 

It is also true from theorem 2.1, since s 2m = (Sm) 2 , 

that we may construct the complete set of n - 1 = sm - 1 

orthogonal latin squares of order n = sm , i.e •. the 

OL(n, n-1) set, from the unconfounded-with-rows-and-columns 

pencils 01' 02, .•• , on-1 in a symmetrical factorial 

eXperiment with 2 factors each at Sm levels. Since it 

is true that each pencil Q. 1. is made up of 

orthogonal Q.'s , we have that each latin square of order 
J 

Sm · d f d 't n = , 1.s ma e up o or ecomposes 1.n o 

orthogonal F-squares of order Sm ; we have that the entire 

set decomposes into m m (S -l)F (S ; S, S, ••• ,S) plus 

order sm • 

4. Complete Sets of Orthogonal F-Squares with Differing 

Numbers of Symbols 

We show in this section, how to construct complete sets 

of orthogonal F-squares of order m n = 5 , where the F-squares 



9 

in the sets have differing numbers of symbols, instead of a 

constant number. This is useful to experimenters who have 

differing numbers of treatments from square to square. 

Theorem 4.1. There exists and one can construct complete 

sets of orthogonal F-squares of order n = Sm where the 

F-squares are of varyingtypes. "In particular, any complete 

set of orthogonal F-squares of order Sm can contain 

F(sm,. 5m-p, 5m-p
1 

m-p ••• , S )-squares for any integer p , 

1 th t d · · d d F (Sm,. S, S S) < p < m, a 1v1 es m, an , ••• , -squares. 

Proof. Take the OL(Sm, sm-1) set. We can decompose as many 

latin squares as we wish from the OL set into 

F(Srn; m-p m-p m-p for integers that s ' s , ... , S )-squares p 

divide m ' including p = 1 and p = m by theorem 3.2. 

We can also decompose as many latin squares as we wish into 

m F(S; S, S, ••• , S)-squares and F(sm,. 5m-l, m-1 m-1 s , ... ,s )-

squares by theorem 3.3. 

Example 4.1. There exists a complete set of orthogonal F-squares 

of order n = consisting of 

(a) 9F(4; 2, 2.)-squares 

or 
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{b) 6F{4; 2, 2)-squares and 1F(4; 1, 1, 1, !)-squares 

or 

{c) 3F{4; 2, 2)-squares and 2F(4; 1, 1, 1, !)-squares 

or 

(d) 3F(4; 1, 1, 1, !)-squares. 

-These four complete sets of orthogonal F-squares of order 

four are obtained from the OL(4,3) set. ·We get set (a) by 

decomposing all 3 latin squares in the OL set into 

F(4; 2, 2)-squares by T~eorem 3.1, set (b) is gotten by 

decomposing 2 latin squares in the OL set into 

F(4; 2, 2)-squares and leaving the third latin square un

decomposed, set (c) is gotten by decomposing 1 latin square 

in the OL set into F(4; 2, 2)-squares and leaving the 

other two latin squares undecomposed, ·and set (d) is obtained 

by leaving all 3 latin squares in the OL set undecomposed. 

(One can also use a latin square of order 4 with no orthogonal 

mate, decompose it into 3F(4; 2, 2)-squares and then can find 

6 other F(4; 2, 2) squares to construct sets (a) or (b).) 

Example 4.2. One of the many complete sets of orthogonal 

F-squares of order n = 2 6 = 64 that exists, consists of 

10(63} + 9(32) = 918 F(64; 32, 32)-squares, 

12(21) = 252 F(64; 16, 16, 16, 16)-squares, 

21(9) = 189 F(64; 8, 8, ••. , B)-squares, 

9(1) = 9 F(64; 2, 2, ••• , 2)-squares, and 

11(1) = 11 F(64; 1, 1, •.• , !)-squares. 
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This set is obtained from the OL(64, 63) set by 

decomposing 10 latin squares into F(64; 32, 32)-squares 

by theorem 3.2, decomposing 12 latin squares into 

F(64; 16, 16, 16,'16)-squares by theorem 3.2, decomposing 

21 latin squares into F{64; 8, 8, ••• , B)-squares by 

theorem 3.2, d~composing 9 latin squares into 

F(64~ 2, 2, ••• , 2)-squares and F'(64; 32, 32, 32)-squares by 

theorem 3.3, and leaving 11 latin squares undecomposed. 

5. Example. 

As an example consider the 3 3 
OL(2 , 2 -~ = OL(8, 7) set. 

We may relate the complete set of 7 orthogonal-latin squares 

of order 8 to a 2 2 (3 ) = 26 factorial treatment design. Let 

the six main effec·ts be A, B, C, D, E, and F each at two 

levels 0 and 1 • We set up an 8 x 8 square consisting of 

the 26 = 64 treatment combinations, confounding three main 

effects and their interactions with rows and three main effects 

and their interactions with columns. Without loss of generality 

let us confound main effects A, B, C and their interactions 

AB, AC, BC, ABC with rows and let us confound main effects 

D, E, F and their interactions DE, DF, EF, DEF .-with columns. 

Then we have the square in figure 5.1. 
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Columns 

bls 1 .2 3 . 4• 5. .6 7 8 

1 000000 000100 000010 000110 000001 000101 000011 OOOlll 
2 100000 100100. .100010 100110 100001 100101 100011 lOOlll 
3 010000 010100 010010 010110 010001 010101 010011 010111 
4 110000 110100 110010 110110 110001 110101 110011 110lll 
5 001000 001100 001010 OOlllO 001001 001101 001011 OOllll 
6 101000. 101100 101010 101110 101001 101101 101011 lOllll 
7 011000 OlllOO 011010 OllllO 011001 OlllOl 011011 0]]]]] 
8 111000 111100 lllOlO 111110 lllOOl. llllOl lll011 ]]]]]] 

Figure 5.1 

We obtain the following analysis of-variance table relating 

F-squares and latin squares to the effects in the 26 factorial 

treatment design: 
Source of variation d.f. 

CFM 1 
KMS 7 

A 1 
B 1 
AB 1 
c 1 
N:. 1 
oc 1 
~ 1 

cor.n-fiS 7 
D 1 
E 1 
DE 1 
F 1 
DF 1 
EF 1 
DEF 1 

IA-"T'JN ~ NtMBER CNE 'l.'R'FJm.1ENI'S 7 
{AD = F1 (8;4,4) treatnents n F1 (8;2,2,2,2) treatments BE = F2 (8;4,4) treatments 3 

ABDE = F3 {8;4,4) treatments 

CF = F4 (8;4,4) treatments 1 
ACDF = F5 (B;4,4) treabrents 1 

ECEF = F6{8;4,4) treatments 1 
AOCDEF = F7 (8;4,4) treatments 1 
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IATIN SCU\RE NUMBER 'liD TRFATMEN1.'S 7 

{~ = F8 (8;4,4) trea'ble:lts 1 l 
F2 (8; 2,2,2,2) trea:tnents BD = F9 (8;4,4) treatments ·1 > 3 

1 J ABEF = F10 (8;4,4) treatments 

CDE = FuC8;4,4) treatments 1 

1CF = F12 C8;4,4) treatments 1 

ECE = F13 (8;4,4) treatments 1 
ABCDF =·F14 (8;4,4) treatments 1 

lATIN SCU\RE NUMBER ·THREE 'l.'RFA'JMNI'S 7 

{AEF = F15 (8;4,4) treatments 

~ t3 F3(8;2,2,2,2) treatments BCF = F16 (8;4,4) treat::nents 

lABCE = F17 (8;4,4) treat::nents 1 J 
~F = F18 (8;4,4) treat::nents 1 

BOE = F19 (8;4,4) treat::nents 1 

N:D = F20 (8;4,4) treat::nents 1 
CDEF = F21 (8;4,4) treatnents 1 

lATIN 5CUARE NUMBER FOUR 'ffiFATMENTS 7 

JADF = F22 (8;4,4) treatments 

~t F4(8;2,2,2,2) treatirents treatlrents 3 l~ = F23 (8;4,4) 

l J BCD = F24 (8;4,4) treatlrents 

ABE = F25 (8;4,4) treatmants 1 
BDEF = F26 (8;4,4) treatmants 1 

CEF = F27 CB;4,4) treatments 1 

ACDE = F28 C8;4,4) treatmants 1 
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lATIN SCUARE NUMBER FIVE TREM!-~1l'S 7 

trea~{: 
= F29 (8;4,4-) treatments 

;} F5 (B;2,2)'2,2) = F30.(8;4,4) treatm:mts 3 

= F31 (8;4,4) treatments 

CE = F32 (8;4,4) treatments 1 

1\CEF = F33 (8;4,4) treatments 1 
:oc:DEF = F34.(8;4,4) treatments 1 

AECDE = F35 (8;4,4) treatments 1 

lATIN ~NUMBER SIX ~. 7 

{ADE = F36 (8;4,4) treatments 

;} F6{8;2,2,2,2) treatments BF = F37 (8;4,4) treatments 3 
ABDEF = F38 (8;4,4), treatments . 

B:DF = F39 (8;4,4) treatments / 1 

ABCEF = F40 C8;4,4) treatments 1 

CD = F41 (8;4,4) treatments 1 

ICE = F42 (8;4,4) treatments 1 

lATIN SCUARE NUMPER SEVEN TRFA'IMENl'S 7 

treaments {:: 

= F43 (8;4,4) treatments 

~} F7 (8;2,2,2,2) = F44 (8;4,4) treatments 3 

CDF = F45 (8;4,4) treatments 

AE = F46 (~;4,4) treatments 1 

ABF = F47 (8;4,4) treatments 1 

AOCD = F48 (8;4,4) treatments 1 

ACDEF = F49 (8;4,4) treatments 1 

64 
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To construct latin square number one from effects AD~ 

BE, ABDE, CF, ACDF, BCEF, and ABCDEF we let the symbols 

I, II, ••• , VIII in the ·latin square be represented as shown 

in Figure 5.2 • We now take the 8 x 8 .square of the 

26 treatment combinations (Fig~re S.l)and put our "treatments" 

I, II, ••• , VIII'in the appropriate cells. We then get the 

following 8 .x 8 .latin square: 

I v III VII II VI IV VIII 

v I Vli III VI II VIII IV 

III VII I v IV VIII II VI 

VII III v I VIII IV VI II 

II VI IV VIII I v III VII 

VI II VIII IV v I VII III 

IV VI!I II VI III VII I v 
VIII IV VI II VII III v I 

The remaining six latin squares are constructed in the same manner 

from their corresponding set of seven single degree of freedom 

effects in the analysis of variance table. The seven latin squares 

of order 8 constructed in this manner are pairwise orthogonal. 

Hence we have constructed the OL(8,7) set from the analysis of 

variance of the 26 factorial treatment design. 

Each single degree of freedom effect can in turn be used to 

construct an F(8;4,4)-square by Theorem 2.2. To construct the 

F-square F1 (8;4,4) from the AD effect in the analysis of 

variance table we let the symbols a and 6 in the F1 (8;4,4)-square 



,eve1 of Effect Combi'nations 

AD) 0 ,<BE> 0 ,<CF> 0 ,~E> 0,~> 0,<BCEF> 0,~> 0 oooooo,10010~010010,110110,001001,101101,o11o~111111 = I 

AD) O, (BE) O, (CF) 1, (ABDE) O, (.ACDF) 1 , (BCEF) 1, ~) 1 001000, 101100, 011010, 111110, 000001, 100101, 010011, 110111 = II 

AD) 0 ,(BE) 1 ,(CF) 0,~) 1,~F) 0 ,(BCEF) 1 , ~EF) 1 01000~110100,0000101100110,01100~lll101,001011,101111 = III 

AD) 0, (BE) 1, (CF) 1, (.ABDE) 1 I (ACDF) 1, (BCEF) 0, (AIO)EF) 0 011000, 111100, 091010, 101110, 010001, 110101, 0000~ 100111 = IV 

AD) 1' (BE) 0' (CF) 0' (ABDE) 1' (KDF) 1' (BCEF) 0' ~) 1 

AD) 1' (BE) O' (CF) 1' (ABDE) 1' (ACDF) Ol (BCEF) 1' (AB:DEF) 0 

AD) 1' (BE) 1' (CF) 0' ~E) 0' (ACDF) 1' (BCEF) 1' (AB:DEF) 0 

AD) 1, (BEi) 1 I (CF) 1 I (ABDE) 0 I (.N:DF) 0, (BCEF) 0, ~) 1 

100000,000100,11001~ 010110,101001,0011Q~1110~011111 = v 
~ 

10100~ 00110~ 11101~ 011110,10000~00010~110011,010111 = VI ~ 

11000~010100,100010,000110,1~1001,011101,101011,001111 = VII 

11100~ 01110~101010,001110,110001,01010~100011,000111 =VIII -

Figure 5.2 
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be represented as follows: 

Level of Effect 

{AD) o. 

Combinations ·<s·ee· Figure 5.2) 

I, II, III, IV = a 

{AD) 1 V, VI, VII, VIII = B 

We now take the .8 X 8 square of ·the 26 treatment 

combinations {Figure 5.1) and put our "treatments" a and 

in the appropriate cells. Or alternatively, we could take 

the previously constructed latin square number one and 

replace "treatments" I, II, III, and IV by "treatment" 

"treatments" V, VI, VII, and VIII by "treatment" B . In 

either case we get the following F1 {8;4,4)-square: 

a B a B a B a B 
B a B a B a B a 

a B· a B a B a B 
B a B a B a B a 

a B a B a B a B 
B a B a B a B a 

a B a B a B a B 
B a B a B a B a 

B 

a and 

The remaining forty eight F{8;4,4)-squares are constructed 

in the same manner from their corresponding single degree of 

freedom effect- in the analysis of variance table. The forty 

nine F{8;4,4)-squares constructed in this manner are pairwise 

orthogonal. Hence each latin square in the OL(8,7) set 

I 
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decomposes into 7 orthogonal F(8~4,4)-squares and the entire 

OL(8,7) set decomposes into 49 orthogonal F(8;4,4)-squares. 

In the preceding analysis of variance table, under Latin 

Square Number One Treatments, we see that the set of three effects 

AD, BE, and ABDE ·is closed ~nder multiplication·and hence can 

be used to construct an F1 (8:2,2,2,2)-square. To construct 

this F1 (8~2,2,2,2)-square we let the symbols W, X, Y, and z 

in the ~1 (8~2,2,2,2)-square be represented as follows: 

Level- of Effect Combinat·ions (see Figure 5.2) 

(AD) 0 ,(BE) 0 ,(ABDE)O I I II = w 

(AD) 0 ,(BE) 1 ,(ABDE)l III , IV = X 

(AD) 1 ,(BE) 0 ,(ABDE) 1 v , VI = y 

(AD) l, (BE) l, (ABDE) O VII , VIII = z 

We not take the 8 x 8 square : of the 26 treatment combinations 

(Figure 5.1) and put our "treatments" W, X, Y, and Z in the 

appropriate cells. Or alternatively, we could take the previously 

constructed latin square number one and replace "treatments" I 

and II by "treatment" W , "treatments" III and IV by "treatment" 

X, "treatments" V and VI by Y , and "treatments" VII and VIII 

by Z. In either case we get the following F1 (8;2,2,2,2)-square: 

w y X z \'1 y· X z 
y w z X y w z X 
X z w y X z w y 
z X y w z X y w 
w y X z w y X z 
y w z X y w z X 
X z w y X z w y 
z X y w z X y w 
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Note that the set of seven effects corresponding to each latin 

squazehas such a subset of three effects that is closed uner 

multiplication. Bence we see that each latin square in the 

OL(8,7) set decomposes into. one F(8;2,2,2,2) and four 

F(8;4,4)-squares. And so we can say that the entire OL(8,7) 

set de~omposes.into seven F(8;2,2,2,2)-squares and twenty-eight 

F(8;4,4)-suqares. This is a direct application of Theorem 3.3. 



·-
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