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Abstract

The design of inventory control policies for serial systems is a topic currently being
explored by a number of researchers. Our goal — in two papers — is to synthesize and
extend some of these efforts. We consider, simultaneously, four sources of variability in
production lines — processing time variability, machine breakdowns, rework and yield
loss — and show some similarities and differences in their effects on the performance
of the line. In this paper, we introduce an enhanced model that accomodates raw
material and demand uncertainity and demonstrate that many of the sample path
results obtained previously can be extended.

The main objectives of this paper are: (1) to demonstrate that Constant Work-in-
Process (CONWIP) and the traditional kanban control are just two extremes in a finite
family of implementable pull controls; (2) to show that while machine breakdowns,
rework and random processing times have a similar effect in terms of the optimal
decisions, yield losses in the line may have to be managed differently.

1 Introduction

During the past decade much attention has been given by both academics and practitioners
to alternative approaches for controlling the flow of material in production systems. A cur-
sory perusal of some of recent research gives an impression that various new and different
approaches are being developed, and that some of them are in conflict with others. How-
ever, upon closer examination, we observe that many are only special cases of a family of
controls. Furthermore, different papers emphasize specific instances of sources of variability
that are present in general production systems; however, these differences are not always
real. Consider the following two specific examples. First, there has been considerable dis-
cussion about CONWIP (Woodruff et al.(1990)) and its comparison with the traditional
kanban mechanism (Schonberger(1982), Karmarkar and Kekre(1990)). Second, papers have
have been written that study the effects of variability in processing times (Karmarkar and



Kekre(1990), Conway et. al (1988)), and the study of machine unreliability and demand
variability (Deleersnyder et al.(1989)) on system performance. That these and other sources
of variation can conceptually be considered equivalent seems to have been overlooked. Using
this observation, structural results independent of processing time distributions were devel-
oped in Tayur(1992), which we extend in this paper. For an exhaustive list of references on
kanban research, see Buzacott and Shanthikumar (1992).

We have two main objectives for this paper. First, we demonstrate that CONWIP and
the conventional kanban control are just two extremes in a finite family of implementable pull
control systems. Our analysis extends the structural results of Tayur(1992) by considering
stochastic demand and raw material processes, and so demonstrates that many sources of
variabilty can be considered to be equivalent in a more general setting.

Second, we demonstrate that there is a difference between yield losses and the sources
of variability considered in Tayur(1992)-processing time variability, rework and machine
breakdown. Studying the system via the structural results helps greatly in managing systems
with greater complexity as it provides the intuition required to set the design parameters.

We first present a model that accomodates raw material and demand uncertainites in
our framework which extends the model introduced by Mitra and Mitrani(1990).

2 The Model

We study a serial manufacturing system that uses a general kanban control mechanism.
Processing times are variable, machine breakdowns are possible, rework may be required
and yield is not perfect (the yield at any processing step is random). Further, the demand
process as well as the raw material arrival process are stochastic. The undesirable effects
of randomness include reducing throughput capacity, missing delivery dates and limiting
the effectiveness of planning and scheduling activities. By buffering a production line (by
safety time or safety stock) most of the undesirable effects of uncertainty can be mitigated.
The greater the buffer capacities, the greater the protection against uncertainties; but, this
protection is not without expense. Apart from the dollar value of inventory, other costs
include the inability to respond quickly to changes in demand (due to long lead times)
and to identify poor quality of products (as it takes time to identify the problem that
caused defects). It is also well known that by locating inventory in different places in a
line— different buffering strategies— the system performance can be altered considerably.
Consequently, it is important to identify the best buffer capacities in a line. Thus, the
trade-off lies in balancing the benefits of buffering with the costs of inventory. A kanban or
pull system has two attractive qualities for line management: (1) there is a clear control of
the amount of inventory at each location, and (2) the kanban mechanism reacts dynamically
and immediately to a yield loss and other sources of variability. Because of these attributes,
many variants of the mechanism discussed here have already been successfully implemented
around the world.

The serial production line we will study consists of M machines arranged in a series (or
in tandem). These M machines are partitioned into N cells. Each cell consists of a set of
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machines grouped together such that the total number of kanbans for this group is fixed.
Thus, a cell is simply a kanban loop. A cell partition is a collection of non-overlapping and
collectively exhaustive groups of consecutive machines. If all the M machines are in the
same cell, we have a CONWIP (CONstant-Work-In-Process) type control system; if, on the
other hand, there are a total of M cells, each cell containing exactly one machine, we have a
traditional kanban control system (TKCS). To formalize our ideas and to make our exposition
precise, we introduce the following (mathematical) description of a control system.

We will use N/(My,...,Myn)/(Ch,...,Cn)/(B) to denote a serial production line with N

cells, M; machines in cell 7z, C; white kanbans in cell 2, 2 = 1 ... N and B colored cards that
circulate throughout the shop floor. By allocation we mean the vector (Cp,...,Cy), and
by partition we mean (M, ..., My). Theset { N/(My,...,Mx)/(Cy,...,Cn): OX, M; =

M, M; > 1,2;’!1 C; = C,C; > 1,N < M} contains all possible configurations for a line
with M machines and C white kanbans. Using this notation, we see that CONWIP is
1/(M)/(C)/(.) system, and TKCS is a M/(1,...,1)/(C1,...,Cum)/(.) system. All other
configurations give rise to other possible designs within this family of controls. Henceforth,
we will refer to the general control scheme as kanban control.

We briefly describe the essentials of a single-product kanban controlled system. The
description is in two stages. First, we show how material is moved within a cell and from
one cell to another (Figure 1), and second, we show how a signal of a satisfied demand pulls
raw material into a cell (Figure 2).

As shown in Figure 1, a cell consists of

1. machines in tandem - the processing times on the machines may be stochastic, and all
parts go through each machine exactly once.

2. an output hopper — in which batches of material that have completed all operations in
the cell (and have not suffered a complete loss) wait for withdrawal by the successor
cell.

3. a bulletin board — where requests are posted for material from the predecessor cell, in
the form of kanbans. (We assume that these kanbans are white in color.)

The product moves through the line in batches, which can be of size one. The service
discipline is first-come, first-served, and each machine can process only one part at a time.
No preemptions are allowed. The parts completed in cell £ — 1 become the input material
for cell k, for k=2,..., N. A batch must acquire one of these white cards in order to enter
the cell, and must continue to hold it throughout its stay in that cell. After a batch has
been completed in cell k, it is placed in the output hopper with its white kanban, awaiting
admission into the next cell. If there is a complete yield loss at a particular machine in a cell
(say in cell k, all items in the batch are scrapped), then the batch is thrown away and the
white kanban that was attached to this (rejected) batch is placed on the bulletin board of
cell k£, signalling a need for replenishment. This immediate pull response to a yield loss is an
attractive quality of this mechanism. (If at the end of a processing step a batch contains at
least one good item, then it is sent to the next processing stage. The determination of the
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Cards E N Cards _ To Cell
From Cell - - k42
E—1 A D B
Cell k£ Cell £ +1

A: Bulletin Board of Cell k&

B: Output Hopper of Cell k

D: Card traveling from Output Hopper to Bulletin Board
E: Part transferred to Cell k£ + 1 from Cell &

Figure 1: Cell Description.

number of non-defective items in a batch is made at the end of the processing of the batch.)
Both rework and machine breakdowns are accommodated by a suitable change to the form
of the processing time distribution at a machine.

Note that the mechanism is pull between cells, and push within a cell. Also note that it
is not possible for both the output hopper of cell ¥ and the bulletin board of cell k+1 to be
simultaneously non-empty. If a white kanban is present on the bulletin board of cell £ + 1,
and a batch is available in the output hopper of cell k, the batch would be moved to the
queue in front of the first machine in cell £+ 1 along with the white kanban from the bulletin
board of cell & + 1. Thus, the maximum inventory possible in cell £ is C batches, and no
inventory can sit between adjacent cells. This is how white kanbans control inventory in the
cells. When a completed part is withdrawn to the next cell (cell £+1) the white kanban of
cell k stays within the cell, and is posted on the bulletin board of cell k. This is a signal to
the preceding cell, cell k-1, that cell k needs a part. Thus, white kanbans also serve as an
information system that controls material transfer between successive cells.

As shown in Figure 2, in addition to the cells described above, there are colored cards that
circulate through the shop, a shop bulletin board and a shop output hopper. To illustrate
how the system functions, at time zero start with the shop output hopper full-thus all the
white cards are in their respective bulletin boards. Any raw material is waiting before the
shop bulletin board. If a demand occurs, the part leaves the shop output hopper, and the
colored card is placed in the shop bulletin board. If there is raw material, and there is a white
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A: Colored Card and Raw Material

B: Colored card and semi-finished product
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D: Colored Card

Figure 2: Model of the shop floor.

card in the bulletin board of cell 1 (for the first demand there always will be), then the raw
material and the colored card enter cell 1. From Cell 1 to Cell NV, the part and the colored
card never separate, and the transfer between cells is the same as described earlier. After
processing in cell N, the part and the colored card are placed in the shop output hopper.
Thus, Cell N’s output hopper is never used. If a batch is scrapped entirely, the colored card
is placed on the shop bulletin board. Note that a white card in the bulletin board of cell 1
implies either there is no raw material or there is no colored card. The throughput of the
system depends on the mean of the demand process. Note that backorders of demand can
become arbitrarily large, and as the raw material process is assumed exogenous, the raw
materials can pile up too, if not co-ordinated well. Increasing the number of colored cards
decreases the waiting time of the demands, while increasing the white cards improves the
maximum achievable throughput of the line.

In our context, then, the problem of buffering a M machine serial production line is
equivalent to partitioning the line into NV cells, allocating a certain number of white kanbans
to each cell and allowing a certain number of colored cards in the system. There is no reason,
apriori, to expect any one control from the above family to be superior to all others in all
possible scenarios. In particular, neither CONWIP nor the traditional kanban control can
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claim superiority over another in all situations. However, some controls will be superior to
others for particular objectives. We will demonstrate this fact subsequently and in the sequel
to this paper (Muckstadt and Tayur 1993).

The remainder of this paper is organized as follows. In section 3, using sample path

methods, we (1) provide structural results for allocation of white cards to cells, (2) demon-
strate that reversibility is lost in the presence of yield losses and (3) show that the optimal
partition is CONWIP when there is a constraint on the total number of white cards. We also
provide a partial characterization of the sequence of machines in the presence of yield losses.
The sequel to this paper (Muckstadt and Tayur(1993)) discusses the allocation and partition
decisions when the constraint is on average inventory, where we show that for balanced lines,
TKCS may be the best strategy. Section 4 concludes this paper. all proofs are provided in
the appendix.
Remark. This model can be extended to a multi-product setting, by having different sets of
colored cards for different products. There is now an additional set of decisions to be made.
We must determine the sequence in which jobs at machines should be processed when there
is more than one type of job awaiting processing. Note that the white cards will limit the
number of parts in the cell, as before. Two loading rules-static and dynamic— are being
analyzed in a parallel work along with the interaction between white and colored cards. The
effect of setup times on batch sizes is also relevant in multi-product lines. These issues will
not be discussed here.

3 Structural Results

The structural results of Tayur(1992) are extended and the effects of yield losses are studied in
the subsections that follow. The sample path description of the line is provided in Appendix
A; the proofs of the theorems are in appendices B-E. As will become clear by the sample
path analysis provided in the appendix, the results of this section are independent of the
demand variations.

3.1 Dominance

In this section we show that certain allocations of white kanbans are superior to others
in any setting in the sense that we can conclude that a particular allocation is preferred
(the average waiting time of a demand will be lower) to another without any knowledge
of the processing time distributions of the machines or on the yield probabilities. This
result is called dominance, and helps reduce the computational work required in simulation
experiments by a large factor. This result indicates how white kanbans in a given cell affect
other cells. The proof uses stochastic ordering ideas. For a description of stochastic ordering
(<st), see Stoyan(1983). In the theorem below, W), and W, stand for the waiting time of nth
demand in a N/(1,...,1)/(.) line with allocation (Ci,...,Cn) and (C1, ..., Cy) respectively.
As the proof is similar to that in Tayur(1992), we omit the details here.

6



Theorem 1 Given a N/(1,...,1)/(.) line, allocations (Cy,...,Cn) and (Cy, ....Cy), de-
fine, for all k < N and all k-2 < j < k-1,

C(y; k) = Zf_—.j C; and

Cljik) =i, G

Then, if

C(jik) 2 C(s k) Y 5.k

we have

Wn Sst Wn; vn 2 L.

P

If the hypothesis of Theorem 1 holds, we say that the allocation (C7,...,C}) is dominated
by the allocation (Cq,...,Cn).

Example 1 Consider a five cell line with a total of 11 cards to be allocated. Consider the
following five feasible allocations:

(3,2,2,2,2), (2,3,222), (2,3,2,3,1), (1,4,2,2,2) and (1,4,2,3,1).

It is easily verified that (1,4,2,3,1) dominates the rest in the sense of theorem [. This
implies that whatever be the five machines in the line, allocation (1,4,2,3,1) yields the lowest
average waiting time among the above five candidates.

This is analogous to the dominance result obtained in Tayur(1992) where there were
no yield losses. The interesting feature of the result is the following: the structure of the
optimal allocation to a line is not affected by presence of yield losses, but 15 determined by
the overall variability on the machines. Thus, all the sources of variation can be aggregated.
Of course, the optimal allocation may change depending on the yield probabilities, but that
is not a loss in structure. The intuitive explanation of the dominance result is therefore as
in Tayur(1992). Briefly, unlike the traditional buffered tandem lines, the kanbans in cell &
are capable of providing buffering on both upstream and downstream of the same machine.
This dynamic buffering by the cards is the reason why we need to consider two and three
consecutive cells at a time.

As in Tayur(1992), the following corollaries are immediate.

Corollary 1 Increasing the number of kanbans in any cell decreases the waiting time.

Corollary 2 A uniform allocation of white kanbans to cells is not optimal unless N = C
or N = 2.

Corollary 3 In systems with three or more cells, optimal allocations have exactly | white
card in each of the two end cells.

Corollary 4 In a two cell system, every allocation of a fized number of white cards yields
the same throughput.

Corollary 5 In a three cell system the optimal allocation for C white cards is 1,C-2,1.
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As in Tayur(1992), we need to allocate exactly one card to the end cells if N' > 3. Thus, the
-3
N -3
first allocate N cards, one to each cell, and then we are free to allocate the remaining C'— N
cards to N — 2 cells in any manner. In contrast, by a similar argument, the total number of

feasible allocations is ( -1 )

number of feasible allocations that cannot be dominated is . This is because we

N -1

3.2 Reversibility

In the previous section we showed that the structure of white kanban allocation to a fixed
sequence of machines was not affected by the presence of yield losses. Unfortunately, the
same cannot be said about the structure regarding the optimal sequence of the machines. In
particular, we show here that the line operated by the kanban scheme is not reversible in
general when there are yield losses. This leads naturally to the issue of the optimal sequenc-
ing of a set of machines when the objective is to minimize the waiting time, when the total
number of cards to be allocated is fixed. We prove a characterization of this issue.

As we commented at the end of Appendix A, as long as the demand and the raw material
processes are exogenous to the line, we can assume them to be infinite. For this sub-section,
we will continue to assume that this is the case. We need the following definitions.

The capacity of the line is defined as the expected departure rate from the last station
when there is an infinite supply of raw material and infinite demand. Thus, the capacity of
the line is the maximum possible expected throughput rate given a fixed configuration.

A reversed system is one which has its cells in the reverse order of the original system.

Definition The line is said to be C-reversible if the original system has the same capacity
as its reversed system.

Definition The line is said to be D-reversible if the distribution of the nth departure epochs .
(out of the line) in both lines are identical for every n, both systems starting empty at time
zero.

Note that D-reversibility implies C-reversibility.

Theorem 2 The line N/(1, ...,1)/(C1,...,Cn) is not D-reversible in general if there are
yield losses.

The proof is provided in Appendix B. That C-reversibility is not preserved either can be
seen by the following example.

Example 2 Consider a two machine line with machine A feeding machine B, represented
by (A,B). Let machine A have a yield loss with probability p at any service completion, and a
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processing time that is deterministic with a value d4, and let machine B have deterministic
processing time of dg. Let dg > da. Then, it can be seen that sequence (A, B) has an
average a higher throughput rate than the sequence (B, A). Notice, however, that if d4 = dp,
we have reversibility.

The natural question at this point is to determine whether given a set of machines, it is
possible to characterize the sequence that maximizes throughput for a fixed allocation of
cards. The proof of Theorem 2 (appendix A) gives a hint that such a characterization is
possible: in a two machine system, the machine (if any) that does not have yield losses,
should go in second in the sequence. This is independent of the processing times of the two
machines. This naturally implies the following.

Corollary 6 In a line with N machines with ezactly one machine that has yield losses, this
machine will be first in an optimal sequence.

Yield losses, however, can occur in more than one machine. In this case, the best sequence
is answered partially by the next theorem. We are interested in stochastic ordering (<) of
the departure epochs of the nth good part out of the lines (each line is a different sequence of
a given set of machines). Note that altering the sequence may not always be possible due to
engineering reasons; this result should be used to identify the order in which improvements
in processing time and yield losses to a line will provide maximum benefits. See Stoyan(1983)
for the definition of <, and <, orderings. The proof is provided in Appendix C; we need
some notation here.

Define

if there is a complete yield loss at the nth service at machine j,

K

Y\ = {é=

otherwise,
and (with S§) = 0)

7’53') = min{k >1: Yk(j_)S(J) =0}

-1

SU) = SO 4G

- n o2

that is, SU) represents the total number of service completions on machine j required to
complete the nth good batch, and rl9) counts the total number of service completions on
machine j, after the (n — 1)st good batch has been produced, to obtain the nth good batch

at this machine. Let X7 denote the service time of the nth part at machine j.
simt g A sy Y

Theorem 3 [f a sequence has 3.1, iy XS(";E_U“ <ir a1 get XSim“)—%‘j’ for
~1

all consecutive pairs (m,m + 1), where m =1... N — 1, then it is optimal.

That the conditions imposed by the above theorem are not stringent is shown by the next
result. The proof of Lemma 1 is provided in Appendix D.
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Lemma 1 Let « and 3 be two independent geometrically distributed random variables with
parameters p1 and p,, respectively, and let «; and 3; be independent and identical copies of
a and 3 respectively. Then, if py > pa2, we have the following relation between the random
sums of random variables:

a—1 8~1
B <u Y
=1 1=1

Combining the above two results, we obtain the following theorem. The proof is in Appendix

E.

Theorem 4 In a line with N machines having identical processing time distributions, and
yield losses that are bernoulli for machine m (at every service completion), the optimal
sequence of the machines has the following property: if machine 1 precedes machine j, then
pi < p;, where p,, is the probability of a good part at machine m.

The intuitive explanation of the results of this sub-section can be summarized as follows.
Given a set of machines with yield losses, one should sequence these machines so that the
machine with highest yield loss and smallest processing time is first, the machine with the
second highest yield loss and second smallest processing time is second, and so on. Thus, the
last machine in the sequence has the largest processing time and the smallest yield loss. This
result is intuitive because one wishes to minimize the wasting of capacity due to a yield loss
(all the processing in previous stages is capacity used up for a batch that will be discarded),
and also prefers to minimize the time to replenish a part. This would imply that one should
not have high yield losses later on in the sequence, and that the processing times should
be smaller in earlier stages. Note that in reality this inverse relation between yield loss and
processing times cannot be expected to hold; however, this provides intuition as to where to
expend appropriate effort to improve the performance of the line.

We can now explain the relative importances of dominance and reversibility results. Kan-
ban allocation is important when the processing times are variable, and machine sequencing
is important when there are yield losses. Thus, in a line with no yield losses, the kanban
allocation is critical. Conversely, in a line with no processing time variability, the sequence
of machines is critical. In general, both issues must be considered simultaneously.

3.3 Some Results for the N/(M,,...,My)/(Ci,...,Cy) system.

In the previous part of this section we restricted attention to the case of N cells and one
machine per cell. We now state some results for other, more general cases. As the proof is
essentially by induction on the recursions that characterize the system’s dynamics, we omit
the details.

Theorem 5 (a) For a 2/(1, M) / (Cy,C:) system with the total number of kanbans equal

to C, the mean waiting time is minimized when C; = 1 , and Cy = C - 1.
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(b) For an N/(1,My,...,My_1, 1) /(Ch,...,Cn) system with the total number of kanbans
= C, the average waiting time is minimized when C; =Cy = 1.
(¢c) In an N/(My,...,Mn)/(C;i...Cyn) line, increasing C; in any cell i decreases mean

watting time.

We end this section with another structural result. We compare different partioning
strategies for a given line and a fixed total number of kanbans. The proof is provided in
Appendix E.

Theorem 6 Let L = { N/(My,...,Mn)/(Cy,...,Cn)/(.): N<M, SN . C; = C, C; > 1,
SN M; = M, M; > 1} be the set of possible configurations for a given serial line with
M machines and C kanbans, and let L* be the configuration that yields the stochastically
smallest waiting time (for every nth demand). Then, L* = 1/(M)/(C)/(.).

There is a catch to the comparison made above, namely, that the average inventory is not
the same in all of the configurations. When an attempt is made to minimize mean waiting
time among all configurations of equal average inventory, then 1/(M)/(C) may not be the
best strategy. This is discussed in detail in the sequel to this paper. Thus, in this paper,
we have only resolved the issue of minimizing the waiting time under a constraint on the
maximum allowable inventory in the cells, but not for a constraint on the average inventory.

4 Summary

Having described a number of general results, we briefly summarize the results of our paper.

1. If I have complete freedom to choose the number of cells and the number of machines
I can place in them, then should I put them all in one cell or should I put exactly one
machine in every cell and thus have many cells?

If your objective is to minimize the number of cards, then have only one cell.

2. If I can partially alter the sequence in which the operations (machines) are performed,
then what is a good sequence to select?
If there are yield losses, use the intuition developed in section 3.

3. I have some machines that breakdown, while others have wide variance in processing
times. How is the control strategy affected by these two different sources of variability?
It isn’t. These are different manifestations of variance that have the similar effect on
structural properties (and differ only in degree).

4. Some processes require rework, while others cause scrap. How do I design the system
to account for these?

Rework is equivalent to processing time variation. Use the same strategy as above. Yield
loss is different; sequence the machines appropriately as discussed earlier. Observe that
the kanban mechanism will react dynamically to these variabilities.
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In this paper, we have considered four main sources of variability: processing time vari-
ation, rework requirement, machine breakdowns and yield losses. Using an extension of
available models, we have shown that many structural results carry over to more general
and realistic settings. We have also demonstrated the similarities and differences between
the sources of variabilty. The sequel to this paper (Muckstadt and Tayur (1993)) studies
several different objectives via simulation and complements the results obtained here.

Appendix

A Sample Path Description

We begin with a sample-path description of the system dynamics for a line with N cells
and exactly one machine per cell. The recursions developed here are used in the proofs
of the results of this section. For the time being, assume that every part that completes
production in cell N is shipped immediately (infinite demand rate) and that raw material
is always available. At the end of the nth service at machine j, it is determined whether or
not the batch just produced is good or bad. If it is good (at least one item in this batch is
good), then it is placed in the outout hopper of cell j with its kanban; otherwise, the batch
is discarded, and the kanban that was attached to this batch is placed in the bulletin board
of cell j. A service process is on a batch.

Let (Cy,..,Cn) be a kanban allocation.

Start the system at time 0 with C; cards on the bulletin board of cell j,’; >2. Since raw
materials are assumed to be available, all C; cards are initially in front of machine 1 in cell
1.

Define

AW = time when a white card arrives to the bulletin board in front of cell j for the nth
time

and

DU) = time nth service process at machine j is completed.

AU and DU) with negative subscripts are to be assumed as zero. Note that

D,(f) < DU+ and

by the definitions above.

Because of yield losses, the nth service at a machine need not correspond to the nth good
(non-rejected) batch out of that machine. To account for this, define

ASQC] = time when nth batch arrives into the queue in front of machine j+1

and

Dﬁj) = departure time of nth good batch after receiving service from machine j.

Note that the nth good part is completed at machine j before the nth service completion
at machine j + 1 and the (n + 1)st good part at machine j can be completed only after the
nth good part has been completed on machine j. Thus, we have

12



by the definitions above. Further, we have

AN — 4
1 = T Agy =Y,
(because all white cards at time 0 are on the bulletin board)
A~ D),
(because there are C, cards on bulletin board of cell 2 at time 0)
1 (1
A(Cl)+02 = D(CQ), and

1 1 2
A(C'1)+02+1 = Ina'x( D(Cg)+l’ ‘4(02)-{‘1)'

The explanation for the last two equations are as follows. Because there are (; cards on
the bulletin board of cell 2 at time 0, the arrival of any of the first 'y + C; white cards to
bulletin board of cell 1 is not affected by service completion at cell 2. In general, we have
Aﬁ” =...= A(Czj) =0 forall j =1,..., N, because at time zero all white cards are at their
respective bulletin boards. Further,

AL) = mam(DfQCJ, Aﬁjj’é}), J=1L.N=-2 (1)
- N- N :
AgN 1) = max(D'Elj—C}\/’)-—l’ D'EL")CN—I "‘CN). (2’)

Define X{7) as the service time of the nth batch at the jth machine. The nth departure can
take place only after a service is completed for the nth time, and the service for the nth time
can only begin after both the nth part has arrived at a machine and the (n — 1)st service at
that machine has been completed. Thus:

DY =maz(AYL)_ DY)+ XO, j =2, (3)
DY =maz(AD, D)) + XM (4)

Similarly, a part arrives at queue j + 1 for the (n — C;)th time only after the (n — C;)th good
part has been produced on machine j and a white card is available on bulletin board of cell

J + 1. Thus:

AD = maz(DY), , ATY)), j=1,.N-2, (5)
ANY = nae(DWGY DML o). (6)

We need to connect AY) and AW with DY) and DY). To do that, define
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1 if complete yield loss at the nth service at machine
0 otherwise

o=

and (with SY = 0)

r = min{k>1: Yk(i)S(’) =0}
-1

SU) = SO+,
that is, SU) represents the total number of service completions on machine j required to
complete the nth good batch, and 7)) counts the total number of service completions on
machine j, after the (n — 1)st good batch has been produced, to obtain the nth good batch
at this machine. We have, then

DY = D(Sig,).

If we had a batch size of D at the input of cell 1, then at the end of a batch service at every
cell 7, we determine the current batch size (as a few might be lost at each processing step).
As long as there is at least one good item left in the batch, the batch will be transferred to
the output hopper of cell j with its kanban. If all items are bad, then the batch is discarded
and its kanban is placed in the bulletin board of cell ;. This is a protocol known as no
lot-splitting. Under this protocol, the results developed in the next few sections will hold.
We also need the following notation. Let B{) = D (the input batch size at cell 1), Z\
the fraction lost in processing the nth batch at stage j, and (with |v] to denote the largest
integer less than or equal to )

BY) = BN Z9).
Then, at the nth good (not complete loss) service completion at machine 7, the total number
of parts that have successfully completed the first 7 processing steps is

Téj) = Yk=1 Bg‘(})'

It can be verified at once that it is sufficient to keep track of the departure epochs of good
batches and it is not necessary to keep track of individual items in a batch. In what follows
we will, therefore, assume that D = 1.

We now include the stochastic raw material and demand processes. Let B be the number
of colored cards. Let {E,,n > 1} and {R,,,n > 1} be the epochs of demand and raw material
arrivals. Let, at time 0, all B colored cards be on the shop output hopper, with the finished
goods. Consequently, all white cards are at their respective bulletin boards. Thus, W, the
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waiting time of the n'* customer, is given by (DM 5 — E,), for a line with no yield loss at
the last machine, where (a); is max(a,0). To understand how the stochastic raw material
and demand processes enter the recursions, consider a 2/(1,1)/(Cy,Cy) line with no yield
losses:

D}z = max(D}l_l, E., R., A;) + X,l1 (7)
Di = InaX(Di_], D,{b) + Xf; (8)
Avve, = max(D), D2 ). (9)

[t now is apparent that to prove results about waiting times in the general setting, we need
only to prove the results about departure times for the case with infinite raw material and
demand. In what follows, therefore, we will concentrate on the departure epochs of the n'
good part out of the Nt cell. Furthermore, we will suppress the dependence on B for the

rest of the paper.

B Proof of Theorem 2

Proof. [t suffices to consider a two cell system with one machine having yield losses
(machine A), and the other without yield losses (machine B), and one kanban in each cell.
We prove the result using a sample path argument. We show that the first time there is
a yield loss, there is a difference in the distribution of the output if the sequence of the
machines was reversed. We know from Tayur(1992) that this line would have been reversible
if there were no yield losses. Thus, without loss of generality we can assume that the first
item processed on machine A suffered a yield loss. .

Let the first sequence be (A, B) and the second sequence be (B, A). Then, we have for
the sequence (A, B),

s
DY = (XM
=1

sit
DY = (o xh)+ X7
1=1
and for sequence (B, A),

2 (B) .

D, = XP

2 (B) ~ B ~ B

2 (B) .~ B n-l 5 "4

Dn = Xl +Zmam(Dn—l’Dn—2>



Note that X* and X@A forn = 1...54 are identically distributed, and X? has the same
n SA —n+1 1 y 1

N 2 (4) ~
distribution as XB. Now, it is can be verified that D, is larger than DgB)

which proves the theorem.

In distribution,

C Proof of Theorem 3

Proof. The crux of the proof lies in an adjacent pairwise interchange argument on the
sample paths. It is again sufficient to consider a two machine system with one kanban in
each cell. The definitions of <;, and <j; ordering, and some of their elementary properties
can be found in Stoyan(1978), and Shanthikumar and Yao(1990).

Label the machines A and B, and we will compare the sequence (A, B) with the sequence
(B, A). Again, we first consider the departure times of the first good output from both
sequences. The following can be derived in a straightforward manner (D corresponds to

sequence (B,A)).

B
Sp-1 T

D = ZXA+ Z maz( ZXZJ“SA,XB )+ XBa

(4) S 2y

bl = ZXB—{- Zmaaz ZX_MB,XA +X

Observe that X?A and XgA have the same distribution and so do Xl? and X§ . In general,
1 1
X and X! have the same distribution for & = 1. 5537 and [ = 1 oS4 Slmllarly X2

and X,B have the same distribution for & = 1...SP, and | = “‘SS*A‘ Also, note that

A

7'?,5’{‘,7",}5, and SB areall >1for j=1...58 and k=1...5{.

We have from Shanthikumar and Yao(1990) that if for two sequences of random variables
{P;} and {Q;} that are ordered by <, for every ¢, and for two other (discrete) random
variables «, and S(independent of each other and of the above sequences) that satisfy o <, 3,
we have Y} i P < le Q@;. Combining the above with the fact that <, =<, and the
hypothesis of the theorem, we obtain by straightforward comparison of the terms the ordering
of the departure epochs of the first good output out of the lines.

Similar analysis on the departure epochs of the nth good output from the two lines gives
the desired result. These departure epochs can be also be derived in a straightforward
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manner. We have, for example for the sequence (A, B),

A

TQAB+1
- n—1 “p
DB = Z mazx Xba, Z X’hLbA
p=0
A
.
A
A 555+J+1
, B B
+ Z maz( Z Xz+]+bf‘ s Xiks, ) + X5,
=1 i=1
where all terms with subscript 0 are zero (such as S =0, and X2 55 = ).

D Proof of Lemma 1

Proof. We have, forn > 1,

Prob(fi=n) =uv,= py(l —p2)"""
PI‘Ob(ai = Tl) = Uy = pl(1 - pl)n_

and consequently for n > 1 (noting that o = 1, and 8 = 1 do not contribute to the sums),

a—1 n nl

Prob(d fBi=n) = Y, u;ﬂ,l > 7—'_—.7_’1)11 T
=1 k=1 >, Z li=n 1o oo lpe
A1 i n!
PI‘Ob(Z Qp = n) = Z Uk+1( Z -l——'_———l—'—uh s ulk)
t=1 k=1 11,“.1162172:;1 li=n Tewoolfe
n! - n—1
Observe that (lew'lkzl’zl;l L= TV ...vy,) equals (p2)*(1 — pa)"* ( P )
ol e n-—1 .. .
and (Zlu~~~lk21,2f li=n Lg% ...y, ) equals (pl)k(l - p1) k ( B 1 ) This implies that,

by the binomial theorem,

Prob(ii Bi=n) =Pn)= pip2(1 —p1)(1 -P1P2)n*1

B-1
Prob(3_ i =n) =Q(n)= pipa(l —p2)(1 = pip2)"”

1=1

which implies that g%% = —-—;% ¥n > 1. Finally, notice that %% = B, which shows that

zalfj <l’l‘211a1
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E Proof of Theorem 4

Proof. The distribution of 7™ is 1.i.d for every n > 1, for a fixed m, and is geometrically
distributed with parameter p,,. As the processing times are i.i.d for all machines m, the

. . 5 - . . sm-1 1 - smHl_y |
comparison in Theorem 3 is equivalent to the comparison of $;2,7 r**! with 071, Pt

1

a

F Proof of Theorem 6

Proof. It is sufficient to compare the single cell configuration with an arbitrary two-cell
configuration. Specifically, we compare the 1/M/C configuration with a 2/(M;, M3)/(C1, C3)
configuration ( C; + Cy = C, and M; + My = M). Label the machines 1, ..., M from
upstream to downstream. We use the same notation as before, i.e., D stands for departure
with appropriate subscripts and superscripts. We use D for the two cell configuration. The
proof is by induction. We provide the induction step. We have for the one cell configuration,

D,ﬁd = ma;c(DM'l DM )~I—X7‘Lw
= mam(DaM 17DM )+ XM
)+X~M 1,DM )+XM

= max(max(D,M 2 DM

SM 1 -1 n
Al 2
= ma:r(ma:c(...ma;z:(DSg3 Ds2 _1) +XS§3 )..)
sM—1 sM=1 .sM=1
M-1 M M
+XS,]IVI"1)’ Dn—-l) + Xn Y
and similarly, for the two cell configuration,
v s M-1 M M
D) = maz(D, ,D,_)+ X,
_ M M
= mam(DsM DM Y+ XD
M -2 M M
= max(maw(D’,M " DWM . 1) -+ XSM DY)+ X
~ My ~M
= maz(maz(...maz(Dgm+ DM,\}‘LJ,II , D+, )—!—XN}{}TI ).
M +2 ! ,&I -1 M +2 2 1
142 s 5 Mi+2
TgM-1 M-l sM-1 e oMt
n n
M M
+X,M V), DMy + x !
A M M +1 My+1
2 maz(maz(...maz(D g+ y D i 1) + X e )..)
sM1+2 Mtz T My +2
st TosM-1 TrsM-
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Moty A
+Xs,¢’-1‘)> DL+ XY
%1 N
= maz(maz(.. maz(Dg , D?;z3 )+ X2 ).-.)
5 . s

e oMl Ce M1 e oM-1
Sy .« Sy + Sy

+ X500, D)) + XY

> max(maz(.. .maac(qug3 ,Dg; 1)+ nga )...)
".S'I:/!—l '-.S'J‘vt—-l '.,524—1
+X 50, D) + X
a
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