A Generic Programming System for Sparse Matrix
Computations

(REVISED)

Nikolay Mateev, Keshav Pingali,
and Paul Stodghill
Department of Computer Science,

Cornell University, Ithaca, NY 14853

Abstract

Sparse matrices are stored in compressed
formats in which zeros are not stored explic-
itly. Writing high-performance sparse ma-
trix libraries is a difficult and tedious job
because there are many compressed formats
in use and each of them requires special-
ized code. In this paper, we argue that
(i) compressed formats should be viewed
as indezed-sequential access structures (in
the database sense), and (ii) efficient sparse
codes exploit such indexing structures wher-
ever possible. This point of view leads nat-
urally to restructuring compiler technology
that can be used to synthesize many sparse
codes from high-level algorithms and spec-
ifications of sparse formats, exploiting in-
dexing structures for efficiency. We show
that appropriate abstractions of the index-
ing structures of commonly used formats
can be provided to such a compiler through
the type structure of a language like C++-.
Finally, we describe experimental results ob-
tained from the Bernoulli Sparse Compiler
which demonstrate that the performance of
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code generated by this compiler is compa-
rable to the performance of programs in the
NIST Sparse BLAS library. One view of this
system is that it exploits restructuring com-
piler technology to perform a novel kind of
template instantiation.

1 Introduction

Sparse matrix computations are required in
many application areas. For example, the
finite-element method for solving partial dif-
ferential equations approximately requires
the solution of large linear systems of the
form Ax = b where A is a large sparse ma-
trix. Some web-search engines and data-
mining codes compute eigenvectors of large
sparse matrices that represent how often
certain words occur in documents of inter-
est.

Algorithms for such matrix problems are
classified broadly into direct methods and
iterative methods [15]. Direct methods such
as Cholesky, LU and QR factorizations fac-
torize a matrix into two triangular matri-
ces, and compute the required result from
these triangular matrices. Except in special
cases, the triangular factors usually have far



more non-zeros than the original matrix (a
phenomenon called fill), so the storage and
computational needs of direct methods are
usually prohibitive for large sparse matri-
ces [14]. In contrast, iterative methods like
Conjugate Gradient and Lanczos methods
do not modify the matrix, so they do not
suffer from fill. Therefore, iterative meth-
ods are increasingly the methods of choice
for large sparse matrix problems [32].

In this paper, we will focus on language
and systems support for iterative sparse ma-
trix algorithms®. The need for this support
arises from the fact that sparse matrices are
stored in a variety of compressed formats
in which zeros are not stored explicitly [28].
The use of compressed formats serves two
purposes. First, memory usage becomes
more economical; for example, in some frac-
ture mechanics finite-element codes we have
developed, matrices have a million rows and
columns but have only a few hundred non-
zeros in each row. Second, computation
time can be reduced because it is not neces-
sary to multiply or add zeros. There are at
least forty or fifty formats that are widely
used, and it is common to use application-
specific formats. Since each format requires
its own carefully tuned code, the problem
of designing libraries of iterative algorithms
which can support all these compressed for-
mats (and which can be easily extended to
new formats) is a formidable one.

The approach taken by the numerical
analysis community (for example, in the
PETSc library from Argonne [5]) is to en-
capsulate the format-dependent code into
a set of Basic Linear Algebra Subroutines
(BLAS) which are invoked from high-level,
format-independent implementations of it-

1As we argue in the concluding section of this
paper, some of our techniques may be applicable
to direct methods as well but this remains to be
demonstrated.

erative methods?. The high-level iterative
codes have to be written just once, but they
must be linked with format-specific BLAS.
For dense matrices, highly tuned implemen-
tations of BLAS are routinely provided by
computer vendors [11]. For sparse matri-
ces, the software problem is much more dif-
ficult because of the need to support such a
large number of formats. Although a num-
ber of sparse BLAS libraries have been writ-
ten [12,23,31], they have had limited suc-
cess because (i) they support only a small
number of formats, and (ii) they provide no
leverage for people designing new formats.
In this paper, we describe a system that
combines generic programming methodol-
ogy [22] with restructuring compiler technol-
ogy [42] to support the development of itera-
tive sparse matrix codes. Generic program-
ming is a methodology for simplifying the
development of code libraries in which the
same set of algorithms have to be written
for different data structures. This method-
ology requires the design of an API which
is supported by all data structure design-
ers, and which is used to write generic pro-
grams expressing the algorithms of interest
in a data-structure-neutral fashion. Link-
ing such a generic program with any data
structure implementation that supports the
API gives us an implementation of the al-
gorithm for that data structure. Standard
compiler optimizations like procedure inlin-
ing can be used to make the resulting code
efficient. The most well-known example of
generic programming is the C++ Standard
Template Library (STL) [4] in which algo-
rithms like searching and sorting are imple-
mented for a variety of data structures like
arrays, singly-linked lists and doubly-linked
2The BLAS are described in more detail in Sec-
tion 2; for now, they can be considered to be basic

matrix computations which must be coded very dif-
ferently for different compressed formats.




lists, using the API of one-dimensional se-
quences. To apply generic programming
ideas to our problem, we note that in our
problem domain, the algorithms of inter-
est are iterative matrix algorithms and the
BLAS, while the data structures of inter-
est are the variety of compressed formats.
The key problems are to (i) design an API
that will be the interface between generic
programs and the implementations of com-
pressed formats, and (ii) implement a sys-
tem that permits the generation of efficient
code.

This paper presents such an API and
generic programming system. We describe
the solution in stages by taking successively
more nuanced views of compressed formats.
In Section 2, we describe a few important
sparse algorithms and compressed formats.
We also propose a simple API called the
Strawman API, and describe a generic pro-
gramming system designed around it. In-
tuitively, this API views sparse formats as
random access data structures. This view
is of course inappropriate for sparse formats
and therefore leads to very inefficient code,
but it does permit us to introduce key ideas
simply.

The desire for greater efficiency moti-
vates the Woodenman API in Section 3.
This API views sparse formats as sequen-
tial access data structures [38]. We make
the case for a generic programming system
in which generic algorithm writers code for
the Strawman API, but invoke a restruc-
turing compiler that views sparse formats
through the Woodenman API and restruc-
tures the generic program into efficient code.
We give experimental results that show that
although this approach improves code effi-
ciency over the use of the Strawman Inter-
face alone, the code produced is still not as
efficient as library code for most formats.

In Sections 4 and 5, we present the fi-
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Figure 1: Basic Linear Algebra Subroutines

nal API, called the Ironman API, that views
sparse formats as indezred-sequential access
data structures [38]. Section 4 describes the
indices of interest in compressed formats,
while Section 5 describes the details of the
Ironman API and gives an implementation
of a generic programming system that sup-
ports this API. We have a prototype of this
system implemented, and we are currently
reengineering it so that it takes generic pro-
grams written in C++ as input. Section 6
gives a brief introduction to the compiler
technology used within the system, and Sec-
tion 7 presents experiments with code gener-
ated by our existing system that show that
our approach can generate code competitive
with handwritten code in the Sparse BLAS
library. Section 8 discusses related work,
while Section 9 describes ongoing work. In
the appendix, we present an extended ex-
ample in order to illustrate the use of the
interfaces that are presented in this paper.

2 A Simple Generic Programming Sys-
tem: the Strawman API

In this section, we introduce some of the al-
gorithms and compressed formats that will
be our running examples for the rest of the
paper. We also present a simple API called
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Figure 2: Compressed Formats

the Strawman interface and design a generic
programming system for this interface. Al-
though the efficiency of the resulting code
is poor, this API lets us introduce the key
ideas simply.

2.1 Key algorithms

Although our techniques can be applied to
entire iterative sparse matrix algorithms, we
will focus on algorithms supported by the
NIST Sparse BLAS library, which are the
following.

o Matriz- Vector Multiplication (MVM):
y = Axx: The matrix A is sparse, and
vectors y and x are dense.

o Solution of Triangular Systems (TS):
Lx = b: some problems involve solving
multiple systems with the same L but
different b’s.

o Matriz-Matriz Multiplication (MMM):
C = A*B: A is sparse, while C and B
are dense. This is a generalization
of matrix-vector product in which a
sparse matrix A is multiplied by a set
of dense vectors represented by the col-
umn vectors of matrix B.

Figure 1 shows pseudo-code for these al-
gorithms.

2.2 Compressed formats

Figure 2 shows a sparse matrix and
three commonly used compressed formats.
The simplest format is co-ordinate storage
(COO) in which three arrays are used to
store non-zero elements and their row and
column positions. The non-zeros may be
stored in a particular order such as row-
major or column-major order, or they may
be ordered arbitrarily. A disadvantage of
co-ordinate storage is that it does not per-
mit indexed access to either rows or columns
of a matrix. Compressed Sparse Row stor-
age (CSR) is a commonly used format that
permits indexed access to rows but not
columns. Array values is used to store the
non-zeros of the matrix row by row, while
another array colind of the same size is
used to store the column positions of these
entries. A third array rowptr has one en-
try for each row of the matrix, and it stores
the position in values of the first non-zero
element of each row of the matrix. Some of
the rows of the matrix may be empty. Com-
pressed Sparse Column storage (CSC) is the
transpose of CSR in which the non-zeros are
stored column-by-column, and it offers in-
dexed access to columns but not rows.

Some sparse matrices have small dense
blocks occurring in different positions in-
side the matrix. It is important to exploit
these dense blocks to improve storage and
computational efficiency. Figure 2 shows
Block Sparse Row (BSR) storage which can
be viewed as a CSR representation in which
the non-zeros are small dense blocks rather
than single non-zero elements.

2.3 The Strawman APl and generic
programming system

As described earlier, the key design deci-
sion in a generic programming system is the
API that must be supported by the imple-



template<class ELT>

class StrawmanMatrix {
int m; //number of rows
int n; //number of columns

public:
StrawmanMatrix(int r,int c¢) {m=r;n=c;}
int rows() {return m;}
int columns() {return n;}
virtual ELT get(int r, int c) = 0;
virtual void set(int r, int c, ELT v) = 0;
// Implementation of ‘A[r][c]’ notation.
class RowRef operator[](int r) { return RowRef(4,r) }

Figure 3: The Strawman API: get/set

mentations of all data structures. We will
use a different class to implement each com-
pressed format, and require such a class to
support two methods called get and set.

e The get method takes the row and col-
umn co-ordinates as input, and returns
the value at that position.

e The set method takes a value and
row/column co-ordinates as input, and
stores the value into that position.

In addition to these methods, there must
be methods to return the number of rows
and columns in the matrix. Figure 3 shows
the Strawman API. Notice that operator-
overloading is used to permit programmers
to use array syntax rather than invocations
of the get/set methods.

It is up to the format designer to imple-
ment the get/set methods as efficiently as
possible. For co-ordinate storage, for exam-
ple, get can be implemented by simple lin-
ear search, or by binary search if the ma-
trix elements are sorted in lexicographic or-
der. Of course, keeping elements sorted may
have its own overheads if many set opera-
tions into random positions of the matrix
are performed, so it is the responsibility of
the designer of the compressed format to
determine the best strategy. The code in
Figure 4 shows one implementation of co-
ordinate storage.

To write a generic program in this sys-
tem, the programmer writes code as though
all matrices were dense, but identifies classes
that must be used to implement sparse ma-

//co-ordinate storage
template<class ELT>
struct CooStorage {
vector<int> *rowind;
vector<int> *colind;
vector<ELT> *values;
const int nz;
CooStorage (vector<int> *_rowind, vector<int> *_colind,
vector<ELT> *_values)
: rowind(_rowind), colind(_colind), values(_values),
nz(rowind->size()) {

}
};
//Strawman view of storage
template <class ELT>
class CooRandom : public StrawmanMatrix<ELT> {
protected:
CooStorage<ELT> *A;
public:
CooRandom(int m, int n, CooStorage<ELT> *A)
: StrawmanMatrix<ELT>(m,n), A(A) { }
virtual ELT get(int r, int c) {
for (int k=0; k < A->nz; k++)
if ((*A->rowind) [k] == r && (*A->colind)[k] == c)
return (*A->values) [k];
return 0.0;//zero elements are not stored

virtual void set(int r, int c, ELT v) {
for (int k=0; k < A->nz; k++)
if ((*A->rowind) [k] == r && (*A->colind)[k] == c)
{ (xA->values) [k] = v; return;
assert(false);//fail if element not allocated

};

Figure 4: Co-ordinate Storage: Strawman
API

template <class T, class ELT>
void mvm(T A, ELT x[1, ELT y[1)
{

for (int i=0; i<A.rows(); i++) {
y[il = 0;
for (int j=0; j<A.columns(); j++)
y[il += A[i1[3] * x[31;
}

//MVM for co-ordinate storage

template void mvm(CooRandom<double> A,
double x[], double y[1);

Figure 5: Generic Program Instantiation

trices. For example, generic matrix-vector
product is coded as shown in Figure 5. To
create matrix-vector product for a particu-
lar compressed format like co-ordinate stor-
age, the programmer writes template in-
stantiation code, as shown in Figure 5.

2.4 Discussion

The Strawman API is very convenient for
expressing algorithms in a data-structure-
neutral way. Unfortunately, the efficiency
of the resulting code is poor. There are two
reasons for this.

1. The get method is very inefficient be-
cause most compressed formats do not
support efficient random access.



100

—e—NIST
- - @ - -Search

MFLOPS
- B
. \\\

0.1

0.01 —
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Matrix size (n x n)

Figure 6: MVM performance for Co-
ordinate Storage: NIST Library vs. Straw-
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2. The final code iterates over the bounds
of the full matrix and therefore per-
forms computations with both zeros
and non-zeros, but the computations
with zeros are usually redundant.

In fact, it is easy to see that the co-
ordinate storage MVM code produced by
this strategy requires O(n?* NZ) time for a
nXn matrix with NZ non-zeros, since O (n?)
floating-point operations are performed and
for each operation, a get costing O(NZ)
time must be executed. The implementa-
tion in the NIST Sparse BLAS library takes
O(N Z) time which is asymptotically better,
as can be seen in Figure 6. These numbers
were obtained in the Pentium II platform
described in more detail in Section 7.3

3 An Enumeration-based API: the
Woodenman Interface

One approach to avoiding random accesses
and computations with zeros is to recast
sparse algorithms in terms of enumera-
tions of non-zero elements. Figure 7(a)

3The Y-axes of the graphs in this paper show
program performance expressed in millions of float-
ing point operations per second (MFLOPS).

forr=1, m
do
ylrl =0
od
for each <r,c,v> in non-zeros(A)

do
ylr]l = ylr]l + vx*xl[c]
od
(a) MVM

forr=1, m
do
x[r] = blr]

o
for each <r,c,v> in non-zeros(L)
do
if (r == c) then
x[r] = x[r]/v;
else if (r > c) then //lower triangle
x[r] = x[r] - v*x[cl;
else ; //upper triangle
od

(b) TS
Figure 7: Enumeration-based Pseudocode

//diagonal element

shows such an enumeration-based algorithm
for doing MVM. For each non-zero ele-
ment A[r][c], we compute the product
Alr] [c]l*x[c] and add the result to y[r].

Even though enumeration-based algo-
rithms look less natural, it might appear
that we could use them as a basis for a
generic programming system by requiring
all matrix classes to support enumeration
of non-zeros. Such a class would present a
sequential access view [38] of a compressed
format, rather than a random access view.
However, it is easy to see that enumeration-
based algorithms may not be correct if there
are dependences between loop iterations, as
there are in triangular solve. Figure 7(b)
shows enumeration-based triangular solve.
From the dense matrix code in Figure 1, we
see that this code is correct only if every
diagonal element is enumerated (i) after all
the non-zeros within its row and to its left,
and (ii) before all the non-zeros within its
column and below it. This order is illus-
trated in Figure 8.

While it is reasonable to require that ev-
ery sparse format class provide a way of
enumerating non-zeros, it is not reasonable
to require that these enumerations be in a
particular order that is convenient for what-
ever code is being executed. The challenge
therefore is to design a system that per-



Figure 8: Enumeration Order for TS

mits the writing of generic programs which
can work with any compressed format but
achieves the efficiency of enumeration-based
algorithms whenever possible.

3.1 The Woodenman API

We solve this problem by providing two
views of compressed formats—a random ac-
cess view to the writer of generic programs,
and a sequential access view to the com-
piler. As in Section 2, programs are ex-
pressed in a data-structure-neutral fashion
by writing them as dense matrix programs.
Sparse formats are implemented by classes
that provide a way of enumerating the non-
zeros of the matrix, in addition to providing
get/set methods. Our system uses restruc-
turing compiler technology to transform the
dense matrix code into enumeration-based
code if that is legal; otherwise, it uses the
get/set methods to generate code as in Sec-
tion 2.

To enable the compiler to generate ef-
ficient code, the sparse format class must
specify the following properties of the enu-
meration to the compiler.

o Enumeration order: Intuitively, this is
a description of the differences in the
row/column co-ordinate values of suc-
cessive elements in the enumeration.
It might be “the entries are visited in
< r,c > lexicographical order”, or “the
entries are visited in an arbitrary or-

der.”

e Enumeration bounds: This describes
the row/column co-ordinate values that
can actually occur in the enumera-
tion.  For example, some matrices
have non-zeros only along their diago-
nals, while other have non-zeros only
in their lower triangular and diago-
nal parts. Conveying this informa-
tion to the compiler may enable it to
generate better code; for example, in
the enumeration-based triangular solve
pseudo-code shown above, some of the
comparisons of r and ¢ can be elimi-
nated if the matrix is diagonal or if it
does not have non-zeros in its upper tri-
angle.

Both kinds of information can be ex-
pressed as systems of linear inequalities. For
example, a matrix that has m rows and n
columns and has no non-zeros in its upper
triangle can be described as follows.

_
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Since dependence testing and code gener-
ation tools for restructuring compilers use
polyhedral methods [29], these kinds of
polyhedral constraints are easy to integrate
into modern compilers.

Figure 9 shows the Woodenman API.
Enumeration is supported through the use
of iterators as in the STL. A class imple-
menting the WoodenmanMatrix interface is
like a container class in the STL in the
sense that it must implement begin and
end methods that return iterators for enu-
merating non-zeros. The Woodenmanlt-
erator class is an interface that requires
methods for dereferencing the iterator to re-
turn the “current” row/column and value,
and for advancing the iterator. A method



//Matrix abstraction for Woodenman API
template<class I, class E>
class WoodenmanMatrix {
public:
typedef I iterator_type;
typedef E value_type;
virtual I begin() = 0;
virtual I end() = O;
};
//Base class for all iterator classes
template<class K, class V>
class WoodenmanIterator {
public:
typedef K key_type;
typedef V value_type;
virtual K operator *() = 0;
virtual V value() = 0;
virtual void operator ++(int) = 0;

};
//Class for unordered iterator
template<class K, class V>
class WoodenmanUnorderedIterator
: public WoodenmanIterator<K,V>

{1k
//definitions of WoodemmanDecreasinglterator,
// WoodenmanIncreasingIterator etc.

Figure 9: Woodenman Interface

for checking equality of iterators must also
be implemented, but we have not shown
this for simplicity. Enumeration order and
bounds can be incorporated into the pro-
gram through the use of pragmas, but we
have chosen to incorporate order informa-
tion into the class hierarchy by specifying
different classes for enumerations that are
unordered/increasing/decreasing etc. The
bounds on the stored indices are conveyed
to the compiler using a pragma.

Figure 10 shows an implementation of co-
ordinate storage for the Woodenman API.

To clarify the meaning of these classes, we
show in Figure 11 the code that the sparse
compiler might produce if the generic MVM
program was instantiated for the CooSt-
ream class. After method inlining, this code
has the same structure as the code in the
NIST library.

3.2 Discussion

Figure 12 shows the performance of
enumeration-based codes for a number
of compressed formats, compared to the
performance of handwritten code in the
NIST library. For co-ordinate storage, the
enumeration-based code is comparable in
performance to library code, but for CSR

template<class ELT> class CooStreamIterator;
// A class for matrices stored in the co-ordinate
// format, in which the entries lie within the lower
// triangle.
#pragma bounds { [i,j] | 0 <= i && i < n-1 \

&% 0 <= j && j < i-1}
template<class ELT>

class CooStream
: public CooRandom<ELT>,

public virtual WoodenmanMatrix<
CooStreamIterator<ELT>, ELT >

{
public:
CooStream(int m, int n, CooStorage<ELT> *A) :
CooRandom<ELT>(m,n,A) { }
virtual CooStreamIterator<ELT> begin()
{ return CooStreamIterator<ELT>(A,0); }
virtual CooStreamIterator<ELT> end()
{ return CooStreamIterator<ELT>(A,A->nz); }

};
template<class ELT>
class CooStreamIterator :
public WoodenmanUnorderedIterator<pair<int,int>,ELT> {
friend class CooStream<ELT>;
protected:
CooStorage<ELT> *A; int jj;
public:
CooStreamIterator(CooStorage<ELT> *A, int jj)
AR, 339 {2
virtual void operator ++(int) { jj++; }
virtual pair<int,int> operator *() {
return make_pair((*A->rowind) [jj], (*A->colind) [jj1);

}
virtual ELT value() { return (*A->values)[jjl; }

Figure 10: COO: Woodenman API

template <>
void mvm(CooStream<double> &A, double x[], double y[1)

for (int i = 0; i < A.rows(); i++)
y[il = 0;
for (CooStreamIterator<double> it = A.begin();
it != A.end(); it++) {
int r (*it) .first;
int ¢ (*it) .second;
double v = it.value();
ylrl += v * x[c];

Figure 11: Compiler-generated code for

MVM

and CSC, the library code is substantially
better. To understand this, let us exam-
ine the CSR code in more detail. To enu-
merate the non-zeros of the matrix, the
enumeration-based code contains a single
loop of the following form.

r=1;
for jj = 1 to NZ do //NZ is the number of non-zeros
while (jj == rowptr[r+1]) //some rows may be empty
r++;
¢ = colind[jjl;
v = values[jjl;
yIlr]l = ylr]l + vxxl[c]
od

In contrast, the library code contains a
nested loop in which the outer loop enu-
merates rows and the inner loop enumerates

non-zeros within that row. The pseudo-code
is shown below.
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Figure 13: MMM Must Exploit Indices

for r =1 to m do
for jj = rowptr[r] to rowptr[r+i] - 1 do
c = colind[jjl;
v = values[jjl;
ylr]l = ylr] + vx*x[c]
od

od

Although these differences may seem to
be minor, there is a fundamental difference
in the views of the CSR data structure in
these two codes. The Woodenman API
views the CSR data structure as a flat, se-
quential access data structure while the li-
brary code exploits the fact that the rowptr
array permits us to isolate the non-zeros
within a row efficiently. In fact, the view
taken by the library code is that CSR is an
indexed-sequential access data structure [38]
in which the rowptr array is an index (in
the database sense) that permits efficient
access to the non-zeros within a particular
row. This leads naturally to a nested view
of the data structure. As Figure 12 illus-
trates, the back-end compiler (egcs in this
case) performs substantially better on the
nested loop code. We experimented with
other compilers and found the same result.

A compelling reason for adopting an
indexed-sequential access view of com-
pressed formats is that exploiting indices
makes a difference in the asymptotic time
complexity of the generated code for some
problems. Consider the product of two

sparse matrices C = A*B where B is stored
in CSR, and C is stored in some format
that permits insertions, such as a hash ta-
ble. Pseudo-code for this algorithm (assum-
ing C is properly initialized) looks like the
following.

for each <r,c,va> in non-zeros(A) do
for each <c,c’,vb> in non-zeros(B) do
Clrl[c’] = Clrl[c’] + va*vb;
od

od

If B is treated as a flat, sequential ac-
cess data structure, the inner loop must scan
the entire data structure, so the complexity
of the code is O(NZ(A) x NZ(B)). If on
the other hand, we exploit the index into
row ¢ of B, the complexity of the code is
O(NZ(A) x NZ(B)/n) since NZ(B)/n is
the average number of non-zeros in a row of
B. Figure 13 shows an experimental compar-
ison between these two approaches on the
Pentium II.

We conclude that viewing compressed
formats as sequential access data struc-
tures is a partial solution to the problem
of compiling efficient code from the generic
dense-matrix programs. In the next section,
we show that viewing compressed formats
as indexed-sequential access data structures
permits the compiler to generate more effi-
cient code by exploiting indices.



4 Index Structure of Compressed For-
mats

Intuitively, an index structure for a com-
pressed format corresponds to a particular
wiew of that data structure. The simplest in-
dex structure is a hierarchy of indices where
each index corresponds to one of the array
dimensions. Some formats use indices that
are not array dimensions but are obtained
by applying a simple function to the array
dimensions. One example is a variation of
CSR format in which the storage order of
rows is a permutation of their order in the
actual matrix. The rowptr index in this
case is a permutation of the row numbers
in the actual matrix. Finally, some formats
like Jagged Diagonal Storage (JAD) support
multiple views.

For the purpose of this paper, we de-
scribe these views by using a simple gram-
mar called the view grammar. In the next
section, we show how this information can
be conveyed to the compiler by using an ap-
propriate class structure in which there is
one interface class for each production in the
grammar.

4.1 Index nesting

In Section 3, we showed that for MMM, it
is beneficial to exploit the nested structure
of CSR to access elements in a given row of
the matrix B. If a matrix is considered to be
a collection of tuples of the form < r, c,v >
where 7 and ¢ are the row and column co-
ordinates and v is the value, then the nested
structure of a compressed format can be de-
scribed by specifying the order in which the
fields of these tuples should be accessed. For
example, CSR can be specified as follows.

CSR:r—>c—v

This indicates that the non-zeros within
a row of the matrix can be accessed effi-

ciently by using the row co-ordinate as an
index into the data structure containing the
non-zeros. A similar expression can be writ-
ten for CSC storage as well. These expres-
sions can obviously be generalized to arrays
of arbitrary dimensions, and they can be de-
scribed formally by the following grammar.
In this grammar, index may be one of the di-
mensions of the array, and v denotes array
element values.

E : indezx— FE

| v

In general, an index at a given level may
involve multiple array dimensions. One ex-
ample is provided by co-ordinate storage
since neither the row nor the column co-
ordinate provides access to a substructure
of the compressed format. At the other ex-
treme, both row and column co-ordinates of
a dense matrix provide access to substruc-
tures. We incorporate these structures into

the grammar by enriching what inder can
be.

attribute
| < attribute, . .. , attribute >
| < attribute X ... X attribute >

index

For now, attributes may be considered to
be array dimensions. The first rule models
the case when a single array dimension is
used to index a substructure. The second
rule models formats like co-ordinate storage
for which multiple array dimensions are re-
quired to provide access to a substructure.
The third rule models formats like dense
matrices in which each of a number of ar-
ray dimensions provides independent access
to substructures.

Several sparse matrix formats and their
views are given below.
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Figure 14: Diagonal Storage

Co-ordinate: < r,c>— v

CSR: r—=sc—v

CSC: cC—Tr—v

Dense: <rxe>—v
4.2 Maps

The preceding discussion of sparse matrix
views assumed that only array dimensions
can be indices. However, this is often not
the case.

e Rotation: In the diagonal storage for-
mat found in the Sparse BLAS, matrix
elements are grouped and accessed by
diagonals, as shown in Figure 14. In
this case, the attributes that are in-
dexed are, d, the diagonal number, and
o, the offset within the diagonal. Using
these attribute names, the view of the
matrix can be expressed as d — 0o — v,
where the matrix dimensions, r and c,
can be computed from d and o by,

r=d+o0o c=o

e Blocking: 'The Block Sparse Row
(BSR) format is similar to the CSR for-
mat except that instead of each matrix
element being a scalar, it is a small
dense matrix, or block. Each block
is accessed by a set of block indices
(b, b.), and the scalar elements within
each block are accessed by a the offset
indices (I,l.). The view of BSR can
be expressed in terms of the attribute

names, b, b., [, and [, as,
BSR: b, —»b. =<, xX1l.>— v

and the block and offset indices are re-
lated to r and c¢ by the following, where
B is the number of rows and columns
in each blocks,

r=b,xB+I,
c=b.xB+1,

e Permutation: Often, sparse matrices
are reordered in order to give their non-
zeros a particular structure. In these
cases, the rows and columns in which
the matrix is stored is a permutation of
the original row and column indices.

In all of these cases, the view of the stor-
age is most naturally expressed in terms of
a different set of indices, and r and ¢ can be
easily computed by applying a simple func-
tion to the storage indices. This can be ex-
pressed by adding a production of the fol-
lowing form to the grammar.

E : map{F(in) — out: E}

For example, the view of the diagonal stor-
age is:

map{d+o—r,o—c:d— o0— v}

4.3 Perspective

It may be the case that a compressed for-
mat can be viewed in multiple ways. For in-
stance, the Jagged Diagonal format (JAD)
found in the Sparse BLAS can be viewed in
the following two ways,*

<t,]>—=0
1—j =

4For simplicity, we ignore the permutation that
occurs in JAD.



The two views represent the fact that two
different sets of methods can be used to ac-
cess the storage. The first case represents
a particularly efficient method for enumer-
ating the the elements of the matrix, which
does not provide any ordering guarantees.
The second case represents a set of meth-
ods that can be used to give random access
to the rows, and to enumerate the elements
within a row in increasing order by column.
The first view is appropriate for MVM, in
which a fast enumeration of the whole ma-
trix is desired, and in which no constraints
are placed on the order of that enumeration.
For TS, this method cannot be used because
it violates dependences, so the methods of
the second view must be used.

We refer to each of the different views
for a single storage format as different “per-
spectives” on the format, and we represent
perspective with our grammar as follows.

F : FoF

4.4 Aggregation

Finally, some formats are simply collections
of two or more compressed formats. Tri-
angular solve, for instance, might be im-
plemented efficiently if a sparse matrix for-
mat provided efficient random access to its
diagonal elements, and indexed access to
the off-diagonal elements by either rows or
columns. This is accomplished sometimes
by using different formats to store the dif-
ferent regions of the matrix — the diagonal
of the matrix might be stored in a dense vec-
tor, and the elements in the lower triangle
might be stored in CSR.

In our grammar, we will represent the ag-
gregation of two or more storage formats
into a single sparse matrix with the U oper-
ator.

E : FUE

4.5 Summary

Below is the complete grammar for express-
ing views of a sparse matrix format,

E : index— FE

map{ F(in) — out: E}
E®F

FUE

[

attribute
| < attribute, . .. , attribute >
| < attribute x --- X attribute >

5 The Ironman API

As before, we deal with two different API’s.
The generic programmer views matrices as
random access data structures, but the com-
piler views them through the Ironman API
as indexed-sequential access data structures
whose index structure was described in the
previous section. The Ironman API is sum-
marized in Figures 15 and 19.

5.1 Interfaces for Views

Each production in the view grammar given
in Section 4 has an associated interface,
which we have implemented in C++ as a
small number of abstract classes described
in Figure 15. The programmer conveys
views of a storage format to the sparse com-
piler by writing a set of classes that inherit
from the appropriate interfaces.

The term_nesting abstract class denotes
an occurrence of the — operator within the
view. This abstract class takes two template
parameters. The first specifies the imple-
mentation of the iterator that can be used
to enumerate the index at this level. The
second specifies the implementation of the



Abstract class

Methods

term_scalar<V>

operator V()

term_nesting<I,E>

I begin(), I end()
E subterm(I)

term_nesting2<I1,I2,E>

I1 beginl1(), I1 end1()
I2 begin2(), I2 end2()
E subterm(Il, I2)

term_map<kK, E>

K map(E::index_type)
E subterm()

term_aggregation2<E1l,E2>

E1l subtermi()
E2 subterm2()

term_perspective2<El,E2>

E1l subtermi()
E2 subterm2()

Figure 15: Interfaces for view productions

substructure below this level. An implemen-
tation of CSR, in which the entries within
each row are stored in order, that inherits
from term_nesting is shown in Figure 16.
interval_iterator and offset_iterator
are two iterator abstract classes that are de-
scribed later.

template<class ELT>

class Csr_ . A A . .
: public term_nesting< interval_iterator<int>,

CsrRow<ELT> > {
// ...

};
témplate(class ELT>

class CsrRow
: public term_nesting< CsrRowIterator<ELT>,

ELT > {
/17 ...

};
template<class ELT>
class CsrRowlIterator :
public offset_iterator<int> {

/...
};

Figure 16: CSR: [ronman API

A flat hierarchy, like < rc¢ >—

is specified by inheriting from the

term_nesting abstract class and specify-

ing that its iterator enumerates indices of

type pair<int,int>. This is illustrated by

the implementation of Co-ordinate storage
shown in Figure 17.

template<class ELT> class Coolterator;
template<class ELT>

class Coo_ |
: public CooRandom<ELT>,

public term_nesting< Coolterator<ELT>,
ELT > {
// ...

}
template<class ELT>
class Coolterator :
public unordered_iterator< pair<int,int> > {

/...

Figure 17: COO: Ironman API

// Dense matrix storage
template<class ELT>

class Dense . . . A
: public term_nesting2< interval_iterator<int>,
interval_iterator<int>,

ELT > {
7
}
Figure 18: Dense: Ironman API
A term, like <7 X ¢ >— ---, has two in-

dependent iterators. To specify these sorts
of views, term_nesting2, etc., abstract
classes are provided which allow the imple-
mentation of each independent iterator to
be specified. An implementation of dense
matrices that uses the term_nesting2 in-
terface is shown in Figure 18.
By a very simple
these classes, the sparse

analysis  of
compiler



Abstract class Methods

Properties

unordered_iterator<K>

K operator *()
void operator ++()

no ordering

increasing_iterator<K>,
decreasing_iterator<kK>

K operator *()
void operator ++(), or
void operator --()

one-way ordering

inherits from 1
ordered_iterator<kK>

bi-directional ordering

inherits from 1
offset_iterator<kK>

int operator -(iterator)
void operator +=(int)
void operator -=(int)

ordered, with distance

inherits from 1
interval_iterator<K>

range of keys

Figure 19: Interfaces for iterators

can infer the following relationships,

Coo: // <r,c> => v
term_nesting< unordered_iterator< pair<int,int> >,
ELT >
Csr: // r->c->v
term_nesting< interval_iterator<int>,
term_nesting< offset_iterator<int>,
ELT > >
Dense: // <r x > > v
term_nesting2< interval_iterator<int>,
interval_iterator<int>,
ELT >

which clearly indicate the nested structure
of these formats, and the properties of the
iterators that are used at each level.
Interfaces for expressing perspective, ag-
gregation and map are also available.

5.2 Interfaces for lterators, revisited

The abstract classes for the iterators are de-
scribed in Figure 19.

Unlike the iterators in Section 3, itera-
tors in the Ironman API are used for enu-
merating indices only. That is, they do not
provide the methods for accessing the sub-
structures. Instead, the substructures are
obtained via the subterm method in each
term_nesting class. This is done, because
whenever two independent iterators appear
in a level of the hierarchy, (e.g., the dense

matrix storage format), the matrix elements
are associated with two indices from two dif-
ferent iterators. Since, in this case, the value
is not associated with a single iterator, it
cannot be accessed via a method in either
iterator. Thus, the method for accessing the
value is placed in the term_nesting classes.

We also refine the iterators discussed in
Section 3 to account for more ordering prop-
erties. In addition to unordered, increasing,
and decreasing iterators, we provide the
offset_iterator interface for iterators
whose positions can be randomly accessed,
similar to the random_access_iterator’s
found in the STL. A further refine-
ment of offset_iterator is the
interval_iterator, which is used to
represent all of the integer indices between
a fixed lower and upper bound.

6 Overview of the Compiler

We now give an overview of the restructur-
ing techniques used in our compiler. The
interested reader can refer to our other pa-
pers ([41], [20], [26]) for more detailed de-



scriptions of these techniques.

Our view of sparse matrix formats as
indexed-sequential access structures leads
naturally to a restructuring technology
based on relational algebra [38]. The high-
lights of this approach are as follows.

e Sparse matrices are modeled as rela-
tions in which the array indices and
value are the fields of the relation, and
each non-zero entry of the matrix has
an associated tuple in the relation.

e The loops of the computation are mod-
eled as expressions in a relation alge-
bra [8, 38].

e Efficient evaluation strategies for
these relational algebra expressions
are found using query optimization
techniques [33].

e The indexing structure of a sparse ma-
trix format is exposed to the query
optimizer through the type structure
discussed in Section 5. This separa-
tion of algorithm and data structure al-
lows changes to be made to the formats
without requiring changes to the input
program.

We sketch our compiler technology using
the simple example of matrix-vector prod-
uct in which A is stored in CRS, and X and
Y are stored as sparse vectors.

Query Formulation The first task of the
compiler is to translate the input generic
program into a suitable intermediate repre-
sentation. The intermediate representation
of a loop describes the iterations in which
there is work to do, but does not take a po-
sition on the order in which these iterations
should be done.

for < a,z,y >€

y = I;i“zf;yi(A(i’j’ a) X X(j,z) X Y(i,y)) {

}

This intermediate program says that the re-
lations “A”, “X” and “Y” are to be joined®
on their common fields (i between A and Y,
j between A and Y'), and the resulting tu-
ples are to have all fields except the value
fields, a, y, and z, projected away. This
computation produces another relation, and
the body of the loop is to be executed for
each tuple in that relation with appropriate
bindings for a, x and y.

Join Scheduling The next task is to de-
termine the order in which the joins must
be performed. The X operator is associa-
tive and commutative, so there are several
possibilities. In our example, there are two
basic, non-trivial strategies:

(AN, X)X,Y
(AX;Y)X,; X

Which strategy is more efficient depends
on the formats used to store the sparse data
structures. If the compiler were to select the
first strategy, then the join between A and
X on the j field would be performed first,
and then the join between the intermediate
result and Y on i. However, in our example,
the CRS format in which A is stored allows
efficient access to the 7 index before the j
index. Therefore, our compiler will pick the
second strategy, which performs the join on
7 first.

The order in which a format’s indices can
be accessed is obtained directly from the for-
mat’s hierarchy.

Join Implementation Once the order in
which the joins are to be evaluated is deter-
mined, implementation strategies must be
selected for each join. The choice of strat-
egy depends on what indexing structures are

5To be precise, this is the natural join in
database terminology.



available for searching the join field, or what
properties hold for the enumerating the join
field. Our compiler can obtain this informa-
tion directly from the term of the hierarchy
in which the join index appears.

In our example, the choice of join imple-
mentations depends upon the details of the
formats used to store A, X, and Y. If, for
instance, the elements of X and each row
of A are stored in sorted order, then a con-
stant time merge-join between the X and
each row of A is possible. Otherwise, the el-
ements of X could be scattered into a dense
vector that, for the cost of O(n) storage,
would provide a constant time index for a
hash-join with A.

Method Instantiation The final step of
the query optimization process is to replace
method invocations within the query evalu-
ation plan with code provided by the storage
format to implement the access. The result
of this step, which is essentially procedure
inlining, is an executable program for eval-
uating the query.

While there are many similarities be-
tween our restructuring techniques and
database query optimization, there are also
many profound differences. Some of these
differences are the following:

e In databases, multiple, separate but
simple indices are usually provided for
accessing a relation. In contrast, sparse
matrix formats usually provide a single,
multi-level indexing structure.

e Complicated array references, such as
A[3j+10, 43 — k], can appear in matrix
programs, and these give rise to joins
with general affine constraints [41].
Such constraints are handled using in-
teger linear programming techniques in
our compiler. These kinds of compli-
cated constraints are called #-joins in

the database literature, but they are
quite rare in database applications.

e In database systems, the dominant cost
is usually disk I/O. In a sparse matrix
computation, the dominant cost is usu-
ally cache and memory access. As a re-
sult, in order to produce efficient code,
our compiler must employ a different
set of low-level code optimizations than
are found in a RDBMS.

7 System Design and Experiments

In designing our system, we set, the following
goals.

e The end-user of our system, namely
the programmer who selects the spe-
cific sparse matrix format for which
a generic algorithm is to be imple-
mented, should be presented with a
simple mechanism with which to invoke
our sparse compiler.

e Qur sparse compiler should work as
a single tool within a suite of tools
of a larger generic programming sys-
tem. In particular, our sparse com-
piler should work cooperatively with an
underlying C++ compiler. Our sparse
compiler should handle the sparse ma-
trix computations, and leave the other
generic programming problems to the
C++ compiler.

e Qur sparse compiler should knit imple-
mentations for sparse matrix computa-
tions that are as efficient, and hopefully
more so, than those that the program-
mer might have written by hand.

We are building our system as a source-
to-source transformation tool. That is, the
user will first run their program though our
sparse compiler, which will instantiate some



#pragma instantiate with Bernoulli
template <class T, class ELT>
void mvm(T A, ELT x[], ELT y[])
{
for (int i=0; i<A.rows(); i++) {
y[il = 0;
for (int j=0; j<A.columns(); j++)
y[il += A[il1[j] * x[j1;
}

// Will be instantiated with the Bernoulli compiler.
template void mvm(Csr<double> A, double x[], double y[1);

Figure 20: Generic MVM with instantiation

of the the template definitions. The pro-
grammer uses pragmas, as shown in Fig-
ure 20, to indicate which template defini-
tions are to be instantiated by the sparse
compiler; the rest are left untouched. The
sparse compiler will generate a transformed
C++ program to be run through the under-
lying C++ compiler, which will perform the
remaining instantiation and usual optimiza-
tions.

7.1 Experimental results

We have implemented a prototype of the
Bernoulli Sparse Compiler that provides
the core restructuring and optimizations re-
quired for generating efficient code. The re-
structuring algorithms are described in [26,
40,41]. Our current work is focused on inte-
grating this compiler with a C++ front-end.

Even though the implementation is not
complete, it can automatically instantiate
most of the Sparse BLAS codes.

First, we compared code produced by the
Bernoulli compiler with the NIST C im-
plementations of two algorithms—matrix-
vector multiplication and unit-diagonal
triangular solve for five sparse matrix
formats—co-ordinate (COQO), Compressed
Sparse Column (CSC), Compressed Sparse
Row (CSR), Block Sparse Row (BSR), and
Variable-size Block sparse Row (VBR). As
input we used the matrix can_1072 from
the Harwell-Boeing collection [7]. It arises
in finite-element structures problems in air-
craft design and has 1072 rows and columns

and 12444 nonzero entries. For the block
formats we used the sparsity pattern of the
same matrix but expanded each entry into
a 15 x 15 block.

We also used the Bernoulli Sparse Com-
piler to generate code for the entire Conju-
gate Gradient (CQG) iterative solver. Since
the NIST C Sparse BLAS does not pro-
vide this routine, we also hand-wrote ver-
sions of CG for each of the storage formats,
which called the appropriate NIST C Sparse
BLAS routines to perform the kernel com-
putations. The point that we wish to make
here is that our approach scales from sim-
ple loop nests, like MVM and TS, to much
larger computations.

We ran the experiments on two
platforms—a Pentium II and a wide
node of the IBM SP-2 at Cornell Theory
Center. The Pentium II runs at 300 MHz
and has 512 KB of L2 cache and 256 MB
of RAM. The operating system is RedHat
Linux 5.2. We compiled the code with egcs
version 1.1.1 with -04 -malign-double
-mpentiumpro compiler flags. The wide
node of the SP2 has a POWER2 Super
Chip processor running at 135 MHz clock
speed, 128 KB data cache, 256 bit memory
bus, and 1 GB of memory. We used the
xlc compiler version 3.1.4.7 with -03
-garch=pwr2 -gmaxmem=-1 flags on AIX
4.2.

Figure 21 presents the performance of the
hand-written NIST C code (dark bars) and
the code generated by the Bernoulli Sparse
Compiler (shaded bars). These results
clearly show that the generic program-
ming approach can successfully compete
with hand-written library code. Indeed,
Bernoulli-generated  code  performance
ranges between 96% and 113% of NIST’s on
the Pentium II and between 85% and 121%
on the IBM SP-2. Moreover, examining the
C code reveals that the Bernoulli compiler
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in most cases produces code that is struc-
turally identical to the hand-written one.
There are minor syntactic differences—for
example, the hand-written code would
use for (i=0;i!=m;i++) *pc++ = 0;
while the compiler generated
for (i=0;i<=m-1;i++) c[i]=0;. These
differences result in the hand-written
code performing slightly better than the
compiler-generated one when compiled with
egcs and slightly worse when compiled
with x1c.

We observed only three structural dif-
ferences in the compiler-generated code.
The hand-written implementation of CSC
matrix-vector multiplication does not hoist
a loop invariant. That omission is penal-
ized by egcs and rewarded by xlc. The
NIST implementation of triangular solve for
CSR restructures the code in order to avoid
initializing the output vector which gives
it a small advantage on both platforms.
The hand-written matrix-vector multiplica-
tion for the block formats contains a ques-
tionable guard that tries to avoid compu-
tation for zero entries in the vector. That
improves the performance of the compiler-
generated code by up to 21%.

8 Related Work

Generic Programming Our work is in the
spirit of generic programming which has
been described as “the idea of abstracting
from concrete, efficient algorithms to obtain
generic algorithms that can be combined
with different data representations to pro-
duce a wide variety of useful software” [22].
The C++ STL library is an implementation
of this philosophy in the realm of standard
data structures like lists and trees [4]. Not
only is our problem domain different, but at
a deeper level, a key difference is that there
is a single API in STL used by generic pro-

grammers and supported by data structure
implementors, while in our system, the API
used in writing generic algorithms is sub-
stantially different from the API that is sup-
ported by the implementors of compressed
formats. Supporting the dual API’s effec-
tively requires advanced restructuring com-
piler technology.

Multiple views of a data structure are
used extensively in database systems where
it is common to support multiple views for
relations and collections of relations [38].
Novak has argued for supporting multiple
views for data structures as well, and has
implemented a system that provides roughly
the same functionality as the map view de-
scribed in Section 4 [24].

Other researchers have recognized that
the level of abstraction of programs can
be raised by combining generic program-
ming with more sophisticated compiler tech-
nology than is usually available for tem-
plate instantiation. Our work is close in
spirit to that of Batory and co-workers [34,
35] who have used similar ideas in design-
ing the DiSTiL system, a software gener-
ator for container data structures. DiS-
TiL is a declarative language that extends
C with constructs for specifying complex
data structures declaratively. Data struc-
tures are specified by type equations that
permit composition of DiSTil. components.
When a DiSTiL program is compiled, these
declarative specifications are replaced with
efficient C implementations by the DiSTiL
compiler. DiSTiL’s goal is to support stan-
dard data structures, not sparse matrices,
and no restructuring of code is done during
the compilation process.

Aspect-oriented programming As we
discussed in Section 2, the Strawman API
presents a simple view of compressed for-
mats that permits programmers to write



generic code, but it does not by itself per-
mit the compiler to generate efficient code.
Subsequent developments in the paper were
concerned with conveying additional infor-
mation about compressed formats to the
compiler in order to permit it to generate
more efficient code. These additional prop-
erties cross-cut the get/set abstractions of
the basic API, and are aspects in the termi-
nology of Kiczales [3, 16].

Kiczales and others have designed aspect-
oriented extensions to Java [21] to permit
the expression of such aspects in Java classes
in a modular fashion, using compiler tech-
nology to exploit aspects for generating effi-
cient code. The key advantage is that re-
sulting programs are simpler to read and
maintain because algorithms and aspects
are coded separately, and the algorithm is
not cluttered with what are essentially im-
plementation details. There are ongoing
efforts to write sparse matrix factorization
codes using these ideas [18, 30].

Restructuring Compilers Traditionally,
restructuring compiler technology has been
used to restructure dense matrix programs
to enhance parallelism or locality of ref-
erence, but it cannot be used directly to
restructure sparse matrix programs. This
is because program analysis techniques are
based on integer linear programming, and
can be used only if all array subscripts
are affine functions of loop index variables.
Such subscripts are common in dense ma-
trix programs in which arrays are accessed
by row, column or diagonals, but are
the exception in sparse matrix programs
since sparse arrays are accessed through
indirection arrays.

Bik and Wijshoff at Leiden University
were the first to apply restructuring com-
piler technology to synthesize sparse matrix
programs from dense matrix programs [1,

2]. Their compiler had knowledge of small
number of formats built into it. The for-
mats they considered can be called Com-
pressed Hyperplane Storage (CHS) formats
since they are obtained by doing a basis
transformation on the dense array index
space and then compressing out the non-
zeros along one or more dimensions. CSR
and CSC are therefore special cases of CHS
formats. Their compiler analyzed and re-
structured the input code to match a CHS
format, and generated sparse code for that
format. The main limitation of this system
is that it has a small set of relatively sim-
ple formats built into it, and it cannot be
extended to new formats.

The PEI system of Perrin and co-
workers [39] has taken essentially the same
approach, but with more mathematically-
oriented restructuring technology.  For-
mats like CSR and CSC are described al-
gebraically using basis transformations of
dense array index spaces, spread/gather op-
erations etc. The compiler then attempts
to transform PEI programs to match these
formats. As with the Leiden work, it is not
clear that these techniques can be general-
ized to formats that are not CHS formats.

Sparse Matrix Libraries A number of
projects in the numerical analysis commu-
nity have exploited generic programming
to support sparse matrix computations.
PETSc [5,27] is a successful library from
Argonne which has a large collection of iter-
ative solvers. These solvers must be linked
with user-supplied BLAS that must be writ-
ten for the particular sparse format of in-
terest. The BLAS are invoked directly by
PETSc code, so no special compiler support
is needed for PETSc. In contrast, our sys-
tem permits even the BLAS to be written
in a generic, data-structure-neutral fashion,
although at the cost of requiring aggressive



restructuring compiler technology for gener-
ating efficient code.

POOMA [9,25] and Blitz++ [6,37] are
two more recent packages for matrix com-
putations. The API for both packages is
essentially the Strawman API described in
this paper. A rich set of C++ templates
are provided in both packages, using which
a programmer can assemble matrix imple-
mentations and produce matrix programs.
Some optimizations can be performed by
the compiler by relying on Template Ex-
pressions [36], but the range of such opti-
mizations is limited, and they can be cum-
bersome to use. In particular, programmers
must provide their own implementations of
operations like MVM or triangular solve.

Similar efforts are ongoing in the func-
tional languages community [13,17]. Some
of these projects such as Mona [17] are
using the idea of higher-order functors to
build Computational Mathematics libraries.
Functors are parameterized program mod-
ules that take modules as arguments and
return modules as results (modules are sim-
ilar to virtual classes in C++). Therefore,
higher-order functors in SML are similar to
templates in C++4, but they have more for-
mal semantics.

9 Conclusions

Some of the ideas in this paper can be
applied to dense matriz programs to ob-
tain code with good locality of reference.
Intuitively, the connection is that on ma-
chines with a memory hierarchy, dense ma-
trices are not random-access data struc-
tures either! We have developed re-
structuring technology called data-centric
transformations for producing enumeration-
based code for dense matrix problems, and
we have shown that on many problems,
it outperforms more conventional locality-

enhancement techniques by a wide mar-
gin [19]. This data-centric technology has
been incorporated into SGI's MIPSPro com-
piler product-line as of January 1999.

We have investigated the generation of
parallel code for iterative methods, but we
have not discussed this in the paper for lack
of space. The interested reader is referred
to the PhD dissertation of one of the au-
thors [40].

We are currently investigating the appli-
cability of the techniques described in this
paper to direct methods like Cholesky fac-
torization. Even though direct methods
are inappropriate for large sparse problems,
some preconditioning strategies for iterative
methods, such as Incomplete Cholesky fac-
torization, perform computations similar to
direct methods. Codes for sparse direct
methods usually exploit a lot of tricks to
obtain efficiency [10], and it is unclear how
many of these can be incorporated into re-
structuring compilers. One solution might
be to lower the semantic level of the input
code, so that the compiler does not have to
start with dense matrix code but with code
in which some restructuring has been done
by the programmer. These issues remain to
be investigated.
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A An Example: Jagged Diagonal

A.1 Overview

In this appendix, we present an extended
example in order to illustrate the use of the
interfaces that were presented in this paper.
The sparse matrix format that we will
use for our example is the Jagged Diag-
onal (JAD) format. This format orga-
nizes the non-zeros of a sparse matrix into
a small number of very long “diagonals”.
The advantage of this organization is that,
for many sparsity patterns, this will result
in very long trip counts for the innermost
loops of many computations (most notably
MVM). On vector and superscalar proces-
sors, this tends to improve performance.
An instance of a JAD matrix may be
contructed as follows. First, the rows of
the matrix, as in Figure 22(a), are “com-
pressed” so that zero elements are elimi-
nated. This requires introducing an aux-
iliary array, colind, to maintain the origi-
nal column indices. This is shown in Fig-
ure 22(b). Next, the rows of the com-
pressed matrix are sorted by the number
of non-zeros within each row in decreasing
order. This requires introducing a permuta-
tion vector, iperm, as shown in Figure 22(c).
Finally, the columns of the compressed and
sorted matrix, which are called the “diago-
nals”, are storage contiguously in two vec-
tors, colind and values. The vector dptr
is used to record the first index of the entries



of each diagonal within colind and values.
The final storage is shown in Figure 22(d)

The non-zero entries of a matrix in JAD
format can be enumerated quickly and effi-
ciently by enumerating the values of colind
and values. In addition, if the program can
be restructured to work with the permuted
row indices instead of the row indices, then
efficient row-oriented access can be provide
as well. This is necessary for such computa-
tions as triangular solve, which place certain
constraints on the order in which elements
may be enumerated.

A.2 Strawman

As we stated in this paper, a data struc-
ture designer must implement two interfaces
for each storage format: the Strawman, or
random access, interface and the Ironman,
or indexed-sequential access interface. The
former is used by the programmer writing
the generic algorithms. The later is used by
the compiler when instantiating the generic
programs for the data structure.

We start our presentation of JAD format
implementation with the Strawman inter-
face.

The structure JadStorage is used to hold
all of the components of the JAD storage
within a single object. For each matrix in
the JAD format there will be a single in-
stance of this class which maintains the stor-
age for that matrix. All other classes in the
JAD implementation keep a pointer to this
instance.

LILII100077770 700077777 7700077717770777777717177777717177777
// JadStorage //
LI11777177777717777717777717777717777717777171777771177777171777
template<class BASE>
struct JadStorage {
public:
vector<int> *iperm;
vector<int> *dptr;
vector<int> *colind;
vector<BASE> *values;
const int n;
const int nd;
const int nz;
JadStorage (vector<int> *_iperm, vector<int> *_dptr,
vector<int> *_colind,
vector<BASE> *_values)
: iperm(_iperm), dptr(_dptr), colind(_colind),

values(_values), n(iperm->size()),
nd(dptr->size()-1), nz(colind->size()) {

The JadRandom class inherits from the
matrix abstract class and implements the
random access interface for the matrix by
implementing the get and set abstract
methods. The method ref within this class
is responsible for finding a particular (r, c)
entry within the matrix. It does this by
first finding the corresponding row within
the permuted index space, and then per-
forming a linear search within the row for
the given column index. A binary search
could be used, if it were assumed that en-
tries within a row were always sorted by col-
umn index.

////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////
template <class BASE.
class JadRandom : publlc matrix<BASE> {
protected:
JadStorage<BASE> *A;
public:
JadRandom(int m, int n, JadStorage<BASE> *A)
: matrix<BASE>(m,n), A(A) { }
virtual ~JadRandom() { }
BASE *ref (int r, int c) {
int rr = -1;
for (rr=0; rr<A->n; rr++)
if ((*A—>iperm)[rr] == r) break;
assert(rr != A->n);
for (int d=0; d<A->nd; d++) {
int jj_lo = (xA->dptr)[d];
int jj_hi = (*A->dptr) [d+1];
int jj = jj_lo + rr;
if (jj >= jj_hi) break;
if ((*A->colind)[jj]l == c)
return &(*A->values) [jjl;

return O;

}

virtual BASE get(int r, int c) {
BASE *p = ref(r,c);

if (p) { return *p; }
else { return 0; }

virtual void set(int r, int c, BASE v) {
BASE *p = ref(r,c);
assert(p);
*p =v;

}

}

A.3 Ilronman

Using the grammer presented in Section 4,
the following view can be used to describe
the hierarchical structure of the JAD for-
mat.
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Figure 22: Building JAD storage



map{iperm[rr| — 7r:
(rrxec—v)® (rr - c—wv))}

The following classes are used to imple-
ment each piece of the view.

e Jad — map{iperm[rr] —r:...}
e JadPers —... @ ...

e JadFlat —rr Xc— v

e JadHier — 717 — ...

e JadRow —c — v

We present the classes “inside-out”.

The classes JadFlat and
JadFlatIterator implement the view
of the JAD format that is appropriate for
fast enumeration. As its view suggests,
this implementation is very similar to the
implementation of co-ordinate storage pre-
sented earlier in the paper. The difference
is that, with the JAD format, the row index
is not stored with each entry, and must
be computed on the fly. This is done in
method JadFlatIterator: :operator x*.

;5////////////////////////é/éé{///////////////////////////;;
adFlat
LIIITIIITII7TI00010077077777007771707171717171771717171717
template<class BASE> class JadFlatIterator;

template<class BASE>

class JadFlat
: public term_nesting< JadFlatIterator<BASE>,

term_scalar<BASE> >

protected:
JadStorage<BASE> *A;
public:
JadFlat (JadStorage<BASE> *A)
virtual iterator_type begin()
{ return JadFlatIterator<BASE>(A,0); }
virtual iterator_type end()
{ return JadFlatIterator<BASE>(A,A->nz); }
virtual subterm_type subterm(iterator_type it) {
return (*A->values)[it.jjl; }

 AA) {1}

};

;5///////////////////////////{//////////////////////////////
tIt
LII1117071707770717110077777777717771717171777171771717171717
template<class BASE>
class JadFlatIterator :

public increasing_iterator<pair<int,int> > {

friend class JadFlat<BASE>;
protected:

JadStorage<BASE> #A; int jj; int d;

void frob_d() { if (jj == (*A->dptr)[d+1]) d++; }
public:

JadFlatIterator (JadStorage<BASE> *A, int jj)

: A(D), jj(33), 40 {}
virtual void operator ++(int) { jj++; frob_d(); }
virtual key_type operator *() {

return make_pair(jj-(*A->dptr) [d], (¥A->colind) [jj1);

virtual bool equal(
const proto_iterator<pair<int,int> > &y) const
{ return jj ==
dynamic_cast<const JadFlatIterator &>(y).jj; }

Row-oriented access to the JAD stor-
age is provided by the JadHier, JadRow
and JadRowIterator classes. The JadHier
class provides access to the rows within the
permuted row index space. The JadRow and
JadRowIterator classes provide access to
the non-zero elements within each row ac-
cessed via JadHier.

;;//////////////////////////////////////////////////////////

LITIITE1007077700071717770711007177117077717771771117171117
template<class BASE> class JadRow;

template<class BASE> class JadRowIterator;

template<class BASE>

class JadHier . . .
: public term_nesting< interval_iterator<int>,

JadRow<BASE> >

protected:
JadStorage<BASE> *A;
public:
JadHier (JadStorage<BASE> *A)
virtual iterator_type begin()
{ return interval_iterator<int>(0); }
virtual iterator_type end()
{ return interval_iterator<int>(A->n); }
virtual subterm_type subterm(iterator_type it) {
return JadRow<BASE>(A,*it); }

AR {1}

};

////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////
template<class BA

class JadRow .
: public term_nesting< JadRowIterator<BASE>,

term_scalar<BASE> >

protected:
JadStorage<BASE> *A; int r; int dmax;
public:
JadRow(JadStorage<BASE> *A, int r)
for (dmax = 0;
dmax < A->nd-1 &
r < (*A- >dptr)[dmax+1] (*A->dptr) [dmax] ;

.dmax++)
H

: A(D), r(r) {

}
virtual iterator_type begin() {
return JadRowIterator<BASE>(A,r,0); }
virtual iterator_type end() {
return JadRowIterator<BASE>(A,r,dmax); }
virtual subterm_type subterm(iterator_type it) {
return (*A->values) [(*A->dptr)[it.d]+r]; }
};

;;/////////////////////é/é//////////////////////////////////

adRowIterator
L10111000777777070077777700777777770777777717177771717177777
template<class BASE>
class JadRowIterator :
public increasing_iterator<int> {
friend class JadRow<BASE>;
protected:
JadStorage<BASE> *A; int r; int d;
public:
JadRowIterator (JadStorage<BASE> *A, int r, int d)
: AQD), r(r), d(d) { }
virtual void operator ++(int) { d++; }
virtual key_type operator*() {



return (*A->colind) [(*A->dptr)[d]+r]l; }
virtual bool equal(const proto_iterator<int> &y) const
{ return
r == dynamic_cast<const JadRowIterator &>(y).r
&& d == dynamic_cast<const
JadRowIterator &>(y).d; }

The class JadPers simply wraps the
JadFlat and JadHier classes together with
@, the perspective operator. This indicates
to the compiler that either set of classes can
be used to access the JAD storage. It is up
to the compiler to determine which of the
two choices is most efficient for any given
computation.

;5////////////////////////é/éé////////////////////////////;;
al ers
///////////////égéég////////////////////////////////////////

template<class

class JadPers .
: public term_perspective2< JadFlat<BASE>,

JadHier<BASE> >

grotected:
JadStorage<BASE> *A;
public:

JadPers(JadStorage<BASE> *A) : A(A) { }
virtual subterml_type subterml() {
return JadFlat<BASE>(A); }
virtual subterm2_type subterm2() {
return JadHier<BASE>(A); }

The top-most level of the JAD’s view is
the map operator that describes the permu-
tation. We could use the term_map inter-
face class presented in Section 5. However,
the term_map class captures a very general
notion of functions that map between in-
dex spaces. A permutation vector is a very
specific kind of map that has a whole set
of associated compiler optimizations. Thus,
it makes sense to introduce a new interface
class, term_perm2, which refines the gen-
eral map class, term_map, to the permuta-
tion maps on row and/or column indices.
term_perm?2 takes two template parameters,
Pr and Pc, which are the permutations used
on the row and column indices, respectively.

LIII110077777 70007777 77700777777770777777717177717717177777
// term_perm2 //
L171777710171777177777777717777777777777777717171717717171777
template<class Pr, class Pc, class E>
class term_perm2

: public term_map< pair<int,int>, E >

{
public:
Pr pr; Pc pc;
term_perm2() { }
term_perm2(const Pr &pr, const Pc &pc)

: pr(pr), pc(pc) { }
virtual pair<int,int> map(pair<int,int> x) {
return make_pair(pr.apply(x.first),
pc.apply(x.second));
}
virtual pair<int,int> unmap(pair<int,int> x) {
return make_pair(pr.unapply(x.first),
pc.unapply(x.second));

The classes term_perm_ident and
term_perm_vector are wused as the
Pr and Pc arguments to term_perm2.
term_perm_ident indicated that no per-
mutation is to be performed on the target
index. term_perm_vector indices that the
permutation stored within the vector perm
is to be applied to the target index.

;;//////////////////////////////{/////////////////////////;;

term_perm_ident

LII11171777770 7777707777777 777717777717777717777771777771177
class term_perm_ident {
public:

term_perm_ident () { }

int apply(int x) { return x; }

int unapply(int x) { return x; }
}

;;////////////////////////////////////////////////////////;;

term_perm_vector

LIIIT1071 707070007 70077007777777771707171777171777717171177

class term_perm_vector {
public:
vector<int> #¥perm;
term_perm_vector() : perm(0) { }
term_perm_vector (vector<int> *perm) : perm(perm) { }
int apply(int ii) { return (*perm)[iil; }
int unapply(int ii) {
for (int i=0; i<(*perm).size(); i++)
if ((*perm)[i] == ii) return i;
assert(false);

The top-class of the JAD format is Jad,
and it provides the implementation of the
row permutation. This is indicated by
inheriting from the term_perm2 interface
class, instantiated with term_perm_vector
for the row index and term_perm_ident
for the column index. The vector
iperm is used to initialize the instance of
term_perm_vector.

;5////////////////////////////////////////////////////////;;

Jad
LI71777700710777171777777777777777777777777777171771717177177
template<class BASE>

class Jad
: public JadRandom<BASE>,

public term_perm2< term_perm_vector, term_perm_ident,
JadPers<BASE> >

{
public:
Jad(int m,int n, JadStorage<BASE> *A)
: JadRandom<BASE>(m,n,A),
term_perm2< term_perm_vector, term_perm_ident,
JadPers<BASE> >(



};

term_perm_vector (A->iperm),
term_perm_ident ()) {}
virtual subterm_type subterm() {
return JadPers<BASE>(A); }



