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ABSTRACT 

 

 

High-density Single Nucleotide Polymorphism (SNP) scans of the human 

genome have been applied in many populations worldwide to investigate their genetic 

characteristics.  However, populations in North Africa, an isolated subcontinental area 

between Sub-Sahara Africa and Europe, have not been examined.  In the present 

study, seven North African populations and four neighboring Spanish populations are 

analyzed using a high-density SNP microarray.  North African populations appear to 

form a clinal pattern of genetic differentiation between Sub-Saharan Africans and 

Europeans, being much more similar to Europeans than to Sub-Saharans.  The genetic 

similarity between North African populations exhibits an east-west gradient pattern 

corresponding to their geographic locations.  High and varying levels of autozygosity, 

as well as a potentially indigenous genetic component, are observed in North Africans.  

Noticeably, Tunisians turn out to be the North African population most distinct from 

Europeans and Sub-Saharans, and have the highest levels of autozygosity.  Basques 

can be clearly distinguished from other Spanish populations, as being more similar to 

the Western Europeans, and also have the largest number of fixed ancestral and 

derived alleles among all the populations studied.  The ancestral allele frequency 

distribution of Basques is most similar to that of East Asians, suggesting a small 

effective population size.  All these results indicate that the Basque population is a 

genetic isolate distinct from the surrounding Spanish populations as well as from other 

Southern and Western European populations, although the magnitude of genetic 

differentiation is subtle.   
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CHAPTER 1 

 

INTRODUCTION 

 

 

 Recent advancement in DNA genotyping and sequencing techniques has 

revolutionized human population genetics research.  High-density SNP genotyping 

microarrays provide a powerful and affordable tool to investigate the genome-wide 

pattern of genetic variation across a large number of individuals.  Such large-scale 

surveys of genomic variation at high resolution dramatically expand  our 

understanding of aspects of human evolutionary history, such as migration, change in 

effective population size, range expansion, and adaptation (International HapMap 

Consortium, 2007; Sabeti et al., 2007; Nielsen et al., 2007; Li et al., 2008; Jakobsson 

et al., 2008; HUGO Pan-Asian SNP Consortium, 2009).  Large-scale genotyping 

projects have also been carried out to elucidate the genetic basis of complex diseases 

using the Genome-Wide Association Study (GWAS) strategy.  Up until July 30, 2010, 

608 publications about the Genome-Wide Association Study have been cataloged at 

the National Institutes of Health’s National Human Genome Research Institute, 

(Hindorff et al., 2009; available at www.genome.gov/gwastudies).   

 DNA sequence variation in human genomes has been extensively characterized 

in a few populations representing major continental groups in the International 

HapMap Project (International HapMap Consortium, 2005 and 2007).  Great effort has 

been made to discover SNPs by DNA resequencing and to determine SNP allele 

frequency by microarray genotyping in populations of Western European, Sub-

Saharan African, and East Asian ancestry.  Based on these findings, large number of 

worldwide populations have been characterized by microarray SNP genotyping in the 

http://www.genome.gov/gwastudies�
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Human Genome Diversity Project (Li et al., 2008; Jakobsson et al., 2008).  There are 

also many other genetic diversity studies focusing on the fine-scale population 

substructure within continents, such as in Europe (Novembre et al., 2008; Tian et al., 

2008; Nelis et al., 2009), Asia (HUGO Pan-Asian SNP Consortium 2009; Teo et al., 

2009), and Africa (Tishkoff et al., 2009).  However, the genetic variations and 

relationships among populations of North Africa, and the neighboring Iberian 

populations across the Strait of Gibraltar, have not been well characterized on a 

genome-wide level.  This geographical region is at the junction between African and 

Eurasian continents and harbors rich culture and ethnic diversity.  The present study 

aims to fill in this gap of knowledge by genotyping seven North African populations 

and four Spanish populations with high-density SNP microarray, to explore the 

genetic relationship among populations within this region and with other major 

worldwide populations.   

 

1.1 North Africa and the Evolution of Modern Humans 

 

North Africa includes seven countries or territories in the north-most region of 

the African continent: Egypt, Libya, Tunisia, Algeria, Morocco, Western Sahara, and 

Sudan.  The North African region is effectively isolated from the rest of the African 

continent by the Sahara Desert in the south, and separated from the European 

continent by the Mediterranean Sea in the north.  This anthropological island, isolated 

by huge geographical barriers, is only narrowly connected to the Middle East by the 

Sinai Peninsula of Egypt, and  possibly also to the Iberian Peninsula through the Strait 

of Gibraltar in prehistoric times.  Although North Africa is ecologically and culturally 

isolated from the rest of Africa, this region has been historically influenced by 

seafaring civilizations, such as Greeks and Romans, which could travel across the 
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Mediterranean Sea, and later was invaded and conquered by the Islamic Arabs from 

Southwestern Asia in the seventh century.  Therefore, North Africa had more culture 

exchange, and migration, with the Middle East and Europe than with Sub-Saharan 

Africa.  Berbers are believed to be the indigenous inhabitants of the western part of 

North Africa, also called Maghreb, while the eastern part of North Africa has been 

inhabited by Egyptians, mostly along the Nile Valley.  Arabic and Berber, both of 

which belong to the Afro-Asiatic language family, are the languages commonly used 

in the North Africa region.   

 Archaeological evidence indicates that modern humans were present in North 

Africa as early as 45,000 years ago in the form of Aterian industry, although the 

continuity of human occupancy in this region still needs more support (Garcea and 

Giraudi, 2006).  The earliest fossil evidence of the anatomically modern human 

(AMH) phenotype has been discovered in Ethiopia in East Africa, which is dated back 

approximately 130,000 to 195,000 years ago (Day, 1969).  It is generally accepted, as 

supported by fossil and archaeological evidence, that modern humans originated from 

a small isolated population in Africa up to 2 million years ago, during the Late 

Pleistocene stage (Walter et al., 2000; Clark et al., 2003; White et al., 2003).  This 

ancestral population is thought to have undergone dramatic growth and range 

expansion throughout the Old World, and it then completely replaced the archaic 

forms of other Hominin lineages (Cann et al., 1987; Harpending et al., 1998; Excoffier 

et al., 2002).   

In the next epoch of evolution, long after their origination in Africa and their 

assimilation of other archaic lineages, anatomically modern humans underwent a 

global diaspora.  An “Out-of-Africa” model is gaining wide acceptance regarding the 

recent dispersal of modern humans throughout the whole world around 50,000 to 

60,000 years ago (Foster and Matsumura, 2005; Mellars, 2006; Torroni et al., 2006).  
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Two possible routes have been proposed for this long-range migration between 

continents.  The “southern route” of migration is proposed to start from the Horn of 

Africa along the coast of the Persian/Arabian Gulf, and continue farther to the Indian 

Ocean, reaching Southeast Asia and Australia, then radiating farther to East Asia and 

finally to the Americas.  It is gaining more evidence for support and favored over the 

“northern route” of dispersal, which is proposed to be a land route going eastward 

through the Levant and across the Eurasian Steppe, then turning south through the 

Asian mainland (Mellars, 2006; Olivieri et al., 2006; Torroni et al., 2006; HUGO Pan-

Asian SNP Consortium, 2009).   

According to the Out-of-Africa model of recent migration, the delayed 

settlement in most parts of West Eurasia is thought to have resulted from an offshoot 

of the east-bound coastal migration route (Macauley et al., 2005; Mellars, 2006).  

Paleoenvironmental evidence supports the likelihood that the ancestors of West 

Eurasians experienced a lengthy pause in migration after their initial settlement, 

probably in the Middle East region along the Persian/Arabian Gulf, until climate 

improvement allowed them to further expand northward to the Levant and then 

Europe (Van Andel et al., 1996).  Such a back-immigration from West Asia is not 

likely to have taken place until about 50,000 years ago, when the wetter climate 

reduced the size of the expansive desert extending from North Africa to Central Asia.   

Today North Africa is  isolated from the rest of Africa by the Sahara Desert, 

but connected to the West Asia near its junction with East Africa.  It is generally 

thought that colonization of modern humans in North Africa is parallel to that in 

Europe, most likely from West Asia during the same period of time, around the early 

Upper Paleolithic.  Therefore, characterization of genetic variation in contemporary 

North African populations and comparison to populations in other geographic regions 
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can help one obtain a better understanding of the pattern and timing of the latest out-

of-Africa migration, especially the peopling of West Eurasian regions.   

 

1.2  Population Genetics of North Africans 

 

 Until recently, population genetics studies of North Africans, as well as other 

ethnic groups, have mostly been relying on the uniparental haploid DNA sequence 

variations, namely mitochondrial DNA (mtDNA) and the non-recombining region of 

Y chromosome (NRY).  The haploid genetic markers can be transmitted from only 

one of the parents and are not subjected to recombination, therefore new mutations are 

accumulated in a sequential manner in the radiating lineages.  Thus, the resulting 

sequence divergence on mtDNA or Y chromosome over the course of time gives rise 

to monophyletic haplogroups, which can be used to reconstruct the phylogeny of all 

lineages in a straightforward way (Wallace 1995).  This type of DNA sequence 

differentiation happens during the process of human migration into different 

geographical regions, so the sequentially generated haplogroups and subhaplogroups 

tend to be enriched or even limited to certain populations in specific geographic areas.  

Thus, these uniparental genetic markers provide a simple and reliable system to trace 

back the human migration pattern around the world.  As the mtDNA has very high 

sequence evolution rate, at least one order of magnitude higher than nuclear 

chromosomal DNA (Neckelmann et al., 1987; Wallace et al., 1987), the haplogroups 

of mtDNA are more diverse and informative than those of the non-recombining region 

of Y chromosome.   

  The worldwide phylogenic tree of human mtDNA demonstrates that the root 

layer L split into a series of branches, L0, L1, through L5.  All of these haplogroups 

are African-specific sequences, except a more peripheral haplogroup, L3, which is 
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shared between Africans and populations in the rest of the world (Underhill and 

Kivisild, 2007; Olivieri et al., 2006).  The L3 haplogroup further splits into a number 

of subclades that are exclusively present in African populations, as well as two other 

branches, M and N, which give rise to all non-African mtDNA lineages around the 

world.  The R haplogroup, an early derivative of N, is also considered an extant 

founder haplogroup of non-Africans as it is widely dispersed in non-African 

populations and splits into many subclades of high-sequence variation.  In summary, 

the first informative split of mtDNA phylogenic tree is at the level of L3 and M/N/R 

clades to distinguish non-African from African populations.  The subsequent split in 

mtDNA tree beneath M, N, and R haplogroups is informative to distinguish all major 

continental regions except the Americas.   

European and Near Eastern populations primarily carry the maternally 

inherited mtDNA from N-derived haplogroups N1, N2a, W, X, and R-derived 

haplogroups R0 (including R0a, H, and V), J, T, and U (except U6).  Haplogroup U is 

nested in haplogroup R; it is broadly distributed in wide range of geographic regions, 

from North Africa and Europe to Central and South Asia, at a very high overall 

frequency of 15%‒30% (Richards et al., 2000; Kivisild et al., 2003; Quintana-Murci et 

al., 2004).  Based on the complete mtDNA, the most informative mtDNA haplogroup 

for North Africa is U6, which is almost exclusively found in the North African 

populations.  It has been proposed that the U6 lineages represent a return of the West 

Asian branch to North Africa after the out-of-Africa exit, possibly around 39,000 to 

52,000 years ago (Maca-Meyer et al., 2001).  Detailed analysis of the U6 lineage by 

complete sequencing suggests that the Near East is the most likely origin of the proto-

U6 haplogroup, which spread to North Africa around 30,000 years ago (Maca-Meyer 

et al., 2003).  Successive expansion is revealed by various subhaplogroups of U6.  It 

has been proposed that subclade U6a signals the range expansion from Northwestern 
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Africa to East Africa in Paleolithic times, while its derivative U6a1 reflects the 

posterior return to Maghreb.  The U6b and U6c subhaplogroups represent more 

localized expansion in West Africa, possibly reaching as far as Iberian Peninsula and 

Canary Islands in prehistoric times.  One interesting finding is that Berbers of North 

Africa and Sami, hunter-gatherers of Scandinavia, share an extremely young 

subhaplogroup U5b branch that is only approximately 9,000 years old (Alessandro et 

al., 2005).  This reveals a direct maternal connection between the two contemporary 

populations far away from one another, confirming that the southwestern refuge area 

of Europe is the source of late-glacial expansion to repopulate northern Europe after 

the Last Glacial Maximum.   

Besides U6, haplogroups X1 and M1 have also been reported to be informative 

for North Africa populations.  Haplogroup X can be further divided into two major 

subclades X1 and X2 based on complete mtDNA sequence.  The distribution of 

subhaplogroup X1 is restricted to North Africa, East Africa, and the Near East, while 

the diversity of X1 indicates these lineages coalescenced at an early time, most likely 

in North Africa (Reidla et al., 2003).  Subhaplogroup X2 obviously underwent a recent 

population expansion in Eurasia, probably around or after the Last Glacial Maximum, 

and is currently distributed in a wide range at Europe, the Near East, Western and 

Central Asia, and North Africa.   

The M1 haplogroup is the only daughter clade of super-haplogroup M detected 

in Africa, and seems to be predominantly specific to Africa.  The M1 haplogroup 

exhibits high frequencies in East Africa, but is also observed in North Africa (Olivieri 

et al., 2006).  This unique geographical distribution of the M1 haplogroup brings up 

the question of whether it originated before or after the initial out-of-Africa expansion.  

Phylogeographic studies of the entire and partial mtDNA sequence point out that the 

coalescent time of the African M1 haplogroup is later than those for other M-derived 
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clades restricted to Asia.  Furthermore, the most ancestral M1 lineages are found in 

Northwest Africa and the Near East, but not in East Africa (Gonzalez et al., 2007).  

Therefore, the M1 haplogroup most likely originated from Asia, and expanded first to  

Northwestern Africa, then radiated to Eastern Africa and as far as the Iberian 

Peninsula.  Remarkable parallelism can be observed between the M1 and U6 

haplogroups in regard to the geographic distribution and time of origination.  The 

analysis of a large number of complete mtDNA sequences of haplogroups M1 and U6 

reveals that they both originated in Southwestern Asia and back-flowed together to 

Northwestern Africa through the Levant around 40,000 to 45,000 years ago, which 

temporally overlapped the settlement of Europe by modern humans (Olivieri et al., 

2006).  Interestingly, these early Upper Paleolithic lineages harboring haplogroups M1 

and U6 traveled through the Mediterranean area instead of the original southern 

coastal route of the out-of-Africa expansion, possibly due to the improvement of 

climatic conditions that allowed for more permeable land.   

 Haplogroup H is a subclade of superhaplogroup R, under the HV branch, and 

is the most frequent haplogroup of North Africa as well as Western Eurasia, 

comprising almost half of the European mtDNA pool.  Haplogroup H is present at 

22% in the Near East, but only 9% in the Arabian Peninsula.  Detailed molecular 

dissection of haplogroup H by sequencing of complete mtDNA has been carried out in 

a number of recent studies.  This previously thought uniform haplogroup is refined to 

numerous monophyletic subclades, each bearing characteristic mutations and 

differentiated geographical distribution (Achilli et al., 2004; Loogvali et al., 2004; 

Pereira et al., 2005).  The overall frequency of Haplogroup H in North Africa is 

highest in the western part, ranging between 24% to 37% of all mtDNA lineages in 

Moroccans, Algerians, and Tunisians, and drops slightly eastward to 14% to 21% in 

Egyptians and southward to 24% in Saharans (Rando et al., 1998; Krings et al., 1999; 
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Stevanovitch et al., 2004).  Among subgroups of H, H1 has the highest frequency in 

North Africa at 42%, followed by H3 at 13%, both decreasing from west to east.  This 

pattern of gradual change is similar to their frequency distribution observed in Europe, 

especially in the Iberian Peninsula.  Most of other subgroups of H, H4, H5, H7, H8, 

and H11 have higher frequency in the eastern part of North Africa, attesting to 

possible gene flow from the Near East.  The H1 and H3 subhaplogroups have a similar 

coalescent age of around 11,000 years in North Africa, indicating a late Paleolithic 

settlement (Ennaffa et al., 2009).  The lack of exclusive haplotypic sharing between 

populations in North Africa and the Arabian Peninsula supports the hypothesis that the 

historical invasion and domination by Islamic Arabs has left strong influence in 

culture but only minor demic impact on North Africans (Bosch et al., 2000).   

 Binary and microsatellite genetic markers on the non-recombining region of Y 

chromosome provide another haploid haplotyping system to investigate human 

population evolution, although its molecular resolution is lower than that of mtDNA.  

A well-resolved phylogenetic tree of Y chromosome binary markers indicates that the 

top two primary splits branch out the Africa-specific haplogroups A and B.  Both of 

them have various subclades with distinct geographic distribution, reflecting the 

complex population demographic history of Africa (Underhill et al., 2000; Hammer et 

al., 2001; YCC, 2002).  The other part of the Y chromosome tree consists of three 

subgroups, C, DE, and F-M89, which coalesce at CR-M168 (Underhill et al., 2001).  

Haplogroup DE is present in both Africa and Asia, while haplogroup C is widely 

distributed in East Asia, Oceania, and North America, but not in Africa.  Haplogroup 

F-M89 is also non-African and has a very prolific subgroup K with deep structure.   

 The most common Y chromosome haplogroup in North Africa is E3b2, at an 

overall frequency of 42%.  It is a subclade under the DE branch, and present only at 

very low frequency in the immediate south of North Africa, the Near East, and 



10 

Southern Europe (Cruciani et al., 2004; Semino et al., 2004).  The frequency of 

haplogroup E3b2 exhibits a decreasing pattern from west to east in North Africa, from 

76% in the Saharawi of Morocco to only about 10% in Egypt (Bosch et al., 2001; 

Flores et al., 2001; Arredi et al., 2004).  Haplogroup J* is the second most frequent in 

North Africa at an overall frequency of 20%, while being the most common among 

Palestinian Arabs and Bedouins.  Weak negative selection has been proposed for E3b2 

and J* haplogroups due to partial deletion of genes involved in the spermatogenesis, 

which should decrease their frequency (Repping et al., 2003), while no evidence for 

their positive selection has been reported so far.  Therefore, the most likely 

explanation for the high frequency of E3b2 and J* haplogroups is neutral genetic drift.  

Given the possible weak negative selection on these haplogroups, the effective 

population size of male ancestors of North Africans is likely very small so that 

dramatic neutral drift could have happened.  The time to most recent ancestor 

(TMRCA) for haplogroup E3b2 is estimated to be between 4,200 to 6,900 years ago, 

and between 6,800 to 7,900 years ago for haplogroup J*, modeled under various 

demographic parameters (Arredi et al., 2004).   

Such young coalescence age of these two haplogroups further supports the 

hypothesis that neutral genetic drift is the predominant driving force shaping the 

genetic variation landscape of North Africans, at least on Y chromosome in males.  

The strong geographical structure of Y chromosomal variation and the parallel genetic 

affinity pattern in North Africa are consistent with the hypothesis that North Africans 

arise from a quick population expansion from the Middle East.   
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1.3  Population Genetics of Basques and Iberians  

 

Basques are an ethic group living in the western Pyrenees in the Iberian 

Peninsula, traditionally known as the “Basque Country,” across the border between 

northeastern Spain and southwestern France.  Basques are generally considered to be a 

linguistically isolated population, as they speak the only non-Indo-European language, 

Euskera, in the Western Europe.  Another unique feature of Basques is that they have 

the highest frequency of Rh negative blood type in the world around 33%, and almost 

no B or the related AB blood types.  In addition, Basques exhibit particular 

distribution in the HLA system, immunoglobulin, and enzyme isoforms.  It is also 

known that Basques have subtle but distinctive body characteristics, making them a 

distinct physical group.  These peculiarities of Basques have been attributed to the 

long history of geographical isolation from the rest of Europe, and dramatic genetic 

drift due to small effective population size.  Based on these particular biological 

features, it has long been thought that Basques are a genetically isolated population, 

and they might be the population most closely related to the Paleolithic ancestor of 

Europeans (Mourant, 1947; Aguirre et al., 1991; Bertranpetit and Cavalli-Sforza, 

1991; Bauduer et al., 2005).  In early population genetics studies, contemporary 

Basques often have been used as the proxy for the ancestral modern humans first 

settling in Europe, but this is no longer a useful paradigm.   

 Since the advent of molecular biology, DNA markers greatly facilitated 

population genetics research.  Studies using various DNA genetic markers, including 

microsatellite DNA markers, mitochondrial DNA,Y chromosome markers, SNP 

markers in candidate genes as well as in the whole genome, provided further insight 

into Basque population genetics.  Many genetic studies report evidence supporting the 

idea that modern Basques constitute a genetically distinctive population, while other 
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studies come to the opposite conclusion.  Microsatellite DNA marker studies 

demonstrate that Basques can only be vaguely differentiated from neighboring 

populations in Europe and North Africa (Iriondo et al., 1997 and 2003; Belle et al., 

2006; Zlojutro et al., 2006).   

Analyses using haploid genetic markers reveal various levels of genetic 

differentiation of Basques in relation to surrounding populations.  Mitochondrial DNA 

marker studies tend to demonstrate smaller degrees of genetic differentiation for 

Basques (Bertranpetit et al., 1995; Salas et al., 1998), while some mtDNA markers 

exhibit noticeable difference, such as a higher level of haplogroup H in Basques 

(Achilli et al., 2004).  Y chromosome markers of Basques are found to be of 

conspicuously low genetic diversity, and share with the rest of European populations 

the most common haplogroup and the associated modal microsatellite haplotype 

(Seminoet al., 2000; Alonso et al., 2005; Adams et al., 2008).  The Y chromosome 

genetic variation of Basques overall falls within the landscape of European genetic 

diversity, although a low degree of differentiation is proposed in some studies (Hurles 

et al., 1999; Rosser et al., 2000).  Genetic variation studies using Alu insertions as well 

as SNP sets on selected autosomal segment are reported to fail to distinguish Basques 

from non-Basque Europeans (Comas et al., 2000; Garagnani et al., 2009).   

With the advancement of DNA genotyping technology, especially the wide 

utilization of high-density DNA microarray, genome-wide SNP scans become feasible 

and affordable to apply in large-scale population studies that include large numbers of 

individuals.  So far, the Human Genome Diversity Project (HGDP) is the genome-

wide population genetics study that includes the largest number of populations 

worldwide, covering all major geographic regions, in which the French Basques are 

included (Li et al., 2008).  In a report from the HGDP project, Basques turn out to be 

slightly distinguished from other European populations based on the genome-wide 
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SNP scan; however, it is unable to place Basques in a more refined geographical and 

genetic context among worldwide populations.  Other high-density SNP genotyping 

studies have been carried out on Basques to compare them to other European 

populations (Rodriguez-Ezpeleta et al., 2010), as well as to other Iberian populations 

(Laayouni et al., 2010).  These studies give rise to contradictory results in regard to the 

existence of genetic distinctiveness of the Basques.  Compared to the genetic markers 

used in earlier studies, genome-wide SNP scans provide much more information about 

the evolutionary history of human populations.  Therefore, further genome-wide 

genetic variation studies of Basques are necessary to resolve the controversy over their 

genetic characteristics.   
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

 

2.1 Populations and Samples 

 

 The present study includes seven North African populations and four Spanish 

populations.  Twenty individual samples were selected from each of these populations.  

Among North Africans, Egyptian samples were collected from Upper Egypt and 

different areas of the delta; Saharawi samples from the occidental Sahara; North 

Moroccan samples from Chefchaouen and Nador; South Moroccan samples from 

Erraschidia and Quarzazate; andrandom samples from the general populations of 

Algeria, Libya, and Tunisia.  The Southern Spanish samples were collected in the 

Andalusia region; the Northwestern Spanish samples from the Galicia region; the 

Basque samples from the Basque Country; while the Canary Islands samples were 

collected from the Eastern Islands, the Western Island, and the general population.  

The vast majority of these individuals were males.  Genomic DNA specimens were 

extracted from frozen peripheral blood using standard laboratory protocols and stored 

at ‒80◦C.   

 

2.2 Genotyping Methods 

 

Affymetrix human SNP 6.0 genotyping arrays (Affymetrix, Santa Clara, CA) 

were utilized in the genotyping experiment.  This microarray harbors 906,600 SNP 

markers covering 22 autosomes, both X and Y sex chromosomes, and mitochondrial 
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DNA.  Genomic DNA samples were first examined by spectrophotometer for purity 

and by agarose gel electrophoresis for DNA integrity, to exclude degraded or impure 

samples.  Five hundred nanograms of good-quality genomic DNA from each sample 

were used in the DNA labeling reaction, and hybridized to the SNP 6.0 array 

according to the standard protocol provided by the manufacturer.  The arrays were 

scanned by an Affymetrix GeneChip Scanner 3000 7G, and array signal intensity CEL 

files were generated using Affymetrix GeneChip Operating System (GCOS) software.  

Quality control of the microarrays and the genotyping calls were generated using 

BirdSeed v2 algorithm in Affymetrix Genotyping Counsel 4.0 software.   

 

2.3 Quality Assessment of Genotyping Microarray Data 

 

 A total of 205 SNP 6.0 arrays out of all 220 arrays passed the default 

ContrastQC threshold in the Genotyping Counsel 4.0 software, and the genotyping 

calls generated from them were exported as forward strand alleles.  ContrastQC, the 

new QC metric based on each individual microarray, demonstrated good correlation 

with the actual genotyping call rate based on the whole set of microarrays (figure 1A).  

Microarrays with extremely low call rates tend to have exceptionally high overall 

heterozygocity rates (figure 1B), which is probably due to high level of genotyping 

error.  In the 205 microarrays called, 4 microarrays had genotyping call rates less than 

94% and high heterozygocity rates, so they were immediately excluded from further 

analysis.  A small proportion of SNPs showed high genotyping missingness (figure 

1C).  A total of 817,325 SNPs out of all 906,600 SNPs passed the missingness cutoff 

of 0.05, in which 763,351 SNPs had minor allele frequency (MAF) of greater than 

0.01 in the 201 arrays (figure 1D) and were used for further analysis.   
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Figure 1. Quality control of genotyping data.  A. Relationship between the 
microarray genotyping call rate and ContrastQC metric in all 205 arrays called.  B. 
Relationship between the microarray genotyping call rate and the heterozygosity rate 
in all 205 arrays called.  C. Distribution of SNP missingness rate in 201 arrays with 
call rate greater than 94%.  D. Distribution of minor allele frequency (MAF) of 
817,325 SNPs in 201 arrays with call rate greater than 94%.   
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SNP markers are expected to be in Hardey-Weinburg Equilibrium (HWE) in a 

population.  Severe deviation from HWE is likely due to artifacts in generating SNP 

genotypes.  The relationship among HWE p value, MAF, and observed heterozygosity 

rate of 817,325 SNPs were investigated (figure 2) using PLINK 1.07 software.  SNPs 

very significantly deviated from HWE, such as with p values of less than 10‒20  that 

demonstrated exceptionally high levels of MAF, mostly between 0.4 and 0.5 (figure 

2A).  Correspondingly, the heterozygosity rate of these SNPs were mostly between 0.8 

and 1.0 (figure 2B).  Such extremely high levels of the heterozygosity rate close to 1.0 

is obviously unrealistic, and deviates significantly from the expected curve between 

MAF and the heterozygosity rate (figure 2C).  These summary statistics are derived 

from the whole set of all 201 samples from 11 populations, hence the heterozygosity 

rate of these SNPs is also close to 1.0 in most of the individual populations.  The most 

likely cause of such a high heterozygosity rate is a combination of poor performance 

of array probes detecting these SNPs and the bias of genotype calling algorithm to 

overcall hereozygotic genotypes on ambiguous SNPs, rather than due to biological or 

genetic reasons such as population stratification or isolation.   

HWE p value is commonly used as a QC metric for filtering SNPs, but it is 

hard to set a threshold for the HWE p value in a practical and intuitive way, as it 

depends on the samples size and potential population stratification.  By looking into 

the relationship between MAF and observed heterozygosity rate, it might be more 

useful to set a threshold directly on heterozygosity rate, instead of on the HWE p 

value, to filter out outlier SNPs of poor detection performance (figure 2B).  Under 

expected HWE, the heterozygosity rate has a clearly defined relationship to MAF and 

a maximum of 0.5; any outlier heterozygosity rates much larger than 0.5 are likely 

artifacts.  Meanwhile, the HWE p value should still be taken into consideration on a 

theoretical basis when establishing the cutoff on heterozygosity rate, as it exhibits  
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Figure 2.  Pairwise relationship among SNP Hardey-Weinburg Equilibrium 
(HWE) p value, minor allele frequency (MAF), and heterozygosity rate. Each 
black circle represents an SNP, while the gray circles in (C) indicated the expected 
HWE.   
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a near linear relationship with high heterozygosity rate, such as greater than 0.65 in the 

present study (figure 2B).   

 Interestingly, a small set of SNPs turn out to have a high heterozygosity rate 

greater than 0.65 but an insignificant HWE p value of greater than 10‒5 (at the upper-

right-corner in figure 2B).  Examination of their genome location reveals that these 

SNPs are all on the X chromosome.  As most of the individuals studied are male, these 

heterozygous haploid genotypes of X chromosome SNPs in males are set to missing.  

The HWE p value is calculated only on the small number of nonmissing genotypes, 

and hence are insignificant.  This actually illustrates one potential advantage of 

directly using the heterozygosity rate to filter SNPs, since these SNPs will be able to 

pass the HWE p value filtering but can be excluded due to high heterozygosity rate.   

In the set of 817,325 SNPs examined in 201 samples, 1,459 SNPs with an 

observed heterozygosity rate of greater than 0.65 are excluded from further analysis.  

Only a maximum threshold is implemented on the heterozygosity rate in this data set, 

without a minimum threshold, to avoid overfiltering.  The data set of the present study 

includes 11 populations of the small sample size of 20.  The SNPs with an extremely 

low heterozygosity rate near 0 turn out to also have a very low MAF (figure 2C).  

These SNPs might be the most informative ones that are highly differentiated in one or 

a few of the populations and should not be excluded.  Under other situations, a 

minimum threshold can be applied on the heterozygosity rate for appropriate SNP 

filtering.  Actually, this reflects the flexibility of using the heterozygosity rate to filter 

SNPs; the cutoff can be set at the high end only or at both high and low ends.  On the 

contrary, the HWE p value can have only one threshold, which might have different 

effects on SNPs of extremely high or low heterozygosity rates.   

 



 

20 

CHAPTER 3 

 

RESULTS: 

 

GENETIC VARIATIONS OF NORTH AFRICAN AND SPANISH POPULATIONS 

 

 

3.1 Overall Identical-by-State Similarity Among 11 Populations 
 

 After filtering by SNP missingness, heterozygosity rate, and MAF, 762,587 

SNPs were used to calculate the pairwise identical-by-state (IBS) matrix of 201 

samples.  Between each pair of individuals, there would be 0, 1, or 2 alleles shared at 

each SNP locus, and this could be averaged across all SNPs to obtain the mean 

proportion of IBS similarity between the individual pairs.  The IBS matrix is a square 

matrix summarizing the proportion of IBS similarity of all possible pairs of 

individuals in the data set.  The IBS matrix of 201 samples from seven North African 

populations and four Spanish populations are sorted by population and plotted with a 

color scale (figure 3A).   

A few problematic samples were observed in the IBS matrix.  One pair of 

Spanish samples were found out to be duplicates and showed a similarity of 0.997123, 

indicating high reproducibility in the genotyping experiment.  Two Egyptian samples 

demonstrated exceptionally high IBS of 0.8625 to each other, suggesting that they 

might be close relatives.  In these two pairs of related samples, only the ones with 

higher genotyping call rates were retained.  In addition, two Spanish samples and one 

Tunisian sample showed high IBS and high heterozygosity rate compared to all other 

samples.  They were all excluded due to potential DNA cross contamination.     
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B.  

                    
 
 
Figure 3.  Pairwise IBS similarity matrix using the largest number of individuals 
and SNPs feasible: 201 individuals from 11 North African and Spanish populations 
with 763,351 SNPs with MAF > 0.01.  A. IBS matrix were ordered by the population 
names.  B. Multidimensional scaling (MDS) of IBS matrix.  Top two components of 
MDS were plotted. probably due to potential DNA cross contamination; all three 
samples were, therefore, excluded.   
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 Some interesting patterns of similarity among these 11 populations are 

revealed by the pairwise IBS matrix.  The three Iberian and Canary Islands 

populations demonstrate higher IBS similarity within the group than they do to North 

African populations, while Basques have the highest within-population similarity.  

Surprisingly, most North African populations, including Algerians, Egyptians, 

Libyans, and North Moroccans, exhibit higher similarity to the Spanish populations 

than within the North African group.  In North African populations, only the within-

population similarity of Tunisians and South Moroccans is higher than their similarity 

to all other populations.  However, Tunisians also show higher similarity to the 

Spanish populations than to other North Africans.  Saharawi individuals show low 

similarity to all populations, including Saharawis themselves.  Actually, they include 

most of the individuals with the lowest level of overall IBS similarity, which is 

visualized as black lines in figure 3A.  These patterns suggest a complex and 

heterogeneous genetic architecture in North African populations.   

 An efficient way to summarize the variations among individuals in the 

pairwise IBS matrix is through multidimensional scaling (MDS).  MDS is a statistical 

technique of dimensional reduction to partition the variance in the matrix into a series 

of orthogonal components ordered by the magnitude of variance explained.  Applying 

MDS on the pairwise IBS matrix of 201 samples from 11 populations, the top two 

MDS components are plotted to explore the similarity and dissimilarity among 

individuals from different populations (figure 3B).  MDS component 1, capturing the 

largest variance possible in one dimension, effectively separates Iberian populations 

from North African populations.  In this dimension, the Southern Spanish and 

Northeastern Spanish populations overlap with each other, and are clearly separated 

from the Basque and Canary Islands populations.  The Canary Islands population is 

closer to North Africans than the two Spanish populations are, while the Basque 
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population is more distant from North Africans than the two Spanish populations are.  

This is consistent with the demographic history of the Canary Islands.  The Spanish 

colonization since the 15th century probably involved some admixture with 

indigenous populations, which might be related to North African populations.  

Basques are believed to be the population most closely related to the ancestors of 

Europeans, hence analysis including more European populations could shed additional 

light on the genetic characteristics of Basques.  North African populations cannot be 

clearly separated from each other on MDS component 1, except that Egyptians form a 

tight cluster closest to the Spanish populations.  South Moroccans encompass a wide 

range and include most of the individuals extending farthest away from the Spanish 

populations.  MDS component 2 pulls out Tunisians far from the Spanish and other 

North African populations, with a few South Moroccan individuals being most distant 

from Tunisians.   

 MDS plot of IBS matrix reveals the heterogeneity within North African 

populations, especially in South Moroccans, Saharawi, and Tunisians.  The sample 

sizes of the populations investigated are not large, ranging between 17 and 20; 

therefore, a few outlier samples in a population could substantially influence the 

characterization this population.  Outlier samples might reflect the actual genetic 

heterogeneity in the population studied, it is also possible that they are caused by 

genotyping artifacts.  Stringent filtering on the data quality of SNPs as well as of the 

samples could effectively reduce potential errors in subsequent analysis and inference 

of the data set.  SNPs with missing genotype calls tend to be hard to detect accurately, 

and missingness in the genotype data set can be hard to handle or cause bias in 

computation.  In the present study, 191 individuals have a genotyping missingness rate 

of less than 3% and are retained for further analysis.  In these individuals, a total of 
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396,750 SNPs have complete genotype calls without any missing data and are used in 

subsequent analysis.   

 

3.2 Principle Component Analysis Involving Other Representative Worldwide 

Populations  

 

The 11 North African and Spanish populations in the present study wwere 

chosen to be located at the junction between the Eurasian and African continents.  

Therefore, it would be necessary to analyze these populations together with other 

representative worldwide populations to fully characterize the genetic features of these 

populations in the context of the whole world.  There are two major public resources 

for genotyping data of worldwide populations, the Human Genome Diversity Project, 

which used only the Illumina BeadArray SNP genotyping platform (Cann et al., 2002; 

Rothenberg et al., 2002), and the International HapMap Project, which used both 

Illumina BeadArray and Affymetrix GeneChip platforms (International HapMap 

Consortium, 2007; 2003).  The SNP content on Illumina BeadArray platforms and 

Affymetrix GeneChip platforms have a very small overlap of approximately 10%.  As 

the present study used only the Affymetrix SNP 6.0 GeneChip, genotype data of 

populations from the latest HapMap phase 3 were selected to be combined with the 

present study, so that the maximum possible SNP content could be retained in the 

merged data set for further analysis.   

 Principal component analysis (PCA) on genotype data has been widely used to 

detect population structure on a genome-wode scale and to account for it in trait 

association studies (Price et al., 2007).  The concept behind PCA is similar to MDS.  
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C.                                                           D. 

              

Population Size Group Size

CEU 106 258

TSI 84

CanaryIslands 17

Spain_NW 17

Spain_S 17

Spain_BASC 17

Morocco_N 18 123

Algeria 18

TUNISIA 18

Libya 17

Egypt 19

Morocco_S 16

Sahara_OCC 17

MKK 138 333

LWK 85

YRI 110

CH 159 159  
 
 
Figure 4.  Population structure of 11 North African and Spanish populations 
merged with 7 HapMap3 populations (682 individuals) using 203,564 SNPs.  A. 
Genotype Principal Component Analysis.  B. MDS on IBS matrix.  C. Relationship 
between PCA and MDS on the first 4 components.  D. Size of each population 
included and 4 major groups of population.   
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The difference between them is that PCA is applied directly on the large genotype data 

matrix containing all the genetic markers status in all the individuals studied, while 

MDS is usually applied on the much smaller square matrix of pairwise IBS, with size 

equal to the number of individuals studied.  In addition, the PCA requires genetic 

markers to be independent for matrix computation, therefore, SNPs in linkage 

disequilibrium (LD) need to be thinned before applying the PCA.  LD in SNPs 

examined is not an issue for MDS on IBS square matrix, as all SNPs have already 

been summarized to the proportion of IBS sharing between each pair of individuals, 

although SNPs in high LD could increase the weight for these genomic regions and 

cause bias.  It will be interesting to compare the result of the PCA on genotype matrix 

with MDS on the corresponding IBS matrix.   

 At a stringent LD r2 threshold of 0.5, 220,346 SNPs out of the 396,750 SNPs 

without missing data in 191 North African and Spanish individuals were selected to 

merge with seven populations from HapMap3 data.  These include three Sub-Saharan 

African populations, YRI, HWK, and MKK; two European populations, CEU, and 

TSI;two Chinese populations CHB and CHD, combined and named CH as they are 

indistinguishable from one another.  A total of 203,564 SNPs out of the 220,346 SNPs 

were successfully merged between 191 samples of the present study and 682 samples 

of HapMap3 populations (figure 4D).  Both genotype PCA (figure 4A) using 

SmartPCA software in the EIGNSTRAT package (Price et al., 2006) and MDS on the 

IBS matrix (figure 4B) using PLINK 1.07 software (Purcell et al., 2007) were applied 

on the same merged data set to explore the relationship of North African and Spanish 

populations among major worldwide populations.  The two-dimensional reduction 

methods give very similar results in population structure: the corresponding 

components between the two methods turned out to be highly correlated to one 

another for the top four components examined, while the signs of components are  
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Figure 5.  MDS plot on IBS matrix of 11 North African and Spanish populations 
merged with of 5 HapMap3 populations using 203,564 LD-pruned SNPs.   
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sometimes swapped (figure 4C).  This indicates that the pairwise IBS matrix 

characterizing the inter-individual similarity proportion is able to retain almost all of 

the genotypic variance among individuals based on large numbers of SNPs.  The 

computational load of MDS on IBS matrix is much lower than PCA on the large 

genotype data set, therefore MDS on IBS matrix provides a much more efficient 

computational method to explore the similarity patterns among individuals than 

genotype PCA.   

 Component 1 of both PCA and MDS separates Sub-Saharan African 

populations from European and Chinese populations, with YRI at the extreme.  

Among Sub-Saharans, the MKK population shows wide dispersion and is distant from 

YRI and LWK.  Component 2 pulls the Chinese population away from all other 

populations, with Sub-Saharan African populations being closest to it, but still quite 

distant, and European populations at the opposite extreme.  Looking at both 

components together, the four Spanish populations overlap with the European CEU 

and TSI populations, while the seven North African populations form a continuous 

line between Sub-Saharan Africans and Europeans.  The Chinese population appears 

as a stand alone tight cluster far away from the continuous line formed by all other 

populations, hence, it is not informative in elucidating the genetic similarity of North 

African and Spanish populations and is excluded from further MDS analysis.   

 MDS is then applied on the IBS matrix of 714 individuals without Chinese, 

and the top three components are plotted (figure 5).  Component 2 mostly 

differentiates MKK from the other two Sub-Saharan Africans YRI and LWK, 

exposing the large variation within MKK (figure 5A).  Components 1 and 3 reveal the 

similarity pattern among populations at much better resolution (figure 5B).  Fine 

structure among the European populations is observed.  Three South European 

populations, including TSI, Northwest Spanish, and South Spanish, intermingle with 
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one another as a tight cluster.  The CEU population of northwestern European origin 

extends away from the South European group, and it is the population most distant 

from Sub-Saharan and North African populations.  Interestingly, Basques form a 

distinct cluster located right in the middle between the South European and the CEU 

populations.  The Canary Islands population also extends away from the South 

European populations and toward North African populations.  Tunisian is the North 

African population most distant from European and Sub-Saharan African populations 

on the axis of component 3, and has a wide range of variation within it.  On this axis, 

the Tunisian population is followed by Saharawi and South Moroccan populations, 

while the Egyptian population is the closest to Europeans and Sub-Saharan Africans.  

MDS component 1 differentiates European populations from Sub-Saharan Africans, 

and North Africans turn out to be much more similar to Europeans than to Sub-

Saharan Africans.  However, a few North African individuals demonstrate a high level 

of similarity to Sub-Saharan Africans, especially the ones in Saharawi and South 

Moroccan populations that overlap with MKK individuals.   

 The pairwise IBS matrix of all 873 individuals, including HapMap3 Chinese, 

is averaged by population and visualized on a gray scale (figure 6).  This is based on 

the 203,564 SNPs passing the stringent LD pruning r2 threshold of 0.5, in order to 

prevent bias in overweighting genomic regions of extended LD.  Basques stand out to 

be the population with highest similarity to the CEU.  The similarity within North 

African populations appears to be lower than that within European populations, and 

mostly also lower than the similarity between the North African group and the 

European group.  Saharawi and South Moroccan populations demonstrate low 

similarity to all European and North African populations, including within themselves.  

Individuals within the same population are expected to share more genetic similarity 

with one another than with other populations.  Actually, this pattern is observed in all  
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Figure 6. Population means of IBS matrix for each of the 11 North African and 
Spanish populations, as well as 6 HapMap3 populations, using 203,564 LD-
pruned SNPs.  The color scale is indicated at the bottom.  
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HapMap3 worldwide populations except the southern European TSI population.  One 

possible cause for the absence of this pattern in the North African and Southern 

European populations might be the SNP ascertainment bias.  The SNPs used in the 

large-scale genotyping assay are discovered mostly in the Western Europeans, as well 

as in Sub-Saharan African and East Asian individuals.  Therefore, SNPs restricted to 

other populations that have not been thoroughly examined, such as in North African 

populations, would probably not be included in the SNP discoveries and subsequent 

genotype data set.  Consequently, the corresponding genetic features might not be 

observed.  More thorough, unbiased SNP discoveries in diverse populations will 

enable more powerful elucidation of distinct genetic characteristics in various 

populations around the world. 

 

3.3  Genetic Distinctiveness of Basques Among Spanish Populations 

 

 Basques are generally considered a cultural isolate, speaking the only non-

Indo-European language in the Western Europe.  Many previous genetic studies 

reported that Basques constitute a genetically distinct population, using microsatellite 

DNA markers, genetic markers on Y chromosomes, mitochondrial DNA and 

candidate genes, and, lately, genome-wide SNP markers (Bertranpetit and Cavalli-

Sforza 1991; Calafell and Bertranpetit 1994; Bertranpetit et al., 1995; Salas et al., 

1998; Achilli et al., 2004; Zlojutro et al., 2006; Adams et al., 2008; Li et al., 2008; 

Garagnani et al., 2009).  The present study uses high-density SNP microarrays to 

investigate genome-wide genetic variations of North African and Spanish populations, 

which include Basques and two surrounding populations at Northwest and South 

Spain.  This provides a good opportunity to explore fine substructures of Spanish 

populations and possible genetic distinctiveness of Basques.  Basques are considered  
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Figure 7.  MDS plot of IBS matrix, including 20 individuals from the Qatari 
population, using 313,438 SNPs.  A. MDS plot of Qatari merged with the four 
Spanish populations.  B.  MDS plot of Qatari merged with the 4 Spanish population 
and 7 North African populations.   
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 the population most closely related to the ancestors of Europeans that probably have a 

Middle Eastern origin.  Therefore, a set of 20 Qatari samples, genotyped on the 

Affymetrix Human SNP 500K platform, were obtained from collaborators (Clark et 

al., unpublished data) and merged with the data set of the present study.   

 The merged data set included 313,438 SNPs genotyped across 211 individuals 

from 12 populations.  MDS plot was applied on the merged data set of Qatari and four 

Spanish populations, either with (figure 7B) or without (figure 7A) North African 

populations.  Even when only Spanish and Qatar populations are analyzed together, 

the top two MDS components clearly separate Basques as a distinct cluster far away 

from the cluster formed by three other Spanish populations overlapping with each 

other, and away from the Qatari cluster (figure 7A).  Component 1 indicates that 

Basques are more distant from Qatari than three other Spanish populations, while 

component 2 distinguishes Basques from the three other Spanish populations with 

Qatari in the middle between the two clusters.  When analyzed together with North 

African populations, the fine substructure of Spanish populations is even more clearly 

revealed by the top two components of MDS on the IBS matrix (figure 7B).  The first 

MDS component separates the Spanish populations from North Africans, with Qatari 

located between the two groups.  The Northwest Spanish and South Spanish 

individuals are intermingled with one another, while Basques form a distinct cluster at 

one extreme end most distant from North Africans.  Canary Islands individuals are 

also distinguishable from the Iberian populations on this axis, extending closer to 

North Africans and Qatari.  The second MDS component is polarized by Qatari.  

Egyptians and Libyans are the North African populations closest to Qatari on both 

MDS axes, followed by Algerians and North Moroccans, then by Saharawi and South 

Moroccans.  Interestingly, the observed pattern of relative genetic similarity among  
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North Africans and Qatari essentially corresponds to their geographical locations, 

similar to what has been reported about the fine genetic substructure of European 

populations (Novembre et al., 2008).   

 It is generally accepted that modern European populations originated from 

Southwestern Asia in Paleolithic times.  With the introduction of the Middle Eastern 

Qatari population into the present analysis, the Basque and Canary Islands populations 

can be more effectively distinguished from surrounding populations of the Iberian 

Peninsula.  The Qatari population also helps in the interpretation of genetic similarity 

pattern of North African populations by providing a means to polarize the change of 

genetic variations.   

 

3.4 Runs of Extended Homozygosity Analysis 

 

 On a genome-wide level, extended tracts of homozygosity can be observed in 

an individual when both homologous chromosomal segments are inherited from a 

same recent common ancestor.  Such runs of extended homozygosity (ROH) 

potentially can be the genomic indicator of autozygosity resulting from recent 

consanguinity (Li et al., 2006).  In randomly mating populations, certain low levels of 

ROH can still be observed, which may be related to the demographics history of a 

population (Nalls et al., 2009; McQuillan et al., 2008).  A smaller founder population 

or more severe growth bottleneck can lead to longer runs of homozygosity and larger 

numbers of runs.  Therefore, runs of extended homozygosity are an important 

parameter to characterize a population.   

 Long runs of extended homozygosity were examined in the 873 individuals 

from seven North African populations, four Spanish populations, and six Hapmap3 

populations, using PLINK 1.07 software (Purcell et al., 2007).  ROH segments were 
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selected by the following criteria: in 5MB windows sliding across the whole genome, 

a given SNP will be called in ROH segments if more than 5% of all overlapping 

windows spanning the SNP are homozygous (allowing at most 5 missing genotypes 

and 1 heterozygous genotypes); the called ROH segments need to be at least 1MB 

long, containing at least 100 SNPs at a SNP density of no more than 50KB/SNP, with 

maximum gap between SNPs allowed at 1MB.  The length of all ROH segments 

called in a given individual can be summed up to obtain the total length of ROH.  

Intuitively, the total length of homozygosity runs in an individual would be related to 

the overall SNP homozygosity rate, thus the relationship between the two was 

investigated (figure 8).   

 Looking at the population average (figure 8B), North African populations 

clearly demonstrate much larger total length of homozygosity runs than other 

populations, even though their overall SNP homozygosity rate is actually lower than 

European and Chinese populations.  Tunisians have the highest level of total 

homozygosity runs, which is approximately three times as high as other North African 

populations and more than ten times asas high as European, Chinese, and Sub-Saharan 

populations.  The overall SNP homozygosity rate of Tunisians is also the highest 

among North African populations, at a level comparable to most Europeans and only 

lower than Basque and Chinese.  At the individual level (figure 8A), many North 

Africans exhibit exceptionally high levels of ROH, while some of the North African 

individuals have ROH level comparable to other populations.  A linear trend between 

the total length of ROH and overall SNP homozygosity rate can be observed.  Such 

high levels of autozygosity in North African populations is most likely due to the 

elevated level of recent consanguinity, which varies greatly among individuals and 

among populations.   
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B.  

                          
 
 
Figure 8.  Relationship between the overall SNP homozygosity rate and total 
length of extended homozygosity runs.  A. Plot of 873 individuals from North 
African, Spanish, and HapMap3 populations.  B. Plot of population means.   
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      Among the four Spanish populations, the Northwest and South Spanish 

populations have comparable levels of autozygosity as the CEU and TSI, while 

Basques have levels approximately four times as high.  The overall SNP 

homozygosity rate of Basques is also higher than any other European populations.  

This is consistent with the historical demographics of Basques.  Basques are subjected 

to geographical isolation, which usually lead to elevated levels of inbreeding 

compared to randomly mating populations.  The resulting autozygosity is manifested 

as runs of extended homozygosity in the genome.  The Canary Islands also exhibit a 

slightly higher level of ROH than other Europeans except Basques, but its overall SNP 

homozygosity rate is the lowest among European populations.  This can be explained 

by the migration history of the Canary Islands.  The Spanish colonization of this area, 

beginning about 600 years ago, probably involved some degree of admixture with the 

indigenous populations; this gene exchange in turn lowered the overall homozygosity 

rate.  In addition, the Canary Islands are also geographically isolated.  All these factors 

contribute to the increased autozygosity in the Canary Islands.   

 These ROH results are consistent with known demographic history, culture, 

and geographical features of the populations studied.  They indicate that runs of 

extended homozygosity analysis is an effective method to characterize a population 

with respect to inbreeding.   

 

3.5 Ancestral Allele Frequency Characterization 

 

 Ancestral allele frequency (AAF) is an important parameter to characterize the 

evolutionary history of a population.  The ancestral allele status information of SNPs 

assayed in the present study (Spencer et al., 2006) is obtained from NCBI dbSNP 

database (http://www.ncbi.nlm.nih.gov/projects/SNP/).  A total of 167,888 SNPs out  

http://www.ncbi.nlm.nih.gov/projects/SNP/�
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B.            C. 

      
 
 
Figure 9.  Ancestral allele frequency (AAF) charactereization of 11 North African 
and Spanish populations as well as 6 HapMap3 populations.  A. AAF distribution 
of each population.  B. Relationship between the number of SNPs with fixed derived 
alleles and fixed ancestral alleles in each population.  C. Relationship between the 
population mean AAF and the proportion of SNPs with fixed ancestral allele.   
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of the 203,564 LD-pruned SNPs have ancestral allele information available; their 

ancestral allele frequency distribution in each of the 17 populations is investigated 

(figure 9A).  HapMap populations for Yoruban, European, and Chinese, demonstrate 

patterns similar to those previously reported (Li et al., 2008).  Compared with other 

populations, Yorubans and other Sub-Saharan Africans have more SNPs at the upper 

end of ancestral allele frequency distribution and fewer SNPs at the lower end.  

Focusing on the intermediate range of AAF, excluding the two extreme ends, results in 

a steeper slope between the number of SNPs in each bin and the corresponding AAF.  

The Chinese appear to have a flatter slope than the CEU.  The sample size of 

populations in the present study is much smaller than that of the HapMap project.  

This leads to fluctuated patterns in the ancestral allele frequency distribution, making 

it hard to obtain a reliable estimation of the slope between AAF and the number of 

SNPs in each bin.   

To circumvent this difficulty, SNP counts at the two extreme ends of AAF 

distribution, where AAF equals 0 or 1, is explored.  A very strong positive linear 

correlation (r2 = 0.972, slope = 0.257, p = 4.26e-13) is uncovered between the number 

of SNPs with fixed ancestral allele and those with fixed derived allele in each 

population (figure 9B).  Surprisingly, it is the Basques who have the largest number of 

SNPs with fixed ancestral allele as well as with fixed derived allele among all 

populations, while the Tunisians are the highest among North African populations.  

Interestingly, a negative linear correlation (slope = ‒4.88, p = 4.12e-4, r2 = 0.61) is 

observed between the population mean ancestral allele frequency and the number of 

SNPs with fixed ancestral allele in each population (figure 9C).  Sub-Saharan Africans 

have the highest population mean AAF but smallest number of SNPs with fixed 

ancestral allele.   
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 These observed patterns of ancestral allele frequency probably result from the 

combined effect of multiple demographic forces during the population evolution, and 

effective population size may play an important role in it.  Populations having a 

smaller effective population size are more likely to undergo more dramatic genetic 

drift, to accumulate derived alleles more quickly to reach fixation, so they tend to have 

higher levels of fixed derived alleles and lower levels of genome-wide mean ancestral 

allele frequency.  On the other hand, the newly derived alleles are also more likely to 

be lost as a result of the more pronounced genetic drift due to smaller effective 

population size, leaving the ancestral alleles to remain fixed in the population.  

Therefore, non-sub-Saharan African populations with a small effiective population 

size or severe bottleneck, such as North Africans and Europeans, have lower levels of 

overall ancestral allele frequency, but higher levels of both fixed ancestral alleles and 

fixed derived alleles.   

 

3.6 Differential SNPs of North Africans 

 

 Ancestral allele frequency is an important parameter to characterize a 

population, hence, it is compared among populations in major geographical regions.  

The seven North African populations studied have a small sample size of 20 or less, 

and most of them are quite similar to one another, except the South Moroccan and 

Saharawi, who have several individuals admixed with sub-Saharan Africans.  Hence, 

the ancestral allele frequency of the five North African populations, excluding South 

Moroccan and Saharawi, are averaged to obtain a more reliable estimate of AAF for 

this population group.  Previous analysis results have shown that the genetic features 

of North African populations are much more similar to Europeans than to sub-Saharan 

Africans, therefore CEU is used as the baseline to characterize the AAF differential  
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B.  

                  
 
 
 
Figure 10.  Ancestral allele frequency difference comparison of North Africans 
(not including Moroccans,_Southern, and Saharawis) versus CEU, and YRI 
versus CEU.  A. Using 162,231 autosomal SNPs.  B. Using 5,653 SNPs on X 
chromosome.   
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pattern of North Africans.  The ancestral allele frequency difference of North Africans 

versus CEU is compared to the difference of YRI versus CEU on both autosomal 

SNPs (figure 10A) and SNPs on X chromosome (figure 10B).  Positive correlation is 

observed in both SNP sets, the correlation coefficient is 0.64 for autosomal SNPs and 

0.597 for SNPs on X chromosome.  Noticeably, the regression slope was much less 

than 1.  For SNPs with the most extreme difference in the North African versus CEU 

comparison, such as with absolute difference greater than 0.25, the direction of AAF 

change is almost all the same as YRI-CEU, but the magnitude of difference is much 

smaller than YRI-CEU.  This differential pattern is consistent across the whole 

genome, indicating that North Africans have ancestral allele frequency mostly 

between sub-Saharan Africans and Europeans, with higher similarity to Europeans 

than to sub-Saharan Africans.  SNPs having large AAF difference between North 

Africans and Europeans mostly exhibit even larger AAF difference between sub-

Saharan Africans and Europeans.    

 

3.7 Analysis of X Chromosome in Males  

 

 The sample selection of the present study has a special feature that almost all 

individuals are male (figure 11C).  The X chromosome in male is hemizygous with 

explicit genotype phase information readily available.  This provides a good 

opportunity to explore the genetic variation of the X chromosome in the male 

populations in the present study.  It is well known that population structure estimated 

from SNPs on X chromosomes tends to be more extreme than that from autosomes 

(Schaffner, 2004; Vicoso and Charlesworth, 2006).  This can be attributed to a higher 

degree of population differentiation on the X chromosome loci compared to autosomal 

loci.  Multiple factors may contribute to this.  Both dominant and recessive mutations 
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on the hemizygous X-linked loci are subjected to natural selection; the X chromosome 

has a smaller effective population size that leads to an elevated rate of genetic drift; 

there is also gender difference in reproduction, migration tendency, and generation 

time (Nielson et al., 2005; Hammer et al., 2008; Bustamente and Ramachandran, 

2009; Keinan et al., 2009).  Actually, it has been reported that the most differentiated 

SNPs among continental populations are significantly enriched on the X chromosome 

with a punctuated pattern (Charla et al., 2010).     

 A total of 5,653 SNPs out of the 203,564 LD-pruned SNPs are located on the 

X chromosome and have ancestral allele information available.  Using these X-linked 

SNPs, MDS analysis was applied on the pairwise IBS matrix of 362 males from 11 

North African and Spanish populations and four HapMap3 populations, CEU, TSI, 

YRI and LWK, to uncover population structure at better resolution (figure 11).  The 

MKK and Chinese populations were not included, as they turned out to be 

uninformative in the previous analysis.  The top two MDS components were plotted 

and revealed a pattern similar to what is observed from autosomal SNPs (figure 11).  

Component 1 separates Europeans from sub-Sahara Africans, while component 2 

mostly separates North African populations from both Europeans and sub-Sahara 

Africans.  However, one major difference between MDS patterns based on the two 

sets of SNPs is observed.  Looking at the population average of MDS based on X 

chromosome, Tunisians are still clearly at one extreme end of component 2, but far 

less distinct from other North Africans than in the MDS based on autosomes (figure 

5B).  On the individual level, most of Tunisians intermingle with other North Africans 

in MDS on X chromosome, but they exhibit little overlap with other North Africans in 

MDS on autosomal SNPs.   
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A. 

                 
 
 
B.               C. 
 

        

Male Female Total
CEU 53 53 106
TSI 43 41 84
CanaryIslands 15 2 17
Spain_NW 17 0 17
Spain_S 17 0 17
Spain_BASC 17 0 17
Morocco_N 18 0 18
Algeria 8 10 18
TUNISIA 18 0 18
Libya 16 1 17
Egypt 19 0 19
Morocco_S 8 8 16
Sahara_OCC 17 0 17
MKK 67 71 138
LWK 42 43 85
YRI 54 56 110
CH 75 84 159

 
 
 
Figure 11.  MDS plot on IBS matrix of 362 males from the 11 North African and 
Spanish populations, as well as 4 HapMap3 populations (CEU, TSI, YRI, LWK) 
using 5,653 SNPs on X chromosomes.  A. MDS plot of individuals using top two 
components.  Tunisians were represented as filled circles while others as are shown as 
open circles.  B. Population means of top two MDS components.  C. Population size 
by gender.   
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 The pattern of population differentiation observed from MDS on the X 

chromosome in males appears to be opposite to the expected more extreme patterns.  

A high level of autozygosity is observed in North African populations, but not taken 

into consideration in the generally accepted hypothesis about the differentiation of the 

X chromosome.  This may be the major cause of the differentiation pattern observed in 

the present study.  Elevated autozygosity due to recent consanguinity could further 

increase the allele frequency difference between populations by reducing the effective 

population size of autosomal SNPs, but not the hemizygous SNPs of X chromosomes 

in males.  Tunisians are the North African population most distant from Europeans 

and sub-Saharan Africans on the MDS plot, meanwhile, they also have the highest 

level of autozygosity.  Therefore, the degree of genetic distinctiveness of Tunisians 

revealed by X chromosome SNPs in males is much lower than by autosomal SNPs.    

The autozygosity effect on SNP allele frequency difference between populations 

might make a substantial contribution to the excessively high level of population 

differentiation of Tunisians.  In addition, the number of SNPs on the X chromosome is 

much smaller than that of autosomal SNPs.  This may also lower the degree of 

population differentiation detectable using only X chromosomes.   

 Based on these X-linked 5,653 SNPs with explicitly phased haplotypes, the 

similarity pattern of these 362 males from 17 populations was explored using 

hierarchical cluster analysis (figure 12A).  The SNP genotypes were represented by 

the number of ancestral allele, either 0 or 1, as columns in the dendrogram, ordered by 

their location on X chromosomes.  Individuals were represented as rows in the 

dendrogram and clustered by Euclidean distance using complete linkage algorithm, 

with population groups indicated by colored sidebars.  Individuals from different 

populations are mostly clustered by major geographical regions: European, sub-

Saharan African, North African, and East Asian.  However, fine population structure 
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A. 

 
 

                                          
 
Figure 12.  Analysis of 5,653 SNPs on the X chromosomes in 362 males from 17 
populations.  A. Cluster analysis. SNPs were plotted as columns ordered by genomic 
location, with ancestral allele in black and derived allele in white.  Individuals were 
plotted as rows and clustered by Euclidean distance.  Population groups were indicated 
by colored sidebars: North Africans by brown, except South Moroccans and 
Saharawis by dark gray, Europeans by blue, YRI and LWK by red, MKK by light 
gray, and CH by no color.  B. Relationship between the population mean AAF of 
autosomes and X chromosomes. 

B. 
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within Europeans and North Africans cannot be clearly distinguished.  Actually, 

European and North African populations appear to cluster next to each other and a 

small fraction of them are even intermingled with one another.  South Moroccan and 

Saharawi are scattered among other North African populations, and some of them are  

clustered right next to sub-Saharan African populations.  Chinese are distinct from 

other populations as a tight cluster with the highest within-population similarity, while 

sub-Saharan Africans exhibit the lowest levels of within-population similarity.  

Patterns of ancestral status in the hemizygous SNP haplotypes can be readily 

visualized in the dendrogram.  Contiguous long tracks of same ancestral status, either 

ancestral or derived, are most obvious in Chinese populations, followed by Europeans 

and North Africans, while sub-Saharan Africans demonstrate mostly broken patterns 

of ancestral alleles intermingled with derived alleles.   

 Ancestral allele frequency (AAF) is an important parameter to characterize a 

population.  Comparing the mean AAF of 5653 SNPs on X chromosomes in 504 

males with that of 162,231 autosomal SNPs in all 873 individuals, a strong positive 

linear correlation (r2 = 0.95) is uncovered between them (figure 12B).  Sub-Saharan 

African populations have the highest mean AAF, while Europeans and Chinese are at 

the low extreme.  North African populations lie between them, in much closer 

proximity to Europeans than to sub-Saharan Africans.  Noticeably, the slope of the 

regression line is 2.03, with very significant p value of 3.88e-11.  This indicates that 

the ancestral allele frequency difference between populations for SNPs on the X 

chromosome is on average approximately twice as high as that for autosomal SNPs.  

Therefore, X-linked SNPs do appear to have experienced more severe differentiation 

than autosomal SNPs during the population evolution, consistent with the commonly 

accepted hypothesis (Schaffner, 2004; Vicoso and Charlesworth, 2006).    
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 In summary, the genome-wide SNP scan of North African and Spanish 

populations in the present study reveals that North Africans are genetically much more 

similar to the European and the Middle Eastern populations than to Sub-Saharan 

Africans.  North Africans also demonstrate higher levels of homozygosity runs than 

other populations analyzed, probably due to consanguinity.  Basques can be 

conspicuously distinguished from other Spanish populations and the Southern 

Europeans as having more genetic similarity to the Western Europeans.   
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CHAPTER 4 

 

DISCUSSION 

 

 

 Previous population genetics studies of North Africans have been mainly based 

on small numbers of genetic markers of mitochondrial DNA, non-recombining region 

of Y chromosome, as well as microsatellite DNA.  This study presents the first 

genome-wide scan of North African populations using high-density SNP markers.  

Uniparental haploid genetic markers have the obvious advantage of explicit haplotype 

phasing and sequential accumulation of mutations, making it straightforward to obtain 

a phylogenic hierarchy of the derived lineages (Underhill and Kivisild, 2007).  

However, these haploid genetic markers also have drawbacks and limitations, as they 

only constitute a very small portion of the whole human genome of each gender.  

Mitochondrial DNA is only 16,569 bp long, which can only harbor a limited number 

of mutations.  This makes it hard to keep complete track of the highly stochastic 

process of population evolution.  Y chromosomes harbor the longest non-recombining 

segment of DNA in the human genome, but the current molecular resolution, 

measured by SNP density, is much lower than in mitochondrial DNA.  More SNP 

discovery effort on Y chromosome, such as deep re-sequencing, is needed to better 

reveal the genealogical architecture in males at higher resolution.  Compared to the 

haploid genetic marker, the nuclear genome is subjected to recombination at various 

rates along the chromosomes and has low mutation rates, making it very complicated 

to build a genealogical tree from long sequences and hard to come up with a specific 

interpretation of the tree.  However, the huge size of the nuclear genome allows it to 

retain a complete record of the human evolutionary history, including ancient genetic 
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drift events.  High-density SNP scan of the whole nuclear genome can distinguish 

populations not only at the continental level (International HapMap Consortium, 

2007), but also at the much finer regional level (Novembre et al., 2008; Auton et al., 

2009; HUGO Pan-Asian SNP Consortium 2009).  The phenotypic differentiation 

among human populations is genetically determined by the 3GB nuclear genome, and 

to a much smaller extent, by the tiny 16KB mitochondrial DNA.  Therefore, analysis 

of genetic variations in the nuclear genome could potentially uncover the causal 

genetic components responsible for the phenotypic differentiation of populations.   

 The genome-wide SNP scan of North African populations reveals a clinal 

pattern of change in genetic similarity that corresponds to the geographical locations, 

as demonstrated by top components of MDS on pairwise IBS matrix.  North Africans 

are genetically much more similar to Europeans than to sub-Saharan Africans, with the 

ratio of distance between the two populations at approximately 1:5 for most 

individuals (figure 5).  However, a few outliers from different North African 

populations extend toward sub-Saharan Africans at varying degrees, forming a 

continuum between the majority of North Africans and the Maasai population in 

Kenya (MKK of HapMap3).  This most likely results from recent admixture with sub-

Saharans at different levels, as most of these outliers are South Moroccans and 

Saharawi at the Atlantic coastal end of the Sahara Desert who have more chances for 

contact with sub-Saharans.  Such varying degrees of heterogeneity within each North 

African population, which has occurred naturally, will likely distort the population-

level summary statistics estimation, such as SNP allele frequency, and lead to bias and 

complications in subsequent population genetics analysis.  The best way to overcome 

this problem might be to increase the sample size so that outliers can be partitioned 

from the majority of the population studied and analyzed separately.   
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One of the top MDS axes is able to distinguish North African populations from 

both sub-Saharan Africans and Europeans.  Tunisians are located at one extreme end 

of this axis opposite to Europeans and sub-Saharans; all other North African 

populations are scattered between, them roughly corresponding to their geographical 

locations.  The South Moroccans and Saharawi exhibit the highest level of genetic 

similarity to Tunisians, and Egyptians the lowest genetic similarity to Tunisians.  

Therefore, this axis of variation may capture the autochthonous genetic component of 

North Africans.  It is likely the Tunisian population contains the most indigenous 

Berber ancestry, while historically Egypt has been influenced more by the 

Southwestern Asia.  When replacing Tunisians with the Middle Eastern Qatari in the 

MDS analysis, the relationship between genetic similarity and geographical location is 

more clearly observed in North Africans.  Egyptians appear to be the most similar to 

Qatari, while the South Moroccans and Saharawi seem the least similar to Qatari 

(figure 7).  These results are mostly consistent with what is uncovered from 

mitochondrial DNA and Y chromosome, and the hypothesis that North African 

populations originated from Southwestern Asia, probably through Levant during the 

same demic expansion that led to the settlement of modern humans in Europe (Olivieri 

et al., 2006).  The genome-wide SNP scan in the present study clearly demonstrates 

that sub-Saharan Africans have only a small contribution to the genomic content of 

North African populations.  In spite of high levels of genetic similarity, European 

populations, including Iberians, can be conspicuously distinguished from North 

Africans on the whole genome level.  As to the geographical barriers of North Africa, 

the Strait of Gibraltar turns out to be more effective in preventing gene exchange, as 

revealed by the genome-wide similarity pattern, than the Sahara Desert, although 

cultural isolation may also contribute to this.   
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High-density SNP scan has also uncovered an interesting pattern of runs of 

extended homozygosity in North Africans.  Overall, North Africans exhibit much 

larger total length of homozygosity runs than Europeans, sub-Saharans, and East 

Asians, probably due to elevated levels of consanguinity (figure 8).  Noticeably, 

Tunisians have the highest level of total homozygosity runs, about three times as high 

as other North Africans and more than ten times higher than non‒North African 

populations.  The other two populations with the second highest level of indigenous 

Berber componet, the South Moroccans and Saharawi, also exhibit high levels of 

homozygosity runs among North African populations.  Therefore, higher levels of 

autozygosity seem to correspond to higher levels of indigenous Berber components in 

North Africans.  Consanguinity and endogamy are common in Berber as well as in the 

Islamic culture, especially in isolated rural areas (Arab et al., 2004).  It is possible that 

both the cultural and geographical isolation, which may be associated with increased 

level of autozygosity, helped to preserve the ancient indigenous Berber ancestry 

through the present time.   

It is generally accepted that SNPs on the X chromosome tend to exhibit more 

extreme population structure than autosomes due to more dramatic population 

differentiation (Schaffner, 2004; Vicoso and Charlesworth, 2006).  It is observed in 

the present study that the ancestral allele frequency difference between populations for 

SNPs on X chromosomes is roughly twice as large as that for autosomal SNPs, 

confirming that X-linked SNPs do have more dramatic differentiation than autosomal 

SNPs.  However, the extent of population differentiation detected by MDS on the X 

chromosome SNPs is much smaller than that on autosomal SNPs (figure 11).  This 

appears to be contrary to the expected more extreme pattern on X-chromosome SNPs.  

The loss of resolution to distinguish populations is most likely due to the much smaller 

number of SNPs on X chromosomes than on autosomes.   
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 Ancestral allele frequency is characterized for each North African population, 

and also as a whole group after excluding the South Moroccans and Saharawis, which 

have too many individuals admixed with sub-Saharan Africans.  Compared to the 

Western European CEU population, the differential SNPs of the North African 

population group shows mostly the same direction of change in ancestral allele 

frequency as the sub-Saharan YRI population (figure 10).  In fact, SNPs having large 

AAF difference between North Africans and Europeans mainly exhibit even larger 

AAF difference between sub-Saharan Africans and Europeans in the same direction.  

This differential pattern is consistent across the whole genome, similar for both 

autosomal SNPs and X-chromosome SNPs.  This indicates that North Africans retain 

ancestral allele frequency at levels between sub-Saharan Africans and Europeans, and 

much closer to Europeans than to sub-Saharans.  Interestingly, this pattern of genetic 

similarity corresponds well with the relative geographic location of these three large 

subcontinental regions from north to south.  This may result from prehistorical human 

evolution or historical migration, or a combination of both.   

 The fine substructure of Spanish populations is also explored in the present 

study.  The Canary Islands individuals are conspicuously separable from other Spanish 

populations in the genome-wide SNP scan.  Compared to other Spanish populations, 

they exhibit more genetic similarity to the North Africans and sub-Saharans, as well as 

slightly lower levels of homozygosity rate but slightly more elevated levels of 

autozygosity.  These genetic characters are in agreement with the known demographic 

history of the Canary Islands, such as recent Spanish colonization and associated 

admixture with the indigenous populations in this geographically isolated area.  

Admixture leads to elevated levels of genetic heterozygosity, while isolation tends to 

increase the level of inbreeding.   
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 Basques are clearly distinguishable from other Iberian populations on the 

whole genome level, as being more similar to the Western Europeans represented by 

CEU (figure 5).  This is consistent with previous reports on the existence of the 

genetic distinctiveness of Basques on the genome-wide level (Li et al., 2008; 

Rodriguez-Ezpeleta et al., 2010).  One puzzling observation in genetic variation 

pattern is that Basques appear to be less similar to the Middle Eastern Qatari 

populations than other Spanish populations.  Modern Europeans are believed to be 

originated from the Southwestern Asia, and Basques are widely thought to be the 

European population most closely related to their Middle Eastern ancestor.  However, 

the contemporary Qatari population may not be a good proxy for the prehistoric 

ancestor of Europeans from the Southwestern Asia.  This might be one major reason 

for the lack of greater genetic similarity between the Basque and Qatari populations.  

The other possible cause for this genetic similarity pattern may be the SNP 

ascertainment bias in the microarray platform used in the present study.   

Additional population genetics features of Basques are uncovered in the 

present study.  Basques have the highest level of autozygosity in European populations 

studied, a few times higher than the Southern and Western Europeans.  On the other 

hand, Basques also have the largest number of SNPs with fixed ancestral allele as well 

as derived allele among all worldwide populations in the study, while their population 

mean ancestral allele frequency is the same as the other two Iberian populations 

(figure 9).  The ancestral allele frequency distribution of the Basques is most similar to 

that of the East Asians represented by the Chinese, with a considerably large number 

of SNPs at both extreme ends, AFF = 1 and AAF = 1, yet a low and flat profile 

between them.  According to the well-accepted out-of-Africa serial founder model of 

human expansion, this kind of ancestral allele frequency spectrum is indicative of high 

levels of genetic drift in the more peripheral populations with smaller effective 
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population size during the sequential chain of expansion (Li et al., 2008).  Therefore, 

these ancestral allele frequency characteristics of Basques support the hypothesis that 

Basques have a small effective population size.  However, the elevated level of 

autozygosity due to consanguinity caused by geographical and cultural isolation may 

also contribute to the formation of these genetic characteristics.   

 One almost inevitable difficulty in human population genetics studies is that 

human samples are available almost solely from the contemporary populations, 

although the latest advancements in technology make it possible to obtain genetic data 

from a few sources of ancient human DNA, such as an extinct Paleo-Eskimo 

individual (Gilbert et al., 2008; Rasmussen et al., 2010).  The present-day residents in 

certain areas, including the indigenous inhabitants, may not directly represent the 

population living in the same area in ancient times.  With the increasingly broader 

range and faster pace of globalization, even individuals from the indigenous 

populations will become harder and harder to have access to.  As to Basques, too 

many demographic and evolutionary events could have happened during the long past, 

which could lead to various population genetics differences between Basques in the 

ancient time and ones in the present time.  Therefore, the contemporary Basques 

probably cannot be simply considered as a “living fossil” to represent the ancestors of 

Europeans.   
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