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The ability to correctly reason about human environment is critical for personal

robots. For example, if a robot is asked to tidy a room, it needs to detect object

types, such as shoes and books, and then decides where to place them properly.

Sometimes being able to anticipate human-environment interactions is also de-

sirable. For example, the robot would not put any object on the chair if it under-

stands that humans would sit on it.

The idea of modeling object-object relations has been widely leveraged in

many scene understanding applications. For instance, the object found in front

of a monitor is more likely to be a keyboard because of the high correlation of

the two objects. However, as the objects are designed by humans and for human

usage, when we reason about a human environment, we reason about it through

an interplay between the environment, objects and humans. For example, the

objects, monitor and keyboard, are strongly spatially correlated only because

a human types on the keyboard while watching the monitor. The key idea of

this thesis is to model environments not only through objects, but also through

latent human poses and human-object interactions.

We start by designing a generic form of human-object interaction, also re-

ferred as ‘object affordance’. Human-object relations can thus be quantified

through a function of object affordance, human configuration and object con-



figuration. Given human poses and object affordances, we can capture the rela-

tions among humans, objects and the scene through Conditional Random Fields

(CRFs). For scenarios where no humans present, our idea is to still leverage the

human-object relations by hallucinating potential human poses.

In order to handle the large number of latent human poses and a large va-

riety of their interactions with objects, we present Infinite Latent Conditional

Random Field (ILCRF) that models a scene as a mixture of CRFs generated from

Dirichlet processes. In each CRF, we model objects and object-object relations

as existing nodes and edges, and hidden human poses and human-object rela-

tions as latent nodes and edges. ILCRF generatively models the distribution of

different CRF structures over these latent nodes and edges.

We apply the model to the challenging applications of 3D scene labeling and

robotic scene arrangement. In extensive experiments, we show that our model

significantly outperforms the state-of-the-art results in both applications. We

test our algorithm on a robot for arranging objects in a new scene using the two

applications aforementioned. We further extend the idea of hallucinating static

human poses to anticipating human activities. We also present learning-based

grasping and placing approaches for low-level manipulation tasks in compli-

mentary to the high-level scene understanding tasks.
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CHAPTER 1

INTRODUCTION

We make the world we live in and shape our own environment.

Orison Swett Marden (1894).

That the human environments and the objects in it are designed for human

usage, is so deeply ingrained in us that when we think about a human environ-

ment, we think it through the interplay between these elements. For example,

consider a typical office scene in Fig. 1.1, with a chair, table, monitor and key-

board. This scene can be described through many object-object relations, such

as chair-in-front-of-table, monitor-on-table, keyboard-on-table, and so on. This

particular configuration can also be naturally explained by a sitting human pose

in the chair and working with the computer.

Both object-object and human-object relations are essential in reasoning our

environments. While at the first blush, introducing human poses may seem to

complicate the model, it actually simplifies it to a more parsimonious model.

The reason for this is that the set of relevant human poses could be far smaller

than the collection of all objects. Therefore, for n objects, we only need to model

how they are used by humans, i.e. O(n) relations, as compared with modeling

O(n2) if we were to model object-object relations.

In the following, we first motivate the necessity of capturing both object and

human context in one model. We then briefly describe how our proposed learn-

ing model can capture them efficiently, followed by showing how we can apply

this learning idea to many applications, including scene understanding, human

activity anticipation and robotic manipulations.
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Figure 1.1: Left: Previous approaches model the relations between ob-
servable entities, such as the objects. Right: In this thesis, we
consider the relations between the objects and hidden humans.
Our key hypothesis is that even when the humans are never
observed, the human context is helpful.

1.1 Object and Human Context

In this thesis, we argue that a human environment is constructed under two

types of relations: object-object and human-object relations.

When only considering object-object relations, Conditional random fields

(CRFs) are a natural choice, as each object can be modeled as a node in a Markov

network and the edges in the graph can reflect the object-object relations. CRFs

and their variants have thus been applied to many scene modeling tasks (e.g.,

[114, 1, 102]).

On the other hand, human-object relations which include possible human

poses and human-object interactions (or object affordances) are not trivial to

model because of several reasons: First, humans are not always observable,

but we still want to model them as latent factors for making the scene as it

is. Second, there can be any number of possible humans in a scene—e.g., some

sitting on the couch/chair, some standing by the shelf/table; Third, there can be

2



… 

CRF 1 CRF 2 CRF K 

book human laptop 

sa
m

pl
ed

 C
RF

s 

remote  
control 

TV laptop 

… 

ob
je

ct
 

af
fo

rd
an

ce
s 

pl
ac

em
en

t &
 

hu
m

an
 

di
st

rib
ut

io
n 

 

floor light 

human 

cushion 

Figure 1.2: An example of instantiated ILCRF for scene arrangement. Top
row shows learned object affordances in top-view heatmaps (it
shows the probability of the object’s location, given a human
pose in the center facing to the right). Middle row shows a to-
tal of K CRFs sampled from our ILCRF algorithm—each CRF
models the scene differently. Bottom row shows the distribu-
tion of the objects and humans (in the top view of the room)
computed from the sampled CRFs.

various types of human-object interactions in a scene, such as watching TV in

distance, eating from dishes, or working on a laptop, etc; Fourth, an object can

be used by different human poses, such as a book on the table can be accessed

by either a sitting pose on the couch or a standing pose nearby; Last, there can

be multiple possible usage scenarios in a scene (e.g., see Figure 1.2-middle row).

Therefore, we need models that can incorporate latent factors, latent structures,

as well as different alternative possibilities.
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1.2 Non-parametric Learning

In order to handle those challenges, we propose infinite latent conditional ran-

dom fields (ILCRFs) to capture both object and human context in a given envi-

ronment.

Intuitively, An ILCRF is a mixture of CRFs where each CRF can have two

types of nodes: existing nodes (e.g., object nodes, which are given in the graph

and we only have to infer the value) and latent nodes (e.g., human nodes, where

an unknown number of humans may be hallucinated in the room). The re-

lations between the nodes (e.g., object-object edges and human-object edges)

could also be of different types. Unlike traditional CRFs, where the structure

of the graph is given, the structure of our ILCRF is sampled from Dirichlet Pro-

cesses (DPs) [133]. DPs are widely used as nonparametric Bayesian priors for

mixture models, the resulting DP mixture models can determine the number of

components from data, and therefore is also referred as infinite mixture models.

ILCRFs are inspired by this, and we call it ‘infinite’ as it can sidestep the diffi-

culty of finding the correct number of latent nodes as well as latent edge types.

Our learning and inference methods are based on Gibbs sampling that samples

latent nodes, existing nodes, and edges from their posterior distributions.

To demonstrate the generality of our ILCRFs, we instantiate two specific IL-

CRFs for two applications in this thesis: scene labeling where the objective is

to identify objects in a scene, and scene arrangement where the objective is to

find proper placements (including 3D locations and orientations) of given ob-

jects in a scene. Despite the disparity of the tasks at the first look, we relate

them through one common hidden cause—imaginary humans and object affor-
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dances. For both tasks, our ILCRF models each object placement as an exist-

ing node, hallucinated human poses as latent nodes and spatial relationships

among objects or between objects and humans as edges. We demonstrate in the

experiments that this unified model achieves the state-of-the-art results on both

synthetic and real datasets. More importantly, we perform an exhaustive analy-

sis on how our model captures different aspects of human context in scenes, in

comparisons with numerous baselines. We further demonstrate that by using

the two applications together, a robot successfully identified the class of objects

in a new room, and placed several objects correctly in it.

1.3 Robotic Manipulations

In addition to a better understanding of our environments, we further show

that human context is also critical for personal robots performing daily tasks in

human environments.

“Tidy my room.” “Put the dishes away.” — While these tasks would have been

easy for Rosie robot from The Jetsons TV show, they are quite challenging for our

robots to perform. Not only would they need to have the basic manipulation

skills of picking up and placing objects, but they would also have to perform

them in a way that respects human preferences, such as not placing a laptop in

a dish-rack or placing the dishes under the bed.

In order to autonomously perform common daily tasks such as setting up

a dinner table, arranging a living room or organizing a closet, a personal robot

should be able to figure out where and how to place objects. However, this is

particularly challenging because there can potentially be a wide range of objects
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and placing environments. Some of them may not have been seen by the robot

before. For example, to tidy a disorganized house, a robot needs to decide where

the best place for an object is (e.g., books should be placed on a shelf or a table

and plates are better inserted in a dish-rack), and how to place the objects in an

area (e.g. clothes can be hung in a closet and wine glasses can be held upside

down on a stemware holder). In addition, limited space, such as in a cabinet,

raises another problem of how to stack various objects together for efficient stor-

age. Determining such a placing strategy, albeit rather natural or even trivial to

(most) people, is quite a challenge for a robot.

While ILCRFs can infer high-level arrangements of objects, we still need the

specific location and orientation for robots placing each object. To find place-

ments that are both stable and preferred, we encode human preferences about

placements as well as the geometric relationship between objects and their plac-

ing environments by designing appropriate features. We then utilize a graphical

model that has two substructures to capture the stability and the semantic pref-

erences respectively. The model also incorporates stacking and constraints that

keeps the placing strategy physically feasible. We use max-margin learning for

estimating the parameters in our graphical model. The learned model is then

used to score the potential placing strategies. Given a placing task, although

inferring the best strategy (with the highest score) is provably NP-complete, we

express the inference as an integer linear programming (ILP) problem which is

then solved efficiently using an linear programming (LP) relaxation.
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Figure 1.3: Our three robotic platforms used for testing our algorithm: Kodiak
(left) is a PR2 robot equipped with a Kinect sensor on top. PANDA
(PersonAl Non-Deterministic Arm, in the middle) is an Adept arm
with a parallel-plate gripper, mounted with a Kinect. POLAR (Per-
sOnaL Assistant Robot, on right) is a 7-DOF Barrett arm mounted on
a Segway Omni base, with a three-fingered hand and a Kinect on top.

1.3.1 Robot Platforms and System

In this work, we perform our robotic experiments mostly on three different

robots in our lab: Kodiak, Panda and Polar. Kodiak is a standard PR2 robot

(Fig. 1.3 left).

Our PANDA (PersonAl Non-Deterministic Arm) robot (Fig. 1.3 middle) is

a 6-DOF Adept Viper s850 arm equipped with a parallel-plate gripper and a

Kinect sensor. The arm, together with the gripper, has a reach of 105cm. The

arm has a repeatability of 0.03mm in XYZ positioning, but the estimated re-

peatability with the gripper is 0.1mm. The Kinect sensor-arm calibration was

accurate up to an average of 3mm. The arm weighs 29kg and has a rated pay-

load of 2.5kg, but our gripper can only hold up to 0.5kg. The Adept Viper is

an industrial arm and has no force or tactile feedback, so even a slight error in
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positioning can result in a failure to place.

Our POLAR (PersOnaL Assistant Robot) robot (Fig. 1.3 right) is equipped

with a 7-DOF WAM arm (by Barrett Technologies) and a three-fingered hand

mounted on a Segway RMP 50 Omni base. A Kinect sensor is mounted on top.

The arm has a positioning accuracy of ±0.6mm. It has a reach of 1m and a

payload of 3kg. The hand does not have tactile feedback. The mobile base can

be controlled by speed and has a positioning accuracy of only about 10cm.

Our primary sensor is a depth camera that gives an RGB image together with

the depth value at each pixel. In our experiments, we used a Microsoft Kinect

sensor which has a resolution of 640x480 for the depth image and an operation

range of 0.8m to 3.5m.

1.4 Modeling High-Dimensional Humans

So far, we have mostly focussed on hallucinating static human poses. A very

ambitious but natural step to take next would be to hallucinate human motions.

As a matter of fact, the ability to anticipate possible future moves of a human is

a necessary social skill for humans as well as for robots that work in assembly-

line environments (e.g., Baxter) or in homes and offices (e.g., PR2). With such a

skill, the robots can work better with humans by performing appropriate tasks

and by avoiding conflict. For instance, Koppula et. al. [75] used anticipation

in assistive robotic settings, such as in the tasks of opening doors for people or

serving drinks to people.

Human activity anticipation is a very challenging task, especially in un-
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Microwave Cup

RGB-D videos

Low-dimensional Human 
Representations

High-dimensional Human 
Representations
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Figure 1.4: Given an RGB-D video of a human interacting with the envi-
ronment, we are interested in predicting the future: what ac-
tivity will he perform and how the environment and human
pose will change. The key idea in this work is to compactly
represent the high-dimensional human configuration in a low-
dimensional space so that we can model relations between
the human, activity and objects more effectively in a graphical
model.

structured environments with a large variety of objects and activities. Koppula

et. al. [75] have shown that the rich context (such as object-object and human-

object spatial relations) is important for predicting high-level human activities.

However for anticipation and robotic planning, predicting detailed human mo-

tions is also crucial. In this work, our goal is to model the detailed human

motions, along with the rich context, in anticipating the human activities. We

specifically focus on how to represent (and learn with) high-dimensional human con-
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figurations and their temporal dynamics.

Recently, high-dimensional description of human motions is widely avail-

able through motion capture data or RGB-D cameras (e.g., Kinect), where a hu-

man configuration is specified by the joint locations and orientations and of-

ten has more than 30 degrees of freedom. While it captures human kinematics

and dynamics accurately, modeling human motions in such space (much higher

than 30 DOF when considering velocities and accelerations) often requires a de-

tailed musculo-skeletal human model and a large number of spatial and timing

constraints to produce smooth and realistic motions [16].

Such a high-DOF model does not lend itself to use in learning models

where rich modeling of the human with the environment is needed. Therefore,

some works assume a few static human poses are representative enough [34,

37, 54, 58] or simplify a human configuration to a 2D point for navigation

task [5, 69, 148, 78] or to a 3D trajectory of one hand while keeping the rest

body static neglecting kinematic constraints [75, 76]. In these works, human

motions are under-represented and would fail when a more elaborate human

motion prediction is required.

1.5 Organization of this Thesis

The rest of this thesis is organized as follows: Chapter 2 describes how to model

3D scenes in terms of object context only. Chapter 3 describes how we define

two important elements in human context: human representations and object

affordances. Chapter 4 presents our non-parametric learning model ILCRFs.

Chapter 5 describes how to instantiate ILCRFs in two different applications and
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the corresponding experimental results. Chapter 6 extends ILCRF to anticipate

human activity. Chapter 7 describes how we can place novel objects using learn-

ing approaches. Finally, we conclude this thesis in Chapter 8.

1.6 First Published Appearances of Described Contributions

Most of the contributions presented in this thesis have appeared as publications:

[53, 54, 58, 57] for Chapter 2-5; [59] for Chapter 6; [55, 60, 63] for Chapter 7.

Other contributions are not discussed in this thesis because of the scope,

including [56, 61, 62].

11



CHAPTER 2

MODELING 3D SCENES

With the availability of stereo/range camera nowadays, such as Kinect, we have

more access than ever to RGBD data which has both RGB color and depth infor-

mation of a 3D scene. Such RGBD data not only allows an algorithm to capture

objects self properties, such as shape and orientation, but also makes reasoning

objects pairwise relations more easily, such as depth ordering and spacial rela-

tions. Thus, in this thesis we focus on reasoning 3D data, such as RGBD images

or videos of a given scene which could be either static or dynamic.

In this chapter, we establish the problem of modeling 3D scenes first. We

then introduce a popular approach which models object-object relations and

some related works in the literature. In the next chapter, we will show how to

augment the model to admit human-object relations also.

2.1 Problem Formulation

Given a scene, we are interested in objects that are (or could be) in it, such as

identifying the object class in the scene labeling task. The scene is represented as

an RGB-D point cloud. We first segment the point cloud based on smoothness

and continuity of surfaces using the approach in [73]. We use X = {x1, . . . , xN} to

denote N segments of interest, and Y = {y1, . . . , yN} to denote the corresponding

labels. In the task of scene labeling, for instance, xi is the observed appearance

features and locations of the ith segment/object in the scene, and yi is an integer

between 1 and M representing the class label, such as monitor, chair, floor, etc.
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(a)  Modeling"objects"using"CRF" (b)"Modeling"humans"as"latent"nodes"

Figure 2.1: Graphical models for scene modeling. (a) Conditional ran-
dom field (CRF) has been used to capture objects and their re-
lations in a scene. (b) In our work, we model possible human
configurations as latent nodes in a scene in order to capture
human and object relations in a scene.

We model the correspondance between X and Y through probabilistic distribu-

tion P(Y|X), and the objective of the labeling task is to find the optimal labels

given observations, namely,

Y∗ = arg max
Y

P(Y|X)

A simple and naive solution is to treat objects independently: y∗i =

arg maxy P(y|xi). In this way, we can label the object class using its own

shape/appearance features such as HOG [15]. However, these methods would

suffer from noisy local features and the lack of context of the whole scene.
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2.2 CRFs for Object Context

There are many works trying to capture the context from object-object relations,

which can be naturally modeled through conditional random fields (CRFs) [145,

1, 125, 123, 114, 102]. A CRF is a network where each node can be modeled as

an object and each edge reflects the relationship between the linked two objects.

An example is shown in Fig. 2.1-(a).

Definition 1. CRF(X,Y, EY) is a conditional random field if that, when condi-

tioned on X, random variables Y follow the Markov property with respect to

the graph EY : The absence of an edge between nodes yi and y j implies that they

are independent given other nodes. �

Thus, the likelihood ofY givenX is given by: P(Y|X) ∝
∏

c∈C ψc(Xc,Yc), where

C is all the maximum cliques, and Yc ∈ Y and Xc ∈ X are in the same clique c.

ψ is the potential functions. Following [73, 1], we use log-linear node (ψo) and

edge potentials (ψoo) to capture object-object context:

P(Y|X) ∝
N∏

i=1

ψo(xi, yi)
∏

(yi,y j)∈EY

ψoo(xi, x j, yi, y j)

= exp
∑

i

M∑
k=1

1{yi=k}
(
θo

k
)> φo(xi) (2.1)

× exp
∑

i j

∑
kl

1{yi=k}1{y j=l}
(
θoo

kl
)> φoo(xi, x j)

where φo and φoo are object’s own and pairwise features. For example, in our ex-

periments, φo includes local features such as histograms of HSV colors, normal

and dimensions of the segment’s bounding box. φoo includes features such as

difference of HSV colors, displacement or co-planarity of the two segments [1].

θo
k and θoo

kl are parameters to learn for each class k and each pair of classes (k, l).
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2.3 Related Work

There is a significant body of work that captures the relations between different

parts of the object [24] and between different objects [73]. In the past, 3D layout

or depths have been used for improving object detection (e.g., [118, 121, 41,

85, 43, 88]), where an approximate 3D geometry is inferred from 2D images.

Recent works [145, 73, 1, 125] address the problem of labeling 3D point clouds.

Reasoning in 3D allows an algorithm to capture stronger context, such as shape,

stability and orientation of the objects [55, 52, 56].
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CHAPTER 3

HALLUCINATED HUMANS

“We bear in mind that the object being worked on is going to be ridden in,

sat upon, looked at, talked into, activated, operated, or in some other way

used by people individually or en masse.” Dreyfuss [21].

While modeling object-object relations has been a popular approach in scene

understanding, we hypothesize that such relations could only be an artifact of

certain hidden factors, such as humans. In fact, even when no human is present

in an indoor scene, the potential human-object interactions give such a strong

cue for scene understanding that we want to model it as latent variables in our

algorithms. Moreover, modeling human-object relations is parsimonious and

efficient as compared to modeling the pairwise object-object relationships: For n

objects, we only need to model how they are used by humans, i.e., O(n) relations,

as compared with modeling O(n2) if we were to model object to object context

naively.

In this chapter, we first define the representation of human configurations

and human-object relations (referred as ‘object affordances’ in the rest of the

thesis). Then we show how to incorporate the human context into the CRF we

just described.

3.1 Human Representations

A human configuration, denoted by h, is comprised of a pose type, location

and orientation. The pose type, as shown in Fig. 3.1, is specified by relative
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positions of 15 body joints, such as head, torso, shoulders, hips, etc. In this

work, we consider six static poses extracted from real human activity dataset:

We collected all poses in Cornell Activity Dataset-60 [129], and clustered them

using k-means algorithm giving us six types of skeletons. Each pose could be at

any X-Y-Z location and in different orientations ∈ [0, 2π) inside the scene.

Figure 3.1: Six types of human poses extracted from Kinect 3D data.

3.2 Object Affordances

A human can use the objects at different distances and orientations from the

human body. For example, small hand-held devices are typically held close

to and in front of the human. Objects such as a TV and decoration pieces are

typically placed at a distance. The human-object spatial relations can be a strong

hint of the object class as well as where to place the object. Therefore, we define

the object affordance as the probability distribution of the object’s relative 3D

location with respect to a human pose h. An example of the laptop’s affordance

is shown in Fig. 3.2: Given a centered sitting human pose h, the distribution of a

laptop is projected onto a top-view and side-view heatmaps, indicating that the

laptop is most likely to appear right ahead of human hands.
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Figure 3.2: The affordance of a laptop screen, visualized in top- and side-
view.

In detail, we define an object affordance as a product of terms capturing the

preferred distance and orientation from the object to the human pose:

ψho(x, y, h; Θ) = ψdistψrelψoriψvert. (3.1)

We now describe each term below:

Distance preference. Some objects are preferred to be at a certain distance from

humans, such as a TV or a laptop. This preference, encoded as ψdist, includes

how far the object should be and how strong this bias is. Let d(x, y, h) be the

Euclidean distance between the human and object, as shown in Fig. 3.2. The

distance follows a log-normal distribution, i.e.,

ψdist(x, y, h; µd, σd) =
exp(− (ln d(x,y,h)−µd)2

2σ2
d

)

d(x, y, h)σd
√

2π
. (3.2)

Relative angular preference. There is a preference for objects to be located at

a certain angle with respect to human poses. For example, people will sit in

front of a laptop, but prefer the mouse to be on their right (or left). Let r(x, y, h)

be relative angle from the object to human (as shown in Fig. 3.2-left), and we
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assume it follows a von Mises distribution:

ψrel(x, y, h; µr, κr) =
exp(κ cos(r(x, y, h) − µr)

2πI0(κr)
(3.3)

Orientation preference. There is a preference for objects to be oriented at a cer-

tain angle with respect to the human pose (e.g., a monitor should also be facing

towards the skeleton when located in front of the skeleton). We use o(x, y, h) to

denote the difference between orientations of the object and human (regardless

their relative angle), i.e., o(x, y, h) = |o(x, y) − o(h)|. Similarly to ψrel, we also use a

von Mises distribution for this term:

ψori(x, y, h; µo, κo) =
exp(κ cos(o(x, y, h) − µo)

2πI0(κo)
. (3.4)

Vertical difference preference. ψvert is a Gaussian distribution of the object’s

relative height to a human pose. Let v(x, y, h) be the vertical distance between

the human and object, as shown in Fig. 3.2-right. We it follows a normal distri-

bution:

ψvert(x, y, h; µv, σv) =
exp(− (v(x,y,h)−µv)2

2σ2
v

)

v(x, y, h)σv
√

2π
(3.5)

In this way, we specify one object affordance ψho using one set of parameters

Θ = {µd, σd, µr, κr, µo, κo, µv, σv}.

3.3 Human Context: a Double-Edged Sword

The human context is very important for understanding our environment. In

fact, even when no human is present in an indoor scene, the potential human-

object interactions give such a strong cue for scene understanding that we want

to model it as latent variables in our algorithms.
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3.3.1 Modeling Observed Human Context in CRFs

Let us first consider how to model human context when both human configura-

tions and object affordances are given.

Suppose K human configurations are given in a scene, each of which is spec-

ified by a pose type, location and orientation, such as the sitting pose in Fig. 2.1-

(b). We model each human pose as a node in the graph, H = {h1, . . . , hK} and

each human-object relationship as an edge (yi, hzi) where zi ∈ {1, . . . ,K} denotes

which human pose is using the ith object.1 For example, in the second case in

Fig. 2.1-(b), z1 = z2 = 1 and z3 = z4 = 2. We use Z = {z1, . . . , zN} to denote these

human configuration correspondances.

Suppose we are also given M different object affordances, Ψ = {ψho
1 , . . . , ψ

ho
M }

where each ψho
k is defined in (3.1) with parameter Θk. For each object i, we use

ωi ∈ {1, . . . ,M} to denote its correspondent affordance (and Ω = {ω1, . . . , ωN}

for all objects). In other words, we associate the edge (yi, hzi) with the potential

ψho
ωi

(xi, yi, hzi).

Given such a CRF with known human context (specified byG = {H ,Z,Ψ,Ω},

the likelihood now is,

P(Y|X,G) ∝
N∏

i=1

ψo(xi, yi)
∏
(yi,y j)

ψoo(xi, x j, yi, y j)

N∏
i=1

ψho
ωi

(xi, yi, hzi) (3.6)

where the first two terms are defined in Eq. (2.1) and the last one is in Eq. (3.1).

How to model hidden human context? More often humans are not present

1We assume a human pose can interact with multiple objects at the same time but each object
is used by only one human pose.
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in the scene, nevertheless, the potential human-object relations are valuable in-

formation for scene understanding. Such latent nature of human context, com-

bined with the enormous space of possible human configurations and object

affordances, can lead to an ill-posed problem. For example, one potential expla-

nation of the scene could be humans floating in the air and prefer stepping on

every object as the affordance!

However, the human context cannot be easily harnessed because the space of

possible human configurations and object affordances is rather large. Further-

more, the humans are not always observable and such latent nature leads to an

ill-posed problem while using it. For example, one potential explanation of the

scene could be humans floating in the air and prefer stepping on every object

as the affordance! The key to modeling the large space of latent human context

lies in building parsimonious models and providing priors to avoid physically-

impossible models.

3.3.2 Model Parsimony

While there are infinite number of human configurations in a scene and count-

less ways to interact with objects, only a few human poses and certain common

ways of using objects are needed to explain most parts of a scene. These could be

shared across objects and be instantiated to numerous forms in reality. We will

do so by representing them as ‘topics,’ according to which objects in a scene are

generated. This is analogous to the document topics [133, 62], except that in our

case topics will be continuous distributions and factored. Similar to document

topics, our human-context topics can be shared across objects and scenes. As a
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result, the model’s complexity, i.e., the number of parameters, is significantly

reduced. We describe the two types of topics below:

Human Configuration Topics. In a scene, there are certain human configura-

tions that are used more commonly than others. For instance, in an office a

sitting pose on the chair and a few poses standing by the desk, shelf and white-

board are more common. Most of the objects in an office are arranged for these

human configurations.

Object Affordance Topics. An object affordance, despite its large variety, can

often be represented as a mixture of several commonly shared object-affordance

topics. For example, both using a keyboard and reading a book require a hu-

man pose to be close to objects. However, when books are not in use, they can

be stored away from humans. Therefore, the affordance of a book would be a

mixture of a ‘close-to’ and a ‘spread-out’ topic.

3.3.3 Physics-Based Priors

In order to obtain meaningful human-configuration and object-affordance top-

ics, we impose prior that follows physics and conventions to those topics.

Human Configuration Prior. Our hallucinated human configurations need to

follow basic physics. Encoding physics-based notions about objects has been

shown to be successful in 3D geometric interpretation [125, 55]. We consider the

following two properties as priors for the generated human configurations [37]:

1) Kinematics. We perform collision check so that the human pose is kinemat-

ically feasible. 2) Dynamics. We check if the human skeleton is supported by the
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nearby environments to ensure its stability.

Object Affordance Prior. In general, it is more likely for an object to be close

to humans while being used. Furthermore, most objects’ affordance should be

symmetric in their relative orientation to the humans’ left or right. We encode

this information in the design of the function quantifying affordances and as

Bayesian priors in the estimation of the function’s parameters.
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CHAPTER 4

NON-PARAMETRIC LEARNING ALGORITHMS

In this thesis, we propose a type of mixture CRFs—infinite latent conditional

random fields (ILCRFs), which can capture the following properties:

1. Unknown number of latent nodes. This is essential for applications of finding

hidden causes, such as scene modeling where the number of possible human

poses in a scene is unknown and changes across different scenes.

2. Unknown number of the types of potential functions. Potential function mea-

sures the relationship between nodes, and therefore, having variety in them can

help us model complex relations. For example, in the task of image segmenta-

tion, different types of context can be modeled as different edges in a CRF [50].

In this work, we use them to capture different object affordances.

3. Mixture CRFs. The complexity of real-world data may not always be ex-

plained by a single CRF. Therefore having a mixture of CRFs, with each one

modeling one particular conditional independency in the data, can increase the

expressive power of the model.

4. Ability to place informative priors on the structure of CRFs. This can help pro-

ducing more plausible CRFs as well as reducing the computational complexity.

We achieve this by imposing Bayesian nonparametric priors—Dirichlet pro-

cesses (DPs)—to the latent variables, potential functions and graph structures.

In this chapter, we first describe the classic DPs and a non-parametric mixture

model built upon DPs in Sec. 4.1. We then present our ILCRFs in Sec. 4.2 and a

Gibbs-sampling based learning and inference algorithm along with the model.
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Lastly we discuss related works in Sec. 4.3.

4.1 Background: DPMM

Dirichlet process is a stochastic process to generate distributions that is used

to model clustering effects in the data. It has been widely applied to model-

ing unknown number of components in mixture models (such as modeling the

unknown number of object parts in part-based object detection models [127]),

which are often called infinite mixture models. (Formal definition can be found

in [133].)

Definition 2. A DP mixture model, DP(α, B), defines the following generative

process (also called the stick-breaking process), with a concentration parameter

α and a base distribution B:

1. Generate infinite number of mixture components, parameterized by Θ =

{θ1, . . . , θ∞}, and their mixture weights π:

θk ∼ B, bk ∼ Beta(1, α), πk = bk
∏k−1

i=1 (1 − bi). (4.1)

2. Assign the zth
i component to each data point xi and draw from it:

zi ∼ π, xi ∼ F(θzi). (4.2)

The process can be represented in the following plate notation: �

α Bixπ iz kθ
ni 1= ∞= 1k
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4.2 ILCRF

ILCRF uses DPs to admit an arbitrary number of latent variables and potential

functions to obtain a mixture of latent CRFs. In brief, it generates latent variables

and potential functions from two DPs respectively, and each data point builds

a link, associated with one potential function, to one latent variable. Different

samples thus form different CRFs.

Definition 3. An ILCRF(X,Y, EY , αh, Bh, αψ, Bψ) is a mixture of CRFs, where the

edges in Y are defined in graph EY and latent variables H as well as the edges

betweenH and Y are generated through the following process:

1. Generate infinite number of latent nodes H = {h1, h2, . . . , h∞} and a dis-

tribution πh from a DP process DP(αh, Bh) following Eq. (4.1); Assign one

edge to each label yi that links to hzi , where zi ∼ πh following Eq. (4.2).

2. Generate infinite number of potential functions (‘types’ of edges) Ψ =

{ψ1, . . . , ψ∞} and a distribution πψ from a DP process DP(αψ, Bψ) follow-

ing Eq. (4.1); Assign one potential function ψωi to each edge (yi, hzi), where

ωi ∼ πψ following Eq. (4.2). �

We now illustrate the process using Fig. 4.1. Consider first sampled CRF

(‘CRF-1’ in the figure) with four visible nodes yi (i = 1 . . . 4). In the first step, y1 is

connected to h1, y2 to h3, y3 to h7 and y4 to h1 again. This is because zi’s (i = 1 . . . 4)

are sampled as (1, 3, 7, 1) from DP(αh, Bh). Since only h1, h3 and h7 are active, we

draw their values from DP(αh, Bh). Thus, we get a CRF with three latent nodes

{h1, h3, h7}. In the second step, the potential function of edge (y1, h1) is assigned to

ψ1, (y2, h3) to ψ2, (y3, h7) to ψ5 and (y4, h1) to ψ1. This is because ωi’s are sampled as
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Figure 4.1: Graphical representations of our infinite latent CRF (ILCRF).

(1, 2, 5, 1) from DP(αψ, Bψ). Since, only (ψ1, ψ2, ψ5) are active, we have three edge

types in this CRF. We draw their parameters from DP(αψ, Bψ). Repeating this

procedure may generate different latent CRFs such as ‘CRF-K’ which has two

different latent nodes and three different edge types. In the end, their mixture

forms the ILCRF. Note that the structure of labels (edges between yi’s) is defined

by EY and is shared across all the sampled CRFs.

From the probabilistic perspective, ILCRF defines a distribution over differ-

ent CRFs with latent variables, where each CRF is specified by G = {H ,Z,Ψ,Ω}

and its likelihood is governed by prior distributions Bh and Bψ (their specific

forms are given in Sec. 4.2.2). Specifically, the first generative step above defines

the probability of latent nodes and edges:

P(H ,Z|αh, Bh) =

∫
P(H ,πh|αh, Bh)

N∏
i=1

πh(zi)dπh (4.3)

Similarly, the second step defines the probability of potentials for all edges be-

tween Y andH :

P(Ψ,Ω|αψ, Bψ) =

∫
P(Ψ,πψ|αψ, Bψ)

N∏
i=1

πψ(ωi)dπψ (4.4)
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Since G is latent, we marginalize over all its possible values to compute the

overall likelihood of an ILCRF:

P(Y|X) =

∫
P(Y,G = {H ,Z,Ψ,Ω}|X) dG (4.5)

=

∫
P(H ,Z|αh, Bh)︸             ︷︷             ︸
DP prior forH (4.3)

P(Ψ,Ω|αψ, Bψ)︸            ︷︷            ︸
DP prior for Ψ (4.4)

× P(Y|X,G = {H ,Z,Ψ,Ω})︸                            ︷︷                            ︸
conditional prob. of the CRF (3.6)

dG

Exact computation of this likelihood is prohibitive in practice. We therefore

present learning and inference methods based on Gibbs sampling in the follow-

ing.

4.2.1 Gibbs Sampling for Learning and Inference

Gibbs sampling states that, if we sample latent CRFs, including the

edge/structure of G, the value of latent nodes H and the edge types Ψ, from

their posterior distributions, then the samples approach the joint distribution

P(Y,G`,H ,Ψ|X). And this can be further used to estimate P(Y|X) in (4.5) and to

infer the most likely values of Y.

We present the posterior distributions below, modified from the Chinese

restaurant process [96, 133] for classic DP mixture models.
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• Sample the graph structure, i.e., one edge for each yi to one latent node:1

zi = z ∝


nh
−i,z

N+m−1+αh
ψωi(xi, yi, hz) nh

−i,z ≥ 0,

αh/m
N+m−1+αh

ψωi(xi, yi, hz) otherwise
(4.6)

• Sample values for each latent node in the graph:

hk = h ∝ Bh(h) ×
∏
i:zi=k

ψωi(xi, yi, h) (4.7)

• Assign the type of potential functions to each edge:2

ωi = ω ∝


nψ
−i,ω

N+m−1+αψ
ψω(xi, yi, hzi) nψ

−i,ω ≥ 0,

αψ/m
N+m−1+αψ

ψω(xi, yi, hzi) otherwise
(4.8)

• Sample the parameters of each selected potential function:

ψk = ψ ∝ Bψ(ψ) ×
∏

i:ωi=k

ψ(xi, yi, hzi) (4.9)

• Sample labels:

yi = y ∝ ψωi(xi, y, hzi) × ψ
o(xi, y)

×
∏
(yi,y j)

ψoo(xi, x j, y, y j) (4.10)

Note that when we sample the graph structure in Eq. (4.6) and (4.8), we

assume that the partition function accross the different graph structures is con-

stant. Another commonly used approximation is via pseudo-likelihood [79]:

1The posterior distribution of a variable is proportional to its prior and to its likelihood. In
the case of zi, it means that the probability of linking an edge from yi to hz is determined by: 1)
the likelihood of this edge, given by ψωi (xi, yi, hz); 2) the number of other subjects choosing the
same latent node, i.e., nh

−i,z where nh
−i,z = I{z j = z, j , i}. In addition, the chance of selecting a new

latent node is given by αh/m out of m latent nodes sampled from Bh. (See [96] for more details).
2Similar to (4.6), the probability of choosing ψω is proportional to the number of other edges

choosing the same function (nψ
−i,ω) and the likelihood of this edge using this function.
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Table 4.1: Summary of Gibbs sampling in ILCRF for two applications.

Task Phase
Gibbs sampling (Sect. 4.2.1)

z (4.6) h (4.7) ω (4.8) ψ (4.9) Y (4.10)

Scene train X X X

Labeling test X X X X

Scene train X X X

Arrangement test X X X

We approximate the true likelihood P(Y|X,G) by
∏

i P(yi|Y−i,X,G) where

P(yi|Y−i,X,G) =
ψωi (xi,yi,hz)ψo(xi,yi)

∏
(yi ,y j) ψ

oo(xi,x j,yi,y j)∑
yi=y ψωi (xi,y,hzi )ψ

o(xi,y)
∏

(yi ,y j) ψ
oo(xi,x j,y,y j)

(Eq. (3.6)). Now we can sam-

ple zi based on this pseudo-likelihood, i.e., zi = z ∝
nh
−i,z

N+m−1+αh
P(Y|X,G) ∝

nh
−i,z

N+m−1+αh

∏
i P(yi|Y−i,X,G). Note that for all other j , i, P(y j|Y−i,X,G) is con-

stant w.r.t. zi, and so is ψo(xi, yi) and ψoo(xi, x j, yi, y j). Hence, zi = z ∝
nh
−i,z

N+m−1+αh
P(yi|Y−i,X,G) ∝

nh
−i,z

N+m−1+αh

ψωi (xi,yi,hz)∑
yi=y ψωi (xi,y,hzi )ψ

o(xi,y)
∏

(yi ,y j) ψ
oo(xi,x j,y,y j)

. However in our

experiments, we observe little performance gain by doing this and hence ignore

the denominator in our implementations.

As for learning the EY , when labels are given in the training data, EY is in-

dependent with latent variables H (if the partition function is ignored), and

therefore can be learned separately. For instance, EY used in our labeling task is

learned separately using max-margin learning [1].

4.2.2 Learning Object Affordances

The primary part of learning an ILCRF model is to learn object affordances.

As we defined in Sec. 3.2, the affordance ψ is parameterized by Θ =

{µd, σd, µr, κr, µo, κo, µv, σv} for each object class. Therefore, sampling ψ in Eq. (4.9)
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Figure 4.2: Examples of learned affordance topics and object affordances as
a mixture of those topics (see Sec. 4.2.2).

is done through sampling each parameter in Θ. In practice, the posterior sam-

pling of Θ may be difficult when not using conjugate priors. To handle this, we

use the maximum a posteriori (MAP) estimate instead of sampling. For exam-

ple, the parameters for distance preference, µd and σd in Θk is updated by

µd, σd = arg maxµ,σ Bψ(ψ)
∏

i:ωi=k ψdist(xi, yi, hzi; µ, σ),

and similar for the other six parameters. In this work, we use non-informative

prior for Bψ, which is a zero-mean Gaussian with large variance for each of these

four terms. We illustrate the learning process in Figure 4.3 shows an example

of how the object affordances are refined progressively along with the sampled

human poses.

Often, each object type is associated with one object affordance. Thus in our

two tasks, we assume they are equivalent, i.e. ωi = yi. Since object labels yi are

given during the training, we only perform Gibbs sampling on zi, hk and ψk, as

summarized in Table 4.1.

However, because of the DP prior on affordances, our ILCRF can actually
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learn the number of affordances needed from the data, which we refer as ‘affor-

dance topics’ (for its analogy to topic modeling for text data [133]). Each affor-

dance topic can be shared across multiple object types while the affordance of

each object type is now represented as a mixture of multiple topics. To demon-

strate, we performed a learning experiment where ωi is also sampled during the

training.3 We are able to learn 11 affordance topics for a total of 19 object cat-

egories in our scene arrangement dataset (see Sec. 5.2). Figure 4.2 shows some

examples of learned topics and object affordance as a mixture of those topics.

This ability is particularly useful when handling a large number of object types,

as only a relatively small number of topics are learned yet they are able to rep-

resent the variety of object affordances.

4.2.3 ILCRF for Scene Arrangement

So far, we have presented ILCRF in the context of scene labeling task. Now

we describe how to apply ILCRF to scene arrangement. While the two tasks

have been studied with different approaches and algorithms in previous work,

we show that they can be addressed in a unified model, ILCRF with the same

definition on human poses and object affordances.

The arrangement task requires finding proper locations and orientations for

placing new objects in a given scene. The scene is represented as an RGB-D

point cloud and each object is represented by its appearance features and object

class, included in xi. Each yi now denotes the placement (location and orienta-

3To make sure that objects from the same category have the same affordance, instead of
sampling ωi for each object instance i in Eq. (4.8), we sample ωy for each object type y, i.e.,

ωy = ω ∝
nψ−y,ω

N+m−1+αψ

∏
i:yi=y ψω(xi, yi, hzi ). Then the affordance of each object type y is given by

1
S
∑

s ψω(s)
y

(·).
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Algorithm 1: Labeling a new scene.

Data: x1, . . . , xN : segment locations and appearance features.

Ψ: learned object affordances.

Result: y1, . . . , yN : labels for each segment.

Step 1: Initialization

Bh ← a uniform distribution over all possible human configurations in the

scene;

H ← randomly sample from Bh;

z1, . . . , zN ← random integers between 1 and N;

ω1, . . . , ωN ← same as zi;

Step 2: Gibbs sampling

for each iteration s do

Sample zi using Eq. (4.6), ∀i = 1, . . . ,N;

Sample hk using Eq. (4.7), ∀k ∈ {k|∃zi = k};

Sample ω(s)
i using Eq. (4.8), ∀i = 1, . . . ,N;

end

Step 3: Labeling

For each segment i, use the histogram of ω(s)
i as additional affordance

features (along with object self and pairwise features). Then label all

segments using the max-margin classifier in [1]

tion) of an object.4

During training, we learn object affordances same as in the labeling task as

described in the last section. We also learn the object-object structure, EY , based

on object co-occurence, as computed from the training data. In this task, ψoo is

4Since the object’s placement is given either by x as in the labeling task or by y as in the
arrangement task, our object affordance is defined as a function of both x and y as in Eq. (3.1).
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Figure 4.3: Learning object affordances. This example shows the learned
object affordances (top row, shown as heatmaps) and top sam-
pled human configurations (bottom) through iterations. In It-
eration#1, the affordance is only based on the prior Bψ which
is same for all objects. Thus, the sampled human poses also
randomly appear in the scene. In later iterations, the affor-
dances diverge to different but reasonable functions and so do
the sampled humans based on these affordances.

defined as a multi-variate Gaussian distribution of the location and orientation

difference between the two objects.

During testing, given the type of the object to be placed and learned object

affordances, we sample human-object edges, human poses and placements. In

the end, the predicted placement is the one sampled most as that represents the

highest probability. The inference algorithms for both tasks are summarized in

Alg. 1 and Alg. 2.

4.3 Related Work

Variants of Conditional Random Fields (CRFs) ([80]) have emerged as a popular

way to model hidden states and have been successfully applied to many vision

problems.

There are many models that enrich the structure of labels in CRFs. For ex-
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Algorithm 2: Arranging a new scene.

Data: x1, . . . , xN : object types and appearance features.

Ψ: learned object affordances.

Result: y1, . . . , yN : locations and orientations.

Step 1: Initialization

Bh ← a uniform distribution over all possible human configurations in the

scene;

H ← randomly sample from Bh;

z1, . . . , zN ← random integers between 1 and N;

ω1, . . . , ωN ← given by xi;

y1, . . . , yN ← randomly placed in the scene;

Step 2: Gibbs sampling

for each iteration s do

Sample zi using Eq. (4.6), ∀i = 1, . . . ,N;

Sample hk using Eq. (4.7), ∀k ∈ {k|∃zi = k};

Sample y(s)
i using Eq. (4.10), ∀i = 1, . . . ,N;

end

Step 3: Placing

for i = 1, . . . ,N do

yi ← arg maxy
∑

s 1{y(s)
i ∈ neighborhood(y)};

end

ample, latent CRFs [103] assume that the overall label Y depends on a sequence

of hidden states (s1, s2, . . . , sk) (see Fig. 2.1-bottom). This can be applied to object

recognition (an object label is determined by its part labels) [123] and gesture

recognition [140, 141]. Further, factorial (or dynamic) CRFs [130] substitute ev-
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ery label with a Markov network structure to allow structured labeling, espe-

cially for sequential data (such as labeling object and action simultaneously in

video sequences [70, 74]). However, the labels and hidden states are discrete

and take only finite number of values. In contemporary work, Bousmalis et al.

[10] present a model that shares a name similar to ours, but is quite different.

They estimate the correct number of values a latent node can take using Dirich-

let processes in a way similar to augmenting hidden Markov models (HMM) to

infinite HMM [4]. However, the number of hidden nodes is fixed in their model.

In our model, we estimate the number of latent nodes, and even allow the labels

to be continuous.

Some works impose a non-parametric Bayesian prior to the network’s struc-

ture so that it can potentially generate as many nodes as needed. For exam-

ple, Indian Buffet process [35] assumes the latent nodes and links are generated

through Beta processes and the infinite factorial HMM [138] incorporates it to

HMM to allow any number of latent variables for each observation. However,

they are limited to binary Markov chains and do not consider different types of

potential functions either. Thus these models are complementary to ours. Janc-

sary et al. [50] considers Gaussian CRFs on fixed number of nodes but unknown

number of potential functions and proposes a non-parametric method to learn

the number as well as parameters of each potential function. Unlike this work,

our model can handle unknown number of nodes as well as types of edges.

Cast in the light of mixture models, mixtures of graphical models have been

proposed to overcome the limited representational power that a single graphs

often suffers. For example, Anandkumar et al. [3] propose a novel method to

estimate a mixture of a finite number of discrete graphs from data. Other works
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consider a Dirichlet process mixture model over graphs so that the number of

different graphical models is determined by the data [105, 46]. However, they

are limited to Gaussian graphical models and do not consider latent variables.
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CHAPTER 5

APPLICATIONS

In this chapter, we instantiate our ILCRF model in two applications: object

detection and object arrangement. Given a room, the first task requires to iden-

tify existing objects, and the second task asks to place more designated objects

in proper locations and orientations.

In our applications, the scenes (including objects/furnitures) are perceived

as point-clouds (Fig. 5.8), either generated from 3D models in synthetic datasets

or obtained using Microsoft Kinect camera in real datasets.

5.1 Scene Labeling Results

In this experiment, the goal is to label each segment in a given room with correct

class, such as table, chair-back, keyboard, etc.

Dataset. We used the Cornell RGB-D indoor dataset [73, 1] for our experiments.

This data consists full-scene RGB-D point clouds of 52 offices and homes ob-

tained from 550 RGB-D views. The point-clouds are over-segmented, and the

goal is to label these segments with object labels and attribute labels. Each

segment can have multiple attribute labels but has only one object label. The

attribute labels are: {wall, floor, flat-horizontal-surfaces, furniture, fabric, heavy,

seating-areas, small-objects, table-top-objects, electronics} and the object labels are:

{wall, floor, tableTop, tableDrawer, tableLeg, chairBackRest, chairBase, chairBack, mon-

itor, printerFront, printerSide, keyboard, cpuTop, cpuFront, cpuSide, book, paper, so-

faBase, sofaArm, sofaBackRest, bed, bedSide, quilt, pillow, shelfRack, laptop}.
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Table 5.1: Object and Attribute Labeling Results. The table shows av-
erage micro precision/recall, and average macro precision and
recall for 52 scenes. Computed with 4-fold cross-validation.

Algorithm

Object Labeling Attribute Labeling

micro macro micro macro

P/R prec recall prec recall prec recall

Chance 5.88 5.88 5.88 12.50 12.50 12.50 12.50

Affordances 31.38 16.33 15.99 50.93 34.06 42.02 28.02

Appearance 67.24 53.31 50.48 81.81 60.85 73.30 52.36

Afford. + Appear. 68.63 55.69 52.86 83.04 63.95 78.85 56.00

Object context [1] 78.72 68.67 63.72 85.52 70.98 80.04 63.07

ILCRF 78.86 71.14 65.07 85.91 73.51 82.76 69.22

Baselines. We perform 4-fold cross-validation where we train the model on data

from three folds and tested on the fourth fold of unseen data. Table 5.1 presents

the results for object labeling and attribute labeling. In order to study the effects

of different algorithms, we compare with the following algorithms:

(a) Affordances (Human Context). This is our affordance and human configura-

tions information being used in prediction, without any object context.

(b) Appearance. We run versions with both local image and shape features [1].

(c) Afford. + Appear. It combines the affordance and appearance features.

(d) Object context. We use the learning algorithm presented in [1] that uses

Markov Random Field with log-linear node and pairwise edge potentials.

(e) Our ILCRF. Here we combine the human context (from affordances and hu-

man configurations) with object-object context. In detail, we append the node

features of each segment with the affordance topic proportions derived from
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Figure 5.1: Top sampled human poses in different scenes. The first two
are from stitched point-cloud from multiple RGB-D views, and
the last three scenes are shown in RGB-D single views.

the learned object-affordance topics and learn the semantic labeling model as

described in [1].

Evaluation metrics. We report precision and recall using both micro and macro

aggregation. Since we predict only one label for each segment in case of predict-

ing object labels, our micro precision and recall is the same as the percentage of

correctly classified segments (shown as ‘P/R’ in Table 5.1). The macro precision

and recall are the average of precision and recall of all classes respectively.

Results. Table 5.1 shows that our algorithm performs better than the state-of-

the-art in both object as well as attribute labeling experiment. Our approach is

able to predict the correct labels for majority of the classes as can be seen from

the strong diagonal in the confusion matrices. We discuss our results in the light

of the following questions.

Are the sampled human poses meaningful? Being able to hallucinate sensible

human poses is critical for learning object affordances. To verify that our algo-

40



rithm can sample meaningful human poses, we plot a few top sampled poses

in the scenes, shown in Fig. 5.1. In the first home scene, some sampled human

poses are sitting on the edge of the bed while others standing close to the desk

(so that they have easy access to objects on the table or the shelf-rack). In the

next office scene (Fig. 5.1-b), there is one L-shaped desk and two chairs on each

side. It can be seen that our sampled human poses are not only on these chairs

but also with correct orientation. Also, as can be seen in Fig. 4.3-c, our algo-

rithm successfully identifies the workspaces in the office scene. Note that these

poses naturally explain why the monitors, keyboards and CPUs are arranged in

this particular way. It is these correctly sampled human poses that give us the

possibility to learn correct object affordances.

Are the discovered affordances meaningful? During training, we are given

scenes with the objects and their labels, but not humans. Our goal is to learn ob-

ject affordance for each class. Fig. 5.2 shows the affordances from the top-view

and side-view respectively for typical object classes. Here the X-Y dimensions

of the box are 5m×5m, and the height axis’s range is 3m. The person is in the

center of the box. From the side views, we can see that for objects such as wall

and cpuTop, the distributions are more spread out compared to objects such as

floor, chairBase and keyboard. This is because that that chairBase is often associ-

ated with a sitting pose at similar heights, while CPUs can either be on the table

or on the floor. While this demonstrates that our method can learn meaningful

affordances, we also observe certain biases in our affordances. For example, the

wall is more to the front as compared to the back, and monitor is biased to the

side. We attribute to the limited data and imperfect generation of valid human

skeletons. Note that while the affordance topics are unimodal, the affordance

for each objects is a mixture of these topics and thus could be multi-modal and
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Figure 5.2: Examples of learned object-affordance topics. An affordance
is represented by the probability distribution of an object in a
5×5×3 space given a human pose. We show the projected top
views and side views for different object classes.

more expressive.

Can we obtain object-object relations from object affordances? Since objects

are related to humans, it turns out that we can infer object-object spatial rela-

tions (and object co-occurences) from the human-object relations. For example,

if we convolve keyboard-human and human-monitor relations, we obtain the

spatial relations between keyboard and monitor. More formally, we compute

the conditional distribution of one object’s location xi (with type yi) given an-

other object’s location x j (with type y j) as,

P(xi|x j) =

∫
P(xi|h)P(h|x j)dh

∝

∫
ψho(xi, yi, h)ψho(x j, y j, h)Bh(h)dh

Some examples are shown in Fig. 5.3. We can find that many object-object

relationships are recovered reasonably from our learned affordances. For exam-

ple, given a keyboard, a monitor is likely to be found in front of and above it

while tableTop at the same height as it (sometimes above it as the keyboard is

often in a keyboard-tray in offices). In home scenes, given a bed, we can find
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Figure 5.3: Object-object context obtained from our learned human con-
text. Each pair of the top- and side-view of a heatmap with the
title of ‘obj1-obj2’ shows the distribution of obj1 given obj2 at
the center facing right. For example, in the first row the key-
board is in the center of the image and the heat-maps show the
probability of finding other related objects such as table top,
monitor, etc.

a pillow on the head of the bed, quilt right above the bed and bedSide slightly

below it. This supports our hypothesis that object-object relations are only an ar-

tifact of the hidden context of human-object relations. It also demonstrates that

we can efficiently model O(n2) object-object relations for n objects using only

O(n) human-object parameters.

Does human context helps in scene labeling? Table. 5.1 shows that the affor-

dance topic proportions (human context) as extra features boosts the labeling

performance. First, when combining human context with the image- and shape-

features, we see a consistent improvement in labeling performance in all eval-

uation metrics, regardless of the object-object context. Second, when we add
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Figure 5.4: Confusion matrices for office dataset (left) and home dataset
(right) using our ILCRF model.

object-object context, the performance is further boosted in the case of office

scenes and improves marco precision for home scenes. This indicates that there

is some orthogonality in the human-object context and object-object context. In

fact, adding object-object context to human-object context was particularly help-

ful for small objects such as keyboards and books that are not always used by

humans together, but still have a spatial correlation between them.

We also show the confusion matrices in Fig. 5.4. We found that while our

algorithm can distinguish most of the objects, it sometimes confuses objects with

similar affordance. For example, it confuses pillow with quilt and confuses book

and paper with tableTop. Similarly, it confuses cpuTop with chairBase because

the CPU-top (placed on the ground) could also afford sitting human poses!
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5.2 Scene Arrangement Results

In this experiment, the goal is to find proper locations and orientations for plac-

ing one or multiple objects in a given room.

Dataset. We test on a synthetic dataset and a real dataset. We downloaded 20

different rooms from Google 3D Warehouse, including six living rooms, seven

kitchens and seven offices. All these scenes are commonly seen in the real world

and have different layouts and sizes. We also collected 47 different objects from

19 categories for arranging: { book, clean tool, laptop, monitor, keyboard, mouse, pen,

decoration, dishware, pan, cushion, TV, desk light, floor light, utensil, food, shoe, remote

control, and phone}. Every room is assigned to three to five subjects (not associ-

ated with the project) to manually label the arrangements of 10 to 30 objects. In

total, we have 67 different labeled arrangements for 20 rooms.

We also test on real scenes from [55] using the learned model from the syn-

thetic dataset. The real dataset consists of five empty offices and apartments,

each of which is asked to arrange 4, 18, 18, 21 and 18 number of objects respec-

tively.

Experimental setup. For the synthetic dataset, we conduct 5-fold cross valida-

tion on 20 rooms such that the four test rooms are new to the algorithms. We

consider two different testing scenarios, where the test room is either: partially-

filled and the task is to arrange one new type of objects (may have multiple

instances); or empty (with only furnitures) and the task is to arrange multiple

types of objects.

Baselines. We compare all the following methods:
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Table 5.2: Scene arrangement results on partially-filled scenes and empty scenes
in synthetic dataset, evaluated by the location and height difference to
the labeled arrangements.

Algorithms
partially-filled scenes empty scenes

location (m) height (m) location (m) height (m)

Chance 2.35±0.23 0.41±0.04 2.31±0.23 0.42±0.05

Obj. [54] 1.71±0.23 0.13±0.02 2.33±0.17 0.44±0.04

CRF 1.69±0.05 0.12±0.01 2.17±0.07 0.39±0.01

ILCRF-H [54] 1.48±0.18 0.11±0.01 1.65±0.20 0.12±0.01

Human+obj [54] 1.44±0.18 0.09 ±0.01 1.63±0.19 0.11±0.01

ILCRF-Aff. 1.59±0.06 0.14±0.01 1.60±0.06 0.15±0.01

ILCRF-NSH 1.64±0.05 0.15±0.01 1.77±0.06 0.16±0.01

FLCRF 1.55±0.06 0.12±0.01 1.63±0.06 0.14±0.01

ILCRF 1.33±0.19 0.09±0.01 1.52±0.06 0.10±0.01

Table 5.3: Scene arrangement results on 5 real empty scenes (3 offices and 2
apartments). Co: % of semantically correct placements, Sc: average
score (0-5).

office1 office2 office3 apt1 apt2 AVG

Co Sc Co Sc Co Sc Co Sc Co Sc Co Sc

Obj. 100 4.5 100 3.0 45.0 1.0 20.0 1.8 75.0 3.3 68.0 2.7

ILCRF-H 100 5.0 100 4.3 91.0 4.0 74.0 3.5 88.0 4.3 90.0 4.2

Human+obj 100 4.8 100 4.5 92.0 4.5 89.0 4.1 81.0 3.5 92.0 4.3

ILCRF 100 5.0 100 4.6 94.0 4.6 90.0 4.1 90.0 4.4 94.8 4.5

1) Chance. Objects are placed randomly in the room.

2) Obj. We use heuristic object-object spatial relations to infer placements in

sequence (not jointly). 1

1We model the relative location/orientation between any pair of object types as Gaussian
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3) CRF, a ILCRF with only object-object edges (i.e. (yi, y j)), without latent human

nodes.

4) ILCRF-H, a ILCRF with only human-object edges (i.e., (yi, hzi)), without con-

sidering object relations.

5) Human+obj, a heuristic way combining object context and human context. It

linearly combines the inferred distributions of arrangements Y from Obj. and

from ILCRF-H, and select the maximum. Our ILCRF, on the other hand, incor-

porate the two relationships during the inference, not after.

6) ILCRF-Aff, a ILCRF with only one type of edge, i.e., one shared affordance

across all object classes.

7) ILCRF-NSH, a ILCRF with with non-sharing latent human nodes. Each object

is assigned with its own human node, i.e. zi = i for each yi, similar to hidden CRFs

in Fig. 2.1. While this model can still affect the object arrangements through pos-

sible human poses (e.g., monitor will be placed near any sitting area), it cannot

capture phenomena of objects sharing the same human pose, such as a monitor

and a keyboard being placed together. ILCRF achieves this ability of sharing

latent nodes through the clustering effect (on zi’s) inherited from DPs.

8) FLCRF, a ILCRF with fixed/finite number of latent nodes (same number of

human poses across all scenes). It requires a good estimate on the number of

human poses, and the optimal number may vary for rooms of different types or

sizes.

9) ILCRF, our full model.

distributions with parameters learned from training data. For placing a new object, a reference
object (already placed in the room) is selected with the smallest variance and then sample the
new object’s location/orientation from the Gaussian distributions.

47



O
bj

.
IL

C
R

F

Figure 5.5: Results of arranging empty rooms by using object-object rela-
tionships only (top) and by ILCRFs (bottom).

0 5 10 15 20
1.3

1.4

1.5

1.6

1.7

1.8

number of human skeletons

lo
ca

tio
n 

di
�e

re
nc

e 
(m

)

 

 

FLCRF−empty
FLCRF−partial
ILCRF−empty
ILCRF−partial

laptop

�oor light

mouse

TV

laptop

�oor light

mouse

TV

laptop

�oor light

mouse

TV

(a) (b) (c)

Figure 5.6: Results of FLCRF with different number of human poses ver-
sus ILCRF. We also show examplar sampled CRFs and learned
object affordances (in top-view heatmaps) by different meth-
ods.

Evaluation metrics. For synthetic datasets, the predicted arrangements are eval-

uated by two metrics, same as in [54]: location difference and height difference

(in meters) to the labeled arrangements (averaged over different object types

across all test rooms). The results are shown in Table 5.2.

Results of arranging empty real scenes are evaluated by human subjects:

Each arrangement is measured by the percentage of predicted locations that are

semantically correct and a score of the overall arrangement between 0 and 5,

labeled by two human subjects that are not associated with this project. Results

are presented in Table 5.3.

Results. Results in Table 5.2 demonstrate, same as the previous experiment,
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that modeling human context does improve the performance: On average,

the location and height difference are reduced from 1.69m (2.17m) and .12m

(.39m) when modeling object context only using CRF, to 1.33m (1.52m) and

.09m (.10m) when modeling both human and object context using ILCRF, in

arranging partially-filled (empty) scenes. Even methods that use non-sharing

skeletons (ILCRF-NSH) and finite skeletons (FLCRF) achieve better results than

CRF. We also visually compare some predicted arrangements for empty rooms

(Fig. 5.5), where using object relations only often leads to over-crowded arrange-

ments (especially in empty rooms) or inconvenient/inaccessible locations due

to the lack of human context. In the following, we study how well the latent

human context is modeled by ILCRF.

Why do we need handle unknown number of human poses? The advantage

of using DP mixture models in ILCRF is being able to determine the number of

human poses from the data instead of guessing manually. We investigate this

in in Fig. 5.6. We compare ILCRF with the FLCRF where the number of human

poses varyies from 1 to 20.

While having five poses in FLCRF gives the best result, it is still outper-

formed by ILCRF. This is because scenes of different sizes and functions prefer

different number of skeletons. If we force all scenes using only one human pose,

the learned object affordances will have large variances because all objects in the

scene attempting to relate to one human, e.g., in Fig. 5.6-(b). If we force all scenes

using a large number of human poses, say 20 per scene, the model will overfit in

each scene and leading to meaningless affordances, e.g., Fig. 5.6-(c). Therefore,

having the correct number of latent human nodes in CRFs is crucial for learning

good object affordances as well as for inferring reasonable arrangements across
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Figure 5.7: The average performance of ILCRF with different hyper-
parameter αh.

diverse scenes (Fig. 5.6-a).

How sensitive is ILCRF to the number of human poses? The parameter αh in

ILCRF controls the probability of selecting a new human pose and thus can be

viewed as a counterpart of K (the fixed number of human poses) in FLCRF.

However, unlike FLCRF, ILCRF is much less sensitive to this parameter, as

shown in Fig. 5.7 where its performance does not vary much for αh from 0.1

to 104. Therefore, ILCRF does not rely on either informative prior knowledge or

a careful hand-picked value of αh to achieve high performance.

5.3 Robotic Experiment.

Robotic simulation experiment. In order to study how the desired placements

are affected by the robot constraints, we tested arranging these synthetic scenes
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Figure 5.8: Robotic experiment (from left to right): (a) A given scene is
perceived as a RGB-D point-cloud; (b) The robot uses ILCRF
to detect objects; (c) The robot uses ILCRF to infer possible hu-
man poses (shown in red heatmaps) and possible placements
(shown in blue heatmaps) for placing a cushion (top) and a
mouse (bottom) in the scene; (d) The robot successfully places
objects in the predicted locations.

using Kodiak (PR2) in simulation. Please refer to [57] for more details on results.

Arrange Real Scenes. We apply the ILCRF to our Kodiak PR2 robot to per-

form the scene arrangement in practice. We test our system on a small set of

objects (a cushion, mouse and mug) in a given scene (Fig. 5.8). The system

works as follows: (a) The robot perceives the environment as point clouds; (b)

It hallucinate human poses and detect objects using ILCRF; (c) When asked to

place a new object, it hallucinate human poses as well as sample the object’s

locations. The most sampled location will be the final prediction; (d) The robot

executes the arrangement by placing the object at the predicted location. To

see PR2 arranging the scene in action (along with code and data), please visit:

http://pr.cs.cornell.edu/hallucinatinghumans
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CHAPTER 6

MODELING HUMAN DYNAMICS

So far, we have shown that static human poses can be hallucinated in a given

scene. In this chapter, we further show that dynamic human motions can also

be effectively modeled and thus anticipated using our proposed latent CRFs.

For robots, the ability to model human configurations and temporal dynam-

ics is crucial for the task of anticipating future human activities, yet requires

conflicting properties: On one hand, we need a detailed high-dimensional de-

scription of human configurations to reason about the physical plausibility of

the prediction; on the other hand, we need a compact representation to be able to

parsimoniously model the relations between the human and the environment.

We therefore propose a new model, GP-LCRF, which admits both the high-

dimensional and low-dimensional representation of humans. It assumes that

the high-dimensional representation is generated from a latent variable corre-

sponding to its low-dimensional representation using a Gaussian process. The

generative process not only defines the mapping function between the high-

and low-dimensional spaces, but also models a distribution of humans embed-

ded as a potential function in GP-LCRF along with other potentials to jointly

model the rich context among humans, objects and the activity.

In the following, we first give an overview of our problem and motivation in

Sec. 6.1. We then introduce our model GP-LCRF and its learning and inference
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Figure 6.1: Graphical representations of the original ATCRF [75] and our
GP-LCRF. Our model adds latent low-dimensional nodes X to
the model, which are related to the original high-dimensional
human configuration nodesH through Gaussian Process latent
variable model with parameters α, β, γ. Shaded nodes indicate
observations. In both models, temporal segment t is given for
anticipation with observed human poses H t and object loca-
tions Lt, and the goal is to infer the next segment t + 1 where
nothing is observed.

algorithm in Sec. 6.2. Finally we present our experimental results in Sec. 6.3.

6.1 Overview

We define the anticipation task as follows: Given an RGB-D video of a human

interacting with the surrounding environment, our goal is to predict what will
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happen to the environment in a time span in terms of the next sub-activity label,

object affordance labels and object trajectories. Modeling future human config-

urations, in the context of the activity and the environment, is a key ingredient

for a good anticipation.

Human configuration has two sides of nature: It is high-dimensional in terms

of the degree of freedom a human body possesses. One would need the location

and orientation of each joint of a human skeleton to fully describe a static hu-

man pose, and the velocities and accelerations to describe a sequence of human

motions. The high-dimensional representation is a guarantee for generating re-

alistic human poses/motions. We need it to perform (self-)collision detection,

inverse kinematics and path planning.

However, most dynamic human behaviors are intrinsically low-dimensional,

as our arms and legs operate in a coordinated way and they are far from inde-

pendent with each other. Many daily behaviors such as walking and jumping

have been represented in low-dimensional space [36, 112]. The low-dimensional

representation is a requisite for probabilistic models of human motions. The dis-

tribution of human poses can be used to synthesize or predict new poses.

Our main idea is to keep both the high- and low-dimensional representation

of human dynamics in anticipating human activities. Our learning model thus

has two parts:

Learning low-dimensional human dynamic distributions. For each human

pose, indexed by i, we use hi to denote its high-dimensional and xi for its corre-

sponding low-dimensional representation. The correspondence is specified by

a mapping function, i.e. hi = f (xi). Additionally, we are also interested in as-
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sociating the mapping with a probabilistic model, so that we can generate new

human dynamics (xi, hi) from the learned distribution. Hence, the objective of

this part is to learn the parameters of f as well as a likelihood function L(xi, hi)

from the training data {hi}.

Modeling the spatial and temporal context of human activities. We use a

graphical model, following [75] to capture the three important aspects in a hu-

man activity—sub-activities A, objects O and humans H . Given a video seg-

ment t,1 each entity is represented by a node in the graph modeling its prior dis-

tribution and the edges in the graph model their relations, as shown in Fig. 6.1.

The whole video is a repetition of such a graph. Edges between consecutive

segments are used to model temporal dynamics. In particular, for each human

pose in segment t, in addition to the original human node ht
i, we add a low-

dimensional latent node xt
i. The edges between ht

i and Ot or At are used to cap-

ture human-object and human-activity relations, while the edges between xt−1
i

and xt
i are for modeling the human dynamics. This graphical model thus defines

a joint distribution P(A,O,H ,X) as a product of parameterized edge potentials.

We learn those parameters from labeled data and then sample future segments

from this distribution for anticipation.

By combining these two parts, our proposed GP-LCRF possesses many ad-

vantages: First, we can now use the context of high-dimensional data that is

difficult to model for a traditional CRF. Second, as the low-dimensional repre-

sentation is modeled as latent nodes and the mapping is learned in an unsuper-

vised way, our model does not require any extra label/data to learn. Third, be-

ing able to learn the distribution of the low-dimensional latent node makes our

1Frames of a video are grouped into temporal segments, and each segment spans a set of
contiguous frames, during which the sub-activity and object affordance labels do not change.
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GP-LCRF a generative model that suits the anticipation problem. Before pre-

senting our GP-LCRF, we first briefly review the background of the two parts in

the following.

6.2 GP-LCRF for Human Activity Anticipation

We propose a model, GP-LCRF, that learns a probabilistic mapping between the

high- and low-dimensional representation of human dynamics based on Gaus-

sian processes. Then it embeds the compactly represented humans as latent

nodes in a CRF to capture a variety of context between the human, objects and

activities.

Our GP-LCRF introduces a layer of latent nodes in a CRF: each node hi is

now linked to a latent node xi and their relation is defined by a GPLVM with

parameters (α, β, γ). Because latent nodes have much lower dimensions, we can

model the edges between latent nodes (e.g., (xt
i, x

t+1
i )) instead of attempting to

capture it with high-dimensional nodes directly. (The high-dimensionality of

the human nodes makes the edge distribution ill-conditioned.) Figure 6.1 shows

the corresponding graphical model.

GP-LCRF differs from other latent CRFs in two aspects:

Prior. We adopt GPLVM to impose a Gaussian process prior on the mapping

and a `2-norm prior on the latent nodes. This prior regulates the mapping so

that the high-dimensional human configurations hi that are close in the original

space would remain close in the latent space xi. This property of local distance

preservation is very desirable in many applications, especially for time series
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Figure 6.2: An example of the learned mapping from the high-
dimensional human configurations to a 2-dimensional space.
The intensity of each pixel x visualizes the its probability
−D

2 lnσ2(x) − 1
2 ||x||

2. We also plot the projected 2D points for
different activities in different colors. We can see that human
configurations from the same activity are mapped to a continu-
ous area in the 2D space while the ones from different activities
are separated.

analysis.

Non-parametric. In many latent CRFs, the values of latent nodes are discrete

and finite [103]. Some other works consider a non-parametric Bayesian prior

over the latent values but they do not handle dimensionality reduction. In our

GP-LCRF, the latent space is completely determined by the training data, mak-

ing it more adaptive to various applications.

6.2.1 Background: Dimensionality Reduction with a Gaussian

Processes

Consider a general setting for regression problems: Our goal is to learn a map-

ping h = f (x) for a set of N training pairs (xi, hi). However, from a Bayesian point

of view, instead of mapping to one point, a Gaussian process (GP) “maps” x to

a distribution of h. Let µ be the mean of the training data µ =
∑

hi/N, and let

57



Hk = [h1,k − µk, . . . , hN,k − µk]T be the feature vectors of the kth dimension. In a GP

model, Hk can be viewed as one sample from a multivariate Gaussian distribu-

tion:

P(Hk|{xi}) =
1

(2π)N/2|K|1/2
exp(−

1
2

HT
k K−1Hk) (6.1)

K is the covariance matrix of all inputs xi. We can use many non-linear kernel

functions, such as the popular “RBF kernel”, to admit non-linear mappings:

Ki, j = k(xi, x j) = α exp(−
γ

2
||xi − x j||

2) + δxi,x jβ
−1

where δxi,x j is the Kronecker delta. Using this kernel means that the two points, xi

and x j, that are correlated in the latent space, will also be highly correlated after

the mapping. The parameter α imposes a prior on how much the two points are

correlated, γ is the inverse width of the similarity function, and β reflects how

noisy the prediction is in general.

In a more general setup, only h1, . . . hN are given and the goal is to determine

the mapping function f as well as the corresponding xi. This can be solved using

Gaussian process latent variable models (GPLVM) proposed in [82]. GPLVM

maximizes the likelihood of the training data, based on Eq. (6.1), to learn the

parameters of the kernel function (γ, α, β) and the latent variables x1, . . . , xN .

Since GPLVM provides a probabilistic model of nonlinear mappings and

generalizes well for small datasets, it has been extended to model human mo-

tions in many works. For example, it is integrated with a dynamical model

to capture dynamical patterns in human motions [139] so that it can provide a

strong prior for tracking human activities [137, 147, 30]. In this work, we also

adopt GPLVM as a dimensionality reduction approach, however, our goal is to

incorporate this with Latent CRFs to model high-dimensional human motions

and rich context in the environment at the same time.
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6.2.2 Likelihood of GP-LCRF

As shown in Fig. 6.1-(b), a GP-LCRF is a repetition of small graphs (one per

each temporal segment). A segment t contains one sub-activity label node At,

object affordance label nodes Ot = {Ot
i}, object location nodes Lt = {Lt

i}, high-

dimensional human configurations H t = {ht
i} and low-dimensional human rep-

resentations Xt = {xt
i}.

Following the independence assumptions imposed by the edges in the

graph, the likelihood of one temporal segment P(At,Ot,Xt|Lt,H t) is,

Pt ∝ ψ(At,H t)
∏

i
ψ(At, ot

i)
∏

i
ψ(ot

i, L
t
i)∏

(i, j)
ψ(ot

i, o
t
j)
∏

i
φ(xt

i, h
t
i) (6.2)

where the first four terms capture human-activity relations, object-activity rela-

tions, object affordances and object-object relations respectively. These poten-

tials are parameterized as log-linear functions of feature vectors [75]. We define

the last term, potential of the mapping between xi and hi as the likelihood de-

rived from GPLVM:

φ(xi, hi) = exp L(xi, hi) (6.3)

L(x, h) = −
||h − f (x)||2

2σ2(x)
−

D
2

lnσ2(x) −
1
2
||x||2 (6.4)

where

f (x) = µ + HT K−1k(x)

σ2(x) = k(x, x) − k(x)T K−1k(x)

k(x) = [k(x, x1), . . . , k(x, xN)]T

The three terms in L(x, h) measure the discrepancy between the given h and the
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prediction f (x), the uncertainty of the prediction, and the prior of the latent

value x.

We now consider the temporal relations between the two consecutive tem-

poral segments t − 1 and t:

Pt−1,t ∝ ψ(At,At−1)
∏

i
ψ(ot

i, o
t−1
i )φ(xt

i, x
t−1
i ) (6.5)

where the first two terms capture the temporal transitions of sub-activity labels

and object affordance labels. They are also parameterized as log-linear functions

of features [75]. We define the last term, the temporal transitions of latent nodes,

as Gaussian distributions:

φ(xt
i, x

t−1
i ) ∝ N(||xt

i − xt−1
i ||

2; 0, 1) (6.6)

Hence, the overall likelihood of a GP-LCRF is

LGP-LCRF ∝
∏T

t=1
Pt ×

∏T

t=2
Pt−1,t (6.7)

Using this function, we learn the parameters by maximize the training data’s

likelihood and to predict the future activities and human dynamics by sampling

from this distribution.

6.2.3 Learning

During training, given all observations (H andL) and labels (A andO), our goal

is to learn the parameters in every potentials and latent nodes X by maximizing
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the likelihood in Eq. (6.7), which can be written into two parts:

LGP-LCRF =
∏

t

ψ(At,H t)
∏

i

ψ(At, ot
i)ψ(ot

i, L
t
i)

∏
(i, j)

ψ(ot
i, o

t
j)ψ(At,At−1)

∏
i

ψ(ot
i, o

t−1
i )


×

∏
t

∏
i

φ(xt
i, h

t
i)φ(xt

i, x
t−1
i )


The first pair of parentheses contains the CRF terms, with parameters denoted

by ΘCRF. (They are similar to the terms in ATCRF.) The second pair of paren-

theses contains all terms related to latent nodes in GP-LCRF with parameters

including K, α, γ, β, denoted by Θlatent. Note that ΘCRF and Θlatent are two disjoint

sets.

Therefore, learning can be decomposed into two independent problems:

1) learning ΘCRF by using the cutting-plane method in the structural learning

for SVM [65], same as [75]; 2) learning Θlatent by minimizing the negative log-

likelihood, given by:

− ln P({xi}, α, γ, β|{hi})

= − ln P({hi}|{xi}, α, γ, β)P({xi})P(α, γ, β)

=
D
2

ln |K| +
1
2

D∑
k=1

HT
k K−1Hk +

1
2

N∑
i=1

||xi||
2 + lnαβγ

where the priors on the unknowns are: P(x) = N(0, I) and P(α, β, γ) ∝ α−1β−1γ−1.

We use numerical optimization method L-BFGS [98] to minimize it.

6.2.4 Inference for Anticipation

Given the observed segment t, we predict the next future segment t + 1 in the

following way: We first sample possible object trajectories, represented in loca-
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tions Lt+1. Then we sample human configurations H t+1 and Xt+1. We now use

the sampled Lt+1 andH t+1 as observations and infer the most likely sub-activity

labelsAt+1and object affordance labels Ot+1 by maximizing the conditional like-

lihood in Eq. (6.7). All the samples together form a distribution over the future

possibilities and we use the one with maximum a posterior (MAP) as our final

anticipation.

We now present how to sampleH t+1 and Xt+1 in particular. (Sampling other

terms is similar as in [75].) Given object locations, we generate a human mo-

tion of either moving or reaching an object. In both cases, the hand trajectory is

given and the problem is formulated as: Given a target hand location `∗, com-

pute the most likely human configurations where both x and h are unknown. A

good pose should reach to the target as well as being reasonable which can be

measured by the likelihood from GPLVM, L(x, h) in Eq. (6.4). Hence, we define

the objective function as:

arg minx,h −L(x, h) + λ||`∗ − `(h)||2 (6.8)

where λ is the penalty of the new pose deviating from the target. In our imple-

mentation, we start with a simple IK solution h0, and use the inverse mapping

function g(h) = x (given by GPLVM with back constraints [83]) to compute its

corresponding x0. In this way, the first term in Eq. (6.4) is always zero and can

be neglected. So the new objective becomes a function of h only:

arg min
h

D
2

lnσ2(g(h)) +
1
2
||g(h)||2 + λ||`∗ − `(h)||2 (6.9)

We then use L-BFGS to optimize it.
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Table 6.1: Anticipation Results, computed over 3 seconds in the future averaged
by 4-fold cross validation. The first six columns are in percentage and
a higher value is better. The last column is in centimeters and a lower
value is better.

Algorithms
Anticipated sub-activities Anticipated object affordances Anticipated traj.

micro-P/R@1 macro-F1@1 Pre@3 micro-P/R@1 macro-F1@1 Pre@3 MHD@1 (cm)

Chance 10.0±0.1 10.0±0.1 30.0±0.1 8.3±0.1 8.3±0.1 24.9±0.1 48.1±0.9

ATCRF-KGS [75] 47.7±1.6 37.9±2.6 69.2±2.1 66.1±1.9 36.7±2.3 71.3±1.7 31.0±1.0

ATCRF [76] 49.6±1.4 40.6±1.6 74.4±1.6 67.2±1.1 41.4±1.5 73.2±1.0 30.2±1.0

HighDim-LCRF 47.0±1.8 37.2±2.8 68.5±2.1 65.8±1.8 37.3±2.4 70.6±1.6 29.3±0.9

PPCA-LCRF 50.0±1.5 40.7±1.4 74.2±1.2 67.8±1.7 41.7±1.3 73.4±1.0 28.7±0.9

Our GP-LCRF 52.1±1.2 43.2±1.5 76.1±1.5 68.1±1.0 44.2±1.2 74.9±1.1 26.7±0.9

6.3 Experiments

Data. We test our model on the Cornell Activity Dataset-120 (CAD-120), same

as used in [75, 76]. It contains 120 3D videos of four different subjects per-

forming 10 high-level activities, where each high-level activity was performed

three times with different objects. It contains a total of 61,585 total 3D video

frames. The dataset is labeled with both sub-activity and object affordance

labels. The sub-activity labels are: {reaching, moving, pouring, eating, drinking,

opening, placing, closing, scrubbing, null} and the affordance labels are: {reachable,

movable, pourable, pour-to, containable, drinkable, openable, placeable, closable, scrub-

bable, scrubber, stationary}.

Baselines. We compare against the following baselines:

1) Chance. Labels are chosen at random.

2) ATCRF-KGS [75]. ATCRF with fixed temporal structure.

3) ATCRF [76]. ATCRF with sampled temporal structures.
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Figure 6.3: Plots showing (from left to right): a) how the trajectory dis-
tance error changes with the observed percentage in the seg-
ment to anticipate increases from 0% to 100%; b) The Pre@3 of
the anticipated sub-activity labels as a function of the length
of future prediction time in seconds; c) The Pre@3 of the an-
ticipated object affordance labels as a function of the length of
future prediction time in seconds.

4) HighDim-LCRF. In this method, we do not compress the human configuration

into a low-dimensional representation but directly model human dynamics in

the high-dimensional space. We replace φ(xt
i, h

t
i) with a Gaussian based on the

distance between ht
i to its nearest neighbor h∗ in the training data. For an antic-

ipated frame, we use inverse kinematics to generate a new pose that is closest

to the target trajectory (without considering its GPLVM likelihood). We also

change φ(xt−1
i , xt

i) to φ(ht−1
i , ht

i) ∼ N(||ht−1
i − ht

i||
2; 0, 1).

5) PPCA-LCRF. We use probabilistic principal component analysis (PPCA) in-

stead of GPLVM for dimensionality reduction of human configurations. PPCA

only learns a linear mapping and do not impose any prior on the latent space

and the mapping. We verify through experiments that it does not model low-

dimensional human dynamics well and thus is outperformed by our GP-LCRF

model.

Evaluation. We train our model on activities performed by three subjects and

test on activities of a new subject. We report the results obtained by 4-fold cross
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validation and evaluated by the following metrics (same are used in [75, 76]):

1) Labeling Metrics (on top#1 prediction). For anticipated sub-activity and affor-

dance labels, we compute the overall micro accuracy (P/R) and macro F1 score.

Micro precision/recall is equal to the percentage of correctly classified labels.

Macro precision and recall are averaged over all classes.

2) Pre@3. In practice a robot should plan for multiple future activity outcomes.

Therefore, we measure the accuracy of the anticipation task for the top three

predictions of the future. If the actual label matches one of the top three predic-

tions, then it counts towards positive.

3) Trajectory Metric (on top#1 prediction). For anticipated human trajectories, we

compute the modified Hausdorff distance (MHD) to the true trajectories. MHD

finds the best local point correspondence of the two trajectories over a small

temporal window to compute distance between those points. The distance is

normalized by the length of the trajectory.

Table 6.1 shows the frame-level metrics for anticipating subactivity and ob-

ject affordance labels for 3 seconds in the future on the CAD-120 dataset. We

can see that our proposed GP-LCRF outperforms all the baseline algorithms

and achieves a consistent increase across all metrics. Especially as our GP-LCRF

aims to model human configurations better, we can see that the anticipated hu-

man trajectory error is reduced from 30.2 cm to 26.7 cm which is a 11.6% im-

provement and has a p-value of 0.0107 indicating the difference is statistically

very significant. We now inspect the results in detail from the following aspects:

The importance of dimensionality reduction. Table 6.1 shows that when not

using any dimensionality reduction, HighDim-LCRF performs even worse than
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Figure 6.4: The learned mapping using PPCA. The colored points corre-
sponding to the activities in Fig. 6.2.

ATCRF even though it tries to model the human temporal dynamics. This is

because that in the high-dimensional space, φ(ht−1, ht) can be noisy and over-

fitted, thus modeling it actually hurts the performance.

On the other hand, with dimensionality reduction, PPCA-LCRF outperforms

HighDim-LCRF, however it only achieves comparable results as ATCRF. This

shows that the quality of the dimensionality reduction is quite important. Fig-

ure 6.4 illustrates a learned mapping of human configurations. Although both

mapped to a 2D space, compared to GPLCRF in Fig. 6.2, PPCA learns a flat

mapping and does not distinguish different motions well enough. For instance,

the motions in the activity of ‘taking medicine’ (in magenta) and ‘microwaving

food’ (in green) are very different, however they are mapped to an overlapped

area using PPCA in Fig. 6.4. As a result, the effect of the dimensionality reduc-

tion in PPCA-LCRF is not as significant as our GP-LCRF.

Sensitivity of the results to the degree of dimensionality reduction. We in-

vestigate the performance of GP-LCRF with different dimensions of the latent
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Figure 6.5: The trajectory distance error of GP-LCRF with different dimen-
sions of latent space (from 1D to 5D, shown in the parentheses).
We evaluate the performance under different conditions where
the percentage of the future segment observed is 0%, 10%, 50%
and 80%, i.e., the task is to anticipate is the rest of 100%, 90%,
50% and 20% of that segment respectively.
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Figure 6.6: Top-ranked trajectories predicted by ATCRF (top) and our GP-
LCRF (bottom) for different activities. In each image, the
ground-truth trajectory is shown in green dots, predicted tra-
jectory in blue, and the anticipated human skeletons in red in
the order of from dark to bright.

space, from 1-D to 5-D in Fig. 6.5, in terms of the trajectory distance error. We can

see that under various learning conditions (where the anticipated segment is ob-

67



served in different percentages), GP-LCRF with latent dimensions of two to five

all give similar performance. Dimensions of one has an obvious performance

drop but is still better than ATCRF. However, with the observation’s percentage

increase to 80%, the gap diminishes as the anticipation problem becomes easier.

Evaluations with the labeling metrics share similar trends. Hence, this shows

that our GP-LCRF is very robust to the choices of the latent dimensions.

The impact of the observation time. The first plot in Fig. 6.3 shows how the tra-

jectory distance error, averaged over all the moving sub-activities in the dataset,

changes with the increase of the observed part (in percentage) in the segment to

be anticipated. While all approaches achieve better predictions with increased

observation time, our GP-LCRF consistently performs better than the others,

especially in the range of 20% to 60%. Because this part, unlike the beginning

where the evidence of human motions is too weak to be useful and unlike the

near end where the evidence human-object interactions weighs more than hu-

mans alone, is where the momentum of human motions can be captured from

the observation by our model (through the velocity and acceleration features)

and be fully utilized for anticipation.

Results with change in the future anticipation time. The last two plots in

Fig. 6.3 show the changes of Pre@3 with the anticipation time lengthened. The

longer the anticipation time, the harder the task gets and thus the performances

of all approaches decrease. However, the improvement of our GP-LCRF against

ATCRF grows from 1.7% to 2.2% for sub-activity anticipation and from 1.6%

to 2.1% for object affordance anticipation. This demonstrates the potential of

modeling human kinematics well in long-term anticipations.

How does modeling human dynamics improve anticipated trajectories? In
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addition to the quantitative results in Fig. 6.3-(a), we also sample some qual-

itative results showing the top-ranked predicted trajectories in Fig. 6.6 using

ATCRF (top) and using our GP-LCRF (bottom). In each image, we illustrate the

predicted hand trajectories in blue dots, the ground-truth trajectories in green

dots and human skeletons in red. We performed an ablative analysis and we

now discuss some failures in the original ATCRF but are avoided by our GP-

LCRF, arranged in three major categories:

1) Unrealistic skeletons leading to impossible trajectories: In the first two

cases/columns, the trajectories sampled by ATCRF are both not reachable (with-

out making any effort such as bending over or leaning forward). As ATCRF

does not consider any human kinematics and it simply changes the hand lo-

cation to match the trajectory, the forearms in these two cases are stretched

out. The features computed from these false human skeletons are erroneous

and thus wrong trajectories are picked out. Our GP-LCRF, however, generates

kinematically-plausible skeletons (because of availability of high-dimensional

configurations in the model) so that the out-of-reach trajectories will have high

penalty in the likelihood L(x, h) and out-ranked by those reachable ones.

2) Unnatural poses leading to unlikely trajectories: In other cases, such as the third

column in Fig. 6.6 where the subject picked up a rag on the table along the

green dots to clean the microwave, both trajectories are physically possible but

the top one requires raising the right hand to cross the left hand making a very

unnatural pose. Because GP-LCRF learns the distribution of human poses from

the training data, it assigns a low probability to uncommon poses such as the

top one and prefers the bottom poses and the trajectory instead.

3) Not modeling motions leading to discontinuous trajectories: How human body
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moved in the past gives such a strong cue that sometimes we can have decent

anticipated trajectories purely based on the continuity and smoothness of hu-

man motions. For instance, the two subjects are lifting the box (4th column)

and reaching towards the microwave door (last column). While our GP-LCRF

chooses trajectories matching the moving directions best, ATCRF which does

not model human temporal relations (i.e., no edges between H t−1 and H t) pro-

duces trajectories with sudden changes in the direction.

Runtime. On a 16-core 2.7GHz CPU, our code takes 11.2 seconds to anticipate

10 seconds in the future, thus achieving near real-time (1.12X) performance.

70



CHAPTER 7

LEARNING TO PLACE

7.1 Overview

In order to autonomously perform common daily tasks such as setting up a

dinner table, arranging a living room or organizing a closet, a personal robot

should be able to figure out where and how to place objects. However, this is

particularly challenging because there can potentially be a wide range of objects

and placing environments. Some of them may not have been seen by the robot

before. For example, to tidy a disorganized house, a robot needs to decide where

the best place for an object is (e.g., books should be placed on a shelf or a table

and plates are better inserted in a dish-rack), and how to place the objects in an

area (e.g. clothes can be hung in a closet and wine glasses can be held upside

down on a stemware holder). In addition, limited space, such as in a cabinet,

raises another problem of how to stack various objects together for efficient stor-

age. Determining such a placing strategy, albeit rather natural or even trivial to

(most) people, is quite a challenge for a robot.

In this chapter, we consider multiple objects and placing areas represented

by possibly incomplete and noisy point-clouds. Our goal is to find proper plac-

ing strategies to place the objects into the areas. A placing strategy of an object

is described by a preferred placing area for the object and a 3D location and

orientation to place it in that area. As an example, Fig. 7.1 shows one possible

strategy to place six different types of objects onto a bookshelf. In practice, the

following criteria should be considered.
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Stability: Objects should be placed stably in order to avoid falling. For exam-

ple, some objects can be stably placed upright on flat surfaces,1 plates can be

placed stably in different orientations in a dish-rack, and a pen can be placed

horizontally on a table but vertically in a pen-holder.

Semantic preference: A placement should follow common human preferences

in placing. For instance, shoes should be placed on the ground but not on a

dinner plate, even though both areas have geometrically similar flat surfaces.

Therefore, a robot should be able to distinguish the areas semantically, and make

a decision based on common human practice.

Stacking: A placement should consider possible stacking of objects such as pil-

ing up dinner plates. However, this raises more challenges for a robot because it

has to decide which objects can be stacked together semantically. For example,

it is a bad idea to stack a dinner plate on top of a cell phone rather than an-

other dinner plate. In addition, the robot has to decide the order of stacking in a

dynamically changing environment, since previously placed objects can change

the structure of placing areas for objects placed later.

In addition to the difficulties introduced by these criteria, perceiving the 3D

geometry of objects and their placing environments is nontrivial as well. In this

thesis, we use a depth camera mounted on a robot to perceive the 3D geome-

tries as point-clouds. In practice, the perceived point-clouds can be noisy and

incomplete (see Fig. 7.1), requiring the robot to be able to infer placements with

only partial and noisy geometric information.

In this chapter, we address these challenges using a learning-based ap-

proach. We encode human preferences about placements as well as the geo-

1Even knowing the “upright” orientation for an arbitrary object is a non-trivial task [29].
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Figure 7.1: An example task of placing items on a bookshelf. Given the point-
clouds of the bookshelf and six objects to be placed (shown in top-
left part of the figure), our learning algorithm finds out the best plac-
ing strategy, specified by the location and orientation of every ob-
ject (shown in top-right). Following this inferred strategy, the robot
places each object accordingly. The bottom part of the figure shows
the scene before and after placing. Note that in some cases, the plac-
ing environment can be quite complex (e.g, see Fig. 7.9).
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metric relationship between objects and their placing environments by design-

ing appropriate features. We then propose a graphical model that has two sub-

structures to capture the stability and the semantic preferences respectively. The

model also incorporates stacking and constraints that keeps the placing strategy

physically feasible. We use max-margin learning for estimating the parameters

in our graphical model. The learned model is then used to score the potential

placing strategies. Given a placing task, although inferring the best strategy

(with the highest score) is provably NP-complete, we express the inference as

an integer linear programming (ILP) problem which is then solved efficiently

using an linear programming (LP) relaxation.

To extensively test our approach, we constructed a large placing database

composed of 98 household objects from 16 different categories and 40 plac-

ing areas from various scenes. Experiments ranged from placing a single ob-

ject in challenging situations to complete-scene placing where we placed up

to 50 objects in real offices and apartments. In the end-to-end test of placing

multiple objects in different scenes, our algorithm significantly improves the

performance—on metrics of stability, semantic correctness and overall impres-

sions on human subjects—as compared to the best baseline. Quantitatively,

we achieve an average accuracy of 83% for stability and 82% for choosing a

correct placing area for single-object placements. Finally, we tested our algo-

rithm on two different robots on several placing tasks. We then applied our

algorithm to several practical placing scenarios, such as loading multiple items

in dish-racks, loading a fridge, placing objects on a bookshelf and cleaning a

disorganized room. We have also made the code and data available online at:

http://pr.cs.cornell.edu/placingobjects
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The rest of this chapter is organized as follows: We start with a review of

the related work in Section 7.2. We then formulate the placing problem in a

machine learning framework in Section 7.3. We present our learning algorithm

for single-object placements in Section 7.4 and the corresponding experiments

in Section 7.5. Finally, we give the algorithm and the experiments for multiple-

object placements in Section 7.6 and Section 7.7 respectively.

7.2 Related Work

While there has been significant previous work on grasping objects [e.g.,

9, 12, 95, 115, 116, 122, 6, 104, 45, 11, 84, 56, 20, 106, 61], there is little work on ob-

ject placement, and it is restricted to placing objects on flat horizontal surfaces.

For example, [124] recently developed a learning algorithm to detect clutter-

free ‘flat’ areas where an object can be placed. Unfortunately, there are many

non-flat placing areas where this method would not apply. Even if placing only

on flat surfaces, one needs to decide the upright or the current orientation of a

given object, which is a challenging task. For example, [29] proposed several

geometric features to learn the upright orientation from an object’s 3D model

and [120] predicted the orientation of an object given its 2D image. Recently,

[33] used a database of models to estimate the pose of objects with partial point-

clouds. Our work is different and complementary to these studies: we general-

ize placing environment from flat surfaces to more complex ones, and desired

configurations are extended from upright to all other possible orientations that

can make the best use of the placing area. Furthermore, we consider: 1) placing

objects in scenes comprising a wide-variety of placing areas, such as dish-racks,

stemware holders, cabinets and hanging rods in closets; 2) placing multiple ob-
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jects; 3) placing objects in semantically preferred locations (i.e., how to choose a

proper placing context for an object).

For robotic placing, one component is to plan and control the arm to place

the objects without knocking them down. [23] considered placing objects on

a flat shelf, but their focus was to use passive compliance and force control to

gently place the object on the shelf. Planning and rule-based approaches have

been used to move objects around. For example, [93] proposed a task-level (in

contrast with motion-level) planning system and tested it on picking and plac-

ing objects on a table. [128] used rule-based planning in order to push objects

on a table surface. However, most of these approaches assume known full 3D

models of the objects, consider only flat surfaces, and do not model semantic

preferences in placements.

Placing multiple objects also requires planning and high-level reasoning

about the order of execution. [6] coupled planning and grasping in cluttered

scenes. They utilized an ‘environment clearance score’ in determining which

object to grasp first. [136] integrated control, planning, grasping and reason-

ing in the ‘blocks-world’ application in which table-top objects were rearranged

into several stacks by a robot. How to arrange objects efficiently is also related

to the classic bin packing problem [13] which can be approached as integer lin-

ear programming [28], constraint satisfaction problem [100] or tabu search [92].

These studies focus on generic planning problems and are complementary to

ours.

Contextual cues [e.g., 135] have proven helpful in many vision applications.

For example, using estimated 3D geometric properties from images can be use-

ful for object detection [119, 117, 42, 89, 40, 19]. In [144] and [2], contextual
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information was employed to estimate semantic labels in 3D point-clouds of in-

door environments. [17] used object context for object retrieval. [26] and [27]

designed a context-based search engine using geometric cues and spatial rela-

tionships to find the proper object for a given scene. Unlike our work, their goal

was only to retrieve the object but not to place it afterwards. While these works

address different problems, our work that captures the semantic preferences in

placing is motivated by them.

Object categorization is also related to our work as objects from same cat-

egory often share similar placing patterns. Categorization in 2D images is a

well-studied computer vision problem. Early work [e.g., 143, 86, 25, 7] tried

to solve shape and orientation variability, limited by a single viewpoint. Mo-

tivated by this limitation, multi-view images were considered for categorizing

3D generic object by connecting 2D features [134, 113]. When 3D models were

available, some work categorized objects based on 3D features instead, e.g., us-

ing synthetic 3D data to extract pose and class discriminant features [90], and

using features such as spin images [66] and point feature histograms [111] for

3D recognition. Instead of images or 3D models, [81] proposed a learning al-

gorithm for categorization using both RGB and multi-view point-cloud. These

works are complementary to ours in that we do not explicitly categorize the ob-

ject before placing, but knowing the object category could potentially help in

placing.

Most learning algorithms require good features as input, and often these

features are hand-designed for the particular tasks [29, 122]. There have also

been some previous works on high-dimensional 3D features [44, 111, 66, 90, 122]

but they do not directly apply to our problem. There is also a large body of work
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on automatic feature selection [see 22, 91, 51], which could potentially improve

the performance of our algorithm.

In the area of robotic manipulation, a wide range of problems have been

studied so far, such as folding towels and clothes [94], opening doors [47, 71],

inferring 3D articulated objects [126, 67] and so on. However, they address dif-

ferent manipulation tasks and do not apply to the placing problem we consider

in this thesis. Our work is the first one to consider object placements in complex

scenes.

7.3 Problem Formulation

In this section, we formulate the problem of how to predict good placements in

a placing task.

Specifically, our goal is to place a set of objects in a scene that can contain sev-

eral potential placing areas. Both the objects and the placing areas are perceived

as point-clouds that can be noisy and incomplete. A placement of an object is

specified by 1) a 3D location describing at which 3D position in the scene the ob-

ject is placed, and 2) a 3D rotation describing the orientation of the object when it

is placed. In the following, we first consider the problem of single-object place-

ments. We will then extend it to multiple-object placements by adding semantic

features and modifying the algorithm to handle multiple objects. The learning

algorithm for single-object placements is only a special case of the algorithm for

multiple-object placements.
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7.3.1 Single-Object Placements

Here, our goal is to place an object stably in a designated placing area in the

scene. We consider stability and preferences in orientation, but would not con-

sider the semantic preferences about which placing area to choose. Specifically,

the goal is to infer the 3D location ` (in a placing area E) and 3D orientation c in

which to place the object O.

We illustrate the problem formulation in Fig. 7.2. We are given an object

O and a placing area E in the form of point-clouds. Given the input, we first

sample a set of possible placements, compute relevant features for each, and

then use the learned model to compute a score for each candidate. The highest-

score placement is then selected to be executed by the robot. We describe our

features and the learning algorithm in Section 7.4.

7.3.2 Multiple-Object Placements

In addition to finding a proper location and orientation to place the object, we

often need to decide which placing area in the scene is semantically suitable

for placing the object in. When multiple objects are involved, we also need to

consider stacking while placing them.

As an example, consider organizing a kitchen (see Fig. 7.7). In such a case,

our goal is to place a set of given objects into several placing areas. One can

place objects in two ways: directly on an existing area in the environment (e.g.,

saucepans on the bottom drawer), or stacking one on top of another (e.g., bowls

piled up in the cabinet).
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Figure 7.2: Our formulation of single-object placements as a learning problem.
Steps from left to right: 1) we are given an object to be placed and
a placing area, in the form of point-clouds; 2) we first sample pos-
sible placements, extract features for each sample, and then use our
learned model to compute a score for each sample. The higher the
score is, the more likely it is to be a good placement; 3) the robot
plans a path to the predicted placement and follows it to realize the
placing.

Formally, the input of this problem is n objects O = {O1, . . . ,On} and m placing

areas (also called environments) E = {E1, . . . , Em}, all of which are represented

by point-clouds. The output will be a placing strategy depicting the final lay-

out of the scene after placing. It is specified by the pose of every object, which

includes the configuration (i.e., 3D orientation) ci, the placing area (or another

object when stacking) selected, and the relative 3D location `i w.r.t. this area.

We propose a graphical model to represent the placing strategy, where we asso-

ciate every possible strategy with a potential function. Finding the best placing

strategy is then equivalent to maximizing the potential function. Details are in

Section 7.6.
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Object Point Cloud

Placing Point

Environment Point Cloud

(a) supporting contacts (b) caging (top view)

(c) caging (side view) (d) histogram (top view)

(e) histogram (side view)

Figure 7.3: Illustration of features in our learning algorithm for single-object
placements. These features are designed to capture the stability and
preferred orientations in a good placement.

7.4 Algorithm for Single-Object Placements

In order to identify good placements, we first need to design features that indi-

cate good placements across various objects and placing areas. We then use a

max-margin learning algorithm to learn a function that maps a placement, rep-

resented by its features, to a placing score. In testing, we first randomly sample
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some placements, then use the function to find the highest-score candidate as

our best placement.

7.4.1 Features

The features used in our learning algorithm are designed to capture the follow-

ing two properties:

• Supports and Stability. The object should stay still after placing. Ideally,

it should also be able to withstand small perturbations.

• Preferred Orientation. A good placement should have semantically pre-

ferred orientation as well. For example, plates should be inserted into

a dish-rack vertically and glasses should be held upside down on a

stemware holder.

An important property of the stability features is invariance under transla-

tion and rotation (about the gravity, i.e., Z-axis). This is because as long as the

relative configuration of the object and the placing area remains same, the fea-

tures should not change. Most of our features will follow this property.

We group the features into three categories. In the following description, we

use O′ to denote the point-cloud of the object O after being placed, and use B

to denote the point-cloud of a placing area B. Let po be the 3D coordinate of a

point o ∈ O′ from the object, and xt be the coordinate of a point t ∈ B from the

placing area.
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Supporting Contacts: Intuitively, an object is placed stably when it is supported

by a wide spread of contacts. Hence, we compute features that reflect the dis-

tribution of the supporting contacts. In particular, we choose the top 5% points

in the placing area closest to the object (measured by the vertical distance, ci

shown in Fig. 7.3(a)) at the placing point. Suppose the k points are x1, . . . ,xk.

We quantify the set of these points by 8 features:

1. Falling distance mini=1...k ci.

2. Variance in XY-plane and Z-axis respectively, 1
k

∑k
i=1(x′i − x̄

′)2, where x′i is

the projection of xi and x̄′ = 1
k

∑k
i=1 x

′
i .

3. Eigenvalues and ratios. We compute the three Eigenvalues (λ1 ≥ λ2 ≥ λ3)

of the covariance matrix of these k points. Then we use them along with

the ratios λ2/λ1 and λ3/λ2 as the features.

Another common physics-based criterion is the center of mass (COM) of the

placed object should be inside of (or close to) the region enclosed by contacts.

So we calculate the distance from the centroid of O′ to the nearest boundary

of the 2D convex hull formed by contacts projected to XY-plane, Hcon. We also

compute the projected convex hull of the whole object, Hob j. The area ratio of

these two polygons SHcon/SHob j is included as another feature.

Two more features representing the percentage of the object points below or

above the placing area are used to capture the relative location.

Caging: There are some placements where the object would not be strictly im-

movable but is well confined within the placing area. A pen being placed up-

right in a pen-holder is one example. While this kind of placement has only a
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few supports from the pen-holder and may move under perturbations, it is still

considered a good one. We call this effect ‘gravity caging.’2

We capture this by partitioning the point-cloud of the environment and com-

puting a battery of features for each zone. In detail, we divide the space around

the object into 3 × 3 × 3 zones. The whole divided space is the axis-aligned

bounding box of the object scaled by 1.6, and the dimensions of the center zone

are 1.05 times those of the bounding box (Fig. 7.3(b) and 7.3(c)). The point-cloud

of the placing area is partitioned into these zones labelled by Ψi jk, i, j, k ∈ {1, 2, 3},

where i indexes the vertical direction e1, and j and k index the other two orthog-

onal directions, e2 and e3, on horizontal plane.

From the top view, there are 9 regions (Fig. 7.3(b)), each of which covers three

zones in the vertical direction. The maximum height of points in each region is

computed, leading to 9 features. We also compute the horizontal distance to

the object in three vertical levels from four directions (±e2,±e3) (Fig. 7.3(c)). In

particular, for each i = 1, 2, 3, we compute

di1 = min
xt∈Ψi11∪Ψi12∪Ψi13

po∈O′

eT
2 (po − xt)

di2 = min
xt∈Ψi31∪Ψi32∪Ψi33

po∈O′

−eT
2 (po − xt)

di3 = min
xt∈Ψi11∪Ψi21∪Ψi31

po∈O′

eT
3 (po − xt)

di4 = min
xt∈Ψi13∪Ψi23∪Ψi33

po∈O′

−eT
3 (po − xt)

(7.1)

and produce 12 additional features.

The degree of gravity-caging also depends on the relative height of the object

and the caging placing area. Therefore, we compute the histogram of the height
2This idea is motivated by previous works on force closure [97, 101] and caging grasps [18].
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of the points surrounding the object. In detail, we first define a cylinder centered

at the lowest contact point with a radius that can just cover O′. Then points of

B in this cylinder are divided into nr × nθ parts based on 2D polar coordinates.

Here, nr is the number of radial divisions and nθ is the number of divisions in

azimuth. The vector of the maximum height in each cell (normalized by the

height of the object), H = (h1,1, . . . , h1,nθ , . . . , hnr ,nθ), is used as additional caging

features. To make H rotation-invariant, the cylinder is always rotated to align

polar axis with the highest point, so that the maximum value in H is always one

of hi,1, i = 1...nr. We set nr = 4 and nθ = 4 for single-object placement experiments.

Histogram Features: Generally, a placement depends on the geometric shapes

of both the object and the placing area. We compute a representation of the

geometry as follows. We partition the point-cloud of O′ and of B radially and

in Z-axis, centered at the centroid of O′. Suppose the height of the object is hO

and its radius is ρmax. The 2D histogram with nz × nρ number of bins covers the

cylinder with the radius of ρmax · nρ/(nρ − 2) and the height of hO · nz/(nz − 2),

illustrated in Fig. 7.3(d) and 7.3(e). In this way, the histogram (number of points

in each cell) can capture the global shape of the object as well as the local shape

of the environment around the placing point. We also compute the ratio of the

two histograms as another set of features, i.e., the number of points from O′ over

the number of points from B in each cell. The maximum ratio is fixed to 10 in

practice. For single-object placement experiments, we set nz = 4 and nρ = 8 and

hence have 96 histogram features.

In total, we generate 145 features for the single-object placement experi-

ments: 12 features for supporting contacts, 37 features for caging, and 96 for

the histogram features.
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7.4.2 Max-Margin Learning

Under the setting of a supervised learning problem, we are given a dataset of

labeled good and bad placements (see Section 7.5.1), represented by their fea-

tures. Our goal is to learn a function of features that can determine whether a

placement is good or not. As support vector machines (SVMs) [14] have strong

theoretical guarantees in the performance and have been applied to many clas-

sification problems, we build our learning algorithm based on SVM.

Let φi ∈ R
p be the features of ith instance in the dataset, and let yi ∈ {−1, 1}

represent the label, where 1 is a good placement and −1 is not. For n examples

in the dataset, the soft-margin SVM learning problem [64] is formulated as:

min
1
2
‖θ‖22 + C

n∑
i=1

ξi

s.t. yi(θTφi − b) ≥ 1 − ξi, ξi ≥ 0, ∀1 ≤ i ≤ n (7.2)

where θ ∈ Rp are the parameters of the model, and ξ are the slack variables.

This method finds a separating hyperplane that maximizes the margin between

the positive and the negative examples. Note that our formulation here is a

special case of the graphical model for the multiple-object placements described

in Section 7.6. We also use max-margin learning to estimate the parameters in

both cases.

7.4.3 Shared-sparsity Max-margin Learning

If we look at the objects and their placements in the environment, we notice that

there is an intrinsic difference between different placing settings. For example,

it seems unrealistic to assume placing dishes into a rack and hanging martini
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Figure 7.4: Some snapshots from our rigid-body simulator showing different ob-
jects placed in different placing areas. Placing areas from left: rack1,
rack2, rack3, flat surface, pen holder, stemware holder, hook, hook
and pen holder. Objects from left: mug, martini glass, plate, bowl,
spoon, martini glass, candy cane, disc and tuning fork. Rigid-body
simulation is only used in labeling the training data (Section 7.5.1)
and in first half of the robotic experiments when 3D object models
are used (Section 7.5.6).

glasses upside down on a stemware holder share exactly the same hypothesis,

although they might agree on a subset of attributes. While some attributes may

be shared across different objects and placing areas, there are some attributes

that are specific to the particular setting. In such a scenario, it is not sufficient

to have either one single model or several completely independent models for

each placing setting that tend to suffer from over-fitting. Therefore, we propose

to use a shared sparsity structure in our learning.

Say, we have M objects and N placing areas, thus making a total of r = MN

placing ‘tasks’ of particular object-area pairs. Each task can have its own model

but intuitively these should share some parameters underneath. To quantify

this constraint, we use ideas from recent works [49, 87] that attempt to cap-

ture the structure in the parameters of the models. [49] used a shared sparsity

structure for multiple linear regressions. We apply their model to the classic

soft-margin SVM.
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In detail, for r tasks, let Φi ∈ <
p×ni and Yi denote training data and its corre-

sponding label, where p is the size of the feature vector and ni is the number of

data points in task i. We associate every task with a weight vector θi. We decom-

pose θi in two parts θi = S i + Bi: the self-owned features S i and the shared fea-

tures Bi. All self-owned features, S i, should have only a few non-zero values so

that they can reflect individual differences to some extent but would not become

dominant in the final model. Shared features, Bi, need not have identical values,

but should share similar sparsity structure across tasks. In other words, for each

feature, they should all either be active or non-active. Let ‖S ‖1,1 =
∑

i, j |S
j
i | and

‖B‖1,∞ =
∑p

j=1 maxi |B
j
i |. Our new goal function is now:

min
θi,bi,i=1,...,r

∑r
i=1

(
1
2 ‖θi‖

2
2 + C

∑ni
j=1 ξi, j

)
+

λS ‖S ‖1,1 + λB ‖B‖1,∞

subject to Y j
i (θT

i Φ
j
i + bi) ≥ 1 − ξi, j, ξi, j ≥ 0

∀1 ≤ i ≤ r, 1 ≤ j ≤ ni

θi = S i + Bi, ∀1 ≤ i ≤ r (7.3)

When testing in a new scenario, different models vote to determine the best

placement.

While this modification results in superior performance with new objects in

new placing areas, it requires one model per object-area pair and therefore it

does not scale to a large number of objects and placing areas.

7.5 Experiments on Placing Single Objects

We perform experiments on placing a single object in a designated placing area.

The dataset includes 8 different objects and 7 placing areas. In these exper-
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Table 7.1: Average performance of our algorithm using different features on the
SESO scenario.

chance contact caging histogram all

R0 29.4 1.4 1.9 1.3 1.0

P@5 0.10 0.87 0.77 0.86 0.95

AUC 0.54 0.89 0.83 0.86 0.95

iments, our main purpose is to analyze the performance of our learning ap-

proach in finding stable placements with preferred orientations. Section 7.7

describes our full experiments with placing multiple objects in complete 3D

scenes.

7.5.1 Data

Our dataset contains 7 placing areas (3 racks, a flat surface, pen holder,

stemware holder and hook) and 8 objects (mug, martini glass, plate, bowl,

spoon, candy cane, disc and tuning fork). We generated one training and one

test dataset for each object-environment pair. Each training/test dataset con-

tains 1800 random placements with different locations and orientations. After

eliminating placements that have collisions, we have 37655 placements in total.

These placements were labeled by rigid-body simulation (Fig. 7.4) and then

used for our supervised learning algorithm. Simulation enabled us to generate

massive amounts of labeled data. However, the simulation itself had no knowl-

edge of placing preferences. When creating the ground-truth training data, we

manually labeled all the stable (as verified by the simulation) but non-preferred

placements as negative examples.
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Table 7.2: Learning experiment statistics: The performance of different learning
algorithms in different scenarios is shown. The top three rows are the
results for baselines, where no training data is used. The fourth row is
trained and tested for the SESO case. The last three rows are trained
using joint, independent and shared sparsity SVMs respectively for
the NENO case.

Listed object-wise, averaged over the placing areas.

plate mug martini bowl candy cane disc spoon tuning fork

flat, flat, flat, 3 racks, flat, flat, hook, flat, hook, flat, flat, Average

3 racks 3 racks stemware holder 3 racks pen holder pen holder pen holder pen holder

R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC

ba
se

lin
e chance 4.0 0.20 0.49 5.3 0.10 0.49 6.8 0.12 0.49 6.5 0.15 0.50 102.7 0.00 0.46 32.7 0.00 0.46 101.0 0.20 0.52 44.0 0.00 0.53 29.4 0.10 0.49

flat-up 4.3 0.45 0.38 11.8 0.50 0.78 16.0 0.32 0.69 6.0 0.40 0.79 44.0 0.33 0.51 20.0 0.40 0.81 35.0 0.50 0.30 35.5 0.40 0.66 18.6 0.41 0.63

lowest 27.5 0.25 0.73 3.8 0.35 0.80 39.0 0.32 0.83 7.0 0.30 0.76 51.7 0.33 0.83 122.7 0.00 0.86 2.5 0.50 0.83 5.0 0.50 0.76 32.8 0.30 0.80

SESO 1.3 0.90 0.90 1.0 0.85 0.92 1.0 1.00 0.95 1.0 1.00 0.92 1.0 0.93 1.00 1.0 0.93 0.97 1.0 1.00 1.00 1.0 1.00 1.00 1.0 0.95 0.95

N
EN

O joint 8.3 0.50 0.78 2.5 0.65 0.88 5.2 0.48 0.81 2.8 0.55 0.87 16.7 0.33 0.76 20.0 0.33 0.81 23.0 0.20 0.66 2.0 0.50 0.85 8.9 0.47 0.81

indep. 2.0 0.70 0.86 1.3 0.80 0.89 1.2 0.86 0.91 3.0 0.55 0.82 9.3 0.60 0.87 11.7 0.53 0.88 23.5 0.40 0.82 2.5 0.40 0.71 5.4 0.64 0.86

shared 1.8 0.70 0.84 1.8 0.80 0.85 1.6 0.76 0.90 2.0 0.75 0.91 2.7 0.67 0.88 1.3 0.73 0.97 7.0 0.40 0.92 1.0 0.40 0.84 2.1 0.69 0.89

Listed placing area-wise, averaged over the objects.

rack1 rack2 rack3 flat pen holder hook stemware holder

plate, mug, plate, mug, plate, mug, all candy cane, disc, candy cane, martini Average

martini, bowl martini, bowl martini, bowl objects spoon, tuningfork disc

R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC

ba
se

lin
e chance 3.8 0.15 0.53 5.0 0.25 0.49 4.8 0.15 0.48 6.6 0.08 0.48 128.0 0.00 0.50 78.0 0.00 0.46 18.0 0.00 0.42 29.4 0.10 0.49

flat-up 2.8 0.50 0.67 18.3 0.05 0.47 4.8 0.20 0.60 1.0 0.98 0.91 61.3 0.05 0.45 42.0 0.00 0.45 65.0 0.00 0.58 18.6 0.41 0.63

lowest 1.3 0.75 0.87 22.0 0.10 0.70 22.0 0.15 0.80 4.3 0.23 0.90 60.3 0.60 0.85 136.5 0.00 0.71 157.0 0.00 0.56 32.8 0.30 0.80

SESO 1.0 1.00 0.91 1.3 0.75 0.83 1.0 1.00 0.93 1.0 0.95 1.00 1.0 1.00 0.98 1.0 1.00 1.00 1.0 1.00 1.00 1.0 0.95 0.95

N
EN

O joint 1.8 0.60 0.92 2.5 0.70 0.84 8.8 0.35 0.70 2.4 0.63 0.86 20.5 0.25 0.76 34.5 0.00 0.69 18.0 0.00 0.75 8.9 0.47 0.81

indep. 1.3 0.70 0.85 2.0 0.55 0.88 2.5 0.70 0.86 1.9 0.75 0.89 12.3 0.60 0.79 29.0 0.00 0.79 1.0 1.00 0.94 5.4 0.64 0.86

shared 1.8 0.75 0.88 2.0 0.70 0.86 2.3 0.70 0.84 1.3 0.75 0.92 4.0 0.60 0.88 3.5 0.40 0.92 1.0 0.80 0.95 2.1 0.69 0.89

7.5.2 Learning Scenarios

In real-world placing, the robot may or may not encounter new placing areas

and new objects. Therefore, we trained our algorithm for two different scenar-

ios: 1) Same Environment Same Object (SESO), where training data only con-

tains the object and the placing environment to be tested. 2) New Environment

New Object (NENO). In this case, the training data includes all other objects

and environments except the one for test. We also considered two additional
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learning scenarios, SENO and NESO, in [63]. More results can be found there.

7.5.3 Baseline Methods

We compare our algorithm with the following three heuristic methods:

• Chance. The location and orientation is randomly sampled within the

bounding box of the area and guaranteed to be ‘collision-free.’

• Flat-surface-upright rule. Several methods exist for detecting ‘flat’ surfaces

[124], and we consider a placing method based on finding flat surfaces. In

this method, objects would be placed with pre-defined upright orientation

on the surface. When no flat surface can be found, a random placement

would be picked. Note that this heuristic actually uses more information

than our method.

• Finding lowest placing point. For many placing areas, such as dish-racks or

containers, a lower placing point often gives more stability. Therefore, this

heuristic rule chooses the placing point with the lowest height.

7.5.4 Evaluation Metrics

We evaluate our algorithm’s performance on the following metrics:

• R0: Rank of the first valid placement. (R0 = 1 ideally)

• P@5: In top 5 candidates, the fraction of valid placements.
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• AUC: Area under ROC Curve [38], a classification metric computed from

all the candidates.

• Pstability: Success-rate (in %) of placing the object stably with the robotic

arm.

• Ppreference: Success-rate (in %) of placing the object stably in preferred con-

figuration with the robotic arm.

7.5.5 Learning Experiments

We first verified that having different types of features is helpful in performance,

as shown in Table 7.1. While all three types of features outperform chance, com-

bining them together gives the best results under all evaluation metrics.

Next, Table 7.2 shows the comparison of three heuristic methods and three

variations of SVM learning algorithms: 1) joint SVM, where one single model is

learned from all the placing tasks in the training dataset; 2) independent SVM,

which treats each task as a independent learning problem and learns a sepa-

rate model per task; 3) shared sparsity SVM (Section 7.4.3), which also learns

one model per task but with parameter sharing. Both independent and shared

sparsity SVM use voting to rank placements for the test case.

Table 7.2 shows that all the learning methods (last four rows) outperform

heuristic rules under all evaluation metrics. Not surprisingly, the chance

method performs poorly (with Prec@5=0.1 and AUC=0.49) because there are

very few preferred placements in the large sampling space of possible place-

ments. The two heuristic methods perform well in some obvious cases such as

using flat-surface-upright method for table or lowest-point method for rack1.
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However, their performance varies significantly in non-trivial cases, including

the stemware holder and the hook. This demonstrates that it is hard to script a

placing rule that works universally.

We get close to perfect results for the SESO case—i.e., the learning algo-

rithm can very reliably predict object placements if a known object was being

placed in a previously seen location. The learning scenario NENO is extremely

challenging—here, for each task (of an object-area pair), the algorithm is trained

without either the object or the placing area in the training set. In this case,

R0 increases from 1.0 to 8.9 with joint SVM, and to 5.4 using independent SVM

with voting. However, shared sparsity SVM (the last row in the table) helps

to reduce the average R0 down to 2.1. While shared sparsity SVM outperforms

other algorithms, the result also indicates that independent SVM with voting is

better than joint SVM. This could be due to the large variety in the placing sit-

uations in the training set. Thus imposing one model for all tasks decreases the

performance. We also observed that in cases where the placing strategy is very

different from the ones trained on, the shared sparsity SVM does not perform

well. For example, R0 is 7.0 for spoon-in-pen-holder and is 5.0 for disk-on-hook.

This issue could potentially be addressed by expanding the training dataset. For

comparison, the average AUC (area under ROC curve) of shared sparsity SVM

is 0.89, which compares to 0.94 in Table 7.5 for corresponding classes (dish-racks,

stemware holder and pen holder).
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Figure 7.5: Three objects used in our robotic experiments. The top row shows
the real objects. Center row shows the perfect point-clouds extracted
from object models. Bottom row shows the raw point-clouds per-
ceived from the Kinect sensor, used in the robotic experiments.

Figure 7.6: Robotic arm placing different objects in several placing areas: a mar-
tini glass on a flat surface, a bowl on a flat surface, a plate in rack1,
a martini glass on a stemware holder, a martini glass in rack3 and a
plate in rack3.

7.5.6 Robotic Experiments

We conducted single-object placing experiments on our PANDA robot with the

Kinect sensor, using the same dataset (Section 7.5.1) for training. We tested 10

different placing tasks with 10 trials for each.
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Table 7.3: Robotic experiments. The algorithm is trained using shared sparsity
SVM under the two learning scenarios: SESO and NENO. 10 trials
each are performed for each object-placing area pair. Ps stands for
Pstability and Pp stands for Ppreference. In the experiments with object
models, R0 stands for the rank of first predicted placements passed
the stability test. In the experiments without object models, we do
not perform stability test and thus R0 is not applicable. In summary,
robotic experiments show a success rate of 98% when the object has
been seen before and its 3D model is available, and show a success-rate
of 82% (72% when also considering semantically correct orientations)
when the object has not been seen by the robot before in any form.

plate martini bowl
Average

rack1 rack3 flat rack1 rack3 flat stem. rack1 rack3 flat

w
/o

bj
m

od
el

s SESO

R0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Ps(%) 100 100 100 100 100 100 80 100 100 100 98

Pp(%) 100 100 100 100 100 100 80 100 100 100 98

NENO

R0 1.8 2.2 1.0 2.4 1.4 1.0 1.2 3.4 3.0 1.8 1.9

Ps(%) 100 100 100 80 100 80 100 100 100 100 96

Pp(%) 100 100 100 60 100 80 100 80 100 100 92

w
/o

ob
jm

od
el

s

SESO

R0 - - - - - - - - - - -

Ps(%) 100 80 100 80 100 100 80 100 100 100 94

Pp(%) 100 80 100 80 80 100 80 100 100 100 92

NENO

R0 - - - - - - - - - - -

Ps(%) 80 60 100 80 80 100 70 70 100 80 82

Pp(%) 80 60 100 60 70 80 60 50 80 80 72

In each trial, the robot had to pick up the object and place it in the designated

area. The input to our algorithm in these experiments was raw point-clouds of

the object and the placing area (see Fig. 7.5). Given a placement predicted by

our learning algorithm and a feasible grasp, the robot used path planning to

move the object to the destination and released it. A placement was considered

successful if it was stable (the object remained still for more than a minute) and

in its preferred orientation (within ±15◦ of the ground-truth orientation after

placing).
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Table 7.3 shows the results for three objects being placed by the robotic arm

in four placing scenarios (see the bottom six rows). We obtain a 94% success

rate in placing the objects stably in SESO case, and 92% if we disqualify those

stable placements that were not preferred ones. In the NENO case, we achieve

82% performance for stable placing, and 72% performance for preferred plac-

ing. Figure 7.6 shows several screenshots of our robot placing the objects. There

were some cases where the martini glass and the bowl were placed horizontally

in rack1. In these cases, even though the placements were stable, they were not

counted as preferred. Even small displacement errors while inserting the mar-

tini glass in the narrow slot of the stemware holder often resulted in a failure. In

general, several failures for the bowl and the martini glass were due to incom-

plete capture of the point-cloud which resulted in the object hitting the placing

area (e.g., the spikes in the dish-rack).

In order to analyze the source of the errors in robotic placing, we did an-

other experiment in which we factored away the errors caused by the incom-

plete point-clouds. In detail, we recovered the full 3D geometry by registering

the raw point-cloud against a few parameterized objects in a database using the

Iterative Closest Point (ICP) algorithm [108, 31]. Furthermore, since we had ac-

cess to a full solid 3D model, we verified the stability of the placement using the

rigid-body simulation before executing it on the robot. If it failed the stability

test, we would try the placement with the next highest score until it would pass

the test. Even though this simulation was computationally expensive,3 we only

needed to compute this for a few top scored placements.

In this setting with a known library of object models, we obtain a 98% suc-

cess rate in placing the objects in SESO case. The robot failed only in one experi-

3A single stability test takes 3.8 second on a 2.93GHz dual-core processor on average.
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ment, when the martini glass could not fit into the narrow stemware holder due

to a small displacement occurred in grasping. In the NENO case, we achieve

96% performance in stable placements and 92% performance in preferred place-

ments. This experiment indicates that with better sensing of the point-clouds,

our learning algorithm can give better performance.

7.6 Algorithm for Placing Multiple Objects

We will now describe our approach for placing multiple objects in a scene,

where we also need to decide which placing area in the scene is semantically

suitable for placing every object in.

We first state our assumptions in this setting. We consider two scenarios:

1) the object is placed directly on the placing area; 2) the object is stacked on

another object. While an unlimited number of objects can stack into one pile

in series (e.g., the plates and bowls in the cabinet in Fig. 7.7), we do not allow

more than one object to be placed on one single object and we do not allow one

object to be placed on more than one object. We refer this assumption as ‘chain

stacking’. For instance, in Fig. 7.7, it is not allowed to place two strawberries

in the small bowl, nor is it allowed to place a box on top of the blue and the

orange sauce bowls at the same time. Note that this constraint does not limit

placing multiple objects on a placing area directly, e.g., the dish-rack is given as

a placing area and therefore we can place multiple plates in it.

A physically feasible placing strategy needs to satisfy two constraints: 1)

Full-coverage: every given object must be placed somewhere, either directly on

a placing area or on top of another object. 2) Non-overlap: two objects cannot
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Figure 7.7: Given an initial kitchen scene (left), a possible placing strategy for
multiple objects could be as shown in the middle image: loading the
dish-rack with spatulas and plates, or stacking them up in the cabi-
net, storing saucepans on the bottom drawer, etc. In this paper, we
only allow chain stacking (see text in Section 7.6), which allows most
but not all the possible placing situations (right column).

be placed at same location, although being in the same placing area is allowed.

For example, multiple plates can be loaded into one dish-rack, however, they

cannot occupy the same slot at the same location. 3) Acyclic: placing strategy

should be acyclic, i.e., if object A is on top of B (either directly or indirectly),

then B cannot be above A.
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Figure 7.8: Graphical models for two types of single placements: stacking on
another object (left) and directly placing on an environment (right).
The shaded nodes are observed point-clouds.

7.6.1 Graphical Model

We now introduce our representation of a placing strategy as a graphical model,

followed by our design of features, max-margin learning algorithm, and infer-

ence as a linear programming problem.

As we mentioned in Section 7.3.2, given n objects O = {O1, . . . ,On} and m

placing areas (or environments) E = {E1, . . . , Em} our goal is to find a placing

strategy, that can be specified by a tuple (S ,T,C, L):

• S = {sir ∈ {0, 1}|1 ≤ i ≤ n, 1 ≤ r ≤ n}: whether Oi is stacking on top of Or.

• T = {tir ∈ {0, 1}|1 ≤ i ≤ n, 1 ≤ r ≤ m}: whether Oi is put directly on Er.

• C = {ci ∈ SO(3)|1 ≤ i ≤ n}: the configuration (i.e., 3D orientation) of Oi.

• L = {`i ∈ <
3|1 ≤ i ≤ n}: the 3D location of Oi w.r.t. its base.

We now design a potential function over all placing strategies given a scene,

i.e., Ψ(S ,T, L,C,O,E). This function reflects the placing quality and we associate
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higher potential to better placing strategies. The best strategy is the one with

the maximum potential. Therefore, our goal is,

(S ∗,T ∗, L∗,C∗) = arg max
S ,T,L,C

Ψ(S ,T, L,C,O,E) (7.4)

where the solution (S ,T, L,C) should follow certain constraints that we will dis-

cuss in Section 7.6.4.

We use an undirected graphical model (Markov networks [72]) for defining

the potential. Fig. 7.8 shows two simplified graphical models for a single place-

ment. The entire graphical model for multiple objects and placing areas is an

assembly of these basic structures (one for each sir and tir) with shared O, E, `

and c nodes. We now explain this graphical model and show how to factorize

Ψ(S ,T, L,C,O,E) into small pieces so that learning and inference is tractable.

Our graphical model indicates the following independence:

• sir and tir are conditionally independent given L,C,O,E.

• sir(tir) only depends on objects (environments) involved in this single plac-

ing task of placing Oi on Or (Er). This implies that, when placing an object

i on object j, it does not matter where object j is placed.

Consequently, we can factorize the overall potential as,

Ψ(S ,T, L,C,O,E) =
∏

i,r

Ψ(sir,Oi, `i, ci,Or, cr)

×
∏

i,r

Ψ(tir,Oi, `i, ci, Er) (7.5)

We further factorize the potential of each placement into three terms to en-

code the stability and semantic preference in placing, as shown in Fig. 7.8. For
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each placement, we introduce two binary variables indicating its stability (with

superscript s) and semantic preference (with superscript p). Considering they

are latent, we have,

Ψ(sir ,Oi,`i,ci,Or ,cr)=

∑
ss
ir ,s

p
ir∈{0,1}

ψ(sir ,ss
ir ,s

p
ir)ψs(ss

ir ,Oi,`i,ci,Or ,cr)ψp(sp
ir ,Oi,Or ,cr)

Ψ(tir ,Oi,`i,ci,Er)=

∑
tsir ,t

p
ir∈{0,1}

ψ(tir ,ts
ir ,t

p
ir)ψs(ts

ir ,Oi,`i,ci,Er)ψp(sp
ir ,Oi,Er) (7.6)

The intuition is that a placement is determined by two factors: stability and

semantic preference. This is quantified by the potential function ψ. ψs cap-

tures stability which is only dependent on local geometric information, i.e., ex-

act poses and locations. On the other hand, semantic preference concerns how

well this object fits the environment. So the function ψp is determined by the ob-

ject and the base regardless of the details of the placement. For example, placing

a plate in a dish-rack has a high semantic preference over the ground, but dif-

ferent placements (vertical vs. horizontal) would only change its stability. Note

that in stacking, semantic preference (sp
ir) is also dependent on the configuration

of the base (cr ), since the base’s configuration would affect the context. For in-

stance, we can place different objects on a book lying horizontally, but it is hard

to place any object on a book standing vertically.

Based on the fact that a good placement should be stable as well as seman-

tically correct, we set ψ(sir, ss
ir, s

p
ir) = 1 if sir = (ss

ir ∧ sp
ir) otherwise 0. We do the

same for ψ(tir, ts
ir, t

p
ir). As for the potential functions ψs and ψp, they are based

on a collection of features that indicate good stability and semantic preference.

Their parameters are learned using the max-margin algorithm described in Sec-

tion 7.6.3.
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Table 7.4: Features for multiple objects placements and their dimensions (‘Dim’).

Feature descriptionsDim Feature descriptions Dim

Stability 178 Semantic preference 801

Supporting contacts 12 Zernike 37 × 4

Caging features 4 BOW 100 × 4

Histograms 162 Color histogram 46 × 4

Curvature histogram 12 × 4

Overall shape 5 × 4

Relative height 1

7.6.2 Features

In the multiple-object placements, we introduce additional semantic features for

choosing a good placing area for an object. Our stability features φs are similar

to those described in Section 7.4.1.4 Semantic features φp depend only on O

and B, where O denotes the point-cloud of object O to be placed and B denote

the point-cloud of the base (either an environment or another object). This is

because the semantic features should be invariant to different placements of the

object within the same placing area. We describe them in the following:

• 3D Zernike Descriptors: Often the semantic information of an object is

encoded in its shape. Because of their rotation- and translation-invariant

property, we apply 3D Zernike descriptors [99] to O and B for capturing

their geometric information. This gives us 37 values for a point-cloud.

• Bag-of-words (BOW) Features: Fast Point Feature Histograms (FPFH)

[109] are persistent under different views and point densities and pro-

4In multiple-object placement experiments, we only use the relative height caging features
with nr = 1 and nθ = 4, and use 81-bin (9 × 9) grid without the ratios for the histogram features.
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duce different signatures for points on different geometric surfaces such

as planes, cylinders, spheres, etc. We compute a vocabulary of FPFH sig-

natures by extracting 100 cluster centers from FPFH of every point in our

training set. Given a test point-cloud, we compute the FPFH signature for

each point and associate it with its nearest cluster center. The histogram

over these cluster centers makes our BOW features.

• Color Histograms: The features described above capture only the geomet-

ric cues, but not the visual information such as color. Color information

can give clues to the texture of an object and can help identify some se-

mantic information. We compute a 2D histogram of hue and saturation

(6 × 6) and a 1D 10-bin histogram of intensity, thus giving a total of 46

features.

• Curvature Histograms: We estimated the curvature of every point using

Point Cloud Library [110], and then compute its 12-bin histogram.

• Overall Shape: Given a point-cloud, we compute three Eigenvalues of its

covariance matrix (λ1 ≥ λ2 ≥ λ3). We then compute their ratios (λ2/λ1,

λ3/λ2), thus giving us a total of 5 features.

We extract the aforementioned semantic features for both O and B separately.

For each, we also add their pairwise product and pairwise minimum, thus giv-

ing us 4 values for each feature. The last feature is the height to the ground

(only for placing areas), thus giving a total of 801 features. We summarize the

semantic features in Table 7.4.
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7.6.3 Max-margin Learning

Following [132], we choose the log-linear model for potential functions ψs and

ψp,5

logψs(ss
ir) ∝ θ

>
s φs(Oi, `i, ci,Or, cr) (7.7)

where θs is the weight vector of the features and φs(·) is the feature vector for

stability. Let θp and φp(·) denote the weight and features for semantic preference

respectively. The discriminant function for a placing strategy is given by (from

Eq. (7.5))

f (S ,T ) =
∑

ir

log Ψ(sir) +
∑

ir

log Ψ(tir) (7.8)

In the learning phase, we use supervised learning to estimate θs and θp.

The training data contains placements with ground-truth stability and semantic

preference labels (we describe it later in Section 7.7.1). By Eq. (7.6),

f (S ,T ) =
∑

ir

θT
s φs(ss

ir) + θT
pφp(sp

ir) +
∑

ir

θT
s φs(ts

ir) + θT
pφp(tp

ir) (7.9)

A desirable θs and θp should be able to maximize the potential of a good

placing strategy (S ,T ), i.e., for any different placing strategy (S ′,T ′), f (S ,T ) >

f (S ′,T ′). Furthermore, we want to maximize this difference to increase the con-

fidence in the learned model. Therefore, our objective is,

arg max
θs,θp

γ s.t. f (S ,T )− f (S ′,T ′)≥γ, ∀(S ′,T ′),(S ,T ) (7.10)

which, after introducing slack variables to allow errors in the training data, is

5For conciseness, we use ψ(ss
ir) to denote the full term ψs(ss

ir,Oi, `i, ci,Or, cr) explicitly in the
rest of the paper unless otherwise clarified. We do the same for ψp.
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equivalent to6

arg minθs ,θp
1
2 (||θs ||

2+||θp ||
2)+C

∑
(ξs

s,ir+ξ
p
s,ir+ξ

s
t,ir+ξ

p
t,ir) (7.11)

s.t. ss
ir(θ>s φs(·))≥1−ξs

s,ir , sp
ir(θ>p φp(·))≥1−ξp

s,ir , (7.12)

ts
ir(θ>s φs(·))≥1−ξs

t,ir , tp
ir(θ>p φp(·))≥1−ξp

t,ir ,∀i,r (7.13)

We use max-margin learning [64] to learn θs and θp respectively.

Note that the learning method in Section 7.4.2 for single-object placements is

actually a special case of the above. Specifically, for one object and one placing

area, the stacking and the semantic preference problems are trivially solved,

and the subscripts i and r are not needed. Therefore, this equation reduces to

Eq. (7.2) with θs, φs(·) and ts corresponding to θ, φi and yi in Eq. (7.2).

7.6.4 Inference

Once we have learned the parameters in the graphical model, given the objects

and placing environment, we need to find the placing strategy that maximizes

the likelihood in Eq. (7.4) while satisfying the aforementioned constraints as

well:
n∑

i=1

sir ≤ 1, ∀r; (chain stacking) (7.14)

n∑
r=1

sir +

m∑
r=1

tir = 1, ∀i; (full-coverage) (7.15)

`i , ` j, ∀tir = t jr = 1, (7.16)

tir + t jr ≤ 1, ∀Oi overlaps O j. (non-overlap) (7.17)

Eq. (7.14) states that for every object r, there can be at most one object on its
6Here, without loss of the generality, we map the domain of S and T from {0,1} to {-1,1}.
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top. Eq. (7.15) states that every object i should be placed exactly at one place.

Eq. (7.16) states that two objects cannot occupy the same location. Eq. (7.17)

states that even if the objects are at different locations, they still cannot have any

overlap with each other. In another word, if Oi placed at `i conflicts with O j

placed at ` j, then only one of them can be placed. We do not need constrain sir

since ‘chain stacking’ already eliminates this overlap issue.

Enforcing the acyclic property could be hard due to the exponential number

of possible cycles in placing strategies. Expressing all the cycles as constraints

is infeasible. Therefore, we assume a topological order on stacking: sir can be

1 only if Or with configuration cr does not have smaller projected 2D area on

XY-plane than Oi with configuration ci. This assumption is reasonable as people

usually stack small objects on big ones in practice. This ensures that the optimal

placing strategy is acyclic.

As mentioned before, the search space of placing strategies is too large for

applying any exhaustive search to. Several prior works have successfully ap-

plied ILP to solve inference in Conditional Random Fields or Markov networks,

e.g., 107, 131, 146, 32. Motivated by their approach, we formulate the inference

(along with all constraints) as an ILP problem and then solve it by LP relaxation,

which works well in practice.

We use random samples to discretize the continuous space of the location `i

and configuration ci.7 We abuse the notation for S , T and use the same symbols

for representing sampled variables. We use si jrtk ∈ {0, 1} to represent object Oi

with the jth sampled configuration is placed on object Or with the tth configu-

ration at the kth location. Similarly, we use ti jrk to represent placing object Oi in

7In our experiments, we randomly sample `i in about every 10cm × 10cm area. An object is
rotated every 45 degree along every dimension, thus generating 24 different configurations.
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Table 7.5: Stability results for three baselines and our algorithm using different
features (contact, caging, histograms and all combined) with two dif-
ferent kernels (linear and quadratic polynomial).

dish-racks stemware-holder closet pen-holder Average

R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC R0 P@5 AUC

chance 1.5 0.70 0.50 2.0 0.48 0.50 2.0 0.47 0.50 2.1 0.44 0.50 1.9 0.52 0.50

vert 1.3 0.79 0.74 2.0 0.70 0.77 2.5 0.63 0.71 1.0 1.00 1.00 1.7 0.78 0.80

hori 2.1 0.22 0.48 4.3 0.35 0.54 6.0 0.03 0.36 7.2 0.00 0.38 4.9 0.15 0.44

lin-contact 1.9 0.81 0.80 2.0 0.60 0.71 1.8 0.70 0.79 1.0 0.81 0.91 1.7 0.73 0.80

lin-caging 3.5 0.60 0.74 1.3 0.94 0.95 1.2 0.93 0.77 2.5 0.70 0.85 2.1 0.79 0.83

lin-hist 1.4 0.93 0.93 2.3 0.70 0.85 1.0 1.00 0.99 1.0 1.00 1.00 1.4 0.91 0.94

lin-all 1.2 0.91 0.91 2.0 0.80 0.86 1.0 1.00 1.00 1.0 1.00 1.00 1.3 0.93 0.94

poly-contact 1.2 0.95 0.88 1.0 0.80 0.85 1.2 0.93 0.93 1.2 0.91 0.88 1.1 0.90 0.89

poly-caging 2.1 0.81 0.87 2.0 0.60 0.79 1.0 0.97 0.94 2.2 0.70 0.88 1.8 0.77 0.87

poly-hist 1.2 0.94 0.91 3.0 0.30 0.67 1.0 1.00 1.00 1.0 1.00 1.00 1.6 0.81 0.90

poly-all 1.1 0.95 0.94 1.8 0.60 0.92 1.0 1.00 1.00 1.0 1.00 1.00 1.2 0.89 0.96

configuration j on top of Er at location k. Now our problem becomes:

arg maxS ,T
∑

i jrk(ti jrk log Ψ(ti jrk=1)+(1−ti jrk) log Ψ(ti jrk=0))

+
∑

i jrtk(si jrtk log Ψ(si jrtk=1)+(1−si jrtk) log Ψ(si jrtk=0))

s.t.
∑

i jk si jrtk≤
∑

pqk srtpqk+
∑

pk trtpk , ∀r,t;

∑
jrtk si jrtk+

∑
jrk ti jrk=1, ∀i;

∑
i j ti jrk≤1, ∀r,k;

ti jrk+ti′ j′rk′≤1, ∀ti jrk overlaps ti′ j′rk′ . (7.18)

While this ILP is provably NP-complete in the general case, for some specific

cases it can be solved in polynomial time. For example, if all objects have to

stack in one pile, then it reduces to a dynamic programming problem. Or if no

stacking is allowed, then it becomes a maximum matching problem. For other
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general cases, an LP relaxation usually works well in practice. We use an open-

sourced Mixed Integer Linear Programming solver [8] in our implementation.

7.7 Experiments on Placing Multiple Objects

In these experiments, the input is the raw point-clouds of the object(s) and the

scene, and our output is a placing strategy composed of the placing location

and orientation for each object. Following this strategy, we can construct the

point-cloud of the scene after placing (e.g., Fig. 7.1 top-right) and then use path

planning to guide the robot to realize it.

We extensively tested our approach in different settings to analyze dif-

ferent components of our learning approach. In particular, we considered

single-object placing, placing in a semantically appropriate area, multiple-object

single-environment placing, and the end-to-end test of placing in offices and

houses. We also tested our approach in robotic experiments, where our robots

accomplished several placing tasks, such as loading a bookshelf and a fridge.

7.7.1 Data

We consider 98 objects from 16 categories (such as books, bottles, clothes and

toys shown Table 7.6) and 40 different placing areas in total (e.g., dish-racks,

hanging rod, stemware holder, shelves, etc). The robot observes objects using

its Kinect sensor, and combines point-clouds from 5 views. However, the com-

bined point-cloud is still not complete due to reflections and self-occlusions,

and also because the object can be observed only from the top (e.g., see Fig. 7.1).
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Table 7.6: Semantic results for three baselines and our algorithm using different
features (BOW, color, curvature, Eigenvalues, Zernike and all com-
bined) with two different kernels (linear and quadratic polynomial)
on AUC metric.
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chance .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50

table .70 .61 .59 .90 .69 .78 .61 1.0 .65 .32 .45 .60 .64 .57 .66 .50 .66

size .68 .67 .67 .80 .81 .80 .66 1.0 .83 .46 .52 .90 .70 .60 .82 .51 .72

lin-BOW .90 1.0 .98 .08 .93 .96 .86 1.0 .91 .68 .89 .70 .96 .86 .94 .79 .85

lin-color .75 1.0 1.0 .15 .96 .93 .59 1.0 .80 .64 .72 .45 .98 .95 .86 .61 .79

lin-curv. .85 .90 .89 .78 .92 .85 .62 1.0 .74 .61 .67 .60 .86 .82 .83 .48 .79

lin-Eigen .67 .93 .93 .40 .93 .95 .53 1.0 .87 .43 .47 .90 .89 .89 .96 .53 .79

lin-Zern. .86 1.0 .91 .20 .86 .89 .73 .80 .83 .79 .74 .65 .80 .82 .84 .59 .77

lin-all .93 1.0 1.0 .60 .93 .96 .84 1.0 .88 .71 .87 .50 .99 .89 .89 .82 .85

poly-BOW .86 1.0 .89 .47 .90 .97 .90 1.0 .89 .82 .87 .75 .96 .85 .87 .82 .87

poly-all .91 1.0 1.0 .62 .90 .99 .93 1.0 .89 .86 .89 .75 1.0 .89 .88 .84 .90

For the environment, only a single-view point-cloud is used. We pre-processed

the data and segmented the object from its background to reduce the noise in

the point-clouds. For most of the placing areas,8 our algorithm took real point-

clouds. For all the objects, our algorithm took only real point-clouds as input and

we did not use any assumed 3D model.

8For some racks and holders that were too thin to be seen by our sensor, we generated syn-
thetic point-clouds from tri-meshes.
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7.7.2 Placing Single New Objects with Raw Point-Cloud as In-

put

The purpose of this experiment is, similar to Section 7.5, to test our algorithm in

placing a new object in a scene, but instead with raw point-clouds composing the

training data. We test our algorithm on the following four challenging scenes:

1. dish-racks, tested with three dish-racks and six plates;

2. stemware holder, tested with one holder and four martini glass/handled

cups;

3. hanging clothes, tested with one wooden rod and six articles of clothing

on hangers;

4. cylinder holders, tested with two pen-holder/cup and three stick-shaped

objects (pens, spoons, etc.).

Since there is only a single placing environment in every scene, only stability

features play a role in this test. We manually labeled 620 placements in total,

where the negative examples were chosen randomly. Then we used leave-one-

out training/testing so that the testing object is always new to the algorithm.

We compare our algorithm with three heuristic methods:

• Chance. Valid placements are randomly chosen from the samples.

• Vertical placing. Placements are chosen randomly from samples where the

object is vertical (the height is greater than the width). This is relevant for

cases such as placing plates in dish-racks.
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• Horizontal placing. Placements are chosen where the object is horizontal

(opposed to ‘vertical’). This applies to cases when the placing area is some-

what flat, e.g., placing a book on a table.

For the placing scenarios considered here, the heuristic based on finding flat

surface does not apply at all. Since we do not know the upright orientation for

all the objects and it is not well-defined in some cases (e.g. an article of clothing

on a hanger), we do not use the flat-surface-upright rule in these experiments.

Results are shown in Table 7.5. We use the same three evaluation metrics as

in Section 7.5.4: R0, P@5 and AUC. The top three rows of the table shows our

three baselines. Very few of these placing areas are ‘flat’, therefore the horizontal

heuristic fares poorly. The vertical heuristic performs perfectly in placing in

pen-holder (all vertical orientations would succeed here), but its performance

in other cases is close to chance. All the learning algorithms perform better than

all the baseline heuristics in the AUC metric.

For our learning algorithm, we compared the effect of different stability fea-

tures as well as using linear and polynomial kernels. The results show that com-

bining all the features together give the best performance in all metrics. The best

result is achieved by polynomial kernel with all the features, giving an average

AUC of 0.96.

7.7.3 Selecting Semantically Preferred Placing Areas

In this experiment, we test if our algorithm successfully learns the preference

relationship between objects and their placing areas. Given a single object and
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multiple placing areas, we test whether our algorithm correctly picks out the

most suitable placing area for placing that object. As shown in Table 7.6, we

tested 98 objects from 16 categories on 11 different placing areas: the ground, 3

dish-racks, a utensil organizer, stemware-holder, table, hanging rod, pen-holder

and sink. We exhaustively labeled every pair of object and area, and used leave-

one-out method for training and test. Again, we build three baselines where the

best area is chosen 1) by chance; 2) if it is a table (many of objects in our dataset

can be placed on table); 3) by its size (whether the area can cover the object or

not).

Our algorithm gives good performance in most object categories except

clothes and shoes. We believe this is because clothes and shoes have a lot of

variation making it harder for our algorithm to learn. Another observation is

that the heuristic ‘table’ performs well on clothes. We found that this is because,

in our labeled data set, the table was often labeled as the second best placing

area for clothes after the hanging rod in the closet. We tested different semantic

features with linear SVM and also compared linear and polynomial SVM on all

features combined. In comparison to the best baseline of 0.72, we get an average

AUC of 0.90 using polynomial SVM with all the features.

7.7.4 Multiple Objects on Single Area

In this section, we consider placing multiple objects in a very limited space: 14

plates in one dish-rack without any stacking; 17 objects including books, dish-

ware and boxes on a small table so that stacking is needed; and five articles of

clothing with hangers on a wooden rod. This experiment evaluates stacking
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Figure 7.9: Placing multiple objects on a dish-rack (left), a table (middle) and a
hanging rod (right). Most objects are placed correctly, such as the
plates vertically in the dish-rack, books and plates stacked nicely on
the table and the hangers with the clothes aligned on the rod. How-
ever, two top-most plates on the table are in wrong configuration and
the right-most hanger in the right figure is off the rod.

and our LP relaxation.

The results are shown in Fig. 7.9. In the left image, plates are vertically placed

without overlap with spikes and other plates. Most are aligned in one direction

to achieve maximum loading capacity. For the second task in the middle image,

four piles are formed where plates and books are stacked separately, mostly

because of semantic features. Notice that all the dishware, except the top-most

two bowls, is placed horizontally. The right image shows all clothes are placed

perpendicular upon the rod. However the first and last hangers are little off

the rod due to the outliers in the point-cloud which are mistakenly treated as

part of the object . This also indicates that in an actual robotic experiment, the

placement could fail if there is no haptic feedback.

7.7.5 Placing in Various Scenes

In this experiment, we test the overall algorithm with multiple objects being

placed in a scene with multiple placing areas. We took point-clouds from 3 dif-
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ferent offices and 2 different apartments. Placing areas such as tables, cabinets,

floor, and drawers were segmented out. We evaluated the quality of the final

placing layout by asking two human subjects (one male and one female, not

associated with the project) to label placement for each object as stable or not,

semantically correct or not, and also report a qualitative metric score on how

good the overall placing was (0 to 5 scale).

Table 7.7 shows the results for different scenes (averaged over objects and

placing areas) and for different algorithms and baselines. We considered base-

lines where objects were placed vertically, horizontally or according to configu-

ration priors (e.g., flat surface prefers horizontal placing while dish-racks and

holders prefer vertical placing). As no semantic cues were used in the baselines,

placing areas were chosen randomly. The results show that with our learning

algorithm, the end-to-end performance is substantially improved under all met-

rics, compared to the heuristics. Fig. 7.10 shows the point-cloud of two offices

after placing the objects according to the strategy. We have marked some ob-

ject types in the figure for better visualization. We can see that books are neatly

stacked on the left table, and horizontally on the couch in the right image. While

most objects are placed on the table in the left scene, some are moved to the

ground in the right scene, as the table there is small.

We do not capture certain properties in our algorithm, such as object-object

co-occurrence preferences. Therefore, some placements in our results could po-

tentially be improved in the future by learning such contextual relations [e.g., 2].

For example, a mouse is typically placed on the side of a keyboard when placed

on a table and objects from the same category are often grouped together.
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Table 7.7: End-to-end test results. In each scene, the number of placing areas
and objects is shown as (·, ·). St: % of stable placements, Co: % of
semantically correct placements, Sc: average score (0 to 5) over areas.

office-1 (7,29) office-2 (4,29) office-3 (5,29) apt-1 (13,51) apt-2 (8,50) Average

St Co Sc St Co Sc St Co Sc St Co Sc St Co Sc St Co Sc

Vert. 36 60 2.4 33 52 2.4 52 59 2.8 38 41 1.9 46 59 3 39 59 2.4

Hori. 50 62 2.9 57 52 2.7 69 60 3.4 54 50 2.5 60 53 2.7 57 58 2.7

Prior 45 52 2.4 64 59 2.8 69 60 3.5 44 43 2.3 61 55 2.7 55 53 2.7

Our approach 78 79 4.4 83 88 4.9 90 81 4.5 81 80 3.8 80 71 4.2 83 82 4.4

Figure 7.10: Two office scenes after placing, generated by our algorithm. Left
scene comprises a table and ground with several objects in their fi-
nal predicted placing locations. Right scene comprises two tables,
two couches and ground with several objects placed.

7.7.6 Robotic Experiment

We tested our approach on both our robots, the PANDA and POLAR, with the

Kinect sensor. We performed the end-to-end experiments as follows. (For quan-

titative results on placing single objects, see Section 7.5.6.)

In the first experiment, our goal was to place 16 plates in a dish-rack. Once

the robot inferred the placing strategy (an example from the corresponding of-
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Figure 7.11: Loading a bookshelf (top) and a fridge (bottom). Snapshots of the
scenes before and after the arrangement by our robot POLAR using
our learning algorithm.

fline experiment is shown in Fig. 7.9-left), it placed the plates one-by-one in the

dish-rack (Fig. 7.12(a)). Out of 5 attempts (i.e., a total of 5x16=80 placements),

less than 5% of placements failed. This is because the plate moved within the

gripper after grasping.

In the second experiment, our aim was to place a cup, a plate and a martini

glass together on a table and then into a dish-rack. The objects were originally
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(a) (b) (c)

(d) (e) (f)

Figure 7.12: Robots placing multiple objects in different scenes. Top row shows
PANDA: (a) loading a dish-rack with plates, (b) placing different
objects on a table, and (c) placing different objects in a dish-rack.
Bottom row shows POLAR: (d) placing six items on a bookshelf, (e)
loading five items in a fridge, and (d) placing an empty juice box in
a recycle bin.

placed at pre-defined locations and were picked up using the given grasps. The

result is shown in Fig. 7.12(b) and 7.12(c).

In the third experiment, the robot was asked to arrange a room with a book-

shelf, a fridge, a recycle-bin and a whiteboard as potential placing areas. The

room contained 14 objects in total, such as bottles, rubber toys, a cereal box, cof-

fee mug, apple, egg carton, eraser, cup, juice box, etc. Our robot first inferred the

placing strategy and then planned a path and placed each one. In some cases

when the object was far from its placing location, the robot moved to the object,

picked it up, moved to the placing area and then placed it. Fig. 7.12 (last row)

shows some placing snapshots and the scene before and after placing is shown

in Fig. 7.11.
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CHAPTER 8

CONCLUSION

As humans cast such a substantial influence on our environments, to under-

stand our environment, one needs to reason it through the interplay between the

humans and objects. The key motivation of this thesis is to capture the human-

object relations, referred as ‘object affordances’, in an environment. Even for

environment with only objects physically present, we argued that it can be mod-

eled better through the hallucinated humans and object affordances.

We first quantitatively defined object affordances through parametric func-

tions which can describe the spatial relation between a given human pose and

an object configuration. For a scene that may contain multiple objects and hu-

mans, we augmented the classic Conditional Random Field (CRF) to capture

both human context and object context through human-object and object-object

edges with different potential functions.

The biggest challenge lies in how to model hidden humans and unknown

object affordances. We therefore proposed a new non-parametric model, called

Infinite Latent Conditional Random Fields (ILCRFs) which can handle: 1) un-

known number of latent nodes (for potential human poses), 2) unknown num-

ber of edge types (for human-object interactions), and 3) a mixture of different

CRFs (for the whole scene). We also presented a Gibbs-sampling based learning

and inference algorithm for ILCRFs.

We applied our ILCRFs to two different tasks: 3D scene labeling and 3D

scene arrangement. Through extensive experiments and thorough analyses, we

not only showed that our ILCRF algorithm outperforms the state-of-the-art re-
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sults, but we also verified that modeling latent human poses and their relation-

ships to objects are crucial to reason our environment. In addition to hallucinate

static human poses, we also proposed a Gaussian Process Latent CRF that can

model high-dimensional human motions and thus can be used to anticipate hu-

man activities.

We have performed extensive robotic experiments to verify our algorithms

throughout this work. Using ILCRFs, our robot correctly inferred potential hu-

man poses, object labels and object arrangements in real scenes. Moreover, we

also considered basic robotic manipulation tasks such as grasping and placing.

We developed learning-based approaches to be able to handle novel objects ro-

bustly.

We believe that the idea of hallucinating humans and object affordances

can be applied to many scene understanding tasks, such as detecting object at-

tributes, and even detecting functionalities of a scene. This could further fa-

cilitate personal robots to arrange scenes according to different functions. In

computer graphics, one may also use this idea to automatically generate proper

objects in a scene.

The ability to predict human activities (with detailed trajectory) could make

a significant difference to robots working in the presence of humans. With more

accurate human trajectory prediction, robots can plan more relevant actions and

paths [77, 48]. Furthermore, with real-time anticipation, our work can be used

for human-robot interaction, such as to improve the efficiency of collaborative

tasks [142, 39], or to avoid intrusion/collision during navigation [68].

119



BIBLIOGRAPHY

[1] A. Anand, H. Koppula, T. Joachims, and A. Saxena. Contextually guided

semantic labeling and search for 3d point clouds. IJRR, 32(1):19–34, 2012.

[2] Abhishek Anand, Hema Swetha Koppula, Thorsten Joachims, and

Ashutosh Saxena. Semantic labeling of 3d point clouds for indoor scenes.

In NIPS, 2011.

[3] A. Anandkumar, D. Hsu, F. Huang, and S. Kakade. Learning mixtures of

tree graphical models. In NIPS, 2012.

[4] M.J. Beal, Z. Ghahramani, and C.E. Rasmussen. the infinite hidden

markov model. NIPS, 2002.

[5] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning motion

patterns of people for compliant robot motion. IJRR, 24(1):31–48, 2005.

[6] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner. Grasp

planning in complex scenes. In Int’l conf Humanoid Robots, 2009.

[7] A.C. Berg, T.L. Berg, and J. Malik. Shape matching and object recognition

using low distortion correspondences. In CVPR, 2005.

[8] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lp solve 5.5, open

source (mixed-integer) linear programming system. Software, May 1

2004.

[9] A. Bicchi and V. Kumar. Robotic grasping and contact: a review. In Inter-

national Conference on Robotics and Automation (ICRA), 2000.

120



[10] K. Bousmalis, L.P. Morency, S. Zafeiriou, and M. Pantic. A discrimina-

tive nonparametric bayesian model: Infinite hidden conditional random

fields. In NIPS Workshop on Bayesian Nonparametrics, 2011.

[11] Peter Brook, Matei Ciocarlie, and Kaijen Hsiao. Collaborative grasp plan-

ning with multiple object representations. In ICRA, 2011.

[12] Matei T. Ciocarlie and Peter K. Allen. On-line interactive dexterous grasp-

ing. In Eurohaptics, 2008.

[13] E.G. Coffman Jr, M.R. Garey, and D.S. Johnson. Approximation algo-

rithms for bin packing: A survey. In Approximation algorithms for NP-hard

problems, pages 46–93. PWS Publishing Co., 1996.

[14] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[15] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for hu-

man detection. In CVPR, 2005.

[16] E. Demircan, T. Besier, S. Menon, and O. Khatib. Human motion recon-

struction and synthesis of human skills. In Advances in Robot Kinematics:

Motion in Man and Machine, pages 283–292. Springer, 2010.

[17] J. Deng, A. Berg, and L. Fei-Fei. Hierarchical semantic indexing for large

scale image retrieval. In CVPR, 2011.

[18] R. Diankov, S.S. Srinivasa, D. Ferguson, and J. Kuffner. Manipulation

planning with caging grasps. In Humanoid Robots, 2008. Humanoids 2008.

8th IEEE-RAS International Conference on, pages 285–292. IEEE, 2008.

121



[19] S.K. Divvala, D. Hoiem, J.H. Hays, A.A. Efros, and M. Hebert. An empir-

ical study of context in object detection. CVPR, 2009.

[20] M.R. Dogar and S.S. Srinivasa. A framework for push-grasping in clutter.

In RSS, 2011.

[21] H. Dreyfuss. Designing for People. Allworth Press, 1955.

[22] J.G. Dy and C.E. Brodley. Feature selection for unsupervised learning. The

Journal of Machine Learning Research, 5:845–889, 2004.

[23] A. Edsinger and C.C. Kemp. Manipulation in human environments. In

Humanoid Robots, 2006.

[24] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively

trained, multiscale, deformable part model. In CVPR, 2008.

[25] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsu-

pervised scale-invariant learning. In CVPR, 2003.

[26] M. Fisher and P. Hanrahan. Context-based search for 3d models. ACM

TOG, 29(6), 2010.

[27] M. Fisher, M. Savva, and P. Hanrahan. Characterizing structural relation-

ships in scenes using graph kernels. SIGGRAPH, 2011.

[28] M.L. Fisher. The lagrangian relaxation method for solving integer pro-

gramming problems. Management science, pages 1–18, 1981.

[29] Hongbo Fu, Daniel Cohen-Or, Gideon Dror, and Alla Sheffer. Upright

orientation of man-made objects. ACM Trans. Graph., 27:42:1–42:7, 2008.

[30] A. Geiger, R. Urtasun, and T. Darrell. Rank priors for continuous non-

linear dimensionality reduction. In CVPR, 2009.

122



[31] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust global

registration. In Eurographics Symposium on Geometry Processing, 2005.

[32] A. Globerson and T. Jaakkola. Fixing max-product: Convergent message

passing algorithms for map lp-relaxations. In NIPS, 2007.

[33] Jared Glover, Radu Rusu, and Gary Bradski. Monte carlo pose estimation

with quaternion kernels and the bingham distribution. In Proceedings of

Robotics: Science and Systems, 2011.

[34] Helmut Grabner, Juergen Gall, and Luc J. Van Gool. What makes a chair

a chair? In CVPR, 2011.

[35] T.L. Griffiths and Z. Ghahramani. The indian buffet process: An introduc-

tion and review. JMLR, 12:1185–1224, 2011.

[36] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popovic.

Style-based inverse kinematics. ACM Trans. Graph., 23(3):522–531, 2004.

[37] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3d scene geometry

to human workspace. In CVPR, 2011.

[38] J.A. Hanley and B.J. McNeil. The meaning and use of the area under

a receiver operating (roc) curvel characteristic. Radiology, 143(1):29–36,

1982.

[39] K. P Hawkins, N. Vo, S. Bansal, and A Bobick. Probabilistic human ac-

tion prediction and wait-sensitive planning for responsive human-robot

collaboration. In HUMANOIDS, 2013.

[40] V. Hedau, D. Hoiem, and D.A. Forsyth. Recovering the spatial layout of

cluttered rooms. In ICCV, 2009.

123



[41] V. Hedau, D. Hoiem, and D.A. Forsyth. Thinking inside the box: Using

appearance models and context based on room geometry. In ECCV, 2010.

[42] G Heitz, S Gould, A Saxena, and D Koller. Cascaded classification models:

Combining models for holistic scene understanding. In Neural Information

Processing Systems (NIPS), 2008.

[43] Geremy Heitz, Stephen Gould, Ashutosh Saxena, and Daphne Koller.

Cascaded classification models: Combining models for holistic scene un-

derstanding. In NIPS, 2008.

[44] Edmond S. L. Ho, Taku Komura, and Chiew-Lan Tai. Spatial relationship

preserving character motion adaptation. ACM Trans. Graph., 29(4), 2010.

[45] Kaijen Hsiao, Paul Nangeroni, Manfred Huber, Ashutosh Saxena, and An-

drew Y. Ng. Reactive grasping using optical proximity sensors. In ICRA,

2009.

[46] K. Ickstadt, B. Bornkamp, M. Grzegorczyk, J. Wieczorek, M. Sheriff,

H. Grecco, and E. Zamir. Nonparametric bayesian networks. Bayesian

Statistics, 9:283–316, 2010.

[47] A. Jain and C.C. Kemp. Pulling open doors and drawers: Coordinating

an omni-directional base and a compliant arm with equilibrium point con-

trol. In Robotics and Automation (ICRA), 2010 IEEE International Conference

on, pages 1807–1814. IEEE, 2010.

[48] A. Jain, B. Wojcik, T. Joachims, and A. Saxena. Learning trajectory prefer-

ences for manipulators via iterative improvement. In NIPS, 2013.

[49] A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A Dirty Model for

Multi-task Learning. NIPS, 2010.

124



[50] J. Jancsary, S. Nowozin, and C. Rother. Non-parametric crfs for image

labeling. In NIPS Workshop Modern Nonparametric Methods Mach. Learn.,

2012.

[51] Nikolay Jetchev and Marc Toussaint. Task space retrieval using inverse

feedback control. In ICML, pages 449–456, 2011.

[52] Zhaoyin Jia, Andy Gallagher, Ashutosh Saxena, and Tsuhan Chen. 3d-

based reasoning with blocks, support, and stability. In CVPR, 2013.

[53] Y. Jiang, H. Koppula, and A. Saxena. Hallucinated humans as the hidden

context for labeling 3d scenes. In CVPR, 2013.

[54] Y. Jiang, M. Lim, and A. Saxena. Learning object arrangements in 3d

scenes using human context. In ICML, 2012.

[55] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new objects

in a scene. IJRR, 2012.

[56] Y. Jiang, S. Moseson, and A. Saxena. Efficient Grasping from RGBD Im-

ages: Learning using a new Rectangle Representation. In ICRA, 2011.

[57] Y. Jiang and A. Saxena. Hallucinating humans for learning robotic place-

ment of objects. In ISER, 2012.

[58] Y. Jiang and A. Saxena. Infinite latent conditional random fields for mod-

eling environments through humans. In RSS, 2013.

[59] Y. Jiang and A. Saxena. Modeling high-dimensional humans for activity

anticipation using gaussian process latent crfs. In RSS, 2014.

[60] Y. Jiang, C. Zheng, M. Lim, and A. Saxena. Learning to place new objects.

In ICRA, 2012.

125



[61] Yun Jiang, John Amend, Hod Lipson, and Ashutosh Saxena. Learning

hardware agnostic grasps for a universal jamming gripper. In ICRA, 2012.

[62] Yun Jiang and Ashutosh Saxena. Discovering different types of topics:

Factored topic models. In IJCAI, 2013.

[63] Yun Jiang, Changxi Zheng, Marcus Lim, and Ashutosh Saxena. Learning

to place new objects. In ICRA, 2012.

[64] T. Joachims. Making large-Scale SVM Learning Practical. MIT-Press, 1999.

[65] T. Joachims, T. Finley, and CN. J. Yu. Cutting-plane training of structural

svms. Machine Learning, 77(1):27–59, 2009.

[66] A.E. Johnson and M. Hebert. Using spin images for efficient object recog-

nition in cluttered 3d scenes. IEEE PAMI, 21(5):433–449, 1999.

[67] D. Katz and O. Brock. Manipulating articulated objects with interactive

perception. In ICRA, 2008.

[68] W.G. Kennedy, M. D Bugajska, M. Marge, W. Adams, B. R Fransen,

D. Perzanowski, A. C Schultz, and J. G. Trafton. Spatial representation

and reasoning for human-robot collaboration. In AAAI, 2007.

[69] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert. Activity forecast-

ing. In ECCV, 2012.

[70] H. Kjellström, J. Romero, and D. Kragić. Visual object-action recognition:
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