

In 1947 C. R. Rao put forth a general method of analysis for incomplete block designs (Jour. Amer. Stat. Assoc. 42:541). The incomplete blocks designs are of the type that have v varieties in b incomplete blocks of k varieties with each variety repeated r times. Rao also considers the case where the number of replicates varios for the different varieties but this is not relevant to the simple latticc design for which $v=k^{2}, b=2 k$, and $r=2$.

The general form of the analysis may bc consiccrably simplificd for the simple lattice design. Therefore, it was docided to sct forth the analytical procedure and the specific parameters for the simple lattice dosign. An illustrative cxamplo of $k^{2}=9$ itcms or varictics in 2 roplicatos is prosontod also. The simplo lattico design roprosonts two difforent groupings of tho k^{2} varictics such as tho following:

Thus in the X grouping varicty 00 appears with the $k-1$ varictics, $01,02, \ldots$ $0, k-1$ in an incomplotc block whilc in the Y grouping 00 appoars with varictics 10, 20, ..., $k-1,0$. It is obvious then that cvory onc of the k^{2} varictics will occur with $2(k-1)$ varictics in an incomplete block in the two groupings. Likewisc, there will be $(k-1)^{2}$ varictics with which a given varicty will not be associated in an incomplotc block.

On the basis of "association" of varictics in the incomplcte block, Rao scts up a systom of associatcs. First associatos (or logically zoroth associates) arc varictics which do not appear together in an incomplctc block. [Kempthornc (writton correspondence 2/15/51) calls thesc sceond associates and vicc versa.] Rao's sccond associates rofer to pairs of varictics appoaring together once in incompletc blocks.

The tcrminology zoroth, first, sccond, ctc. associatcs will bo adoptcd honceforth and thosc will be equivalont to Rao's first, sccond, third, otc. associatos. The roason for this change is to have the degrec of the associatc rofer to the number of times, λ_{i}, that varictios appear together in the incompletc blocks.

There are $n_{0}=(k-1)^{2}$ zoroth associatos and $n_{1}=2(k-1)$ first associates for any varicty. $\lambda_{0}=0$ rofors to a pair of varictics which aro not comparcd in an incomplotc block. $\lambda_{I}=1$ rofors to a pair of varictios which appoar togethor in onc of the incomploto blocks. If a pair of varictics appoarcd together twice in the b incomplete blocks, then λ_{2} would cquel 2. However, the association of varictios in the incomplote blocks for the simple lattice dosign is cither none or once and therefore there are only the two such paramoters, $\lambda_{0}=0$ and $\lambda_{1}=1$.

One furthor type of paramotor poculiar to the particular incomplote block design in question will be the number of associates in common among the various pairs of varictios with varying degrocs of association. For a pair of varictios which are zoroth associates there are 4 parameters, $p_{00}^{0}=(k-2)^{2}=$ number of varictics in common among thoir zeroth associatos, $p_{01}^{0}=p_{10}^{0}=2(k-2)=$ number of varictics in common among their zoroth and first associatos, and. $\mathrm{p}_{11}^{0}=$ $2=$ number of varicties in common among the first associatos of the two varictios in quostion.

Likewise there are 4 parameters for a pair of varieties which are first associates. Thus, $\mathrm{p}_{00}^{1}=(k-1)(k-2)=$ number of varieties in common between zeroth associates of the two varieties in question, $\mathrm{p}_{01}^{1}=\mathrm{p}_{10}^{1}=\mathrm{k}-1=$ number of varieties in common between zeroth and first associates of the two varieties, and $p_{11}^{l}=k-2=$ number of varieties in common among their first associates.

The parameters for the simple lattice are summarized in Table le along with Rao's general notation and Kempthorne's notation.

Table 1. Parametcrs for a simple lattice design with the corrosponding notation from Rao's paper and Kompthorne's letter.

Parametors for simplo lattice		Rao's general torminology
Prescnt torminology	Kempthorne's torminology	
$\mathrm{k}^{2}=$ number of varictios	k^{2}	V
$2=0$ "replicatos	2	r
$2 \mathrm{k}=3 \mathrm{l}$ " blocks	2 k	b
$k=$ " por block	k	k
$\mathrm{n}_{0}=(k-1)^{2}$	n_{2}	n_{1}
$\lambda_{0}=0$	λ_{2}	λ_{1}
$\mathrm{n}_{1}=2(\mathrm{k}-1)$	n_{1}	n_{2}
$\lambda_{1}=1$	λ_{1}	λ_{2}
$p_{i j}^{0}=\left\|\begin{array}{cc}(k-2)^{2} & 2(k-2) \\ 2(k-2) & 2\end{array}\right\|$	$p_{i j}^{2}=\left(\begin{array}{cc}2 & 2(k-2) \\ 2(k-2) & (k-2)^{2}\end{array}\right)$	$\mathrm{p}_{i j}^{1}$
$p_{i j}^{1}=\left(\begin{array}{cc}(k-1)(k-2) & (k-1) \\ (k-1) & (k-2)\end{array}\right)$	$\mathrm{p}_{\mathrm{ij}}^{1}=\left(\begin{array}{ll}(k-2) & (k-1) \\ (k-1) & (k-1)(k-2)\end{array}\right)$	$p_{i j}^{2}$

With the above parancters for the simple lattico dosigns the following constants are computcd:

$$
\begin{aligned}
& A_{01}=2 k-1 \\
& A_{11}=p_{01}^{1}=k-1 \\
& B_{01}=1 \\
& \left.B_{11}=2 k-1+\left(p_{00}^{0}-p_{00}^{1}\right)=k+1\right) \\
& A_{00}=2(k-1) \\
& A_{10}=-p_{01}^{0}=-2(k-2) \\
& B_{00}=-1 \\
& 0,\} \\
& R=2 w+\frac{2 w i}{k-1} \\
& \Lambda_{1}=w-w^{\prime} \\
& \Lambda_{0}=0 \\
& \begin{array}{l}
A_{01}^{\prime}=(2 k-1) w+w^{\prime} \\
A_{11}^{\prime}=\Lambda_{1} p_{01}^{1}=(k-1)\left(w-w^{\prime}\right)
\end{array} \\
& \mathrm{B}_{\mathrm{OL}}=\mathrm{w}-\mathrm{w}^{1} \\
& B_{11}=A_{O 1}^{\prime}+B_{O 1}^{1}\left(p_{00}^{1}-p_{00}^{2}\right) \\
& =(k+1) w+(k-1) w t \\
& A_{00}^{\prime}=2(k-1) w+2 w^{\prime} \\
& \begin{array}{l}
A_{10}=-\left(w-w^{\prime}\right) p_{01}^{0}=-2(k-2)\left(w-w^{\prime}\right) \\
B_{1}=-\left(w-w^{t}\right)
\end{array} \\
& B_{00}^{\prime}=-(w-w t) \\
& B_{10}=A_{00}^{1}+B_{00}^{1}\left(p_{I I}^{I}-p_{I I}^{0}\right) \\
& =(k+2) w+(k-2) w^{\prime} \\
& \Delta=A_{01} B_{11}-A_{11} B_{01}=2 k^{2} \\
& \text { chock } \\
& \Delta=A_{00} B_{10}-A_{10} B_{00}=\downarrow_{2 k^{2}} \\
& \Delta I=A_{O I}^{B} B_{11}-A_{11} B_{O I}^{\prime}=2 k^{2} W(w+w)
\end{aligned}
$$

The variance of a mean difference for a pair of varictics which are zeroth associates is

$$
\frac{2 k B_{10}}{\Delta \prime}=\frac{2}{k}\left\{\frac{1}{w+w}+\frac{k-1}{2 w}\right\}
$$

and for a pair of varieties which are first associates is

$$
\frac{2 k B_{i 1}^{\prime}}{\Lambda^{\prime}}=\frac{2}{k}\left\{\frac{2}{w+w i}+\frac{k-2}{2 w}\right\}
$$

The average standard error of a mean difference is

$$
\frac{\frac{2 k(k-1)^{2}}{2}\left(\frac{2}{k}\right)\left\{\frac{2}{w+w}+\frac{k-2}{2 w}\right\}+\frac{2 k(2 k-2)}{2}\left(\frac{2}{k}\right)\left\{\frac{1}{w+w},+\frac{k-1}{2 w}\right\}}{\frac{2 k(k-1)^{2}}{2}+\frac{2 k(2 k-2)}{2}}=\frac{2}{k+1}\left\{\frac{2}{w+w}+\frac{k-1}{2 w}\right\}
$$

since there are $k(k-1)^{2}$ comparisons among zeroth associates and $2 k(k-1)$ comparisons among first associates.

The remainder of the analysis and adjustment of treatment means is easily comprehensible from an example. An artificial example of $k^{2}=9$ varieties in 2 replicates was constructed and is presented in Table 2. The variety totals and calculations for the analysis of variance are prosented in Table 3 and the analysis of variance in Table 4. The adjustcd means are prosented in Table 5. The method of anolysis follows the ordinary procedure for the analysis of a simple lattice design.
Table 2. Yields per plot for a simplc lattice oxporiment with $k^{2}=3^{2}$ synthetic varictics in two replicatcs. Entry numbers in parenthesis.

(00)	(20)	(10)	(02)	(12)	(22)	(21)	(11)	(01)
8	5	3	2	6	3	7	3	
$(Y)_{0}=16 \quad$	$(Y)_{2}=11$							

Roplicate Σ

Replicate IT (X arrangement)

(21)	(20)	(22)	(10)	(11)	(12)	(01)	(02)	(00)
2	2	7	3	3	3	2	4	6

Block Σ
$(x)_{2}=11$
$(X)_{1}=9$
$(x)_{0}=12$
Replicato Σ

Table 3. Total yields and other totals requirod for the analysis of the simple lattice experiment prosented in Tablc 2.

	varicty numbers and totals			$(\mathrm{A})_{i}$	$(\mathrm{x})_{i}$	$(\mathrm{A})_{i}-2(\mathrm{X})_{i}$	c^{\prime}
	(00) 14	(01) 5	(02) 7	26	12	2	. 24
	(10) 6	(11) 10	(12) 5	21	9	3	. 37
	(20) 7	(21) 5	(22) 13	25	11	3	. 37
Totals (B) ${ }_{j}$	27	20		72	32	8	
$(\mathrm{Y})_{j}$	16	13	11	40			
(B) $j_{j}^{-2(Y)}{ }_{j}$	-5	-6	3	-8		0	
c_{y}^{\prime}	-.61	-. 73	. 37				

Table 4. Analysis of variance for the data of Table 2.
Randomized complote blocks analysis

Source of variation	d.f.	S.s.	m.s.
	1		3.56
Replicates	8.56		
Varietics or troatments	8	49.00	6.125
Residual	8	13.44	$1.680=E_{C}^{\prime}$
Total	17	66.00	

Simplo lattico analysis

Source of variation	d.f.*	d.f.	S.S.	Mos.
Replicates	1	1	3.56	3.56
Varicties (ignor. blocks)	$k^{2}-1$	8	49.00	6.125
Blocks (clim. var.)	2(k-1)	4	8.22	$2.055=E_{b}$
Among (A$)_{i}-2(\mathrm{X})_{i}$	(k-1)	2	1.111	
Among (B) ${ }_{j}-2(Y){ }_{j}$	(k-1)	2	7.111	
Intrablock $=$ rosidual	$(k-1)^{2}$	4	5.22	$1.305=E_{0}$
Total	$2 k^{2}-1$	17	66.00	

*General case
Tablo 5. Adjusted totals and means for the cxperiment in Tablc 2.

Varicty number	Unadjustcd \qquad	Sum of adjustments	Adjustod totals	Adjustcd mcans
00	14	-. 37	13.63	6.82
01	5	-. 49	4.51	2.26
02	7	. 61	7.61	3.80
10	6	-. 24	5.76	2.88
11	10	-. 36	9.64	4,82
12	5	. 74	5.74	2.87
20	7	-. 24	6.76	3.38
21	5	-. 36	4.64	2.32
22	13	.74	13.74	6.87
Total	72	. 03	72.03	36.02
		-6-		

For Rao's general method of analysis, the parameters for the example are:

$$
\begin{aligned}
& r=2, k^{2}=9, b=6, k=3 \\
& \lambda_{0}=0, n_{0}=4, \lambda_{1}=1, n_{1}=4 \\
& p_{i j}^{0}=\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right) \quad p_{i j}^{1}=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right)
\end{aligned}
$$

From Table 4, $w=\frac{1}{E_{e}}=0.7663$ and $w^{\prime}=\frac{1}{2 E_{b}-E_{e}}=0.3565$. The constants for the simple lattice are now computed as:

$$
\begin{aligned}
& A_{01}=5, A_{11}=2, B_{01}=1, B_{11}=4 \text {, and } \Delta=18 \\
& A_{00}=4, A_{10}=-2, B_{00}=-1, B_{10}=5 \text {, and } \Delta=18 \\
& \mathrm{R}=2 \mathrm{w}^{\prime} \mathrm{w}^{1}=1.8881, \Lambda_{1}=\mathrm{w}^{-} \mathrm{w}^{1}=.4098, \Lambda_{0}=0 \\
& \mathrm{~A}_{01}^{1}=4.1880, \mathrm{~A}_{11}=.8196, \mathrm{~B}_{01}^{1}=.4098, \mathrm{~B}_{11}=3.7782 \\
& A_{00}^{1}=3.7782, A_{10}=-.8196, B_{00}^{1}=-.4098, B_{10}^{1}=4.1880 \\
& \Delta=A_{01}^{\prime} B_{11}^{\prime}-A_{11} B_{O 1}^{1}=A_{00}^{p} B_{10}^{1}-A_{10} B_{00}^{f}=2 k^{2} w(w+w)=15.437230 .
\end{aligned}
$$

Equipped with the $A_{i j}$ and $B_{i j}$, it is now possible to begin construction of Table 6. The first column contains the variety number, the second column contains the variety totals a (see Table 5), and the third column contains the sum of the block totals containing a particular variety, for example variety 01 appears in blocks $(Y)_{1}$ and $(X)_{0}$ and the β valuc for varicty 01 is $13+12=25$.

The fourth column is computed from columns 2 and 3. For example the second Y value is

$$
Y=k \alpha-\beta=3(5)-25=-10
$$

The fifth column contains the $(k-1)^{2}$ varietics which are zeroth associates of variety a. The sixth column contains the sum of the γ valuos for variety a and its zeroth associates. The second ε value is computed as

$$
-10-7-5-6+17=-11
$$

Table 6. Computations for simple lattice by Ran's method.

The η values in the seventh column are computed from the formula

$$
\eta=\frac{\left(\mathrm{B}_{01}+\mathrm{B}_{11}\right) \gamma-\mathrm{B}_{01} \varepsilon}{\Delta}=\frac{(k+2) \gamma-\varepsilon}{2 \mathrm{k}^{2}}
$$

For example, the first η value is

$$
2.5000=\frac{(3+2)(14)-(25)}{18}=\frac{45}{18}
$$

With the above values, the analysis of variance may now be completed. The replicate sum of squares (Table 2) is

$$
\frac{40^{2}+32^{2}}{9}-\frac{72^{2}}{18}=3.56
$$

The blocks within replicate (ignoring variety) sum of squares is

$$
\frac{16^{2}+11^{2}+13^{2}+11^{2}+9^{2}+12^{2}}{3}-\frac{\left(40^{2}+32^{2}\right)}{9}=5.78
$$

The variety (eliminating block) sum of squares is

$$
\frac{1}{k} \Sigma Y \eta=51.44
$$

and the variety (ignoring block) sum of squares is

$$
\frac{\Sigma a_{i}^{2}}{2}-\frac{G^{2}}{2 k^{2}}=49.00
$$

Therefore the blocks (eliminating variety) sum of squares is

$$
5.78-(49.00-51.44)=8.22
$$

as given in Table 4.
With the analysis of variance the values of $w=.7663$ and $w^{\prime}=.3565$ are computed. The values of $A_{i j}, B_{i j}$ and $\Delta \prime$ (see above) and the last 4 columns of Table 6 may now be calculated.

The first A value is computed from the formula $A=k w a-\left(w-w^{1}\right) p=$ $3(.7663) 14-(.7663-.3565) 28=20.7102$. The B value, equal to the sum of the A values for a varicty and its zeroth associates, for varicty 00 is calculatcd as

$$
20.7102+13.9734+3.2985+1.6593+20.8701=60.5115
$$

The C valucs arc obtained from the formula

$$
\begin{aligned}
& \frac{\left[(k+2) w+(k-2) W^{1}\right] A-\left(w-w^{1}\right) B}{2 k^{2} W\left(w+w^{1}\right)} \\
= & \frac{[5(.7663)+.3565] A-.4098 B}{15 \cdot 487230}=.27041634 A-.02646051 B
\end{aligned}
$$

the first C valuc being 3.99921.
The D valucs are the adjusted varicty means and should corrospond (within
rounding errors) to those given in the last column of Table 5. The adjusted mean for variety 00 is

$$
D=C+\left(\bar{x}-\frac{\sum C}{k^{2}}\right)=3.99921+2.81830=6.8175
$$

There are several partial checks available in the construction of Table 6 . These are

$$
\begin{aligned}
\Sigma \alpha & =G=\text { grand total } \\
\Sigma \beta & =k G \\
\Sigma Y & =\Sigma \varepsilon=\Sigma Y=\text { zero } \\
\Sigma A & =k w^{\prime} G \\
\Sigma B & =\left[(k-1)^{2}+1\right] \Sigma A \\
\Sigma C & =\frac{1}{2 k^{2} w\left(w+w^{\prime}\right)}\left\{\left[(k+2) w+(k-2) w^{\prime}\right] \Sigma A-\left(w-w^{\prime}\right) \Sigma B\right\} \\
& =w^{\prime} G\left\{\frac{w^{\prime}(k-1)-w(k-3)}{2 w\left(w+w^{\prime}\right)}\right\} \\
\Sigma D & =G / 2
\end{aligned}
$$

Rao gives the following test of significance for an incomplete block design

$$
X^{2}=\frac{1}{k}\left\{\Sigma A D-\frac{\sum A \Sigma D}{k^{2}}\right\}=37.4808
$$

with $k^{2}-1=8$ degrees of frecdom. From a preliminary examination, it does not appear that the above X^{2} value is algebraically or numerically equel to the sum of squares of adjusted totals divided by the average effective error variance

$$
\frac{2\left(\sum D^{2}-(\Sigma D)^{2} / k^{2}\right)}{\frac{2}{k+1}\left\{\frac{2}{w+w^{\prime}}+\frac{k-1}{2 w}\right\}}=\frac{2(25.65545)}{1.5431165}=33.2502
$$

as
is the casc for a balanced lattice design.

