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The functional response describes the rate at which a predator kills 

its prey relative to the density o.f that prey. When the number of prey 

killed is plotted against the number of prey available, a continuum of 

patterns may emerge from which ecologists delimit three types. These 

curves may represent an increasing linear relationship (Type I), a 

decelerating curve (Type II), or a sigmoid relationship (Type III) (fig. 

la). These result in a constant (I), decreasing (II), or increasing (over 

a limited range of prey densities) rate of prey killing (III) (fig. lb) and 

yield density-independent, inversely density-dependent, and positively 

density-dependent prey mortality, respectively. 

A diverse array of techniques have been employed to analyze functional 

response data. We report the evaluation of several of them: curve fitting 

by eye, fitting of mechanistic foraging models, linear least-squares 

analysis using the angular transformation, and logit analysis. We have 

evaluated various methods of analyzing the functional response by asking 

whether they fulfill two criteria. First, can they discriminate among 

functional responses by correctly determining which type of functional 

response curve a predator produces? Second, can they accurately identify 

regions of positive density dependence in functional response data? 
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The functional response describes the rate at which a predator kills 

its prey relative to the density of that prey. When the number of prey 

killed is plotted against the number of prey available, a continuum of 

patterns may emerge from which ecologists delimit three types. These 

curves may represent an increasing linear relationship (Type I), a 

decelerating curve (Type II), or a sigmoid relationship (Type III) (fig. 

la). These result in a constant (I), decreasing (II), or increasing (over 

a limited range of prey densities) rate of prey killing (III) (fig. lb) and 

yield density-independent, inversely density-dependent, and positively 

density-dependent prey mortality, respectively. 

Two different types of research programs may include studies of the 

functional response. Demographers wish to identify predators that impose 

positively den~ity-dependent mortality on their prey, because such 

mortality schedules can regulate prey populations (Murdoch and Oaten 1975). 

Ethologists wish to estimate parameters that describe predator foraging and 

explore their dynamics (Hassell 1978). These parameters are supposed to 

reflect the biological mechanisms through which the various functional 

response forms arise. Murdoch and Oaten (1975:35) give a clear description 

of how experiments are performed to determine the functional response. 

Analysis of functional response data is not a straightforward 

statistical problem, and recently several papers have proposed new methods 

(Livdahl and Stiven 1983; Juliano and Williams 1985; Williams and Juliano 

1985). These papers have focused on the analysis of the number of prey 

killed per unit time relative to the number of prey available. This focus 

stems from a historical motivation rather than a statistical one. 

Holling's (1959a, b) studies of the functional response analyzed the number 

of prey killed, and all subsequent modelling has concentrated on this 
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dependent variable (Hassell 1978). The number of prey killed presents 

problems for statistical analysis, however. The predation event is a 

discrete one; prey are killed or they are not, and no more prey can be 

killed than are available. Therefore, the number of prey killed is bounded 

by 0 and the number of prey available and can only take integer values, 

counts of the number of successful predation events. A natural probability 

model to use for such a situation is the binomial. This model would be 

appropriate as long as the predation events included in the sample were 

independent, i.e., could be justified as a random sample of predation 

events from the population of inference. 

What problems arise when a discrete, binomially distributed variable 

is analyzed as if it were continuous (Anderson et al. 1980; Cox 1970)? 

1. Most statistical procedures assume that the variance in the 

dependent variable is the same no matter what the value of its 

mean. The mean and variance of a binomially distributed random 

variable are related: the variance is np(1-p) and the mean is np, 

where n is the number of prey available, and p is the proportion 

of prey killed. 

2. Most statistical procedures assume that errors are normally 

distributed and therefore can take on a continuum of values. In 

analyses of predation, the errors can only take on a limited range 

of values, corresponding to the limited possible combinations of 

predation and no predation. 

3. The statistical power of hypothesis-testing techniques designed 

for normally distributed variables can be poor for non-normal 

data. This problem leads to the use of inefficient tests compared 

with procedures based on more appropriate statistical models. 
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In the specific case of the functional response, the responses are bounded 

by 0 and n (when number of prey killed is analyzed) or 0 and 1 (when 

proportion of prey killed is analyzed), and the fitting of linear or 

polynomial normal-theory models to such data may cause the following 

problems: 

4. Predicted values may fall outside the range of possible values for 

the dependent variable, regardless of whether that variable is 

predation rate or simply the number killed. Figure 2a illustrates 

a simple case in which the predicted values from an ordinary least 

squares regression become negative. 

5. The fitted line may be very sensitive to the specific range of 

prey densities used. Compare figures 2a and 2b. Figure 2b is 

figure 2a with additional data points added beyond 24 prey 

available. They convey essentially the same information about 

functional response, yet their fitted lines differ greatly. 

The problems illustrated in figure 2 stem from inappropriate statistical 

methods, not an inappropriate descriptive model. 

A diverse array of techniques have been employed to analyze functional 

response data. We report the evaluation of several of them: curve fitting 

by eye, fitting of mechanistic foraging models, linear least-squares 

analysis using the angular transformation, and logit analysis. We have 

evaluated various methods of analyzing the functional response by asking 

whether they fulfill two criteria. First, can they discriminate among 

functional responses by correctly determining which type of functional 

response curve a predator produces? Second, can they accurately identify 

regions of positive density dependence in functional response data? 
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METHODS AND RESULTS 

Curve-fitting £l eye 

Several authors have determined a predator's functional response by 

visual examination of plots of the number of prey killed relative to number 

of prey available (e.g. Hassell et al. 1977; cf. Livdahl and Stiven 1983). 

To examine the accuracy and precision of this method, we asked a group of 

biology faculty and graduate students to choose which of the three types of 

functional response best fit four data sets. These data sets were 

photocopied from a paper in which the authors had described all four sets 

as demonstrating type-III functional response curves (figure 1 in Hassell 

et al. 1977). The authors' proposed best fit lines were obliterated with 

liquid paper. The three type responses, copied from a standard textbook 

(Ricklefs 1979), were shown at the top of the survey form. The resulting 

data were the percentage of people choosing type-!, II, or III curves as 

best fitting each data set. The response was analyzed by chi-square tests 

for independence of proportions (table 1). 

Eighty-one biologists responded to the survey, though some chose not 

to evaluate all four data sets. Of the four data sets presented, only for 

data set D was a clear preference for one type of curve evident. Data set 

D was most likely to be described as a type-III curve. In the other three 

data sets, there was no evidence that biologists chose one type of 

functional response curve as best fitting more frequently than another. 

There were no differences in curve fitting choices related to biological 

discipline (ecology, physiology, and cell biology) or status (faculty or 

graduate student). These results indicate that functional response data 

sets do not yield patterns so clear that statistical analysis is 
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unnecessary; visual examination does not allow unambiguous discrimination 

among functional response types. 

Fitting mechanistic foraging equations 

A common practice for the analysis of functional response data is to 

fit mechanistic equations that describe foraging patterns resulting in one 

of the three functional responses. These models describe the number of 

prey killed as a function of the number of prey available and one or more 

deterministic parameters. The protocol is to invoke parsimony in accepting 

the foraging model that has the least biological assumptions and adequately 

fits the data (Hassell et al. 1977; Akre and Johnson 1979; Livdahl and 

Stiven 1983). Two typical models are Rogers's (1972) random predator 

model, which describes a type-II forager and Hassell et al.'s (1977) type­

III model. Rogers's model is: 

where: N is the number of prey available, 

Nha is the number of prey killed, 

(1) 

a' is the instantaneous seaching rate (the area covered by a 

searching predator in a given amount of time), 

Th is the handling time (the time spent dealing with each prey 

item), and 

T is the total time spent searching in a patch of prey. 

Hassell et al.'s (1977) model contains the same three parameters but allows 

a' to be a function of prey abundance, a' = bN/(1 +eN). 

This model may be written as: 

N(N- Nha)[c log{(N- Nha)/N} - bThNha + bTJ 

6 

(2) 
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Equations 1 and 2 are implicit formulae; iterative techniques 

are required for their solution. 

We evaluated this common method of analysis by fitting these 2 models 

and 4 others to several data sets and comparing the success of each model 

with the use of lack-of-fit statistics. Lack-of-fit statistics document 

the extent of bias in the residuals produced by comparing the predicted 

values to the actual values. These statistics do not function analogously 

to measures of explained variation such as coefficients of determination or 

Mallows' statistic. If the errors are normally and independently 

distributed, this statistical test yields an F statistic that, when 

significant, indicates that the model in question does not adequately fit . 

the data (Draper and Smith 1981). A non-significant result is evidence 

that the model; fits the data well. Ordinarily, such a test would result in 

e rejection of those models yielding a significant "lack of fit" and 

subsequent analysis of the residuals of the models that were judged 

adequate to determine which of the "adequate" models fit best. With 

binomially distributed data, the lack of fit statistic will only have an 

approximate F distribution. However, as a descriptive statistic the 

F~value is still valid, with larger values indicating poorer model fit. 

Because our goal is to compare the adequacy of fit of a range of models 

rather than find the best-fitting model, the F-statistic serves well as an 

objective measure. 

A common practice in fitting mechanistic foraging models to functional 

response data is to force the equation through the origin of the graph of 

number of prey killed versus number available (Akre and Johnson 1979, for 

example). This practice is motivated by the observation that, at zero prey 

available, no prey can be killed. However, this practice denies the 
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biological possibility that the x-intercept may be greater than zero (see 

figure 3 in van Lenteren and Bakker 1976). There is no a priori 

statistical reason to force the fit through the origin; such forcing does 

not necessarily circumvent our problem number 4. The biased predicted 

values that result could lead to the unnecessary rejection of a model by 

the lack-of-fit statistic. In addition, forcing the regression through the 

origin requires the extension of the regression model beyond the range of 

the data. We discourage the adoption of this convention and have not 

forced our curves through the origin unless required to do so in order to 

obtain a solution to a particular equation. 

We have analyzed previously published data sets from a variety of 

sources (table 2; figure 3). In one case only the mean values of the 

number of prey,killed were available, so we simulated the raw data by 

generating ten normally distributed values with a mean equivalent to the 

mean number of prey killed at each prey density and a coefficient of 

variation equal to 20% of that mean. Our literature review revealed 

coefficients of variation from 18% to 165%, with most data sets ranging 

from 30% to 90%. Our use of a 20% value is conservative. In two cases the 

observed standard errors were available and were used. In each of these 

cases, sample sizes from 10 to 20 were apparently used at different levels 

of number of prey available. However, the specific samples sizes for each 

level were not given, so we used the largest sample sizes cited to simulate 

the raw data. In a third case the raw data were shared with us. 

We used 2 types of models: the two mechanistic models formulated by 

Rogers (1972) and Hassell et al. (1977) {equations 1 and 2 respectively) 

and four mathematical functions with no particular ecological interpreta­

tion. These functions are as follows: 
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N = N[1- exp{-P }] 
ha 1 (3) 

N 
· ha = N[1 - exp{-P 1/N}] (4) 

N = ha P1 exp[-P2 exp{-P3Nl] (5) 

Nha P1/[1 + p2 exp{-P3N}] (6) 

where P1 , P2 , and P3 are parameters to be estimated. Equation 3 generates 

type-! curves (Nicholson and Bailey 1935), and equation 4 produces type-!! 

curves (Thompson 1924). Equation 5 is the Gompertz equation and produces a 

family of sigmoid curves that resemble type-III foraging. Equation 6 is 

the logistic equation, which can also produce sigmoid curves. For 

equations 5 and 6 P1 is the asymptote, P2 determines the position of the 

curve along the x axis, P3 determines the rate of approach of the curves to 

the asymptote. The logistic curve, curve 6, is symmetric about 1/2 P1, 

while the Gompertz is not necessarily symmetric. 

The rationale for fitting these models was that at most two of these 

functions should fit any given data set. If two curves with different 

shapes fit a data set, the most parsimonious model may not be the correct 

one; in such a case the curve-fitting method is not statistically powerful 

enough to determine the correct shape of the functional response. Equations 

3 and 4 are one-parameter models. Equation 1 has two parameters, and 

equations 2, 5, and 6 contain three parameters. We consider T in equations 

1 and 2 as a constant. Comparing the success of one-, two-, and three-

parameter models allowed us to evaluate further the power of this method; 

if relatively higher order models inevitably give a better fit to func-

tional response data, the unambiguous biological significance of the 

parameters of these models is questionable. A three-parameter model will 

yield a better fit than a one- or two-parameter model by chance alone 

(Draper and Smith 1981). 
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We employed an iterative method to estimate the parameters that gave 

the best fit for each model to each data set (BMDPAR; Dixon and Brown 

1979). In two cases, we used the parameter values published in the 

original reports to fit our simulated versions of the original data and 

compute lack-of-fit statistics. This procedure allows us to have a crude 

calibration of our reconstruction of the original data. 

The performance of the various models we fit to actual data sets is 

erratic (table 3). Although the data on Notonecta glauca can be adequately 

described by four models (F-values below 2), the data on Plea atomaria is 

not adequately fit by any model. The data on P. atomaria is not fit as· 

well as the data on~· glauca (compare F-values). The Aphelinus thomsoni 

constant-time experiment data yield quite low lack-of-fit statistics for 

five of six mo4els, and the variable time experiments are well fit by four 

of six models. Published parameter estimates yield fits close to those 

obtained by the iterative solution method. 

Such differences among data sets in the capacity to be fit by a unique 

model, or any model, may be based in differences in the relative amount of 

variance in number of prey killed (y). The greater the variance in y, the 

less power we will have to distinguish among competing models. This 

problem is illustrated by the fact that four models fit the N. glauca data 

adequately, while no models fit the ~· atomaria data adequately. The 

coefficients of variation in y at the various numbers of prey available (x) 

range from 32 to 77% in the N. glauca data, 53% to 165% for the ~- thomsoni 

constant-time experiment, 317. to 138% for the A. thomsoni variable-time 

experiment, but are only 20% of the mean in the P. atomaria data (as 

generated by a simulation). 
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For none of our data sets could we arrive at an unambiguous, objective 

choice of a model. The ~- atomaria data have a high "signal-to-noise 

ratio," suggesting that, had the appropriate model been among those tested, 

we should have been able to recognize it. None of our six models appears 

to be the appropriate one. Each of the other three data sets, "noisier" 

than the P. atomaria data, were fit well by several models, precluding an 

objective choice. 

Would better data, with less variation or with a simple pattern of 

variation, allow more accurate discrimination of functional responses, or 

is the protocol itself inadequate? The results from the P. atomaria data 

suggest the latter. Of course, the "true" functional response of data from 

nature can never be determined beyond doubt. We used simulated data from 

known functional responses to determine whether these analytical methods 

-- can discriminate accurately among response curves and predict correctly the 

positively density-dependent regions. We generated type-II and type-III 

curves, with equations 1 and 2, respectively. Constants for these models 

were taken from Hassell et al. (1977, their table 7) and kept as similar as 

possible for the two models to yield pairs of functional response curves as 

similar as possible. The simulated data sets were constructed by 

generating ten normally distributed values with a mean equal to the value 

of the true functional response at each of several levels of prey 

abundance. The coefficient of variation of the number of prey killed is 

approximately 20% at all levels of prey abundance (figure 4). Such a 

correlation of mean and variance is typical of data from nature (Williams 

and Juliano 1985). 

We fit equations 3-6 to these simulated data sets using the iterative 

solution method. This procedure "replicates" our previous analyses of real 
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~ data, except that in these cases we know the correct shape of the 

functional response. Thus we can evaluate the accuracy and precision of 

the iterative method vis ~ vis curve shape. In addition, we "re-fit" 

equation 1 to the data generated from equation 1 and "re-fit" equation 2 to 

the data generated from equation 2, using the usual iterative method. We 

compared the lack-of-fit statistics and parameter estimates from the 

"re-fitting" to the lack-of-fit statistics calculated from the true 

predicted values and the true parameters themselves. This procedure 

calibrated the accuracy of the iterative curve-fitting method. 

The curves numbered A, 8, and C (see figure 4) generated by our 

simulations differ in the rate at which they approach the asymptote and in 

the height of that asymptote, whereas the "2" and "3" version of each curve 

are similar in; these regards. Those curves identified as "2" are all 

decelerating curves (type-II), and "3" are sigmoid curves (type-III). 

Curves A2, A3, 82, and 83 are adequately described by both the Gompertz and 

logistic models (equations 5 and 6 respectively; table 4). Thus the 

type-II and type-III versions of these two curves are best fit by the same 

models: the F-values are very similar. The higher-order models, equations 

5 and 6, have much lower F-values than the other models and thus give much 

better fits, irrespective of whether the real curves are type II or type 

III. None of the models yields a good fit to curve C2. Equations 3 and 6 

fit curve C3; these equations describe type-! and type-III functional 

responses, respectively. This result illustrates the pitfalls of the 

curve-fitting approach: a "true" sigmoid curve (CJ) is fit by one 

sigmoid-shaped model (equation 6), but not another (equation 5), and this 

same curve is fit equally well by two entirely distinct models {equations 3 

and 6). 
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Only data set C2 is clearly fit better by the true functional response 

than by our ad hoc models (table 4). Interestingly, data sets A2, A3, B2, 

and B3 are fit by our ad hoc models as well as, if not better than, by 

those models originally used to generate them. Iterative solutions of the 

"true" model frequently improved its fit to the simulated data relative to 

the "fit" given by the "true" parameters. However, in each of these cases, 

at least one of the true parameter values fell outside the 95% confidence 

intervals for the parameters derived by iteration. 

The equations that adequately fit our 6 artificial data sets do not 

necessarily predict correctly the range and location of the regions of prey 

density in which the predation rate is positively density-dependent 

(table 5). No equation predicted the narrow positive density-dependence 

manifested in ~he "observed data" in data set la. The Gompertz model 

universally came the closest to predicting correctly the density-dependent 

region and did so perfectly in one of the three cases, curve 2b (table 5). 

In the remaining two cases, however, it notably underestimated the range of 

the density-dependent region. Because the actual observations were 

generated by Monte Carlo methods, the observed average proportions killed 

oft:en deviate from the "true" functional response. The inaccuracies in 

predicting the density-dependent region do not necessarily correspond with 

instances where, by chance, the "true" and observed density-dependent 

regions do not correspond (table 5: curves A2, A3, B2). 

Analysis of predation rate 

Predation rate is the ratio of number of prey killed per unit time to 

number available. It can be thought of as the probability that a single 

prey individual will be killed at a given abundance of prey (Oaten and 

Murdoch 1975). To use the predation rate to discriminate among the three 
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functional response models it is necessary to determine the slope of 

predation rate relative to prey abundance. A positive slope observed over 

any range of prey abundances is indicative of density-dependent prey 

killing, no slope indicates type-! responses, and a negative slope type-II 

(Figure lb). 

If one scans a plot of predation rate relative to prey availability, 

it is possible to pick places where the killing rate increases and to test 

for a significant increase in predation rate relative to the initial 

experimental prey density with a chi-square test (Collins et al. 1981). 

This technique creates a bias in the statistical test: the investigator 

chooses the prey densities to be tested for the desired result. This 

procedure heightens the chance of type-! statistical errors, that is, 

finding a sign~ficant difference when none exists. Data sets A2 and B2 

provide examples of an increasing predation rate found by chance where the 

"true" functional response does not have one (table 5). 

The predation rate (p) could be analyzed as a function of prey density 

using weighted regression analysis of angularly transformed values 

(arcsin~). This technique is not effective over all ranges of predation 

rates and densities. The angular transformation approximates the 

binomially distributed variance of a discrete variable as l/(4n). The true 

binomial variance is given by p(l-p)/n. Thus the angular transformation is 

an effective one when n is large (Cox 1970). When n is small the 

approximation overestimates the variance; the severity of the problem 

increases as p deviates from 0.5. For example, n = 5 yields a variance 

estimate of 0.05 for the angular transformation, while the true value 

ranges from 0.018 to 0.05 as p goes from 0.1 to 0.5. The angular 
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transformation also loses information at extreme values of p (p < 0.10 or p > 

0.90) (Cox 1970). 

The most desirable method of analysis should have a transformation of 

the predation rate that is insensitive to the level of predation rate and 

prey density. Logit analysis is a statistical technique formulated for the 

analysis of the relationship between a dichotomous dependent variable and a 

continuous independent variable. It uses the logit transformation to 

expand the range of potential values taken by the dependent variable from a 

range of 0 to 1 to a range of - "" to + oo and provides an exact estimate of 

the binomial variance. Thus, it is appropriate for all values of p and n. 

The statistical model employed by logit analysis is: 

ln f 1 p J p 
a+ BN + £ 

where p is the proportion of available prey killed. This model may be 

fitted to data with the use of a maximum likelihood estimator. The BMDPLR 

statistical routine (Dixon and Brown 1979) and SPSS X (Nie 1983) can 

conduct such analyses and are capable of including grouping variables in 

the analysis. In addition, valid lack-of-fit tests are available for 

logistic regression. An alternative method for the use of this model, 

called empirical logistic regression, is to use logit transformed values as 

the dependent variable. The logit transform is: 
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where R. is the number of prey killed at the jth level of prey available 
J 

(N.). This method requires the use of weighted least-squares regression on 
J 

density, with the weights equal to: 

N 

R. {N. - R.) 
J J J 

Empirical logistic regression requires that there be repeated observations 

at each level of the independent variable. Where R. is 0 or N., the logit 
J J 

transform must be modified to (Snedecor and Cochran 1980:429): 

ln 1-N-J-. -R""""-·-R-;-!--::~-J 

and used with weights: 

N. + 1 

(R. + ~) (N. - R. + ~) 
J J J 

When many zeros are present, this transformation can lead to incorrect 

conclusions. Therefore, it is wise to use a maximum likelihood estimator 

in such instances, and it is necessary to do so when repeated observations 

at each y are not available. 

We used the BMDPLR package to analyze our simulated data sets (curves 

A, B, and C) with the logit regression model. In this procedure, we used 

logit transformed predation rates as the dependent variable, and the 

log-transformed prey density as the independent variable. A type-! 

functional response should yield no significant regression. Type-II curves 

should have a linear model with negative slope as the best fit. A type-III 
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curve should be fit best by a quadratic equation in the independent 

variable, with a positive slope over some region (see figure lb). Thus we 

used a backward elimination technique to arrive at an appropriate 

statistical model, beginning with a cubic model. We sequentially removed 

the highest-order term, checking the lack-of-fit statistic at each step 

until it became significant. We then selected the model with the fewest 

terms that gave a non-significant lack-of-fit chi-square statistic. This 

procedure invokes parsimony to decide among competing models that fit the 

data, and generally results in selecting the "worst fit" of all models that 

"do fit" (because higher-order models tend to fit better than lower order 

models). We used a similar procedure with angularly transformed predation 

rates for comparison. In this case we employed lack-of-fit F tests. 

The analyses using the angular transformation and logit analysis gave 

similar predictions as to the best fit of our data (table 5). This result 

was to be expected for data sets A2 and A3 and C2 and C3 because the 

proportion of prey killed was generally btween 0.1 and 0.9 for these four 

data sets. For data sets B2 and B3, the logit analysis generates 

predictions closer to the observed values of p. More simulations would be 

necessary to determine whether this difference is meaningful, however, 

because the predicted values do not differ greatly between the techniques. 

The predictions of models selected through logit analysis correspond 

much better to the "true" functional responses than the predictions derived 

from our curve fitting of deterministic models (table 5). In no instance 

did logit models predict the existence of a density-dependent region where 

no such region appeared in the observed data. In data set A3, the logit's 

prediction missed the "true" range by one level of the independent 

variable; however, the observed predation rate also declined at this point 
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and the logit's prediction matches this change perfectly. In data sets B3 

and C3, the logit's predictions also missed the "true" range by one level 

of the independent variable, but its incorrect predictions are only tenths 

of a percentage point in the wrong direction. 

DISCUSSION 

It is easy to see why the analysis of predation rate is a powerful 

technique for testing for density-dependent prey killing. 

Density-dependent prey killing is simply indicated by a positive slope of 

predation rate relative to prey availability. To detect a sigmoid 

relationship of number of prey killed to prey availability, it is nec~ssary 

to detect a change in the slope from less than one to greater than one 

before the inflection point (Fig la and lb). Hassell (1966) recommended 

that studies of the functional response focus on studies of predation rate. 

His recommendation was motivated by behavioral considerations; we are 

advocating a similar protocol from a strictly statistical view. 

Although our results were equivocal concerning the superiority of 

logit analysis over least-squares with the angular transform, we suggest 

the use of logit analysis whenever possible. Our results indicate that 

this technique can discriminate type-!! and type-III foraging modes and 

adequately predict density-dependent regions when they are present. Func­

tional response data meet the assumptions of logit analysis more closely 

than least-squares analysis with the angular transform. Although we did 

not generate data where incorrect results were obtained by use of the 

angular transformation, it is always possible that real data will have 

densities that are too low or predation rates that are too extreme for the 

angular transformation to be effective. In fact, functional response 

experiments frequently generate predation rates on the order of 10% 
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(Murdoch and Oaten 1975), especially experiments explicitly minimizing the 

level of prey exploitation (e.g. Akre and Johnson 1979). With logit 

analysis readily available and simple to apply, it seems pointless not to 

use it. Logit analysis has the additional advantage of ready availability 

of a lack- of-fit test, performed by BMDPLR, for unambiguous choice of 

appropriate models. 

We discourage behavioral studies that analyze the number of prey 

killed by fitting mechanistic foraging models and then ascribe biological 

significance to the parameters of the models. We have shown that many 

different mechanistic models can fit the same data. Very different 

biological interpretations could be ascribed to the parameters of these 

models at will, and only subjective criteria allow selection among the 

models (Smith 1952). Higher-order models usually give better fits than 

lower-order models, and this observation casts a shadow of uncertainty on 

the significance of parameter interpretations. We realize that we are 

advocating~the abandonment of a popular analytical technique. 

However, we concede that there may be other valid reasons for esti­

mating the parameters of a mechanistic model that is chosen ~ priori 

(albeit subjectively). We suggest a new protocol for this purpose. The 

first step would be to determine whether the data display type-!, -II, -III 

foraging by logit analysis of predation rate. If the data display the type 

of foraging appropriate for the chosen mechanistic model, then the 

investigator may proceed to the second step. This second step entails 

estimating the parameters of the chosen, appropriate mechanistic model from 

a source independent of the data on which the fit (or the appropriateness) 

of that model was tested. For example, the original data set could be 

split; one-half of the data could be used to analyze the predation rate, 
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and the other half could be used to estimate the parameters of the chosen 

mechanistic model (Selvin and Stuart 1966; James and McCulloch 1985). This 

procedure may be prohibitive because the size of the data set greatly 

affects the results of curve fitting. Some preliminary tests we conducted 

with simulated data sets having 5 instead of 10 observations per prey 

abundance, as reported here, indicated that more models give an adequate 

fit for the smaller data sets than for the larger. An alternative 

procedure would entail repeating the entire experiment to obtain 

independent data for parameter estimation. A variety of methods for 

parameter estimation were compared by Williams and Juliano (1985). Our 

suggested 2-step protocol corresponds to Box et al.'s (1978) "empirical" 

and "mechanistic" modelling; they provide extensive discussion of the 

rationale for such an approach. 

Spitze (1985) suggested that the parameters of some mechanistic 

foraging models are instantaneous quantities, resulting from the combined 

effects of several behavioral acts, and therefore cannot be estimated 

independently of functional response data. We disagree. Based on results 

presented in this paper, we feel that a failure to estimate such parameters 

independently of functional response data precludes any critical hypothesis 

testing of the models in question or the parameters themselves. We agree 

with Royama (1971): curve fitting does not validate mechanistic models. 

We advocate testing the predictions of mechanistic models experimentally. 

For example, van Lenteren and Bakker (1976) compared the functional 

responses of parasitoids with a constant searching time in a prey patch to 

those allowed to vary the time spent in such a patch. Mechanistic models 

suggest that this difference could turn a type-!! forager into a type-III 

forager (Hassell et al. 1977), and this was the case. 
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Our analyses also indicated that the lack-of-fit statistic was useful 

in determining viable models whereas the test for significant regression 

alone was a poor method. In fact, most models gave highly significant F 

statistics for regression. For example, data set B3, when fit by equation 

3, had a high F value for lack-of-fit but an F for regression exceeding 283 

and a coefficient of determination of 76%. Such models yielded high 

lack-of-fit values because of bias in the residuals that is not accounted 

for by the F for regression test (Draper and Smith 1981). Similar results 

were reported by Williams and Juliano (1985). 

The question in our title, Can the functional response be determined, 

cannot be answered affirmatively in all cases. Our best analytical tools 

cannot cope with situations such as arose in data set B2, where the 

observed killing rate increased over a range of prey densities when the 

"true" rate did not. This artifact arose because the "true" killing rate 

was low. At low prey abundances (e.g. 5), the number of prey killed was 

usually zero. As the abundance of prey increased, the probability of a 

predation event did not change, but the increased number of "trials" 

(potential prey) produced an increase in the "observed" killing rate. 

Stochastic variation alone yielded the appearance of a predation refuge at 

low prey abundance and density-dependent predation at slightly higher 

abundances. Many replicates may be necessary to estimate the predation 

rate correctly at low numbers of available prey. Instances where density-­

dependent predation occurs at such low prey availabilities have been 

reported (Collins et al. 1981; van Lenteren and Bakker 1976), and we feel 

that such data might be re-examined in light of our results. 
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SUMMARY 

We evaluated several methods for the analysis of functional response 

data by asking: Can a given method discriminate among functional 

responses, and can it accurately identify regions of positive density-

dependent predation? The methods we evaluated were: curve fitting by eye, 

fitting of mechanistic foraging models, linear least-squares analysis using 

the angular transformation, and logit analysis. With the use of data from 

nature and simulations, we found only the analysis of predation rates with 

the angular transformation and logit analysis capable of determining the 

"true" functional response and accurately estimating regions of 

density-dependence. Of these two methods, functional· response best 

fulfills the assumptions of logit analysis. Angularly transformed 

predation rates only approximate the assumptions of linear least-squares 

analysis for predation rates between 0.1 and 0.9. In most cases studied, 

several different deterministic foraging models adequately described the 

same data, indicating that these models cannot be used to determine which 

types of functional response a data set displays. 
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Table l. Results of curve fitting survey. Data sets A, B, C, and D 

correspond to figs. la, b, c, and d of Hassell et al. 1977. Numbers are 

number of respondents choosing each functional response curve type as best 

describing each data set. 

Data set A B c D 

Functional I II III I II III I II III I II III 

response type 

26 29 25 21 36 22 24 22 35 0 6 75 

X2 statistic 0.33 5.34 3.63 128.7* 

* p < .001 
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Table 2. Sources of data sets analyzed, 

Source Predator 

Hassell et al. 1977 Notonecta glauca 

Hassell et al. 1977 Plea atomaria 

Collins et al. 1981 Aphelinus thomsoni 

e e 

Prey Comments 

Asellus aquaticus raw data shared by author 

Aedes aegypti only mean number of prey 

killed published 

Drepanosiphum platanoidas mean and standard errors 

plotted 

., .. 



Table 3. Results from lack-of-fit analysis of models predicted by 

equations 1 through 6 to fit data sets taken from literature sources. 

Presence of a dash indicates that the iterative procedure failed to 

converge. F-literature are results of fitting parameter estimates from 

published sources, F-iteration are results from interative solutions. 

Data Eguation F-literature F-iteration df 

A. thomsoni 1 0.6 0.5 5,133 

(constant-time expt.) 2 0.8 0.3 4,133 

3 4.4 6,133 

4 1.2 6,133 

5 0.14 4,133 

6 0.08 4,133 

~~~::. 
Sii 

e A. thomsoni 1 0.9 5,133 

(variable-time expt.) 2 0.8 4,133 

3 7.3 6,133 

4 1.2 6,133 

5 0.7 4,133 

6 0.7 4,133 

P. atomaria 1 5.9 4.5 7,81 

2 18.7 6,81 

3 37.4 8,81 

4 5.8 8,81 

5 3.3 6,81 

6 2.3 6,81 
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Table 3 (continued). 

Data Equation F-literature F-iteration df 

N. glauca 1 1.3 9~78 

2 1.0 8~78 

3 5.3 10~78 

4 6.2 10~78 

5 1.9 8,78 

6 1.1 8,78 
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Table 4. Results from lack-of-fit analysis of true functional responses, 

fit predicted by models used to generate data sets. and equations 3 through 

6 to data sets generated by simulation. F-true are data for fit of true 

functional response, and F-iteration are results of iterative parameter 

estimation for indicated models. 

Data Set Equation F-true F-iteration df 

A2 1 1.2 1.2 9,99 

3 41.9 10,99 

4 20.2 10,99 

5 1.1 8,99 

6 1.3 8,99 

A3 2 1. 2 1.0 8,99 ~ 
~-

1~ 

e 3 10.3 10,99 

4 12.3 10,99 

5 1.5 8,99 

6 1.3 8,99 

B2. 1 6.4 6.4 7,81 

3 9.1 8,81 

4 42.5 8,81 

5 0.8 6,81 

6 0.6 6,81 
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Table 4 

Data 

B3 

C2 

e 

C3 

(continued). 

Equation 

2 

3 

4 

5 

6 

1 

3 

4 

5 

6 

2 

3 

4 

5 

6 

F-true 

2.4 

1.5 

0.8 

32 

F-iteration 

1.8 

9.1 

42.9 

1.6 

1.0 

0.4 

5.8 

2.4 

3.5 

2.3 

0.5 

0.9 

11.4 

2.8 

1.4 

df 

6,81 

8,81 

8,81 

6,81 

6,81 

9,99 

10,99 

10,99 

8,99 

8,99 

8,99 

10,99 

10,99 

8,99 

8,99 



Table 5. The "true," observed, and predicted proportions of prey killed 

relative to number of prey available for simulated data. Predicted 

proportions reported for all models yielding adequate fit of data. 

Brackets enclose density-dependent portions of curves. 

Number 

available 

5 

7 

10 

15 

20 

25 

30 

45 

60 

80 

100 

"True" Observed Logistic 

.,340 .260- .402 

.321 .329 .323 

.297 .320 .270 

.262 .260 • 231 

.234 .200 .214 

.211 .196 .203 

.192 .197 .193 

.150 .151 .160 

.123 .135 .129 

.099 .099 .099 

.083 .079 .080 

33 

Models 

Logit Angular 

Gompertz analysis transform 

CURVE A2 

.369 .392 .334 

.311 .343 • 301 

.270 .295 .270 

.238 .245 • 234 

.220 .214 .210 

.206 .191 .192 

.193 .174 .177 

.157 .141 .148 

.127 .121 .127 

.099 .103 .108 

.080 .091 .095 

¥-t~i . 
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Table 5 (continued). 

Models 

Number Log it Angular 

available "True" Observed Logistic Gompertz analysis transform 

CURVE A3 

5 .298 .300 .428 .377 .349 .316 

7 .345 .329 .387 .375l .374 .351 

10 .381 .430 .371 .382 .381 .367 

15 .385 .387 .371 .381 .367 .364 

20 .358 .380 .361 .359 .341 .347 

25 .322 .324 .334 .327 .314 .326 
~{ 

30 .287 .267 .299 .293 .288 .301 ·e 45 .209 .200 .212 .212 .222 .237 

60 .161 .163 .160 .161 .172 .181 

80 .123 .134 .120 .121 .126 .123 

100 .099 .097 .096 .097 .094 .080 
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Table 5 (continued). 

Models 

Number Log it Angular 

available "True" Observed Logistic Gompertz analysis transform 

CURVE B2 

5 .045 .000 .005 .001 .004 .000 

7 .044 .oool .008 .006 .011 .002 

10 .043 .020 .020 .024 .021 .013 

15 .040 .053 .051 .048 .035 .028 

20 .038 .050 .054, .051 .042 .035 

e 25 .036 .040 .045 .045 .043 .038 

30 .034 .033 .038 .039 .042 .039 

45 .030 .024 .025 .026 .031 .031 

60 .026 .025 .019 .020 .020 .022 
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Table 5 (continued). 

Models 

Number Log it Angular 

available "True" Observed Logistic Gompertz analysis transform 

CURVE B3 

5 .044 .000 .065 .040 .016 .000 

7 .058 .014 .061 .049 .032 .012 

10 .072 .090 .064 .063 .055 .044 

15 .084 .087 .075 .081 .081 .079 : 

20 .086 .095 .085 .089 .091 .093 ~~-

e 25 .084 .080 .089 .089 .092 .096 

30 .079 .080 .086 .084 .088 .092 

45 .063 .071 .065 .065 .067 .068 

60 .050 .048 .049 .050 .048 .042 
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Table 5 {continued). 

Models 

Number Log it Angular 

available "True" Observed N-Ne-p Gompertz analysis transform 

CURVE C3 

5 .313 .260 .638 .721 .243 .243 

7 .381 .343 .638 .615 .343 .349 

10 .455 .460 .638 .551 .447 .453 

15 .535 .533 .638 .528 .543 .547 

20 .586 .575 .638 .541 .595 .597 ~., 

25 .620 .612 .638 .566 .624 .628 

30 .643 .637 .638 .594 .642 .646 

45 .678 .680 .638 .661 .662 .668 

60 .683 .693 .638 .686 .661 .669 

80 .665 .606 .638 .665 .647 .658 

100 .630 .639 .638 .611 .627 .641 
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Figure Legends 

Figure 1. Plots of the functional response. a. Three functional response 

types plotted as the number of prey killed relative to the number of prey 

available. b. The same three functional responses plotted as predation 

rate or proportion of available prey killed relative to number available. 

After Ricklefs, 1979. 

Figure 2a. Demonstration of data where best fit by linear least-squares 

yields estimates outside the possible range of predation rate. b. The 

potential impact of the choice of x values is shown in this figure. The 

data differ frpm those in figure 2 by the addition of observations at 

several high prey abundances. Note that the fitted line differs greatly 

from that in figure 2a. 

Figure 3. Plots of raw data taken from published sources: 

a. Collins et al. 1981~ ~- thomsoni constant-time experiment; b. Collins 

et ~1. 1981, ~- thomsoni variable-time experiment; c. Hassell et al. 1977, 

~- glauca; d. Hassell et al. 1977, P. atomaria. Closed circles indicate 1 

point. Open circles indicate 2 overlapping points, open triangles 3, and 

open squares 4, and numbers are plotted for respectively higher numbers of 

overlapping points. 

Figure 4. Plots of raw data generated by simulations. Curves are iden-

tified on each plot; "2" corresponds to type-II form and "3" to type-III. 

Closed circles indicate 1 point. Open circles indicate 2 overlapping 
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points, open triangles 3, and open squares 4, and numbers are plotted for 

respectively higher numbers of overlapping points. 
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