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The concept of topology has been widely used to classify materials. Majority

of works are focused on quantum systems. Until recently, many advancements

have also been made in the field of topological mechanics. However, the con-

nections between them are still limited to the linear level of mechanical systems

which are naturally nonlinear. In this thesis, we expose this field with different

approaches by studying topology of nonlinear classical systems and possible

connections to quantum systems.

Firstly, we present a generic prescription of defining topological indices

which accommodates nonlinear effects in mechanical systems without taking

any approximation. Invoking the tools of differential geometry, a Z-valued

quantity in terms of a topological index µ in differential geometry known as

the Poincaré-Hopf index, that features the topological invariant of nonlinear

zero modes (ZMs), is predicted. We further identify one type of topologically

protected solitons that are robust to disorders. Our prescription constitutes a

new direction of searching for novel topologically protected nonlinear ZMs in

the future.

Secondly, we connect this topological index µ to the Witten index W in super-

symmetric quantum systems. To establish the connection, we study two topo-

logical number in isostatic mechanical systems and supersymmetric quantum

systems respectively. On one hand, we define Qnet for an isostatic mechanical



system that counts the number of robust zero-energy configurations. On the

other hand, we write a supersymmetric Hamiltonian that has a well-defined

Witten index that tells us the number of robust zero-energy states. Finally, we

show that Qnet = W under very general conditions. Our result suggests a di-

rect connection between nonlinear mechanical systems and interacting quan-

tum systems, and therefore points out an alternative way to understand the

topology of quantum systems.

Finally, we study topological frustration which is the existence of classical

zero modes that are robust to many but not all distortions of the Hamiltonian.

For a magnet whose classical limit exhibits topological frustration, an impor-

tant question is what happens to this topology when the degrees of freedom are

quantized and whether such frustration could lead to exotic quantum phases of

matter like a spin liquid. In quantum spin ladders, we find low-energy eigen-

states corresponding to known symmetry protected topological (SPT) ground

states, and a special role of S U(2) symmetry that demands the existence of

extra dimensions of classical zero modes—the phenomena we call symmetry-

enriched topological frustration (SETF). These results suggest that in the ab-

sence of magnetic order, classical topological frustration manifests at finite spin

as asymptotically low energy modes with support for exotic quantum phenom-
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CHAPTER 1

INTRODUCTION

One way to study the connections of topology between classical mechanics

and quantum mechanics is starting with mechanical systems. Mechanical sys-

tems offer a remarkable connection between physics and engineering. Through

their simplicity, they have inspired both ideas at the foundation of theoretical

physics and a sense of control over our physical world. In the recent field of

topological condensed matter, following hints that topology can play a role in

nonlinear fine-tuned mechanical systems[30], Kane and Lubensky[26] uncov-

ered a connection between topological insulators[21, 46, 28, 23] and linearized

balls-and-springs models. With importance in the field of metamaterials[37, 44,

71, 50, 38, 62, 64, 56, 63, 42, 45, 55, 72, 51, 74] and magnetics[48, 47], they re-

alized if constraints define the system, zero modes (ZMs) can be topologically

protected by TKNN-like topological invariant[57].

It was quickly realized that Kane and Lubensky’s ZMs in the case of a chain

model they construct can survive back into the nonlinear regime and become

bulk solitons[14]. But a formally identical origami system was identified that

does not exhibit these solitons[13]. More nonlinear ZMs were found in me-

chanical systems in numerical simulations[41, 73]. In a one-dimensional chain,

a domain wall separating two distinct polarizations can be identified by con-

structing a sequence of consecutive maps on the space of ZMs of a single unit

cell[75]. However, that does not quite guarantee that this domain wall can move

continuously along the chain like a soliton. Thus, the existence of a soliton relies

on the exact parameters of a model[52]. To the best of our knowledge, however,

it remains unclear if solitons observed in generic mechanical systems are always
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topologically protected or not, and if so, what is the topology to classify them?

To answer these questions, we develop an exact theory to study the topolog-

ical protection of the kinematics of periodic mechanisms satisfying holonomic

constraints such as those that arise in e.g. linkages and origami. Using the con-

cept of differential geometry, our theory predicts the existence of a Z-type topo-

logical index µ which can be used to classify nonlinear ZMs such as solitons.

The topological index µ(p) defined for a zero-energy configuration point p

in an isostatic mechanical system has a similar mathematical expression that

is used to calculate the supersymmetric partition function in the topological

quantum field theory[36, 5]. For a certain “symmetric” case, the sum over

all µ(p) is exactly equal to the Witten index of the BRST type supersymmetric

model[2, 60, 3]. The definition of this “symmetric” case will be provided be-

low. In this model, the Hamiltonian can be interpreted as complex fermions

that conserve fermion numbers, such as electrons in a normal metal, coupled to

anharmonic phonons. However, in a mechanical system, constraints, in general,

do not have this symmetry. So this connection seems restricted to limited cases.

Fortunately, a more general supersymmetric Hamiltonian can be written in a

way that does not require the constraint functions to obey this symmetry[31]. In

this case, U(1) symmetry of the fermion systems is broken and thus the Hamilto-

nian can then be interpreted as Majorana fermions (which can realize a p-wave

superconductor[29]) coupled to anharmonic phonons. Although the fermion

number is no longer conserved, the fermion parity is still well-defined. Thus,

we can calculate the Witten index even in a “non-symmetric” case. Then a ques-

tion arises: for a generic set of constraint functions, what is the relation between

the Witten index and the topological index µ(p)?
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Another candidate to study the connections of topology between classi-

cal mechanics and quantum mechanics is frustrated spin systems. Geomet-

ric frustration in physics brings many exotic phenomena. Spin lattices such

as triangular, kagome, and pyrochlore latticesmay possess novel quantum

phenomena[4, 9, 10, 8, 54] and novel classical phenomena arising from a large

degeneracy of classical ground states such as spin origami[53, 43, 49]. These

classical phenomena seem at first sight disconnected from the quantum phe-

nomena but perhaps not. If we could solve some of these frustrated spin sys-

tems in the large-but-finite spin regime, what kinds of quantum phenomena

would be revealed?

In many cases, it is known that the degeneracy of classical ground states is

lifted by quantum fluctuations and the ground state becomes magnetically or-

dered in two or three-dimensional space. This order-by-disorder phenomenon

has been established by performing perturbative expansions or spin-wave ap-

proximation approaches in the large spin S limit. We know for example that in

Heisenberg antiferromagnets on a triangular, square, or kagome lattice, order-

by-disorder occurs[15, 69, 32]. However, a magnetically ordered phase may

not always be the fate of a frustrated spin system. Taking into account higher-

order corrections in 1/S , it has been shown that a magnetic order ground state

is not easily established and may even be absent in some frustrated spin sys-

tems, including some square lattice models[11, 70] and the pyrochlore Heisen-

berg antiferromagnet[22, 24]. In the cases where an ordered phase is not the fate

of frustration, can frustration support exotic quantum phenomena? If so, what

kinds of frustration can support these phenomena?

We consider the case of geometric frustration and whether it can support ex-

3



otic quantum phenomena at large-but-finite S . In particular, we are focused on

the case where the Hamiltonian of a geometrically frustrated spin system can be

written as a classical frustration-free form. In this case, the classical ground state

can be understood as zero modes of a constrained problem. The zero modes

of classical spins then obey Moessner-Chalker-Maxwell counting[20] and form

mechanical analogs of topological mechanics[27] like spin origami[49]. We call

this phenomenon “topological frustration” and wonder whether it supports

topological quantum states, quantum spin liquids, or other exotic quantum phe-

nomena.

Some of the results presented in this thesis have previously been published

in Refs. [36] or submitted to arXiv ( https://arxiv.org/abs/2207.10045 and

https://arxiv.org/abs/2207.10045)[34, 35].

4



CHAPTER 2

TOPOLOGY IN NONLINEAR MECHANICAL SYSTEMS

In this chapter, we introduce the definition of the topological index µ in non-

linear mechanical systems. To illuminate its applications, we further use this

topological index to generate another topological index we call I that reveals

whether or not a topologically protected ZM can propagate through the sys-

tem. Applying this to the Kane-Lubensky (KL) chain, we realize the topology to

classify the (two) distinct phases of the KL chain, namely the “flipper” and the

“spinner”, and further show that the existence of the spinner soliton is topolog-

ically protected and robust to disorders (unlike the flipper). In distinction, the

origami chain does not support any soliton despite the superficial similarity of

its linear ZMs to those of the KL chain.

2.1 The mechanics of constrained systems

We start by characterizing the type of mechanical system we are interested in.

We assume that the state of the system can be described by generalized degrees

of freedom, θ = (θ1, θ2, · · · , θn), and that the system is characterized by a set of

(spring) extensions e(θ) = (e1(θ), · · · , em(θ)). While the elastic energy of such a

system can be written as E(θ) =
∑

i kiei(θ)2 for a set of moduli ki > 0, here we

will only be interested in the ground state configurations specified by θ̄ such

that e(θ̄) = 0. If we work with a mechanical linkage or a spring network as

in Ref.[26], we can think of θ representing the positions of the vertices of our

network and ei(θ), the extension of the springs (from their equilibrium lengths).

In this language, the Jacobian ∂ei(θ)/∂θ j is termed the rigidity matrix.
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Figure 2.1: (a)The KL chain has an edge mode on either the left or right
edge. (b) The origami chain has an edge mode on either the left
or right edge.

Before presenting our prescription of defining topological indices, it is use-

ful to review two examples that pose some apparent paradoxes in defining the

topological invariant of the linear ZMs. First, for the KL chain, it is often easier

to express the generalized coordinates in terms of the rotation angle of a series

of rotors so that θi is the angle between the ith rotor and the vertical axis as shown

in Fig. E.1 (a). The extension of the ith spring which connects the ith rotor with

the (i + 1)th rotor then takes the form ei(θ) = f (θi, θi+1), where

f (θi, θi+1) = [(a + r sin θi+1 − r sin θi)2 (2.1)

+(r cos θi+1 + r cos θi)2]1/2 − L,

a, r, and L are the distance between two consecutive pivot points, the radius of
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the rotors, and the equilibrium length of the springs, respectively. For an open

chain of n springs (and n+ 1 rotors), if we choose θn+1 = θ1, then we have exactly

as many constraints as the degrees of freedom, making the system isostatic.

In the second example of the origami chain[13], we instead use θi to denote

the supplement of the dihedral angle of one of the folds of each vertex, also

called the fold angle [Fig. E.1 (b)] (see Appendix). In this case,

f (θi, θi+1) = A sin2(θi/2) − B sin2(θi+1/2) + ϵ, (2.2)

where 0 < A < 1, 0 < B < 1, and ϵ are defined in Appendix A. While it is

straightforward to generalize the above equations to any periodic structure, for

simplicity, we specialize to the examples mentioned above focusing on Eq. (2.1)-

(2.2) for the remainder of this paper.

In both the KL chain and the origami chain, if we assume a uniform solution

of e(θ̄) = 0, following Ref. [26], the polarization is defined as the integer

Q =
1

2πi

∫ π

π

dq
∂

∂q
ln

[
∂1 f (θ̄, θ̄) + ∂2 f (θ̄, θ̄)eiq

]
. (2.3)

where ∂a implies the derivative with respect to the ath variable in the argument

of f . When |∂2 f (θ̄, θ̄)| > |∂1 f (θ̄, θ̄)|, Q = 0 and when |∂2 f (θ̄, θ̄)| < |∂1 f (θ̄, θ̄)|, Q = 1.

These two values of Q define two distinct topological phases. For finite systems,

the bulk is rigid for both Q = 0 and 1, however, the feature that distinguishes

these two phases is the location of the linear ZM.

The behavior above is exhibited by the linear ZMs in both the KL chain and

the origami chain, as it should. But in the KL chain (and not the origami chain),

certain non-linear deformations can propagate across the system resulting in the

edge mode appearing on the other side. In that sense, the polarization defined

by Eq. (2.3), though an integer, is not necessarily topologically robust.
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2.2 A topological index for isostatic systems

To understand why the two models discussed above behave so differently in

presence of non-linearity, we introduce a prescription of defining topological

indices in terms of the Poincaré-Hopf index[7] The definition of the index in-

volves a generic non-linear map e(θ) (Eq.2.1 and Eq.2.2 are two examples we are

focused on in this work) which can be thought of as the vector field on the space

of generalized coordinates as shown in Fig. 2.2 (a). In the isostatic case (m = n),

for a solution θ̄ satisfying e(θ̄) = 0, we can define an index µ(θ̄) by computing the

winding number of the map e(θ) on the (n − 1)-dimensional sphere enclosing θ̄,

S θ̄ by integrating the differential form

µ(θ̄) =
1

(n − 1)!An−1

∮
S θ̄

ei1dei2 ∧ ... ∧ deinϵ
i1,i2,...,in

(e2
1 + e2

2 + ... + e2
n)n/2

, (2.4)

where An−1 is the surface area of a unit (n − 1)-dimensional sphere. When, for

example, n = 2, it yields the so-called first Chern number which frequently

appears in classifying the topology in electronic band structures. µ(θ̄) is well-

defined for any isolated solution θ̄ even when the Jacobian is not full rank. It is

also known as the degree of a map[40] which implies µ(θ̄) predicts the minimum

number of non-linear ZMs that would pass through the configuration θ̄ after

releasing one constraint.

When the Jacobian is full rank, µ(θ̄) = sgn[det(∂ei(θ̄)/∂θ j)][19]. Under this

condition, the configuration θ̄ is structurally stable meaning that µ(θ̄) is invariant

under small, continuous deformations of the constraint functions e(θ). The idea

of topological protection in a linear theory can now be cast as the following:

without any symmetry, the phonon spectrum is characterized by a Z2 invariant

protected by a bulk gap that closes when the Jacobian is not full rank.
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Figure 2.2: (a) The vector field e(θ̄) is indicated by arrows. The winding
number µ(θ̄) is a topological index which measures how many
times the vector field rotates along S θ̄. (b) The total intersection
number I is a homotopy invariant of a ZM and counts the min-
imal number of periodic configurations along that ZM. (c) A
ZM with a deformed trajectory has the same total intersection
number as (b).

A deeper physical meaning of µ(θ̄) relies on the form of constraints. For

example, in the KL and origami chain with periodic boundary conditions, for

a uniform solution θ̄, µPBC(θ̄) can be simplified to µPBC(θ̄) = sgn{[∂1 f (θ̄, θ̄)]n −

[−∂2 f (θ̄, θ̄)]n} which only depends on the magnitude of ∂1 f (θ̄, θ̄) and ∂2 f (θ̄, θ̄).

Consequently, µPBC(θ̄) = 1 when |∂1 f (θ̄, θ̄)| > |∂2 f (θ̄, θ̄)| and µPBC(θ̄) = −1 when

|∂1 f (θ̄, θ̄)| < |∂2 f (θ̄, θ̄)|. Therefore, µPBC(θ̄) = 2Q − 1, where Q is the topological

polarization discovered by Kane and Lubensky [26].
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2.3 examples and applications

The topological index µ(p) is well-defined for any isolated solution points even

when the rigidity matrix is not full rank. This provides us a new way to study

what happens at the gapless point. By the definition, the magnitude of the topo-

logical index tells us the minimum number of points in the coordinate space

which are mapped into the same nonzero f around the solution point p. There-

fore, the physical meaning of the topological index µ(p) is the (minimum) num-

ber of zero modes passing through the point p after dropping one constraint.

A one-dimensional nonlinear ZM (drop one constraint in an isostatic system)

can then be studied by tracking those topological indices as we continuously de-

form one of the constraints in an isostatic system. Because the net topological

index Qnet, defined as the sum over all the topological indices at the solution

points, is conserved, the only way to annihilate charges Qnet is combining one

positive charge with one negative charge. Therefore, the topology of the non-

linear ZMs can be predicted by drawing the possible ways of connecting two

topological indices with the opposite signs.

2.3.1 Two-rotor model

Let’s take a two-rotor model for example. As shown in Fig.E.2(a), each site has

a rotor with radius r, and the distance between two pivot points of adjacent ro-

tors is a. Two adjacent rotors are constrained by a spring with rest length L1.

The rotating angle θi is defined clockwisely with respect to +y-axis for the first

rotor, and counterclockwisely with respect to −y-axis for the second rotor. Imag-
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Figure 2.3: (a)Four different solutions for the two-rotor model with an ex-
tra spring connecting the second spring back to the first spring
like a periodic boundary condition. (b)Nonlinear zero modes
in the the two-rotor model. The blue (red) circles are the solu-
tion points for the periodic boundary condition (w = 0) with
topological index +1 (−1). The blue (red) lines are the solu-
tion points with topological index +1 (−1) as we continuously
change L2. The black circles are the points where one positive
and one negative topological index combine. Two topologi-
cally different nonlinear zero modes are separated by the phase
transition point L1 = 2r − a where two black circles merge.
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ine that we connect the second rotor back to the first rotor by one extra spring

with length L2 like a periodic boundary condition. Then the two-rotor model be-

comes an isostatic system with four different zero-energy points, namely, θi = θc,

−θc, π − θc, π + θc where θc = sin−1(
√

a2+4r2−l2
2r ).

We can then predict the topology of nonlinear zero modes of the two-rotor

model (after dropping the extra spring which connects the second spring back

to the first spring) by connecting those topological indices with opposite signs.

As shown in Fig.E.2(b), there are two topologically different ways to connect

those four topological indices. For Phase I, two pairs of +1 and -1 form two

separated loops. The solution θs = θc is connected to the solution θs = π + θc,

while the solution θs = −θc is connected to the solution θs = π − θc. On the other

hand, Phase II has four solutions connected and form a single loop. These two

topologically different phases have been found in Ref.[14] by explicitly solving

the model.

The ways of connecting topological indices are governed by the points where

one positive and one negative topological index combine. Those points them-

selves are structurally unstable because any small change of w would either

separate the two topological indices or annihilate them. The ways of connect-

ing charges change when two structurally unstable points merge. As shown in

Fig.E.2(a) and (b), the topological phase transition occurs when two structurally

unstable points merge at l = 2r − a.
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2.3.2 Other examples

Consider a coordinate space Rn with the element (x1, x2, ..., xn) where xi is the de-

gree of freedom in the system. A constraint space has the element ( f1, f2, ..., fn)

where fi is a function of x1, x2, ..., xn and fi = 0 is the constraint. In Rn space,

the net topological index is invariant as long as no charge leaves finite region

or comes from infinity and all solution points are isolated. If we think f is an

n-dimensional vector field in the Rn space, the net topological index is indeed

the index of the vector field in the Poincare-Hopf theorem. The rules of con-

necting topological indices are similar to the example of the KL chain, but now

topological indices can end up or come from infinity.

Let’s consider an example, f1 = x2 − 1 and f2 = x− y[see Fig.3.2(a)]. There are

two solution points, (1, 1) and (−1,−1). The corresponding topological indices

are +1 and −1 respectively. There are three possible configurations. One can

draw a loop passing through both solution points, one line passing through both

solution points, or two lines passing through two solution points separately.

The ZMs can be found by directly dropping f1 or f2. As shown in Fig.3.2(a),

when we drop f1 we get x = y which is a ZM passing through both solution

points. On the other hand, when we drop f2 we get x = 1 and x = −1 which are

two ZMs passing through two solution points separately.

Consider another example, f1 = x2 − y2 and f2 = 2xy[see Fig.3.2(b)]. There is

only a +2 topological index at (0, 0). The only configuration is two lines inter-

secting at point (0, 0). As shown in Fig.3.2(b), when we drop f1, we get x = 0 and

y = 0 which are two ZMs passing through the point (0, 0). On the other hand,

when we drop f2, we get x = y and x = −y, which are two ZMs passing through

the point (0, 0) as well.
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Figure 2.4: (a)Example of f1 = x2−1 and f2 = x−y. Two topological indices
+1 and −1 are at point (1, 1) and (−1,−1) respectively. The red
line is the zero mode after dropping f1, and the blue lines are
the zero modes after dropping f2. (b)Example of f1 = x2 − y2

and f2 = 2xy. One topological index +2 is at point (0, 0). The
red lines are the zero modes after dropping f1, and the blue
lines are the zero modes after dropping f2. (c)Example of f1 =

x2 − y2 − 9 and f2 = xy − 20. Two +1 topological indices are at
point (5, 4) and (−5,−4) respectively. The red lines are the zero
modes after dropping f1, and the blue lines are the zero modes
after dropping f2. (d)Example of f1 = x(x− y)− 1 and f2 = x− 1.
One topological indices +1 at point (1, 0). The red line is the
zero mode after dropping f1, and the blue lines are the zero
modes after dropping f2. One of the blue lines is a hidden zero
mode which does not directly pass through the critical point.

14



Figure 2.5: (a)The vector field f = (x(x−y)−1, x−1) in x−y plane is plotted in
blue color. The black circle with radius 5 is the boundary. The
red points are critical points or boundary critical points. There
are one critical point (1, 0) inside the circle with a +1 topologi-
cal index and two boundary topological indices with +1 and −1
charges respectively. (b)The red curve f∥ is the projection of f
on the tangent direction and the blue curve f⊥ is the projection
of f on the normal direction. There are six boundary critical
points at boundary and only two of them with f pointing in-
ward (negative f⊥) marked with black points. The boundary
topological index are +1 and −1 respectively.

The third example is f1 = x2 − y2 − 9 and f2 = xy − 20[see Fig.3.2(c)]. There

are two +1 topological index at two solution points (5, 4) and (−5,−4) sepa-

rately. Because two +1 charges can not be connected, the only possible config-

uration is two lines passing through two solution points separately. As shown

in Fig.3.2(c), when we drop either f1 or f2 we both get two hyperbolas passing

though two solution points separately.

Finally, we look at an example in which a charge leaves finite region or comes

from infinity. Assume that we have two constraints f1 = x(x−y)−1 and f2 = x−1

which have a single solution (1, 0). As shown in Fig.3.2(d), when we drop f1, we

get a ZM x = 1 passing through the solution point (1, 0). On the other hand,
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when we drop f2, since the determinant of the Jacobian matrix is x, as continu-

ously changing f2, the sign of the topological index would change. This implies

that a single topological index could leave finite region or come from infinity. As

shown in Fig.3.2(d), after dropping f2, two ZMs show up. One passes through

the solution point (1, 0), but the other one does not pass through the solution

point. The latter one is a hidden ZM which arises from the boundary charge at

infinity.

The boundary topological index Qb at infinity can be defined by the similar

concept and combines with the net topological index Qnet being the Euler char-

acteristic χ which only depends on the manifold. Assume that f is a vector field

on the coordinate space. We draw a large (n−1)-dimensional sphere (boundary)

covering all finite region, and project f onto the (n−1)-dimensional sphere. Then

we define the boundary critical points on the boundary as the points where the

projection of f vanishes. Locally for each boundary critical point, we can define

a topological index and only the boundary critical points with f pointing inward

contribute as the boundary topological indices. As a result, we can write

χ(Vn) = Qnet(f) + Qb(f) = 1 (2.5)

For the example of f1 = x(x− y)− 1 and f2 = x− 1, the vector field in R2 is plotted

in Fig.2.5(a). There is only one solution point (1, 1) at finite region which has

+1 topological index. Imagine that a circle at origin with radius 5 is drew as

the boundary. In Fig.2.5(b), the projection of f on the tangent direction f∥ and

on the normal direction f⊥ are plotted. There are six boundary critical points

at boundary (when f∥ = 0) and two of them with f pointing inward (negative

f⊥). The boundary topological index are +1 and −1 respectively. Thus, Qb(f) =

1 + (−1) = 0 and χ(V2) = 1 + 0 = 1 which is the Euler characteristic of a disk.
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2.4 A topological index for non-isostatic systems

So far, the topological index µ discussed above only applies to an isolated zero-

energy configuration θ̄ in an isostatic system. To capture the topology of a non-

linear ZM in a non-isostatic system, we now extend to derive another similar

topological index ν. To do so, we look at this topological index from another

perspective by first defining a tangent d-form

T i1···id = ϵ i1···id j1··· jn−d∂ j1e1 · · · ∂ jn−d en−d, (2.6)

where d denotes the dimension of the non-linear ZM. Since T i1···id (θi1 · · · θid) = 0

for any vector θij normal to the space of ZMs, we can think of T i1···id as defin-

ing the tangent space of non-linear ZMs. For an open KL chain, the number

of constraints is one less than the number of the degrees of freedom, and so

d = 1. Then T is a vector field that is everywhere tangent to a non-linear ZM.

In this case, the non-linear ZM can be found as the solution to the first-order

differential equation ∂sθ(s) = T [θ(s)]. So long as T (θ) is a smooth non-vanishing

function of θ, the integral curves of T (θ) will be smooth as well. For any sur-

face not parallel to the tangent T (θ), we can define an intersection number at

the point θ̄ where the ZM intersects with the surface as ν(θ̄) = sgn
[
T (θ̄) · N̂(θ̄)

]
where N̂(θ̄) is the unit normal to the surface at θ̄. Alternatively, we can define

a vector g(θ) = (e1, e2, ..., en−1, h) where h is the function describing the surface.

Then ν(θ̄) can be computed as

ν(θ̄) =
1

(n − 1)!An−1

∮
S ū

g j1dg j2 ∧ · · · ∧ dg jnϵ
j1 j2... jn

(g2
1 + g2

2 + ... + g2
n)n/2

, (2.7)

similar to the way µ was defined earlier in Eq. 3.2. This results in ν(θ̄) =

sgn [det ∇g(θ̄)] when the Jacobian of g, denoted ∇g(θ̄), is full rank. The function

h can also be thought as an auxiliary constraint used to obtain information of a
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non-linear ZM. For example, in the KL and origami chain, when h = en = f (θn, θ1)

as defined previously, ν(θ̄) would be µPBC(θ̄).

2.5 Topological distinctions between the KL chain and origami

chain

Based on the earlier discussion of µ, there always exists, at least, one non-linear

ZM passing through a uniform solution in both the open KL and open origami

chain because µPBC = ±1 for each uniform solution in both cases. However, to

understand whether this non-linear ZM can propagate from one site to another,

we need to specialize to a local topological index νloc(θ̄) in a single cell (which

contains two sites with one constraint) with a two-dimensional space specified

by (θ1, θ2) and consider h specified by θ2 − θ1 = 0. In this example, every time the

non-linear ZM for a single cell (SCZM) crosses this plane at θ̄, we can associate

an index νloc(θ̄) with the intersection point as defined above [see Fig. 2.2 (b)].

With this in mind, for continuous deformations of the trajectory of the SCZM

[see Fig. 2.2 (c)], new uniform configurations can be created or annihilated in

pairs of opposite indices, but the total intersection number I =
∑

i νloc(θ̄i) of the

SCZM remains invariant.

The idea of topological protection, defined as it is in terms of an inherently

linear concept of the phonon spectrum as highlighted before, can be carried

over in a robust way to non-linear mechanical systems as follows: the space

of ZMs for one set of constraints can be continuously deformed into the space

of ZMs of another set of constraints as long as no ZM intersects with others or

itself during deformations. Then it will become clearer why the KL chain and
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the origami chain behave so differently despite their superficial similarity after

computing the intersection number of a single cell.

First, Fig. 2.6 (a)-(b) show the solutions to Eq. (2.1) for a single cell of the

KL chain (consisting of a pair of rotors). Uniform solutions, namely, θ1 = θ2

(there are four) correspond to the points where the non-linear SCZMs cross the

plane θ1 − θ2 = 0. We note that, in the non-linear model, the trajectory of a non-

linear SCZM passes through either two or all four of these (uniform) solutions

depending on the values of L, r, and a. The total intersection number I of a non-

linear SCZM satisfies the following condition: when a < L < 2r − a, there are

two distinct SCZMs with I = +2 [blue in Fig. 2.6 (a)] and I = −2 [red in Fig. 2.6

(a)]. Thus, each SCZM passes two distinct uniform solutions at least twice and

these two uniform solutions are necessarily connected via the trajectory of the

SCZM. This case is known as the “spinner” phase of the KL chain, characterized

by spinner solitons whose existence is topologically protected. When 2r − a <

L < 2r + a, on the other hand, we have only one SCZM with a total intersection

number I = 0 [this SCZM passes through all four solutions as in Fig. 2.6 (b)].

This is dubbed the “flipper” phase. In this phase, the trajectory of the SCZM

can be continuously deformed by tuning, e.g. L, such that all four solutions get

annihilated in pairs of opposite intersection numbers exactly at L = 2r + a, and

no solution exists beyond that.

Next, we consider the origami chain. A single cell in this model is de-

scribed by Eq. 2.2. The uniform solutions are given by the zeros of f (θ, θ) =

(A − B) sin2(θ/2) + ϵ, which only exist when (B − A)/ϵ > 1. As shown in Fig. 2.6

(c)-(d), there are two distinct regimes: (i) 0 < ϵ < A − B, and (ii) A − B < ϵ < 0,

both of which have two uniform solutions with opposite sign of νloc and the two
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Figure 2.6: (a)-(b) are the spaces of ZMs of a single cell for the KL chain.
(c)-(d) are the spaces of ZMs of a single cell for the origami
chain. The color is only a label (blue for I > 0 and red for I ≤ 0)
and does not have a quantitative meaning.
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SCZMs correspond to the total intersection number of I = +1 [blue in Fig 2.6

(c) or (d)] or I = −1 [red in Fig 2.6 (c) or (d)]. As seen in Fig 2.6 (c)-(d), each

SCZM crosses the line defined by θ1 = θ2 at least once. If the system is distorted,

it is possible to cross this line multiple times, but the total intersection number

remains unchanged. We conclude that the existence of uniform solutions is, in-

deed, topologically protected. To eliminate them, it is necessary to distort the

system through a topological phase transition by joining the trajectories of the

two SCZMs. Ultimately, this requires tuning the system through one of the two

situations: ϵ = 0 or A − B + ϵ = 0.

2.6 Topologically protected solitons

It is clear that when a SCZM has a total intersection number |I| ≥ 2, it must have

at least two uniform solutions joined by a smooth trajectory. However, this

does not immediately extend to a larger chain of n (n > 2) unless the following

(sufficient) condition P is met: for a given SCZM, either the map from θi to θi+1

∀i or the reverse map is injective.

Lets take the spinner for an example and denote a ZM for the n-site chain,

which contains n rotors and n−1 springs, by Cn. In this notation, the black curve

on the bottom plane in Fig. 2.7(a) is C2 and the red curve is C3. Since, in this case,

we have |I| = 2, the projection of C3 onto a constant θ3 plane always yields C2

(it, in fact, extends to |I| ≥ 2). This statement can be understood in the following

way: we are looking for a solution for f (θ2, θ3) = 0 provided f (θ1, θ2) = 0. A

sufficient condition for this is that the solution of f (θ2, θ3) = 0 on the θ2− θ3 plane

wraps around θ2 at least once (this holds when |I| ≥ 2) guaranteeing a θ3 for a
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given θ2 that also satisfies f (θ1, θ2) = 0. If the above condition is met, there must

exist at least one θ3 for a given (θ1, θ2) that satisfies both the constraints. Thus,

for each point on the black curve C2, we can always find at least one point on

the red curve C3 projected onto it.

We can now prove that the two uniform solutions are connected by C3 which

we have shown to hold for C2 previously. This we prove by contradiction. If we

assume that there are two disconnected parts of C3 while C2 is connected, there

must exist two points that have the same θ1 and θ2 but distinct θ3. However, this

contradicts the fact that the map from θ3 to θ2 is injective, and thus, C3 must be

connected. The argument can easily be generalized to Cn for n > 3. Thus, we

conclude that there must exist at least two uniform solutions joined by a ZM in a

n-site chain. This ZM is a soliton (for the non-linear model) that is topologically

protected and robust to disorders as long as each SCZM corresponds to a total

intersection number |I| ≥ 2 and satisfies the condition P mentioned above. We

emphasize, a soliton of this kind exists even in a disordered (a < Li < 2r − a, Li

chosen randomly) KL chain which has the total intersection number I = ±2 in

each cell as shown in Fig.2.7 (b).
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Figure 2.7: (a) The ZM for the n = 2, 3 KL chain (the spinner case). The
black curve C2 on the bottom plane is a single loop on two-
dimensional torus, and the red curve C3 is a single loop on
three-dimensional torus. (b) A soliton on the disordered KL
chain.
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CHAPTER 3

TOPOLOGY SHARED BETWEEN CLASSICAL METAMATERIALS AND

INTERACTING SUPERCONDUCTORS

3.1 Introduction

In this Chapter, we study the topology shared between classical constraint prob-

lems and interacting metals or superconductors. Firstly, we define Qnet for an

isostatic mechanical system as the sum over all µ(p) and find that its magnitude

is the minimum number of zero-energy configurations. Secondly, we write a su-

persymmetric Hamiltonian that has a well-defined Witten index W for a generic

set of nonlinear constraint functions. We show that this Hamiltonian can de-

scribe a superconductor interacting with phonons, including any anharomonic-

ity they may have. |W | for this Hamiltonian also turns out to be the minimum

number of zero-energy states. Finally, we make a topological connection be-

tween these two systems by showing that Qnet = W for a set of nonlinear and

non-symmetric constraints under very general conditions (specified below) as

shown in Fig.3.1.

3.2 zero-energy configurations in an isostatic mechanical sys-

tem

Firstly, we consider an isostatic mechanical system described by a Hamiltonian

Hiso =
∑

i

(
p2

i

2
+

f 2
i

2

)
(3.1)
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Figure 3.1: Topology shared between classical metamaterials and interact-
ing superconductors via the topological index Qnet and the Wit-
ten index W.

which has zero-energy configurations satisfying a set of constraints f1 = 0, f2 =

0, ..., fn = 0 where fi is a function of x1, x2, ..., xn such as those that arise in e.g.

springs, linkages, and origami. When fi is a linear function, Hiso describes n

simple harmonic oscillators. Following the definition in Ref.[36], a topological

index µ(p) at a zero-energy configuration p can be calculated by an integration

of a differential form

µ(p) =
1

sn−1(n − 1)!

∮
S p

fi1d fi2 ∧ ... ∧ d finϵ
i1,i2,...,in

( f 2
1 + f 2

2 + ... + f 2
n )

n
2

(3.2)

where S p is an (n − 1)-dimensional sphere in the configuration space which en-

closes the point p, sn−1 is the surface area of a unit (n − 1)-dimensional sphere.

When the Jacobian ∂ fi/∂x j at p is full rank, µ(p) = sgn[det(∂ fi/∂x j)].
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Figure 3.2: (a)The Kane-Lubensky chain with periodic boundary condi-
tions. (b)The Kitaev chain. For each constraint (spring) or
degree of freedom (ball) of the KL chain, we put a Majorana
fermion that hops to its nearest neighbors with the parameters
∂ fi
∂xi

and ∂ fi
∂xi+1

.

Here we further define another topological index Qnet as the sum over µ(p)

of all zero-energy configurations.

Qnet =
∑

f(p)=0

µ(p) =
∑

f(p)=0

sgn

det
(
∂ fi

∂x j

) ∣∣∣∣∣∣
p

 (3.3)

which counts the difference between the number of zero-energy configurations

with µ = +1 and µ = −1. Because µ can only be created or annihilated in pairs,

|Qnet| is the minimum number of zero-energy configurations that always exist

under finite local deformations.

Let’s consider an example, the Kane-Lubensky(KL) chain[26] with periodic

boundary conditions as shown in Fig.3.2(a). This example is an anharmonic-

oscillator system that naturally exists in nonlinear mechanical systems. There

are many zero-energy configurations, but the sum over µ(p) is zero. Therefore,

Qnet = 0 suggests that all zero-energy configurations can be annihilated by de-

forming constraints. For example, if we choose one of the spring lengths larger

than twice the length of rotors plus the distance between the two nearest pivot
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points, then there will be no zero-energy configuration in the KL chain.

3.3 zero-energy states in a supersymmetric quantum system

Secondly, we consider a supersymmetric quantum system similar to Ref.[31]

described by a supersymmetric Hamiltonian

Hsusy = {Q,Q} (3.4)

where Q = 1
2

∑
i[ψi(pi + i fi) + ψ

†

i (pi − i fi)] and ψi is a fermion operator. In the

Euclidean quantum theory, we can replace pi by i ∂
∂xi

. Then Hsusy can be rewritten

as

Hsusy =
∑

i

(
p2

i

2
+

f 2
i

2

)
+

1
2

∑
i, j

(ψ†i + ψi)
∂ f j

∂xi
(ψ†j − ψ j) (3.5)

which can also be written in terms of Majorana fermion operators γa,i = ψ
†

i + ψi

and γb,i = −i(ψ†i − ψi) as

Hsusy =
∑

i

(
p2

i

2
+

f 2
i

2

)
+

i
2

∑
i, j

γa,i
∂ f j

∂xi
γb, j (3.6)

Here we can see that Hsusy and Hiso only differ by additional terms described

by the interacting between fermions and bosons. When fi is a linear function,

Hsusy is simply two independent systems, n simple harmonic oscillators and a

non-interacting Majorana fermion system. In general, a constraint function fi

is nonlinear. We can get some insights by expanding fi around a zero-energy

configuration point to second highest order terms ( fi =
∑

j ai, jx j +
∑

j,k bi, j,kx jxk).

By doing so, we will get

H̃susy =
∑

i

 p2
i

2
+

(
∑

j ai, jx j +
∑

j,k b j,i,kx jxk)2

2


+

i
2

∑
i, j

γa,ia j,iγb, j +
i
2

∑
i, j,k

γa,ib j,i,kxkγb, j

(3.7)
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The first and second terms describe anharmonic phonons and a non-interacting

Majorana fermion system, respectively, and the last term is the coupling be-

tween Majorana fermions and anharmonic phonons.

In the supersymmetric quantum system, nonzero-energy states are always

paired with opposite fermion parities. Thus, we can calculate the Witten index

W =
∑
Em=0

(−1)F (3.8)

where Em is an eigenenergy of Hsusy and (−1)F is the fermion parity operator.

Because the Witten index tells us the difference between the number of even

and odd fermion parity zero-energy states, its magnitude |W | is the minimum

number of zero-energy states that always exist under finite local deformations.

In a symmetric case where ∂ fi/∂x j is a symmetric matrix (with respect to the

matrix indices i, j). We can find a function V such that fi =
∂V
∂xi

. Hsusy is reduced

to

H sym
susy =

∑
i

(
p2

i

2
+

f 2
i

2

)
+

1
2

∑
i, j

∂ f j

∂xi
(ψiψ

†

j − ψ
†

i ψ j) (3.9)

whose path integral can be viewed as a Witten-type supersymmetric topolog-

ical quantum field theory[5]. Similar to Eq.3.6, but now it describes fermions

(electrons in a metal) coupling to anharmonic phonons. In this case, it has been

shown that W =
∑

∂V
∂xi
=0 sgn[det( ∂2V

∂xi∂x j

∣∣∣∣
p
)] which is exactly the same as Qnet.

Given those similar physical interpretations of Qnet and W plus the result of

symmetric cases, it seems that Qnet might still be related to W in a certain way

even for non-symmetric cases.
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3.4 Derivation of symmetric cases

We use an approach similar to the Faddeev-Popov gauge-fixing procedure[18].

First, we generalize Qnet to a family of sets of constraints f(x) + w = 0 where w

is some constant vector. The net topological index Qnet(w) depending on w is

written as

Qnet(w) =
∑

f(pw)+w=0

µ(pw) =
∑

f(pw)+w=0

[
det

(
∂ fi

∂x j

)]
=

∑
f(pw)+w=0

∣∣∣∣ det
(
∂ fi

∂x j

) ∣∣∣∣−1
det

(
∂ fi

∂x j

)

=

∫
dx

n∏
i=1

δ( fi + wi) det
(
∂ fi

∂x j

) (3.10)

In the first line, we assume that all solution points are non-degenerate. In the

last line, we replace the sum of Jacobian by an integration over delta functions.

Qnet(w) can also be calculated by drawing a lager sphere that encloses all solution

points and calculating the integration of a differential form in Eq.3.2. Thus,

Qnet(w) only depends on the asymptotic behavior of f(x) + w on the boundaries

of x (||x|| → ∞).

In the next step, we compute the average of the net topological indices over

this family of sets of constraints by using the the weight
∏n

i=1 e−
w2

i
2 . Then the

average of the net topological indices is

Qave =

∫ n∏
i=1

dwi
√

2π
e−

w2
i

2

∫ dx
n∏

i=1

δ( fi + wi) det
(
∂ fi

∂x j

) (3.11)

Under the condition that ||f(x)|| → ∞ on the boundaries of x, the asymptotic be-

havior of f(x) is unchanged under any finite local deformations (e.g., the defor-

mation f̃ = f+w). Therefore, when ||f(x)|| → ∞ as ||x|| → ∞, Qnet(w) is independent

of w and Qave is equal to the original Qnet in Eq.3.3
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Then after integrating over wi and writing det( ∂ fi
∂x j

) as an integral over com-

plex Grassmann numbers, Qave can be rewritten as

Qave =

∫
dxdΨdΨ̄
(i
√

2π)n
exp

− n∑
i=1

1
2

f 2
i

−i
n∑

i=1

n∑
j=1

(Ψ̄i
∂ fi

∂x j
Ψ j)


(3.12)

where Ψ̄i and Ψi are complex Grassmann numbers. We can see that Qave plays a

similar role as the partition function.

To promote the classical theory to a quantum theory, we consider another

similar constrained problem by replacing f(x) by dx
dτ + f(x) where τ is the imag-

inary time. Following the same approach, the new topological index can be

written as

W =
∫

DxDΨDΨ̄ exp

−∮
dτ

 n∑
i=1

1
2

(
dxi

dτ
+ fi

)2

+i
n∑

i=1

n∑
j=1

Ψ̄i

(
δi, j

d
dτ
+
∂ fi

∂x j

)
Ψ j


 ,

(3.13)

All constants are absorbed in DxDΨDΨ̄. Here we emphasize that W is not a reg-

ular partition function because it requires periodic boundary conditions along

the imaginary time circle for both bosons and fermions.

When ∂ fi/∂x j is symmetric, namely when fi =
∂V
∂xi

, the path integral Eq. 3.13

describes a supersymmetric quantum mechanics model with BRST symmetry

[5]. In the following, we review some key aspects of this supersymmetric quan-

tum mechanics model with BRST symmetry. The discussion below follows Ref.

tft. We assume fi =
∂V
∂xi

from now on.

It can be shown that only the configurations with dx
dτ + f(x) = 0 contributes

to the path integral. Naively, there can be two types of solutions, dynamical
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solutions (dx
dτ , 0) and stationary solutions (dx

dτ = 0). First, we notice that dx
dτ+f(x) =

0 implies that

0 =
∮

dτ
n∑

i=1

(
dxi

dτ
+ fi

)2

=

∮
dτ

n∑
i=1

(
dxi

dτ

)2

+

∮
dτ

n∑
i=1

f 2
i + 2

∮
dτ

n∑
i=1

dxi

dτ
fi

(3.14)

Notice that fi =
∂V
∂xi

. the last term becomes 2
∮

dτdV
dτ which is zero due to the

periodic boundary condition. Hence, dxi
dτ = 0 and fi = 0, namely there are only

stationary solutions. For a stationary solution, the system stays at rest in a so-

lution point p. The fermion contribution to the topological index W for each

stationary solution can be calculated by transforming the field to Fourier series.

The sign only comes from the zero frequency term because nonzero frequency

terms all comes in complex conjugate pairs and the product of a complex conju-

gate pair is always positive. Note the fermion has periodic boundary condition

along the time direction, which permits zero-frequency modes. Therefore, the

total contribution from a stationary solution is the same as the topological index

µ(p) defined in Eq. 3.2. As a result, W is equal to Qave when fi =
∂V
∂xi

.

The BRST formulation can be recovered by adding auxiliary field B. We

rewrite W as

W =
∫

DxDΨDΨ̄DB exp

−∮ dτ n∑
i=1

1
2

B2
i

−i
n∑

i=1

Bi

(
dxi

dτ
+ fi

)
+ i

n∑
i=1

n∑
j=1

Ψ̄i

(
δi, j

d
dτ
+
∂ fi

∂x j

)
Ψ j




(3.15)

The supersymmetry relation is defined via a nilpotent generator Q =
∑n

i=1ΨiBi.

The transformation rules are

{Q, xi} = Ψi {Q, Bi} = 0 {Q,Ψi} = 0 {Q, Ψ̄i} = Bi (3.16)
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The Hamiltonian of the BRST-symmetric model can then be written as

HBRS T =
1
2

n∑
i=1

p2
i +

1
2

n∑
i=1

f 2
i

+
1
2

n∑
i=1

n∑
j=1

∂ f j

∂xi
(ΨiΨ

†

j − Ψ
†

iΨ j)
(3.17)

In the Hamiltonian formalism, the topological index W can be calculated by

taking the trace or summing over eigenstates. For each fermion, there will an

extra π phase as a manifestation of the periodic boundary condition along the

time circle in the path integral. As a result, the topological index W is

W =
∑

m

(−1)nF e−βEm =
∑
Em=0

(−1)nF (3.18)

which is indeed the Witten index.

3.4.1 linear functions

To find their connections, we first look at linear-constraint cases to get some

insights. Assume that the constraints are Rx = 0. Then the corresponding Hsusy

is

HL
susy =

∑
i

p2
i

2
+

∑
i, j,k

xiRT
i, jR j,kxk

2
+

i
2

∑
i, j

γa,iRi, jγb, j (3.19)

By performing the singular value decomposition to obtain R = UΣVT, and ro-

tating x′i = Vi, jx j, γ′a,i = UT
i, jγa, j and γ′b,i = Vi, jγb, j, we get

HL
susy =

∑
i

[
(p′i)

2

2
+

(λix′i)
2

2
+

iλi

2
γ′a,iγ

′
b, j

]
(3.20)

where λi = Σi,i is the singular value of R. HL
susy contains two non-interacting

systems. The first one described by the first two terms in Eq.3.20 is n-simple-

harmonic-oscillators with ground state energy equal to
∑

i
λi
2 . The last term is a
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Figure 3.3: Spectrum of HL
susy with a single linear constraint function f (x) =

x.

Majorana fermion system that has energy
∑

i ±
λi
2 in different Majorana fermion

sectors. The ground state energy of the Majorana fermion system is −
∑

i
λi
2 and

its fermion parity equates to the Pfaffian of the Hamiltonian in the Majorana

basis which is simply [det(R)][29]. Combining the two systems, the lowest en-

ergy state of HL
susy has exact zero energy with a gap min({λi}) as shown in Fig.3.3.

Because HL
susy only has one single zero-energy state, W = [det(R)] which is equal

to Qnet.

For example, in the periodic KL chain, if we linearize the constraints at a

uniform solution point[26, 36], ∂ fi
∂xi

and ∂ fi
∂xi+1

would be constants. In the fermionic

part, we will get the Kitaev chain as shown in Fig.3.2(b) which is a p-wave
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superconductor[29].

3.4.2 nonlinear functions

Now let’s go back to generic nonlinear-constraint cases. Here we specify three

general conditions for the constraint functions f that we are interested in. (1) ∂ fi
∂x j

is continuous everywhere. This makes sure that potential energy is continuous

in the whole space.(2)||f|| → ∞ as ||x|| → ∞. This guarantees that wavefunctions

are confined in finite regions. (3)The Jacobian ∂ fi
∂x j

is full rank at all solution points

f = 0.

To find W, we rescale the constraint functions fi by a positive constant g and

rewrite the Hamiltonian as

Hsusy(g) =
∑

i

(
p2

i

2
+

g2 f 2
i

2

)
+

ig
2

∑
i, j

γa,i
∂ f j

∂xi
γb, j (3.21)

and first look at large g cases.

When g is very large, the potential energy is dominated by g2 f 2
i

2 term. Thus,

we can focus on those points where f = 0 to study low-energy states. Assume

that we have N points satisfying f = 0 labeled as zα=1,2,...,N . At each zα, we take the

linear order of fi to obtain a Hamiltonian which locally looks like a potential well

described by Eq.3.20. The structure of the low energy states is, therefore, similar

to a linear-constraint case in which a system has a zero-energy state gapped by

min({gλα,i}) where λα,i is a singular value of the matrix ∂ fi
∂x j

at point zα.

Two types of perturbations can lift or lower energy. Firstly, we consider

the overlap between two wave functions localized at different zα. The overlap

is estimated as ∼ e−ϵg where ϵ is some positive constant that depends on the
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distance between two wells. Thus, the energy will only be increased or lowered

by an amount of order of e−ϵg.

The second perturbation is the higher order corrections terms around each

well. We expand fi at each zα as fi =
∑

j ai, j,αx j +
∑

j,k bi, j,k,αx jxk + ... Then we

rescale xi with a prefactor g−1/2, namely, xi → g−1/2xi and pi → g1/2 pi. We get

g fi → g1/2 ∑
j ai, j,αx j +

∑
j,k bi, j,k,αx jxk + ..., and g∂ f j

∂xi
→ ga j,i,α + g1/2 ∑

j b j,i,k,αxk + .... As

a result, we can rewrite the Hamiltonian around zα as

H̃susy(g) = g

∑
i

 p2
i

2
+

(
∑

j ai, j,αx j)2

2


+

i
2

∑
i, j

γa,ia j,i,αγb, j


+g1/2

∑
i, j,k,l

ai, j,αbi,k,l,αx jxkxl

2

+
i
2

∑
i, j,k

γa,ib j,i,k,αxkγb, j

 + O(1)

(3.22)

Therefore, the energy lifted or lowered due to the higher order corrections terms

is of the order of g1/2. As a result, if we choose large enough g, we can always

guarantee that an energy window from −1
2 min({gλα,i}) to 1

2 min({gλα,i}) only con-

tains the N states that have almost or exact zero-energy as shown in Fig.3.4.

These N states have exactly zero energy if we only consider the first two lines in

H̃susy(g).

Then we can calculate the Witten index by only focusing on these N states

because all other nonzero energy states are paired, and thus contributes zero to

the Witten index. From the result of linear-constraint cases, the fermion parity

of the lowest energy state at zα is [det( ∂ fi
∂x j

)]. As a result, W =
∑
α[det( ∂ fi

∂x j
|zα)] which

is exactly equal to Qnet.
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Figure 3.4: Low-energy spectrum of Hsusy(g) with nonlinear constraint
functions in the large g limit.

In the next step, we are going to show that the Witten index W is independent

of g, namely, dW
dg = 0. First, we write

W =
∑
m1

⟨Bm1 |e
−βHsusy(g)|Bm1⟩

−
∑
m2

⟨Fm2 |e
−βHsusy(g)|Fm2⟩

(3.23)

where |Bm1⟩ is an even fermion parity state and |Fm2⟩ is an odd fermion parity

state. Then we can calculate

dW
dg
= −β

∑
m1

⟨Bm1 |
dHsusy(g)

dg
e−βHsusy(g)|Bm1⟩

+β
∑
m2

⟨Fm2 |
dHsusy(g)

dg
e−βHsusy(g)|Fm2⟩

(3.24)
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The change of the Witten index due to the change of states is zero because the

Witten index is independent of basis. Mathematically, we can write

d⟨m|
dg

e−βHsusy(g)|m⟩ + ⟨m|e−βHsusy(g) d|m⟩
dg

= e−βEm
d⟨m|m⟩

dg
= 0

(3.25)

Then use the fact that dHsusy(g)
dg = 2{ dQ

dg ,Q}where Q =
∑

i[(ψi(pi + ig fi)+ψ
†

i (pi − ig fi)],

we get

dW
dg
= −2β

∑
m1

⟨Bm1 |

{
dQ
dg

,Q
}

e−βHsusy(g)|Bm1⟩

+2β
∑
m2

⟨Fm2 |

{
dQ
dg

,Q
}

e−βHsusy(g)|Fm2⟩

(3.26)

This expression only receives contribution from states |Bm1⟩ and |Fm2⟩with finite

energies, which always come in pairs. A pair of states |Bm⟩ and |Fm⟩ are related

by
√

Em
2 |Fm⟩ = Q|Bm⟩ and

√
Em
2 |Bm⟩ = Q|Fm⟩ where Em , 0 is the eigenenergy of

this pair of states. A unpaired state must be annihilated by Q and, hence, has

zero energy. Thus, we have

dW
dg
= −

√
2Emβ

∑
m

⟨Fm|
dQ(g)

dg
e−βHsusy(g)|Bm⟩

−
√

2Emβ
∑

m

⟨Bm|
dQ(g)

dg
e−βHsusy(g)|Fm⟩

+
√

2Emβ
∑

m

⟨Bm|
dQ(g)

dg
e−βHsusy(g)|Fm⟩

+
√

2Emβ
∑

m

⟨Fm|
dQ(g)

dg
e−βHsusy(g)|Bm⟩

(3.27)

which is zero as long as dQ(g)
dg is a regular function. In our case, dQ(g)

dg = i
∑

i(ψi −

ψ†i ) fi, and thus dW
dg = 0. Now, we have shown that for any constraint functions f

that satisfy the three conditions, Qnet = W.

Conceptually, we start with a purely classical system described by Eq. 3.1

which has some zero-energy classical configurations characterized by the topo-

logical index Qnet. Now, imaging “turning on” quantum mechanics by treating
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Eq. 3.1 as a quantum mechanical Hamiltonian. Generically, due to the Heisen-

berg uncertain principle, we do not expect any zero-energy eigenstates for Eq.

3.1 anymore. However, we can “recover” the zero-energy states by further in-

cluding extra Majorana fermions interacting with the existing bosons and con-

sidering the Hamiltonian Eq. 3.6. As a result, there will be a few zero-energy

states that protected by supersymmetry. The number of these zero-energy states

is characterized by the Witten index W. Physically, we can make an analogy be-

tween the two topological numbers Qnet and W in the following way:

minimum # of zero-energy configurations

= minimum # of zero-energy states
(3.28)

In the example of the KL chain, there is no supersymmetry-protected zero-

energy state in the quantum system described Eq. 3.6 analogy to the KL chain

because W = Qnet = 0.

3.5 conclusion

We show metamaterials can be used to study the topology of interacting

quantum materials with the aid of supersymmetry. Specifically, we map

a classical constrained problem to Bogoliubov quasiparticles of a super-

fluid/superconductor coupled to a boson such as a phonon. Hence, classical

metamaterials can be used to study some aspects of the most challenging prob-

lems in quantum condensed matter physics.

Necessarily, the connection between classical metamaterials and quantum

materials requires fine tuning. The Debye temperatures in real materials range

from O(10) to O(103) K could match the order of the hopping strength of elec-
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trons in some materials. If the phonon band structure is similar to the electron

band structure, and we fine-tune the anharmonicity of the phonon to match the

coupling between Majorana fermions and phonon, it is possible to realize such

a supersymmeric quantum system that shares the same topology of a classical

mechanical systems. Perhaps a search through a database of all materials may

find some that approximately meet these conditions. But even if not, the con-

nection may still prove useful for the fine tuned problems may provide insight

into the general behavior of interacting metals and superconductors.

Potentially, there are many possible ways of defining topological indices

following the prescription in Ref.[36]. Perhaps studying connections between

these topological indices and existing topological numbers in quantum theory,

as we have done in this manuscript, may yield further connections between

metamaterials and quantum materials. If so, classical metamaterials may pro-

vide explanations of otherwise inexplicable behavior of some quantum materi-

als.
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CHAPTER 4

THE FATE OF TOPOLOGICAL FRUSTRATION IN A QUANTUM SPIN

LADDER

4.1 Introduction

In this chapter, we study the connections between topological frustration and

quantum magnets in one-dimensional space where an ordered phase is natu-

rally prevented. We do so by studying quantum spin ladders[65] in a special

regime where the classical spins exhibit geometric frustration on each plaquette

similar to classical spins on each tetrahedron of pyrochlore Heisenberg antifer-

romagnets. A key distinction from the pyrochlore case beyond dimension is the

additional existence of infinitely many conservation laws owing to the existence

of symmetry we call ”staggered swap” symmetry. Using these conservation

laws, we show that the fate of classical topological frustration in the quantum

regime is to emerge as asymptotically-in-S low energy low-entanglement eigen-

states. These eigenstates violate the eigenstate thermalization hypothesis, have

area law entanglement, and correspond to known symmetry-protected topolog-

ical (SPT) ground states enabled by the staggered swap symmetry. We further

identify a special role of S U(2) symmetry, that it demands the existence of extra

dimensions of classical zero modes the phenomena we call symmetry-enriched

topological frustration (SETF). We conclude with a discussion of a) how small

violations of the special symmetries used to obtain results in this paper would

likely lead to quantum scars, b) the model generalizes to higher dimensions

proposing a bilayer triangular lattice model which shares many similar proper-

ties with our quantum spin ladders, and c) a discussion of why we think these
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Figure 4.1: The frustrated spin ladder model

results suggest tensor network methods are a powerful approach to the study

of large-S antiferromagnets.

4.2 Geometrically frustrated spin ladders

We start with a frustrated spin ladder model (Fig.4.1) which possesses classical

frustration, local conserved quantities, or both in some regimes. The Hamilto-

nian is written as

Hladder =
J⊥

S (S + 1)

∑
i

−→
S i,1 ·

−→
S i,2

+
J∥,1

S (S + 1)

∑
i

−→
S i,1 ·

−→
S i+1,1

+
J∥,2

S (S + 1)

∑
i

−→
S i,2 ·

−→
S i+1,2

+
JX,1

S (S + 1)

∑
i

−→
S i,1 ·

−→
S i+1,2

+
JX,2

S (S + 1)

∑
i

−→
S i,2 ·

−→
S i+1,1

(4.1)

where
−→
S i,m is the spin operator at the site (i,m), and J⊥, J∥,1, J∥,2, JX,1, and JX,2

are the antiferromagnetic coupling strengths depicted in Fig.4.1. We divide the
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antiferromagnetic coupling strength by (S + 1)S so that as spin increasing we

only increase the number of degrees of freedom but keep unit length for the

spin.

This spin ladder model looks complex but has been studied for the spin-

half case in many different regimes[6, 67, 65]. In general, it relies on numerical

simulations to find the ground state[65] except for some regimes which can be

studied analytically[6, 67]. For example, in the limit J⊥ ≫ J∥,1, J∥,2, JX,1, JX,2, the

ground state is a gapped rung singlet[6]. Another well-controlled regime is the

case where J1 = J∥,1 = J∥,2 = JX,1 = JX,2[67]. In this regime, the Hamiltonian

has two competing phases. One of the phases is the rung singlet in which the

coupling J⊥ between two spins at the same rung dominates, and thus the system

forms a singlet spin state at each rung. The other phase is the spin-one Haldane

phase in which two spins at the same rung are aligned to the same direction

forming an equivalently spin-one quasiparticle that couples to its two neighbors

and behaves just as the Heisenberg spin-one chain. Despite the simple structure

of the phase diagram, this well-controlled regime can be highly frustrated in

the classical limit and thus a good candidate to study any connections between

classical geometric frustration and quantum magnetism.

4.3 Phase diagram

To establish the connections, we generalize the spin ladder model to arbitrary

spin S . First, in the classical S → ∞ limit, the spin operator
−→
S i,m is reduced to

a three-dimensional vector. One can use Lagrange multipliers to fix the length

of each spin, and then the ground states are obtained by minimizing the energy
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with respect to each spin component. Interestingly, there exists a special regime

where the Hamiltonian can be written in a frustration-free form

H f ru =
J

S (S + 1)

∑
i

(a1
−→
S i,1 + a2

−→
S i,2

+a3
−→
S i+1,1 + a4

−→
S i+1,2)2

(4.2)

which requires two conditions J∥,1J∥,2 = JX,1JX,2 and J⊥ ≥ 2
√

J∥,1J∥,2. The Hamil-

tonian H f ru has large ground state degeneracy, and thus the system is highly

frustrated. In this type of highly frustrated regime, the classical ground state

can be understood as zero modes of a constraint problem. In the spin ladder

model, the configurations of zero modes can be obtained by sequentially add

two spins on the ith rung that satisfy the constraint

a1
−→
S i,1 + a2

−→
S i,2 + a3

−→
S i+1,1 + a4

−→
S i+1,2 = 0. (4.3)

In the quantum finite S regime, similarly to the spin-half case, only some

regimes can be studied analytically. Especially, we are interested in the frus-

trated but well-controlled regime where J1 = J∥,1 = J∥,2 = JX,1 = JX,2. In this

regime, the ladder has global staggered swap symmetry: the Hamiltonian is in-

variant by swapping the two spins on all the even rungs or all the odd rungs.

In this regime the Hamiltonian also has the local conservation law with the con-

served quantum number Ti(Ti + 1) where Ti is the total spin quantum number

on a rung with spin operator defined as
−→
T i =

−→
S i,1 +

−→
S i,2. Thus, we can rewrite

the Hamiltonian as

Hcon =
J⊥/2

S (S + 1)

∑
i

−→
T 2

i +
J1

S (S + 1)

∑
i

−→
T i ·
−→
T i+1 + const. (4.4)

For a given spin S , there are 2S + 1 competing phases, one for each value of

spin representation Ti including the rung singlet (Ti = 0) and the well-known
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SPT Haldane phases from Ti = 1 to Ti = 2S . However, only the rung singlet

and the spin-2S Haldane state can be the ground state depending on the ratio

of the antiferromagnetic coupling strengths J⊥/J1. When J⊥ dominates, two

spins on the same rung form a spin-singlet. When the coupling J1 between two

neighbor rungs dominates, each rung forms a maximum spin-2S quasiparticle

which antiferromagnetically couples to its two neighbors, and the spin ladder

model is equivalent to the spin-2S Heisenberg chain.

To elaborate on the phase diagram, let’s look at the S = 3/2 case. The density-

matrix renormalization group calculation[66] is performed to obtain the energy

of the rung singlet plus the spin-one, spin-two, and spin-three Haldane phases

for different values of J⊥/J1 as shown in Fig.4.2a. The spin-three Haldane state is

the ground state when J⊥/J1 is smaller than a critical value J⊥/J1 ≈ 1.68. When

J⊥/J1 is larger than this critical value, the ground state is the rung singlet. We

can further find the critical point that separates two distinct phases for other

spin values. The critical point would finally move toward J⊥/J1 = 2 as S goes to

infinity. As a result, we draw a schematic phase diagram as shown in Fig.4.2b

where a quantum phase transition line separates the rung singlet and the spin-

2S Haldane phase.

The region of the phase diagram where Hladder can be placed in the form of

H f ru lies on the upper part of Fig.4.2(b) where J⊥/J1 ≥ 2 and labeled ”classi-

cal frustration”. But we also restricted parameters so that we can write Hladder

as Hcon, as discussed above. Thus there is an overlap between Hcon and H f ru

where the spin ladder is classically frustrated and has local conserved quanti-

ties (See Fig.4.3a). In the overlap case, the Hamiltonian can always be written in
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Figure 4.2: (a)The density-matrix renormalization group calculation for
the eigenenergy of the spin-3/2 frustated spin ladder model (50
rungs) for different values of J⊥/J1. Here we fix J1 = 1. G: the
rung singlet; Ei: the spin-i Haldane state.(b)A schematic phase
diagram of the frustrated spin ladder model
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Figure 4.3: (a)Relations among symmetry-enriched topological frustra-
tion(SETF), frustration-free Hamiltonian, and the Hamiltonian
with conserved quantities. (b)The topological space of zero
modes with a self-stress(SS) mode (c)The topological space of
zero modes with a regime where the zero modes have extra
dimensions.

a frustration-free form

HS ET F =
J1

2S (S + 1)

∑
i

(b1
−→
T i +

−→
b 2Ti+1)2 (4.5)

which we will turn out to be the regime where the SETF occurs.
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4.4 The fate of topological frustration

Now we have enough ingredients to study the connections between topological

frustration and quantum magnetism. Especially, we will begin on the classical

side to understand topological frustration and then to see what the fate of this

topological frustration would be after turning on quantum mechanics.

To do so, we start with the purely classical problem of finding the ground

state of H f ru in which the zero modes are the configurations which satisfy a

set of constraints a1
−→
S i,1 + a2

−→
S i,2 + a3

−→
S i+1,1 + a4

−→
S i+1,2 = 0. Based on Maxwell’s

counting[20], since each rung of the ladder has four degrees of freedom and

three constraints (in average) the zero mode has one remaining degree of free-

dom for each rung. For example, when a1/a2 = ca3/a4 where c is some con-

stant, we can define a vector
−→
V i = a1

−→
S i,1 + a2

−→
S i,2 and rewrite the constraint as

−→
V i+c

−→
V i+1 = 0. In this case the system has a local zero mode at each rung in which

two spins combined can rotate as U(1) symmetry about the axis described by
−→
V i.

Maxwell’s count is, however, incomplete, as discussed by Kane and Luben-

sky to linear level for balls-and-springs models[27]. For example, considering

that we have n degrees of freedom and n − 1 constraints. In a generic case, the

topological space of zero modes would look like a one-dimensional manifold

except for some points where two curves (or more than two curves) intersect

(See Fig.4.3b). Those intersecting points are the places where self-stress modes

appear and give an extra number of zero modes in a linear theory.

In a full nonlinear problem, the topological space of zero modes can change

dramatically due to certain symmetry that makes some constraints become re-

dundant. This gives extra dimensions to zero modes, the phenomenon we call
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SETF (See Fig.4.3c). In the Hamiltonian H f ru, for example, when a1 = a2 and

a3 = a4, which corresponds to J∥,1 = J∥,2 = JX,1 = JX,2, the configurations with

two spins at the same rung pointing into opposite directions (
−→
S i,1 = −

−→
S i,2) is

a local zero mode in which two spins combined can rotate as S U(2) symmetry

which has two continuous degrees of freedom that is one more than Maxwell’s

counting. In this SETF regime, we can always rewrite H f ru in a form of HS ET F

by defining
−→
T i =

−→
S i,1 +

−→
S i,2. Thus, the regime where SETF occurs is exactly the

overlap between Hcon and H f ru.

To understand how this SETF is preserved from infinite S to finite S , let’s

take a highly frustrated point J⊥/J1 = 2 for an example. The corresponding

Hamiltonian is written as

H2 =
J1

2S (S + 1)

∑
i

(
−→
T i,1 + Ti+1,1)2. (4.6)

As we move from infinite S to finite S , the strict zero modes of the classical

limit all get lifted by quantum fluctuations and we are left with a unique rung

singlet ground state G (Fig.4.4). But the SETF at finite but large S is preserved

as the existence of many very low energy excitations. We know this exactly by

mapping them to the SPT spin-n Haldane states En whose topological properties

are protected by the staggered swap symmetry (See Appendix A).

It turns out there is a simple argument that predicts the lifting of the classical

zero modes by quantum fluctuations. The recently developed theory of nonlin-

ear topological mechanics[36] identifies a topological invariant that protects the

existence of classical zero modes by surface integrals over phase space. If these

constraints only involve position variables, the surfaces are well defined both

at the quantum and classical levels. So it could be the topology is preserved by

quantum fluctuations and captured by a quantum version of nonlinear topolog-
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Figure 4.4: Low energy eigenstates at different spins for the spin ladder
model.

ical mechanics. However, in the present case, these surfaces are defined by the

constraints in Eq. 4.3 that arise from angular momentum variables that involve

position and momentum variables. So, upon quantizing the system, the sur-

faces cease to exist by the Heisenberg uncertainty principle and the topological

invariant becomes undefined. As a result, it is not surprising the topology is

lost in the finite S model.

Though the zero modes are lifted at finite S , the staggered swap symmetry

allows some of them to become SPT states. This symmetry allows us to rewrite

the frustration-free Hamiltonian in terms of a new spin operator defined by a

pair of spins (
−→
T α =

−→
S b +

−→
S c), the resulting Hamiltonian would have a local

conserved quantity T 2
α. In classical theory, this symmetry demands one more

degree of freedom than Maxwell’s counting would predict. The conservation of

T 2
α groups the Hilbert space into different sectors each labeled by its eigenval-
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ues Tα(Tα+1). Each sector is characterized by its own Hamiltonian with its own

”ground states” and set of excitations. Therefore, the classical SETF phase in the

spin ladder has asymptotically low-energy topological eigenstates whose pres-

ence is the quantum manifestation of a combination of topological frustration

and the staggered swap symmetry.

4.5 conclusion and outlook

Topological frustration is a classical phenomenon that is able to study in most

frustrated spin systems, but does not draw much attention due to the ignorance

of the connections between classical frustration and quantum magnets. In par-

ticular, combined with the role of symmetry, the fate of SETF and how SETF is

preserved from infinite spin to a finite spin points out a new direction to study

unsolved frustrated spin systems such as kagome and pyrochlore antiferromag-

nets. Several future directions this research motivates includes the potential

observation of quantum scars, two-dimensional topological frustration systems

with a similar set of conservation laws, and the potential use of tensor network

methods to study large-S frustrated magnets.

4.5.1 Existence of quantum scars

In the nearly SETF regime where the conservation laws are violated due to some

small perturbation, we speculate the quantum scars could be observed. An iso-

lated quantum system was believed to be thermalized in a way such that the

system can be described by equilibrium statistical mechanics that we call the

50



eigenstate thermalization hypothesis (ETH). However, some quantum systems

were found disobeying the ETH[16]. In particular, when there exist many con-

served quantities in a quantum system the ETH is strongly violated which is es-

sentially the case where SETF occurs. If we move slightly away from the SETF

regime by adding some small perturbation, the system becomes weakly ETF

breaking, and quantum scars might be observed[58].

To illustrate the idea, let’s look at quantum spin ladders as a concrete ex-

ample. For quantum spin ladders with the staggered swap symmetry, the

ground states (the Haldane states) in different sectors are gapped to their ex-

cited states of the same sector. With a small perturbation, interactions can be in-

troduced between two states with the same energy but in different sectors. For

example, the ground states in two sectors (|T1|, |T2|, |T3|, |T4|, ......) = (0, 1, 0, 1, ......)

and (|T1|, |T2|, |T3|, |T4|, ......) = (1, 0, 1, 0, ......) have the same energy but are non-

interacting when staggered swap symmetry holds. With small perturbation that

breaks the staggered swap symmetry, those two states can become interacting.

In this case, if we prepare the ground state in the sector (|T1|, |T2|, |T3|, |T4|, ......) =

(0, 1, 0, 1, ......) as an initial state, we speculate that similar to a quantum scarred

eigenstates in a Rydberg atom chain[59, 58], an oscillation between the two

states (0, 1, 0, 1, ......) and (1, 0, 1, 0, ......) might be observed. Similarly, other initial

states could also lead to different patterns of quantum scars in the nearly SETF

regime.
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4.5.2 Generalization to higher dimensions

Based on the special role of S U(2) symmetry in SETF, we design a bilayer trian-

gular lattice model as shown in Fig.4.5. The Hamiltonian is

Hbilayer =
JA

S (S + 1)

∑
i, j,m

(
−→
S i, j,m ·

−→
S i+1, j,m

+
−→
S i, j,m ·

−→
S i, j+1,m +

−→
S i+1, j,m ·

−→
S i, j+1,m)

+
JB

S (S + 1)

∑
i, j

(
−→
S i, j,1 ·

−→
S i+1, j,2 +

−→
S i, j,1 ·

−→
S i, j+1,2

+
−→
S i+1, j,1 ·

−→
S i, j+1,2 +

−→
S i, j,2 ·

−→
S i+1, j,1

+
−→
S i, j,2 ·

−→
S i, j+1,1 +

−→
S i+1, j,2 ·

−→
S i, j+1,1)

+
JC

S (S + 1)

∑
i, j

−→
S i, j,1 ·

−→
S i, j,2

(4.7)

where
−→
S i, j,m is the spin operator at the site (i, j,m), and JA, JB, and JC are the

antiferromagnetic coupling strengths depicted in Fig.4.5.

Topological frustration occurs when JC = 2JB. Under this condition, the

Hamiltonian can be written in a frustration-free form

Hbilayer( f ru) =
JB

2S (S + 1)

∑
i, j

(
−→
S i, j,1 +

JA

JB

−→
S i, j,2

−→
S i+1, j,1 +

JA

JB

−→
S i+1, j,2

+
−→
S i, j+1,1 +

JA

JB

−→
S i, j+1,2)2

(4.8)

which can then be understood as a constraint problem in the classical limit.

Similar to the spin ladder model, each vertex of triangles has two spins and

thus four degrees of freedom. In average, there are three constraint for each

vertex, so the zero mode has one remaining degree of freedom on each vertex

shared by two spins.
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Figure 4.5: The bilayer triangular lattice model

Topological frustration is enriched when JA/JB = 1. At this point, we can

define a new set of spin operators
−→
T i, j =

−→
S i, j,1+

−→
S i, j,2, and rewrite the Hamiltonian

as

Hbilayer(S ET F) =
JB

2S (S + 1)

∑
i, j

(
−→
T i, j +

−→
T i+1, j +

−→
T i, j+1)2. (4.9)

Configurations with two spins on the same vertex pointing into opposite di-

rections (
−→
S i, j,1 = −

−→
S i, j,2) are the zero modes with two continuous degrees of

freedom on each vertex. Therefore, the same form of SETF occurs in this bilayer

triangular lattice model.

As we go from infinite S to a finite value of S , each spin operator
−→
T i, j gives

a local conserved quantity Ti, j(Ti, j + 1). A set of low energy eigenstates of the

bilayer triangular lattice model is consisted of the ground states from different
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sectors defining by infinite many conserved quantities Ti, j(Ti, j+1). Some of those

eigenstates come from well-known models that have been studied by previous

works[39, 17, 12]. For example, when Ti, j(Ti, j + 1) = 2 for all i, j, Hbilayer(S ET F) is

reduced to spin-one Heisenberg triangular lattice model [See Fig.4.6(a)] which

has the 120 degree magnetically ordered ground state[39]. We can also make

some Ti, j(Ti, j + 1) = 0 and some other Ti, j(Ti, j + 1) = 2 to obtain spin-one Heisen-

berg honeycomb and kagome lattice models as shown in Fig.4.6(b) and (c). The

ground state of spin-one Heisenberg honeycomb lattice model has been found

to be a Neel state while a possible candidate for the ground state of spin-one

Heisenberg kagome lattice model is the hexagon singlet solid[17, 12]. From the

above analysis, we can study the spectra features with the benefit of being able

to calculate some topological eigenstates from a simplified model based on a

set of conserved quantities. Moreover, we can further infer the spectra features

for some unsolved model such as kagome and pyrochlore antiferromagnets by

understanding the fate of SETF.

4.5.3 Tensor network methods

For a generic model, understanding the fate of SETF and how it is preserved in

the quantum limit relies on numerical simulations. In particular, tensor network

methods have been shown powerful to handle low-dimensional frustrated spin

systems. Especially in one-dimensional systems, tensor network methods have

been well developed from the matrix product state[66]. Nevertheless, the chal-

lenge significantly grows in dealing with two-dimensional systems because of

the need for large size tensors to obtain a wavefunction with acceptable accu-

racy. To overcome the challenge several algorithms such as the projected en-
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Figure 4.6: (a)A triangular lattice model (b)A honeycomb lattice model
(c)A kagome lattice model

tangled pair states, the infinite projected entangled pair states, and infinite pro-

jected entangled simplex states have been developed to reduce fitting parame-

ters of tensors based on symmetry[61, 25, 68]. The idea behind those algorithms

implies that even with large size tensors one can still use only a small number

of parameters by appropriately imposing structures on tensors. In other words,

as we move to large spin cases, although the size of tensors may increase, it is

possible to use fewer parameters to construct a tensor network representation

of a wavefunction with the same accuracy as that in the spin-half or one case.

To see whether we can study the large spin cases in the spin ladder model

with achievable computational resources, we first notice that mutual informa-

tion I in the classical limit can be the analogy to entanglement entropy S q. For

the rung singlet phase, since knowing the directions of two spins at a certain

rung does not give us any information on the directions of spins at other rungs,
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the mutual information is zero, and so is the entanglement entropy. On the other

hand, in the case of the Haldane phase, classically, once we know the direction

of spins at a certain rung, the directions of the rest of the spins can be completely

determined. Thus, both the mutual information and entanglement entropy are

nonzero. The mutual information can be computed as follows. The (classically)

entropy S c for a chain with any size is always lnN where N is the number of

states (assume a uniform grid N on a sphere) for an individual spin. Now if the

system is divided into subsystem A and subsystem B, the mutual information

between them would be

I = S c(A) + S c(B) − S c(A + B) = lnN + lnN − lnN = lnN. (4.10)

From the analog between mutual information and entanglement entropy,

Eq.4.10 implies that the entanglement entropy has an asymptotic function

ln(2S +1) as S goes infinity where 2S +1 is the degrees of freedom for a quantum

spin-S . Thus a tensor network representation for a large spin-S Haldane state

can be constructed by tensors with virtual bond dimension to the order of 2S +1

To further confirm our claim, we perform the density-matrix renormaliza-

tion group calculation for the Heisenberg spin chain as shown in Fig.4.7. Here

we compare different spin cases with the same ratio of the virtual bond dimen-

sion χ to 2S + 1. The factor 2S + 1 is able to be factored out by using appropriate

symmetric tensors because it comes from the global S U(2) symmetry. With dif-

ferent values of χ/(2S + 1), the entanglement entropy is always bounded by

ln(2S + 1). Moreover, the entanglement entropy only increases slightly with the

increasing S . As a result, we conclude that in the frustrated spin ladder model,

the tensor network method can be used to study the large spin regime which

would give us a better understanding of SETF.
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Figure 4.7: The density-matrix renormalization group calculation for the
entanglement entropy as a function of S for different virtual
bond dimension χ/(2S + 1) of the Heisenberg spin chain (50
spins).
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CHAPTER 5

CONCLUSION

In this thesis, we provide alternative ways to understand topology of quan-

tum phenomenon with concrete classical pictures. Firstly, we conclude by em-

phasizing that new topological indices can be generated in similar manners

following our prescription to classify nonlinear ZMs. For instance, a n − 1-

dimensional sphere around an isolated zero-energy configuration (solution) is

chosen in this work as the base manifold to construct a bundle with Z-type topo-

logical invariant. For higher-dimensional manifolds of such solutions, different

choices of the base manifold can lead to different types of topological invariants

[1]. Exploring the physical significance of those topological indices constitutes

a new direction of searching for novel topologically protected nonlinear ZMs in

the future.

Secondly, due to the similarity of mathematical frameworks, our prescrip-

tion of defining topological indices suggests some connections between these

topological indices and existing topological numbers in quantum theory. These

connections lead to some analogy between classical mechanical systems and

quantum systems that offers an alternatively way to understand the topology

in quantum systems.

Last but not least, topological frustration is a classical phenomenon that is

able to study in most frustrated spin systems, but does not draw much atten-

tion due to the ignorance of the connections between classical frustration and

quantum magnets. In particular, combined with the role of symmetry, the fate

of SETF and how SETF is preserved from infinite spin to a finite spin points out

a new direction to study unsolved frustrated spin systems such as kagome and
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pyrochlore antiferromagnets.
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APPENDIX A

THE ORIGAMI CHAIN

The origami chain is a periodic origami fold pattern of degree-4 vertices con-

structed from quadrilaterals as shown in Fig. A.1. Each vertex, because it has a

one-dimensional configuration space, can be parametrized by the fold angle of

a single vertex so any finite number of vertices will have one degree of freedom.

There are two degree-4 vertices in each unit cell with interior angles {αi, βi, ϕi, ψi}

for the ith vertex. When the interior angles around each internal vertex add up

to 2π, the fold pattern can be realized as a flat structure; here, we will extend the

calculation of Ref.[37] to the more general case of arbitrary interior angles.

The law of cosines applied to each vertex gives a constraint on the dihedral

angles θ as,

cos (α1) cos (ψ1) + sin (α1) sin (ψ1) cos θ1 = cos (β1) cos (ϕ1) + sin (β1) sin (ϕ1) cos θ2

cos (α2) cos (ψ2) + sin (α2) sin (ψ2) cos θ2 = cos (β2) cos (ϕ2) + sin (β2) sin (ϕ2) cos θ3

After some manipulation, we obtain

A sin2
(
δθ1

2

)
− B sin2

(
δθ2

2

)
+ ϵ = 0, (A.1)

where δθi = π − θi and

A = sinα1 sinα2 sinψ1 sinψ2,

B = sin β1 sin β2 sin ϕ1 sin ϕ2,

2ϵ = sin(α2) sin(ψ2)
[
cos(α1 + ψ1) − cos(β1) cos(ϕ1)

]
+ sin(β1) sin(ϕ1)

[
cos(α2) cos(ϕ2) − cos(β2 + ϕ2)

]
.

When the Gaussian curvature of both vertices is zero, ϵ = 0.
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β1α1

α2β2

Figure A.1: The origami topological chain.
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APPENDIX B

GAUGE THEORY

The connection between fermion and boson problems has been discussed

in various perspectives. Many topological orders have been found in fermion

systems. In classical mechanics, boson systems can also have some interesting

topology. Topological quantum field theory (TQFT) is a theory which estab-

lishes a mathematical framework which relates one boson system to a fermion

system. One of the branches of TQFT which can be understood as Nicolai map,

BRST (where the BRST refers to Becchi, Rouet, Stora and Tyutin) theory, or

Faddev-Popov (FP) gauge-fixing relates to classical constrained systems. The

connection between them is established by a gauge theory in which constraints

for a classical system are treated as gauge-fixing conditions.

One of the useful topological numbers in TQFT is the partition function. In

general, a partition function sums over all paths by assigning each path a weight

depending on the action. In TQFT all paths cancel and together contribute ex-

actly zero except for the paths of ground states. Therefore, the partition function

is simply the sum over all paths of ground states which have an action equal to

nπ. Due to this fact, the partition function can always be rewritten as an inte-

gration over a sum of several delta functions up to a sign. Thus, one can write

a partition function of TQFT in an inverted way by starting with a gauge sym-

metry action and then fixing the gauge by imposing delta functions.

B.1 Toy model

To understand this gauge theory we first start with a toy model

62



Z0 =

∫
dx (B.1)

This partition function is infinity. We need to fix x to get a well-defined Z.

Let’s assume that the function f (x) = x2 − a2 is used to fix the degree of freedom.

We define a gauge-fixed partition function as

Z0 =

∫
dxδ( f (x))

d f (x)
dx

(B.2)

There are two solutions to f (x) = x2 − a2 = 0, namely, xs = ±a. The partition

function becomes

Z0 =

∫
dx[δ(x − a) + δ(x + a)]|

d f (x)
dx
|−1 d f (x)

dx
= 1 + (−1) = 0 (B.3)

which is a sum over the signs of the slops at xs = ±a.There are two reasons

why we use δ( f (x)) d f (x)
dx instead of δ( f (x))| d f (x)

dx |. The first one is that d f (x)
dx can

be mapped to a fermion action if we treat it as a Pfaffian. The second one is

that with this definition, Z0 is topological invariant in the sense that it is totally

determined by the boundaries of f (x). For f (∞) = f (−∞) = ±∞, Z0 = 0; For

f (∞) = − f (−∞) = ±∞, Z0 = ±1. Therefore, Z0 is robust to any local deformation

of f (x).

By treating d f (x)
dx as a Pfaffian, we rewrite Z0 as

Z0 =

∫
dx(idΨAdΨB)δ( f (x))e( i

2ΨA
d f (x)

dx ΨB−
i
2ΨB

d f (x)
dx ΨA) (B.4)
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where ΨA and ΨB are real Grassmann numbers. Because Z0 is robust to any

local deformation of f (x), we can write

Z0 =

∫
dx(idΨAdΨB)δ( f (x) − w)e( i

2ΨA
d f (x)

dx ΨB−
i
2ΨB

d f (x)
dx ΨA) (B.5)

where w is a real number. Since Z0 does not depend on the choice of w, we

multiply Z0 by
∫

dw
√

2π
e−

1
2 w2
= 1 and get

Z0 =

∫
dx(idΨAdΨB)

dw
√

2π
δ( f (x) − w)e−

1
2 w2+( i

2ΨA
d f (x)

dx ΨB−
i
2ΨB

d f (x)
dx ΨA) (B.6)

Finally, integrating over w, we get a partition function

Z0 =

∫
dx
√

2π
(idΨAdΨB)e−

1
2 ( f (x))2+( i

2ΨA
d f (x)

dx ΨB−
i
2ΨB

d f (x)
dx ΨA) (B.7)

This is a simplest example of TQFT. The partition function itself is a topologi-

cal number. The other way to write this partition of function is simply replacing

δ( f (x)) by
∫

dB
√

2π
eiB f (x). We will have

Z
′

0 =

∫
dxdB
√

2π
(idΨAdΨB)eiB f (x)+( i

2ΨA
d f (x)

dx ΨB−
i
2ΨB

d f (x)
dx ΨA) (B.8)

To get this, we don’t need to assume the robustness of a local deformation of

f (x). This can be considered as a hard-constrained version of previous one.

The sign of slop for each solution also has a topological meaning. For a given

solution, the partition function of fermion part is
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ZF( f (xs)) =
∫

idΨAdΨBe
i
2ΨA

d f (xs)
dx ΨB−

i
2ΨB

d f (xs)
dx ΨA = |ZF( f (xs))|(−1)W( f (xs)) (B.9)

where (−1)W( f (xs)) is a topological number protected by the gap d f (x)
dx . In other

words, to go from xs = a to xs = −a, one must continuously deform f (x) such

that at some step where f̃ (x) has a point at which both f̃ (x) = 0 and d f̃ (x)
dx = 0. In

boson systems, this corresponds to a linear zero mode which might not be an

actual zero mode in a non-linear constrained system. If one generalizes x to a

field ϕ, then it is clear that W( f (xs)) is the winding number.

B.2 Isostatic systems

This gauge theory can be applied to isostatic systems. For an elastic lattice, if the

number of constraints is equal to the number of degrees of freedom, it is called

isostatic. Our goal is to find the topology of zero modes for such systems. We

first start with a one-dimensional lattice model with a rotor on each site rotating

freely. Assume pi and xi are momentum and position of the ith ball attached

to the end of the ith rotor, respectively. For the ground state, the constraints

pi = 0 is trivial, we directly drop the degrees of freedom of momentum. We

take the stiff springs limit which will not change the ground states. In this limit,

the extensions of springs would be the constraints for xi. Thus, we start with a

partition function.

Zs =

∫ n∏
i=0

dxi (B.10)
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Then fix the gauge by imposing gauge-fixing conditions, fi(−→x ) = 0 where

fi(−→x ) is the extension for ith spring. A gauge-fixed partition function is defined

as

Zs

∫ n∏
i=0

dxi

n∏
i=0

δ( fi(−→x ))det(
∂ fi(−→x )
∂x j

) =
n∑

−→
f (−→x )=0

sign(det(
∂ fi(−→x )
∂x j

)) (B.11)

If this topological number is robust to a local deformation of fi(−→x ), we con-

sider det(∂ fi(−→x )
∂x j

) as a Pfaffian, replace δ( fi(−→x )) by δ( fi(−→x ) − wi), multiply the parti-

tion function by
∏n

i=0

∫
dwi√

2π
e−

1
2 w2

i = 1, and integrate over all wi. We will get

Zs =

∫ n∏
i=0

dxi
√

2π
idΨAidΨBie

−
∑n

i=0
1
2 ( fi(−→x ))2+

∑n
i=0

∑n
j=0( i

2ΨAi
∂ fi(
−→x )

∂x j
ΨB j+h.c.) (B.12)

The Hamiltonian has two terms. The first term is the potential energy. The

second term is a Majorana chain. In a spring-ball system, ∂ fi(−→x )
∂x j

is the rigidity

matrix. Therefore, the partition function is the sum of the signs of the determi-

nants for the rigidity matrices of all ground states. Without the assumption of

robustness, we can also write the partition function in an alternative form

Zs =

∫ n∏
i=0

dxidBi
√

2π
idΨAidΨBie

i
∑n

i=0 Bi fi(−→x )+
∑n

i=0
∑n

j=0( i
2ΨAi

∂ fi(
−→x )

∂x j
ΨB j+h.c.) (B.13)
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Take a Kane-Lubensky (KL) chain for an example. A closed KL chain is an

example of isostatic systems. Each site of a KL chain has a rotor with radius r,

and the distance between two sites is a. We define the angle θn of rotors on odd

sites to be with respect to +y clockwise, and with respect to −y counterclock-

wise for even sites. The equilibrium angle θc for a given rest length l̄ of springs

satisfies the equation

l2
n,n+1 = (rcos(θn+1) + rcos(θn))2 + (a + rsin(θn+1) − rsin(θn))2 = l̄2 (B.14)

This equation can be simplified as

l2
n,n+1 = a2 + 2r2 + 2r2cos(θn+1 + θn) + 2ar[sin(θn+1) − sin(θn)] = l̄2 (B.15)

The extension of each spring is written as

en =

√
l2
n,n+1 − l̄ (B.16)

There are four different solutions to en = 0 for all n, namely, θs = θc,−θc, π −

θc, π + θc.
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−∆+ ∆− 0 ... 0

0 −∆+ ∆− ... 0

0 0 −∆+ ... 0

... ... ... ... ...

∆− 0 0 ... −∆+


where ∆+ = r

l̄ [acos(θs) + rsin(2θs)] and ∆− = ∂en
∂θn+1

= r
l̄ [acos(θs) − rsin(2θs)]. The

determinant is

(−1)s[(∆+)s − (∆−)s] = [(∆+)s − (∆−)s] (B.17)

where s is the number of sites and is always even. Thus

ZKL = 1 + (−1) + 1 + (−1) = 0 (B.18)

which means that we can deform a closed KL chain locally such that there is no

configuration such that en = 0 for all n. In other words, those four solutions are

topologically connected with a local deformation.

In this example, the sign of ∂ei(
−→
θ )

∂θ j
determines the location (right or left edge) of

the zero mode as we open the boundaries of KL chains. Each solution can also be

mapped into a Kiteav chain, solutions with positive slope mapped into a trivial

phase and solutions with negative slope mapped into a non-trivial phase. How-

ever, in a KL chain those solutions are not topologically protected with a local

deformation. One can go from one solution to another by changing the length

of springs locally. For example, one can consider an open KL chain as a local

deformation of the length of the spring connecting the two rotors at boundaries.
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B.3 Homotopy groups

Homotopy groups provide a standard way to define a topological number as-

sociated to any local critical point. Assume P is a critical point in n-dimensional

space and S p is an (n − 1)-dimensional sphere which encloses the point P. We

define an integral of n − 1-form

∮
S p

fi1d fi2 ∧ ... ∧ d finϵ
i1,i2,...,in

( f 2
1 + f 2

2 + ... + f 2
n )

n
2

(B.19)

which is totally independent of the choice of surface S p. In other words, this in-

tegral gives properties which only depend on the critical point P. In the theory

of homotopy groups, the vector field
−→
f around the critical point P can be clas-

sified by πn−1(S n−1) which is a Z topological class. This number does not depend

on the choice of surface S p if there is no critical point other than P inside S p.

Take limit of small S p, the integral can be calculated as

∮
S p

fi1d fi2 ∧ ... ∧ d finϵ
i1,i2,...,in

( f 2
1 + f 2

2 + ... + f 2
n )

n
2
= sign(det(

∂ fi

∂x j
))

∮
S p

xi1dxi2 ∧ ... ∧ dxinϵ
i1,i2,...,in (B.20)

The integral
∮

S p
xi1dxi2 ∧ ... ∧ dxinϵ

i1,i2,...,in is the surface area of a unit (n − 1)-

dimensional sphere. The permutation of ϵ i1,i2,...,in would give a factor (n − 1)!.

Therefore, the integral is

∮
S p

fi1d fi2 ∧ ... ∧ d finϵ
i1,i2,...,in

( f 2
1 + f 2

2 + ... + f 2
n )

n
2
= sign(det(

∂ fi

∂x j
))sn−1(n − 1)! (B.21)

where sn−1 is the surface area of a unit (n − 1)-dimensional sphere. Finally, we

define the integral

69



1
sn−1(n − 1)!

∮
S p

fi1d fi2 ∧ ... ∧ d finϵ
i1,i2,...,in

( f 2
1 + f 2

2 + ... + f 2
n )

n
2
= sign(det(

∂ fi

∂x j
)) (B.22)

If det( ∂ fi
∂x j

) = 0, one has to explicitly calculate the integral which can be any

integer. For example, consider f1 = 2(x2 − y2) and f2 = 2xy. The only critical

point is (x, y) = (0, 0) at which det( ∂ fi
∂x j

) = 0. By parametrizing with x = cos(t) and

y = sin(t), the integral of 1-form is

1
2π

∮
S 1

cos(2t)dsin(2t) − sin(2t)dcos(2t) =
1

2π

∮
S 1

2 = 2 (B.23)

If the integral is over all space, this would be the same as what we found by

gauge-fixing with gauge conditions fi. This analog provides another perspec-

tive to look at constrained problems. A set of constraints is treated as a vector

field which is generated by the topological charges at the critical points where

the vector field is zero. The theory of homotopy groups also give richer topo-

logical number Z instead of Z2. Topological numbers other than ±1 come from

the case when det( ∂ fi
∂x j

) = 0 at critical points. Without imposing any symmetry, Z

topological class is obtained from the non-linearity of constraints.
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APPENDIX C

FIELD THEORY AND THE WITTEN INDEX

In the continuous limit, in a one-dimensional closed manifold, assume the

constraint is f (θ, dθ
dx ) = g(θ) dθ

dx + V(θ) = 0. In this form, the topological number is

robust to a local deformation (changing the rest lengths of springs, the lengths

of rotors, or the distance between two sites locally). Therefore, we can write the

partition function

Z f =

∫
DθDΨADΨBe

∫
dx[− 1

2 ( f (θ, dθ
dx ))2+( i

2ΨA
δ f (θ, dθ

dx )
δθ ΨB+h.c.)] =

∑
V(θ)=0

sign(g(θ)
∂V(θ)
∂θ

) (C.1)

We use a KL chain for an example. To derive a field theory for KL chain,

we take the continuous limit. First, we replace θn by θ(x) − a
2

dθ(x)
dx and θn+1 by

θ(x) + a
2

dθ(x)
dx [?]. The dynamic length of a spring is

l2(x) = a2 + 4r2cos2(θ(x)) + 2ar[sin(θ(x) +
a
2

dθ(x)
dx

) − sin(θ(x) −
a
2

dθ(x)
dx

)] (C.2)

we rewrite the constraint as

a
r

cos(θ(x))sin(
a
2

dθ(x)
dx

) + sin2θc − sin2(θ(x)) = 0 (C.3)

where sin2θc =
a2+4r2−l̄2

4r2 and 0 < θc <
π
2 .

Take an approximation to the first order of a
2

dθ(x)
dx , we have

C1cos(θ(x))
dθ(x)

dx
+ sin2θc − sin2(θ(x)) = 0 (C.4)
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where C1 =
a2

2r

There are four solutions to sin2θc− sin2(θ(x)) = 0, namely, θs = θc,−θc, π−θc, π+

θc. the sign for each solution is

sign(−C1cos(θs)sin(θs)cos(θs)) = −sign(sin(θs)) (C.5)

So Z f = (−1) + 1 + (−1) + 1 = 0 which means that we can deform a closed KL

chain locally such that there is no solution to make the potential energy zero.

This topological number is related to Witten’s index by construct a super-

symmetric Hamiltonian

Hwit = [Q,Q†]anti (C.6)

where the supercharge Q is

Q =

0 0

A 0

 (C.7)

The operator A is

A =
d
dx
+
∂V
∂x

(C.8)

By defining two subspaces  boson

f ermion

 (C.9)

and the operator F which is 1 for bosons and 0 for fermions. Then Witten’s

index can be calculated by

Wwit = Tr((−1)Fe−βHwit) (C.10)

which is exactly the same as the partition function we defined.
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Another way to understand Witten’s supersymmetry is that there exist two

Hamiltonians that have the same spectra except for zero energy states. The two

corresponding Hamiltonians are

H± = −
d2

dx2 + (
∂V
∂x

)2 ∓
∂2V
∂x2 (C.11)

Then we can combine those two Hamiltonians with an extra degree of free-

dom that is a Fermion number nF . Then we can say that the states for H+ have

nF = 0 (bosonic states) and the states for H− have nF = 1 (fermionic states).

Therefore, the physical interpretation of Witten’s index is the number of bosonic

states minus the number of fermionic states. Since all non-zero energy states are

paired, Witten’s index is also equal to the number of bosonic zero modes minus

the number of fermionic zero modes.

In a topological quantum field theory with BRST-exact form, the partition

function can be calculated by simply summing over all classical solutions. The

classical solutions are the points where ∂V
∂x = 0. In H±, the potential energy would

be raised or lowered by the third therm depending on the sign of ∂2V
∂x2 . Therefore,

the classical solutions in a topological quantum field theory with positive slop

would correspond to minimum of the potential energy for H+, and the negative

slop ones for H−. In other word, we can map the solutions with positive slop to

the states of H+ and the solutions with negative slop to the states of H−.
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APPENDIX D

Z TOPOLOGICAL INVARIANT

A Kane-Lubensky chain can be mapped into a Su-Schrieffer-Heeger chain

which is in BDI class. In one-dimensional space BDI class has Z topological in-

variant. However, the sign of determinant only gives two possible values +1

or −1 which seems more like a Z2 topological invariant. To clarify this point,

we track back to Z topological invariant by considering the determinant as the

multiplication of all its eigenvalues. First we consider general cases of trans-

lational symmetric lattices with periodic boundary conditions. With periodic

boundary conditions, we can transform the real space into k-space and find the

eigenvalues in terms of k. The eigenvalue h(k) is

h(k) =
∑

n

wneink = r(k)eiϕ(k) (D.1)

where wn is the coefficients of constraints at the nth nearest site. And the sign of

determinant is

sign(det) = sign
∏

k

h(k) = ei
∑

k ϕ(k) = eiµπ (D.2)

where ϕ(k) is continuous in −π < k ≤ π. Because sign(det) can only be either +1 or

−1, µ is an integer. Also, we can always add a 2nπ phase to all ϕ(k), so µ is defined

as a modular of 2N where N is the number of total sites. Therefore, µ have 2N

possible values. Since all the elements in the matrix are real, h(k) = h∗(−k), and

thus all the phases (except for ϕ(0) and ϕ(π)) would be canceled if ϕ(0) = 0. On

the other hand, if h(0) is negative then we can choose ϕ(0) = π. In this case, Nπ

would be added to the total sum over ϕ(k). Therefore, whether µ is in [0,N) or

[N + 1, 2N) totally depends on the sign of h(0). Thus we can write µ as

µ = µ1N + µ2 (D.3)
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where µ1 =
1−sign(h(0))

2 . To determine µ2, what we need to know is ϕ(π). Now

imagine that we go from k = −π, when we encounter h(k) < 0, if the derivative

of ϕ(k) is positive that would add a π phase to ϕ(π). On the other hand, if the

derivative is negative that would add a −π phase to ϕ(π). Therefore, we can

calculate µ2 by

µ2 =
∑

h(k)<0

sign
d[ϕ(k)]

dk
(D.4)

which is exactly equal to the winding number. In conclusion, we can re-write

the sign of determinant as

sign(det) = ei(µ1N+µ2)π (D.5)

µ1 =
1 − sign(h(0))

2
(D.6)

µ2 =
∑

h(k)<0

sign
d[ϕ(k)]

dk
(D.7)

With this expression, we get a Z2⊗Z topological invariant. Here we have an extra

Z2 topological invariant because there is a mirror symmetry along the chain. In

BDI class, the Z topological invariant is protected by both particle-hole symme-

try and chiral symmetry. In this structure the translational symmetry of lattices

directly gives a chiral symmetry. However, after opening the boundaries and

rotating rotors, chiral symmetry would be broken. Therefore, the system would

become in D class which has Z2 invariant. In general, without translational in-

variant, we only have Z2 ⊗ Z2 topological invariant in a KL chain.

Another perspective to see this question is that without any symmetry, the

sign of determinant only gives two possible values. While if there are some

symmetries, the matrix can be block-diagonalized. Therefore, the system would

have richer topological phases. The topological number are the combination of

the sign of the determinant of each block.
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D.0.1 Example 1

In a Kane-Lubensky chain w0 = −∆+ and w1 = ∆−. If ∆+ > 0, ∆− > 0, and ∆+ > ∆−,

we have h(0) < 0 and h(π) < 0. The sign of d[ϕ(k)]
dk at h(k) < 0 can be written as

sign
d[ϕ(k)]

dk h(k)<0
= −sign

∑
n

nwncos(nk) (D.8)

So the topological number µ2 is

µ(1)
2,∆+>∆−

= (−1) + 1 = 0 (D.9)

For ∆+ > 0, ∆− > 0, and ∆+ < ∆−, h(k) < 0 only at k = π. The topological number

µ2 is

µ(1)
2,∆+<∆−

= 1 (D.10)

D.0.2 Example 2

Now consider two separated KL chains, even sites for one KL chain and odd

site for the other one. In this structure w0 = −∆+ and w2 = ∆−. If ∆+ > 0, ∆− > 0,

and ∆+ > ∆−, h(k) < 0 at four points, k = 0, k = π/2, k = π, and k = 3π/2. So the

topological number µ2 is

µ(2)
2,∆+>∆−

= (−1) + 1 + (−1) + 1 = 0 (D.11)
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For ∆+ > 0, ∆− > 0, and ∆+ < ∆−, h(k) < 0 only at k = π/2 and k = 3π/2. The

topological number µ is

µ(2)
2,∆+<∆−

= 1 + 1 = 2 (D.12)

D.0.3 Example 3

A spring-ball system with translational invariant can be mapped into a fermion

system with a Hamiltonian

H =
∑

i, j

w j−ic
†

a,icb, j + h.c. (D.13)

This is a general form for a system with two sites, a and b, in one unit cell.

In two coupled SSH chains, only w−1, w0, and w1 are none-zero[33]. Assume that

w−1,w0,w1 > 0. If w0 > w−1 +w1, There is no point where h(k) < 0. Thus, µ2 = 0. If

w0 < w−1 + w1, we have h(k) < 0 at k = π.

sign
d[ϕ(k)]

dk k=π
= −sign(w−1 − w1) = sign(w1 − w−1) (D.14)

Therefore, in this case, if w1 > w−1, µ2 = 1. On the other hand, if w1 < w−1,

µ2 = −1.
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APPENDIX E

LOCAL TOPOLOGICAL CHARGE APPROACH

The Kane-Lubensky (KL) chain shown in Fig.E.1 is a classical example to

understand the topology of mechanical systems[26]. The winding number is

defined via the dispersion of phonons at each zero energy point where all the

extensions ei of springs are zero. There are four different periodic solutions with

zero energy which are the configurations with all angles being equal to θc, −θc,

π − θc, or π + θc where θc = sin−1(
√

a2+4r2−L2

2r ) and a, r, and L are the distance be-

tween two nearest pivot points, the radius of rotors, and the length of springs,

respectively. The dispersion of phonons is found to be the same form as the en-

ergy dispersion of the electronic states in the Su-Schrieffer-Heeger (SSH) chain.

Therefore, the phonons in the KL chain and the electronic states in the SSH chain

share the same topological properties.

A linear zero mode(ZM) located at one edge or the other after opening the

boundaries can then be classified by the winding number[26]. The winding

number is 0 for the solutions θc and π − θc which have a linear ZM at the right

edge; the winding number is +1 for −θc and π+ θc which have a linear ZM at the

left edge. To continuously change the winding number from 0 to 1, one has to

close the gap of phonons. Therefore, the winding number defined via phonons

captures the topological invariant of linear ZMs protected by a gap.

However, those linear ZMs are indeed not localized and some of them are

connected after opening the boundary. By building an exact model with rigid

bars, a linkage initially located at one edge can propagate through the chain

smoothly without any stretching or compressing deformations[14]. Therefore,

the two linear ZMs with different winding numbers could actually be connected
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Figure E.1: Kane-Lubensky chain. Each site has a rotor (blue line) with
radius r. The distance between two pivot points is a. Two ad-
jacent rotors are connected by a spring (brown line) with rest
length l. The rotating angle of ith rotor is θi. The opened KL
chain has one linear zero mode located at one edge or the other.
The configurations of θc and π−θc have a linear ZM at the right
edge and their winding number is 0. The configurations of −θc

and π + θc have a linear ZM at the left edge and their winding
number is +1.
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and belong to the same nonlinear ZM. This implies that the winding numbers

defined via phonons are incompatible with the realistic nonlinear ZMs of the

opened KL chain.

One can study whether a nonlinear ZM behaves like a soliton wave or is

localized at one edge by using local topological charges. In the KL chain, a local

topological charge for each unit cell is defined in the following way. Two nearest

rotors are combined as a unit cell as shown in Fig.E.3(a). For each configuration

of two rotors, by adding an extra spring that connects the second rotor back to

the first rotor in a periodic way, it becomes a two-rotor model(Fig.E.2), and the

the local topological charge for each configuration can be calculated by

µ(p) =
1

sn−1(n − 1)!

∮
S p

ei1dei2 ∧ ... ∧ deinϵ
i1,i2,...,in

(e2
1 + e2

2 + ... + e2
n)

n
2

(E.1)

The corresponding local topological charge µ(p) would tell us which one

(θi or θi+1) is the dominant degree of freedom. The definition can be further

promoted to a non-periodic point (θi , θi+1) by using the same definition.

µ =


1, |

∂e1
∂θi
| > | ∂e1

∂θi+1
|

−1, |∂e1
∂θi
| < | ∂e1

∂θi+1
|

(E.2)

Imagine that we start with the configuration where all the local topological

charges are +1 (the first configuration in Fig.E.1). The dominant rotor is initially

identified in the last site. As we rotate rotors around this point, the changes

of the angles would exponentially decay from the right to left. This property

holds if the local topological charges stay the same. Therefore, the invariant of

the local topological charges implies that the left edge is fixed if the chain is

long enough. On the other hand, if the local topological charge changes, the

dominant rotor would propagate from one site to the other.
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Figure E.2: Two-rotor model (a)Four solutions for the two-rotor model
with the periodic boundary condition. An extra spring of
length L2 connects two rotors as the periodic boundary condi-
tion. (b)The dynamic of solutions with the continuous change
of L2. The blue (red) circles are the solution points for the
periodic boundary condition with topological charge +1 (−1).
The blue (red) lines are the solution points with topological
charge +1 (−1) for different L2. The black circles are the points
where one positive and one negative topological charge com-
bine. Two different nonlinear zero modes are separated by
the phase transition point L1 = 2r − a where two black cir-
cles merge. (c)The plots of θ1 versus θ2. The blue lines are the
points of configurations with +1 charge, and the red lines are
the points of configurations with −1 charge. The curves of the
left panel are periodic. The two red segments of the first curve
are the same, and the two blue segments of the second curve
are the same.

81



Imagine that we start with the configuration where all the local topological

charges are +1 (The first configuration in Fig.E.1). The linear ZM is initially

identified in the last unit cell. As we rotate rotors around this point, the changes

of the θi would exponentially decay from the right to left. This property holds if

the local topological charges stay the same. Therefore, the invariant of the local

topological charge of a unit cell implies that the configuration of the unit cell

stays topologically the same which makes the left edge almost fixed if the chain

is long enough. On the other hand, if the local topological charge changes, the

configuration of the unit cell would change significantly which implies that the

linear ZM propagates from one unit cell to another.

Firstly, we consider a mildly disordered KL chain(a < Li <
√

a2 + 4r2). Start

with a configuration in which all local topological charges are +1 as shown in

Fig.E.3(a). Since the linear ZM is at the right edge initially, as we continuously

rotate the rotors, only the last two unit cells would change significantly. As

shown in Fig.E.3(b), the local topological charge in the last unit cell changes

from +1 to −1, and then the local topological charge in the second to last unit

cell also changes from +1 to −1. By looking at the relation of the nearest two

unit cells for a mildly disordered KL chain, it shows that the local topological

charges for all unit cells would change from +1 to −1 in the order from right to

left. As a result, the nonlinear ZM behaves like a soliton wave which propagates

through the chain.

For the second example, we introduce an extreme disorder for the last spring

(L9 < a) as shown in Fig.E.4(a). Similar to the previous example, the linear

ZM is initially localized in the last unit cell. The configuration space of the last

unit cell forms a loop and each point on the loop can be mapped into a point
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Figure E.3: Mildly disordered KL chain (a)Two nearest rotors are com-
bined as a unit cell. Initially, all local topological charges are
+1. (b)The relation between the last two unit cells. As contin-
uously rotating rotors, the local topological charge in the last
unit cell changes from +1 to −1, and then the local topological
charge in the second to last unit cell also changes from +1 to
−1.
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with +1 charge in the second to last unit cell[See Fig.E.4(b)]. This condition is

sufficient to guarantee that the linear ZM cannot propagate to the left-hand side.

Therefore, the nonlinear ZM is localized at the right edge.
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Figure E.4: Localized edge zero mode in a disordered KL chain (a)The ini-
tial configuration of a disordered KL chain in which the length
of the last spring is smaller than a. (b)The configuration of the
last unit cell forms a loop (the one at right-hand side). Each
point on the loop can be mapped into a point with +1 charge
in the second to last unit cell.
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APPENDIX F

EXAMPLES OF SUPERSYMMETRY

linear constraints Let’s consider n = 2 case. Assume that we have two linear

constraints in a two-dimensional space. The solution to the two constraints is

the intersecting point of two straight lines. Geometrically, we know that there

always exists one single intersecting point for two non-parallel lines as shown

in FigF.1(a).

Let’s consider x + y = 0 and x − y = 0 as an example. In this case Qnet =

sign[1 × (−1) − 1 × 1] = −1. We can map this constrained problem to a quantum

system with the Hamiltonian

H1 = −
1
2

(
∂2

∂x2 +
∂2

∂y2 ) + (x2 + y2)

−
1
2

[(
∂

∂Ψ1
Ψ1 + Ψ1

∂

∂Ψ1
) + (

∂

∂Ψ1
Ψ2 + Ψ2

∂

∂Ψ1
)

+(
∂

∂Ψ2
Ψ1 + Ψ1

∂

∂Ψ2
) − (

∂

∂Ψ2
Ψ2 + Ψ2

∂

∂Ψ2
)]

(F.1)

In the nF = 0, 2 sectors, we have

H1(nF = 0, 2) = −
1
2

(
∂2

∂x2 +
∂2

∂y2 ) + (x2 + y2) (F.2)

which is a two-simple-harmonic-oscillator system that has the lowest energy

equal to
√

2. Thus, there is no zero mode in the even number fermion sections.

In the nF = 1 sectors, we have

H1(nF = 1) = −
1
2

(
∂2

∂x2 +
∂2

∂y2 )I + (x2 + y2)I − R (F.3)

where R =

1 1

1 −1

 By rotating the two fermion basis, we get two non-

interacting Hamiltonians

H1,±(nF = 1) = −
1
2

(
∂2

∂x2 +
∂2

∂y2 ) + (x2 + y2) ±
√

2. (F.4)
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Figure F.1: (a)Geometrical topology: two non-parallel straight lines in a
two-dimensional space always have one intersecting point.
(b)The radial part of the wavefunction for the corresponding
unbroken supersymmetric zero mode.

The ground state energy of H1,+(nF = 1) is 2
√

2 which is also nonzero. A zero

mode comes from of H1,−(nF = 1). The corresponding wavefunction is plot in

Fig.F.1(a). Because we have a single zero mode in the odd number fermion

section, the partition function Zsusy is equal to (−1)1 = −1 that we can directly

infer from Qnet. The unbroken supersymmetry in H1 can therefore be understood

as the geometric argument that two non-parallel lines must have a intersecting

point.

F.1 nonlinear constraints

In general, nonlinear constraints can be any form. Here we consider the two

hyperbola constraints as an example because of its special geometrically prop-

erty. In a two dimensional space, two hyperbolas with non-parallel or non-

perpendicular transverse axes always have two intersecting points as show in

FigF.2(a). This topological property implies that there always exist two solution
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Figure F.2: (a)Geometrical topology: two hyperbolas with non-parallel
or non-perpendicular transverse axes always in a two-
dimensional space always have two intersecting points. (b)The
radial part of the wavefunctions for the two corresponding un-
broken supersymmetric zero modes.

points, and thus Qnet = ±2.

Let’s consider x2 − y2 = 0 and −2xy = 0 as an example. In this case Qnet = −2.

We can map this constrained problem to a quantum system with the Hamilto-

nian

H2 = −
1
2

(
∂2

∂x2 +
∂2

∂y2 ) +
1
2

(x2 + y2)2

−
1
2

[2x(
∂

∂Ψ1
Ψ1 + Ψ1

∂

∂Ψ1
) − 2y(

∂

∂Ψ1
Ψ2 + Ψ2

∂

∂Ψ1
)

−2y(
∂

∂Ψ2
Ψ1 + Ψ1

∂

∂Ψ2
) − 2x(

∂

∂Ψ2
Ψ2 + Ψ2

∂

∂Ψ2
)]

(F.5)

which can be written in the polar coordinates as

H2 = −
1
2

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2 (

∂2

∂θ2 ) +
1
2

r4

−r[cosθ(
∂

∂Ψ1
Ψ1 + Ψ1

∂

∂Ψ1
) − sinθ(

∂

∂Ψ1
Ψ2 + Ψ2

∂

∂Ψ1
)

−sinθ(
∂

∂Ψ2
Ψ1 + Ψ1

∂

∂Ψ2
) − cosθ(

∂

∂Ψ2
Ψ2 + Ψ2

∂

∂Ψ2
)]

(F.6)

In the nF = 0, 2 sectors, we have

H2(nF = 0, 2) = −
1
2

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 ) +
1
2

r4. (F.7)
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The θ dependent part of the wavefunction is e−im with some integer m, and thus

the term 1
r2

∂2

∂θ2 can be replaced by −m2

r2 . Then we have

H2(nF = 0, 2) = −
1
2

(
∂2

∂r2 +
1
r
∂

∂r
) +

1
2

r4 +
m2

2r2 . (F.8)

In the nF = 1 sectors, we have

H2(nF = 1) = −
1
2

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 )I +
1
2

r4I − 2rT (F.9)

where T =

 cosθ −sinθ

−sinθ −cosθ

, The eigenvector of T with eigenvalue 1 is eisθ

−cos θ2

sin θ
2


and eigenvector of T with eigenvalue −1 is eisθ

 sin θ
2

cos θ2

 where s is a half integer.

The term 1
r2

∂2

∂θ2 acting on the above two states gives the potential energy
1
4+s2

2r2 − is
2r2

is
2r2

1
4+s2

2r2

 (F.10)

Therefore, we H2(nF = 1) can be written asHhyper − 2r − is
2r2

is
2r2 Hhyper + 2r

 (F.11)

where Hhyper = −
1
2 ( ∂

2

∂r2 +
1
r
∂
∂r ) + 1

2r4 +
1
4+s2

2r2 .

By explicitly solving H2(nF = 0, 1, 2), we found that there are only two zero

modes exist in H2(nF = 1) with s = ±1
2 as shown in Fig.F.2(b). Therefore,

Zsusy = −2 which agrees with result from classical constrained problem. In this

case, the two unbroken supersymmetric zero modes in H2 is the topological

result from the geometric reason that two hyperbolas with non-parallel or non-

perpendicular transverse axes always have two intersecting points.
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APPENDIX G

SPT EIGENSTATES

We study the spin-1/2 ladder model with 6 rungs to see what happens to the

Haldane spin-one SPT eigenstates after breaking the staggered swap symmetry

(J∥,1 = J∥,2 = JX,1 = JX,2).

In the antiferromagnetic Heisenberg spin-one chain model, the lowest 4

eigenstates are separated by a gap from the other states as shown in FigG.1.

Those four states are S = 0 singlet and S = 1 triplet. The excitation (S = 1, S z =

−1, 1) of the ground state (S = 0) is an edge state that has two spin-half particles

separately at two edges where the expectation value of S z is roughly 0.5 as show

in Fig.G.2(a).

Now we start with the ladder model at the highly frustrated point J⊥ =

2J∥,1 = 2J∥,2 = 2JX,1 = 2JX,2 and identify the corresponding S = 0 singlet and

S = 1 triplet are the 54th, 61st, 62nd and 63rd excited states.

When we change J∥,1 slightly without having any level crossing, S z of those

four states change as Fig.G.2(b) and (c). When ∆J∥,1 = 0.01J∥,1, from the expecta-

tion values of S z on different rungs we can see the states S = 1, S z = −1, 1 evolve

into the bulk. In these two states, < S z > at two edges decreases and < S z >

of the middle rungs increases becoming comparable to < S z > at two edges[See

Fig.G.2(b)]. When we increase ∆J∥,1 further to 0.01J∥,1 as shown in Fig.G.2(c) the

state S = 1, S z = −1 significantly mixed with the state S = 1, S z = 0. From the

evolution of < S z > in Fig.4.7(a)-(c), we see that the edge states are not robust

with the deformation (change of J∥). In other words, these Haldane eigenstates

are protected by the staggered swap symmetry (J∥,1 = J∥,2 = JX,1 = JX,2) that is
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Figure G.1: The spectrum of the antiferromagnetic Heisenberg spin-one
chain with 6 sites.

also the symmetry enriches the topological frustration in the classical limit.
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Figure G.2: (a)The expectation value of S z on each rung for the S = 0 sin-
glet and S = 1 triplet. (b) and (c) show the evolution of < S z >
after breaking the staggered swap symmetry.
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1/2 kagomé heisenberg antiferromagnet. Phys. Rev. B, 46:14201–14204, Dec
1992.

[11] P. Chandra and B. Doucot. Possible spin-liquid state at large s for the frus-
trated square heisenberg lattice. Phys. Rev. B, 38:9335–9338, Nov 1988.

[12] Hitesh J. Changlani and Andreas M. Läuchli. Trimerized ground state of
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