Lower Boumds in
Computatiomal Complexity
(Ph.D. Thesis)

Ming Li
TR 85-663
March 1985

Department of Computer Science
Cornell University
Ithaca, New York 14853

LOWER BOUNDS
IN

COMPUTATIONAL COMPLEXITY

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Ming Li

January, 1985

LOWER BOUNDS IN

COMPUTATIONAL COMPLEXITY

Ming Li, Ph.D.
Cornell University 1985

Several important open problems in the field of computational complexity

are resolved in this thesis. The results are naturally classified into two categories.

Class I. We study the relationship among different complexity classes.

k
(1) 1f NTIME[R (n)]C PSPACE, where lim —

=0 for all k, then all higher
n—oo R (n)
corresponding NTIME versus SPACE classes are different. This answers an
open question in [HIS].
(2) The problem of separating nondeterministic time hierarchies by sparse sets is

studied. Among other results, an open problem in [SFM] is solved: if

Ton) —0, then NTIME [T,]-NTIME|T,] contains a tally set.
2

(3) Among the oracles we constructed, we present a very short new construction

for an oracle A, first obtained in [S], such that NPANCoNP4 does not have

complete sets.

Class II. The Kolmogorov-complexity is used to obtain lower bounds.

For on-line computations,

(1)

(2)

it requires)(n?) time to simulate a 2 pushdown store machine deterministi-

cally by a 1 tape machine, this settles an old open problem listed in [DGPR];

it requires Q(n'°/logn) time to nondeterministically simulate a 2 pushdown
store machine by a 1 tape machine, this greatly improves an {)(nlogn) lower

bound of [DGPRY];

it requires Q(n2/logn loglogn) time to nondeterministically simulate a 2 tape
machine by a 1 tape machine, this is a minor improvement of an
(n?/log?n loglogn) lower bound contained in [M]; and

it is shown that the Q(n?) tight lower bound for the nondeterministic case

cannot be obtained by the languages (which are shown to be acceptable by a

1 tape machine in O(n?loglogn /Vlogn) time) used in [M] or [F].

For string-matching,

(5)

three-head one-way DFA cannot do string-matching, this answers the case
k==3 of an open question in [GR]: whether some k-head DFA can do string-

matching;

two other related lower bounds are obtained.

Biographical Sketch

Ming Li was born in Beijing, China on July 16, 1955.

After graduating from The High School of Peking University, he spent two
years in Su-Jia-Tuo village, Beijing. Then he studied at Huanan Institute of
Technology, Canton, and worked as a computer programmer. He started his gra-
duate studies in computer science at The Graduate School of Academia Sinica in
1978. In 1980, he attended Wayne State University and received an M.S. in

Computer Science.

In fall, 1981, Li joined the Computer Science Department of Cornell Univer-

sity where he received an M.S. in 1983.

il

Dedication

To my parents.

i

Acknowledgements

I sincerely thank Juris Hartmanis, my thesis advisor, for his encouragement,
guidance, and great patience. His personal and professional integrity influenced
me deeply. I would also like to thank Tom Coleman and Anil Nerode, who

cheerfully served on my committee.

Professors P. Fejer, Z. Galil, J. Gilbert, D. Gries, R. Kannan, and J. Seiferas
deserve my special thanks for their kind help. My gratitude also goes to Profes-
sors W. Grosky, R. Jain, Z.Y. Ling, S.N. Murthy, G.B. Wang, DZ Wei, and H.S.
Yang.

I am grateful to C. Bajaj, L. Longpre, Y. Yesha, and Z. Zhang for many
illuminating discussions. Many other friends helped me greatly with this thesis.
I warmly thank them all: B. Alpern, C. Buckley, R. Harper, J. Hook, P. Mark, G.

Neiger, V. Nguyen, K. Perry, J. Prins, and T.K. Srikanth.

Finally, I thank the Chinese Academy of Sciences and the National Science

Foundation (Grant number DCR-8301766) for their financial support.

v

Table of Contents

1. INtrOdUCtION ..ovvvvviiiiiiieieeiieeeeee e
1.1. Historical Backgroundcccccoviiiiiiiiiinnnniiniiss
1.2. Thesis OVEIVIEWccoooeiiiiimiiimieiiiiiiiiiieeeeeeeeeeeeenn
2. Separating Complexity Classescooceevveenennnnnne

2.1, INtrOdUCEION .nevninieeeieeeeeeeie e eieeieeeeeneeaeeeererananaeens

................................

................................

................................

................................

................................

9.2. Difference between DTIME vs NTIME and NTIME vs SPACE

2.3. Very sparse sets in the NTIME hierarchy
2.4. The case of NTIME versus SPACE
2.5. The world of NTIME N CoNTIME
3. Lower Bounds by Kolmogorov-complexity
3.1. Introductionccceeeeviiiiiiiiiiiiiiiin e
3.2. On one tape Versus tWocccccevvvimmmiiiniiiiiinnnnnn.
3.2.1. SUMIMATY ..evvvriiiiiiieiiiiriieiiiiieeeeee e e e eeeaann e
3.2.2. Backgroundccccceriiiiiiiiiinii

3.2.3. Jamming Lemmaccccoeciiiiiiiiiiniiiiiiiie,

................................

................................

................................

................................

................................

................................

................................

................................

................................

3.2.4. Deterministic case: {}(n2) tight lower bound for 1 tape simulating

...............................

13

13

19

25

27

32

32

37

37

38

40

43

50

vi

3.2.6. Nondeterministic case B: 1 tape versus 2 tapes ...

3.3. Lower bounds on string-matchingccoocviiiniiiiiiiiiis

RIRTS BIECH10 110117 o AU O OU PRSP

3.3.2. Backgroundcoociiiiiiiiiiii s

3.3.3. Three 1-way heads cannot do string-matchingccooviiininnne.

3.3.4. String-matching by a 2-way k-DFA with k-1 heads blind

3.3.5. Probabilistic checking is easier than probabilistic generating

4. Discussion
5. Appendix:

6. References

...

Definitions and NOtAtIONooviiniiieiiiiieieiiieeereeeerreereeeeeenans

...

52

61

61

62

64

83

86

90

92

95

CHAPTER 1

Introduction

1.1. Historical Background

One of the major trends in modern mathematics and computer science is a
systematic investigation of what cannot be dome. The well-known Galois
theorem and Godel incompleteness theorem kindled the research in impossibility
proofs. The result of Galois, which showed that not all polynomials of higher
than fourth degree were solvable by radicals, ended the hopeless efforts of hun-
dreds of years in searching for such solutions. Godel questioned the essence of
mathematics and showed that not every ‘truth’ is provable in a given formal
axiomatic system. Following Godel’s work, Turing introduced a new tool, the
Turing machine, to formalize the concept of effective computability. The Turing
machine, which turned out to be as powerful as our modern computers, provides
a mathematically precise and intuitively satisfying tool for proving that problems
were not solvable, or in the context of this thesis, that problems were not

ef ficiently solvable.

To show something can be done is an existential question for which one only
needs to expose a way of doing it; whereas to show something cannot be done is a
universal question for which one must prove that every method fails. In the past

few decades, researchers have successfully discovered many (recursively)

unsolvable problems and proved many independence results.

With the development of digital computers and the emergence of a sys-
tematic study of computation, computational complexity theory raised questions
about the feasibility of computations. In practice, not only is it important to
know whether a given problem is effectively solvable, but it is also vital to know
whether the problem is feastbly solvable by a modern computer. More precisely,
it is desired to know how much resources such as time and space we need to solve
the problem. A problem that takes a billion years to solve by any computer is

practically unsolvable.

Therefore we need a mathematical model to allow us talk about not only
computability but also ef ficiency. To formalize the natural concept of compu-
tational efficiency, Hartmanis, Lewis, and Stearns [HLS] started a systematic
investigation of the Turing machine based computational complexity. They
showed that for each time or space bound f(n), there were problems that
requires f(n) amount of time or space with respect to the problem size n.
Further, for each time (or space) bound f(n) there exist problems which can be
solved in time or space f(n) but not much less than f(n). The field bloomed
over the past 20 years. Some natural problems were proved be hard, that is,
impractical to compute. We now have a better understanding of what is hard
and what is easy, just like the researchers in the 1930’s and 1940’s who started

to understand what was computable and what was not.

To get a feeling about the concept of time complexity, let us take the King
Arthur’s example: King Arthur was arranging a round table meeting with his 150
(149) knights. It was known that there were many pairs of knights who hated
each other. King Arthur wanted to arrange these knights around the table so
that no pair of knights who hated each other would be sitting side by side. Obvi-
ously, the problem is solvable. That is, it can be decided whether such an
arrangement exists, and if it exists it can be found. But King Arthur could not

make a good arrangement until Merlin asked his oracle.

We can give King Arthur a trivial algorithm that tries all possibilities. But it
takes about O(n!) steps for n knights. Let’s pick a computer running one billion
steps per second. It still takes more than a billion years before this computer can
reach a good arrangement. Now suppose we have the power of ‘guessing’. After
correctly guessing an arrangement (which is equivalent to Merlin’s oracle), King
Arthur should not have any trouble to quickly check the correctness of the
guessed arrangement in n? steps (neither do our modern computers and the Tur-
ing machines). The power of ”guessing” is what we call the nondeterminism.
Here we are confronted with this problem: can we prove that King Arthur was
not foolish, that is, that the problem was indeed too hard? This is equivalent to
ask whether nondeterminism is much more powerful than determsnism. The
theoretical computer scientists are still not able to answer the question. Accord-
ing to the theory of computational complexity, this question is abstracted to the

question of P=?NP, where P and NP are classes of languages that can be

accepted in deterministic and nondeterministic polynomial time by Turing
machines, respectively.

To answer this question, it obviously would help if we can find a hardest
problem in NP such that P=NP iff this problem is in P. Hundreds of natural
hardest problems (including the King Arthur’s problem) of great practical impor-
tance in NP have been found [C, GJ], but it is not known whether they are in P.
In computational complexity theory, problems are classified into different classes
according to their time/space complexity, such as, P, NP, PSPACE (which is
the class of languages accepted in polynomial space by a Turing machine) and
etc. Therefore our task left is to find the exact relationship among all these com-

plexity classes.

Besides the questions of nondeterminism versus determinism, there are
many practical problems in P that need fast (low order polynomial time) com-
puter solutions. For those questions for which no good enough algorithms have
been discovered, we would like to know whether there are faster algorithms at
all. Even for those problems that already have efficient solutions we may still
want to know if the known solutions are the best possible. We are now facing
one of our major tasks in computational complexity: investigating the inherent
complexity (or the lower bound in our jargon) of each problem.

In the field of theoretical computer science, on the one hand, better and

better algorithms for many practical or theoretical problems have been

discovered; on the other hand, for most of the non-trivial problems, it is not

known whether the existing algorithms are the best. Although a great deal of
effort has been expanded on lower bound research, we are still quite far away
from a satisfactory theory of lower bounds. Many of the lower bounds have been
obtained only for restricted models of computation. Some important techniques

have been developed but it seems a great deal are still missing.

The purpose of this thesis is to develop new techniques to prove lower
bounds of computations. Using these new techniques, we answer several impor-
tant open questions in computational complexity theory. We will provide several
new lower bounds and new separation results for complexity classes, as well as
some oracle results for those questions that we are not able to settle. The oracles
do not give us solutions to the problems, but they do suggest that with current

techniques the task is formidable.
We shall use standard definitions and notation in computational complexity,
which are assemblied in Appendix 1. Unusual and new technical definitions will

be given where they appear.

1.2. Thesis Overview

In this thesis, we resolve several long-standing open problems in the field of
computational complexity. New techniques are introduced along with the solution
of each problem. The results in this thesis are naturally divided into two

categories.

In the first part, Chapter 2, of this thesis we use conventional methods to
study the structure of and relation among different complexity classes. In the field
of computational complexity, there are hundreds of unsolved questions, like
PSPACE =¢NP=79?P, ESPACE=¢NE=Z?E, etc. Understanding their precise
relationship is one of the major goals of the field. Before these goals can be
achieved, it is important to understand our problems, that is, the connection
between these classes and their structures. An important connection among these
complexity classes was established by Hartmanis [H], who recently showed that
there is a sparse set in NP-P if and only if NE##E. The result is, of course,
generalized to other complexity classes and sparser sets [HIS,HY]. In [HIS], a
theorem of the following type was proved. If NP is as powerful as some deter-
ministic super-polynomial time class, for example if DTIME [n"’g"]gNP, then all
higher corresponding nondeterministic and deterministic time complexity classes
separate. In [HIS], a similar question on nondeterministic time versus space was
raised. That is, if for some super-polynomial R any language acceptable in non-
deterministic time R is also accepted in PSPACE, say
NTIME [n*9"|C PSPACE, then what happens to the higher nondeterministic
time versus space classes? This question started the research of this part of the
thesis. We shall give a complete study of this question. Not only do we give an
answer to this question, but also we show why the methods used for proving the
corresponding result for DTIME versus NTIME fail. In the course of this study,

several other questions of independent but related interest arose. We also resolve

these questions.

One way to answer the above question is to find very sparse sets in the
NTIME hierarchy. The reason is that if we have arbitrarily sparse sets in, say
NTIME[n"9"|-NP, then by the upward separation method of [HIS] we can
separate all higher NTIME versus SPACE classes. But the task of finding arbi-
trarily sparse sets, or even tally sets [SFM], in the NTIME hierarchy was an

unsolved classical open question for many years.

The hierarchy theorems have been studied from the beginning of complexity
theory. The DTIME hierarchy was established by Hartmanis, Lewis, and Stearns
[HLS, HU] in 1965. By the nature of the diagonalization used in [HLS], sparse sets
exist in the DTIME hierarchy. The technique unfortunately does not generalize
to the NTIME hierarchy since the direct diagonalization is not possible. NTIME
hierarchy was not obtained until, in 1973, Cook [C1] proved NTIME(n®) #
NTIME(n®*€). The tightest NTIME hierarchy is due to Seiferas, Fischer, and

Meyer who in 1973 proved: if lim Ty(n+ 1)/ Ty(n)=0, then

n—co
NTIME(To(n))-NTIME(T(n)) is not empty. Unlike the DTIME hierarchy the
proof here [SFM] used a novel diagonalization with padding and a recursion
theorem which did not yield very sparse or even tally sets for the similar dense
hierarchy. This question, as indicated above, has a direct implication to the
problem mentioned in the last paragraph. This question was left open from 1973
(in an early version of [SFM]): can the similar separation be done by tally sets?

Seiferas, Fischer, and Meyer [SFM] partially answered the question in 1978 by

replacing the n+ 1 above by n+ f(n) for some very slowly growing function f .

In this thesis, we answer this question by showing that if

lim Ty(n+ 1)/ To(n)=0 then there is a tally set in

n —00

NTIME[To(n)-NTIME[T,(n)]. The proof also greatly simplifies the proofs of
Cook [C1] and Seiferas, Fischer, and Meyer [SFM]. (After the above results were
obtained, the author was informed by Joel Seiferas that S. Zak [Z] in Czechoslo-
. vakia had also solved the problem by somewhat different methods. His result is to
appear in Theoretical Computer Science.) Furthermore, we shall show how sparse
a set can be in the NTIME hierarchy. On the negative side, we shall give oracle
results to show that the results we have obtained are the best one can do before

new techniques are invented.

The assumption that NP computations can accept languages in
DTIME|[R (n)] for some super-polynomial function R has the consequence that
NPNCoNP computations can also accept languages in DTIME[R(n)]. Here
again we meet another classical question in complexity theory:
NP=NPNCoNP? As we have seen above, the NTIME hierarchy is quite dense,
but so far there has not been any nontrivial hierarchy obtained for
NTIMENCoNTIME . Should there not exist a dense NTIMENCoNTIME hierar-
chy, we could immediately prove that
NTIME[t(n)]#ANTIME [t (n))JNCoNTIME [t(n)]. Unfortunately, this question is
closely related to the existence of complete sets in the intersection classes. We

show that if for each t(n) there is a complete set for

NTIME[t(n)JNCoNTIME [t(n)], then there is a tight hierarchy. Again should a
class like NPNCoNP not have complete sets, then NP£CoNP. Sipser has con-
structed an oracle X such that NPXNCoNPX does not have complete sets [S],
but his proof was long and complicated. We present a very simple and short con-

struction of Sipser’s oracle.

In the second part, Chapter 3, of this thesis we will use a recently discovered
- tool, Kolmogorov-complexity (from now on K-complexity), to resolve (or partially
resolve) some long standing open questions. We develop new techniques for
deriving lower bounds by the use of K-complexity of finite strings. Informally, the
K-complexity of a finite string z is the size of the smallest TM that starts with
empty input and prints the string z. z is random if K(z)<|z| That is, if a
string is random, then the only way for a TM to print it is to store it in the
memory and copy it out, it cannot be compressed. The main idea in these proofs
is as follows. A random string is chosen to construct the input. Then if a machine
does not run for a long enough time on this (particular!) input, we will find a way
to reconstruct our random string z from a small amount of information from the
assumed short computation. And this gives us a short program to print z, imply-

ing that z is not random.

The advantage of using K-complexity is that we can put our hand on a hard
and otherwise not constructible input. The use of K-complexity in lower bound
proofs was introduced by Barzdin and Paul [P]. Here we extensively study the

use of K-complexity in lower bound problems. We solve some old open problems

10

and give new simple solutions to some solved problems.

We first consider deterministic on-line computations where the input tape is
read only from left to right (1-way). A classical question, probably among the
oldest in complexity theory, was how efficiently a one tape on-line TM could
simulate a k tape on-line TM, in other words, whether more tapes were much
faster than one. The first result in this direction was obtained by Hartmanis,
Lewis, and Stearns [HLS] who showed that one tape (nondeterministic) TM can
simulate k tape (nondeterministic) TM in quadratic time. In 1963, Rabin [R]
proved that two tapes are better than one tape for real time computations. In
1982 Paul established the first nonlinear lower bound: it requires Q(n(logn)'/?)
time to simulate two tapes by one tape for on-line computations. In 1983, Duris,

Galil, Paul, and Reischuk [DGPR] obtained an Q(nlogn) lower bound.

We now settle this open problem by proving an)(n?) tight lower bound.
This lower bound meets the O(n?) upper bound provided in [HLS]. This prob-
lem was independently solved by Maass [M], the author [L], and Vitanyi[V]. Con-
cerning the nondeterministic case, we provide an ((n'3/logn) lower bound for
one tape nondeterministic on-line TM simulating two pushdown store on-line
TM. This sharply improves the (}(nlogn) lower bound of [DGPR]. For the non-
deterministic case of one tape versus two tapes, Maass [M] obtained a
Q(n2/(logn)loglogn) lower bound. We improve this lower bound to
(n2/lognloglogn). We also show that the tight (n2) lower bound can not be

obtained by the language used there by a graph separator theorem.

11

Next, we use K-complexity to give a lower bound for string-matching. The
string-matching problem is defined as follows: given a character string z, called
the pattern and a character string y, called the fext, find all occurrences of z as
a subword of y. String-matching is a very important practical problem. It is
extensively used in, for example, text-editing and library searches, etc. Linear
time algorithms for string-matching were developed by Boyer and Moore[BM],
Cook [C2], and Knuth, Morris, and Pratt [KMP]. In 1981, Galil and Seiferas [GS]
proved that a 6 head two-way deterministic finite automaton, DFA, can do
string-matching in linear time. The full power of Turing machine is not needed
for the linear time string-matching. They raised the question of whether some
k-head 1-way DFA (where the k heads scan the input only from left to right) can
do string-matching. We develop new methods, settling the cases of k=2 and
k=3 by showing that no 3-DFA can do string-matching, that is, accept the
language L={#18y¢| z is a substring of y}. We also study the problem of
doing string-matching by a k-head 2-way DFA with k-1 heads being able to see
only endmarkers. Using the methods we developed, we also give a simple proof of

‘k heads are better than k-1 heads for DFAs’, first proved by Yao and Rivest

[YR].

Our last lower bound derived by K-complexity shows that checking is easier
than generating [W]. In [L2], we proved that one tape on-line nondeterministic
TM equipped with a random number generator can simulate a two tape machine

in less than quadratic time with arbitrarily small error probability, ¢>0. The

12

proof depends on the fact that on a single tape the string #fz#az# can be
accepted very fast, in |z |log |z | time, probabilistically [F]. The nondeterminis-
tism above may be removed if we can show that with #z# on a single tape, the
string #2#2# can be generated faster than quadratic time probabilistically with
error probability e<1/2. Unfortunately, we prove this is not possible: on a single
tape, probabilistically moving a string (requiring quadratic time) is harder than
probabilistically checking the equivalence of two strings. It is interesting to note

that this result is true for neither deterministic nor nondeterministic machines.

CHAPTER 2

Separating Complexity Classes

2.1. Introduction

One of the most important problems in computational complexity theory is
to determine the relation among the natural complexity classes, e.g.
P, NP, PSPACE, etc. Besides the classic P=?NP and NP=?PSPACE prob-
lems, there are a whole spectrum of other important problems like
E=¢?NE=¢ESPACE, EE=?NEFE=?EESPACE, etc. Even a solution to
P#NP or NP#PSPACE would not necessarily settle any of the other prob-
lems. Little is known about the relation among these complexity classes.
Recently, an important connection was established in [H]. The following was

shown.
Theorem 2.1A [H]: There is a sparse set in NP-P iff NE#E. 0O

The generalization of this result to other complexity classes and sparser sets
can be found in [HIS,HY]. Furthermore, an upward separation method by the
means of sparse sets was developed in [HHIS|. The basic idea is as follows. If
there is a very sparse set S in, say, NP-P then we can represent each string in S
by its index using a very small amount of space, and construct a new set S'.
The new set S' will be in NE-E or NEE-EFE, ..., depending on how sparse S

is. In particular, Hartmanis, Immerman, and Sewelson proved the following

13

14

theorem.

Theorem 2.1B [HIS]: Let R(n) be time constructible and for all k¥ >1

k

nmco R (1)

Then DTIME[R(n)]C NP implies that for any monotonically increasing, time-

constructible T(n), where T(n)>2" and 2T !(n) js computable in time polyno-
mial in n,
U NTIME[T(n)°]# | J DTIME[T(n)°]. O (Theorem 2.1B)
e>1 c>1
The idea was to construct arbitrarily sparse sets in DTIME[R (n)]-P by
diagonalization. These sets, from the assumption, are in turn in NP—P. Then we
apply the upward separation method of [HIS] as explained above. Notice that this

theorem is true for all relativized computation.

After seeing Theorem 2.1B, it is natural to ask that whether a similar result
is also true for the NTIME versus SPACE classes. In [HIS], this question was
raised: assuming, say, NTIME|[n'9"|CPSPACE, can we prove that
NE#ESPACE, NEE#FEESPACE, and so on? The proof for Theorem 2.1B
fails here, since we cannot apply standard diagonalization methods in nondeter-
ministic time to construct arbitrarily sparse sets in NTIME [n"’g"]—NP . As a
matter of fact, we will construct an oracle A such that NTIME“ [n'o9"]-NP4

does not contain very sparse sets. We now summarize our problems.

15

Probleml:

nk
R(n)
NTIME|R(n)|CPSPACE, can we conclude that NE#ESPACE,

Let R be a function such that —0 for all k. Assume

NEE#EESPACE, and so on?

Problem2:

Let R be defined as above. Do there exist arbitrarily sparse sets in
NTIME[R(n)]-NP, or in NTIME [n'9*]-NP? If this is true, then Problem
1 can be answered by the methods used to prove Theorem 2.1B.
Problem3:
If Problem 2 is not true, then what is the smallest class C' such that arbi-
trarily sparse sets exist in C-NP.
Before we present a stronger answer to Problem 1, we answer Problems 2
and 3 and some other related questions to provide a complete story; each related
problem is of independent importance. Among others, we give a simple solution

to a classical open question concerning tally sets in the NTIME hierarchy.
We need one more notation: If C is a complexity class, then

Clyymy={SIS€CandS C{ 1/(») 1y,

2.2. Difference between DTIME vs NTIME and NTIME vs SPACE

We first explain the proof of Theorem 2.1B by an example and then give an

oracle which suggests that the same proof would not work for NTIME vs

16

SPACE.

Ezample: Assume NTIME[n'*9"|C NP we prove NE##£E (and NEE#EE,
etc.). Let M;,M,,... be a enumeration of P time machines where each machine is
enumerated infinitely often. Define L={1" |M, rejects 1" in less than n'c¢l°s"
time}. Using standard techniques developed in [HLS] (see also [HU]), we can
design a machine M; that on input 1" simulates M, on 1" in n'o9" time and M|
accepts iff M, rejects in less than n'oslog® steps. Obviously L=L(M). It is not
hard to see that Ls£L(M;) for all 1, since each machine is enumerated infinitely
often. Therefore L EDTIME [n'9"]-P and LENP-P by our assumption. Then
L'={n|1*€L}ENE-E because the binary n gives us exponential time to com-

pute. Notice that, from the proof, the assumption of DTIME [n'9"|C NP can be

replaced by the weaker condition DTIME[n'%"] |,n CNP, or even
DTIME|[R (n)) |1,(,,)gNP for R(n) a super-polynomial function and f(n) any

time-constructible function.

One would naturally like to obtain a similar proof for NTIME vs SPACE
under a similar assumption, say, NTIME[n"’g"]gPSPAC’E'. Unfortunatedly, the
diagonalization we used cannot be carried out in the nondeterministic time
hierarchy. And as the following oracle indicates, with current techniques, we are

not likely to be able to obtain arbitrarily sparse sets in NTHME[n"’g"]—NP.

. . 2" .
Theorem 2.2: For each recursive function f(n)>2%" | there exists a recur-

sive oracle A such that NTIMEA(n9")| , WCENPA 1 (n)-

17

Proof of Theorem 2.2: We will recursively construct oracle A. The set A'
will be used to indicate strings that cannot be put in A. From the condition on
[, we know that f(n+1)-f(n)>n, and f(n+ 1)>f(n)‘°9f("). Let N,No, - - -

be a standard enumeration of NTIME# [n!*9"] machines.
Construction of A:

stage 0: A, A'=¢.

stage 1+ 1:

Consider only the machines in N,N,,...,N; which are not canceled by (b)

at this stage. Run each of them on input 1/ (),

(a) If none of the above machines has an accepting path, then do nothing

on A (nor A'). Go to stage 14 2.

(b) Suppose N;OA (any one of the above) accepts 1/ (») then put the strings
which are queried and not in A into A', add some y of length f(i)+ 1,

which is not in A' to A. Cancel N‘o from the list. Repeat stage 1+ 1 for
the rest of the machines.

end—of —construction.
Clatm 1: String y in (b) exists.

Proof of Claim 1: Since 2/(")> nf (n)9/ (") a desired y can be choose. O

(Claim 1)

18

Claim 2: Stage 1+ 1 is repeated at most ¢ times (injury happens < f+1
times).

Proof of Claim 2: Since we reserved strings on the accepting paths into set
A an accepting computation will not get injured. O (Claim 2)

Claim 3: NTIME# (n9") | 1 (s)C NP | ;(a).

Proof of Claim 3: For any N;# in NTIMEA(n""’g")ll,(,,), we will accept
L(N;%) in NP4 time as follows: for input 1/G)if j<i, we build the answer into
the finite control of the machine; if 7 >+, then we query the oracle A and accept
if there is a y in A such that |y |=f (j)+ ¢. This is done in linear time. O (Claim
3)

Theorem 2.2 is proved by Claims 1, 2, and 3. O (Theorem 2.2)

Remark2.2A: For above oracle A, NPA#APA.

Remark2.2B: M. Krentel has proved: for each N, such that L(Ny)

€
NTIME(n 2], there is an oracle A such that N;4 C NP4, where L(N;) C

n
{1/(»)} for f(n)>222 . The oracle here was obtained after seeing Krentel’s ora-
cle. (The author later discovered that a similar technique has been used by

Rackoff and Seiferas in a different context [RS].)

Under this oracle A, there cannot be very sparse tally sets exist in

NTIME# [n¢9"|-NP4 | which is not true for DTIME® [n<*9*]-P5 for any B.

19

2.3. Very sparse sets in the NTIME hierarchy

Before we turn to our solution to Problem 1, we answer the following ques-
tion. Regardless of above oracle, what can we say about the sparse sets in the

unrelativized NTIME hierarchy?

Here we meet one of the oldest problems in the computational complexity.
In their fundamental paper [HLS] in 1965, Hartmanis, Lewis, and Stearns
" obtained the well-known DTIME hierarchy by the method of diagonalization.
For the NTIME hierarchy, in 1973, Cook [C1] showed that, for any real number
€>0, NTIME[n®]ANTIME[n®*¢]. Seiferas, Fischer, and Meyer refined this
result as follows [SFM]: if Tn+1)=o0(Ty(n)), then
NTIME|T,-NTIME [T]50. They also raised the question whether the same
separation of NTIME hierarchy can be done by tally (single letter) languages. In
a later version of their paper [SFM], they partially answered this question as fol-
lows. If Ty(n+ f(n))=0(Ty(n)), then there is a tally set in

NTIME|[T,)-NTIME [T, where f is some very slow growing function.

Here we give a general solution of this question. The proof is also much
simpler than the old proofs of [C1] and [SFM]. The author was later informed by
Joel Seiferas that the case (A) below was obtained by S. Zak earlier. The proof

here is different and independent [L3].

Theorem 2.3: For time-constructible functions 7, and T, if

2"
T((fr(n))=0(Ty(n)), then there exists a set S C {17 }k 2 %Y, and § C

20

NTIME[Ty(n)|-NTIME [T (n)], where
(A) foln)=n+1;
(B) f1(n)=2n;
(C) fo(n)=n?

k-2
2(1051‘ —3n)log "

(D) For k>3, fi(n)=2"" (with k-3 2's), where log'n means
" taking log ! times, and log’n=n.

Claim 1: For every natural number n, there exist unique /, />0, and %,
k >0, such that n=2""14 ko'

Proof of clatm 1:

1. Existence: Let 2"'|n, and 2/ |n. Then n=k'2'! for some odd k'. Let
k'=2k+ 1, we have n=Fk2!+ 21,

2. Uniqueness: Suppose n=2'"14 k2'=27"14 k127 wlg let j<I. We
divide both sides by 27! | then we have o-1-(7-1) 4 ko!-(/-)=14 2k '. But now 2
divides the left hand side, not the right hand side. Contradiction. O (claim 1)

The following Claim was proved by Book, Greibach, and Wegbreit[BGW].
The idea of the proof will be given in the next section where this result is used
again.

Claim 2: Any NTM running in time 7T'(n) can be simulated by a three-tape

nondeterministic TM running in time T(n). O (claim 2)

21

Proof of Theorem 2.3: In the following we will give the proof of our
theorem in which we use the new idea of constructing a ‘“Universal diagonal
language’’.

Case (A): For To(n), we find a nondecreasing function T(n) large enough to

allow the deterministic simulation of machines that run in nondeterministic

Ty(n
To(n) time. T(n)>n 2(*) suffices. To get a contradiction, suppose any tally set

in NTIME [Ty(n)] is also in NTIME[T (n)].

In the following, all the machines will take inputs only of form 1", other
inputs are immediately rejected. And for 1*, we define m by: T™(0)<n; and
Tm+10)>n, where T™*Yn)=T(T™(n)). k, | are defined such that
[m/2=2""1+ k2.

For the time bound To(n), we design a universal machine U, (on tally sets).
For input 1" (rejects other inputs), U, finds maximum m such that 7™(0)<n,
then guesses an ! such that [m/2]=2'"14 k2', and verifies this, all in O(n) time.
Then U, simulates M, on input 1", works for Ty(n) time, U, accepts only if M,
accepts in To(n)/ dk time. Note that this can be done since the nondeterministic
simulation of any TM by a 3-tape TM can be done using the same amount of
time, by Claim 2.

Now by assumption, there exists a U, running in T'; time accepting L(U,).

Define a universal diagonal machine M, running in time T'(n) as follows:

22

M, will diagonalize over all Ty(n) machines using input 1" for n=T"(0),
for some odd m. Each machine is diagonalized infinitely often. On input 1*, M,
checks in linear time if n=T"(0) and m is odd; M rejects otherwise. Then M,
computes (m+ 1)/2=2""14 k2'. Then M, deterministically simulates M;, the Ith
To(n) machine, on 1" and does the opposite. Because we assumed M, runs in
To(n) time, T(n) time is enough to do the simulation. And because we assumed
- each TM code is represented infinitely often by attaching prefixes, we know that
L(M,)is in NTIME[T (n)]-NTIME [Ty(n)).

Define L;(M,)={1" |n=T"(0), where m odd and (m+1)/2=2!"1+ k2,
and 1€ L(M,)}. It is easily seen that L,(M,)ENTIME[T (n)|-NTIME[T(n)]
for all k.

Now we define a machine M'. On input 1*, M' finds the maximum m
such that 7™(0)<n in O(n) time, and

(1) If m is even, and T™(0)=n, then behaves like M, on ITm_l(o);
(2) If m is odd, then pads 1, and behaves like U; on 1"+1;

(3) Rejects otherwise.

So for input 1*, M' runs in time n+ T;(n+1). Note that we can design
M such that it has only 3 tapes by Claim 2. Now let ¢ ' be a TM code for M’

and we define:
L(Me0)={1"| n/2]=2'"14+¢'2!, 1"€L(M')}, m is the maximum number

such that T™(0)<n.

23

So Me0 runs in time n+ Ty(n+1). For =n large enough,
n+ Ty(n+ 1)< Tyn). Thus Me0 satisfies the following. For input 1", let m be
the maximum such that 7™(0)<n, then
(a) if m is even, and n=T"(0), then Mc0 on 1" agree with M, on T™}(0), for

those m such that [m/2]=2""1+¢'2;

(b) if m is odd and [m/2]=2"""+ ¢ '2, then M‘o on 1" agree with M ' on 1**!

which in turn agree with M, on L

(¢) if m even but n>T™(0), Me0 rejects.
Finally, we define M', operating as follows: on input 1*, M' checks
0

whether n="T"(0) for some odd m, and

(a) if true, acts like M, on 1%;
0

(b) if false, rejects.
Now we have L(M’e0)=Le'(Me)~ And M'eo on input 1" runs in time

C,T(n+ 1), which is in NTIME[T(n)]. But this contradicts to the fact that

L,/(M,) is not in NTIME[Ty(n)]. 0O (of Case A)

€
Cases (B), (C), and (D): From above proof, to get the proofs for cases of (B),
(C), and (D) we can simply change the padding to be f;(n)-(n) instead of 1, and
change all n+1 to fi(n). One more detail needed to be mentioned: if

n<T™(0)<fr(n) then we pad only T™(n)-n. O (of Theorem 2.3)

24

Corollary 1: If T{(n+ 1)=0(Ty(n)), and T (n)=o0(Tz(n)), then there is a

tally set in NTIME|[To(n)|-NTIME [T ((n)).

Proof : [SFM]’s proof works for tally set also (except should be careful with

the translation argument for tally sets). O (Corollary 1)

22ﬂ+1

Ezample: There is a tally set in NTIME| |-NTIME [22"]. This solved

an open problem mentioned in [SFM].
Corollary 2: There is a tally set in NTIME[T,-U{NTIME[T||T(n+ 1)

=0(Ty(n)) }. O (Corollary 2)

.20 '
Corollary 3: There is a set in {12 }k 2 %Y for any k separating

NTIME(2¢V*) from NP.
Proof : Apply Theorem 2.3. [0 (Corollary 3)

Remark: Corollary 3 answers our Problem 3 listed in Section 2.1. Under
the stronger assumption of NTIME [2“/;]QPSPAC’E' (we can construct an ora-
cle for which this containment holds), we can conclude the similar result like
Theorem 2.1B. Note that one can easily construct an oracle B such that
NTIMEB[2"‘/;‘-]QPSPACEB. The oracle constructed in Theorem 2.2 tells us,

with the old method, this is the best separation result we can get. Taking k=3,

27!

.. . . 2 .
we have fa(n)=n'¥". This implies there exists a subset of {12 } in

NTIME [n'*9"|-NP, which meets the limit put by the oracle in Theorem 2.2.

25

2.4. The case of NTIME versus SPACE
Now we solve Problem 1 listed in Section 2.1, by using a method different
from the one used to prove Theorem 2.1B. We will prove a stronger version of

Problem 1.

Theorem 2.4: Let R(n) be time-constructible and for all £ >1

nk

li =0
anJR(n)

If for some time-constructible function f, NTIME R (n)] III(,,)QPSPACE, then
for any monotonically increasing time-constructible T'(n), where T'(n)>2" and
2T ') is computable in polynomial time in n,

U NTIME[T(n) |5 | J SPACE[T(n)°].
e>1 c2>1

Ezample: Under the conditions of Theorem 2.4, we have NP#PSPACE,

NE#ESPACE, NEE#FEESPACE, etc.
We need following lemma proved by [BGW].

Lemma 1[BGW]|: Any TM running in time T'(n) can be simulated by a 3-

tape nondeterministic TM running in time T'(n).

The idea of Lemma 1's proof: To simulate a k-tape machine by only
three tapes, use one tape with k tracks [See HU]. The three tape machine first
‘guess’ the computation of the k tape machine: at time ¢, the k-tape machine is

in state g,, its head ¢ is reading symbol a,, and writing symbol b,, for

26

i=1, - - - ,k. This information is recorded on one track per tape (head), ordered
according to time. Then verify the correctness of the ‘guessing’ track by track.

See also [SFM] for a short proof. O (Lemma 1)

Proof of Theorem 2.4: Let N{,No, - - - be a standard enumeration of 3-
tape nondeterministic polynomial time bounded TM’s such that each machine
appears infinitely often (by attaching trivial prefixes). This enumerates all
" languages in NP.

Now we define a universal machine M running in NTIME[R (n)] as follows:
Let g(n)=/f(T(n)). The input M works on is of the form 19() for some 1, other
inputs are rejected. M computes ¢ first, then nondeterministically simulates N;
on 190) honestly. M accepts 19¢) iff N; accepts 19(") in less than R(|z|)/C;

time, where C; is the number of tape symbols in /NV;. This simulation is possible

by Lemma 1. Since for all k, R(:) —0, M accepts 190) iff N; accepts 190) for
n

large enough 1.
By our definition it is clear that L(M)ENTIME[R(n)]. And by the assump-

tion NTIME[R (n)]| ;(»)CPSPACE and the fact that L(M) C {19(*)} we con-

clude that L(M)EPSPACE. But then there is a fixed k such that
L(M)ESPACE[n*]. So there is a machine M running in n* space such that
L(M)=L(M). Notice that M is deterministic.

Now we do the diagonalization by using M. Define the diagonal language

L={19(m)|N_ does not accept 19(™) in time R[g(m)]/C,, }. Clearly L is not

27

in NP because of the fact that ﬂ%ﬂ—»o and that every machine is enumerated
n

infinitely often. To show that LEPSPACE, we design M: for input 19(m) M
simulates M on input 19(m) and M accepts iff M rejects. It is clear that M

requires no more than n¥*+1space, and L=L (M).
Now define L '={1T_1(9("‘)) |19(m)eL}. Since LEPSPACE-NP, we have
L' € SPACE[T(m)¢]-NTIME[T(m)¢] O (Theorem 2.4)
Corollary: There is an oracle A under which,

U DTIMEA[T(n)¢]£ U NTIMEA[T(n)¢|5#% U SPACE[T(n)¢],
c>0 ¢c>0 c>0

for all time-constructible T'(n)>2" simultaneously.
Proof of Corollary: Construct oracle A
NTIMEA [n'9"|C PSPACE#, and
DTIMEA [n'*9" | C NP4,
The construction of the oracle is standard, therefore we leave it to the

interested reader. The key is to observe that PSPACE computations can do an

exhaustive search and NP computations can ‘“‘guess’’. [(Corollary)

2.5. The world of NTIME N CoNTIME

In Section 2.1 the assumption DTIME[n'*"]C NP was made. The assump-

tion, as the following theorem shows, has a strong implication.

28

Theorem 2.5A: For any time-constructible function R(n),
DTIME[R (n)]C NP implies DTIME[R (n)]CNPNCoNP.

Proof of Theorem 2.5A: Let LEDTIME|[R(n)]. Then LEDTIME[R (n)).
Therefore LENP, and LECoNP. We conclude DTIME[R (n)]CNPNCoNP. O
(Theorem 2.5A)

A natural question to ask is whether assuming

NTIME [n'9*|NCoNTIME [n'°9"| C NP, we can prove

y NTIME[TIN Y CoNTIME[T*|3# Yy NTIME[T],
c21 c2 cZ

for time-constructible T .

This question is in turn closely related to the NTIMENCoNTIME hierarchy
since if there are very sparse sets in the intersection hierarchy, then the technique
in the proof of Theorem 2.1B can be directly applied. Unfortunately, there has
not been any nontrivial hierarchy obtained for the intersection classes. This ques-
tion again relates to another classical question concerning the complete sets in

NTIMENCoNTIME, as shown in the following theorem.

Theorem 2.5B: If there is a complete set (under linear time reduction) for
NTIME[t)NCoNTIME[t] then for t'(n) satisfying ¢(n)=o(t'(n)),
NTIME[t)\NCoNTIME [t|-NTIME [t '|NCoNTIME[t'] contains arbitrarily

sparse sets.

Proof of Theorem 2.5B: With the tool of the traditional diagonalization,

this theorem is essentially trivial. If there is a complete set for

29

NTIME[t|NCoNTIME[t], then there is a recursive representation of all
languages in this class by complementary pairs [LLR, KI1]. Then if
t(n)=o(t'(n)), we can certainly do the diagonalization in time ¢’ to obtain a
language in NTIME[t'|NCoNTIME[t'], not in NTIME[t)|NCoNTIME[t]. This
is because we have the list of complementary pairs, and the nondeterministic

simulation do not cost more time [BGW]. [(Theorem 2.5B)

Remark: Notice that under the assumption that complete sets exist, the
intersection hierarchy is tight. This is not the case for either deterministic time

hierarchy or nondeterministic time hierarchy.

Concerning the complete sets in NPNCoNP, Sipser has constructed an ora-
cle X such that NPXNCoNPX does not have complete sets [S]. Here we present

a much simpler and shorter construction for Sipser’s oracle.

First we need some technical notation. For each language LENPNCoNP,
we can use a complementary pasr (M,M—) of nondeterministic polynomial-time
machines to represent L, where L(M)=L and L(M)=L. A class C is
recursively presentable if there exists a r.e. set of machines M; M, - - -, so

that C={L(M;; | >1}. This is equivalent to say that some TM M enumerates

all the languages in C'.

Theorem 2.5C: (Sipser) There is a recursive oracle A such that

NPANCoNP4 does not have complete sets.

30

The following Lemma can be found in [LLR] and [K1].

Lemma: For any oracle A, if NPANCoNP# has complete sets then the
sets in NPANCoNP4 are recursively presentable by complementary pairs. O
(Lemma)

Proof of Theorem 2.5C: Let M,M,, - - - be the list of all TM’s. Let f
be a polynomial time computable 1-1 onto mapping from NxNxN to N, where
f(¢,7,h)>i+ j+ h and N is the set of positive integers.

Construction of A:

Stage n:
Let n=f(¢,7,h). Assume M; outputs j th pair of form (M,M) at h th step,
where M and M are of some standard polynomial time clocked form. If this
is not true, skip this stage. Let p;; denote the polynomial time clock. Fix
smallest k£ such that no string of length >k isin A or A’ yet. Fix smallest
io>k such that i,=f(i,c,c) for some integer c¢. For i€

{k,k+1,...,50+ p;;(10)} - {10}, add 1' to A. Now simulate M and M on
l'°, relative to A.
(1) If M (resp. M) accepts, find Oy (1y) of length iy which is not queried

on the accepting path of M (M), and put it into A.

(2) If both M and M do not accept, then put 1% into A’ (which leaves

(M,M) a bad pair).

31

End of construction

Assertion: No M; enumerates exactly the languages in NPANCoNP4 by
complementary polynomial machine pairs.

Proof : Suppose M; does. Then some M; does so with polynomial time
clocked pairs. Define
L;={ 1% | for some j, f(i,7,j)=Fk, and for some y, |y |[=k-1, 1y€A}.
In the construction of A, case (2) can never happen to M; since otherwise M;
would not enumerate only complementary pairs. But if only (1) can happen to
M;, our language L; is in NPANCoNP4 which is different from any language
enumerated by M; by the diagonal process of (1). This contradiction completes

the proof. [(Assertion)

By above Lemma, the proof is complete. O (Theorem 2.5C)

CHAPTER 3

Lower Bounds by Kolmogorov-complexity

3.1. Introduction

Obtaining good lower bounds has been one of the most important issues in
theoretical computer science. In this chapter we investigate the application of
Kolmogorov-complexity (K-complexity) in proving lower bounds for computation.

Several classical open questions are answered by means of K-complexity.

In the traditional lower bound proofs, complicated counting arguments are
usually involved. The messy counting arguments blur the essence of the problem,
increase the level of difficulty, and therefore limit our ability to understand and
obtain better lower bounds. In this chapter, however, the beauty of simplicity
and intuition is brought back in the lower bound proofs via a recently discovered
tool, the K-complexity. We will demonstrate how K-complexity can be applied
through our solutions to several old open problems. New techniques are intro-
duced along with these proofs as well.

The concept of K-complexity was independently introduced by Kolmogorov
[K] and Chaitin [Cha]. The use of K-complexity as a tool in lower bound proofs
was first introduced by Barzdin and Paul [P]. Since then, many interesting results

have been obtained (e.g. [P1], [P2], [PSS], [RS1]).

32

33

Informally, a string is random if it cannot be computed from a shorter
string. More precisely, a finite string X is random if, the smallest TM that starts
on empty input tape and prints the string X, is of size equal to or greater than
| X |.

The main idea in the lower bound proofs using random strings is as follows.
A random string is chosen to construct the input. Then if a machine does not run
for a long enough time on this (particular!) input, we will find a way, from the
information that ‘carried away’ from this string, to reconstruct our random string
X. This gives us a short program to print X, implying that X is not random.
The advantage of using K-complexity is that we can put our hand on a hard but

not provably hard (Fact 3) input.
Formally,

Definition 3.1A: The K-complezity of a finite string X, written as K(X),

is the size of the smallest TM which, starting from empty input tape, prints X.

Remark: The K-complexity of a finite string X can also be defined to be
the size of the smallest nondeterministic TM that accepts only X. It is easy to
see that this definition is equivalent to Definition 3.1A up to a constant factor in

machine size. In the application, we will take whichever convenient to use.

Definition 3.1B: The K-complexity of X, relative to string Y, written as
K(X|Y), is the length of smallest TM (deterministic or nondeterministic), with

Y as its extra information, that accepts (or prints) only X.

34

Definition 3.1C: String X is random if K(X)>|X|-1. String X is

random relative to string Y if K(X |Y)> |X |-log |Y |.
Fact 1: More than half of the finite binary strings are random.

Fact 2: If X—=wuvw, and X is random, then K(v |vw)> |v |-log | X |. That

is, random strings are locally almost random.

Fact 3: If F' is any formal system, X is random and |X |>> |F |, then it is

not provable in F' that ‘X s random’.

In Section 3.2.4, we first consider deterministic on-line computations. By
on—line computation we mean the input tape can be read only from left to right
(1-way input tape). A classical question, probably among the oldest in complex-
ity theory, was how efficiently a one tape on-line TM could simulate a k tape
on-line TM. In other words, whether more tapes were better than one, and how
much better. The first result in this direction was obtained by Hartmanis and
Stearns [HS] who showed that one tape TM can simulate k¥ tape TM in quadratic
time. This result is also true for nondeterministic machines. Then in 1963, Rabin
[R] proved that two tapes are better than one tape for real time computations.
In 1982 Paul established the first nonlinear lower bound: it requires Q(n (logn)'/?)
time to simulate two tapes by one tape for on-line computations [P2]. In 1983,
Duris, Galil, Paul, and Reischuk [DGPR] obtained an Q(nlogn) lower bound. We
now settle this open problem by proving an (n?) tight lower bound. This lower
bound meets the upper bound provided in [HLS]. This problem was indepen-

dently solved by Maass [M], the author [L], and Vitanyi[V].

35

In Section 3.2.5, the nondeterministic case for a 1 tape on-line TM simulat-
ing a 2 stack on-line TM is considered. The best upper bound is again O(n?) by
[HS]. The best lower bound was obtained in [DGPR]: ((nlogn). We provide an
Q(n'/logn) lower bound for one tape nondeterministic on-line TM simulating
two pushdown store on-line TM. This greatly improves the {)(nlogn) lower bound
of [DGPR]. Notice that this lower bound is not implied by the lower bounds in

Section 3.2.6.

For the nondeterministic case of 1 tape versus 2 tapes, Maass [M] obtained
an Q(n2/(logn)%loglogn) lower bound. In Section 3.2.6, we improve this lower
bound to Q(n?/lognloglogn) and prove that the tight 0(n?) lower bound cannot
be obtained by the language used in [M]. We present a upper bound on an
interesting combinatorial problem defined in [M], and we show that the actual
language use in [M] and a language defined seven years ago in [F] can be accepted
in O(n2loglogn/\/17g_'r7) time by a 1 tape on-line machine.

In Section 3.3.3, K-complexity is applied to give a lower bound on string-
matching. The string-matching problem is defined as follows: given a character
string z, called the pattern and a character string y, called the fext, find all
occurrences of z as a subword of y. String-matching is a very important practical
problem. It is extensively used, for example, in text-editing. Linear time algo-
rithms for string-matching were developed by Boyer and Moore[BM], Cook [C2],
and Knuth, Morris, and Pratt [KMP]. In 1981, Galil and Seiferas [GS] proved

that 6 head two-way DFA (deterministic finite automata with 6 heads each can

36

move to either direction independently) can do string-matching in linear time.
They raised the question whether some k-head 1-way DFA (the k heads can only
go from left to right), written as k-DFA, can do string-matching. We develop a
set of new methods, settling the cases of k=2 and k=3. We show that no 3-DFA
can accept the language L ={#a8y /| z is a substring of y}. By one of the Lem-
mas developed here, we are also able to present a simple proof of ‘k heads are

better than k-1 heads for DFAs’, first proved by Yao and Rivest [YR].

In Section 3.3.4, we prove that string-matching requires almost quadratic

time for a k-head 2-way DFA with k-1 heads being able to see only endmarkers.

Our last lower bound by K-complexity, obtained in Section 3.3.5, shows that
checking is easier than generating [W]. In [L2], we proved that one tape on-line
nondeterministic TM equipped with a random number generator can simulate a
two tape machine in less than quadratic time with any small error probability e.
The proof depends on the fact that on a single tape the string #zf#fz# can be
accepted very fast, in |z |log |z | time, probabilistically [F]. The nondeterminism
above may be removed if we can show that with #r# on a single tape, the
string #z#1# can be generated faster than quadratic time probabilistically with
error probability e<1/2. Unfortunately, we prove this is not possible: on a single
tape, probabilistically moving a string (requiring quadratic time) is harder than
probabilistically checking the equivalence of two strings. It is interesting to note

that this result is true for neither deterministic nor nondeterministic machines.

37

As a by-product of K-complexity, all the lower bounds we prove are not only

for the worst cases, but also for the average cases as well, because there are many

random strings.

3.2. On one tape versus two

3.2.1. Summary

We obtain the following results for on-line computations,

it requires ()(n?) time to simulate a 2 pushdown store machine deterministi-
cally by a 1 tape machine, this is settles an old open problem listed in
[DGPR];

it requires (n!°/logn) time to nondeterministically simulate a 2 pushdown
store machine by a 1 tape machine, this greatly improves an Q(nlogn) lower

bound of [DGPR];

it requires Q(n?/lognloglogn) time to nondeterministically simulate a 2 tape
machine by a 1 tape machine, this is a minor improvement of an

Q(n?/log?nloglogn) lower bound contained in [M]; and

it is shown that the ((n?) lower bound for the nondeterministic case cannot
be obtained by the language (which is shown to be acceptable by a 1 tape

machine in O(n%loglogn /Vlogn) time) used in [M] or [F].

38

3.2.2. Background

In this Section we will consider on-line computations which are generally
used for investigating the dependency of the computational power on the number
of tapes. We call a TM M a k-tape on—line machine if M has a 1-way read only
input tape and k work tapes. Without explicit indication, all the machines in
this section will be on-line machines. An on-line machine M works in real time
if each time M reads an input symbol it makes only a constant number of moves.
A k-stack machine is like a usual pushdown automaton, but has k¥ pushdown
stores.

One classical question about TM’s is how much power an additional work
tape gives a machine. For real time deterministic computations, early in 1963,
Rabin [R] proved 2 tapes are better than 1. Eleven years later Aanderaa [A] gen-
eralized Rabin’s result to k+ 1 versus k. In 1982, Duris and Galil [DG]| proved,
by the crossing sequence technique, that two tapes are better than one in the
nondeterministic case. In 1982 Paul [P] proved, using Kolmogorov-complexity,
that on-line simulation of k+ 1 tapes by k tapes requires Q(n(logn)l/k*' 1) time.
Duris, Galil, Paul, and Reischuk [DGPR] later proved that for nondeterministic
machines simulating 2 tapes by 1 tape requires (}(nloglogn) time. (They later
improved this to logn.) The following open questions (open problems 1 and 7)
were listed in [DGPR]: whether the gaps between the Hartmanis-Stearns [HS]
O(n?%) upper bound and the Q(n (logn)"/2) lower bound in deterministic case and

the Q(nloglogn) lower bound in nondeterministic case for 1 tape simulating k

39

tapes (stacks) can be narrowed. Notice that according to [HS1], 2 tapes can deter-
ministically simulate k tapes in time tlogt; and according to [BGW] 2 tapes can

nondeterministically simulate k tapes without losing any time.

The first result was obtained independently by Maass [M], the author [L],
and Vitanyi [V2]: it requires (n?) time to deterministically simulate 2 tapes
(pushdown stores) with 1 tape. This provides the tight lower bound, settling the
long-standing open question.

We also show that it requires Q(n!®/logn) time to nondeterministically
simulate 2 pushdown stores with 1 tape. This greatly improves the nlogn bound
of [DGPR]. This is the best result so far obtained for 1 tape versus 2 stacks in
the nondeterministic case, and it is not implied by the results of [M] or next sec-

tion.

For the case of 1 nondeterministic tape versus 2 tapes, a stronger result (but
this does not imply the above result) is due to Maass’ [M] who obtained an
((n2/(logn)®loglogn) lower bound via an ingenious language and a very nice
combinatorial lemma. In Section 3.2.6 we first improve the Maass’ lower bound
to n2/lognloglogn. Unlike Sections 3.2.4 and 3.2.5, this result is based on on
Maass’ proof. Surprisingly, we next show that the actual language used by [M]
(and a similar language, in a different context but for the same purpose, used by
Freivalds [F] seven years ago) can be accepted by a one tape machine in less than

quadratic time. Therefore the tight lower bound needs a new language.

40

Remark 3.2.2: As a corollary of the first result we can also obtain the follow-
ing separation result, which shows that there is a language L accepted in linear
time by a 1-tape nondeterministic on-line machine but requiring (n?) time for
its deterministic version. It is well-known the general task for separating the

deterministic time from nondeterministic time is very hard. One recent well
known result by [PPST] states: NTIME[n]#DTIME([n]. Maass and Schorr
[MS], and Gill [G] considered the class of TM’s with a single tape which serves
for both input and working space. For such TM’s, Gill proved that there is a
language L which can be accepted in nondeterministic O(nlogn) time but not in
deterministic o(n?) time. Maass and Schorr, using the idea of alternation, proved
there is a language L which is in nondeterministic linear time but not in deter-
ministic o(n!?2) time. Notice that our 1-tape real time model is not as weak as
one might think: it can simulate k¥ counters for any k [V], and it can accept the
palindrome language which requires ()(n?) time for above single tape machine

even with the power of nondeterminism [H1, HU].

3.2.3. Jamming Lemma

In this section we give some more notation and present an important lemma

that is needed for the later proofs.

Throughout this chapter variables X, Y, z;, y; ... denote strings in £* for

v={0,1}.

41

For the rest of this section we will consider a 1-tape on-line machine M. We
will call M’s input tape head h, and its work tape head h,.

Definition 3.2.3: Let z; be a block of input, and R be a region on the
work tape. We say that M maps z; into R if while h, is reading z; h, never goes
out of region R; We say M maps z; onto R if in addition h, travels the entire
region R while h, reads z;.

A crossing sequence (c.s.) for a point on the work tape of M is a sequence of
ID’s, where each ID is of form (state of M, h,’s position). We write |c.s. | to
mean the space needed to represent the c.s.

Remark 3.2.3A: Since h, only moves to the right, we can represent the ith

ID (ID;) in a c.s. as follows:
ID;=(state of M, current h,’s position — k,’s position of ID;),
where IDy=(-,0). Thus if a c.s. has d ID’s, and the input length is n, the total

d
space (|c.s. |) we need is less than d |M |+ logk+ ...+ logk;, with X k;=n,

i=1
which is less than d |[M |+ dlogn/d by a standard calculation (i.e. maximize the
function).
Remark3.2.3B: Let z;, ...,z be blocks of equal length C on the input
tape. Suppose d of these blocks are deleted, and that we want to represent the
remaining blocks in the smallest space possible but still remember their relative

distances. We can use following representation,

42

mI T, - - T (py,dy)(pada)--
where m is the number of (non-empty) Z;'s; 7; is #; if it is not deleted, and is
empty string otherwise; (p;,d;) indicates that the next p; consecutive z;’s (of
length C) are one group (adjacent to each other), and followed by a gap of d;C
long. m, the p;’s, and the d;'s are self-delimited. (A string z is self-delimited if
each bit of x is doubled and with ‘01’ at both ends. For instance, 01001100111101

is the self-delimited version of 01011.) By a standard calculation (similar to

k
Remark 3.2.3A), the space needed is .21 |Z; |+ dlog(n/d).

We now prove an intuitively straightforward lemma which coincides with
our intuition that a small region with short c.s.’s around it cannot hold a lot of

information. Stated formally:

Jamming Lemma: Suppose on input beginning z,z,5 - - - 7 # ..., where the

z;’s have equal length, M maps each of i into region R by the time A,

reaches # sign. Then the contents of the work tape of M at that time can be

reconstructed by using only {z,, - - - ,2; }- {x,-l,...,a:,-l}, the contents of R, and the
two c.s.’s on the left and right boundaries of R.
l
Remark3.2.3C: Roughly speaking, if X |z; |[>2(|R |+2]ec.s. |+ |M]),
j=1

then the Jamming Lemma implies the either X=z,...z; is not random or some

information about X has been lost.

43

Proof of Jamming Lemma: Name the two positions at the left boundary
and the right boundary of R to be ! and r, respectively. We now simulate M.
Put input {z,...,7; }—{x;l,...,:z,-l} at their correct positions on the input tape (as
indicated by the c.s.’s). Run M with h, staying to the left of R: whenever h,
reaches point I, the left boundary of R, we interrupt M (in the nondeterministic
case we also match the current state and A, position) and consider the next ID in
the c.s. at point I, using this we relocate h;, adjust state of M and then go on
running M. After we finish at the left of R, we do the same thing at the right of
R. Finally we put the contents of R into region R. Notice that although there
are many empty regions on the input tape corresponding to those unknown z;’s,

h, never reads those regions because hy never goes into R. [0 (Jamming Lemma)

Remark 3.2.3D: If M is nondeterministic, the above Jamming Lemma is
still true except that we rephrase ‘contents of work tape’ as ‘legal contents of
work tape’ which simply means some computation path on the same input would

create this work tape contents.

3.2.4. Deterministic case: ()(n?) tight lower bound for 1 tape simulating 2
Define language
L={z8z,8 - - - S5 #y,8 - - - Sy # (LU YA2UY..(1 1) |2, =y,
where p=#,+ ...+ ¢, , g=j+ ..+ j, forall t=1,...;8}.

Theorem 3.2.4: It requires Q(n?) time to deterministically simulate 2 push-

down stores by 1 tape.

44

The theorem will follow from Lemma 3.2.4 below. We shall be generous

with the constants to make the proof easier.

Lemma 3.2.4. Any deterministic one-tape on-line TM accepting L
requires (}(n2) time.

Proof of Lemma 3.2.4: Suppose instead that a 1-tape on-line deterministic
machine M accepts L in o(n?) time. We will derive a contradiction by showing
that a random string has a short program.

Let us assume that each tape square of M’s work tape can be encoded by C,

2nlogC _ n

binary bits. We fix large n and C such that C>100C,|M |, G X

(logC)n < n , and all formulas to follow are meaningful.
C? 8C

We first fix a string X of length n such that K(X)> |X|. Then break X
into k=n/C parts, each C long, and call them z,,z,, - - -,7,. Consider the
partial input beginning z,$z,$ - - - $z,# ... to M. If more than k/2 z;’s are
mapped onto (See Definition 3.2.3) regions of sizes at least n/C3 then M
requires O(n?) time, a contradiction. Therefore we can assume that half z;’s are
mapped into (See Definition 3.2.3) regions of sizes less than n/C® on the work
tape. We order these z;’s by the left boundaries of the regions onto which they

are mapped. Let z, be the median.

The following is the idea of the proof. We consider two cases. In the first

case we assume that many z;’s are jammed (mapped) into a small region R; that

45

is, when h, (the input tape head) is reading them, h, (the work tape head) is
always in this small region R. We shall then show that X is not random by the
Jamming Lemma. In the second case, we assume there is no jamming region, and
that the z;’s are spread evenly on the work tape. In that case, we will arrange
the y;’s so that there will be many pairs (z;,y;)’s so that z;=y; and z; and y;
are mapped into regions that are far apart. For each of these pairs we will

arrange the indices to make M match z; against y;.

Case 1 (jammed): Assume there exist k/C z;’s and a fixed region R of
length n/ C? on the work tape such that M maps these z;’s into R.

We will show that a short program can be constructed which accepts only
X. Consider the two regions of length |R | to the left and to the right of R on
the work tape. Call them R; and R,, respectively. We find positions p; in R; and
p, in R, with shortest c.s.’s in their respective regions. They both must be
shorter than n/ C3, for if the shortest c.s. in either region is longer than n/C3

then M uses O(n?2) time. Let region R;' (R, ') be the portion of R; (R,) right

(left) to D (pr)'

Now, with the information of

(1) less than k—% z;’s that are not mapped into R;' RR, ',

(2) the two c.s.’s, and

(3) theregion R,' RR, ',

46

we can construct a short program to check if a string Y is X by running M as
follows. Check if |Y |=|X |. By Jamming Lemma construct the content of M’s
work tape at the time h, gets to first # sign; divide Y into k equal pieces and
form y,$ - - - $y,. Consider M with input ending simulating M from the time

when h, reads first # sign. If M accepts, then we know Y=X.

To show above program is short we have to represent the c.s.’s and
k—(k/C) z;’s in a small space. For the c.s.’s, by Remark 3.2.3A, we can use
(n/ C3)(|M |+ logC?) space to write them (because h; is 1-way). For the z;’s,
their contents and their relative positions are specified by the method of Remark
3.2.3B in less than 2n—(n/ C)+ (n /4C) space.

Now the length of this program is only the sum of:

(1) n+(n/C)+(n/4C) for k—(k/C) z;’s,

(2) 3n/C?for 3 regions R;', R, and R, ',

(3) (n/C3)(|M |+ 3logC) for the 2 c.s.’s, and

(4) Oflogn) for some counters.

The total is less than n for large n. Thus K(X)< |X |, a contradiction.

Case 2 (not jammed): Assume that for each fixed region R, with

|R |=n/ C?, there are at most k/C z;’s mapped into R.

Fix a region of length n/ C? that contains z,; call it R,. By a simple count-
ing argument, we can see that there must be a set S, containing k /6 z;’s, say

S,:{:t,-l,--',a:,-k/s}, completely mapped to the right of R,, and a set

47

S,:{:r]-l, S ’xfk/s} completely mapped to the left of B,. Without loss of gen-

erality, assume ;<#;<...<f} g, and J;<Jo<... <Jr/6-
We now arrange the y;’s. Let y, be % Y2 be T Y3 be %, Ya be Ziy and
so forth. In general,

(*) yom=2; and Yy, =z; ,form=12, ., k/3.
m m

Our partial input to M is 2,8 - - - $z,#y,$ - - - 8y, 33 If there do not exist
k /12 pairs yo; 3y, $ such that while h; (the input head) reads them, h, (the
work head) travels a distance less than n/4CZ then M uses O(n?) time, a con-
tradiction. Otherwise if we have k /12 such pairs, then by our ordering of the y;’s
and a simple counting argument, we see that there will be a region R (CR,) of
length n/4C?% and k/24 z;’s all from either S, or S; that are mapped into one
side of R and whose corresponding y;’s (z; corresponds to y; if z;=y;) are
mapped into the other side of R. Let the set of these z;’s be S,, and the set of
corresponding y;'s be S,. We know that when A, reads anything in S,, hy is at
one side of R, and when h, reads anything in S, hs is at the other side of R.
1S, |=1S, |=Fk/24. Let the indices in S, be a;<ay<...<@; 24, and the indices

in S, be b;<by<...<bgjo4 By our previous arrangement we know Zo = Yp-

Now we complete our input to M by appending

k/24-1 k/24-1
- X a b - X b
a, by, ,a0-a; by-b Gpjoa— = @ Oppog— 20
() LHATE LLTE) (1 =t =),

48

After M finishes its computation on (**), we find a position p in R which
has the shortest c.s. Let Cy=n/(l|S, |). If this c.s. is longer than n/ C,C3, then
M uses time O(n2), a contradiction. If it is less than n/C,C3, then again we
construct a short program P to accept X by a ‘cut and paste’ argument. We
shall first show how the program P is constructed, and then show that its length
is short. Without loss of generality, assume that S, is mapped into the left-hand
side of R and S, is mapped into the right. For input Y, program P first parti-
tions Y into y,$ - - - $y, and compares relative parts with {z, ... , 7 }-S,. To
compare the z;’s in S,, simulate M as follows. Put the elements of {z,,...,7; }-S,
into their correct places on the input tape, filling the places for z;’s in S, arbi-

trarily. Arrange the y’s as in (), .e., y; at 2mth place and y; at 2m-1Ist
m m

place, for m=1, - - - k /3. Therefore all the y;’s in S,(=S5,) (the parts not com-
parcd) will be put into the input. Adding string (**) above completes the input
of M. Now using the c.s. at point p we run M such that h, stays in right-hand
side (S, ’s side) and never passes the point p. Whenever h, meets p, we check if
the current ID matches the corresponding one in c.s. and if it does we then use
the next ID in c.s. to continue. If in the course of the simulation process, M
rejects or there is a mismatch (that is, when hy gets to p, M is not in the same
state or h, position as is indicated in the c.s.), then Y7#X. Otherwise ¥Y=X.
Notice that it is possible for M to accept (or reject) on the left-hand side (S,’s
side) of point p, in this case if all IDs match our accepting c.s. then we know M

accepts, since once h, passes point p it does not read anything in S, and all

49

other y;’s are ‘good’ ones (we have already checked them).

The length of the program P is the sum of:

(1) less than n—(C |S,)+ (C|S, |)/4 for the n—|S, | z;’s not in S,, using the
representation of Remark 3.2.3B;

(2) (n/C,C3(|M |+ logC,C?®) for the n/C;C? long c.s. by Remark 3.2.3A;

(3) (2n/C)logC (by a simple calculation), which is <C'|S, |/4 by the definition
of C, for indices of the y's, because the odd and even y;’s can be specified

by relative locations, respectively, for we ordered the Z, 's and z; ’s;

(4) |S, [log(n/|S, |)<C |S, |/8 for the indices in (1); and
(5) several counters of size O(logn);
The total is less than n for large n’s. This again implies K(X)< |X |, a contrad-
iction.
Case 1 and Case 2 complete the proof of Lemma 3.2.4. O (Lemma 3.2.4)
Proof of Theorem 3.2.4: Obviously, L can be accepted in linear time by a

2 tape machine. To accept L in real time by a deterministic 2-stack machine, we

can define a new padded language L, from L,

L,={2$..82,#y$..8y,# (1, L1)12 172 1%). (1,17 1¥) |

For each triple (¢,,7,,k) there is a pair (14,7¢) so that

iO -1 n

Yz |= X 4+ (n-1)k
=1 t=1

50

Jo-1 n
.21 Iy]' |=t£1]t + (n_l)k) z,-0=yj0,and |zt'0 '=k}

1=
L, can be accepted in real time by a deterministic 2-stack machine in an obvious
way. We observe that the same lower bound proof (Lemma 3.2.4) for L. works as

well for L,. Therefore the theorem is proved. 0O (Theorem 3.2.4)

3.2.5. Nondeterministic case A: 1 tape versus 2 stacks

Define L' ={z,$7,37.37 - - - $2,82#2,25 - - - 7, |2;€{0,1}" for 1=0,..,t}.

Theorem 3.2.5: It requires (n'?/logn) time to nondeterministically
simulate 2 pushdown stores by 1 tape.

The theorem will follow from Lemma 3.2.5. We shall concentrate on
explaining the ideas of the proof; the details can be found in the proof of Lemma
3.2.4.

Lemma 3.2.5: It requires O(n'®/logn) time to accept L' by any l-tape
nondeterministic on-line machine.

Proof of Lemma 3.2.5: Suppose a nondeterministic 1-tape M accepts L' in
time o(n!®/logn).

As in Lemma 3.2.4 we fix a large n and a large constant C such that all the
subsequent formulas are meaningful.

Fix a random string X of length n. Equally partition X into zgz, - - - 7},
where k=n'/2/ Clogn. Consider input Y=z,87,8z,8z¢ - - - $2;8z# 2,2, - - - 7;

to M. Observe that |Y |<3n. M should accept this input Y. Let us fix a

51

shortest accepting computation P of M on input Y. We shall show that P is
long.

Consider the k pairs z;$z4% in Y. If half of them are mapped onto some
regions of sizes larger than n/C3, then M uses time O(n'5/logn), a contradic-
tion. Thus in the following we will assume that for more than half of the above
such pairs, M maps each into some region of size < n/C3. Let S be the set of

such pairs. When h gets to # sign, we consider two cases:

Case 1: (jammed) Assume there do not exist two pairs in S that are
mapped into region n/ C? apart. In this case, it is clear that all the pairs in S are
mapped into a region R of size 3n/C? since every pair in S is mapped into a
region of size < n/C3. Then as before we consider the two regions R; and R, of
length |R | neighboring to R. Find a point ! in R; and a point r in R, with
shortest ¢.s. in R, and R,, respectively. If either of the two c.s.’s is of length
more than n°'5/ Ctlogn then M runs in time O(n!®/logn). If they are both
shorter than n°'5/ C*logn then the Jamming Lemma can be applied. We can
reconstruct the contents of the work tape at the time when A, gets to # sign by
a short program. We then find X, as in case 1 of Lemma 3.2.4, by a short pro-
gram, showing K(X)< |X |. One might worry about the nondeterminism here,
but notice that the nondeterminism is also defined in the K-complexity, and we
can simply simulate M nondeterministically in the above, making sure that the

c.s.’s are matched.

52

Case 2: (not jammed) Assume there are two pairs, say z;$z¢ and z;8z,,
that are mapped n/ C? apart, that is, the distance between the two regions onto
which these two pairs mapped is >n/C? Let R, be the region between above
two regions. We know |Ry|>n/C? As before we search for a shortest c.s in
Ry. If the shortest c.s. is longer than nl/z/ C3logn, then M runs for
O(n'?/logn) time. Otherwise we record this short c.s. and can reconstruct z, by
the routine (cut&paste) method as in Lemma 3.2.4. We simulate M with the
help of this short c.s., and the other z;’s (# >0). This contradicts the randomness

of X. 0O (Lemma 3.2.5)

Proof of Theorem 3.2.5: The language L' can be easily accepted by a two
tape machine. For two pushdown stores, we modify L': reverse z,z,...7; follow-
ing #. The modified L' can be accepted by M with two pushdown stores in
linear time as follows: put z; in stackl, put next z, in stackl and in stack2, put
T, in stack2, put next z, in stackl and stack2, and z; in stackl, ..., and so on.
When the input head reads to #, M starts to match in an obvious way. To make

2120l badding

this process real time we further modify L' by simply putting a 1
after every other reversed z;. Since all these changes do not hurt our lower bound

proof in Lemma 3.2.5, the proof is complete. [(Theorem 3.2.5)

3.2.6. Nondeterministic case B: 1 tape versus 2 tapes

The first result for nondeterministic machines was obtained by [DG] who

showed 2 tapes are better than 1. [DGPR] obtained the (}(nlogn) lower bound.

53

n?

Maass [M] obtained an almost tight ()) lower bound for one tape

(logn)loglogn
simulating two tapes for nondeterministic machines. Recently, the author was
surprised by a paper 7 years ago by Freivalds [F| who claimed a result (Theorem
2 in [F], without proof) which practically implies a tight Q(n2) lower bound for
our problem, although in a different context. Both [F] and [M] independently con-
structed two similar ingenious languages (although the language by [F] was less

complete).

In [M], although a very general language L; was introduced, only a simple
subset, [, of it was used. The language L can be defined as follows (w.l.g. let k

be odd).
L={bg'd," - - - b,
bo?b00 2020057 - - - b % %oy - b Pb(eory i ®
bob (k4 1)/2°0 120280 (k4 3)2°05% Boj(modk+ 1)*0; 2020 4 1(moak 4 1)t T 7 ber Bi b4 1
| b;1=b,;2=b;3=0b,* for i=0, - - - k}
The length of each b;7 (a binary string) may be different. We can also define

a delimited version L * of L where every b; iin L is replaced by #b; 7+ and they
are of a fixed length.

The language, B, constructed in [F] is similar (but less complete) if we let
¢(t)=a(¢)b(¢) and replace single a(¢) or b(¢) by ¢(s) in the following. Here is

the construction of [F]. Let B ' consist of all strings

54
a(1)b(1)a(2)b(2) - - - a(2n)b(2n)2a(2n)b(2n)b(2n-1)a(2n-1)b(2n-2)b(2n-3) - - -
~a(n+1)5(2)b(1)
where all a(¢) and b(¢) are from {0,1}. B is defined to be the set of all strings 0z
or 1y, where z€B ' and y€B .

In this section we will

2

(1) improve the [M]’s lower bound to Q(); and

—_n
lognloglogn
(2) show that from neither the method of [M] nor the language of [F] can we

obtain the tight ((n2) lower bound. We will actually show that L, L*, and

2
B can be accepted in O n_{M) time by a 1 tape nondeterministic
Viogn

(deterministic for L* and B) machine. An n/Vlogn upper bound on
Theorem 3.1 in [M] is obtained. This result suggests that a much tighter
lower bound must be obtained by some other languages.
The results contained in this section represent a joint work of the author and Z.
Zhang [LZ].
Unlike the results in previous 2 sections (which were obtained in parallel to
those of [M] and [V2]), Theorem 3.2.6A, which improves the best lower bound of

[M], is based on [M]'s approach. We assume the reader is familiar with [M].

Theorem 3.2.8A: It requires ((n2/lognloglogn) time to nondeterministi-

cally simulate 2 tapes by 1 tape for on-line computation.

55

We will show that the language L* (and L) requires (n2/lognloglogn)
time. We will only give ideas to show where and how the improvement is made.
We refer the readers to [M] for details. In [M], Maass proved an important com-

binatorial lemma (Theorem 3.1 in [M]) which is generalized below,

Lemma 3.2.8A: (Maass) Let S be a sequence of numbers from {0,..,k-1},
where k=2' for some /. Assume that every number b € {0,..,k-1} is somewhere
in S adjacent to the number 2b(mod k) and 2b(mod k)+ 1. Then for every parti-
tion of {0,..,k-1} into two sets G and R such that |G |, |R |>k /4 there at least
k / clogk (for some fixed ¢) elements of G' that occur somewhere in S adjacent to
a number from R.

The proof of this lemma is a simple reworking of [M]’s proof. An n/Vlogn
upper bound of this lemma will be given later in this section.

Notice that any sequence S in L* satisfies the requirements in Lemma
3.26A. Let n be the length of a random string that is divided into
k=n/loglogn blocks. A sequence S in L* is constructed from these k blocks. A
new idea is to find many ‘deserts’ on the work tape.

Lemma 3.2.6B: (‘Many Desert Lemma’) For some constant C, and for
large n, there are I=logn/C regions DD, - - - ,D; on the work tape such

that,

(1) for all i¥%¢5, D;\D;=0;

56

(2) for each ¢, |D; |=n/clogn, where ¢ >2 is the constant in Lemma 3.2.6A;
(3) for each 1, at least k /4=(n /4loglogn) blocks are mapped to each side of D;.

Proof of Lemma 3.2.6B: Again we only give the ideas behind the proof.
Divide the whole work tape into regions of length n/c'3logn. By the Jamming
Lemma, no region can hold more than n/c!'logn blocks. By a standard count-
ing argument, we can find regions D;,D,...,Djyyn ¢ for some constant C in the
‘middle’ of work tape such that (1), (2), and (3) above are satisfied. O (Lemma

3.2.6B)

To prove Theorem 3.2.6A, we apply the proof of [M] for each desert D; in
Lemma 3.2.6B. Instead of using Theorem 3.1 of [M] we use Lemma 3.2.6A above.
Notice that since each D; is ‘short’, the total number of blocks mapped outside
D; is more than k—(k/c®logk). Therefore Lemma 3.2.6A can be applied. Now for
each region D;, M has to spend O(n?/(logn)?loglogn) time. We sum up the time
M spent at all O(logn) regions, getting the ((n?/lognloglogn) lower bound. 0O

(Theorem 3.2.6A)

. 2
Theorem 3.2.6B: L (L’ and B) can be accepted in O(n—lom) time by
Viogn
a 1-tape nondeterministic on-line machine.
Lemma 3.2.6C: Let S={0,1, - - - ,k-1} where k=2' for for some integer

l. Let R be a binary (neighboring) relation defined on S such that, for s; and s,

in S, s Rsy if

57

(1) s,;=2 *so(modk) or s;=24#3,+ 1(modk), or

(2) 8;=82+1, or

(3) 82Rs;.
Then there exists a partition of S into two sets S, and S, such that,

(a) [S1]=152]-

(b) $1NSy=¢,

(¢) |N|=0(k/VIogk), where N={s,ES,| 8;Rs, for some $,€S, }. (N is
the set of elements in S, that are ‘neighbors’ of some elements in S5.)

Remark: This gives an upper bound on Theorem 3.1 of [M] and Lemma

3.2.6A.

Proof of Lemma 3.2.6C: Let bin(i) denote the binary representation of
integer ¢, and #bin(r) denote the number of 1's in bin(¢). Without loss of gen-

erality, let { be odd. Define
Si={s |#bin(s)<l/2 }, and
Sy={s [#bin(s)>1/2 }.
(Note: 1f | even, put half of those s's with #bin(s)=I[/2 into S, and the other

half to S,. This will not hurt the calculations below.) Obviously, |S;|=|Ss|

and S;NS,=¢. We now calculate |V | in the following. Define

N,={s,€5,| for some $,E€S,, s, and s, satisfy condition (1) in the lemma},

58

N,={s,€S,| for some 8,€S,, 8;+ 1=38,}, and

N;={s,ES,| for some $,€S,, 8o+ 1=3,}.
It is clear that |N |<2|N,|+ |Na|+ |N3|. Since rule (1) in the lemma can at
most change 1 in #bin(¢) for any ¢, N, contains only those s,’s in S, such that

#bin(s;)=I1/2. Therefore

1/2y_ 2nle!
NI (Pl=0(B L =06 VD)

Similarly, since #bin(s+ 1)<#bin(s)+ 1, |No|=0(2'/VT).

Consider Nj. For 8,€S,, if #bin(sy)= i+z' and s,+ 1€S,, then the last
3 2 2 2 2 2 1

e
1+ 1 bits of bin(s,) must be 1's. Fix ¢, we have at most X [1/2 1] such ele-

‘__

ments. So,

U2 (1/2)
_‘gl[l/i 1)

<§((’

N\
+-:|

L

1/2 ol-i+1
=O(2

™
<

)

1 =1
=0(2'/VT).

This concludes |N |=0(k/Vlogk). O (Lemma 3.2.6C)

59

Remark: Assertion (c) in Lemma 3.2.6C is true for any partition as long as
for all s,ES, and 8,€S, we have #bin(s;)<#bin(s,). It is this property, which
will be simply referred as Lemma 3.2.6C, we actually use in the proof of Theorem
3.2.6B.

Proof of Theorem 3.2.6B: We design a 1-tape on-line nondeterministic

machine to accept L. According to (the remark of) Lemma 3.2.6C, we will distri-

bute each sequence {b;7} on a separate track of the work tape by the following

rules:

(1) if #bin(b,7)<#bin(b,7), then b, is put on the left of b,7;

(2) if #bin(b,7)=4#bin(b,7), and b,” <b,7 then b,7 is put on the left of b 7.
There is one more problem to be solved: M has to keep track which block it

is reading and thereby decides where to put the block. It may ‘drag’ a counter

2
under the work head, but this results an intolerable running time O(:l/Ml)
ogn

The techniques for ‘dragging’ a counter that do not cause the logn delay
developed in [P3] and [F1] cannot be used here, since only one work tape is avail-

able.

Surprisingly, the major part of the counter never need to be moved at all.
We divide the work tape into four tracks: track ¢, 1=1,234. Each track is
further divided into 4 subtracks: subtrack ¢, 1=1,2,3,4. For each track, we will
keep a static counter CO (of length logn) which never moves, and we keep two

other counters C'1 and C2 of length loglogn moving with the work tape head.

60

C'1 holds the most recent value of the last loglogn bits of C'0. C2 holds the
number of 1’s in the CO (last loglogn bits are taken from C1). CO is modified

every time C'1 overflows. The algorithm of M is outlined as below.
(1) M lays the following frame on each track (C0=C1=C2=0):

Subtrack 1: # 1 # space, # 2 # spaceo # - - - # logn # space,,, #,

Subtrack 2: CO (size logn),

Subtrack 3: C1 (size loglogn),

Subtrack 4: C2 (size loglogn).

The segment # m # space, # on track j is explained as ‘space,, will

hold all blocks b;7’s such that #bin(i)=m." The size of each space,, can be

guessed. The size of each # m # is loglogn where n can be guessed also.

(2) Sequence {b;7} will be put in track j, where j can be found out by the
finite control of M. At the time M is about to read b;7, it adds 1 to C1 in
track j. If C1 overflows, M goes back to change C0 in track j, and then
bring back a number, of length at most loglogn, which is the number of 1’s
decreased or increased in C'0. (We do not bring along C'1 and C2 with the

work head in this process.) Then modify C2 in track ; accordingly.

(3) Locate the work head to # ! # where [is equal to C'2. Copy b;7 (whose
length can be guessed) on to the first available place in # space; # in sub-
track 1 of track j. In this process C'1 and C2 are moved along with the

work head.

61

(4) After the whole input is read, check if b,-1=b,-2=b,-3=b,~4, for all 1, in the
obviously way.
The time complexity of this algorithm is analyzed as follows. Step (1) takes
no more than O(nlogn) time. In step (2), the overflow can happen at most

O(n/logn) times. Each time the overflow happens, modifying CO0 and C2

2
requires at most O(nloglogn) time. Thus step (2) takes O(n_llooggI:_gn_) time. By
2
Lemma 3.2.6C, step (3) takes O(wﬂﬁ) time. Step (4) takes only O(n) time.
Viogn

n2loglogn)

Tioon The proof is therefore complete. O
ogn

Thus the total time is O(

(Theorem 3.2.6B)

Corollary: Language L* (Note: B can be accepted even faster.) can be
accepted by a 1 tape deterministic on-line machine in O (nZloglogn / Vlogn) time.

O (Corollary)
3.3. Lower bounds on string-matching

3.3.1. Summary

A set of new techniques is developed to cope with an open question, due to
Galil and Seiferas [GS|, as to whether a k-head one-way DFA can perform
string-matching. We answer the question for the case k=3 by showing that no
three-head one-way DFA accepts the language L ={#a8y¢|z is a substring of

y}. This improves the results obtained in [LY] and [L1].

62

Two other related lower bounds are also obtained. The first shows that two-
way k-head DFA with k-1 heads being able to see only endmarkers requires
n2/logn time to do string-matching. The second shows that probabilistic moving

a string is harder than probabilistic matching two strings on one Turing machine

tape.

3.3.2. Background

The string-matching problem is defined [GS] as follows: given a character
string z, called the pattern and a character string y, called the tezt, find all
occurrences of z as a subword of y. It is well known that the string-matching

problem is very important in practice.

Since the publication of linear algorithms by [BM], [C2], and [KMP], there
has been a constant effort to search for better algorithms which run in real time
and save space. Finally, Galil and Seiferas [GS] showed that string-matching can
be performed by a six-head two-way deterministic finite automaton in linear time.
They noticed that a multi-head one-way deterministic finite automaton must
operate in linear time. Motivated by this observation they ask whether a k-head
one-way deterministic finite automaton (from now on k-DFA) can perform
string-matching. In [LY], we answered this question by showing that 2-DFA can-
not do string-matching. Efforts have been made for the cases where k>2, but
even the case k=3 has not been solved. It is believed that a solution to the case

of k=3 would give some important insights into the general case.

63

In this chapter we develop new techniques and settle the case of k=3 by
showing that 3-DFA cannot do string-matching. We hope that the methods used
here combined with that of [LY] will help in providing useful techniques for the

general problem.

In addition, in Section 3.3.4 we study string-matching by 2-way k-head DFA
with k-1 heads blind, and in Section 3.3.5, we study probabilistic matching and

* moving strings on one Turing machine tape.

A k-DFA M has a finite set @ of states, a subset A of @ of accepting
states, k heads hy,hy, - - - ,hy (which may see each other), a transition function,
and a one-way read-only input tape. We assume that the standard input to M is
#pattern$text ¢, where pattern text €X’ for the alphabet £={0,1}. # and ¢ are
the left and right endmarkers, respectively. Initially, all k¥ heads are at the left-
most tape position. At each step, depending on the current state and the ordered
k-tuple of symbols seen by the heads h,,hq, - - - ,hy, M changes state and moves
some of the heads one position to the right. If no head is moved during |@ |+ 1
consecutive steps, we know that no head will ever move again. We can modify
M so that whenever this situation occurs, all heads move to the right until they
reach the right end-marker. Hence, we assume that on each input all heads will

eventually reach the right end-marker, and M halts when this happens.
An ID of M on input [is the k+ 2 tuple: (I,q,1,t9, - - - ,5;) Where ¢ is a
state and i; for 1<j <k is the position of the j-th head. An ID, of M on input

I is the ID of M without I at time ¢. Clearly 1<i;<|I| for 1<j<k. The

64

initial ID of M on input I is (I,9,,1,1, - - - ,1). The computation of M on I is
the sequence of ID’s reached by M on input I, starting from the initial ID. A
partial ID of M on input I at step ¢ is (I',q,fy, - - - ,5;), where I’ is the suffix

of I which has not yet been read by some head(s) of M.

Let I, and I, be ID’s. We write I,}—1I, if M, started in ID I,, reaches ID I,
in one step. We write I,/ either if I;=1, or if M, started in ID I, reaches
" ID I, in a finite number of steps. By k-NFA we shall denote the nondeterminis-

tic version of a k-DFA.

Let z and y be binary strings. We write z=y if they are the same binary
string. ry denotes the concatenation of z and y. |z | denotes the length of z.
Superscripts will be used to denote different occurrences of the same string. Sub-

scripts will be used to denote different binary strings.

In the following, the word ‘information’ only means some binary strings.

The ‘amount of information’ is the total length of the strings.

3.3.3. Three 1-way heads cannot do string-matching

Some more technical definitions and conventions are needed. Everything in
the following concerns a fixed 3-DFA M, and a long random string Y=kXk'. M

and Y will be chosen in Theorem 3.3.3.

We name the three heads of M as h,, hy, h,. We will also use Ay, h,, and
h3 to mean the leading head, the second head, and the last head respectively at a

specific time. So, h,, h,, and h, are fixed names, whereas h,, ko, and h3 are only

65

transient names.

We use p(h) to denote the phrase ‘the position of the head A’. Let z be a
string (a segment of M’s input) of length greater than 0. At a particular step in
the simulation of M, we make the following definitions: p(h;)=z denotes that
the position of h; is at the last bit of z; p(h;)>2z means that h; has passed the

last bit of z; p(h;)<z means that h; has not reached the first bit of z.

a, always stands for the pattern which is going to be of form 1* X1*¥" where
Y=kXk'. In the following, we always consider input of form # 1* X 1% $text /.
X is always equally partitioned into six parts X =z z,...7¢. In general, given

strings s or z, , without explicit definition, we always implicitly assume that

v.w
they are equally partitioned into six parts, and written as s;so - - - 85 or

Ty w1fuv.. w2 Tuv... w6’ respectively. When the ranges of the indices are not

explicitly stated, they are always assumed to be from 1 to 6.

If X=zyz, then X-y=2zz. If y is not a substring of X, then X-y=X.

Definition 3.3.3A The tezt in the input # 1"X1"'$tezt¢ is regular if it is

concatenated, no more than 1000 times, from the following blocks:

(1) 1'01'0 - - -1’0, where 1' is repeated less than log |X | times and
K(l)<log |X |+2|M|;

(2) X;

(3) X', where X' is obtained from X by replacing a substring z (only one) by

z ! that has an equal length and satisfies K(z ' |X)<100log |X |;

66

(4) Prefixes of X
(5) X, where X is obtained from X by replacing a substring z (only one) by ¥

that has an equal length and satisfies K(T | X-z)< |k |+ |k ' |+ 100log |X |;
(6) 1* and 1*".
The text is easy if only blocks from (1)-(4) are allowed in above. [(Definition

3.3.3A)

Proposition 3.3.3: If the text is easy then: (1) the text can be constructed
from |X | and O(log |X |) information; (2) there is a constant Cy (< <k,k') not
depending on k or k' such that each head position in the fezt at a specific time
can be described by |k |+ C, information, and further, if a head A is in an
occurrence of X, X', or some prefix of one of them, then p(h) can be specified

by Cgylog |X | information. O (Proposition 3.3.3)

Proposition 3.3.3 is exactly the objective of Definition 3.3.3A. The proof

which we have omitted here follows directly from this definition.

Definition 3.3.3B: Let z be a string segment of an easy text. z is indepen-
dent (with respect to text) if for every string X', or its prefix in Definition
3.3.3A that appears in the text, K(X'-z |X-2)<50log |X|. O (Definition

3.3.3B)

Definition 3.3.3C: Let z be independent. We say z 13 compared with y
if (1) |z |=|y |, and (2) there is a time when one head, say k;, is at z and simul-

taneously another head, say h;, is at y (excluding the first bit and last bit of z

67

and y). If y is just another occurrence of z, then we say this occurrence of
z is matched, or matched by (k;,h;). We also say (h;,k;) did the matching. Let
z! and z2 be different occurrences of string z in text of above input. We say z!
is matched to z2 if there is a sequence of occurrences of z’s starting from z! and
ending with z2, each being compared with the next. An occurrence of z is
well-matched if this occurrence of z is matched to the z of a,. O (Definition

. 3.3.3C)

The idea behind the proof of next theorem comes from the following obser-
vation: Let kXk' be a random string. Suppose that there is a time that all three
heads have left the pattern 1¥X1*' and no head is reading the ¢ sign, the text is
easy with no occurrences of pattern, and two heads are reading some occurrences
of X. Then we would lose the information of either k¥ or k'. At this time we
attach 1'’X1'" to the end of tezt, if the machine does string-matching correctly,
we would be able to recover k¥ and k' by finding the minimum ! and /' such
that the machine finds a matching. Therefore, we show that kXk ' is not random.
So our goals are to (1) make text easy and (2) drive the heads out of pattern (or
1¥ of pattern). To make fert easy we construct text to be (essentially) a
sequence of ¢;’s and block of 1's, where ¢;=1™ X1™ for some non-random m
greater than k and k'. To drive the heads out of the pattern, we have to do an
exhaustive adversary proof. We will try to construct ‘bad’ (but easy) inputs to
fool the head out of pattern. With the goal of ‘constructing an easter text than

the pattern’ in mind, we start our proof. Drawing some pictures while following

68

the proof would facilitate its understanding.

Theorem 3.3.3: No 3-DFA accepts L={#a,8teztf|ay is a substring of
text }.

Proof of Theorem 3.3.3: Suppose a 3-DFA M accepts L. Fix a long
enough random string Y, as mentioned before. We will show that Y is not ran-
dom, thus obtaining a contradiction. Divide Y=kXk', where |k |=|k']|,
X V4> > |k, IX|>>VIX], and |k |>>log | X|. Let
m=min{2/ |2/ >k,k'}. X is divided into z 7,232,252 of equal length as
assumed above (and so is each sub-string). We consider only inputs of form
#1%¥X1%'$tect¢ to M. That is, ag=1*X1*". We will always assume that we

are in the process of simulating M.

The following strategy P is needed to play our adversary proof. The purpose
of P is to obtain an invariant value such that after h; has passed a block of 1’s,
many more 1’s can be added without changing the status of M. Further this
block of 1's can be used to recover k if it is followed by X1™. To understand it

better, one may want to read P later when P is called.

69
Strategy P(z): Given #ag$teztd on tape, p(h,)=text with corresponding
state of M and ho,hg positions. The parameter z is a substring of X.
1:=1;
repeat
append b;=1™ 1910 to the input (before ¢);
continue to simulate M until p(h;)=5;0;
=141
until S| or Sy or Sz=true,
The three predicates S;,S,, and S are defined as below:

S,: A matching of one occurrence of z (parameter of P) to another occurrence

of £ by (ho,h3) happened in the last loop;
So: Neither hy nor kg moved more than |@ ||X | steps in the last loop;
Ss: hy and h, are separated by only 1-blocks.

If S, is true, then there exist constants C',C3< |@ ||X |+ 1 such that for

Ol+ I#C'2 . . .
all I, should we let b; ;= in the input, M would be in a fixed state

)

with same h,,hg positions when p(h;)=b; ;. Replace the last appended

C.+1+C
b, =1™ 12 lo by a; =1 i

2X1™ where =1 at this moment.
If S| or S3is true, do nothing.

end_P.

70

Claim P: (1) Only one of the S;’s can be true; (2) The number of times that
the repeat loop is executed is less than twice the number of X-blocks and 1-
blocks in the input. [J (Claim P)

Nine technical lemmas are needed in the process of simulating M. Note that
the a;5¢'s used in each of the following lemmas are all ‘local’, that is, they have

no relation with any @;¢'s used in the proofs of other lemmas or of the main

" theorem.

Lemma 1 (The Matching Lemma): Let the text be regular (Def. 3.3.3A)
and with exactly one occurrence, a , of ag in it. Let z be a segment of X such
that (1) z is independent (Def. 3.3.3B), and (2) |z|>V[X] Then the
occurrence of z in a,, must be well-matched.

Proof of Lemma 1: Suppose Lemma 1 is not true. Let z!, for
I=1,2, - - - 1,<1000, be all the occurrences of z, including the one in a,, that

are not well-matched in the text. Now for each z‘, we record 3 pairs of informa-

tion for the 3 heads,

h, pair: (positions of h, and h, and state of M when h, enters this
occurrence of z', positions of h, and h, and state of M when h, leaves this
z');

h, pair: exchange h, and h, in above;

h. pair: exchange h, and h, in h,’s pair.

71

We now show that Y is not random by giving a short program which

accepts only Y. For input Y/,
(1) Compare Y' with Y except the part which we do not need.

(2) Construct the pattern and the text with z' of Y' (the corresponding part
of z) replacing all z’s. Then for each of the above three pairs, starting from the
first component, we simulate M until some ID of M coincides with the second

" component of the pair. If there is no such coincidence, we reject this Y'.

If Y' passes tests (1) and (2), then Y'=Y (otherwise M does not accept
L). Notice that we used only the following information: (i) X-z and
5(|k |+ |k ' |) amount of information for constructing the regular text (excluding
the z part), and (ii) h,,hy,h, pairs for each z'. The total amount of information
that we used in the above program is less than |Y | because of the assumption
|X |Y4>> |k | and the fact |z |>V]X|. O (Lemma 1)

Corollary: Lemma 1 is true for a k-NFA, for any k.

Remark: Combined with the ideas from [YR], the proof of a theorem by Yao
and Rivest [YR], which states that a k-DFA is better than a (k-1)-DFA, can be
simplified.

Lemma 2 (The 2-head Lemma): Let s, |s |>V[X], be an independent
(Def. 3.3.3B) segment of X. For input I=# ll‘Xlk'$ZOaIOa2...a,+2O/, where
a;=1™ X1™, let Z be regular (Def. 3.3.3A) with no occurrence of ay and no more

than [occurrences of s in it. If there is a time when p(h;)=(s of a;,,),

72

p(ho)<(s of ay), and s in a;<; <4 2's are not matched, then X is not random.

Proof of Lemma 2: Divide s equally as s=s,3585. Fix any q;, the s in it
is not matched by %,. As in the Matching Lemma, for s=s;s;s; we can find
s,', 85', 83’ such that each s;' can be constructed by using X-s and some
4m(l+ 2) long information, so that if we replace s by §=3§,8,3; where §; is
either s; or s;', M will be in the same status as if s were not replaced by § at
" times p(h;)=3§,, or 84, or 33 of a;. Notice that s;'>#s; because s;' is not ran-
dom relative to X -s.

Now we start to simulate M from the beginning. We will try to cheat M so
that it fails to match some s; and we can apply the Matching Lemma. Our stra-

tegy is as follows: Run M on I; for i=1,2,..,1+ 1, do (1) or (2) in the following.

(1) If s, and s, in g; are matched (by h, and hj), change s; when this

matching occurs; to s3’;

(2) If h, passes s, or 8, without matching it, then interrupt M as soon as
this happens. Keep the s in this a; unchanged, change every s; in ¢/, to

s;', and halt.

Now if (2) is true at the sth step, then a; is the only good occurrence of the pat-
tern and 8,8, of a; is independent. But 8,3, of a; is never matched. If rule (1) is
always true, then some s; (which is independent) in a;,, cannot be well-

J

matched, clearly. In both cases, the Matching Lemma is violated. O (Lemma 2)

73

Remark on Lemma 2: We have presented a simplified form of Lemma 2.
When it is actually applied, the a;’s and contents of Z can be intermingled. Since

the proofs are the same, we preferred to present a simplified version.
The next lemma suggests the basic idea of the proof of our main result.

Lemma 3 (The Easiness Lemma): Let the text be easy and contain no
occurrence of ay. If at some step ¢, two heads of M are out of ay and their posi-
" tions can be described by 10log |X | long information, and if no head is in 1* of

aq or at the ¢ sign, then Y is not random.

Proof of Lemma 3: The partial current ID (current ID without the part
that no head can see any more) at time ¢ can be specified by the following short
information less than |X [+ 2(|k |+ |k'])/3 long. X plus O(log |Y |) informa-
tion suffices for constructing the text. For specifying the positions of the 2 heads
that are not in ey, O(log |X |) suffices by assumption. For the third head, if it is
not in a,, then we simply specify it using information less than |m |4+ log |X |
long. Suppose it is in a,, then if it is in X of ag we specify k' by |k’ | informa-
tion and the head’s position by log |X | information. If it is in k' of agy, then we
only specify the distance from this head to the $ sign using information of less
than |k' | long.

After specifying the partial input, we find the smallest ¢+ and j such that
appending 01° X1/ at the end (before ¢ sign) makes M accept. So we know k=1

and k'=j. This implies that Y is not random because we can reconstruct Y

74

with less than |Y | information. O (Lemma 3)

Lemma 4 (The Replacement Lemma): Assume the fext is easy. At
time ¢ in the simulation of M, if a segment s of X is not matched, then there
exists s ! such that, (1) |s|=|s'], (2) s7%s',(3) 8’ can be constructed from X
and O(log |X |) information, and (4) if h; passed s at time £, then replacing s

by s' will not change the status of M when p(h;)=s' (or s).

Proof of Lemma 4: We consider each h; that passed s before time ¢. Let
us consider the way h; passes through s. We call a position p in s a
stngular point if while some head is staying at p, only the heads reading 1’s
move and some head moves more than |M |+ 2log |X | steps. Obviously there
can be only 2C singular points for each head because once the head runs into a
singular point a whole block 1's must be crossed by some other head. Now we fix
the largest segment ¥ of s which does not contain a singular point. We know
|5|>]s|/6C. Since § is random relative to Y-5 it follows that there must be

many §’s such that

p(h)=34" for all h; that passed s before time £.

where we used IDp(h)=z to denote

(p(hy),p(ha),p(hs), state of M)

at the time when p(h;)=2z. Now we are going to find such an § without using
too much information other than X. Particularly, we do not want to use |m |,

or |k |, or |k'| information other than X. We will exhaustively search for an §

75

such that (*) is true. For each k; in (%), we alphabetically generate § and run M
from the time that h; is at the beginning of § and & until we find an § such that
(%) is true. To do this, if other 2 heads read only portions of X then we need
only O(log |X |) information to specify the starting and ending positions of the
other 2 heads. But if some head runs into a block of 1™ or even 1* or 1*' of the
pattern, then instead of using |m | information by the obvious way, we only
. specify the number of 1's which were read when h; went through 3. This is obvi-
ously short for we assumed § does not contain a singular point. Finally replacing
Fin s by § gives us the s’ which satisfies the four conditions in the lemma. [
(Replacement Lemma)

Lemmas 4-1, 4-2, 4-3 are variants of the Replacement Lemma that are
needed in the application. By the method of Lemma 1 and Lemma 4 we obtain

Lemma 4-1 as below.

Lemma 4-1: In Lemma 4, if the condition that s is not matched is
removed, then we can conclude that all not well-matched occurrences of s can be

replaced by some s ' so that (1)-(4) in Lemma 4 are still true. O (Lemma 4-1)

Lemma 4-2: Let text be easy and contain C full occurrences of a,, say
by, " -+ ,bp. Assume that at some time ¢ in the simulation of M, for each b,
there is a substring s; of X not well-matched. For 1=1,..,C, let |s; |> |X |/1000
(s;’s may be all different). Let s; be independent and s, appears in text less than
D times. Here C and D are small constants less than, say, 20. Then tezt can be

changed by substituting s;’s so that:

76

(1) text is easy and does not contain any occurrence of a;

(2) There is a time ¢’ such that, ID,, on the changed input is same to ID,
on the old input.

(3) There is a substring e of s; which remains unchanged in s, after replace-

ment. |e |[>|3,|/2C and e is independent.

Proof of Lemma 4-2: Lemma 4-1 cannot be applied directly since other-
wise we cannot obtain an independent e. We ‘slice’ each s; into 10*C+D pieces.
For each s; choose the piece v that was compared (See Definition 3.3.3C) with a
shortest segment w, of some s, and then apply Lemma 4-1 on v to get v'zwv.
Therefore K(v' |X-s;+ w,)<10log | X |. By a simple counting, w, can be at
most |s,]|/10C long. After doing this C'-1 times (for each s;5) there are C-1
segments, total |s;|/10 long, of s; have been used for the construction of
replacements. We conclude that there is a segment e, of s;, such that
le |=|s;|/2C and e is independent. Finally we arbitrarily choose another seg-

ment of s, disjoint from e, to apply Lemma 4-1. [J (Lemma 4-2)

Lemma 4-3: Lemma 4-2 can be modified so that b, is not changed. That

is, the resulting fext contains exactly one occurrence b, of a.

Proof of Lemma 4-3: Canceling the last sentence in the Lemma 4-2’s proof

gives us the proof of Lemma 4-3. O (Lemma 4-3)

Lemma 5: Let text in input #ay$tezt¢ be easy and contain no occurrence

of ay. Let s be a substring of X where s is independent with respect to tezt and

77

|s |>V]X]. If there is a time ¢t of M such that p(h3)>(1* of ay), and
p(h{)<¢, then Y is not random.

Proof of Lemma 5: Assume there are C occurrences of s in text. Append
@,0a,0...ac, 50 after texzt and before ¢, where ¢;=1"X1™ for i=1,.,C+2.

Continue to run M from time ¢ and stop as soon as (1) or (2) below happens.

(1) p(h;)=ac4+20. Then no s; in any a;<;<c42 is matched. By the 2-head

Lemma we are done since 83 is independent and fext is easy;

(2) 83 of some a;<;<c42 is matched. Then cut away the un-read input. It is
clear that, for those a;<;<c42 Which are not canceled, there is a d, 1<d <86,
such that sg, in any a; is not matched. By the Replacement Lemma we replace
834 of every remaining ¢; by some easy replacement sj;' #s3, such that, (a)
K(s3,' |X-s)<10log | X |, and (b) after the replacement for ;>0 when

p(h1)=4a;0, M is in the same status as if no replacement occurred.

(2.1) If the matching was done by h; and h,, then the conditions of Lemma
3 are satisfied and we are done.

(2.2) If (hg,hy) or (hg3,hs) did the matching of 83, then p(hz)>(sy of ay).
Append ag, 30...a50, 40 after text and before ¢, where ¢;=1"X1™, for
C+3<i<2C+ 4. Now we go on simulating M and repeat above arguments (1)
and (2) one more time, except using s, instead of sj, and sy, instead of s3,.
Notice that s—s3, is independent by (a) in (2). If we get back to case (1) or (2.1)

then we are done. If we have case (2.2), then p(h3)>9$ (instead of s, of ag), the

78

conditions of Lemma 3 are satisfied and we are done. [0 (Lemma 5)

Lemma 6: Let the text in input #ay$tezt¢ be easy. Let there be exactly
one occurrence of ag in @ in tezt, call it a;. Let s be a substring of X in a;
such that (1) s is independent, (2) s <p(hy),p(he) < ¢, (3) s of a; is not well-
matched (to ag), (4) s is not matched to other occurrences of s that h, can still
see, and (5) |8 |> |X |/1000. Then Y is not random.
Proof of Lemma 6: Continue to simulate M and stop as soon as one of
the following cases happens.
(1) p(h3)>(1* of ag). As soon as this happens, we replace g5 of a; by some
3g' #3g by Lemma 4-1. Since 8; - - - 85 is independent, the conditions of Lemma

5 are satisfied, we are done.
(2) p(h,)=text (before ¢). Since p(h3)<(X of ag), s is not well-matched yet.
(*) We now apply P(s):
If S, is true, then p(h3)>(1F of @), we are done as in case (1);

If S5 is true, then s cannot be well-matched for this input, which con-

tradicts to the Matching Lemma;

l

C.+ 1+C
If S, is true, then P appends a; =1 1 2X1™ to the input. We con-

tinue to run M until one of the following case first happens.
(2.1) If p(h3)>(1% of a,). We delete last 1™ of a; and we are done, as

in (1).

79

(2.2) p(h)=(X of af).

(2.2.1) Some s; of a; is not matched. Notice that by assumption s,
of a; is not well-matched. If h, and h3 do not do any matching of X before
ho reaches a;, then Lemma 4-3 can be applied so that only a; contains a,.
Then it is easy to see that there exists a substring e of s, in a;, of length at
least |s, |/ ¢ for some constant ¢, that cannot be well-matched. This con-
tradicts to the Matching Lemma. If h, and h3 do some matching of X
before hy reaches ay, then at first step the matching happens, if k; is at ¢,
we apply Lemma 4-3 so that only a; could contain a,. Then we can vary !
to find k, by the method of Lemma 3, concluding Y is not random. If A, is

not at ¢, we apply Lemma 4-2 and Lemma 3.

(2.2.2) If all s;’s of a; are matched (by h; and h,), then let
X=X,sX,, change a; to 1™ X,s,8,83, and repeat (*)’s process.
Notice that (2.2.2) above can not happen more than a constant number of times,

since text is easy and at least one full s has to be jumped over each time (2.2.2)

is true. O (Lemma 6)

Now we continue to prove Theorem 3.3.3. We construct an easy tert. Let

the partial input be
(A) #agda0 - -,

where a;=1™X1™. Consider the time ¢ when p(h;)=(X of a,). Note, at ¢,

80

p(h3)<(X of ag), since otherwise we can remove second 1™ from a; and apply
Lemma 3.

(1) All ;s of a, are matched (by hj,h,), then there is a time of M such that
p(h))=(z5 of a;), and p(hg)>(z, of ap). Change a; to a¢;'=1"1z,z,. Add
a,=1mX1™0 to get the partial input

(B) #ag$a;'0a50 - - -
Simulate M on the new input and consider time p(kh;)=(X of a,) for the new
input (B). There must exist an z, in a, not yet matched (assuming p(hs)<(1* of

P

ay)). We go on constructing the input by the following process.

(C) For t=3 to 8 repeat the following.

Add ¢,=1™X1™ to the input and and run M on the new changed input.
Consider time p(h;)=(X of a,). If all z;'’s of a, are matched, then let
a,=1"z1,2573.

Now at time p(h;)=(X of ag). We consider following cases.

(1.1) If, for j=1,..,6, all z,; of a, are matched to some a;>9's, we find the

smallest ¢ such that z,, of a, is matched to z,, of a;. Change text to
(D) ...a0a30...a; 01" z,,...7,,0¢.

Simulate M on the new input (D) until p(h)=text. We then apply P(z,) which
results exactly one of S, Sy, or Sy true. If S, is true, then p(h3)>(1* of ay), we
apply Lemma 4-2, then Lemma 5. If S; is true, then z,5 of a, cannot be well-

matched, to satisfy the conditions of Lemma 1 we apply Lemma 4-3; If S, is true,

81

then P adds a; =19F1*Cx1m o the input, and we simulate M on the new
input and stop M as soon as one of the following cases happens.

(1.1.1) p(hs)=(1* of ay). Then z,6 of ap is not well-matched. Other un-
matched z;’s in ¢; 5, remain un-matched. We delete second 1™ from a; and we

are done by Lemma 4-2 and Lemma 5.

(L.1.2) p(hg)>(z,5 of ag). If (hy,hy) did not match z,5 of a; to that of ay,
" then 2,5 of ay has not been matched yet. Delete second 1™ of a;, then apply
Lemma 4-3 followed by Lemma 6. If (z,5 of a,) is matched to (z,5 of a;), then

case (1.1.3) applies.

(1.1.3) p(hy)>(z4 of a;). Then z,,2,52,3 of a; is not matched, because
when p(h;)=(z4 of ¢;) we have p(h,)>(z;5 of az). And 7,5 of a, is not well-
matched. Also for every q; in between a, and a; there is a long not well-matched
part. Now continue to run M and stop M as soon as one of the following cases
happens.

(1.1.3.1) hy reaches a;. Apply Lemma 4-3 so that only a, still contains
ao and s, which is a long substring of z,,, is independent. If s is not a substring
of the changed a; then the Matching Lemma can be applied; suppose it is, since
8 in a; is not matched, there must be a substring s’ of s in a,, satisfying

|s!|>]s|/i where i is defined in (D), that cannot be well-matched, again we

can apply the Matching Lemma.

82

(1.1.3.2) (ko,h3) do some matching of X. If A is not at ¢, we are done
by Lemma 4-2 and Lemma 5. And if p(h{)=¢ we apply Lemma 4-3 so that only
a; contains ag and tezt is easy, then we can vary ! to find k£ by the method of

Lemma 3. This shows Y is not random.
(1.2) There exists j such that z,; is not matched to any ;.

(1.2.1) p(ho)>a,. Apply Lemma 4-3 so that only a, contains a,, then use
" Lemma 6;
(1.2.2) p(ho)<a,. Since many a;’s are left in form of 1™ X1™, with some

common part un-matched, in (C), the 2-head Lemma can be applied.

(2) Some z, in a; is not matched. We construct new input by process (C),

2
and exactly the same argument as in (1.1)&(1.2) applies. (Change a, to a;.)
O (Theorem 3.3.3)

Remark: (1) We hope the idea of easier text and harder pattern suggests
some possible approaches to the general k>3 case. (2) Though almost all the
lemmas we proved can be generalized, to keep the proofs readable we chosed not
to. However, we do hope the techniques and the lemmas developed here find
themselves applications elsewhere, like the Matching Lemma in the proof of Yao

and Rivest Theorem.

83

3.3.4. String-matching by a 2-way k-DFA with k-1 heads blind

A 2-way k-DFA is just like a k-DFA but each head can go both directions.
We assume that a 2-way k-DFA stops by entering a final state. A head is blind if

it can see only end-markers.

In [DG] it is proved that 2-way 2-DFA with one head blind cannot do
string-matching. Obviously 2-way 3-DFA with 2 heads blind can do string-
" matching. Here in contrast to the impossibility result of Theorem 3.3.3, we prove
a lower bound on the time to do string-matching required by a 2-way k-DFA
with k-1 blind heads. And we will also give an upper bound for some simple
matching problem. We hope this can shed some light on the other important
open problem concerning the lower bound of doing string-matching by a 2-way

2-DFA.

Theorem 3.3.4A: String-matching requires Q(n2/logn) time for a k-head
two way DFA with k-1 heads blind, where n is the length of the input.

Proof of Theorem 3.3.4A: Suppose M does string-matching in
o(n?/logn) time, where M is a 2-way k-DFA with k-1 blind heads. Let h; be
the non-blind head and h,, ..., h; be the k-1 blind heads. Fix a long enough
random string X and consider input

#X301X1x¢

on the input tape. Define the crossing sequence (c.s.) of h; at a fixed position p of

the input tape of M to be a sequence of ID’s of form (state of M, positions of

84

ho, . . ., h;) which specifies the status of M when h; passes this position. Now
consider |X | c¢.s.’s under 0 X1 If each one is of length greater than
|X |/ k%log | X |, then M takes O(n%/logn) time, a contradiction. Otherwise there
exists a c.s. of length less than |X |/k2log |X |. But then from this c.s., which
can be described by less than |X |/2 information, we can reconstruct X by a
short program as follows: For each X', form input #blank$ 01X 1X "¢ Start to
. simulate M from the first ID of our short c.s. at position p, going only to the
right. Each time h; runs back to the position p we match the current status of
M against the next ID of the c.s. and if they match we take the following ID in
the c.s. and continue to simulate M from it (Right turn only!); if they do not
match, then X '£X, we interrupt the simulation. Thus if the simulation is

finished correctly, we can conclude X'=X. 0O (Theorem 3.3.4A)

One may wonder whether this logn factor can be canceled. For this type of

inputs the answer is NO, as the next theorem demonstrates.

Theorem 3.3.4B: L ={#x8$yx¢} can be accepted by a 2-way 3-DFA with 2
heads blind in time O(n?/logn).

Remark: It is proved in [LY] that L defined above cannot be accepted by a
1-way 2-DFA. By a similar proof the language L'={#ao$a,*%a,*.. %a;¢ | ag=0q;
for some 1}, defined and shown to be not acceptable by a 2-way 2-DFA with one
head blind in [DG], is acceptable in time n2/logn by a 2-way 4-DFA with three

blind heads.

85

Proof of Theorem 3.3.4B: We sketch an M accepting L with one regular
head A, and two blind heads hy and k3. To match fast, M will match block by
block with each block roughly logn long, where n is the length of input. The

algorithm for M follows.

Step_0: hy,ho,hg at # sign. hy (the counter) moves one step right.
. Step_t1:

Step_i.1: h, moves right one step, and (hy,h3) double (times 2) the size
of the counter held by h, (still held by h, after modification). h, moves right
one more step (plus 1) if &, reads a one; If A, reads a zero h, does not move.
If hy did not pass the ¢ sign, then repeat Step_i.1, else go to Step_s. 2.

{Remember a logn long block in a counter held by hs.}

Step_i.2: hy holds the counter and hz goes to the $ sign. h, and h;
move simultaneously to the left until h; reads # sign. k; and k3 switch posi-
tions. Then h, goes to ¢ sign. h; and hj go backward at the same time until
hs reads # sign. {This places h, in the corresponding matching position in
the text.}

Step_1.3: ho and hj decrease the counter, held by h,, by half (divide by
2). If there is a remainder 1 then k; mush read a 1; If the division is even,
then h; must read a 0. k; moves one step left. Repeat Step_s. 3 until the A,

counter becomes zero. {matching a block}

86

Step_i.4: h, goes back to the corresponding position for the next block
in the pattern with the help of hy and A3 To do this, remember current
(after Step_i.3) distance between h; and the ¢ sign. Send h; back to pat-
tern with the same distance to the $ sign. This is actually the position of &,
before Step_i is started. Then repeat the process of Step_i. 1 once more.) Go

to Step_i+ 1. {Re-set h, for next step (+ 1).}

end.

By standard calculation, Step_i is repeated no more than |pattern |/logn
times. For each repetition, Step_i requires O(n) time. Therefore total is

O(n?/log n). The correctness of this algorithm is clear. [0 (Theorem 3.3.4B)

3.3.6. Probabilistic checking is easier than probabilistic generating

It has been an interesting philosophical question [W]: is (probabilistic) check-
ing easier than (probabilistic) generating? For example, given matrix A, B, and
C, Freivalds showed (see [W]) that we can probabilistically check AB=C in n?
time, but no one knows how to calculate AB faster than the Strassen’s or Pan’s
algorithm even probabilistically (open problem 2.6 in [W]). Also similarly it is
known [W] that given polynomials p(z),po(2),p3(2), the probabilistic checking
of py(z)po(z)=ps(z) can also be done faster than the known generating (p3(z))
algorithms. Here we shall provide an example which does show that checking is

easier than generating.

87

We will prove a lower bound which says a block cannot be moved faster
than n? time even with the help of a random number generator. We follow [G]. A
PTM is a TM equipped with a random number generator. A PTM decides the
next move by a random choice from two possible branches. A PTM P performs a
task with error probability ¢ if it outputs the correct answer with probability 1-e.
Language L is accepted by a PTM P in time £(n) if there exist an €<1/2 such
. that if €L then P accepts z in with probability greater than 1-€ in time £(n),
otherwise P accepts z with probability less than € in time £(n). In this section,
we solely consider the 1-tape probabilistic machines (1-tape PTM’s) without an
extra input tape, i.e., the input is presented on this single work tape at the begin-

ning of the computation.

It is a very interesting result by Freivalds [F] that a 1-tape PTM can match
two strings on 1-tape in time O(nlogn) with any fixed error probability ¢>0. In

contrast we show the following.

Theorem 3.3.5: Consider a 1-tape PTM M, with input z# |z lg = |
presented on its only work tape. To move z to the 0’s positions with a fixed error
probability e<1/2, (i.e., to output z# 21z where z# 2| stays at original posi-
tion) M requires 2(n?) time.

Proof of Theorem 3.3.5: Assume M does the job in 0(n?) time. We fix a
random string z of enough length. Consider the crossing sequences (c.s.) at the

signs. Let the number of computations is T (each for one random sequence).

88

Since each computation uses o(n2) time, we have, in total, o(n27T) elements of

the c.s. at # signs. Let e=1/2-6. Then there must exist a position ¢ at some #

sign, such that the c.s.’s at ¢ are short, say of length <ﬁM|’ for T'=(1-6)T

computations, since otherwise the total number of c.s.’s for all computations is

going to be O(n2T), a contradiction.

Suppose we found above ¢. Then for those T'' computations, the c.s.’s at

n

10|M|°

position ¢ are shorter than Notice that each c.s. corresponds to one or

more computations that cause this c.s. Among these T'' c.s.’s (there might be a
lot same c.s.’s), at least one c.s. corresponds to those computations where more
than half of them produce correct output, since otherwise the error probability
exceeds (1-6)/2=e.

Fix above c.s. We can give a short program to produce the z as follows, we
generate all possible random strings to run M, pick out those computations
which match the c.s. at position ¢. The majority of these computations should
output z at the ol position, and our short program will output this z. The
information we need for this program is the c.s. of length n /10 |M |, logn for the
#’s and 0’s. Therefore the total space needed is less than n, contradicting to the
randomness of z. [0 (Theorem 3.3.5)

Remark: Comparing to the nlogn probabilistic algorithm for accepting

z# 171z (with any fixed small error €) by a I-tape PTM [F], this lower bound

leads us to an interesting conclusion: checking is indeed easier than generating.

89

Notice that this is not true for 1-tape deterministic or nondeterministic machines
since a n? lower bound for accepting the palindromes were proved long time ago

by Hennie [H2].

CHAPTER 4

Discussion

This concluding chapter consists of remarks on several major open problems
in this thesis.

Most tractable open problems leftover from this thesis are from Chapter 3.
The only problems leftover from Chapter 2 are those problems that have both
positive and negative solutions in the presence of some oracles. Whereas, there
are several seemingly tractable, but important, open problems contained in
Chapter 3.

One such problem is to characterize exactly the power of one nondeterminis-
tic tape. In Chapter 3, the gap between the O(n?) upper bound and the
Q(n?%/lognloglogn) lower bound is left open. Can we close the gap? Theorem
3.2.6B suggests that new language must be constructed. In [L3], the following
theorem was proved.

Theorem: If a one tape nondeterministic machine is equipped with a ran-
dom number generator, than it can simulate two tapes in less than quadratic
time with error probability less than any fixed ¢>0.

From this result and Theorem 3.2.6B, is it reasonable to suspect that the

Hartmanis-Stearns O(n2) upper bound is not optimal, say, for a one tape non-

deterministic machine simulating a two pushdown store machine?

90

91

Another problem which is more promising is to improve the ((n!®/logn)

lower bound on one tape simulating two pushdown stores.

In Chapter 3, we developed some techniques for resolving the problem
whether a k-head DFA can do string-matching. Although we have answered the
question negatively for the cases of k=2 and k=3, the general question is still

open. It would also be interesting to see a simple proof of Theorem 3.3.3.

Apart from the problems dealt with in the thesis, there are other important
related problems. For example, to prove similar one tape versus two tape results
for the case of of f —line computation (where the input is two-way). No such
results are known. Once two-way input is considered, the problems become very

hard. Some related results for 2-way machines can be found in [DG] and [Ch].

CHAPTER 5

Appendix: Definitions and Notation

This appendix presents the major concepts and standard notation of compu-
tational complexity, used in this thesis. Other unusual terms are defined where
they are used. We assume that the reader is familiar with the basic definitions

presented in [HU].

The following abbreviations and definitions will be used. (N)TM stands for
(non-)deterministic Turing machine with one 2-way input tape and some work
tapes. Here we call a tape ‘2-way’ if the head on the tape can go both directions,
whereas we call a tape ‘1-way’ if the head can only go from left to right. A k-
tape on—line TM is a TM with one 1-way input tape and k (2-way) work tapes.
k-tape real time TM is an on-line TM that runs only a constant number of steps
for each input bit. By on-line (real time) computation we mean the computa-
tion made by an on-line (real time) TM. A DFA is a deterministic finite automa-
ton. A PDA is a deterministic pushdown automaton. A k-DFA is a determinis-
tic finite automaton with k reading heads on the 1-way input tape. k-NFA is
the nondeterministic version of k-DFA. P is the class of languages accepted by a
TM in polynomial time. NP is The class of languages accepted by a NTM in
polynomial time. PSPACE is the class of languages accepted by a TM or NTM

in polynomial space. E (EE) is the class of languages accepted by a TM in (dou-

92

93

ble) exponential time. NE (NEE) is the class of languages accepted by a NTM
in (double) exponential time. ESPACE (EESPACE) is the class of languages
accepted by a TM or NTM in (double) exponential space. The classes EEE,
NEEE and so on are defined similarly. DTIME[t(n)] (NTIME{t(n)]) stands for
the class of languages accepted by a TM (NTM) in time ct(n) for some constant
¢. Note, DTIME[t(n)|=DTIME [ct(n)] for any constant ¢ by the linear time
. speedup theorem of [HLS]. DTIME[t‘(n)] is an abbreviation for

dUODTIME[t"(n)]. NTIME|[t¢(n)] is an abbreviation for dUONTIME[t"(n)].
> >

CoNP is the class of languages whose complements are in NP. CoNTIME [t(n)]
is the class of languages whose complements are in NTIME[t(n)].

CoNTIME |t (n)] stands for UoCoNTIME[tC(n)].
c>

We use L to denote the complement of language L, that is, ¥*~L, where ¥
is some finite alphabet under consideration. If M is a Turing machine, then L (M)
is the language accepted by M. If L, and L, are two languages, we say L, is
polynomsial —time reducible to L, if there is a polynomial-time computable func-
tion r so that z€L, if and only if r(z)EL,. A language L is complete with
respect to complexity class C if every language in C' is polynomial-time reducible

tol and L isin C.

We call a Turing machine M a T(n) machine if it runs in time T(n). Let
C be a complexity class. We call a Turing machine M a C machine if it runs

within the complexity bound of C. A list of machines {M;, My, - - -} is a

94

standard enumeration of C if

(1) for each language L in C there are infinite number of machines

{M,-I,M,-27 <o} C {M,M,, - - -}, such that L=L (M‘k) for k=12, - - - ;

(2) every M; on the list is a C' machine. (Notice that L(M;)EC is not enough.)

A function f(n)>n is time—-constructible if some multitape TM on input

1" can put down f(n) markers on a work tape in time f (n).
Let there be given two functions f and g. We write g(n)=o(f(n)) if

lim -%%:0. We write g(n)=0(f(n)) if there are constants C'; and C; such
n —0oo n

that C,f (n)<g(n)<Cyf (n) for almost every n.If @ and b are integers, we use
a|b to mean a divides b. The notation [Z] denotes the number of ways of
choosing a objects from b objects.

Let ¥={0,1}. Most languages in this thesis are subsets of £*. If S is a set,
then |S | denotes the number of elements in S. Following the definition of [HIS],
a set S is sparse if for each integer n there are only a polynomial number of

strings of length n in S. Formally, S is sparse if there is a fixed ¢ such that

|SNE" |[<nc+ c. We call aset S a tally set if SC{1}".

An oracle machine M4 (with oracle A) has an extra write-only oracle tape
and three special states named gy, g,, ¢, When the state of ¢, is entered, M4
asks if the string on the oracle tape is in oracle A. If it is in A, then state g, is

entered, otherwise state ¢, is entered.

CHAPTER 6

References

[A] S.0. Aanderaa, On k-tape versus (k-1)-tape real time computation, in Com-
plexity of Computation. R. Karp Ed. (1974) pp. 75-96.

[BGS] T. Baker, J. Gill, and R. Solovay, Relativizations of the P=?NP question,
SIAM J. Comp., 4 (1975) pp. 161-173.

[BGW] R.V. Book, S.A. Greibach, and B. Wegbreit, Time- and tape-bound Tur-

ing acceptors and AFL’s, JCSS 4,6 (Dec. 1970) pp. 606-621.
[BM] R.S. Boyer and J.S. Moore, A fast string searching algorithm, CACM 20, 10
(Oct. 1977) pp. 762-772.

[Cha] G. Chaitan, Algorithmic Information Theory, IBM J. Res. Dev. 21 (1977)

pp- 350-359.

[CKS] AK. Chandra, D.C. Kozen, and L.J. Stockmeyer, Alternation, J. ACM. 28,

1 (Jan. 1981) pp. 114-133.

[Ch] M. Chrobak, Variations on the technique of Duris and Galil, preprint, Insti-

tute of Mathematics, Polish Academy of Science (1984).

[C] S.A. Cook, The complexity of theorem proving procedures, Proc. ACM STOC

(1971) pp. 151-158.

95

96

[C1] S.A. Cook, A hierarchy for nondeterministic time complexity, JCSS 7, 4
(Aug. 1973) pp. 343-353.

[C2] S.A. Cook, Linear time simulation of deterministic two-way pushdown auto-
mata, Proc. IFIP Congress 71, TA-2. North-Holland, Amsterdam (1971) pp. 172-
179.

[DGPR] P. Duris, Z. Galil, W.J. Paul, and R. Reischuk, Two nonlinear lower

" bounds, Proc. 15th ACM STOC (1983) pp. 127-132.

[DG] P. Duris and Z. Galil, Two tapes are better than one for nondeterministic
machines, Proc. 14th ACM STOC (1982) pp. 1-7.

[DG1] P. Duris and Z. Galil, Fooling a two-way automaton or one pushdown
store is better than one counter for two way machines, Proc. 13th ACM STOC
(1981) pp. 177-188.

[F] R. Freivalds, Probabilistic machines can use less running time, Information

Processing, 77 (1977) pp. 839-842.

[F1] M. Furer, The tight deterministic time hierarchy, Proc. 14th ACM STOC
(1982) pp. 8-16.
[GJ] M.R. Garey and D.S. Johnson, Computers and intractability, a guide to the

theory of NP-completeness, 1979, W.H. Freeman and Co., San Francisco, Calif.

[GS] Z. Galil and J.I. Seiferas, Time-space optimal string-matching, Proc. 13th

ACM STOC (1981) pp. 106-113.

97

[G] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J.
Comp. 6 (1977) pp. 675-695.

[H] J. Hartmanis, On sparse sets in NP-P, Inf. Proc. Let. 2 (1983) pp. 55-60.

[H1] J. Hartmanis, Feasible computations and provable complexity properties,
CBMS-NSF Regional Conference Series in Applied Mathematics 30, SIAM Mono-
graph (1978).

[HLS] J. Hartmanis, P.M. Lewis II, and R.E. Stearns, Classification of computa-
tions by time and memory requirements, Proc. IFIP Congress 65, Spartan, N.Y.
(1965) pp. 31-35.

[HS] J. Hartmanis and R.E. Stearns, On the computational complexity of algo-

rithms, Trans. Amer. math. Soc. 117 (1965) pp. 285-306.

[HIS] J. Hartmanis, N. Immerman, and V. Sewelson: On Sparse Sets in NP-P:

EXPTIME vs. NEXPTIME, Proc. 15th ACM STOC (April 1983) pp. 382-391
[HY] J. Hartmanis and Y. Yesha, Computation times of NP sets of different den-
sities, Proc. 10th ICALP, Lecture notes in computer science 154, Springer-Verlag
(1983) pp. 319-330.

[H2] F.C. Hennie, One-tape off-line Turing machine computations, Inf. and Con-
trol 8 (1965) pp. 533-578.

[HS1] F.C. Hennie and R.E. Stearns, Two tape simulation of multitape Turing

machines, JJACM, 4 (1966) pp. 533-546.

98

[HU] J.E. Hoperoft and J.D. Ullman, Introduction to automata theory, languages,
and computation, Addison-Wesley (1979).

[K] A. Kolmogorov, Three approaches to the quantitative definition of informa-
tion, Problems of Information Transmission, 1-1, 1-7, Jan-Mar (1965).

[K1] W. Kowalozyk, Some connections between presentability of complexity
classes and the power of formal systems of reasoning, Proc. MFCS’84 (1984) pp.
364-369.

[KMP] D.E. Knuth, J.H. Morris, Jr., and V.R. Pratt, Fast pattern matching in
strings, SIAM J. Comp. 6, 2 (Jun. 1977) pp. 323-350.

[LLR] L. Landweber, R. Lipton, and E. Robertson, On the structure of sets in
NP and other complexity classes, Theor. Comp. Sci., 18 (1982) pp. 95-103.

[L] M. Li, On 1 tape versus 2 stacks, TR-84-591, Department of Computer Sci-
ence, Cornell University (Jan. 1984).

[L1) M. Li, Lower bounds on string-matching, TR-84-636, Department of Com-
puter Science, Cornell University (July 1984).

[L2] M. Li, On the power of one tape (I), manuscript (May 1984).

[L3] M. Li, Separating the nondeterministic time hierarchy by tally sets,
manuscript (Jan. 1983).

[LY] M. Li and Y. Yesha, String-matching cannot be done by a two-head one-way
deterministic finite automaton, TR 83-579, Department of Computer Science,

Cornell University (Oct. 1983).

99

[LZ] M. Li and Z. Zhang, On the power of one tape (II), draft (1984).

[M] W. Maass, Quadratic lower bounds for deterministic and nondeterministic
one-tape Turing machines, Proc. 16th ACM STOC (May 1984) pp. 401-408.
(Revised summer 1984).

[MS] W. Maass and A. Schorr, Speedup of 1-tape Turing machines by bounded
alternation, preprint (1983).

[P] W.J. Paul, Kolmogorov complexity and lower bounds, 2nd International
Conference on Fundamentals of Computation Theory (1978).

[P1] W.J. Paul, On heads versus tapes, Proc. 22nd IEEE FOCS (1981) pp. 68-73.

[P2] W.J. Paul, On-line simulation of k+ 1 tapes by k tapes requires nonlinear

time, Proc. 23rd IEEE FOCS (1982) pp. 53-56.
[P3] W.J. Paul, On time hierarchies, Proc. 9th ACM STOC (1977) pp. 218-222.

[PPST] W.J. Paul, N. Pippenger, E. Szemeredi, and W. Trotter, On determinism
versus nondeterminism and related problems, Proc. 24th IEEE FOCS (1983) pp.
429-438.

[PSS] W.J. Paul, J.I. Seiferas, and J. Simon, An information-theoretic approach
to time bounds for on-line computations, Proc. 12th ACM STOC (1980) pp. 357-

367.

[R] M.O. Rabin, Real time computation, Israel J. of Math, 1,4 (1963) pp. 203-211.

[RS] C.W. Rackoff and J.I. Seiferas, Limitations on separating nondeterministic

complexity classes, 10,4 SIAM J. of Comp. (1981) pp. 742-745.

100

[RS1] S. Reisch and G. Schnitger, Three applications of Kolmogorov-complexity,
Proc. 23rd IEEE FOCS (1982) pp. 45-52.

[SFM] J.I. Seiferas, M.J. Fischer, and A.J. Meyer: Separating nondeterministic
time classes. J.LACM, 25, 1, (1978) pp. 146-167.

[S] M. Sipser, On relativization and the existence of complete sets, 9th ICALP,
Lecture Notes in Computer Science, Springer Verlag, Berlin (1982) pp. 523-531.
[V] P.M.B. Vitanyi, Real-time simulations of multicounters by oblivious one tape
Turing machines, Proc. 14th ACM STOC, (19v82) pp- 27-36.

[V1] P.M.B. Vitanyi, On the simulation of many storage heads by one, 10th
ICALP, Lecture Notes in Computer Science 154, Springer Verlag, Berlin (1983)
pp. 687-694

[V2] P.M.B. Vitanyi, One queue or two pushdown stores take square time on a
one-head tape unit, Report CS-R8406, Center for Mathematics Computer Sci-

ence, Amsterdam (Mar. 1984).

[W] D.J.A. Welsh, Randomized Algorithms, Discrete Applied Math. 5 (1983) pp.
133-145.
[YR] A.C. Yao and R. Rivest, k+ 1 heads are better than k, J. ACM, 25 (1978)

pp. 337-340.

[Z] S. Zak, A Turing machine hierarchy, to appear in Theor. Comp. Sci.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif

