A Direct Active Set Algorithm for
Large Sparse Quadratic Programs

with Simple Bounds”

Thomas F. Coleman
Laurie A. Hulbert

TR 88-926
July 1988

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

" Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of
the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013.A000.

A Direct Active Set Algorithm for Large Sparse
Quadratic Programs with Simple Boundst

Thomas F. Coleman
Laurie A. Hulbert

Computer Science Department &
Center for Applied Mathematics
Cornell University
Ithaca, New York 14853

July 1988

Abstract: We show how a direct active set method for solving definite and indef-
inite quadratic programs with simple bounds can be efficiently implemented for large
sparse problems. All of the necessary factorizations can be carried out in a static data
structure that is set up before the numeric computation begins. The space required for
these factorizations is no larger than that required for a single sparse Cholesky factor-
ization of a matrix with the same sparsity structure as the Hessian of the quadratic.
We propose several improvements to this basic algorithm: a new way to find a search
direction in the indefinite case that allows us to free more than one variable at a time
and a new heuristic method for finding a starting point. These ideas are motivated by
the two-norm trust region problem. Additionally, we also show how projection tech-
niques can be used to add several constraints to the active set at each iteration. Our
experimental results show that an algorithm with these improvements runs much faster
than the basic algorithm for positive definite problems and finds local minima with
lower function values for indefinite problems.

Keywords: quadratic programming, large sparse minimization, active set meth-
ods, trust region methods, sparse matrix updates, sparse matrix factorization, simple

bounds, box constraints

Subject Classification: AMS/MOS: 65K05, 90C20, 65K10, 65F30

tResearch partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of
the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86 ER25013.A000.

1 Introduction

1.1 The problem

In this paper we are interested in minimizing a quadratic subject to simple bounds

min JzT Az + b7z .

[<z<u, (1)
where A is an n X n symmetric matrix that is not necessarily positive definite. In partic-
ular, we are interested in the case where A is large and sparse. If A is positive definite,
this problem can be solved in polynomial time by an interior point algorithm [22]. How-
ever, for general A, this problem is NP-hard [19]. The algorithms we consider are not
polynomial. They work for both indefinite and positive definite quadratics, but in the
indefinite case, they find only local minima.

We show how a direct active set method for solving definite and indefinite quadratic
programs with simple bounds, typical of the dense algorithms of Fletcher [11] and Gill
and Murray [14], can be efficiently implemented for large sparse problems. All of the
necessary factorizations can be carried out in a static data structure that is set up
before the numeric computation begins. The space required for these factorizations is
no larger than that required for a single sparse Cholesky factorization of a matrix with
the same sparsity structure as A. Since our algorithm solves the linear systems directly,
rather than using iterative methods, poorly conditioned matrices are not a problem.
We propose several improvements to this basic algorithm: a new way to find a search
direction in the indefinite case that allows us to free more than one variable at a time
and a new heuristic method for finding a starting point. These ideas are motivated
by the two-norm trust region problem. Additionally, we also show how projection, or
‘bending’, techniques can be used to add several constraints to the active set at each
iteration. Our experimental results show that an algorithm with these improvements
runs much faster than the basic algorithm for positive definite problems and finds local
minima with lower function values for indefinite problems.

Many authors have developed active set methods for solving (1). Our basic algorithm
is based on the dense algorithms of Fletcher and Jackson [11] for solving (1) and of Gill
and Murray [14] for solving the more general problem

min 22T Az + bz
Cz <d.

Calamai and Moré [3] and Moré [17] outlined an active set method that uses projected
gradients to identify the active set and can be generalized to the sparse case. They did
not fully specify the algorithm; in particular, they did not specify a choice of starting
point or search direction for the indefinite case, or details of a sparse implementation.
To solve (1) when A is sparse, Dembo and Tulowitzki [7] proposed several active set
methods with inexact subspace minimization, using both projected gradient steps and
conjugate gradients steps. We use exact subspace minimization and solve our linear

systems directly. Bjorck [2] proposed an active set algorithm for the sparse least squares
problem
min %xTCTC:c +dTz
1<z<u

that is similar to our algorithm of Section 2. His algorithm only considered the case
where the matrix A = CTC is positive definite but it does not form A; the algorithms
we consider also allow A to be indefinite.

The organization of our paper is as follows. The rest of this section introduces
notation and provides some background material. Section 2 describes a straightfor-
ward active set algorithm and provides a proof of its convergence. Section 3 provides
the details of a sparse implementation of this algorithm. Section 4 describes several
techniques that can be used to improve the performance of our basic algorithm. Sec-
tion 5 describes our computer implementation, suggests several algorithms that use the
improvements outlined in Section 4, and presents numerical results to compare these
algorithms. Section 6 presents our conclusions and ideas for future work.

1.2 Some Notation and Background Material

We let c;; denote the :jth entry of a matrix C, c.; the ith column of C, and cf, the ith
row of C. We let ca; denote the top part of the ith column of C, where top part should
be obvious from context. Similarly, we let ¢y; denote the bottom part of the :th column
of C. The expression C > 0 means that C is positive definite; similarly C > 0 means
that C is positive semi-definite. We let I denote the identity matrix, and e; the ith
column of I. If § = {si,...,sk} is a subset of the first n integers that is maintained as
an ordered list, we define Zg as the matrix of columns (e,,,...,e,,). We let |S| denote
the size of S.

To simplify our presentation, we note that through a suitable scaling and translation
we can rewrite (1) in a simpler form as

min 2T Az + b7z

(2)
-1<z<1

Henceforth we assume the problem is in this form.

The variables with values of 1 or —1 we call variables at their bound. In our active
set algorithm, the set B of variables at their bound that we are holding fixed we call
bound variables. These variables correspond to the active constraints, those satisfied
with equality that we are forcing to remain satisfied. When we bind a variable we add
it to the set of bound variables. The set F' of variables which are not bound variables
we call free variables. When we free a variable, we add it to the set of free variables.
Note that F = {1,...,n} — B.

We let g(z) denote the gradient at the current point, g(z) = Az + b, or simply g if
z i1s apparent from context. We define the reduced quantities

Ar = Z};AZF, gF = Z;g, gB = Zgg, TF = Z}:x, T = Zgz.

Note that because of the structure of Zr and Zp, the reduced quantities are just
submatrices and subvectors of the original quantities. To simplify our discussion, if
F = 0, although Ap is not really defined, we consider Ar to be positive definite. We
call z a constrained stationary point if gr(z) = 0. We let ¢(z) = 1zTAz + Tz and
qr(s) = q(z + Zrs) — q(z) = }sTAps + gLs. Thus the quadratic gr(s) defined at the
point z is a measure of the change in ¢ from the point z to the point z + Zps.

Let z* be the current point, let B* be the set of all variables at a bound and let F*
be the set of all variables not at a bound. Then the following conditions are necessary

for z* to be a local minimum:

feasibility: —1 < z* <1,

g(z*)i=0 if —1<zr<1,
first order: g9(z*); <0 ifzr =1, (3)

g(z*); 20 ifzr=-1,
second order: Ag. > 0.

These are not sufficient conditions however. If we assume that z* is non-degenerate, i.e.,
g(z*)i # 0 for all : € B*, then the following conditions are sufficient to guarantee that
z* is a local minimum:

feasibility: —1 < z* <1,

g(z*)i=0 if —1<zr<1,
first order: g(z*)i<0 ifzr=1, (4)
g(z*); >0 ifzr=-1,
second order: Ag. > 0.

The algorithm we present converges to a point that satisfies (3) with Ap. > 0. If z* is
non-degenerate, then we are guaranteed that z* is a local minimum, since (4) is satisfied.
Fletcher [10] showed that if z* is degenerate then z* is a local minimum of a nearby
problem, one with a slightly perturbed . Murty and Kabadi [19] showed that if z* is
degenerate then the problem of detemining whether or not z* is a local minimum is

NP-hard.

Notice that if z* solves (2) then it also solves the equality constrained problem

min %xTA:c + 0Tz

TBs = TRe.

So if we knew the correct active set, we would need only to solve an unconstrained
problem. This observation forms the basis for the active set methods. At each iteration,
these methods hold a subset of the variables fixed at a bound, and they attempt to
minimize ¢(z) in the space of the remaining variables, subject to the bounds on these
variables. They continue adding variables to the active set until they minimize ¢(z)
with some active set. If the necessary conditions (3) show that this point is not a local
minimum of (2) they remove some of the active constraints and repeat.

2 A Basic Active Set Algorithm
2.1 The Algorithm

In this Section, we describe an active set algorithm GSA, based on the dense algorithms
by Fletcher and Jackson [11] and Gill and Murray [14], and outlined in Figure 1. The
details of the sparse implementation are presented in the next section.

The first step of the algorithm is to find a permutation matrix P and update A via
A = PAPT and b via b = Pb. Choose P to reduce the number of nonzeroes in the
Cholesky factor of a positive definite matrix with the sparsity structure of A. Finding
an optimal P is an NP-complete problem [21], so we must rely on heuristics for this
step. For simplicity, we will call this new ordering of A the original ordering.

The next step of the algorithm is to find a free set F' on which A is positive
definite. Although we refer to F' as a set, we maintain F' as an ordered list so that Ap
is well-defined. Initialize F' := {1,...,n} and begin the Cholesky factorization of the
matrix Ap. If, at the ith step of Cholesky, a positive element occurs on the diagonal
then set z; := 0 and continue the factorization. If a nonpositive element occurs, remove
¢ from F', exclude row and column ¢ from the Cholesky factorization, and set z; equal
to whichever bound yields the smallest value when substituted into the one dimensional
quadratic %a,';m? + b;z;. At the end of the Cholesky factorization, z is the starting point,
F is the desired free set (possibly the empty set), and we have the Cholesky factorization
of Ar. Note that in the case where A = diag(a;;) and a; < 0, z is the global solution
to (2).

The next step is to find a constrained stationary point. If z is not already a con-
strained stationary point, perform the following sequence of steps. Compute the New-
ton direction s by solving Arps = —gp. Update = via the formula z := = + aZFs, where
0 < a £1 is chosen as large as possible without violating a constraint. If the Newton
step is feasible, i.e., & = 1, then z is a constrained stationary point. Otherwise remove
from F' any variables that have reached a bound and update the Cholesky factorization
of Ar. If z is not a constrained stationary point, repeat the preceding sequence of steps
until such a point is reached.

Now determine if the constrained stationary point z is indeed an optimal point. If all
of the components of gg(z) have the correct sign according to (3), then z is an optimal
point. Otherwise, find the bound variable, say ¢, corresponding to the component of gp
that is largest in magnitude and has the incorrect sign. Update F' by adding ¢ to the
end of it. Let F' be the value of F' before it is updated. Solve Lgr = Zpa,, for r and
set 7 := ay —rTr. If 7 > 0 then Af is positive definite and its Cholesky factorization is

LF=(£§' \/;).

If 7 < 0 then Af is not positive definite, so its Cholesky factorization is not defined,
but Ap = LpDLE where
[Lp
= ()

and D = diag (1,...,1,7).

If z is not a constrained stationary point or Ap is not positive definite, perform the
following sequence of steps. We have two cases.

If A is positive definite, compute the Newton direction s by solving Aps = —gp.
Set z := z + aZFps, where 0 < a <1 is chosen as large as possible without violating a
constraint. If the Newton step is feasible, i.e., @ = 1, z is a constrained stationary point
and Ap is positive definite. Otherwise remove from F' any variable that has reached a
bound and update the Cholesky factorization of Ar.

If Ar is not positive definite, find a nonascending search direction as follows. Solve
LI3 = e, where m = |F| and set s to be § or —3 so that gfs < 0. Note that s is
a direction of nonpositive curvature since sTAps = 7 < 0. Set = := z + aZps, where
a > 0 is chosen as large as possible without violating a constraint. Remove from F' any
variable that has reached a bound and update the LDLT factorization of Af.

If z is not a constrained stationary point or Ar is not positive definite, repeat the
preceding sequence of steps.

Now z is a constrained stationary point and A is positive definite. If ¢ € F' reorder
the elements of F' so that they are in their original order and update the Cholesky
factorization of Ar so that it corresponds with this order. As we shall see in Section 3,
this is necessary for an efficient sparse implementation. If z is not optimal proceed as
above. If z is optimal, reorder = via z := PTz.

2.2 A Proof of Convergence

In this section we prove that GSA converges. The proofs refer to the algorithm GSA
as outlined in Figure 1 and described in detail in Section 2.1. They are typical of those
used to show convergence of active set methods.

Lemma 2.1 Ezecution of the first while loop and each repeat loop in the second while
loop must terminate in a finite number of steps.

Proof: This is immediate, since there are only |F| variables that can be bound and
for each search direction, we either bind a variable or terminate the loop by stepping to
a constrained stationary point. m

Lemma 2.2 The function value of each constrained stationary point is lower than that
of the previous one.

Proof: Let & be a constrained stationary point and let £ be the value of the free set
F at £. So gz = 0. Consider the second while loop in GSA. We free a variable, say t.
Then after updating F' we have gr = fe,,, where m = |F| and 3 # 0. Suppose we take
a step of length 0. This implies that we bind a variable. The variable that we bind
cannot be the variable ¢, since the fact that —gr = —fe,, is a feasible nonascending
direction and that gfs < 0 imply that s,e,, is a feasible nonascending direction. After
binding the variable and updating F, we still have gr = fe.,, where m = |F|. Thus we
have not reached a constrained stationary point so the loop will not terminate. We can
take steps of length 0 at most r times, where r is the number of variables at their bound

5

Find a permutation matrix P and reorder the matrix A via A := PAPT and the
vector b via b := Pb.

Using a greedy approach during the computation of the Cholesky factorization
of A, find a starting point and a free set F' such that Ar is positive definite.

{ Find an initial constrained stationary point. }

while not at a constrained stationary point do
compute Newton step.
if Newton step is feasible take it.

otherwise follow Newton direction until a constraint becomes active;
bind corresponding variable and update factorization.

enddo
{ Find an optimal point. }

while constrained stationary point is not optimal do

free one of the bound variables corresponding to a component of the gradient
that has the incorrect sign according to (3);
update factorization.

repeat
if Ap is positive definite then

compute Newton step.

if Newton step is feasible take it.
otherwise follow Newton direction until a constraint becomes active;
bind corresponding variable and update factorization.

else

compute nonascending search direction of negative or zero curvature.

follow search direction until a constraint becomes active;
bind corresponding variable and update factorization.

endif
until at constrained stationary point where Ar > 0.

if neccesary, reorder F' and update factorization.
enddo

Reorder z via z := PTz.

Figure 1: A General Sparse Active set Algorithm GSA

in F'. Then we must take a step of positive length, so @ > 0. We now show that this
step decreases the function value. We have two cases, depending on how we generate s.

Case 1 Ay is positive definite.
Then s solves Aps = —gp(z) and @ < 1. So

a(x +aZrs) - g(x) = (% - a)(FAFor) <O

Case 2 Ap is not positive definite.
We compute s by solving L%s = te,,. Since L% is upper triangular and nonsin-
gular, s,, # 0. By our choice of the sign of s, gfs = Bel's = Bs,, < 0. So

2
¢(z + aZps) — q(z) = agks + %STAFS <0.

Therefore we have decreased the function value. In each subsequent step we are never
increasing the function value since either we are following the Newton direction, i.e.,
we are stepping toward the global minimum of the quadratic g, or we are following a
non-ascending direction of nonpositive curvature. Thus the next constrained stationary
point has a strictly lower function value than the previous constrained stationary points.
n

Theorem 2.3 The algorithm GSA converges to a point satisfying (8) with Ap > 0 in a
finite number of steps.

Proof: Finding an initial free set is obviously a finite procedure. By Lemma 2.1, ex-
ecution of the first while loop and each repeat loop in the second while loop terminates
in a finite number of steps. Each constrained stationary point is a global, although
not necessarily unique, solution to an equality constrained problem. By Lemma 2.2 the
function value of each constrained stationary point is lower than the values of all pre-
viously found points. Since there are only finitely many equality constrained problems,
we cannot cycle and must eventually terminate. When we terminate, gr = 0, Ar > 0,
and the signs of the components of gp satisfy (3), so the algorithm GSA converges to a
point with the desired properties in a finite number of steps. m

3 A Sparse Implementation

3.1 The Data Structure

A major portion of the work in the GSA algorithm involves computing and updating the
Cholesky factorization. The following three steps are typically employed in computing
the Cholesky factorization of a sparse matrix [12].

1. Find a permutation matrix P and form PAPT. Choose P to reduce the number
of nonzeroes in L.

2. Symbolically factor A to determine the positions of the nonzeroes in L. Use this
information to allocate storage for L.

3. Numerically factor A.

In this section we show that we can perform the first two steps for the matrix A and
use the resulting data structure to store each subsequent L.

In designing a data structure for sparse matrices, we want to store only the nonze-
roes with their row and column indices in a way that allows us to access them easily.
Typically, one stores the nonzeroes consecutively in an array by columns (rows), with
a pointer to the beginning of each column (row) and a corresponding array of row (col-
umn) indices. We need to show that such a structure set up for L contains the necessary
row and column indices to store Lr. To do this, instead of labeling the rows and columns
of the matrices Ar and Lr with consecutive numbers, we label them according to the
row and column of A from which they came. For example, if F = {2,4,6,9}, then the
rows of Ar are labeled 2, 4, 6, 9. This convention will be very important in updating
the Cholesky factorization.

To exploit the sparsity of a matrix, it is often helpful to view the matrix as a graph.
To this end, we provide some useful definitions from graph theory. See George and
Liu [12] for a more thorough discussion of this material. We define a graph G = (V, E)
as a set of vertices V and a set of edges E. An edge (v, w) is an unordered pair of distinct
vertices. A path from v to w in G is a sequence of distinct vertices v = vo,v1,...vx = w
such that (v;,vi41) € E for ¢ = 0,1,...,k — 1. We can represent the nonzero structure
of an n X n symmetric matrix A with a graph G(A) = (V, E) where V = {v;,v,,...v,}
are the labels of the rows of A and (v;,v;) € E if and only if a;; # 0 and ¢ # j.

We can predict the nonzero structure of the Cholesky factor L of a symmetric matrix
A using the graph G(A). Assuming no exact numerical cancellation, Rose, Tarjan, and
Lueker [20] proved the following lemma.

Path Lemma Let: and j be integers with ¢ > j. Then there exists a nonzero in position
(z,7) of L if and only if there ezists a path in G(A) from i to j through vertices numbered
lower than j.

We let n(L) denote the set of nonzero positions in L that are predicted by the Path
Lemma. We call these positions the structural nonzeroes. We define

n(l) = {i] (2,5) € n(L)}
and
k(i) = {i |1 > k and (3, 5) € n(L)}.
For a general vector v, we let n(v) denote the set of nonzero positions of v.
We can now prove the first theorem, which says that if entry (¢,) of Lr is nonzero,

then entry (¢, j) of L is nonzero. This result follows easily from the Path Lemma and
has been observed independently by Bjorck [2].

8

Theorem 3.1 If (i,5) € n(LF) then (z,5) € n(L).

Proof: If (¢,5) € n(LF), then there exists a path in G(AF) from ¢ to j through ver-
tices numbered lower than j. But since n(Ar) C n(A), there must also exist a path in
G(A) from 7 to j through vertices numbered lower than j. So (z,j) € n(L). =

The next subsections describe the data structure manipulations necessary for the
computations we will be performing. Henceforth we will assume that the nonzeroes are
stored consecutively in an array by columns, with a pointer to the beginning of each
column and a corresponding array of row indices. By Theorem 3.1, this data structure
is adequate to store Lp for any F'.

3.2 Binding a Variable

In this section we show how to update the Cholesky factorization when we delete a
variable from the free set. Suppose F' is the current free set and F is the free set
obtained from F' by deleting the variable ¢t. Let F' = {f1, f2,..., fsy---, fm}, Where
m = |F| and f, = t. Then the matrix Ar is obtained from A by deleting row and
column t of Ap,. We want to see how to obtain Ly from Lp.

Let us partition Ap» and L along row and column ¢ as follows.

/Au ane Az

Ap=| af, ay al,
\ Az av: Ay
/Lu

LF! = l}\-‘t ltt

\Lzl lve Loy

All A12
Ap = .
F (Azl Azz)

By deleting row t from Lz we obtain the lower Hessenberg matrix

L
H =
(Im lue Lzz)

with the property that HHT = Ap. We can obtain Ly from H by applying Givens
rotations to the column pairs (¢, fo1), (fot1, fs42)s- -5 (fne1, fm)-

Recall that we are labeling each column of L according to the corresponding column
of A, since we will be storing column j of Lr in that part of the data structure set up for
column j of L. Thus the (2,2) block of Ly will be stored in the same space as the (2,2)
block of Lr. If we applied the Givens rotations as above, the (2,2) block of Lr would
be in columns ¢ through f,._; instead of columns f,;; through f,.,. However, suppose
we apply Givens rotations to the column pairs (¢, fo41), (¢, fs+2)s- -, (¢, fm) of H to zero

out column ly, i.e.,
' _ [Ln
H _HG_(L«H 0 I,)

Then we can write Ar as

9

where G is the matrix of Givens rotations. Then H'H'T = Ar and the (2,2) block of
H' is where we want it, in columns f,;; through f,,. These are the Givens rotations we
will apply in our sparse setting. Since Iy, is in general sparse, we do not need to rotate
column ly; with every column of Ly,.

Thus, to obtain Ly from Lg we proceed as follows. Let ¢ be the variable leaving the
free set. First, copy column ¢ of Ly into a dense intermediate column vector v. Since
we are deleting row ¢ from Lp, place a zero in position ¢ of v. Next, zero out the first
nonzero position, say position j, of v with column j by applying Givens rotations to the
two columns. Now zero out each subsequent nonzero position of v with the appropriate
column. The BindVar algorithm in Figure 2 contains the details.

v = l*t
while there are nonzeros in v do

j = first nonzero position in v

compute and apply Givens rotation G such that
(vj 1;;)GT = (0 (v} +13)'/?)
for each i € n(l,;) do
(vi lij)=(vi 1;)GT
enddo
enddo

Figure 2: The Bindvar Algorithm

Consider the algorithm BindVar. Suppose we are rotating the intermediate column v
with column j to zero out position j of v. Since Theorem 3.1 implies that the structure
of the jth column of Lf is contained in the structure of the jth column of Lz, v must
have zeroes in positions where column j has structural zeroes. Therefore we can rotate
column j with v by operating only on the structural nonzeros in column j and the
corresponding positions in v. Thus we can apply the Givens rotations to Lr to obtain
Lp in time proportional to the number of nonzeros in Ly,.

We will show that the fact that v has zeroes in positions where column j has struc-
tural zeros is a structural property. This means that these zeroes in v are also structural
zeroes, i.e., they did not occur due to numerical cancellation. The proof is based on the
following lemma.

Lemma 3.2 Let j and k be integers satisfying 0 < j < k < n. Then
k € n(ly) = ne(le;) € n(la)
Proof: Let k € n(l.;) and suppose i € ni(l.;). Hence, i > k > j. By the Path Lemma

there exists a path in G(A) from v; to v; through vertices numbered lower than j. Since
k € n(l,;), there is also a path from v; to vx through vertices numbered lower than j.

10

Patching these two paths together, we get a path from v to v; through vertices num-
bered lower than k, and hence ¢ € n(l.x). ®

Theorem 3.3 In the algorithm BindVar, let j(k) denote the value of the variable j during
the kth iteration, and define j(0) = t. Then at the pth iteration of the while loop of
BindVar, after the first assignment statement, we have

n(v) = 771'(@)(1"'1’(?—1)) and
1(v) € (L))

Proof: The proof is by induction. After the first assignment statement in the first
pass through the loop, v = l,;, so by Lemma 3.2 the result is true. Assume it is true
for k passes through the loop. After the first assignment statement of the kth pass, the
induction hypothesis tells us that

1(v) = 7ek) (Lejk=1))-

Since j(k) € n(v), we have j(k) € n(l,jx-1)), so Lemma 3.2 implies

5(k) (Lajk-1)) € n(lujir))-

Therefore
n(v) € n(ljk))-

So upon completion of the kth pass, we have

n(v) = n(lw) — {5(k)}

After the first assignment statement of the k+1st pass, we have 7(v) = 7(x41) (L)) and
1(v) € n(lsj(k+1)), by Lemma 3.2. So the result is true for k+1 passes through the loop. m

3.3 Reordering the Free Set

Suppose at the end of the second while loop in GSA we need to reorder the free set
and update the Cholesky factorization. This occurs when ¢, the last variable we freed,
is still in the free set when the next constrained stationary point is found. Let F’/ =
{f1, f2y- -+ fm, fs} denote the current free set, where m +1 = |F’| and f, = ¢, and let F
be the free set after F' is reordered. We will show how to obtain Lz from Lz.

Let (rT 7) be the last row of L/, corresponding to row ¢ of the matrix A. Let us

partition Lz into blocks,
Ly,
Lpr=| Ly Ly)

T T
A ry T

11

by grouping together rows and columns with labels less than ¢ and rows and columns
with labels greater than ¢. If we reorder the rows and columns of Lg to correspond
with the ordering of F' then we obtain the matrix

Ly
H=| T r oI
Ly 0 Ly

with the property that HHT = Ap. Here, H is a lower triangular matrix with a
horizontal spike in row t. We can obtain Lr from H by zeroing out the entries of rZ
from right to left using column ¢. That is, we apply Givens rotations to the column
pairs (¢, fm), (¢, fm=1),---,(t, fer1) to zero out the entries of r. However, since r is in
general a sparse vector, we only need to rotate those columns whose component of ry
1S nonzero.

Thus, to obtain Lg from Lg we proceed as follows. Let ¢ be the variable that is out
of order in F’. Zero out a dense intermediate vector v that will be used to accumulate
column t of Lr. Now use Givens rotations to zero out the nonzero entries in r which
have labels greater than ¢, proceeding from right to left. The Reorder algorithm in
Figure 3 contains the details.

Since Theorem 3.1 implies that the structure of the jth column of Lr is contained
in the structure of the jth column of Ly, when we rotate v with column j, v must
have zeroes in positions where column j has structural zeroes. Therefore we can rotate
column j with v by operating only on the structural nonzeros in column j and the
corresponding positions in v. Thus we can apply the Givens rotations to H to obtain
Lp in time proportional to the number of nonzeros in L,,.

The fact that when we rotate v with column j, v must have zeroes in positions where
column j has structural zeroes is not a structural property, i.e., numerical cancellation
occurs to create these zeroes. However since computing Cholesky factorizations, solving
triangular systems, and computing and applying Givens rotations are numerically stable
processes, this will not cause any numerical difficulties.

4 Improving the Basic Algorithm

In what follows we describe several possible modifications to GSA. The algorithm GSA
binds and frees only one variable at a time. Because of this, it runs very slowly on large
sparse problems. In Section 4.1, we show that by projecting each direction, we can bind
several variables for each search direction. However because of the way GSA computes
search directions, it cannot free more than one variable at a time. In Section 4.2, we
propose a new method for computing search directions that allows us to free more than
one variable at a time. For this technique, Ar need not remain positive definite. In light
of this, we present a heuristic method for finding an starting point and an initial active
set in Section 4.4. We can combine these techniques in various ways and use them in
one or both while loops of GSA. We defer discussion of these possibilities to Section 5,
where we present some numerical results to compare them.

12

v=20
while there are nonzeros in 7, do

J = last nonzero position in ry

compute and apply Givens rotation G such that
(1)G =((r"+r;)'/? 0)
for each i € n(l,;) do

(vi li)=(vi ;)G

enddo
enddo
l*t=v

Figure 3: The Reorder Algorithm

4.1 Projecting the Descent Direction

The algorithm described in the previous section does a lot of work for each variable
it binds; in particular, it updates the Cholesky factorization of Lp, solves a linear
system, and performs a matrix vector multiply to update gr. Thus, we considered
using each search direction to bind several variables. This idea has been used by many
authors [1,3,5] and is outlined below.

Follow the search direction until a constraint is violated and remove the correspond-
ing variable from the free set. Now project the search direction onto the space of free
variables. If this direction is a descent direction follow it until a local minimum along it
is reached or a constraint becomes active. Continue projecting the direction until it is
no longer a descent direction or a local minimum along that direction has been reached.
Then compute a new search direction.

To formalize this, we introduce the notation of a projection operator II defined
componentwise by

-1 ifz; < -1
[H(z)],- = T; if —1< T; < —1
1 ifz;>1.

Given a current point z and a descent direction s, we update z via
z :=II(z + as),

where @ > 0 is the first local minimum of ¢(II(z + as)). Conn, Gould and Toint [6]
give a very efficient algorithm for finding such a local minimum, requiring one sparse
matrix-vector multiplication and two vector inner-products to begin, and two sparse
inner products for each variable bound.

13

4.2 Handling Indefiniteness

In this section we present an algorithm for obtaining a search direction when Ap is
indefinite that allows us to free many variables at each iteration. This algorithm uses
global information in the sense that it chooses a step in the direction of an approximate
global minimum of ¢r in a circle centered at our current point.

Suppose in computing the Cholesky factorization of Ar, we find that Ar is not
positive definite. Assume we can compute a such that (Ar + al) is positive definite.
Let s(a) = —(Ar + oI) 'gr and A = ||s(@)||2. Then s(a) is the unique global solution
to the problem

min £sTAps + gFs 5)
l[sll2 < A.

Thus s(a) minimizes gr(s) in a circle of radius ||s(a)||2 from our current point. Since
(AF + al) is positive definite, s(a) is a descent direction of ¢r and therefore of q. If
||s(e)||2 is small enough, then s(a) seems like a reasonable choice for our search direction.
For example, we may require that ||s(a)||2 be less than twice the radius of the smallest
circle that is centered at = and encloses the feasible region. If ||s(«)||; is large enough
that ||z + Zrs(a)||leo > 1 then we are guaranteed that if we follow s(a) we will continue
descending until we violate a constraint.

However it may be the case that for all a that make (Ar + al) positive definite,
|z + Zrs(a)||eo < 1. Suppose this is the case. Let A\; be the smallest eigenvalue of Af
and z* be an associated unit eigenvector. If A is greater than ||s(a)||; for all a that
make (Ap + al) positive definite, then the solution to the problem

LU |
min 1sTAps + gFs

6
sl < A, (©)

is s = (Ar — M I)tgr + 0z*, where * denotes pseudo-inverse, and ¢ is the root with the
smaller norm of the quadratic ||s(¢)||2—AZ2. In this case, which is commonly referred to as
the hard case, we approximate the solution to (6) by first finding an « so that (Ar + aI)
is positive definite and s(a) is almost as large as possible. Then we update our current
point z := z + Zps(a), and choose our search direction to be 2, an approximation to z*
that is a nonascending direction and a direction of nonpositive curvature. This choice
of step guarantees that we decrease the function value, since g-s(a) < 0, and that if we
follow Z until we violate a constraint we will not increase the function value.

In summary, we compute our search direction s as follows. Attempt the Cholesky
factorization of Ap. If it succeeds, set s := —Az'gr. Otherwise, perform the following
steps. Compute the direction of negative curvature § from the breakdown of Cholesky,
as described in Section 2.1. Then compute s(«) and, if appropriate, 2, as described in
the next section. Finally, if ||z + Zrs(a)|lc > 1, then set s := s(a); otherwise, update
z:=z+ Zps(a) and set s := 3.

4.3 Solving for the Descent Direction

To find the search directions of the previous section we need only slightly modify the
trust region algorithm by Moré and Sorensen [18]. This algorithm finds an approximate

14

solution of the problem
min %—STC s+ dTs

lIsllz < A,
where C, d, and A are given. If there exists a > 0 such that

(7)

(C+al)>0,
(C + al)s = —d, and (8)
lIsllz = A,

then s(a) is the unique solution to (7). To find such an «, the trust region algorithm
sets s(a) = —(C + al)~'d and applies safeguarded Newton’s method to solve

@) = & = 15ays = (9)

Given an initial guess of a, it attempts the Cholesky factorization of (C + aI). If this
factorization is successful, the algorithm uses it to compute the Newton step for (9)
and then takes this step, subject to some safeguarding. However, if the Cholesky fac-
torization breaks down, the algorithm modifies o and tries again. Since there is no
convenient way of knowing when to use the hard case, i.e., when there is no o that
solves (8), if a particular « yields ||s(c)||2 < A, then the algorithm tries the hard case.
Using the Cholesky factorization of (C + al), it computes 2, a unit approximation to
an eigenvector associated with);, the smallest eigenvalue of C. Then it computes o,
the root with smaller magnitude of the quadratic ||s(a) + o2||2 — A2. This choice of o
guarantees that 02 is a nonascent direction of ¢r at z + Zps(a). Finally, it determines if
s(a) + o2 satisfies the termination criteria. If not, it repeats the process with a new a.
We apply the trust region algorithm of Moré and Sorensen to the quadratic

1 T T
min 53° Ars + ggs,

making two modifications. The algorithm requires a trust region size A and a toler-
ance v, and terminates when

a=0and ||s(a)|; < A2, (10)
or (1 =7)A < [ls(a)ll: < (1 +7)4, (11)
or, in the hard case, when

ls(a) + 2|2 = A and
o22T(AF + o)z < (2 — 7)(s(a)T(AF + al)s(a) + aA?).

These conditions insure that the approximate solution satisfies
q(s(a) + 02) — ¢(z%) < (2 — 7)lg(=")],

where g(z*) is the global minimum of (7). We choose A to be (1+/3) times the diameter of
the smallest circle that is centered at our current point and contains the feasible region,

15

where 0 < 8 < 7. To ensure that we generate a direction s(a) that descends until it
reaches a constraint, we modify condition (11) to be

l[s(e)ll2 < (1 +7)A and [|s(e)l|le > 1. (12)

This change does not affect the convergence of the trust region algorithm, since if s(a)
satisfies ||s(a)|lz2 > A(1 — B) then ||s(a)]l2 > A/(1 + B) and so, by our choice of A,
|s(@)]lc = 1 is automatically satisfied.

The other modification we make involves the choice of 2. In order to guarantee
convergence, the trust region algorithm requires that the estimate Z approach a singular
vector of (Ar + al) as @ — —\;. To compute 2, it applies a Linpack [8] type condition
estimator to the matrix (Ar + aI). However, for our algorithms, we also need 2 to be
a direction of nonpositive curvature. We ensure this as follows. When we attempt to
compute the Cholesky factorization of Ar and it breaks down, we compute a direction
of nonpositive curvature as in Section 2.1. We normalize this vector and call it . Note
that § and has the property that

0> §TAFg > A (13)

We then begin the trust region algorithm. Each time we need an approximation to z*, we
compute a vector ¥ using the trust region algorithm’s condition estimator. We compare
¥ to g, and set Z to be whichever of the two directions is a direction of greater negative
curvature. Equation (13) and the fact that ¢ approaches a singular vector of (Ar + o)
as o — —\p, assure us that 2 will always be a direction of nonpositive curvature while
maintaining the condition that Z approaches a singular vector as a — —\;.

To implement the trust region algorithm for sparse problems, we need to compute
the Cholesky factorization of matrices of the form (Ar + o), where (A + aI) > 0.
Since the sparsity structures of (Ar + al) and A are the same, we can use the same
data structure to store their Cholesky factors. Notice that as a changes, the Cholesky
factor of (Ar + al) changes significantly, and our updating scheme cannot be used to
obtain the new factor. Thus we must recompute the entire Cholesky factor of (Ar + oI)
each time a changes.

4.4 Finding a Starting Point

If we use the new descent direction algorithm, we do not need to start with a free set F'
such that A is positive definite. This allows us to use a preprocessing heuristic to find
a starting point that quickly binds a subset of the variables, hopefully with as much
accuracy as possible. Our heuristic uses global information to select which variables to
bind in much the same way as our new search direction algorithm did.

We find an initial active set and a starting point as follows. Let F := {1,...,n} and
z := 0. Repeat the following steps a finite number of times. First, find a point s which
is an approximate global minimizer of g on a simpler region. Then find the point p in
the feasible region closest to z + Zrs. Let p be the starting point and compute g(p).
Finally, bind any variable that is at a bound and whose corresponding component of
g(p) has the correct sign, and update F.

16

When Apr is positive definite, we solve the unconstrained problem
min 2sTAps + gFs.

This amounts to setting s to be the Newton direction. However when Ar is not positive
definite, this quadratic may be unbounded below. Instead we find an approximate
solution to a problem
min 1sTAps + gFs
llsll < A

for some appropriate A as described in the previous section. Using our projection
operator notation, we are setting p := II(z + Zps).

To determine how many times to repeat this loop, we introduce three parameters
my, my, and m3. We terminate after we have executed the loop m; times, or we have
bound less than m, variables in the past mj3 iterations.

5 Numerical Results

In what follows, we describe the implementation details of GSA and various modifica-
tions to GSA that incorporate our heuristic improvements of Section 4. We provide
numerical results for a battery of test problems and use these results to suggest the
algorithm which we feel to be the most useful in practice. We also briefly discuss some
less successful approaches.

5.1 Implementation Details

We implemented our algorithms in Fortran in double precision and made extensive
use of Sparspak [12] in our implementation. We use Sparspak’s GENMMD routine to
find an initial minimum degree ordering of A and SMBFCT to perform the symbolic
factorization and set up the data structure for L. We modified Sparspak’s Cholesky
factorization routine GSFCT and triangular solve routine GSSLV to allow us to ignore
any specified set of rows and columuns.

To compute the search directions of Section 4.2, we modified the Fortran code GQT-
PAR of Moré and Sorensen [18] to handle sparse matrices. To compute the Cholesky
factorization and perform forward and backward triangular solves we use the modified
Sparspak routines GSFCT and GSSLV. We slightly modified Sparspak’s condition esti-
mator routines CONDS51 and CONDS52 to produce the eigenvector approximations we
need.

We generated problems by using Coleman’s routine [4] that, given the structure of a
matrix A, generates a lower triangular matrix L with the property that n(LLT) C n(A).
We then set A = LDLT, where D is a diagonal matrix of plus and minus ones. We
control the condition number of A by choosing the values of the diagonal of L, and
determine the number of negative eigenvalues of A by selecting the number of —1’s on
the diagonal of D.

For positive definite A, we generate the b vectors as follows. Given parameters
and p, we generate a feasible vector « by setting #-percent of the z; to a bound, and

17

assigning the rest randomly in the open interval (—1,1); we set pu-percent of the bound
z; to negative bounds. We then set g = Az and

—gi if —1<z;<1
b,'= —gi — V; ifx,'=1
—g9itv ifz;=-1,

where the v,’s are random numbers in (0,10). Note that since A is positive definite, z is
the solution of our problem. This allows us to control the percentage of variables bound
at the solution, a critical factor in the running times of these problems. For indefinite
problems, we generate the b vectors by setting b = Az, where the components of z are
randomly chosen in (—1,1). We chose this interval in an attempt to generate difficult
problems.

The heuristics of Sections 4.2 — 4.4 contained the parameters v, 3, m;, ms, and m3
that we left unspecified. Based on some limited testing, we feel that reasonable choices
of these parameters are v = 0.9, 8 = 0.1, m; = 10, my = 2, and m3 = 8.

5.2 The Algorithms

We began by implementing GSA and found it to be slow on positive definite problems.
In particular, it spends a great deal of time for each variable it binds, especially in the
beginning when the free set is large. To remedy this we incorporated the projection
techniques into GSA. When we modified GSA by adding projection techniques in both
the main loop of the program and in the initial stationary point loop, we found that it
ran slower because we could bind many variables at a time but only free them one at a
time. Thus we included projection techniques only in the initial stationary point loop
and we refer to this algorithm as PSA (Projected Sparse Active set algorithm). PSA
tended to run much faster than GSA, especially on problems that were moderately or
heavily bound at the solution. This is because GSA is more accurate in selecting which
variables to bind; PSA is less accurate, but it binds variables more quickly. On the
problems that were moderately or heavily bound at the solution, the amount of time
spent binding was more important, since a large proportion of the variables needed to
be bound. On the problems that were lightly bound at the solution, binding the wrong
variables took considerable time to remedy, since we are freeing them one at a time.
The algorithm PSA shows the value of the projection techniques.

For indefinite and negative definite problems, GSA and PSA found local minima
with approximately the same function value. They ran very quickly on these problems,
since many of the variables were bound during the initial Cholesky factorization.

Next we modified GSA by using the new search direction for the indefinite case. Each
time we reach a constrained stationary point, we free all of the variables whose gradients
have incorrect sign, something we could not do when we used the Cholesky breakdown
direction for the indefinite case. Because computation of our new direction does not
update the Cholesky factorizations, computation of each direction is expensive. Thus
we project each search direction to allow us to bind several variables for each direction
we compute. Since the direction is an approximation to the minimum of ¢r on an ellipse
centered at the current point, we call the algorithms that use the new search direction

18

Table 1: The Features of the Algorithms

method | heuristic initial stationary pt. main loop
starting pt [neg curv dirn | projecting | neg curv dirn | projecting
GSA no breakdown no breakdown no
PSA no breakdown yes breakdown no
PEA no new yes new yes
PEAS yes new yes new yes
PEGAS yes new yes breakdown no

Ellipse Active set algorithms. The algorithm with these improvements PEA (Projected
Ellipse Active set algorithm) ran much faster than PSA on positive definite problems.
On indefinite problems, PEA found local minima that were lower than those found by
GSA or PSA. The running time of PEA on indefinite problems was considerably longer
than PSA, since PEA uses global information. However, the running time of PEA on
indefinite problems was comparable to the running time of PEA on positive definite
problems with the same structure and size. The algorithm PFEA highlights the value of
our new search direction and of freeing many variables at a time.

Next we incorporated the starting point heuristic into PEA. We call the resulting
algorithm PEAS. (Projected Ellipse Active set algorithm with Starting point heuristic)
PEAS ran much faster than PEA on positive definite problems. The running time of
PEAS on indefinite problems was faster than PEA, and PEAS found local minima that
were lower than those found by PEA. The algorithm PEAS shows the value of our
starting point heuristic.

Finally, we implemented an algorithm PEGAS (Projected Ellipse General Active set
algorithm with Starting point heuristic) that was identical to PEAS until it found an
initial stationary point and was identical to GSA after that. PEGAS ran faster than
PEAS on positive definite problems, ran marginally slower on indefinite problems, and
found local minima with almost identical function values as those found by PEAS. This
seems to indicate that once a good stationary point is found, switching back to the GSA
algorithm with its efficient Cholesky factor updating and its adding and dropping of
one constraint at each iteration works best.

In Table 1, we tabulate the features of the algorithms we have just described. We
refer to the direction used by GSA for nonpositive definite problems as breakdown, since
we compute it from the Cholesky factorization when it breaks down.

We need to consider the convergence of these algorithms. In Sections 4.1 — 4.2 we
saw that for each direction we follow, we bind at least one variable, and if we take a
step of nonzero length, we decrease the function value. These facts, together with the
arguments used to show convergence of GSA, ensure the convergence of the algorithms
in Table 1 to a point satisfying (3) with Ay > 0 in a finite number of iterations.

19

5.3 Results

We ran our double precision Fortran algorithms on a Sun 3/50 under UNIX 4.2 Release
3.5 with the parameters described in Section 5.1. We tested our algorithms on positive
definite and indefinite problems. We chose three approximate condition number ranges:
103 - 10%, 10® — 10%) and 10'® — 10'. (Note that machine epsilon is about 1071°.)
To approximate the condition number « of each problem, we used Higham’s Condest
routine [16]. To solve the systems required by Condest, we used Gilbert and Peierls
LU factorization code [13]. We used three sparsity structures from Everstine [9]: the
problem of size 503 with 6027 nonzeroes, the problem of size 1005 with 8621 nonzeroes,
and the problem of size 2680 with 25026 nonzeroes. The tables referred to in this section
are in the appendix, along with Table 1, which describes the algorithms.

For positive definite problems, we chose three values of 8, the percentage of variables
bound at the solution: 10, 50, and 90. For each of the 9 different combinations of &
and 6, we generated four different quadratics, yielding a total of 36 problems for each
sparsity pattern. For each condition number range, Table 2 lists the sum of the running
times in seconds of the 12 problems with that range; for each percentage of variables
bound at the solution, Table 3 lists the sum of the running times in seconds of the 12
problems with that percentage of variables bound. As we stated in Section 5.2, PEGAS
runs the fastest on these problems, with PEAS slightly slower. The other algorithms
are several times slower.

For indefinite problems, we chose three values for the percentage of eigenvalues of
A that were negative: 10, 50, and 90. For each of the 9 different combinations of
x and the percentage of negative eigenvalues, we generated four different quadratics,
yielding a total of 36 problems for each sparsity pattern. To compare running times, for
each percentage of negative eigenvalues, Table 4 shows the sum of the running times in
seconds of the 12 problems with that percentage. The ellipse algorithms display much
less sensitivity to the percentage of negative eigenvalues than GSA or PSA, although the
latter are considerably faster on problems with a high percentage of negative eigenvalues.
To compare the local minima found, for each percentage of negative eigenvalues, Table 5
displays the normalized sum of the function values at the local minimum found in the
12 problems with that percentage. Also, for each condition number range, Table 6
displays the normalized sum of the function values at the local minimum found in the
12 problems with that range. We normalize the sum of the function values with the

formula
lowest total value

normalized total value =
total value

so that the lowest function value is normalized to 1, and the others are normalized
to values greater than 1. Of the five algorithms, PEGAS and PEAS find the lowest
minima, with PEA slightly higher.

Tables 7 — 11 show the approximate percentage of time spent performing the ma-
jor tasks of each algorithm for two problem sizes, 503 and 1005, on 6 representative
problems. All six problems have condition numbers in the range 10® — 10!°, Three are
positive definite, with 10, 50, and 90 percent of the variables bound at the solution;
three are indefinite, with 10, 50, and 90 percent of the eigenvalues negative. The tables

20

divide the algorithm up into two or three main parts: the starting point heuristic (if
appropriate), the initial constrained stationary point loop, and the main loop of the pro-
gram. They tabulate separately the tasks performed in each major part. Since we also
set up the data structure, permute the matrix, and compute an initial factorization (if
appropriate), the percentage of time spent in these three tasks does not add up to 100.
Most of the tasks listed are self explanatory, but a few merit further clarification. In
Table 8, the task project includes computing o and updating g and Lr. In Tables 9 — 11,
the task solve consists of solving for the Newton direction or the ellipse direction, as
appropriate, and the task project includes updating g.

In general, GSA spends most of its time in the initial stationary point loop. Solving
for the search direction and updating the gradient within this loop are its most time
consuming tasks. Compared to GSA, PSA spends more of its time in the main loop. Its
most time consuming tasks are projecting the search direction in the initial stationary
point loop and solving for the search direction and updating the gradient in the main
loop. Except for lightly bound positive definite problems, PEA spends most of its time
computing the initial stationary point. For positive definite problems, factoring the
matrix and projecting the search direction in both loops are its most time consuming
tasks; for indefinite problems, solving for and projecting the search direction in the
initial stationary point loop are its most time consuming tasks. The algorithms PEAS
and PEGAS spend most of their time computing the starting point. Notice, however,
that the starting point heuristic sometimes finds an initial stationary point and even an
optimal point. For these algorithms, the starting point heuristic spends most of its time
factoring in positive definite problems, and solving for the search direction in indefinite
problems.

Tables 12 — 13 shows the average number of search directions computed for the
problems of size 503. The ellipse algorithms tend to compute fewer search directions
than either GSA or PSA.

Table 14 shows the average percentage of variables bound at the solution for the
indefinite problems of size 503. For each group of problems, all of the algorithms tend
to find local minima with approximately the same percentage of variables bound at the
solution.

Tables 15 — 16 display the average number of variables freed for the problems of
size 503. In the algorithms that use the starting point heuristic, all variables that the
heuristic sets to a bound are counted as bound; those whose corresponding component
of the gradient have the incorrect sign are then counted as freed. We do not include
the number of variables bound, since for positive definite problems, it is just a constant
plus the number of variables freed, and for indefinite problems, Table 14 shows that it
is almost a constant plus the number of variables freed. Thus the number of variables
freed is a good measure of how well the algorithms choose which variables to bind and
free. For positive definite problems, notice that GSA frees many fewer variables than
the other algorithms, and that in almost all cases, the problems with higher condition
numbers have more variables freed. For indefinite problems, the ellipse algorithms tend
to free fewer variables, especially those algorithms with the starting point heuristic.

21

5.4 Other Possibilities

There are obviously many ways to combine the improvements of Section 4 into GSA.
Some behaved similarly to the algorithms we presented so we did not tabulate results
for them. In particular, when we used our starting point heuristic, projecting the search
directions did not substantially affect the running times or local minima found. Other
combinations performed very poorly, e.g., using our new search direction without pro-
jecting the search directions and without the starting point heuristic. Some other ideas
we tried briefly that did not seem to work well include starting GSA at the vertex near-
est (in the infinity norm sense) to the global minimum of the unconstrained quadratic
and freeing variables after every iteration for the first few iterations of PEA.

We also tried other ways of using trust region ideas in our algorithm that were less
successful in practice. Above we solved a trust region problem to find the search direc-
tion when Ap was not positive definite. We also tried solving a trust region problem to
find the search direction when Ap was positive definite and the Newton step was not
feasible. We implemented two different versions: one where we used this technique for
finding a search direction only when we were finding a starting point and initial station-
ary point, and another where we used this technique for finding all search directions.
The former was more successful but neither method worked as well as the ones that
used the Newton step.

6 Conclusion

We showed that direct active set methods that solve both definite and indefinite quad-
ratic programs with simple bounds can be efficiently implemented for large sparse prob-
lems. All of the necessary factorizations can be carried out in a static data structure
requiring space equal to that needed for a single Cholesky factorization of A. We can
efficiently update the Cholesky factorization of Ap if we are only binding or freeing one
variable at a time.

We showed that our new descent direction for the indefinite case and our new heuris-
tic method for finding a starting point, combined with projection techniques, produced
an algorithm that runs much faster than the basic algorithm for positive definite prob-
lems and finds local minima with lower function values for indefinite and negative defi-
nite problems.

There may be ways we can improve our algorithm. For example, we could use a line
search procedure along the piecewise quadratic P(z + as) instead of exactly computing
the first local minimum, or incorporate projected gradients into an algorithm using our
new descent direction algorithm and/or our new heuristic starting point algorithm.

Our results may have some applications in solving the least squares problem

min %xTC’TCx +dTz

14
[<z<u. (14)

As we mentioned in Section 1, Bjorck (2] proposed an algorithm for solving (14) that is
very similar to GSA. Our improvements could be added to such an algorithm. However,

22

computing and updating the Cholesky factorization is more complicated in the least
squares case; in particular, since we do not wish to compute ATA, adding a row and
column to Ly cannot be accomplished stably with a single triangular solve. All of the
algorithms we propose vary the active set more than GSA does. Thus the time saved
by our improvements may not be as great in the least squares case, and there may be
tradeoffs in stability.

Our results show that minimizing a quadratic with simple bounds may be very ex-
pensive compared to minimizing the quadratic subject to a two-norm bound on the
solution, since we solve several two-norm problems in our fastest algorithm. This sug-
gests that for large sparse problems, minimizing a quadratic with simple bounds as a
subproblem of a more difficult problem, e.g., minimizing a nonlinear function subject
to simple bounds, may not be very practical.

Acknowledgements

Computational experiments were performed in the Cornell Computational Optimization
Project laboratory, partially supported by the Computational Mathematics Program of
the National Science Foundation under grant DMS-8706133 and the Applied Mathe-
matical Sciences Research Program (KC-04-02) of the Office of Energy Research of the
U.S. Department of Energy under grant DE-FG02-86ER25013.A000.

We thank Nick Higham for giving us his condition estimation code and John Gilbert
and Tim Peierls for giving us their sparse LU factorization code. We also thank Earl
Zmijewski for a careful and critical reading of the manuscript.

23

Appendix

Table 1: The Features of the Algorithms

method | heuristic initial stationary pt. main loop
starting pt | neg curv dirn | projecting | neg curv dirn | projecting
GSA no breakdown no breakdown no
PSA no breakdown yes breakdown no
PEA no new yes new yes
PEAS yes new yes new yes
PEGAS yes new yes breakdown no

Table 2: Running Times (secs) vs. Condition Number for Positive Definite Problems

I | GSA | PSA | PEA | PEAS | PEGAS |

503 | 10% - 105 |1522.54 | 688.02 312.06 | 158.34 | 138.88
10% — 1010 | 1666.50 | 739.24 440.54 | 192.66 | 161.54

1013 — 10% | 1699.78 | 760.36 528.92 | 218.76 | 181.90

total 4888.82 | 2187.62 | 1281.52 | 569.76 | 482.32

1005 | 103 — 103 *11999.68 | 1085.96 | 559.64 | 473.66
108 — 100 *12049.50 | 1480.64 | 560.86 | 491.40

1013 — 1015 *12159.48 | 1956.78 | 623.48 | 525.54

total *16208.66 | 4523.38 | 1743.98 | 1490.60

2680 | 103 - 10° * * 1 3690.46 [912.86 | 769.70
108 — 100 * * | 4649.44 | 979.24 | 854.26

1013 - 1018 * * | 5478.60 | 1213.66 | 944.40

total * *113818.50 | 3105.76 | 2568.36

* requires excessive CPU time

24

Table 3: Running Times (secs) vs. Percent of Variables Bound for Positive Definite
Problems

| n |%bnd| GSA | PSA | PEA | PEAS | PEGAS |

503 10 1530.12 | 1222.38 701.38 | 371.22 | 288.44
50 1675.80 | 605.34 320.66 | 118.56 | 115.10

90 1682.90 | 359.90 259.48 79.98 78.78

total | 4888.82 [2187.62 | 1281.52 | 569.76 | 482.32

1005 10 *13409.14 | 2290.84 | 1058.52 | 832.48
50 *11795.04 | 1159.60 | 410.50 | 384.26

90 *11004.48 | 1072.94 | 271.20 | 273.86

total * 16208.66 | 4523.38 | 1743.98 | 1490.60

2680 10 * * | 5747.06 | 1976.96 | 1520.40
50 * * | 4349.32 | 677.74 | 611.02

90 * * | 3722.12 | 451.06 | 436.94

total * *113818.50 | 3105.76 | 2568.36

* requires excessive CPU time

Table 4: Running Times (secs) vs. Percentage of Negative Eigenvalues for Indefinite
Problems

| n |%mnegev| GSA | PSA | PEA | PEAS | PEGAS |

503 10 630.76 | 193.76 | 194.54 | 178.94 | 180.14
50 128.68 62.86 | 192.52 | 166.76 | 166.42
90 33.46 34.38 | 179.80 | 154.78 | 155.56

total 792.90 | 291.00 [566.86 | 500.48 | 502.12

1005 10 2652.46 | 529.66 | 613.12 | 523.36 544.98

50 469.96 | 167.22 | 643.90 | 503.34 | 532.56

90 91.88 89.38 | 650.50 | 461.04 | 475.60

total 3214.30 | 786.26 | 1907.52 | 1487.74 | 1553.14

2680 10 * 13004.82 | 2711.46 | 1099.54 | 1294.56
50 2078.92 | 734.04 | 3054.84 | 1092.96 | 1164.40

90 271.78 | 242.22 | 3007.52 | 873.78 | 850.88

total *13981.08 | 8773.82 | 3066.28 | 3309.84

* requires excessive CPU time

25

Table 5: Normalized Function Value vs. Condition Number for Indefinite Problems

| »n | &« | GSA | PSA | PEA | PEAS | PEGAS |
503 | 10%-10° [1.039 [1.039 [1.016 [1.000 | 1.000

108 - 10!° [1.030 | 1.030 | 1.015 | 1.000 1.000
10'3 —10% [1.030 | 1.030 | 1.013 | 1.000 1.000

1005 | 103 —10°% |1.022 | 1.022 | 1.008 | 1.000 1.000
108 - 10'° | 1.017 [1.017 | 1.005 | 1.000 1.000
1013 — 10% | 1.017 | 1.016 | 1.005 | 1.000 1.000

2680 | 103 - 10° *11.025 | 1.011 | 1.000 1.000
108 - 101 *11.013 | 1.007 | 1.000 1.000
1013 — 10%8 *11.013 | 1.007 | 1.000 1.000

* requires excessive CPU time

Table 6: Normalized Function Value vs. Percentage of Negative Eigenvalues for Indefi-
nite Problems

| n |% negev| GSA | PSA | PEA | PEAS | PEGAS |

503 10 1.002 | 1.002 | 1.000 | 1.000 1.000
50 1.030 | 1.030 | 1.010 | 1.000 1.000
90 1.052 | 1.052 | 1.026 | 1.000 1.000

1005 10 1.002 | 1.002 | 1.000 | 1.000 1.000
50 1.012 | 1.011 | 1.004 | 1.000 1.000
90 1.035 | 1.035 | 1.011 | 1.000 1.000

2680 10 *11.001 [1.000 | 1.000 1.000

50 1.004 | 1.004 | 1.003 | 1.000 1.000

90 1.037 |1 1.037 | 1.018 | 1.000 1.000
* requires excessive CPU time

26

Table 7: Percentage of Time Spent Performing Subtasks in GSA

Positive Definite Indefinite
503 1005 503 1005
% bnd % bnd % neg ev % neg ev

10 150 190 |10 |50 |90 |10 | 50 | 90 || 10 [50 | 90

init stat pt | solve 34 (45|51 |47 |58 |62 (36 (22 2| 54|34| 3

update g 15123 |26 (|13 (19|21 35|26 12730 5

update Lp || 8 |11 |12} 4| 6| 6| 3| 3| 1| 3| 1| 2

total 61 | 85|96 (|69 89 (96 |[84 61| 8937714

main loop | solve 13| 3] 0|13 3|1 0} 2(2| 1) 0] 1] O

update g 6| 3| Off 4| 2] Of 3 14 0] 1| 0

update Lp |13 | 3| O 8| 2| Off 1 1| off of of ©O

total 35|11 1127 8| 1 8113 |10 21 4| 3
Table 8: Percentage of Time Spent Performing Subtasks in PSA
Positive Definite Indefinite

503 1005 503 1005
% bnd % bnd % neg ev % neg ev

10 {50 |90 || 10 [50 | 90 |[10 | 50 | 90 [10 | 50 | 90

init stat pt | solve 21 2| 4| 1| 1| 4 2| 1[0} 2| 1| O

project 20 (41 |68 |[17 |33 (57 |[25 (18| 6| 36|21 | 5

total 21 (43|72 18|34 |60 (27(19| 6 (37|21 5

main loop | solve 23|11 | 13316 1| 8| 6| 1| 6| 2| O

update g 15115 2|16 116 | 2 19| 8| 1 8] 5| 1

update Lp [[26 | 9| 1|18 7| 1 7| 3| off 3 2| 0O

total 75149 (14 |[76 |55 |21 |[50 {32 |11 (38|25]| 5

27

Table 9: Percentage of Time Spent Performing Subtasks in PEA

Positive Definite Indefinite
503 1005 503 1005
% bnd % bnd % neg ev % neg ev
10 {50 |90 |[10 | 50 {90 | 10 | 50 | 90 |[10 | 50 | 90
init stat pt | solve 3| 4| 6 1| 2| 4| 30|24(43 | 31|28 |27
factor 21 30|46 (|15 |32 |51 21 1|0 1 0 O
project || 10 (29 |32 [12 |32 |31 || 52 | 52 [42 || 57 | 60 | 64
total 34|64 (8412967 (86|84 |76|86 |89 8891
main loop | solve 81 41 Off 5 3] 0} 1| 2| Off 1{ 0] O
factor (49 |16 | 1|58 |16 | 2 3| 1({ Off 0| O O
project || 7 10| T S5|10| 7| 2|13| 6 1| 3| 1
total 63|30 969|128 9| 6|15 7| 2| 4| 1
Table 10: Percentage of Time Spent Performing Subtasks in PEAS
Positive Definite Indefinite
503 1005 503 1005
% bnd % bnd % neg ev % neg ev

10 |50 |90 || 10 | 50 | 90 || 10 | 50 [90 |f 10 [50 | 90
start pt solve 5| 8| 9 4| 7| 6| 75|74 |77 |83 84|80
factor 3715356 |52|64 |70 4] 2| 1 21 1] 1
project | 3| 8|12 2| 4| 6 (10|12 |10 4| 5| 7
total 46 | T1 [79 || 58 | 75|82 |89 |89 |89 [[90 |91 |88
init stat pt | solve 21 0l Off 1 0] O} OO} Of 0of O} O
factor |13 O| O 11| Of O O] Of O} O] Of O
project | 1] 0| O 0] o] o 0] o] 2| o] o] 1
total 16| 0] Off12) O O 0] 0 2 0] 0] 1
main loop | solve 4|1 3 0ff 2] 1] 0ff Ol O] O} Of Of O
factor 28111 0)22|110] O Of 0] O 0] 0] O
project | 2| 3| Of 1| 1] Off O] O] O Of O O
total 34116 | 024 |13| O 0] 0 O 0 0] O

28

Table 11: Percentage of Time Spent Performing Subtasks in PEGAS

Positive Definite Indefinite
503 1005 503 1005
% bnd % bnd % neg ev % neg ev

10 {50 | 90 || 10 { 50 | 90 || 10 [50 | 90 |f 10 | 50 | 90
start pt solve 7T 9| 8| 6| T| 6||75| 74|77 82]|84]|80
factor 51 |54 |56 || 67|72 |70 4] 2| 1 21 1|1
project S| 9112 2| 5| 51012 |10 4 6
total 63 |73 (78 || 7585821898989 89|91]88
init stat pt | solve 3] 0l off 1] 0] Off O]O] O} OfOfO O
factor 18| 0| Off14| 0| Off of o O) O] Of O
project 21 0] O0ff O Of O} Of O 2)J O0f O] 1
total 221 0) Off15) 0| O 0| 0] 2 0] O0f 1
main loop | solve 34(4|1 0} 21| 0} O[O Off O O] O
update g 1({ 3| 0}J 0| 0} 0} O O] OO O] O
update Lp || 5| 4| O 1| Of Off O] Of Of 0| Of O
total 10113] O 3|1 2| O 0] 0O O 0] 0 O

29

Table 12: Average Number of Search Directions Computed for Positive Definite Prob-
lems

K
% bnd | 10® - 10% | 10® — 100 | 103 - 10%°
GSA 10 211.25 308.00 333.00
50 359.75 428.00 436.75
90 475.75 496.25 496.25
PSA 10 330.75 353.25 372.75
50 280.00 326.75 302.00
90 181.75 191.50 178.75
PEA 10 16.75 15.25 27.50
50 14.00 13.25 18.50
90 25.00 27.50 14.75
PEAS 10 8.50 11.25 14.00
50 6.00 7.25 6.50
90 4.75 5.25 5.00
PEGAS 10 14.50 16.75 20.75
50 6.50 10.25 8.25
90 4.75 5.00 5.00

30

Table 13: Average Number of Search Directions Computed for Indefinite Problems

K

% bnd | 103 - 105 | 10® — 10%° | 103 — 1015

GSA 10 307.50 317.50 320.50
50 185.75 174.75 168.00

90 43.00 37.75 36.50

PSA 10 171.50 158.00 148.50
50 81.75 72.25 67.25

90 22.00 20.00 18.25

PEA 10 10.25 9.25 9.25
50 12.75 11.75 11.25

90 7.25 8.00 6.25

PEAS 10 10.25 9.00 10.25
50 14.50 13.00 11.00

90 12.50 12.50 11.25

PEGAS 10 10.25 9.00 34.00
50 39.25 24.25 11.00

90 13.00 12.75 11.25

31

Table 14: Average Percent of Variables Bound at the Solution for Indefinite Problems

K
% neg ev | 10% — 10° | 108 — 10° | 10!3 - 10%®
GSA 10 73.43 79.75 81.45
50 92.65 94.85 95.00
90 99.45 99.65 99.65
PSA 10 73.43 79.75 81.45
50 92.70 94.85 95.10
90 99.45 99.65 99.65
PEA 10 73.53 79.80 81.55
50 92.25 94.85 95.00
90 99.50 99.70 99.55
PEAS 10 73.73 79.80 81.40
50 92.50 94.85 95.25
90 99.50 99.75 99.60
PEGAS 10 73.73 79.80 81.40
50 92.50 94.85 95.25
90 99.50 99.75 99.60

32

Table 15: Average Number of Variables Freed for Positive Definite Problems

K
% bnd | 103 - 10% | 10® — 10'° | 103 — 1015
GSA 10 89.00 141.75 156.00
50 62.50 101.00 105.25
90 17.50 33.00 33.75
PSA 10 325.00 345.25 363.25
50 275.50 320.75 292.75
90 177.25 185.00 170.25
PEA 10 329.50 363.75 390.00
50 319.25 399.75 354.00
90 213.50 227.25 202.50
PEAS 10 487.25 637.50 708.50
50 433.00 544.00 553.75
90 264.75 324.50 337.00
PEGAS 10 486.75 637.25 708.50
50 433.00 544.00 553.75
90 264.75 324.50 337.00

33

Table 16: Average Number of Variables Freed for Indefinite Problems

K

% neg ev | 103 —10° | 108 - 10'° | 10! — 10%°

GSA 10 49.25 48.75 39.50
50 44.25 39.00 34.00

90 18.00 17.75 15.75

PSA 10 164.25 150.25 142.25
50 70.50 60.75 57.25

90 18.50 18.00 16.00

PEA 10 27.75 20.75 20.50
50 52.25 34.75 34.25

90 13.00 11.75 8.75

PEAS 10 6.25 6.75 38.50
50 33.50 14.75 1.50

90 0.75 1.25 0.25

PEGAS 10 6.25 6.75 32.75
50 29.50 13.25 1.50

90 0.75 1.25 0.25

34

References

[1]

2]

[3]

[4]

6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

Dimitri P. Bertsekas. Projected Newton methods for optimization problems with
simple constraints. SIAM Journal on Control and Optimization, 20(2):221-246,
1982.

Ake Bjorck. A direct method for sparse least squares problems with lower and
upper bounds. Technical report, Linkoping University, 1986.

Paul H. Calamai and Jorge J. Moré. Projected gradient methods for linearly con-
strained problems. Mathematical Programming, 39:93-116, 1987.

Thomas F. Coleman. A chordal preconditioner for large scale optimization. Math-
ematical Programming, 40:265-287, 1988.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Global convergence of a class of
trust region algorithms for optimization with simple bounds. SIAM Journal on
Numerical Analysis, 25(2):433-460, 1988.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Testing a class of methods for
solving minimization problems with simple bounds on the variables. Mathematics
of Computation, 50(182):399-430, 1988.

Ron S. Dembo and Ulrich Tulowitzki. On the minimization of quadratic functions
subject to box constraints. Technical Report B 71, Yale University, 1983.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’
Guide. SIAM Publications, 1979.

G. C. Everstine. A comparison of three resequencing algorithms for the reduction
of matrix profile and wave front. International Journal for Numerical Methods in
Engineering, 14:837-853, 1979.

R. Fletcher. A general quadratic programming algorithm. Journal of the Institute
of Mathematics and its Applications, 7:76-91, 1971.

R. Fletcher and M. P. Jackson. Minimization of a quadratic function of many
variables subject only to lower and upper bounds. Journal of the Institute of Math-
ematics and its Applications, 14:159-174, 1974.

Alan George and Joseph W. H. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall, 1981.

John R. Gilbert and Timothy Peierls. Sparse partial pivoting in time proportional
to arithmetic operations. Technical Report 86-783, Cornell University, 1986. To
appear in SIAM Journal on Scientific and Statistical Computing.

Philip E. Gill and Walter Murray. Numerically stable method for quadratic pro-
gramming. Mathematical Programming, 14:349-372, 1978.

35

[15] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization.
Academic Press, 1981.

[16] N. J. Higham. Fortran codes for extimating the one-norm of a real or complex
matrix, with applications to condition extimation. Technical Report Numerical
Analysis Report No. 135, University of Manchester, 1987.

[17] Jorge J. Moré. Numerical solution of bound constrained problems. Technical
Report 96, Argonne National Laboratory, 1987.

[18] Jorge J. Moré and D. C. Sorensen. Computing a trust region step. SIAM Journal
on Scientific and Statistical Computing, pages 553-572, 1983.

[19] Katta G. Murty and Santosh N. Kabadi. Some NP-complete problems in quadratic
and nonlinear programming. Mathematical Programming, 39:117-129, 1987.

[20] Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects
of vertex elimination on graphs. SIAM Journal on Computing, 5:266-283, 1976.

[21] Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Jour-
" nal on Algebraic and Discrete Methods, 2:77-79, 1981.

22] Yinyu Ye and Edison Tse. A polynomial-time algorithm for convex quadratic
g
programming. Technical report, Stanford University, 1986.

36

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif

