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This dissertation uses structured linear algebra to scale kernel regression meth-

ods based on Gaussian processes (GPs) and radial basis function (RBF) inter-

polation to large, high-dimensional datasets. While kernel methods provide a

general, principled framework for approximating functions from scattered data,

they are often seen as impractical for large data sets as the standard approach

to model fitting scales cubically with the number of data points. We introduce

RBFs in §1.3 and GPs in §1.4.

Chapter 2 develops novel O(n) approaches for GP regression with n points

using fast approximate matrix vector multiplications (MVMs). Kernel learn-

ing with GPs require solving linear systems and computing the log determi-

nant of an n × n kernel matrix. We use iterative methods relying on the fast

MVMs to solve the linear systems and leverage stochastic approximations based

on Chebyshev and Lanczos to approximate the log determinant. We find that

Lanczos is generally highly efficient and accurate and superior to Chebyshev

for kernel learning. We consider a large variety of experiments to demonstrate

the generality of this approach.

Chapter 3 extends the ideas from Chapter 2 to fitting a GP to both function

values and derivatives. This requires linear solves and log determinants with

an n(d + 1) × n(d + 1) kernel matrix in d dimensions, leading to O(n3d3) compu-

tations for standard methods. We extend the previous methods and introduce a



pivoted Cholesky preconditioner that cuts the iterations to convergence by sev-

eral orders of magnitude. Our approaches, together with dimensionality reduc-

tion, lets us scale Bayesian optimization with derivatives to high-dimensional

problems and large evaluation budgets.

We introduce surrogate optimization in §1.5. Surrogate optimization is a key

application of GPs and RBFs, where they are used to model a computationally-

expensive black-box function based on previous evaluations. Chapter 4 intro-

duces a global optimization algorithm for computationally expensive black-box

function based on RBFs. Given an upper bound on the semi-norm of the objec-

tive function in a reproducing kernel Hilbert space associated with the RBF, we

prove that our algorithm is globally convergent even though it may not sample

densely. We discuss expected convergence rates and illustrate the performance

of the method via experiments on a set of test problems.

Chapter 5 describes Plumbing for Optimization with Asynchronous Paral-

lelism (POAP) and the Python Surrogate Optimization Toolbox (pySOT). POAP

is an event-driven framework for building and combining asynchronous opti-

mization strategies, designed for global optimization of computationally expen-

sive black-box functions where concurrent function evaluations are appealing.

pySOT is a collection of synchronous and asynchronous surrogate optimization

strategies, implemented in the POAP framework. The pySOT framework in-

cludes a variety of surrogate models, experimental designs, optimization strate-

gies, test problems, and serves as a useful platform to compare methods. We

use pySOT, to make an extensive comparison between synchronous and asyn-

chronous parallel surrogate optimization methods, and find that asynchrony is

never worse than synchrony on several challenging multimodal test problems.
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CHAPTER 1

INTRODUCTION

1.1 Summary of introduction

We start by motivating a general framework for scattered data interpolation

with kernel methods in §1.2. We describe radial basis function (RBF) interpo-

lation in §1.3 as a special case of interpolation with kernel methods. The error

analysis for RBFs takes place in the native space, which is motivated in §1.3.1. In

§1.3.2, we summarize some of the error analysis for RBFs; we show in Chapter 4

that this leads to a very natural optimization algorithm. We end the RBF section

by briefly summarizing some stability bounds and how to efficiently add a few

new points to the RBF interpolant in §1.3.3 and §1.3.4 respectively.

We proceed to introduce Gaussian process (GP) regression in §1.4 and ex-

plain its numerous connections to RBFs. We explain how derivative informa-

tion can be incorporated in the GP model, and similarly in an RBF model. Scal-

ability issues for GPs are addressed in Chapter 2 and Chapter 3. In §1.5, we

introduce surrogate optimization and give an overview of surrogate optimiza-

tion techniques in §1.5.1. We explore surrogate optimization with asynchrony

in Chapter 5.

1.2 Kernel methods

Before introducing GPs and RBFs, we introduce a more general framework for

scattered data interpolation. Given a set of pairwise distinct data points X =
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{xi}
n
i=1 ⊂ Ω and corresponding function values f (x1), . . . , f (xn) we look for a

continuous function s f ,X(x) such that s f ,X(xi) = f (xi), i = 1, . . . , n. A common

choice is to look for a function s f ,X(x) that is a linear combination of continuous

basis functions:

s f ,X(x) =

n∑
i=1

λibi(x)

and solve the linear system AXλ = fX, where (AX)i j = b j(xi) and ( fX)i = f (xi), to de-

termine the coefficients λ1, . . . , λn. This problem is well-posed if there is a unique

solution to this linear system, i.e., AX is non-singular. For d = 1, polynomial in-

terpolation with the monomial basis functions bi(x) = xi−1 yields a well-posed

interpolation problem for any pairwise distinct data points. If Ω ⊂ Rd, d ≥ 2

contains an interior point, the famous Mairhuber-Curtis theorem states that in

order for det AX , 0 for all pairwise distinct data points in Ω, the basis func-

tions must depend on the data points X [46, 11]. We will therefore restrict our

attention to basis functions that depend on X.

Characterizing all data dependent basis functions that lead to a well-posed

interpolation problem is challenging, so a simple restriction is to require AX to

be symmetric and positive definite for any pairwise distinct data points [17].

This is achieved by considering symmetric positive definite (SPD) kernels:

Definition 1. A (continuous) symmetric function k : Rd × Rd → R is called a

positive semi-definite kernel if

n∑
i=1

n∑
j=1

cic jk(xi, x j) ≥ 0 (1.1)

for any pairwise disjoint x1, . . . , xn ∈ R
d and c1, . . . , cn ∈ R. The kernel is called

symmetric positive definite (SPD) if equality in (1.1) implies c1 = · · · = cn = 0.

For consistency with the naming convention in the numerical linear algebra
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literature, we deviate from the naming convention in the literature on kernel

methods in which positive definite and strictly positive definite are used in

place of positive semi-definite and positive definite.

RBF interpolation restricts the kernel to be radial, that is, k(x, y) depends only

on r := ‖x − y‖ and we often use ϕ(r) to denote a radial kernel. It is common

to consider conditionally positive definite (CPD) kernels in RBF interpolation,

defined as follows:

Definition 2. A (continuous) function k : Rd × Rd → R is called conditionally

semi-positive definite kernel of order ν if

n∑
i=1

n∑
j=1

cic jk(xi, x j) ≥ 0 (1.2)

for any pairwise disjoint x1, . . . , xn ∈ R
d and c1, . . . cn ∈ R that satisfy

n∑
i=1

ciq(xi) = 0 (1.3)

for any real-valued polynomial q of degree at most ν − 1. The kernel is called con-

ditionally positive definite (CPD) of order ν if equality in (1.2) implies c1 = · · · =

cn = 0.

To end up with a well-posed interpolation problem, we need to modify the form

of the interpolant s f ,X by adding a low-degree polynomial of degree ν−1, as well

as imposing a unisolvency condition of the points X. We will describe this in the

next section where we introduce RBFs. Note that an SPD kernel is automatically

CPD of order 0.

While RBFs are deterministic models, GPs are infinite dimensional stochas-

tic processes that are described by their mean and covariance functions. The
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covariance function is modeled using a positive semi-definite kernel which de-

scribes interactions between points. We will give several examples of kernels in

§1.4 when we introduce GPs.

1.3 Radial basis functions

This section summarizes radial basis function interpolation and the associated

convergence theory in the setting of a native space. Radial basis function (RBF)

interpolation is one of the most popular approaches to approximating scattered

data in an arbitrary number of dimensions [5, 17, 63, 72]. The set of interpolation

points X are assumed to be pairwise distinct and ϕ is a radial kernel of order ν.

The RBF model takes the form

s f ,X(x) =

n∑
i=1

λiϕ(‖x − xi‖) + p(x) (1.4)

where p ∈ Πd
ν−1, the space of polynomials with d variables of degree no more

than ν − 1. There are many possible choices for ϕ and we summarize the most

popular choices and some of their properties in Table 1.1 on page 10.

Some kernels in Table 1.1 have a shape parameter ε and a good choice is

critical to achieve a good function approximation [18, 62]. The coefficients λi

are determined by imposing the interpolation conditions s f ,X(xi) = f (xi) for i =

1, . . . , n and the discrete orthogonality condition

n∑
i=1

λiq(xi) = 0, ∀q ∈ Πd
ν−1. (1.5)

Note that this condition is in agreement with Definition 2. If we let {πi}
m
i=1 be

a basis for the m =
(
ν−1+d
ν−1

)
-dimensional linear space Πd

ν−1 we can write p(x) =
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∑m
i=1 ciπi(x) and the interpolation conditions lead to the following linear system

of equations: ΦXX PX

PT
X 0


λc

 =

 fX

0

 , (1.6)

where (ΦXX)i j = φ(‖xi − x j‖), (PX)i j = π j(xi), and fX = [ f (x1), . . . , f (xn)]T . The solu-

tion to the linear system of equations is unique as long as rank(PX) = m, which

is often referred to as a unisolvency condition on the points X; the coefficients of

c are uniquely determined from the values at X. We next show that the system

in (1.6) is non-singular by showing that the only solution to the homogeneous

linear system ( fX = 0) is λ = c = 0. Multiplying the first set of equations by λT

yields λT ΦXXλ + λT PXc = 0, but since λT PXc = cT (PT
Xλ) = 0 we have λT ΦXXλ = 0.

It follows that λ = 0 since ϕ is CPD of order ν. The first set of equations are now

PXc = 0, and we conclude that c = 0 since PX has full rank.

1.3.1 The native space

We study the convergence of interpolation with RBFs in an associated native

space. Before we introduce the native space we need to define the RBF space

Aϕ, which is the space of functions s f ,X of the form (1.4) that satisfy (1.5) for n(s)

pairwise distinct points X = {x1, . . . , xn(s)} ⊆ Ω. The space Aϕ can be equipped

with the semi-inner product

〈s, u〉 =

n(s)∑
i=1

λiu(xi)

for s, u ∈ Aϕ defined through

s f ,X(x) =

n(s)∑
i=1

λiϕ(‖x − xi‖) + p(x) and u f ,Y(x) =

n(u)∑
j=1

µ jϕ(‖x − y j‖) + q(x)
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where both {xi}
n(s)
i=1 and {y j}

n(u)
j=1 are pairwise distinct, p, q ∈ Πd

ν−1, and both λ and µ

satisfy the discrete orthogonality condition (1.5). It is easy to verify that this is

indeed a semi-inner product; see e.g., [30]. We can now define a semi-norm on

Aϕ via

|s f ,X |
2 := 〈s f ,X, s f ,X〉

=

n∑
i=1

λis f ,X(xi)

=

n∑
i=1

n∑
j=1

λiλ jϕ(‖xi − x j‖)

= λT ΦXXλ.

For a given kernel we can find a Hilbert space Nϕ(Ω) ⊆ C(Ω), which is usually

referred to as the native space. We define the native space as the functions f ∈

C(Ω) that have uniformly bounded interpolant norms for any unisolvent set of

points X ⊂ Ω and the native space semi-norm is given by

| f |Nϕ
:= sup

X⊂Ω, |X|<∞
|s f ,X |.

The native space is hard to characterize for infinitely smooth kernels, but in the

special case of “polyharmonic” kernels

ϕph(r) :=


Γ(d/2−`)

22`πd/2(`−1)!r
2`−d d odd

(−1)`+(d−2)/2

22`−1πd/2(`−1)!(`−d/2)!r
2`−d log(r) d even

the native space turns out to be instances of Beppo-Levi spaces:

BL`(Rd) = { f ∈ C(Rd) : Dα f ∈ L2(Rd), ∀|α| = `, α ∈ Nd},

for ` > d/2. The following proposition is taken from [30] and is a useful charac-

terization of the native space for the most popular piecewise smooth kernels.
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Proposition 1. Let ϕ(r) = r, ϕ(r) = r2 log(r) or ϕ(r) = r3. Further let κ = 1 in

the linear case, κ = 2 in the thin plate spline case and κ = 3 in the cubic case, and

choose the integer m such that 0 ≤ m ≤ d in the linear case, 1 ≤ m ≤ d + 1 in the

thin plate spline case, and 1 ≤ m ≤ d + 2 in the cubic case. Define ν := (d + κ)/2 if

d + κ is even, and ν := (d + κ + 1)/2 otherwise. If f ∈ Cν(Rd) has bounded support,

then f ∈ Nϕ,k(Rd).

1.3.2 Error estimates

In this section, we summarize the standard convergence theory for RBFs. We

need to introduce the cardinal basis functions, which are the solutions to the

linear system of equations ΦXX PX

PT
X 0


u
∗(x)

v∗(x)

 =

ΦXx

Px

 ,
where x ∈ Ω. An immediate consequence is that we can write the RBF inter-

polant in the following form:

s f ,X(x) = λT ΦXx + cT PT
x = [λT ΦXX + cT PT

X]u∗(x) + λT PXv∗(x) = f T
X u∗(x).

The next important ingredient is the power function PX,ϕ(x), defined as

[PX,ϕ(x)]2 = ϕ(0) − 2u∗(x)T ΦXx + u∗(x)T ΦXXu∗(x). (1.7)
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Using the definition of the cardinal functions we can rewrite the power function

in the following way

[PX,ϕ(x)]2 = ϕ(0) − 2u∗(x)T ΦXx + u∗(x)[ΦXx − PXv∗(x)]

= ϕ(0) − u∗(x)T [ΦXx + PXv∗(x)]

= ϕ(0) − u∗(x)T ΦXx − v∗(x)T Px

= ϕ(0) − b(x)T A−1b(x)

where

b(x) =

ΦXx

Px

 and A =

ΦXX PX

PT
X 0

 .
It is possible to derive the following pointwise inequality based on the power

function

| f (x) − s f ,X(x)| ≤ PX,ϕ(x)
√
| f |2
Nϕ
− |s f ,X |

2
Nϕ
≤ PX,ϕ(x)| f |Nϕ

, (1.8)

which holds for all x ∈ Ω. This bound is often interpreted as a worst case bound;

it tells us the smallest and largest possible function values at x.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

P
X
,ϕ
(x

)

Figure 1.1: An example of the power function for the points {−π, π/2, 0, π}.
The power function is zero at evaluated points and large when
the distance to the closest evaluated point is large.
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Error estimates for the RBF interpolation problem are based on the fill-

distance

hX,Ω := sup
x∈Ω

min
x j∈X
‖x − x j‖,

and convergence is studied as hX,Ω → 0. The standard approach to proving a

pointwise convergence rate is to start from (1.8) and bound the power function

via a Taylor expansion. The bounds P2
X,ϕ(x) ≤ Fϕ(hX,Ω), which hold for hX,Ω small

enough, are summarized in Table 1.1 on page 10 for the most common RBF

kernels [72]. Note that these results are only applicable in cases where the fill-

distance decreases with the number of points, which is not necessarily the case

in e.g., global optimization, which will be introduced in §1.5.1.

1.3.3 Stability

We saw in the previous section and in in Table 1.1 that we can achieve exponen-

tial convergence for the Gaussian kernel as the fill-distance decreases, but there

is a conflict between this theoretically achievable accuracy and numerical stabil-

ity. The goal of this section is to study what happens to the condition number

of ΦXX when the separation-distance

qX =
1
2

min
i, j
‖xi − x j‖

decreases. We will focus on symmetric positive definite kernels and refer to

Wendland [72] for a rigorous treatment of conditionally positive definite ker-

nels. In this case, ΦXX will be symmetric and positive definite and saying some-

thing about the condition number of ΦXX requires an upper bound on the largest

eigenvalue and a lower bound on the smallest eigenvalue since

κ(ΦXX) := ‖ΦXX‖ · ‖Φ
−1
XX‖ =

λmax(ΦXX)
λmin(ΦXX)

.
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Finding an upper bound on λmax(ΦXX) ends up being a straightforward applica-

tion of Gershgorin’s theorem which says that

|λmax(ΦXX) − (ΦXX)ii| ≤

n∑
j=1
j,i

|(ΦXX)i j|,

for some i ∈ {1, . . . , n}. This allows us to conclude that

λmax(ΦXX) ≤ n max
i, j=1,...,n

|(ΦXX)i j| = n max
xi,x j∈X

|ϕ(xi − x j)| ≤ nϕ(0).

After establishing an upper bound on λmax(ΦXX) we turn our attention to finding

a lower bound Gϕ(qX) ≤ λmin(ΦXX). Deriving these lower bounds is rather tech-

nical and we refer to Wendland [72] for more details, but lower bounds in terms

of qX have been summarized in Table 1.1.

Name ϕ(r) Order Fϕ(hX,Ω) Gϕ(qX)

Gaussian e−ε
2r2

ν = 0 e−c | log(h)|/h c(
√

2ε)−de−40.71d2/(qε2)2
q−d

Inverse multiquadric
(
1 + ε2r2

) β
, β < 0 ν = 0 e−c̃/h cq β− d

2 + 1
2 e−c/(qε)

Multiquadric (−1)dβe
(
1 + ε2r2

) β
, 0 < β < N, ν = dβe e−c̃/h cq β− d

2 + 1
2 e−c/(qε)

Radial powers (−1)dβ/2er β, 0 < β < 2N ν = dβ/2e hβ cq β

Thin-plate spline (−1)β+1r 2 β log(r), β ∈ N ν = β + 1 h2β cq 2β

Table 1.1: Some popular choices of kernels and their order and conver-
gence properties. The functions Fϕ(hX,Ω) are asymptotic up-
per bounds on the squared power function in terms of the fill-
distance, while Gϕ(qX) are lower bounds on the smallest eigen-
value of ΦXX based on the separation distance. The shape pa-
rameter ε has to satisfy ε > 0.

It has been shown that

Gϕ(qX) ≤ Fϕ(hX,Ω)

and if the data is well-distributed we have qX ≈ hX,Ω so a small value of Fϕ(hX,Ω)

implies a small value of Gϕ(qX). We have arrived at something that is more com-

monly known as the trade-off principle, which tells us that a fast decrease in
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Fϕ(hX,Ω) implies a fast increase in the condition number of ΦXX [17]. The the-

oretical guarantee of exponential convergence for the Gaussian and (inverse)

multiquadric kernels are not achievable in practice as the condition number of

ΦXX grows exponentially, leading to numerical instabilities. This is one of the

reasons why the radial powers and thin-plate splines are often favored in prac-

tice, since they offer a better balance between convergence and stability.

Recent work has shown how to overcome these stability issues for the Gaus-

sian and (inverse) multiquadric kernels in the limit ε → 0, relying on a complex

Contour-Padé integration algorithm [14, 20, 21, 53]. However, this approach is

limited to very small datasets, and thus leads to another trade-off principle stat-

ing that high accuracy is only achievable for very small datasets. Another way

to deal with the numerical instability caused by a small value of qX is to add reg-

ularization to the kernel, ϕ̃(‖xi − x j‖) = ϕ(‖xi − x j‖) + η δi j, for some regularization

parameter η ≥ 0, where η is often chosen using cross-validation.

1.3.4 Incremental updates

A direct solver of the RBF system (1.6) requires computing a dense LU (or

Cholesky for SPD kernels) factorization at a cost of O((m + n)3) = O(n3) flops.

There are several contexts, including global optimization in §1.5, where we have

computed an RBF interpolant and want to add q � n new points to the model.

This section describes how to update the RBF interpolant in quadratic time.

Given an initial set of n points with rank(PX) = m we compute an initial LU
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factorization with pivoting

Ã :=


0 PT

X

PX ΦXX

 = PT L11U11.

Note that the blocks have been rearranged compared to (1.6) to make it more

natural to add new points. After adding the q new points X̂ = {x̂i}
q
i=1 we want to

find an LU factorization of the extended system

Â =



0 PT
X PT

X̂

PX ΦXX ΦXX̂

PX̂ ΦX̂X ΦX̂X̂


:=


Ã B

BT C

 .

Assuming the kernel ϕ is of order ν and p(x) is of order at least ν−1, a unisolvent

set of initial points X implies that the trailing Schur complement is positive semi-

definite, so we can look for a factorization of the form
Â B

BT C

 =


PT 0

0 I




L11 0

L21 L22




U11 U12

0 LT
22

 =


PT L11U11 PT L11U12

L21U11 L21U12 + L22LT
22

 .
We need to solve the two triangular systems B = PT L11U12 and BT = L21U11

followed by computing a Cholesky factorization of C − L21U12. This implies

that we can update the factorization in O(qn2 + q3) flops, which is better than

computing a new LU factorization in O(n3) flops. This incremental update idea

is very useful in the context of surrogate optimization, which we introduce in

§1.5.1 and consider in more detail in Chapter 5.
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1.4 Gaussian processes

A Gaussian process (GP) is a collection of random variables, any finite number

of which have a joint Gaussian distribution [56]. They share many similarities

with RBFs as both are based on kernel interpolation. More generally, a GP can

be used to define a distribution over functions f (x) ∼ GP(µ(x), k(x, x′)), where

each function value is a random variable indexed by x ∈ Rd, and µ : Rd → R and

k : Rd ×Rd → R are the mean and covariance functions of the process. The mean

function is often a low-degree polynomial while the covariance function fills

the same role as the kernel in RBF interpolation, with the additional restriction

that it must be positive semi-definite. However, previous work by Wahba [69]

connects regression with smoothing splines to the use of improper priors. We

will show later in this section that we can also modify the spline kernels used in

RBF interpolation to make them positive definite on any compact domain.

The covariance function is often chosen to be the squared exponential (or

Gaussian) kernel

kSE(x, y) = s2 exp
(
−
‖x − y‖2

2`2

)
or Matérn kernel

kMatern(x, y) = s2 21−ν

Γ(ν)

(
√

2ν
‖x − y‖
`

)ν
Kν

(
√

2ν
‖x − y‖
`

)
where Γ is the gamma function, Kν is the modified Bessel function of the second

kind, s2 is the signal variance, ` > 0 is the lengthscale, and ν > 0. The Matérn

kernel is dνe−1 times differentiable and 1/2, 3/2, and 5/2 are common choices for

ν to model heavy-tailed correlations. The length scale ` is used instead of the ε

parameter in RBF interpolation, with the interpretation that a larger value of the

lengthscale indicates that more points are correlated. The parameter s is added
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to model the signal variance of the function. The spectral behavior of both these

kernels has been well-studied for years, and we recommend Wathen and Zhu

[71] for recent results. Particularly relevant is a theorem due to Weyl, which says

that if a symmetric kernel has ν continuous derivatives, then the eigenvalues

decay like |λn| = O(n−ν−1/2). Hence, the eigenvalues decay much more slowly for

the Matérn kernel, which has two derivatives at zero for ν = 5/2, one derivative

at zero for ν = 3/2, and no derivatives at zero for ν = 1/2.

The thin-plate spline and radial powers cannot be used in GP regression as

they are not positive definite, but we can modify them to make them valid GP

kernels on any compact domain Ω [74]. This leads to the family of spline kernels

ϕspline(r) = kspline(x, y) =


s2(‖x − y‖3 + a‖x − y‖2 + b

)
d odd

s2(‖x − y‖2 log ‖x − y‖ + a‖x − y‖2 + b
)

d even

where a, b are chosen to make the spline kernels SPD on the given domain. Let-

ting R = maxx,y∈Ω ‖x − y‖, we can impose the boundary conditions ϕ(R) = 0 and
∂ϕ(r)
∂r

∣∣∣
r=R

= 0. This leads to the kernels

kspline(x, y) =


s2(‖x − y‖3 − 3

2R‖x − y‖2 + 1
2R3) d odd

s2(‖x − y‖2 log ‖x − y‖ −
(

1
2 + log R

)
‖x − y‖2 + 1

2R2) d even

which are SPD on any compact domain Ω and can therefore be used for GP

regression. We use the spline kernel for implicit surface reconstruction in Chap-

ter 3.

For an arbitrary kernel, we denote any kernel hyperparameters by the vec-

tor θ. To be concise we will generally not explicitly denote the dependence of

k and associated matrices on θ. For any locations X, fX ∼ N(µX,KXX), where µX

represent the vectors of function values µ evaluated at each of the xi ∈ X, and
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KXX is the covariance matrix. Suppose we have a vector of corresponding func-

tion values yX = [y1, . . . , yn]T ∈ Rn, where each entry is potentially contaminated

by independent Gaussian noise with variance σ2. The noise variance is often

unknown, so we learn it from the data. In the RBF setting we may use cross-

validation to learn σ, but under a Gaussian process prior we learn σ and θ by

optimizing the log marginal likelihood

L(yX | θ) = −
1
2

[
(yX − µX)T K̃−1

XX(yX − µX) + log |K̃XX | + n log 2π
]

(1.9)

where K̃XX = KXX + σ2I. Optimization of (1.9) is expensive, since the cheapest

way of evaluating log |K̃XX | and its derivatives without taking advantage of the

structure of K̃XX involves computing the O(n3) Cholesky factorization of K̃XX.

O(n3) computations are too expensive for inference and learning beyond even

just a few thousand points and we address these scalability issues in Chapter 2.

The posterior mean and posterior variance at a point x are given by

E[ f (x)] = KT
Xx(KXX + σ2I)−1(yX − µX),

V[ f (x)] = Kxx − KT
Xx(KXX + σ2I)−1KXx.

The careful reader may recognize the similarities between not only the poste-

rior mean and the RBF prediction, but the predictive variance and the power

function. The predictive variance for GPs gives us an idea of the average case

error, while the RBF error bound in (1.8) is often interpreted as a worst case

bound.
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Branin SE no gradient SE with gradients

Figure 1.2: An example where gradient information pays off; the true
function is on the left. Compare the regular GP without deriva-
tives (middle) to the GP with derivatives (right). Unlike the
former, the latter is able to accurately capture critical points of
the function.

1.4.1 Derivative information

The GP model can easily be extended to incorporate derivative information,

which is especially valuable in higher dimensions, but comes at a cost: the ker-

nel matrix K∇XX is of size n(d+1)-by-n(d+1). This makes scalability an even larger

issue as training and prediction become O(n3d3) and O(nd) respectively [57]. We

address these scalability issues in Chapter 3. Figure 1.2 illustrates the value of

derivative information; fitting with derivatives is evidently much more accurate

than fitting function values alone.

We define a multi-output GP that allows us to both predict derivatives and

make inference based on derivative information. The multi-output GP model

takes the form

µ∇(x) =


µ(x)

∂xµ(x)

 , k∇(x, x′) =


k(x, x′) (∂x′k(x, x′))T

∂xk(x, x′) ∂2k(x, x′)

 ,
where ∂xk(x, x′) and ∂2k(x, x′) represent the column vector of (scaled) partial
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derivatives in x and the matrix of (scaled) second partials in x and x′, respec-

tively. As in the scalar GP case, we model measurements of the function as

contaminated by independent Gaussian noise, but we can use different noise

variances for the function values and each partial derivative.

1.5 Surrogate optimization

Surrogate optimization techniques try to solve the global optimization problem

Find x∗ ∈ Ω such that f (x∗) ≤ f (x), ∀x ∈ Ω (1.10)

where f : Ω→ R is continuous and Ω ⊂ Rd is compact. We are primarily inter-

ested in problems where evaluating f requires running a time consuming sim-

ulation model or that evaluating f has a high monetary cost. In addition, we

assume that f lacks special structure like linearity and convexity and assume

that there can be many local minima. We typically only observe the value of

f (x), but the case where we also observe derivatives will be considered in Chap-

ter 3. Several heuristic algorithms such as genetic algorithms, particle swarms

algorithms, differential evolution, and simulated annealing are popular choices

for global optimization Horst and Pardalos [38], but these algorithms generally

require many evaluations to find a good solution to (1.10).

A class of methods that has been shown to perform well with a small num-

ber of evaluations is surrogate optimization methods; these methods use a sur-

rogate model that approximates the objective function to choose where to eval-

uate next. The most popular approach is Bayesian optimization (BO) where we

place a GP prior on f [23]. It is also possible to approximate f using an RBF

model [29, 58, 60, 73]. Other possible surrogate models are polynomial regres-
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sion models and multivariate adaptive regression splines Friedman [24], but

this thesis will focus on RBFs and GPs.

1.5.1 Surrogate optimization overview

Most surrogate optimization methods follow the same main steps. The first step

consists of generating an experimental design with n0 points that are evaluated

and used to fit an initial surrogate model. We proceed to the adaptive phase

where we solve an auxiliary problem at each step to find new point(s) to evalu-

ate. This auxiliary problem quantifies the expected value from choosing x as the

next evaluation. We evaluate the new point(s), update the surrogate model, and

repeat this procedure until a stopping criterion has been met. This is illustrated

in Algorithm 1.

Algorithm 1: Synchronous surrogate optimization algorithm

1: Model f using an RBF or place a GP prior on f

2: Generate an experimental design

3: Evaluate the points in the experimental design

4: while Stopping criterion not met do

5: Update the RBF model or the posterior distribution on f

6: Optimize auxiliary function α(x) for new point(s) to evaluate

7: Evaluate the new point(s)

The simplest experimental design is choosing the 2d corners of the hypercube

Ω, often referred to as the 2-factorial design, but this is infeasible when d is

large and the evaluations are expensive. Two common alternatives are the Latin
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hypercube design (LHD) and the symmetric Latin hypercube design (SLHD),

which allows an arbitrary number of design points.

1.5.2 Surrogate optimization methods

Evaluating f is expensive, so we optimize an auxiliary function α(x) involving

the surrogate model and previously evaluated points to find the next point(s)

to evaluate. This auxiliary problem must balance exploration and exploitation,

where exploration emphasizes evaluating points far from previous evaluations

to improve the surrogate model and escape local minima, while exploitation

aims to improve promising solutions to make sure we make progress. We start

by introducing two popular auxiliary functions in BO, where they are often re-

ferred to as acquisition functions. We refer to Frazier [23] for a description of

several additional acquisition functions.

Expected improvement

Expected improvement (EI) is likely the most widely used auxiliary function in

BO, where the main idea is choosing the point that gives us the largest expected

improvement. EI is one-step-optimal, it assumes we have evaluated f (without

noise) at n points and have exactly one evaluation left. If f ∗n = min
i=1, ..., n

f (xi) and we

spend our last evaluation at a point xn+1, we will return min( f ∗n , f (xn+1)), in which

case the improvement from the last function evaluation is

In(x) = max{0, f ∗n − fn+1(x)}.
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The expected value can be evaluated analytically under a Gaussian process pos-

terior

EIn(x) := E[In(x)] =


( f ∗n − E[ f (x)])Φ(Z) +

√
V[ f (x)]φ(Z) if V[ f (x)] > 0

0 if V[ f (x)] = 0

where Z = ( f ∗n − E[ f (x)])/
√
V[ f (x)], Φ is the standard normal cumulative dis-

tribution function, and φ is the standard normal probability density function

[40]. EI is implemented in our surrogate optimization software pySOT, which

we describe in Chapter 5.

Lower confidence bound

The main idea of the lower confidence bound (LCB) is to choose the point that

minimizes the lower bound of the confidence interval based on the predicted

value and predicted variance. Formally, the LCB acquisition is defined as

LCB(x) = E[ f (x)] − κ
√
V[ f (x)],

where κ is left to the user. We explore a similar idea for RBFs in Chapter 4.

Stochastic RBF

The weighted-distance merit function introduced in [58] was proposed in com-

bination with using an RBF model for f . The main idea is to generate a set of

candidate points Λ and pick the candidate point that provides the best balance

between a small predicted value and a large distance to previously evaluated

points. Exploration is achieved by giving preference to candidate points far

from previous evaluations. More specifically, for each x ∈ Λ we let ∆(x) be the
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distance from x to the point closest to x that is currently being or has been eval-

uated. By defining ∆max = max{∆(x) : x ∈ Λ} and ∆min = min{∆(x) : x ∈ Λ} a good

measure of exploration is a small value of VD(x) =
∆max−∆(x)
∆max−∆min , where 0 ≤ VD(x) ≤ 1

for all x ∈ Λ. Exploitation is achieved through the surrogate model s f ,X(x), where

a small value of the quantity VS (x) =
s f ,X(x)−smin

smax−smin provides a measure of exploita-

tion, where smax = max{s f ,X(x) : x ∈ Λ} and smin = min{s f ,X(x) : x ∈ Λ}.

The best candidate point is the minimizer of wVS (x) + (1 − w)VD(x), for a

given w ∈ [0, 1], which shows that w serves as a balance between exploitation

and exploration. A weight close to 0 emphasizes exploration while a weight

close to 1 emphasizes exploitation. Algorithm 2 shows how to select the most

promising candidate point.

Algorithm 2: Candidate point selection

1: Compute smax ← max
x∈Λ

s f ,X(x) and smin ← min
x∈Λ

s f ,X(x)

2: for each x ∈ Λ do

3: VS (x)←


s f ,X(x)−smin

smax−smin if smax > smin

1 otherwise

4: for each x ∈ Λ do

5: ∆(x)← min
y∈Ω

d(x, y)

6: Compute ∆max ← max
x∈Λ

∆(x) and ∆min ← min
x∈Λ

∆(x)

7: for each x ∈ Λ do

8: VD(x)←


∆max−∆(x)
∆max−∆min if ∆max > ∆min

1 otherwise
return argmin

x∈Λ
wVS (x) + (1 − w)VD(x)
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The SRBF method works well for low-dimensional optimization problems.

Given a sampling radius γ, the candidate points are generated as N(0, γ2) per-

turbations along each coordinate direction from the best solution [58]. Large

values of the sampling radius will generate candidate points far away from the

best solution while smaller values of the sampling radius will generate candi-

date points that are close to the best solution. The sampling radius is initialized

to a large value and is updated depending on progress; we increase the sam-

pling radius after a series of successful improvements and decrease if we fail to

make improvement. We refer to Regis and Shoemaker [58] for exact details on

how the sampling radius is updated.

DYCORS

The DYCORS method was developed for high-dimensional problems and the

idea is to start by perturbing all coordinates and perturb only a few towards

the end of the optimization run [60]. This is achieved by assigning a proba-

bility to perturb each dimension. If n0 points are used in the experimental de-

sign and the evaluation budget is given by nmax, each coordinate is perturbed

with probability pn for n0 ≤ n ≤ nmax. One possible probability function is

pn = min
(

20
d , 1

)
×

[
1 − log(n−n0)

log(nmax−n0)

]
.

1.6 Outline

Chapter 2 shows how to resolve the scalability issues in GP regression using

structured linear algebra based on work published in NIPS 2017 [13]. This work

is generalized to include derivative information in Chapter 3 where one of our
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numerical experiments shows the connection between scalable GPs with deriva-

tives and Bayesian optimization. This work is accepted for publication in NIPS

2018 [16]. We introduce a novel surrogate optimization algorithm based on

RBFs in Chapter 4, and prove that it converges to the global minimum with-

out dense sampling given a bound on the native space semi-norm. We also

show how to compute an upper bound on the semi-norm given a Lipschitz con-

stant. Chapter 5 describes our open source software pySOT, which is designed

for asynchronous surrogate optimization, and we make an extensive between

asynchronous parallel and batch synchronous parallel. We conclude in Chap-

ter 6.
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CHAPTER 2

SCALABLE GAUSSIAN PROCESSES

This chapter will describe recent work on scaling Gaussian process (GP) regres-

sion to large datasets. We build on previous work utilizing fast matrix vector

multiplication (MVM) with the kernel matrix and show how to accurately es-

timate the log determinant and derivatives of the kernel matrix using Cheby-

shev and Lanczos. We find that Lanczos is generally superior to Chebyshev and

demonstrate the methods on a large set of experiments. Most of the content in

this chapter is based on [13].

2.1 Background

There have been many attempts to overcome the scalability issues with Gaus-

sian processes and many current approaches to scalable Gaussian processes

[e.g., 54, 43, 35] focus on inference assuming a fixed kernel, or use approxima-

tions that do not allow for very flexible kernel learning [77], due to poor scaling

with number of basis functions or inducing points. A popular approach to GP

scalability is to replace the exact kernel k(x, z) by an approximate kernel that ad-

mits fast computations [54]. Several methods approximate k(x, z) via inducing

points U = {u j}
q
j=1 ⊂ R

d. An example is the subset of regressor (SoR) kernel:

kS oR(x, z) = KxU K−1
UU KUz

which is a low-rank approximation [64]. The SoR matrix KSoR
XX ∈ R

n×n has rank at

most q, allowing us to solve linear systems involving K̃SoR
XX = KSoR

XX + σ2I and to

compute log |K̃SoR
XX | in O(q2n + q3) time. Note that we need σ > 0 to guarantee that
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K̃SoR
XX is invertible. Another popular kernel approximation is the fully indepen-

dent training conditional (FITC), which is a diagonal correction of SoR so that

the diagonal is the same as for the original kernel [65]. Thus kernel matrices

from FITC have low-rank plus diagonal structure. This modification has had

exceptional practical significance, leading to improved point predictions and

much more realistic predictive uncertainty [54, 55], making FITC arguably the

most popular approach for scalable GPs.

2.1.1 SKI

Wilson and Nickisch [75] provides a mechanism for fast MVMs through propos-

ing the structured kernel interpolation (SKI) approximation,

KXX ≈ WKUUWT (2.1)

where W is an n-by-q matrix of interpolation weights; the authors of [75] use

local cubic interpolation so that W is sparse. The sparsity in W makes it possi-

ble to naturally exploit algebraic structure (such as Kronecker or Toeplitz struc-

ture) in KUU when the inducing points U are on a grid, for extremely fast matrix

vector multiplications with the approximate KXX even if the data inputs X are

arbitrarily located. For instance, if KUU is Toeplitz, then each MVM with the ap-

proximate KXX costs only O(n + q log q). By contrast, placing the inducing points

U on a grid for classical inducing point methods, such as SoR or FITC, does

not result in substantial performance gains, due to the costly cross-covariance

matrices KxU and KUz.

Approximating the log determinant is challenging with SKI and the scaled

eigenvalue method was introduced in [78] to estimate log |KXX +σ2I|. The eigen-
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values {λi}
n
i=1 of KXX can be approximated using the n largest eigenvalues of a

covariance matrix K̃YY on a full grid with q points such that X ⊂ Y . Specifically,

log |KXX + σ2I| =
n∑

i=1

log(λi + σ2) ≈
n∑

i=1

log
(
n
q
λ̃i + σ2

)
The induced kernel KUU plays the role of K̃YY when the scaled eigenvalue

method is applied to SKI and the eigenvalues of KUU can be efficiently com-

puted. Assuming that the eigenvalues can be computed efficiently is a strong

assumption.

2.1.2 Diagonal correction to SKI

The SKI approximation may provide a poor estimate of the diagonal entries

of the original kernel matrix for kernels with limited smoothness, such as the

Matérn kernel. We thus modify the SKI approximation to add a diagonal matrix

D,

KXX ≈ WKUUWT + D, (2.2)

such that the diagonal of the approximated KXX is exact. In other words, D

substracts the diagonal of WKUUWT and adds the true diagonal of KXX. This

modification is not possible for the scaled eigenvalue method for approximating

log determinants in [75], since adding a diagonal matrix makes it impossible to

approximate the eigenvalues of KXX from the eigenvalues of KUU . However, (2.2)

still admits fast MVMs. Computing D with SKI costs only O(n) flops since W is

sparse for local cubic interpolation. We can therefore compute (WT ei)T KUU(WT ei)

in O(1) flops.
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2.2 Approximating the log determinant

Our goal is to estimate, for a symmetric positive definite matrix K̃,

log |K̃| = tr(log(K̃)) and
∂

∂θi

[
log |K̃|

]
= tr

(
K̃−1

(
∂K̃
∂θi

))
,

where log is the matrix logarithm [36]. We compute the traces involved in both

the log determinant and its derivative via stochastic trace estimators [39], which

approximate the trace of a matrix using only matrix vector products.

The key idea is that for a given matrix A and a random probe vector z with

independent entries with mean zero and variance one, then tr(A) = E[zT Az]; a

common choice is to let the entries of the probe vectors be Rademacher ran-

dom variables. In practice, we estimate the trace by the sample mean over nz

independent probe vectors. Often surprisingly few probe vectors suffice.

To estimate tr(log(K̃)) using Monte Carlo we need to multiply log(K̃) by the

probe vectors zi. We consider two ways to estimate log(K̃)z: by a polynomial

approximation of log or by using the connection between the Gaussian quadra-

ture rule and the Lanczos method [32, 68]. In both cases, we show how to re-use

the same probe vectors for an inexpensive coupled estimator of the derivatives.

In addition, we may use standard radial basis function interpolation of the log

determinant evaluated at a few systematically chosen points in the hyperpa-

rameter space as an inexpensive surrogate for the log determinant.
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2.2.1 Chebyshev techniques

Chebyshev polynomials are defined by the recursion

T0(x) = 1, T1(x) = x, T j+1(x) = 2xT j(x) − T j−1(x) for j ≥ 1,

where x ∈ [−1, 1]. For f : [−1, 1]→ R the Chebyshev interpolant of degree t is

f (x) ≈ pt(x) :=
t∑

j=0

c jT j(x), where c j =
2 − δ j0

t + 1

t∑
k=0

f (xk)T j(xk)

where δ j0 is the Kronecker delta and xi = cos(π(i + 1/2)/(t + 1)) for k = 0, 1, 2, . . . , t;

see [26]. Using the Chebyshev interpolant of log(1 + αx), we approximate log |K̃|

by

log |K̃| − n log β = log |I + αB| ≈
t∑

j=0

c j tr(T j(B))

when B = (K̃/β − 1)/α has eigenvalues λi ∈ (−1, 1).

For stochastic estimation of tr(T j(B)), we only need to compute zT T j(B)z for

each given probe vector z. We compute vectors w j = T j(B)z and ∂w j/∂θi via the

coupled recurrences

w0 = z, w1 = Bz, w j+1 = 2Bw j − w j−1 for j ≥ 1,

∂w0

∂θi
= 0,

∂w1

∂θi
=
∂B
∂θi

z,
∂w j+1

∂θi
= 2

(
∂B
∂θi

w j + B
∂w j

∂θi

)
−
∂w j−1

∂θi
for j ≥ 1.

This gives the estimators

log |K̃| ≈ E

 t∑
j=0

c jzT w j

 and
∂

∂θi
log |K̃| ≈ E

 t∑
j=0

c jzT ∂w j

∂θi

 .
Thus, each derivative of the approximation costs two extra MVMs per term.
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2.2.2 Lanczos decomposition

We can also approximate zT log(K̃)z via a Lanczos decomposition; see [28] for

discussion of a Lanczos-based computation of zT f (K̃)z and [68, 2] for stochastic

Lanczos estimation of log determinants. We run t steps of the Lanczos algo-

rithm, which computes the decomposition

K̃Qt = QtT + βtqt+1eT
t

where Qt =

q1 q2 . . . qt

 ∈ Rn×t is a matrix with orthonormal columns such

that q1 = z/‖z‖, T ∈ Rt×t is tridiagonal, βt is the residual, and et is the tth Cartesian

unit vector. We estimate

zT f (K̃)z ≈ eT
1 f (‖z‖2T )e1 (2.3)

where e1 is the first column of the identity. The Lanczos algorithm is numeri-

cally unstable. Several practical implementations resolve this issue [10, 61]. The

approximation (2.3) corresponds to a Gauss quadrature rule for the Riemann-

Stieltjes integral of the measure associated with the eigenvalue distribution of

K̃. It is exact when f is a polynomial of degree up to 2t − 1. This approximation

is also exact when K̃ has at most t distinct eigenvalues, which is particularly rel-

evant to Gaussian process regression, since frequently the kernel matrices only

have a small number of eigenvalues that are not close to zero.

The Lanczos decomposition also allows us to estimate derivatives of the log

determinant at minimal cost. Via the Lanczos decomposition, we have

ĝ = Qt(T−1e1‖z‖) ≈ K̃−1z.

This approximation requires no additional matrix vector multiplications be-

yond those used to compute the Lanczos decomposition, which we already
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used to estimate log(K̃)z; in exact arithmetic, this is equivalent to t steps of CG.

Computing ĝ in this way takes O(tn) additional time; subsequently, we only

need one matrix-vector multiply by ∂K̃/∂θi for each probe vector to estimate

tr(K̃−1(∂K̃/∂θi)) = E[(K̃−1z)T (∂K̃/∂θi)z].

2.2.3 Estimating higher derivatives

We have already described how to use stochastic estimators to compute the log

marginal likelihood and its first derivatives. The same approach applies to com-

puting higher-order derivatives for a Newton-like iteration, to understand the

sensitivity of the maximum likelihood parameters, or for similar tasks. The first

derivatives of the full log marginal likelihood are

∂L

∂θi
= −

1
2

[
tr

(
K̃−1∂K̃

∂θi

)
− αT ∂K̃

∂θi
α

]
and the second derivatives of the two terms are

∂2

∂θi∂θ j

[
log |K̃|

]
= tr

(
K̃−1 ∂2K̃

∂θi∂θ j
− K̃−1∂K̃

∂θi
K̃−1∂K̃

∂θ j

)
,

∂2

∂θi∂θ j

[
(y − µX)Tα

]
= 2αT ∂K̃

∂θi
K̃−1∂K̃

∂θ j
α − αT ∂2K̃

∂θi∂θ j
α.

Superficially, evaluating the second derivatives would appear to require several

additional solves above and beyond those used to estimate the first derivatives

of the log determinant. In fact, we can get an unbiased estimator for the second

derivatives with no additional solves, but only fast products with the deriva-

tives of the kernel matrices. Let z and w be independent probe vectors, and

define g = K̃−1z, h = K̃−1w, and α = K̃−1(yX − µX). Then

∂2

∂θi∂θ j

[
log |K̃|

]
= E

[
gT ∂2K̃
∂θi∂θ j

z −
(
gT ∂K̃
∂θi

w
) (

hT ∂K̃
∂θ j

z
)]
,

∂2

∂θi∂θ j

[
(y − µX)Tα

]
= 2E

[(
zT ∂K̃
∂θi

α

) (
gT ∂K̃
∂θ j

α

)]
− αT ∂2K̃

∂θi∂θ j
α.
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Hence, if we use the stochastic Lanczos method to compute the log determinant

and its derivatives, the additional work required to obtain a second derivative

estimate is one MVM by each second partial of the kernel for each probe vector

and for α, one MVM of each first partial of the kernel with α, and a few dot

products.

2.3 Error properties

In addition to the usual errors from sources such as solver termination criteria

and floating point arithmetic, our approach to kernel learning involves several

additional sources of error: we approximate the true kernel with one that en-

ables fast MVMs, we approximate traces using stochastic estimation, and we

approximate the actions of log(K̃) and K̃−1 on probe vectors.

We can compute first-order estimates of the sensitivity of the log likelihood

to perturbations in the kernel using the same stochastic estimators we use for

the derivatives with respect to hyperparameters. For example, if Lref is the like-

lihood for a reference kernel K̃ref = K̃ + E, then

Lref(θ|y) = L(θ|y) −
1
2

(
E

[
gT Ez

]
− αT Eα

)
+ O(‖E‖2),

and we can bound the change in likelihood at first order by ‖E‖
(
‖g‖‖z‖ + ‖α‖2

)
.

Given bounds on the norms of ∂E/∂θi, we can similarly estimate changes in the

gradient of the likelihood, allowing us to bound how the marginal likelihood

hyperparameter estimates depend on kernel approximations.

If K̃ = UΛUT + σ2I, the Hutchinson trace estimator has known variance [1]

Var[zT log(K̃)z] =
∑
i, j

[log(K̃)]2
i j ≤

n∑
i=1

log(1 + λ j/σ
2)2.
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If the eigenvalues of the kernel matrix without noise decay rapidly enough

compared to σ, the variance will be small compared to the magnitude of

tr(log K̃) = 2n logσ +
∑n

i=1 log(1 + λ j/σ
2). Hence, we need fewer probe vectors to

obtain reasonable accuracy than one would expect from bounds that are blind

to the matrix structure. In our experiments, we typically only use 5–10 probes

— and we use the sample variance across these probes to estimate a posteriori

the stochastic component of the error in the log likelihood computation. If we

are willing to estimate the Hessian of the log likelihood, we can increase rates

of convergence for finding kernel hyperparameters.

The Chebyshev approximation scheme requires O(
√
κ log(κ/ε)) steps to ob-

tain an O(ε) approximation error in computing zT log(K̃)z, where κ = λmax/λmin is

the condition number of K̃ [32]. This behavior is independent of the distribu-

tion of eigenvalues within the interval [λmin, λmax], and is close to optimal when

eigenvalues are spread quasi-uniformly across the interval. Nonetheless, when

the condition number is large, convergence may be quite slow. The Lanczos

approach converges at least twice as fast as Chebyshev in general [68, Remark

1], and converges much more rapidly when the eigenvalues are not uniform

within the interval, as is the case with log determinants of many kernel matri-

ces. Hence, we recommend the Lanczos approach over the Chebyshev approach

in general. In all of our experiments, the error associated with approximating

zT log(K̃)z by Lanczos was dominated by other sources of error.
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2.3.1 Comparison to a reference kernel

Suppose more generally that K̃ = K + σ2I is an approximation to a reference

kernel matrix K̃ref = Kref +σ2I, and let E = Kref −K. Let L(θ|y) and Lref(θ|y) be the

log likelihood functions for the two kernels; then

Lref(θ|y) = L(θ|y) −
1
2

[
tr(K̃−1E) − αT Eα

]
+ O(‖E‖2)

∂

∂θi
Lref(θ|y) =

∂

∂θi
L(θ|y) −

1
2

[
tr

(
K̃−1∂E

∂θi
− K̃−1∂K̃

∂θi
K̃−1E

)
− αT ∂E

∂θi
α

]
+ O(‖E‖2).

If we are willing to pay the price of a few MVMs with E, we can use these

expressions to improve our maximum likelihood estimate. Let z and w be in-

dependent probe vectors with g = K̃−1z and ĝ = K̃−1w. To estimate the trace

in the derivative computation, we use the standard stochastic trace estimation

approach together with the observation that E[wwT ] = I:

tr
(
K̃−1∂E

∂θi
− K̃−1∂K̃

∂θi
K̃−1E

)
= E

[
gT ∂E
∂θi

z − gT ∂K
∂θi

wĝT Ez
]

This linearization may be used directly (with a stochastic estimator); alternately,

if we have an estimates for ‖E‖ and ‖∂E/∂θi‖, we can substitute these in order

to get estimated bounds on the magnitude of the derivatives. Coupled with

a similar estimator for the Hessian of the likelihood function (described in the

supplementary materials), we can use this method to compute the maximum

likelihood parameters for the fast kernel, then compute a correction −H−1∇θL
ref

to estimate the maximum likelihood parameters of the reference kernel.

2.4 Experiments

We test our stochastic trace estimator with both Chebyshev and Lanczos ap-

proximation schemes on a large set of diverse numerical experiments. Through-
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out we use the SKI method [75] of Eq. (2.1) for fast MVMs. We find that the

Lanczos is able to do kernel recovery and inference significantly faster and more

accurately than competing methods.

2.4.1 Natural sound modeling

Here we consider the natural sound benchmark in [75], shown in Figure 2.1(a).

Our goal is to recover contiguous missing regions in a waveform with n =

59, 306 training points. We exploit Toeplitz structure in the KUU matrix of our

SKI approximate kernel for accelerated MVMs.

The experiment in [75] only considered scalable inference and prediction,

but not hyperparameter learning, since the scaled eigenvalue approach requires

all the eigenvalues for an q × q Toeplitz matrix, which can be computationally

prohibitive with costO(q2). However, evaluating the marginal likelihood on this

training set is not an obstacle for Lanczos and Chebyshev since we can use fast

MVMs with the SKI approximation at a cost of O(n + q log q).

In Figure 2.1(b), we show how Lanczos, Chebyshev, and an RBF (surro-

gate) based on precomputed logdet values to scale with the number of inducing

points q compared to the scaled eigenvalue method and FITC. We use 5 probe

vectors and 25 iterations for Lanczos, both when building the surrogate and for

hyperparameter learning with Lanczos. We also use 5 probe vectors for Cheby-

shev and 100 moments. Figure 2.1(b) shows the runtime of the hyperparame-

ter learning phase for different numbers of inducing points q, where Lanczos

and the surrogate are clearly more efficient than scaled eigenvalues and Cheby-

shev. For hyperparameter learning, FITC took several hours to run, compared
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to minutes for the alternatives; we therefore exclude FITC from Figure 2.1(b).

Figure 2.1(c) shows the time to do inference on the 691 test points, while 2.1(d)

shows the standardized mean absolute error (SMAE) on the same test points.

As expected, Lanczos and surrogate make accurate predictions much faster than

Chebyshev, scaled eigenvalues, and FITC. In short, Lanczos and the surrogate

approach are much faster than alternatives for hyperparameter learning with a

large number of inducing points and training points.
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Figure 2.1: Sound modeling using 59,306 training points and 691 test
points. The intensity of the time series can be seen in (a). Train
time for SE kernel hyperparameters is in (b) and the time for in-
ference is in (c). The standardized mean absolute error (SMAE)
as a function of time for an evaluation of the marginal likeli-
hood and all derivatives is shown in (d). Surrogate is (——),
Lanczos is (- - -), Chebyshev is (— �—), scaled eigenvalues is
(— + —), and FITC is (— o —).
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2.4.2 Daily precipitation prediction

This experiment involves precipitation data from the year of 2010 collected from

around 5500 weather stations in the US1. The hourly precipitation data is pre-

processed into daily data if full information of the day is available. The dataset

has 628, 474 entries in terms of precipitation per day given the date, longitude

and latitude. We randomly select 100, 000 data points as test points and use the

remaining points for training. We then perform hyperparameter learning and

prediction with the SE kernel, using Lanczos, scaled eigenvalues, and exact.

For Lanczos and scaled eigenvalues, we optimize the hyperparameters on

the subset of data for January 2010, with an induced grid of 100 points per spa-

tial dimension and 300 in the temporal dimension. Due to memory constraints

we only use a subset of 12, 000 entries for training with the exact method. While

scaled eigenvalues can perform well when fast eigendecompositions are possi-

ble, as in this experiment, Lanczos nonetheless still runs faster and with slightly

lower MSE.

Method n q MSE Time [min]

Lanczos 528k 3M 0.613 14.3

Scaled eigenvalues 528k 3M 0.621 15.9

Exact 12k - 0.903 11.8

Table 2.1: Prediction comparison for the daily precipitation data showing
the number of training points n, number of induced grid points
q, the mean squared error, and the inference time.

Incidentally, we are able to use 3 million inducing points in Lanczos and

scaled eigenvalues, which is enabled by the SKI representation [75] of covari-

1https://catalog.data.gov/dataset/u-s-hourly-precipitation-data
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ance matrices, for a a very accurate approximation. This number of inducing

points q is unprecedented for typical alternatives which scale as O(q3).

2.4.3 Hickory data

In this experiment, we apply Lanczos to the log-Gaussian Cox process model

with a Laplace approximation for the posterior distribution. We use the SE ker-

nel and the Poisson likelihood in our model. The scaled eigenvalue method

does not apply directly to non-Gaussian likelihoods; we thus applied the scaled

eigenvalue method in [75] in conjunction with the Fiedler bound in [19] for

the scaled eigenvalue comparison. Indeed, a key advantage of the Lanczos ap-

proach is that it can be applied whenever fast MVMs are available, which means

no additional approximations such as the Fiedler bound are required for non-

Gaussian likelihoods.

This dataset, which comes from the R package spatstat, is a point pattern

of 703 hickory trees in a forest in Michigan. We discretize the area into a 60 × 60

grid and fit our model with exact, scaled eigenvalues, and Lanczos. We see

in Table 2.2 that Lanczos recovers hyperparameters that are much closer to the

exact values than the scaled eigenvalue approach. Figure 2.2 shows that the

predictions by Lanczos are also indistinguishable from the exact computation.

Method s `1 `2 − log p(y|θ) Time [s]

Exact 0.696 0.063 0.085 1827.56 465.9

Lanczos 0.693 0.066 0.096 1828.07 21.4

Scaled eigenvalues 0.543 0.237 0.112 1851.69 2.5

Table 2.2: Hyperparameters recovered on the Hickory dataset.
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(a) Point pattern data (b) Prediction by exact

(c) Scaled eigenvalues (d) Lanczos

Figure 2.2: Predictions by exact, scaled eigenvalues, and Lanczos on the
Hickory dataset.

2.4.4 Crime prediction

In this experiment, we apply Lanczos with the spectral mixture kernel to the

crime forecasting problem considered in [19]. This dataset consists of 233, 088

incidents of assault in Chicago from January 1, 2004 to December 31, 2013. We

use the first 8 years for training and attempt to predict the crime rate for the

last 2 years. For the spatial dimensions, we use the log-Gaussian Cox process

model, with the Matérn-5/2 kernel, the negative binomial likelihood, and the

Laplace approximation for the posterior. We use a spectral mixture kernel with

20 components and an extra constant component for the temporal dimension.

We discretize the data into a 17 × 26 spatial grid corresponding to 1-by-1 mile
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grid cells. In the temporal dimension we sum our data by weeks for a total of

522 weeks. After removing the cells that are outside Chicago, we have a total of

157, 644 observations.

The results for Lanczos and scaled eigenvalues (in conjunction with the

Fiedler bound due to the non-Gaussian likelihood) can be seen in Table 2.3. The

Lanczos method used 5 Hutchinson probe vectors and 30 Lanczos steps. For

both methods we allow 100 iterations of LBFGS to recover hyperparameters and

we often observe early convergence. While the RMSE for Lanczos and scaled

eigenvalues happen to be close on this example, the recovered hyperparame-

ters using scaled eigenvalues are very different than for Lanczos. For example,

the scaled eigenvalue method learns a much larger σ2 than Lanczos, indicat-

ing model misspecification. In general, as the data become increasingly non-

Gaussian the Fiedler bound (used for fast scaled eigenvalues on non-Gaussian

likelihoods) will become increasingly misspecified, while Lanczos will be unaf-

fected.

Method `1 `2 σ2 Trecovery[s] Tprediction[s] RMSEtrain RMSEtest

Lanczos 0.65 0.67 69.72 264 10.30 1.17 1.33

Scaled eigenvalues 0.32 0.10 191.17 67 3.75 1.19 1.36

Table 2.3: Hyperparameters recovered, recovery time and RMSE for Lanc-
zos and scaled eigenvalues on the Chicago assault data. Here `1

and `2 are the length scales in spatial dimensions and σ2 is the
noise level. Trecovery is the time for recovering hyperparameters.
Tprediction is the time for prediction at all 157, 644 observations
(including training and testing).
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2.4.5 Deep kernel learning

To handle high-dimensional datasets, we bring our methods into the deep ker-

nel learning framework [79] by replacing the final layer of a pre-trained deep

neural network (DNN) with a GP. This experiment uses the gas sensor dataset

from the UCI machine learning repository. It has 2565 instances with 128 di-

mensions. We pre-train a DNN, then attach a GP with SE kernels to the two-

dimensional output of the second-to-last layer. We then further train all param-

eters of the resulting kernel, including the weights of the DNN, through the GP

marginal likelihood. In this example, Lanczos and the scaled eigenvalue ap-

proach perform similarly well. Nonetheless, we see that Lanczos can effectively

be used with SKI on a high dimensional problem to train hundreds of thousands

of kernel parameters.

Method DNN Lanczos Scaled eigenvalues

RMSE 0.1366 ± 0.0387 0.1053 ± 0.0248 0.1045 ± 0.0228

Time [s] 0.4438 2.0680 1.6320

Table 2.4: Prediction RMSE and per training iteration runtime.

2.4.6 1D cross-section plots

In this experiment we compare the accuracy of Lanczos and Chebyshev for 1-

dimensional perturbations of a set of true hyper-parameters, and demonstrate

how critical it is to use diagonal replacement for some approximate kernels.

We choose the true hyper-parameters to be (`, s, σ) = (0.1, 1, 0.1) and consider

two different types of datasets. The first dataset consists of 1000 equally spaced

points in the interval [0, 4] in which case the kernel matrix of a stationary kernel
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is Toeplitz and we can make use of fast matrix-vector multiplication. The second

dataset consists of 1000 data points drawn independently from a U(0, 4) distri-

bution. We use SKI with cubic interpolation to construct an approximate kernel

based on 1000 equally spaced points. The function values are drawn from a GP

with the true hyper-parameters, for both the true and approximate kernel. We

use 250 iterations for Lanczos and 250 Chebyshev moments in order to assure

convergence of both methods. The results for the first dataset with the SE and

Matérn kernels can be seen in Figure 2.3(a)-2.3(d). The results for the second

dataset with the SKI kernel can be seen in Figure 2.4(a)-2.4(d).
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Figure 2.3: 1-dimensional perturbations for the exact SE and Matérn 1/2
kernel where the data is 1000 equally spaced points in the inter-
val [0, 4]. The exact values are (•), Lanczos is (—–), Chebyshev
is (—–). The error bars of Lanczos and Chebyshev are 1 stan-
dard deviation and were computed from 10 runs with different
probe vectors
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Figure 2.4: 1-dimensional perturbations with the SKI (cubic) approxima-
tions of the RBF and Matérn 1/2 kernel where the data is 1000
points drawn from N(0, 2). The exact values are (•), Lanczos
with diagonal replacement is (—–), Chebyshev with diagonal
replacement is (—–), Lanczos without diagonal replacement is
(—–), Chebyshev without diagonal replacement is (—–), and
scaled eigenvalues is (×). Diagonal replacement makes no per-
ceptual difference for the SE kernel so the lines are overlapping
in this case. The error bars of Lanczos and Chebyshev are 1
standard deviation and were computed from 10 runs with dif-
ferent probe vectors

Lanczos yields an excellent approximation to the log determinant and its

derivatives for both the exact and the approximate kernels, while Chebyshev

struggles with large values of s and small values of σ on the exact and approxi-

mate SE kernel. This is expected since Chebyshev has issues with the singularity

at zero while Lanczos has large quadrature weights close to zero to compensate

for this singularity. The scaled eigenvalue method has issues with the approxi-

mate Matérn 1/2 kernel.
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2.4.7 Why Lanczos is better than Chebyshev

In this experiment, we study the performance advantage of Lanczos over

Chebyshev. Figure 2.5 shows that the Ritz values of Lanczos quickly converge to

the spectrum of the SE kernel thanks to the absence of interior eigenvalues. The

Chebyshev approximation shows the expected equioscillation behavior. More

importantly, the Chebyshev approximation for logarithms has its greatest error

near zero where the majority of the eigenvalues are, and those also have the

heaviest weight in the log determinant.

Another advantage of Lanczos is that it requires minimal knowledge of the

spectrum, while Chebyshev needs the extremal eigenvalues for rescaling. In ad-

dition, with Lanczos we can get the derivatives with only one MVM per hyper-

parameter, while Chebyshev requires an MVM at each iteration, leading to extra

computation and memory usage.

2.4.8 The importance of diagonal correction

This experiment shows that diagonal correction of the approximate kernel can

be very important. Diagonal correction cannot be used efficiently for some

methods, such as the scaled eigenvalue method, and this may hurt its predic-

tive performance. Our experiment is similar to [54]. We generate 1000 uni-

formly distributed points in the interval [−10, 10], and we choose a small num-

ber of inducing points in such a way that there is a large chunk of the inter-

val where there is no inducing point. We are interested in the behavior of the

predictive uncertainties on this subinterval. The function values are given by

f (x) = 1 + x/2 + sin(x) and normally distributed noise with standard deviation
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Figure 2.5: A comparison between the true spectrum, the Lanczos weights
(t = 50), and the Chebyshev weights (t = 100) for the SE kernel
with ` = 0.3, s = 1, and σ = 0.1. All weights and counts are
on a log-scale so that they are easier to compare. Blue bars
correspond to positive weights while red bars correspond to
negative weights.

0.05 is added to the function values. We find the optimal hyper-parameters of

the Matérn 3/2 using the exact method and use these hyper-parameters to make

predictions with Lanczos, Chebyshev, FITC, and the scaled eigenvalue method.

We consider Lanczos both with and without diagonal correction in order to see

how this affects the predictions. The results can be seen in Figure 2.6.

It is clear that Lanczos and Chebyshev are too confident in the predictive

mean when diagonal correction is not used, while the predictive uncertainties

agree well with FITC when diagonal correction is used. The scaled eigenvalue

method cannot be used efficiently with diagonal correction and we see that this

leads to predictions similar to Lanczos and Chebyshev without diagonal correc-
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Figure 2.6: Example that shows how important diagonal correction can be
for some kernels. The Matérn 3/2 kernel was used to fit the
data given by the black dots. This data was generated from the
function f (x) = 1 + x/2 + sin(x) to which we added normally
distributed noise with standard deviation 0.05. We used the
exact method to find the optimal hyper-parameters and used
these hyper-parameters to study the different behavior of the
predictive uncertainties when the inducing points are given by
the green crosses. The solid blue line is the predictive mean
and the dotted red lines shows a confidence interval of two
standard deviations.

tion. The flexibility of being able to use diagonal correction with Lanczos and

Chebyshev makes these approaches very appealing.
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2.4.9 Surrogate log determinant approximation

The point of this experiment is to illustrate how accurate the level-curves of the

surrogate model are compared to the level-curves of the true log determinant.

We consider the SE and the Matérn 3/2 kernels and the same datasets that we

considered in 2.4.6. We fix s = 1 and study how the level curves compare when

we vary ` and σ. Building the surrogate with all three hyper-parameters pro-

duces similar results, but requires more design points. We use 50 design points

to construct a cubic RBF with a linear tail. The values of the log determinant and

its derivatives are computed with Lanczos. It is clear from Figure 2.7 that the

surrogate model does a good job approximating the log determinant for both

kernels.

2.4.10 Kernel hyper-parameter recovery

This experiments tests how well we can recover hyper-parameters from data

generated from a GP. We compare Chebyshev, Lanczos, the surrogate, the scaled

eigenvalue method, and FITC. We consider a dataset of 5000 points generated

from a N(0, 2) distribution. We use SKI with cubic interpolation and a total

of 2000 inducing points for Lanczos, Chebyshev, and then scaled eigenvalue

method. FITC was used with 750 equally spaced points because it has a longer

runtime as a function of the number of inducing points. We consider the SE

kernel and the Matérn 3/2 kernel and sample from a GP with ground truth pa-

rameters (`, s, σ) = (0.01, 0.5, 0.05). The GPs for which we try to recover the

hyper-parameters were generated from the original kernel. It is important to

emphasize that there are two sources of errors present: the error from the kernel
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Figure 2.7: Level curves of the exact and surrogate approximation of the
log determinant as a function of ` and σ for the SE and Matérn
3/2 kernels. We used s = 1 and the dataset consisted of
1000 equally spaced points in the interval [0, 4]. The surrogate
model was constructed from the points shown with (•) and the
log determinant values were computed using stochastic Lanc-
zos.

approximation errors and the stochastic error from Lanczos and Chebyshev. We

saw in Figure 2.3 and 2.4 that the stochastic error for Lanczos is relatively small,

so this follow-up experiment helps us understand how Lanczos is influenced by

the error incurred from an approximate kernel. We show the true log marginal

likelihood, the recovered hyper-parameters, and the run-time in Table 2.5.

It is clear from Table 2.5 that most methods are able to recover parameters

close to the ground truth for the SE kernel. The results are more interesting for

the Matérn 3/2 kernel where FITC struggles and the parameters recovered by

FITC have a value of the log marginal likelihood that is much worse than the

other methods.
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RBF Matérn 3/2

True
− log p(y|θ) −6.22e3 −4.91e3

Hypers (0.01, 0.5, 0.05) (0.01, 0.5, 0.05)

Exact

− log p(y|θ) −6.23e3 −4.91e3

Hypers (1.01e−2, 4.81e−1, 5.03e−2) (9.63e−3, 4.87e−1, 4.96e−2)

Time (s) 368.9 466.7

Lanczos

− log p(y|θ) −6.22e3 −4.86e3

Hypers (1.00e−2, 4.77e−1, 5.03e−2) (1.04e−2, 4.87e−1, 4.67e−2)

Time (s) 66.2 133.4

Chebyshev

− log p(y|θ) −6.23e3 −4.81e3

Hypers (9.84e−3, 4.85e−1, 5.12e−2) (1.11e−2, 4.66e−1, 5.78e−2)

Time (s) 110.3 173.3

Surrogate

− log p(y|θ) −6.22e3 −4.86e3

Hypers (1.01e−2, 4.88e−1, 4.85e−2) (1.02e−2, 4.80e−1, 4.66e−2)

Time (s) 48.2 44.3

Scaled eigenvalues

− log p(y|θ) −6.22e3 −4.71e3

Hypers (1.04e−2, 4.52e−1, 5.14e−2) (1.13e−2, 4.53e−1, 6.37e−2)

Time (s) 90.2 127.3

FITC

− log p(y|θ) −6.22e3 −4.11e3

Hypers (1.03e−2, 4.90e−1, 5.07e−2) (1.34e−2, 5.22e−1, 8.91e−2)

Time (s) 86.6 136.9

Table 2.5: Hyper-parameter recovery for the SE and Matérn 3/2 kernels.
The data was generated from 5000 normally distributed points.
Lanczos, surrogate, and scaled eigenvalues all used 2000 induc-
ing points while FITC used 750. These numbers where chosen
to make their run times close to equal. Diagonal correction was
applied to the Matérn 3/2 approximate kernel. The value of the
log marginal likelihood was was computed from the exact ker-
nel and shows the value of the hyper-parameters recovered by
each method. We ran Lanczos 5 times and averaged the values.
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2.5 Conclusion

The methods presented in this chapter are general and rely only on fast ma-

trix vector multiplications (MVMs) with the kernel matrix. These MVMs can

be used to efficiently solve linear systems with the kernel matrix using the con-

jugate gradient (CG) method. The biggest computational challenge is the es-

timation of the log determinant and its derivatives, and we have illustrated

the promise of combining stochastic trace estimation with the Lanczos process.

We have shown the scalability and flexibility of our approach through experi-

ments with kernel learning for several real-world data sets using both Gaussian

and non-Gaussian likelihoods, and highly parametrized deep kernels. The next

chapter will show how to extend the work in this chapter to incorporate gradi-

ent information in the GP model. We discuss several additional extensions in

Chapter 6.
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CHAPTER 3

SCALABLE GAUSSIAN PROCESSES WITH DERIVATIVES

In this chapter we generalize the work from the previous chapter to incorpo-

rate derivative information into the GP model. For many simulation models,

derivatives may be computed at little extra cost via finite differences, complex

step approximations, adjoint methods, or algorithmic differentiation [22]. Ex-

act kernel learning is ill-suited for GPs with derivatives, which requires O(n3d3)

computation and O(n2d2) storage. We demonstrate our work on applications in

Bayesian Optimization (BO) [81], implicit surface reconstruction [45], and ter-

rain reconstruction. Most of the content in this chapter is based on [16].

3.1 Background

While many scalable approximation methods for GP regression have been pro-

posed, scalable methods incorporating derivatives have received little attention.

In this chapter, we propose scalable methods for GPs with derivative informa-

tion built on the structured kernel interpolation (SKI) framework [75], which uses

local interpolation to map scattered data onto a large grid of inducing points,

enabling fast MVMs using FFTs. As the uniform grids in SKI scale poorly to

high-dimensional spaces, we also extend the structured kernel interpolation for

products (SKIP) method, which approximates a high-dimensional product ker-

nel as a Hadamard product of low rank Lanczos decompositions [25]. Both SKI

and SKIP provide fast approximate kernel MVMs, which are a building block

to solve linear systems with the kernel matrix and to approximate log determi-

nants [13].
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The eigenspectrum of K∇XX, the kernel matrix with derivative information,

may exhibit slow decay, despite KXX itself possessing fast spectral decay. Fast

forward to Figure 3.1 for two examples. The unfavorable spectrum of K∇XX im-

plies low-rank approximation such as SoR and FITC are infeasible. As a result,

preconditioning is necessary for convergence of any iterative method.

3.2 Scalable GPs with derivatives

One standard approach to scaling GPs substitutes the exact kernel with an ap-

proximate kernel. When the GP fits values and gradients, one may attempt to

separately approximate the kernel and the kernel derivatives. Unfortunately,

this may lead to indefiniteness, as the resulting approximation is no longer a

valid kernel. Instead, we differentiate the approximate kernel, which preserves

positive definiteness. We do this for the SKI and SKIP kernels below, but our

general approach applies to any differentiable approximate MVM.

3.2.1 D-SKI

D-SKI (SKI with derivatives) is the standard kernel matrix for Gaussian pro-

cesses with derivatives, but applied to the SKI kernel. Equivalently, we differ-

entiate the interpolation scheme:

k(x, x′) ≈
∑

i

wi(x)k(xi, x′)→ ∇k(x, x′) ≈
∑

i

∇wi(x)k(xi, x′).

One can use cubic convolutional interpolation [41], which we did in Chapter 2,

but higher order methods lead to greater accuracy, and we therefore use quintic
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interpolation [49]. The resulting D-SKI kernel matrix has the form
KXX (∂KXX)T

∂KXX ∂2KXX

 ≈


W

∂W

 KUU


W

∂W



T

=


WKUUWT WKUU(∂W)T

(∂W)KUUWT (∂W)KUU(∂W)T

 ,
where the elements of sparse matrices W and ∂W are determined by wi(x) and

∇wi(x) — assuming quintic interpolation, W and ∂W will each have 6d elements

per row. As with SKI with q gridpoints, we use FFTs to obtain O(q log q) MVMs

with KUU . Because W and ∂W have O(n6d) and O(nd6d) nonzero elements, re-

spectively, our MVM complexity is O(nd6d + q log q).

3.2.2 D-SKIP

Several common kernels are separable, i.e. they can be expressed as products

of one-dimensional kernels. Assuming a compatible interpolation scheme, this

structure is inherited by the SKI approximation for the kernel matrix without

derivatives,

KXX ≈ (W1K1WT
1 ) � (W2K2WT

2 ) � . . . � (WdKdWT
d ),

where A � B denotes the Hadamard product of matrices A and B with the same

dimensions, and W j and K j denote the SKI interpolation and inducing point grid

matrices in the jth coordinate direction. The same Hadamard product structure

applies to the kernel matrix with derivatives; for example, for d = 2,

K∇XX ≈



W1K1WT
1 W1K1 ∂WT

1 W1K1WT
1

∂W1K1WT
1 ∂W1K1 ∂WT

1 ∂W1K1WT
1

W1K1WT
1 W1K1 ∂WT

1 W1K1WT
1


�



W2K2WT
2 W2K2WT

2 W2K2 ∂WT
2

W2K2WT
2 W2K2WT

2 W2K2 ∂WT
2

∂W2K2WT
2 ∂W2K2WT

2 ∂W2K2 ∂WT
2


. (3.1)

52



Equation 3.1 expresses K∇XX as a Hadamard product of one dimensional ker-

nel matrices. Following this approximation, we apply the SKIP reduction [25]

and use Lanczos to further approximate equation 3.1 as (Q1T1QT
1 ) � (Q2T2QT

2 ).

This can be used for fast MVMs with the kernel matrix, see the appendix for de-

tails. Applied to kernel matrices with derivatives, we call this approach D-SKIP.

D-SKIP achieves better scaling with d than D-SKI as constructing the D-SKIP

kernel costs O(d2(n+ p log p+ p3n log d)) flops, and each MVM costs O(dp2n) flops

where p is the effective rank of the kernel at each step (rank of the Lanczos

decomposition). We achieve high accuracy with p � n.

3.2.3 Preconditioning

Recent work has explored several preconditioners for exact kernel matrices

without derivatives [12]. We have had success with preconditioners of the form

M = σ2I + FFT where K∇XX ≈ FFT with F ∈ Rn×p. Solving with the Sherman-

Morrison-Woodbury formula (a.k.a the matrix inversion lemma) is inaccurate

for small σ; we use the more stable formula M−1b = σ−2( f − Q1(QT
1 b)) where Q1

is computed in O(p2n) time by the economy QR factorization
F

σI

 =


Q1

Q2

 R.

In our experiments with solvers for D-SKI and D-SKIP, we have found that

a truncated pivoted Cholesky factorization, K∇XX ≈ (ΠL)(ΠL)T works well for

the low-rank factorization. Computing the pivoted Cholesky factorization is

cheaper than MVM-based preconditioners such as Lanczos or truncated eigen-

decompositions as it only requires the diagonal and the ability to form the rows
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where pivots are selected. Pivoted Cholesky is a natural choice when inducing

point methods are applied as the pivoting can itself be viewed as an inducing

point method where the most important information is selected to construct a

low-rank preconditioner [34]. The D-SKI diagonal can be formed in O(nd6d)

flops while rows cost O(nd6d + q) flops; for D-SKIP both the diagonal and the

rows can be formed in O(nd) flops.

3.2.4 Dimensionality reduction

In many high-dimensional function approximation problems, only a few direc-

tions are relevant. That is, if f : Rd → R is a function to be approximated, there

is often a matrix P with d̃ < d orthonormal columns spanning an active subspace

of Rd such that f (x) ≈ f (PPT x) for all x in some domain Ω of interest [8]. The op-

timal subspace is given by the dominant eigenvectors of the covariance matrix

C =
∫

Ω
∇ f (x)∇ f (x)T dx, generally estimated by Monte Carlo integration. Once

the subspace is determined, the function can be approximated through a Gaus-

sian process on the reduced space, i.e. we replace the original kernel k(x, x′) with

a new kernel ǩ(x, x′) = k(PT x, PT x′). Because we assume gradient information,

dimensionality reduction based on active subspaces is a natural pre-processing

phase before applying D-SKI and D-SKIP.

3.3 Experiments

Our experiments use the squared exponential (SE) kernel, which has product

structure and can be used with D-SKIP; and the spline kernel, to which D-SKIP
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does not directly apply. We use these kernels in tandem with D-SKI and D-SKIP

to achieve the fast MVMs derived in §3.2. We write D-SE to denote the exact SE

kernel with derivatives.

3.3.1 Eigenspectrum approximation

-10 -8 -6 -4
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10-2
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True spectrum
SKI spectrum

200 400 600 800 1000
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True spectrum
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-10 -8 -6 -4

Figure 3.1: (Left two images) log10 error in D-SKI approximation and com-
parison to the exact spectrum. (Right two images) log10 error in
D-SKIP approximation and comparison to the exact spectrum.

D-SKI and D-SKIP with the SE kernel approximate the original kernel well,

both in terms of MVM accuracy and spectral profile. Comparing D-SKI and

D-SKIP to their exact counterparts in Figure 3.1, we see their matrix entries are

very close (leading to MVM accuracy near 10−5), and their spectral profiles are

indistinguishable. The same is true with the spline kernel. Additionally, scaling

tests in Figure 3.2 verify the predicted complexity of D-SKI and D-SKIP. We

show the relative fitting accuracy of SE, SKI, D-SE, and D-SKI on some standard

test functions in Table 3.1.
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Figure 3.2: Scaling tests for D-SKI in two dimensions and D-SKIP in 11
dimensions. D-SKIP uses fewer data points for identical matrix
sizes.

3.3.2 Kernel learning on test functions

We consider several popular test functions in two and three dimensions to il-

lustrate that derivative information leads to higher accuracy. The results are

illustrated in Table 3.1.

Branin Franke Sine Norm Sixhump StyTang Hartman3

SE 6.02e-3 8.73e-3 8.64e-3 6.44e-3 4.49e-3 1.30e-2

SKI 3.97e-3 5.51e-3 5.37e-3 5.11e-3 2.25e-3 8.59e-3

D-SE 1.83e-3 1.59e-3 3.33e-3 1.05e-3 1.00e-3 3.17e-3

D-SKI 1.03e-3 4.06e-4 1.32e-3 5.66e-4 5.22e-4 1.67e-3

Table 3.1: Relative RMSE error on 10000 testing points for test functions
from [66], including five 2D functions (Branin, Franke, Sine
Norm, Sixhump, and Styblinski-Tang) and the 3D Hartman
function. We train the SE kernel on 4000 points, the D-SE ker-
nel on 4000/(d + 1) points, and SKI and D-SKI with SE kernel on
10000 points to achieve comparable runtimes between methods.
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3.3.3 Dimensionality reduction

We apply active subspace pre-processing to the 20 dimensional Welsh test func-

tion in [4]. The top six eigenvalues of its gradient covariance matrix are well

separated from the rest as seen in Figure 3.3(a). However, the function is far

from smooth when projected onto the leading 1D or 2D active subspace, as Fig-

ure 3.3(b) - 3.3(d) indicates, where the color shows the function value.
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space

Figure 3.3: 3.3(a) shows the top 10 eigenvalues of the gradient covariance.
Welsh is projected onto the first and second active direction in
3.3(b) and 3.3(c). After joining them together, we see in 3.3(d)
that points of different color are highly mixed, indicating a very
spiky surface.

We therefore apply D-SKI and D-SKIP on the 3D and 6D active subspace, re-

spectively, using 5000 training points, and compare the prediction error against

D-SE with 190 training points because of our scaling advantage. Table 3.2 re-

veals that while the 3D active subspace fails to capture all the variation of the

function, the 6D active subspace is able to do so. These properties are demon-

strated by the poor prediction of D-SKI in 3D and the excellent prediction of

D-SKIP in 6D.
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D-SE D-SKI (3D) D-SKIP (6D)

RMSE 4.900e-02 2.267e-01 3.366e-03

SMAE 4.624e-02 2.073e-01 2.590e-03

Table 3.2: Relative RMSE and SMAE prediction error for Welsh. The D-SE
kernel is trained on 4000/(d + 1) points, with D-SKI and D-SKIP
trained on 5000 points. The 6D active subspace is sufficient to
capture the variation of the test function.

3.3.4 Preconditioning

We discover that preconditioning is crucial for the convergence of iterative

solvers using approximation schemes such as D-SKI and D-SKIP. To illustrate

the performance of conjugate gradient (CG) method with and without the

above-mentioned truncated pivoted Cholesky preconditioner, we test D-SKI on

the 2D Franke function with 2000 data points, and D-SKIP on the 5D Friedman

function with 1000 data points. In both cases, we compute a pivoted Cholesky

decomposition truncated at rank 100 for preconditioning, and the number of

steps it takes for CG/PCG to converge are demonstrated in Figure 3.4 below. It

is clear that preconditioning universally and significantly reduces the number

of steps required for convergence.

3.3.5 Rough terrain reconstruction

Rough terrain reconstruction is a key application in robotics [27, 42], au-

tonomous navigation [31], and geostatistics. Through a set of terrrain measure-

ments, the problem is to predict the underlying topography of some region. In

the following experiment, we consider roughly 23 million nonuniformly sam-
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Figure 3.4: The color shows log10 of the number of iterations to reach a tol-
erance of 1e-4. The first row compares D-SKI with and without
a preconditioner. The second row compares D-SKIP with and
without a preconditioner. The red dots represent no conver-
gence. The y-axis shows log10(`) and the x-axis log10(σ) and we
used a fixed value of s = 1.

pled elevation measurements of Mount St. Helens obtained via LiDAR [7]. We

bin the measurements into a 970×950 grid, and downsample to a 120×117 grid.

Derivatives are approximated using a finite difference scheme.

We randomly select 90% of the grid for training and the remainder for test-

ing. We do not include results for D-SE, as its kernel matrix has dimension

roughly 4 · 104. We plot contour maps predicted by SKI and D-SKI in Figure 3.5

—the latter looks far closer to the ground truth than the former. This is quanti-

fied in the following table:

The Korean Peninsula elevation and bathymetry dataset[48] is sampled at a

resolution of 12 cells per degree and has 180 × 240 entries on a rectangular grid.

We take a smaller subgrid of 17 × 23 points as training data. To reduce data
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Figure 3.5: On the left is the true elevation map of Mount St. Helens. In
the middle is the elevation map calculated with the SKI. On the
right is the elevation map calculated with D-SKI.

` s σ σ2 Testing SMAE Overall SMAE Time[s]

SKI 35.196 207.689 12.865 n.a. 0.0308 0.0357 37.67

D-SKI 12.630 317.825 6.446 2.799 0.0165 0.0254 131.70

Table 3.3: The hyperparameters of SKI and D-SKI are listed. Note that
there are two different noise parameters σ1 and σ2 in D-SKI, for
the value and gradient respectively.

noise, we apply a Gaussian filter with σfilter = 2 as a pre-processing step. We

observe that the recovered surfaces with SKI and D-SKI highly resemble their

respective counterparts with exact computation and that incorporating gradient

information enables us to recover more terrain detail.

` s σ SMAE Time[s]

SKI 16.786 855.406 184.253 0.1521 10.094

D-SKI 9.181 719.376 29.486 0.0746 11.643
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(a) Ground Truth (b) SKI (c) D-SKI

Figure 3.6: D-SKI is clearly able to capture more detail in the map than
SKI. Note that inclusion of derivative information in this case
leads to a negligible increase in calculation time.

3.3.6 Implicit surface reconstruction

Reconstructing surfaces from point cloud data and surface normals is a standard

problem in computer vision and graphics. One popular approach is to fit an

implicit function that is zero on the surface with gradients equal to the surface

normal. Local Hermite RBF interpolation has been considered in prior work

[45], but this approach is sensitive to noise. In our experiments, using a GP

instead of splining reproduces implicit surfaces with very high accuracy. In this

case, a GP with derivative information is required, as the function values are all

zero.

In Figure 3.7, we fit the Stanford bunny using 25000 points and associated

normals, leading to a K∇XX matrix of dimension 105, clearly far too large for exact

training. We therefore use SKI with the thin-plate spline kernel, with a total of

30 grid points in each dimension. The left image is a ground truth mesh of the

underlying point cloud and normals. The middle image shows the same mesh,

but with heavily noised points and normals. Using this noisy data, we fit a GP

and reconstruct a surface shown in the right image, which looks very close to

the original.
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Figure 3.7: (Left) Original surface (Middle) Noisy surface (Right) SKI re-
construction from noisy surface (s = 0.4, σ = 0.12)

3.3.7 Bayesian optimization with derivatives

Prior work examines Bayesian optimization (BO) with derivative information

in low-dimensional spaces to optimize model hyperparameters [81]. Wang et

al. consider high-dimensional BO (without gradients) with random projections

uncovering low-dimensional structure [70]. We propose BO with derivatives

and dimensionality reduction via active subspaces, detailed in Algorithm 1.

Algorithm 3: BO with derivatives and active subspace learning

1: while Budget not exhausted do

2: Calculate active subspace projection P ∈ RD×d using sampled gradients

3: Optimize acquisition function, un+1 = arg maxA(u) with xn+1 = Pun+1

4: Sample point xn+1, value fn+1, and gradient ∇ fn+1

5: Update dataDi+1 = Di ∪ {xn+1, fn+1,∇ fn+1}

6: Update hyperparameters of GP with gradient defined by kernel

k(PT x, PT x′)

7: end
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Algorithm 1 estimates the active subspace and fits a GP with derivatives in

the reduced space. Kernel learning, fitting, and optimization of the acquisition

function all occur in this low-dimensional subspace. In our tests, we use the

expected improvement (EI) acquisition function, which involves both the mean

and predictive variance. We consider two approaches to rapidly evaluate the

predictive variance v(x) = k(x, x) − KxXK̃−1
XXKXx at a test point x. In the first ap-

proach, which provides a biased estimate of the predictive variance, we replace

K̃−1
XX with the preconditioner solve computed by pivoted Cholesky; using the

stable QR-based evaluation algorithm, we have

v(x) ≈ v̂(x) ≡ k(x, x) − σ−2(‖KXx‖
2 − ‖QT

1 KXx‖
2).

In the second approach, we use a randomized estimator as in [3] to compute

the predictive variance at many points X′ simultaneously, and use the pivoted

Cholesky approximation as a control variate to reduce the estimator variance:

vX′ = diag(KX′X′) − Ez

[
z � (KX′XK̃−1

XXKXX′z − KX′X M−1KXX′z)
]
− v̂X′ .

The latter approach is unbiased, but gives very noisy estimates unless many

probe vectors z are used. Both the pivoted Cholesky approximation to the pre-

dictive variance and the randomized estimator resulted in similar optimizer

performance in our experiments.

To test this algorithm, we consider five instances of the 5D Ackley and 5D

Rastrigin functions randomly embedded in [−10, 15]50 and [−4, 5]50, respectively.

In Figure 3.8(a) and Figure 3.8(b), we show the performance of our algorithm

using the D-SKI kernel and the EI acquisition function. We fix d = 2, and at each

iteration we pick two directions in the estimated active subspace at random.

We also compare to three other methods: BO with EI and no gradients in the

original space; multi-start BFGS with full gradients; and random search. In both

63



0 100 200 300 400 500

-20

-15

-10

-5 BO exact

BO D-SKI

BFGS

Random sampling

(a) BO on Ackley

0 100 200 300 400 500

-40

-20

0

20
BO exact
BO SKI
BFGS
Random sampling

(b) BO on Rastrigin

Figure 3.8: In the following experiments, 5D Ackley and 5D Rastrigin are
embedded into 50 a dimensional space. We run Algorithm
1, comparing it with BO exact, multi-start BFGS, and random
sampling. D-SKI with active subspace learning clearly outper-
forms the other methods.

examples, the BO variants perform better than the alternatives, and our method

outperforms standard BO.

3.4 Conclusion

The work in this chapter extended the work from Chapter 2 to the case where we

observe both values and gradients. Gradients are a valuable additional source of

information for GP regression, but inclusion of d extra pieces of information per

point naturally leads to new scaling issues. We introduced two methods to deal

with these scaling issues: D-SKI and D-SKIP. Both are structured interpolation

methods, and the latter also uses kernel product structure. We have discussed

practical details — preconditioning is necessary to guarantee convergence of it-

erative methods and active subspace calculation reveals low-dimensional struc-

ture when gradients are available. We presented several experiments with ker-
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nel learning, dimensionality reduction, terrain reconstruction, implicit surface

fitting, and scalable Bayesian optimization with gradients. For simplicity, these

examples all possessed full gradient information; however, our methods triv-

ially extend if only partial gradient information is available. Future work and

potential extensions are discussed in Chapter 6.
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CHAPTER 4

GLOBAL OPTIMIZATION IN RBF NATIVE SPACES

In this chapter we consider the global optimization problem of minimizing

f : Ω → R where Ω is compact. Given only continuity of f , an optimization

method will converge to a global minimum if and only if it eventually samples

densely in Ω [67]. Given further information about the function, such as a Lip-

schitz constant, one can find a global minimum more efficiently. While prior

surrogate-based optimization methods achieve global convergence by dense

sampling, standard approximation theory results for these surrogates often re-

quire more structure than simple continuity. In particular, RBF approximations

converge only when f belongs to a certain reproducing kernel Hilbert space (the

native space for the RBF). In this chapter, we introduce a new global optimiza-

tion method based on this approximation theory. Given only an upper bound

on the native space norm of f , we use RBF approximation theory to develop a

new algorithm that converges globally without dense sampling.

4.1 Background

The inequality in (1.8) provides a lower bound for f (x) anywhere in the domain:

f (x) ≥ ` f ,X(x) := s f ,X(x) − PX,ϕ(x)
√
| f |2
Nϕ
− |sX |

2
Nϕ
, (4.1)

and this lower bound only depends on | f |Nϕ
and the set X. In this section, we

develop a greedy global optimization algorithm based on minimizing this lower

bound at each step. For this to be feasible we assume that f ∈ Nϕ and that we

know | f |Nϕ
or an upper bound ρ ≥ | f |Nϕ

. The assumption f ∈ Nϕ is not strong
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when we are working with e.g., polyharmonic kernels since the native spaces

are instances of Beppo-Levi spaces as was discussed on page 6. In particular,

we make the following assumptions:

1. f ∈ Nϕ.

2. | f |Nϕ
or an upper bound ρ is known.

3. X is (ν − 1)-unisolvent (if ϕ is conditionally positive definite of order ν).

4. We can find the global minimum of ` f ,Xn in Ω.

4.1.1 The algorithm

The ideas from the previous section lead to an optimization algorithm that se-

lects the point that minimizes the lower bound. Global minimization of the

lower bounds may itself be challenging and have several local minima. It is pos-

sible to use a heuristic method such as a genetic algorithm or a particle swarm,

but since both the gradient and the Hessian of the lower bounds are easy to ob-

tain we can use a multi-start gradient method. The optimization algorithm is

given in Algorithm 4.

This algorithm will stop the optimization process when we have found a

function value within ε of the global minimum value. This is achieved by using

the fact that the global minimum value f ∗ satisfies

min
y∈Ω

` f ,Xn(y) ≤ f ∗ ≤ min fXn , ∀n ≥ n0,

from which it is obvious that

∣∣∣ min fXn − f ∗
∣∣∣ ≤ ∣∣∣ min fXn −min

y∈Ω
` f ,Xn(y)

∣∣∣.
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Algorithm 4: Optimization algorithm based on a semi-norm budget

1: Tolerance ε

2: Xn0 ← {x1, x2, . . . , xn0} a unisolvent set of initial points

3: fXn0
← { f (x1), f (x2), . . . , f (xn0)}

4: Build s f ,Xn0
from (Xn0 , fXn0

)

5: n← n0

6: while
∣∣∣ min fXn −min

x∈Ω
` f ,Xn(x)

∣∣∣ > ε do

7: y← arg min
x∈Ω

` f ,Xn(x)

8: Xn+1 ← Xn ∪ {y}

9: fXn+1 ← fXn ∪ { f (y)}

10: Build s f ,Xn+1 from (Xn+1, fXn+1)

11: n← n + 1

We also have the property that the sequence of lower bounds is non-decreasing;

that is, for each iteration n where s f ,Xn(y) , f (y) we have that ` f ,Xn(x) < ` f ,Xn+1(x)

for all x < Xn. This property is what we will use to prove that this algorithm is

globally convergent without necessarily sampling densely in Ω as long as the as-

sumptions are satisfied. In particular, if we are given an upper bound ρ ≥ | f |Nϕ
,

then Algorithm 4 will do more exploration and less exploitation since the lower

bounds are weaker. On the other hand, if ρ < | f |Nϕ
, then global convergence

cannot be guaranteed.
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4.2 Convergence of the method

In this section we prove that Algorithm 4 is globally convergent even though it

may not sample densely. We first show the result for SPD kernels in §4.2.1, then

explain how to extend the results to CPD kernels in §4.2.2.

4.2.1 Global convergence for SPD kernels

Suppose k(x, y) = ϕ(r) is a radial SPD kernel and that there is some continuous

monotonically increasing function ψ : R≥0 → R≥0 with ψ(0) = 0 such that |k(x, y)−

k(x, x)| ≤ ψ(δ) for any ‖x − y‖ ≤ δ. Note that this is a weak assumption and that it

is easy to construct such a function for the kernels introduced in Chapter 1. We

start by constructing an upper bound on the power function (1.7) by bounding

it by the power function based only on the closest point.

Lemma 2. Let X be any set of interpolation nodes. Then for any y,

PX,ϕ(y)2 ≤ 2ψ
(
min
x∈X
‖y − x‖

)
.

Proof. Let x be the closest point to y in X. Then

PX,ϕ(y)2 ≤ Px,ϕ(y)2 = k(y, y) −
k(x, y)2

k(x, x)

because the power function decreases with each new interpolation point. It

follows that

k(y, y) −
k(x, y)2

k(x, x)
= k(y, y) − 2k(x, y) + k(x, x) −

(k(x, x) − k(x, y))2

k(x, x)

≤ |k(x, x) − k(x, y)| + |k(y, y) − k(x, y)|

≤ 2ψ
(
min
x∈X
‖y − x‖

)
.
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�

The following lemma is a trivial consequence of the fact that the sequence of

lower bounds is non-decreasing.

Lemma 3. For any j > 0,

` f ,Xn(xn+ j) ≤ f ∗.

Proof. By construction, ` f ,Xn+ j−1(xn+ j) ≤ f ∗; and the lower bounds increase with

each additional point, so ` f ,Xn(xn+ j) ≤ ` f ,Xn+ j−1(xn+ j). �

Next, we combine the previous two lemmas with the inequality in (1.8) to

bound how close a function value is from the global minimum value f ∗.

Lemma 4. Suppose ‖xn − xn+ j ‖ ≤ δ. Then

| f (xn+ j) − f ∗| ≤
√

8ψ(δ) | f |Nϕ
.

Proof. Let γ =
√
| f |2
Nϕ
− |s f ,Xn |

2
Nϕ
≤ | f |Nϕ

. We first observe that

| f (xn+ j) − ` f ,Xn(xn+ j)| =
∣∣∣ f (xn+ j) − s f ,Xn(xn+ j) + γPXn,ϕ(xn+ j)

∣∣∣
≤

∣∣∣ f (xn+ j) − s f ,Xn(xn+ j)
∣∣∣ + γPXn,ϕ(xn+ j)

≤ 2γPXn,ϕ(xn+ j)

≤ 2| f |Nϕ
PXn,ϕ(xn+ j).

By Lemma 2 and Lemma 3,

f (xn+ j) − f ∗ ≤ 2PXn,ϕ(xn+ j)| f |Nϕ
≤ 2

√
2ψ(δ)| f |Nϕ

.

�
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We are now ready to prove that Algorithm 4 on page 68 is globally con-

vergent. The main idea of the proof is to use Bolzano-Weierstrass to pick a

convergent subsequence and show that the corresponding sequence of function

values is arbitrarily close to f ∗. The proof is valid if there are multiple global

minimizers of f since we can always pick one convergent subsequence.

Theorem 5. Let Ω ⊂ Rd be compact, and suppose ρ ≥ | f |Nϕ
. Then Algorithm 4 is

globally convergent; that is, min fXn → f ∗.

Proof. Let (xn) be the sequence selected by Algorithm 4. The Bolzano-

Weierstrass theorem guarantees a convergent subsequence (xni) such that

xni → x̂ ∈ Ω, and continuity of f guarantees that f (xni) → f (x̂). For any ε > 0,

continuity of ψ (together with ψ(0) = 0) implies ∃δ > 0 such that
√

8ψ(δ)| f |Nϕ
< ε.

For any convergent subsequence (xni), there exists an i0 such that for all j > 0,

‖xni0+ j − xi0‖ ≤ δ; by the previous lemma, this implies

0 ≤ f (xi0+ j) − f ∗ ≤ ε.

We are therefore guaranteed f (x̂) = f ∗. �

4.2.2 Global convergence for CPD kernels

Now consider the case where the kernel k(x, y) = ϕ(r) is a radial CPD kernel

relative to some polynomial space with basis functions π1, π2, . . . πm. In this set-

ting, we need a modification to Lemma 2. We assume a function ψ that controls

both the kernel (as before) and the polynomial basis functions — that is, we also

require |π j(x) − π j(y)| ≤ ψ(‖x − y‖), j = 1, . . . ,m.
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Lemma 6. Let X be any set of interpolation nodes consisting of a fixed subset X0

which is unisolvent with respect to interpolation in Πd
ν−1 and a subset X1 containing

the remaining nodes. Then there exists a constant C that does not depend on X, such

that for any y,

PX,ϕ(y)2 ≤ 2Cψ
(
min
x∈X1
‖y − x‖

)
.

Proof. For any points u, v not in X0, we can define the modified SPD kernel func-

tion

k̂(u, v) = k(u, v) − w(u)T A−1
0 w(v)

where

A0 =


KX0X0 PX0

PT
X0

0

 , w(u) =


KX0u

PT
u

 .
By compactness of Ω and continuity of the kernel and polynomial basis func-

tions, there exists some C > 1 such that ‖A−1
0 w(u)‖1 ≤ C − 1 for all u ∈ Ω. Note

that

|k̂(u, v) − k̂(u, u)| ≤ |k(u, v) − k(u, u)| + |w(u)T A−1
0 (w(v) − w(u)|

≤ ψ(‖v − u‖) + (C − 1)‖w(v) − w(u)‖∞

≤ ψ(‖v − u‖) + (C − 1)ψ(‖v − u‖)

= Cψ(‖v − u‖),

The modified kernel is SPD on Ω \ X0, and the power function PX,ϕ(y) for the

original kernel is the same as the power function P̂X1,ϕ(y) for the modified kernel.

Let x be the point in X1 that is nearest to y. Then

PX,ϕ(y)2 ≤ PX0∪{x},ϕ(y)2 = P̂x,ϕ(y) ≤ 2Cψ(‖x − y‖),

by applying Lemma 2. �
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The proof of Theorem 5 for a CPD kernel parallels what we saw in the SPD

case, except that we must work with the scaled function ψ̂(δ) = Cψ(δ).

4.2.3 Convergence rates

The standard convergence rate theory for RBF interpolation was summarized

in §1.3.2. However, these results do not apply in our setting as convergence is

measured in terms of the fill distance. Algorithm 4 may not sample densely

which will prevent the fill-distance from approaching zero. We are interested in

how fast min fXn approaches f (x∗), and if we use the fact that

∣∣∣ f (x∗) −min fXn

∣∣∣ ≤ | f (x∗) − ` f ,Xn(x∗)|,

it is enough to find a rate for how fast ` f ,Xn(x∗) approaches f (x∗). Mimicking the

main steps in Lemma 4,

| f (x∗) − ` f ,Xn(x∗)| =
∣∣∣ f (x∗) − s f ,Xn(x∗) + γPXn,ϕ(x∗)

∣∣∣
≤

∣∣∣ f (x∗) − s f ,Xn(x∗)
∣∣∣ + γPXn,ϕ(x∗)

≤ 2γPXn,ϕ(x∗)

we need to find the rate of convergence for the power function evaluated at x∗.

The easiest way to achieve a convergence rate that relates to the smoothness

of the kernel is to modify the algorithm so a point is selected uniformly from

the domain with probability ε, and the minimizer of the lower bound is selected

with probability 1 − ε. This approach is used by Bull [6] to prove convergence

rates for expected improvement (EI), but the results are miss-leading as the con-

vergence rates comes from the quasi-uniformity of the points selected uniformly

at random and does not depend on how the other points are selected.
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4.3 Experiments

This section will test Algorithm 4 on a set of popular test problems. We will ver-

ify that the sampling pattern is promising and compare estimated convergence

rates with convergence rates based on the fill distance.

4.3.1 Implementation details

We use MATLAB R2018b for the numerical experiments and rely on fmincon to

minimize the lower bounds. In particular, we use the SQP method since it works

with bound constraints and can make use of gradient information for the lower

bounds. We use SQP in a multi-start fashion by starting from a perturbation

of each previously evaluated point. This approach was compared to using a

genetic algorithm and the multi-start gradient approach consistently did better.

The true semi-norm was approximated based on a regular grid consisting of

10,000 points.

4.3.2 Sampling pattern and feasible region

This experiment illustrates the sampling pattern of Algorithm 4, using a cubic

kernel and a linear tail, on the two-dimensional six-hump camel function, which

has 6 stationary points. The true semi-norm was estimated based on a 100× 100

grid and we used an SLHD with 6 points as the experimental design and a total

of 250 function evaluations. Figure 4.1 shows the sampling pattern and we see

that the algorithm was eventually only sampling close to the two global minima.
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It is also clear that regions with large function values were barely explored.

Figure 4.1: The sampling pattern of Algorithm 4 on the six-hump camel
function. We used a cubic kernel and a linear tail and a total of
250 evaluations.

4.3.3 Estimated convergence rates

We focus on the cubic kernel which converges at a polynomial rate according

to Table 1.1. We consider four different test functions and estimate the true

semi-norm in a similar way as in the previous experiments, which makes this

experiment limited to low-dimensional functions. We look for a convergence

rate of the form

en =
∣∣∣ f (x∗) −min

x∈Ω
` f ,Xn(x)

∣∣∣ = Cn−β.

If the points are quasi-uniformly distributed we expect β ≈ 2/d since hXn,Ω =

O(n−1/d) and the cubic kernel is of order 2. Algorithm 4 may not sample densely,

so the convergence rate results from §1.3.2 do not apply, but gives a baseline of
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comparison. The constants C and β are found by finding the optimal degree-1

polynomial in the least-squares sense that fits the data points {log(n), log(en)}Nn=1.

We ignore the first 100 evaluations since they are not part of the asymptotic

region and has too much influence on the resulting fit. We use a total of 250

function evaluations and the experimental design is chosen to be a SLHD with

2(d + 1) points. The resulting convergence plots can be seen in Figure 4.2.
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Figure 4.2: Estimated convergence rates for different functions using Al-
gorithm 4 with a cubic kernel and a linear tail. (Blue dots) Val-
ues of en. (Red line) Least squares fit of the form Cn−β

Figure 4.2(a) shows the six-hump camel function which is a two-dimensional

function with 6 stationary points. The lower bound was within 0.0248 of the

global optimum value after 250 evaluations and the exponent β was estimated

to be 3.02, which is much larger than the expected value of 1 for a quasi-uniform

point distribution. The best function value found is within 4.27e−7 of the global

minimum value and the R2 of the linear fit is 0.994.
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Figure 4.2(b) shows the 3-dimensional Rosenbrock function, a common test

function in optimization. The narrow valley from the local minimum (0, 0, 0) to

the global minimum (1, 1, 1) makes it challenging for many optimization algo-

rithms. We notice that the lower bounds are 516.00 from the global minimum

value, mainly since the sharp valleys result in a large value of | f |Nϕ
. The best

solution found is within 8.1e−3 of the global minimum value and the estimated

exponent is β = 0.95, which is slightly larger than the expected convergence rate

of 2/3 for a quasi-uniform point distribution. The R2 of the linear fit is 0.939.

Figure 4.2(c) shows the 3-dimensional Hartman3 function, which has 4 local

minima. The lower bound is within 0.81 of the global optimum value after 250

evaluations and the estimated value β = 1.75 is much better than the expected

value 2/3 in the quasi-uniform setting. The function value of the best solution

found is within 1.7e − 7 of the global minimum value. The R2 of the linear fit is

0.939.

Figure 4.2(d) shows the 6-dimensional Hartman6 function, which has 6 local

minima. Estimating the semi-norm is challenging in six dimensions and we

used a regular grid with 56 points. For this reason, the estimated semi-norm

may be much smaller than the true semi-norm. The lower bound is within 10.06

of the global minimum value and the estimated value of β = 0.83 is larger than

the expected value of 1/3 for a quasi-uniform point distribution. The function

value of the best solution found is within 0.19 of the global minimum value and

the R2 of the linear fit is 0.935.
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4.4 Conclusion

We have introduced a new RBF-based global optimization algorithm for expen-

sive black-box functions that uses native space semi-norm bounds to pick the

next evaluation. We have proved that the algorithm is globally convergent for

functions in the native space of the given RBF kernel given an upper bound on

the semi-norm. Our numerical experiments demonstrate that Algorithm 4 con-

verges at a rate that is better than what we expect from RBF interpolation theory,

and that the sampling pattern on the six-hump camel function looks promising.

Future work includes estimating the semi-norm from a global regularity condi-

tion, such as Lipschitz as well as extending the algorithm to work with functions

outside the native space of the kernel. We also want to prove convergence re-

sults that agree with the RBF interpolation theory in §1.3.2 without modifying

the algorithm to select additional points uniformly at random.
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CHAPTER 5

PYSOT AND POAP: ASYNCHRONOUS GLOBAL OPTIMIZATION

This chapter describes Plumbing for Optimization with Asynchronous Paral-

lelism (POAP) and the Python Surrogate Optimization Toolbox (pySOT). POAP

is an event-driven framework for building and combining asynchronous op-

timization strategies, designed for global optimization of expensive functions

where concurrent function evaluations are appealing. pySOT is a collection of

synchronous and asynchronous surrogate optimization strategies, implemented

in the POAP framework. We support the stochastic RBF method by Regis and

Shoemaker [58] along with various extensions of this method, as well as several

Bayesian optimization methods. We have implemented many different surro-

gate models, experimental designs, and a large set of test problems.

We have tested that our implementation is consistent with previously re-

ported results and make an extensive comparison between synchronous and

asynchronous parallel. We find that asynchrony is never worse than synchrony

on several challenging multimodal test problems and conclude that launching

evaluations asynchronously is consistently better when increasing the variance

in the evaluation time or the number of processors.

5.1 Background

Several parallel algorithms have been developed for computationally expen-

sive black-box optimization. Regis and Shoemaker [59] developed a syn-

chronous parallel surrogate optimization algorithm based on radial basis func-
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tions (RBFs). They made two assumptions: (i) that the resources are homoge-

neous and (ii) that the evaluation time is constant. The first assumption does not

hold for heterogeneous parallel computing platforms and the second assump-

tion is unlikely to hold in cases where the complexity of evaluating the objective

depends spatially on the input. The first assumption can almost always be as-

sessed before the start of the optimization run while the second assumption may

not be easy to assess in practice. Another limitation of the work in [59] is that the

algorithm does not handle the possibility of worker failures and crashed evalu-

ations. Being able to handle failures is critical in order to run the algorithm on

large-scale systems. The natural way of dealing with cases where (i) or (ii) are

violated is to launch function evaluations asynchronously, which is illustrated

in Figure 5.1.

5.1.1 Survey of Software

Figure 5.1: Synchronous vs asyn-
chronous parallel

A library with similar functionality

as POAP is SCOOP [37], a Python

based library for distributing concur-

rent tasks while internally handling

the communication. POAP provides

similar functionality for global op-

timization problems and also han-

dles all of the communication inter-

nally, which makes it easy to imple-

ment asynchronous optimization al-

gorithms.
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HOPSPACK (Hybrid Optimization Parallel Search PACKage) [52] is a C++

framework for derivative-free optimization problems. HOPSPACK supports

parallelism through MPI or multi-threading and supports running multiple op-

timization solvers simultaneously, a functionality similar to combining strate-

gies in POAP. The framework implements an asynchronous pattern search

solver and supports non-linear constraints and mixed-integer variables, but

there is no support for surrogate optimization.

MATSuMoTo (MATLAB Surrogate Model Toolbox) [50] is an example of a

surrogate optimization toolbox. MATSuMoTo is written in MATLAB and has

support for computationally expensive, black-box global optimization prob-

lems that may have continuous, mixed-integer, or pure integer variables. MAT-

SuMoTo offers a variety of choices for surrogate models and surrogate model

mixtures, experimental designs, and auxiliary functions. The framework is not

designed to support a large class of surrogate optimization algorithms and the

lack of object orientation makes it hard to extend the framework. Parallelism

is only supported through MATLAB’s Parallel Computing Toolbox and there is

no support for asynchrony, combining strategies, or dynamically changing the

number of workers.

Nonlinear Optimization by Mesh Adaptive Direct Search (NOMAD) [44] is a

library intended for time-consuming black-box simulation with a small number

of variables. The library implements mesh adaptive direct search (MADS) and

there is support for asynchronous function evaluations using MPI. The frame-

work is fault resilient in the sense that it supports objective function failing to

return a valid output. Similar fault resilience is provided by POAP, which allows

the user to decide what action to take in case of a failure.
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Dakota [15] is an extensive toolkit with algorithms for optimization with

gradient and nongradient-based methods; uncertainty quantification, nonlin-

ear least squares methods, and sensitivity/variance analysis. These components

can be used on their own or with strategies such as surrogate-based optimiza-

tion, mixed integer nonlinear programming, or optimization under uncertainty.

The Dakota toolkit is object-oriented and written in C++ with the intention of

being a flexible and extensible interface between simulation codes and there is

support for parallel function evaluations.

BayesOpt [47] is a library with Bayesian optimization methods to solve non-

linear optimization problems. Bayesian optimization methods build a posterior

distribution to capture the evidence and prior knowledge of the target function.

Built in C++, the library is efficient, portable, and flexible. There is support for

commonly used methods such as sequential Kriging optimization (SKO), se-

quential model-based optimization (SMBO), and efficient global optimization

(EGO). The software is sequential and there is no support for parallel function

evaluations.

RBFOpt [9] is a radial basis function based library that implements and ex-

tends the global optimization algorithm proposed by Gutmann [29]. RBFOPT

is written in Python and supports asynchronous parallelism through Python’s

multiprocessing library, but there is no support for MPI. The software is not

designed to cover a large class of surrogate optimization methods and there is

no support for dynamically changing the number of workers and combining

different optimization strategies.

Cornell-MOE is a Python library that implements Bayesian optimization

with the expected improvement and knowledge gradient acquisition functions.
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The software is built on work that extends these acquisition functions to batch

synchronous parallel, both with and without gradient information [80, 81].

There is no support for asynchronous parallelism and it is not possible to dy-

namically change the number of workers.

5.2 The asynchronous algorithm

A surrogate optimization in the flavor of Algorithm 1 on page 18 is easy to im-

plement, but may be inefficient if the evaluation time is not constant. This can be

because evaluating the simulation model requires larger computational efforts

for some input values (e.g., evaluating a PDE-based objective function may re-

quire smaller step sizes for some values of the decision variable x). Computation

time can also vary because of variation in the computational resources. Deal-

ing with potential function evaluation crashes is less obvious in a synchronous

framework, where we may either try to re-evaluate or exclude the points from

the batch. Finally, dynamically changing the number of resources is much more

straightforward in an asynchronous framework, which we describe next.

Just as in the synchronous parallel case we start by evaluating an experi-

mental design. These points can be evaluated asynchronously, but the fact that

we want to evaluate all design points before proceeding to the adaptive phase

introduces an undesirable barrier. This becomes an issue if there are straggling

workers or if some points take a long time to evaluate. The most natural solu-

tion is to generate an experimental design that makes it possible to let workers

proceed to the adaptive phase once all points are either completed or pending.

To be more precise, assume that we have p workers and that q points are needed
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to construct a surrogate model. We can then generate an experimental design

with ≥ p + q − 1 points, which will allow workers to proceed to the adaptive

phase once there are no outstanding evaluations in the experimental design.

The adaptive phase differs from Algorithm 1 in the sense that we propose a

new evaluation as soon as a worker becomes available.

We use an event-driven framework where the master drives the event loop,

updates the surrogate, solves the auxiliary problem, etc., and we have p workers

available to do function evaluations. The workload of the master is significantly

less than of the workers, so we can use the same number of workers as we have

available resources. The asynchronous algorithm is illustrated in Algorithm 5.

5.2.1 Updating the sampling radius in Stochastic SRBF

We now elaborate on how to pick the value of the sampling radius γ that is used

to generate the candidate points used in the LMS-RBF and DYCORS methods.

We follow the idea in [58] where counters Csuccess and Cfail are used to track the

number of consecutive evaluations with and without significant improvement.

This idea is extended to synchronous parallel in [59] by processing a batch at a

time. If Csuccess reaches a tolerance Fsuccess the sampling radius is doubled and

Csuccess is set to 0. Similarly, if Cfail reaches Ffail the sampling radius is halved and

Cfail is set to 0.

In the asynchronous setting, we update the counters after each completed

function evaluation. We do not update the counters for evaluations that were

launched before the last time the sampling radius was changed. The reason for

this is that these evaluations are based on outdated information. The logic for
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Algorithm 5: Asynchronous surrogate optimization algorithm

1: Inputs: Initial design points, p workers

2: X ← ∅, fX ← ∅

3: Queue initial design

4:

5: for each worker do . Launch initial evaluations

6: Pop point from queue and dispatch to worker

7:

8: while stopping criterion not met (e.g., t < tmax) do . Event loop

9: if evaluation completed then

10: Update X and fX

11: else if evaluation failed and retry desired then

12: Add back to evaluation queue

13:

14: if worker ready then

15: if evaluation queue empty then

16: Build surrogate model

17: Solve auxiliary problem and add point to the queue

18: Pop point from queue and dispatch to worker

19: return xbest, fbest
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Algorithm 6: Sampling radius adjustment routine

1: Inputs: γ, f (xi), xi, fbest, xbest, Csuccess, Cfail, Fsuccess, Ffail, δ

2: if f (xi) < fbest then

3: fbest ← f (xi)

4: xbest ← xi

5: if f (xi) < fbest − δ| fbest| then

6: Csucc ← Csucc + 1

7: Cfail ← 0

8: else

9: Csucc ← 0

10: Cfail ← Cfail + 1

11:

12: if Csucc = Fsucc or Cfail = Ffail then

13: Csucc ← 0

14: Cfail ← 0

15: if Csucc = Fsucc then

16: γ ← min(2γ, γmax)

17: else

18: γ ← max(γ/2, γmin)

19:

20: return γ, fbest, xbest Csuccess, Cfail

updating the sampling radius and the best solution can be seen in Algorithm 6.

We also follow the recommendations in [58] and [59] to restart the algorithm

when we reach a maximum failure tolerance parameterMfail or when the sam-
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pling radius γ drops below γmin. Restarting has shown to be successful for LMS-

RBF and DYCORS as it can be hard to make progress when the surrogate is very

biased towards the current best solution and we may be stuck in a local mini-

mum that is hard to escape. Restarting the algorithm can help avoid this issue.

We do not terminate pending evaluations after a restart occurs, but they are not

incorporated in the surrogate model or used to adjust the sampling radius when

they finish.

5.3 POAP implementation

This section describes the Plumbing for Optimization with Asynchronous Par-

allelism1 (POAP) framework. POAP has three main components: a controller that

asks workers to run function evaluations, a strategy that proposes new actions,

and a set of workers that carry out function evaluations.

5.3.1 Controllers

The controller is responsible for accepting or rejecting proposals by the strat-

egy object, controlling and monitoring the workers, and informing the strat-

egy object of relevant events. Examples of relevant events are the processing of

a proposal, or status updates on a function evaluation. Interactions between

controller and the strategies are organized around proposals and evaluation

records. At the beginning of the optimization and on any later change to the

system state, the controller requests a proposal from the strategy. The proposal

1POAP can be downloaded from: https://github.com/dbindel/POAP

87



consists of an action (evaluate a function, kill a function, or terminate the op-

timization), a list of parameters, and a list of callback functions to be executed

once the proposal is processed. The controller then either accepts the proposal

(and sends a command to the worker), or rejects the proposal.

When the controller accepts a proposal to start a function evaluation, it cre-

ates an evaluation record to share information about the status of the evaluation

with the strategy. The evaluation record includes the evaluation point, the sta-

tus of the evaluation, the value (if completed), and a list of callback functions

to be executed on any update. Once a proposal has been accepted or rejected,

the controller processes any pending system events (e.g. completed or canceled

function evaluations), notifies the strategy about updates, and requests the next

proposed action.

POAP comes with a serial controller for objective function evaluations car-

ried out in serial. There is also a threaded controller that dispatches work to a

set of workers where each worker is able to handle evaluation and kill requests.

The requests are asynchronous in the sense that the workers are not required

to complete the evaluation or termination requests. The worker is forced to re-

spond to evaluation requests, but may ignore kill requests. When receiving an

evaluation request, the worker should either attempt the evaluation or mark the

record as killed. The worker sends status updates back to the controller by up-

dating the relevant record. There is also an extension of the threaded controller

that works with MPI and a controller that uses simulated time. The latter is

useful for testing asynchronous optimization strategies for different evaluation

time distributions.
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5.3.2 Strategies

The strategy is responsible for choosing new evaluations, killing evaluations,

and terminating the optimization run when a stopping criteria is reached. POAP

provides some basic default strategies based on non-adaptive sampling and se-

rial optimization routines and also some strategies that adapt or combine other

strategies.

Different strategies can be composed by combining their control actions,

which can be used to let a strategy cycle through a list of optimization strategies

and select the most promising of their proposals. Strategies can also subscribe to

be informed of all new function evaluations so they incorporate any new func-

tion information, even though the evaluation was proposed by another strategy.

This makes it possible to start several independent strategies while still allowing

each strategy to look at the function information that comes from function eval-

uations proposed by other strategies. As an example, we can have a local op-

timizer strategy running a gradient based method where the starting point can

be selected based on the best point found by any other strategy. The flexibility

of the POAP framework makes combined strategies like these straightforward.

5.3.3 Workers

The multi-threaded controller employs a set of workers that are capable of man-

aging concurrent function evaluations. Each worker does not provide paral-

lelism on its own, but the worker itself is allowed to exploit parallelism by sep-

arate external processes.
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The basic worker class can call Python objective functions, which only results

in parallelism if the objective function itself allows parallelism. There is also a

worker class that uses subprocesses to evaluate objective functions that are not

necessarily in Python. The user is responsible for specifying how to evaluate

the objective function and parse partial information.

The number of workers can be adjusted dynamically during the optimiza-

tion process, which is particularly useful in a cloud setting. POAP supports run-

ning both on the Google Cloud platform (GCP) and the Amazon Web Services

(AWS). We support workers connecting to a specified TCP/IP port to commu-

nicate with the controller, making it easy to add external resources.

5.4 pySOT implementation

The surrogate optimization toolbox2 (pySOT) is a collection of surrogate opti-

mization strategies that can be used with the POAP framework. pySOT follows

the general surrogate optimization framework in Algorithm 1 and allows using

asynchrony as was described in Algorithm 5. We illustrate the communica-

tion between POAP and pySOT in Figure 5.2. pySOT communicates with POAP

through the optimization strategy where the pySOT strategy is responsible for

proposing an action when different events happen. All of the worker commu-

nication is handled by the POAP controller.

The pySOT objects follow an abstract class definition to make sure custom

implementations fit the framework design. This is achieved by forcing the ob-

jects to inherit an ABC object design, which makes it easy for users to add their

2pySOT can be downloaded from: https://github.com/dme65/pySOT
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Figure 5.2: Communication between POAP and pySOT

own implementations. We proceed to describe each object and their role in the

pySOT framework.

5.4.1 Strategies and auxiliary problems

The strategy object follows the POAP framework. pySOT implements an asyn-

chronous base class for surrogate optimization which serves as a template for

all surrogate optimizations in pySOT. This base class abstracts out the differ-

ence between serial, synchronous parallel, and asynchronous parallel. pySOT

supports the candidate point methods SRBF and DYCORS from §1.5.2. We

also support strategies for the most common acquisition functions from BO:

expected improvement (EI) and the lower confidence bound (LCB), which were

also introduced in §1.5.2. These acquisition functions can be minimized either

using a multi-start gradient method, a genetic algorithm, or by selecting the best

point from a set of randomly chosen points within the domain.
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5.4.2 Experimental design

pySOT implements the symmetric Latin hypercube (SLHD), Latin hypercubes

(LHD), and 2-factorial designs that were described in §1.5.1. The experimental

design is always evaluated first and the asynchronous optimization strategy in

pySOT is designed to proceed to the adaptive phase as soon as no initial design

points are outstanding. Another possibility is to cancel the pending evaluations

from the initial phase and proceed to the adaptive phase as soon as possible, but

we choose to finish the entire initial design as exploration is important for multi-

modal optimization problems. As discussed in the previous section, we must

choose enough initial design point to allow building the surrogate model when

all points in the initial design are either completed or pending. The experimen-

tal design object needs access to the optimization problem in order to round

integer variables and potentially attempt to satisfy the analytical constraints.

5.4.3 Surrogate models

pySOT supports the many popular surrogate models, including RBFs, GPs,

MARS, polynomial regression, and support vector regression. We provide our

own RBF implementation that uses the incremental factorization update idea

that was described in §1.3.4. Support for MARS is provided via py-earth3 and

support for GPs and polynomial regression is provided through scikit-learn

[51]. The surrogate model does not need access to any of the other objects, as

it just constructs a model based on the evaluated points and their values. The

surrogate fitting problem may be ill-conditioned if the domain is scaled poorly,

3https://github.com/scikit-learn-contrib/py-earth
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and we provide wrappers for rescaling the domain to the unit hypercube, which

is particularly useful on problems where the bounds are very skewed. We add

regularization to the linear system when radial basis functions are used to keep

the system well-conditioned. Previous work has shown that hard-capping of

function values can be useful to avoid oscillation, where a common choice is to

replace all function values above the median by the median function value, and

we provide wrappers for this as well.

5.4.4 Optimization problems

The optimization problem object specifies the number of dimensions, the num-

ber of analytical constraints, and provide methods for evaluating the objec-

tive function and the constraints. We provide implementations of many stan-

dard test problems which can be used to compare algorithms within the pySOT

framework.

5.4.5 Checkpointing

Checkpointing is important when optimizing an expensive function since the

optimization may run for several days or weeks, and it would be devastating if

all information was lost due to e.g., a system or power failure. pySOT supports

a controller wrapper for saving the state of the system each time something

changes, making it possible to resume from the latest such snapshot.
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5.5 Code examples

This section illustrates how POAP and pySOT can be used to minimize the Ack-

ley test function. We will use the threaded controller and asynchronous function

evaluations. The code is based on pySOT version 0.2.0 and POAP version 0.1.26.

Our goal in this example is to minimize the 10-dimensional Ackley function,

which is a common test function in global optimization. We use a symmet-

ric Latin hypercube, an RBF surrogate with a cubic kernel and linear tail, and

the DYCORS strategy for generating candidate points, which was described in

§1.5.2. Importing the necessary modules can be done as follows:

from pySOT.optimization_problems import Ackley

from pySOT.experimental_design import SymmetricLatinHypercube

from pySOT.surrogate import RBFInterpolant, CubicKernel, LinearTail

from pySOT.strategy import DYCORSStrategy

from poap.controller import ThreadController, BasicWorkerThread

import numpy as np

We next create objects for the optimization problem, experimental design, and

surrogate model.

num_threads = 4

max_evals = 500

ackley = Ackley(dim=10)

rbf = RBFInterpolant(dim=ackley.dim, kernel=CubicKernel(),

tail=LinearTail(ackley.dim))

slhd = SymmetricLatinHypercube(dim=ackley.dim,

num_pts=2*(ackley.dim+1))
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We are now ready to launch a threaded controller that will run asynchronous

evaluations. We create an instance of the DYCORS strategy and append it to the

controller.

controller = ThreadController()

controller.strategy = \

DYCORSStrategy(opt_prob=ackley, exp_design=slhd,

surrogate=rbf, max_evals=max_evals,

asynchronous=True)

We need to launch the workers that do function evaluations. In this example we

use standard threads and give each worker an objective function handle.

for _ in range(num_threads):

worker = BasicWorkerThread(controller, ackley.eval)

controller.launch_worker(worker)

The workers have been launched and the optimization strategy has been cre-

ated, so we are ready to start the optimization run. The following code runs the

optimizer and prints the best solution.

result = controller.run()

print("Best value found: {0}".format(result.value))

print("Best solution found: {0}".format(result.params[0]))

We can also plot the progress from the controller using the progress plot func-

tion in pySOT

from pySOT.utils import progress_plot

progress_plot(controller)
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5.6 Experiments

In this section we study the performance of serial, synchronous parallel, and

asynchronous parallel when varying the evaluation time distribution and the

number of processors. We focus on the DYCORS method using a radial basis

function surrogate with a linear tail as both have very low overhead, allowing

us to run many trials, each with a large number of function evaluations. Pre-

vious work has shown that DYCORS outperforms the competing methods for

computationally expensive multi-modal functions in a large number of dimen-

sions [60]

The evaluation times are drawn from a Pareto distribution with probability

density function (PDF) given by:

αbα

xα+1χ[b,∞)(x).

The Pareto distribution is heavy-tailed for small values of α and this case is

suitable for studying large variance in the evaluation time. We use b = 1 so the

support is [1,∞) and use different values of α to achieve different tail behaviors.

This setup models homogeneous resources and spatial dependence. We use

α ∈ {102, 12, 2.84}which corresponds to standard deviations 0.01, 0.1, and 1.

We run the serial and synchronous parallel versions with their default pa-

rameters since both methods showed good results in [58] and [59] respectively.

The parameter values used for the asynchronous algorithm are the same as for

the synchronous parallel version except for Ffail which we multiply by p since

we count evaluations rather than batches. The parameter values are shown in

Table 5.1. We restart the algorithm with a new experimental design if at some

point γ = γmin and the algorithm has failed to make a significant improvement
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in the last Mfail evaluations. Our experiments use 4, 8, 16, and 32 workers for

the parallel algorithms and we give each algorithm an evaluation budget of

50 ∗ 32 = 1600 evaluations. This is an upper bound for a time budget of 50

units of time. We exclude the overhead from fitting the surrogate and generat-

ing candidate points since this is negligible when the function evaluations are

truly expensive.

Parameter Value

|Λn| (number of candidate points per proposal) 100d

Υ (weight pattern) 〈0.3, 0.5, 0.8, 0.95〉

κ (number of weights in Υ) 4

γinit (Initial step size) 0.1`(Ω)

γmin (minimum step size) 0.1(1/2)6`(Ω)

δtol (radius tolerance) 0.0025`(Ω)

Fsucc (threshold parameter for increasing the step size) 3

Ffail (tolerance parameter for decreasing step size) pdmax(4/p, d/p)e

Mfail (maximum failure tolerance parameter) 4Ffail

Table 5.1: Parameter values used for the asynchronous algorithm

We consider the multimodal test problems F15-F24 from the BBOB test suite

[33]. These problems are challenging and non-separable and we use the 10-

dimensional versions for our experiments. The domain for each problem is

[−5, 5]10, and location of the global minimum and the value at the global opti-

mum are generated randomly depending on what instance is being used, where

we use instance 1 for each problem. These problems are not expensive to eval-

uate, but we pretend they are computationally expensive black-box functions

and draw the evaluation time from a Pareto distribution.

We compare progress vs time and progress vs number of evaluations. Com-

paring progress vs time will show what method does well in practice since we

97



are often constrained by a time budget rather than an evaluation budget. We

will also be able to see the effect of adding more processors, which is expected

to be fruitful since exploration is important for multi-modal problems. We com-

pare progress vs number of evaluations to study the importance of information.

The serial and synchronous methods are independent of the evaluation time in

this case since there is a barrier after each batch. The asynchronous algorithm

is affected by the variance, which affects how much information is available at

a given iteration. The serial version always has more points incorporated in the

surrogate at a given iteration, but explores less than the parallel versions. Figure

5.3 shows the experimental results for F15 and F17.
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Figure 5.3: Progress vs time and progress vs number of evaluation for F15
and F17. The error bars show the standard error based on 100
trials using 1600 evaluations. The plots with respect to number
of evaluations are zoomed in to make the lines easier to distin-
guish.
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These problems are chosen because they show the key points we are trying

to convey. The first row in each plot shows absolute error vs time and the sec-

ond row shows absolute error vs number of evaluations. The absolute error is

plotted on a log-scale in all plots to make it easier to interpret the results. This

should be taken into account when looking at the error bars, which show the

standard error of the estimated mean based on 100 trials. Note that each row

has the same range in absolute error to make the comparison easier.

F15 illustrates a case where synchronous and asynchronous parallel perform

similarly with respect to time when the variance is small. The difference grows

when the variance increases and asynchrony is always superior in the large vari-

ance case. Synchrony does slightly better than asynchrony in the small variance

case for F17. The results versus number evaluations are interesting and asyn-

chrony with 4 processors is consistently the best choice for both F15 and F17.

This is unexpected since the asynchronous versions never have more informa-

tion than the corresponding synchronous versions, indicating that maximizing

information is not as important on multi-modal problems. We also see that the

serial version is outperformed by the parallel versions when looking at number

of evaluations. This is another indicator that exploration is more important than

information.

We can also compare the speedup from using more workers for synchronous

and asynchronous parallel. Speedup is measured by the quantity

S (p) =
T ∗(1)
T (p)

=
Execution time for fastest serial algorithm

Execution time for parallel algorithm with p processors
.

This requires knowledge of the fastest serial algorithm which is hard to know

given randomized initial conditions. We therefore consider relative speedup

where T ∗(1) is replaced by T (1). We will measure speedup by running syn-
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chronous and asynchronous parallel and compare the results to the serial case.

We need to estimate the expected value of the speedup since all of our algo-

rithms are stochastic.

A main problem with speedup tests is choosing a good target value where

the speedup is measured. For unimodal problems, such a target can be based

on a small neighborhood of the global minimum, but this is unreasonable for

multimodal test problems. Our approach is to run each algorithm for 100 tri-

als, compute the intersection of the ranges of function values, and compute the

speedup for a set of targets within the intersection. This allows us to see how

the speedup depends on different target values. Figure 5.4 shows the speedup

for F15 and F17.

We achieve close to linear speedup with asynchrony for small target values

when using 4, 8, and 16 processors on F15 in the case of small variance. The

speedup is larger for synchrony when we consider 32 processors, but is clearly

sub-linear. The speedup is larger for small target values, which indicates that

the serial algorithm is more likely to get stuck in a local minimum which trig-

gers a restart. The effect of increasing the variance clearly degrades the perfor-

mance of synchrony while the results for asynchrony do not change much. The

speedup on F17 is generally better for the synchronous algorithm in the case of

small variance.
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Figure 5.4: Relative speedup for different target values for F15 and F17.
The error bars show the standard error based on 100 trials us-
ing 1600 evaluations.

5.7 Conclusion

We have described our asynchronous software package for surrogate optimiza-

tion. We introduced the event-driven optimization framework POAP, which

provides an easy framework to build and combine new optimization algorithms

for computationally expensive functions. POAP has three main components,

a controller, a strategy, and a collection of workers. The controller accepts or

rejects proposals from the strategies, monitors the workers, and informs the
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strategy when new events occur. The strategy proposes actions when an event

occurs, such as starting a new function evaluation, re-evaluating an input, or

terminating the optimization run. The workers perform function evaluations

when instructed by the controller and they support partial updates, making

it possible to terminate unpromising evaluations. The flexibility of the POAP

framework makes it easy to combine optimization strategies.

We have also introduced the inter-operable library pySOT, which supports

most popular surrogate optimization methods. pySOT is a collection of syn-

chronous/asynchronous strategies, experimental designs, and surrogate mod-

els commonly used in surrogate optimization. It comes with a large set of

standard test problems and efficiently serves as a test suite in which new opti-

mization algorithms can be compared to existing methods using asynchronous

or synchronous parallel function evaluations. pySOT’s object oriented design

makes it easy to add new functionality, and there is also support for resuming

crashed and terminated runs.

We have introduced a general asynchronous surrogate optimization method

for computationally expensive black-box problems that extends the work in

[59] to variable function evaluation times and heterogeneous computational re-

sources. We also handle worker failures and evaluation crashes, which was not

considered in [59]. Our numerical experiments show that asynchrony performs

similarly to synchrony even when the variance in evaluation time is small. Com-

paring progress versus number of evaluations showed that the serial method,

which maximizes the information at each step, does not outperform the parallel

methods. This is likely because exploring is more important than maximizing

the information for each sample.
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A relative speedup analysis indicates good results for the asynchronous

method and we achieve near-linear speedups for 4, 8, and 16 processors. The

speedup for the synchronous method clearly decreases when the variance of the

evaluation time increases, which is expected since this increases idle time. We

conclude that for multi-modal problems, asynchrony should be preferred over

synchrony and that adding more processors leads to faster convergence.
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CHAPTER 6

CONCLUSION

In this dissertation, we have developed efficient methods for scaling Gaussian

process regression to large and high-dimensional datasets. The methods intro-

duced in Chapter 2 are general and rely only on fast MVMs with the kernel

matrix. The biggest challenge for kernel learning is estimating the log deter-

minant and derivatives of the kernel matrix, which we calculate efficiently by

combining stochastic trace estimation and the Lanczos process. In addition to

log determinants, the methods presented in Chapter 2 can be adapted to fast

posterior sampling, diagonal estimation, matrix square roots, and many other

standard operations. The proposed methods only depend on fast MVMs—and

the structure necessary for fast MVMs often exists, or can be readily created. We

made use of SKI [75] in Chapter 2 to create such structure, but other approaches,

such as stochastic variational methods [35], can be used or combined with SKI

for fast MVMs, as in [76].

To further demonstrate the generality of the approach in Chapter 2, we

showed in Chapter 3 how to extend this work to incorporate gradient infor-

mation. Given a fast MVM with the kernel matrix, we only need to differentiate

this approximation to use the framework from Chapter 2. We showed how to

do this for SKI, and also SKIP [25], and refer to these methods as D-SKI and

D-SKIP. A pivoted Cholesky preconditioner accelerates convergence of the iter-

ative methods and active subspace calculation reveals low-dimensional struc-

ture when gradients are available. We also illustrated how these methods can

be used to also scale Bayesian optimization to larger evaluation budgets and

higher dimensions with derivative information. There are several possible av-
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enues for future work. D-SKIP shows promising scalability, but has large over-

heads, and is expensive for Bayesian optimization as it must be recomputed

from scratch with each new data point. We believe kernel function approxima-

tion via Chebyshev interpolation and tensor approximation will likely provide

similar accuracy with greater efficiency. Extracting low-dimensional structure

through active subspace computation is highly effective in our experiments and

deserves an independent, more thorough treatment. Finally, our work in scal-

able Bayesian optimization with gradients represents a step towards the unified

view of global optimization methods (i.e. Bayesian optimization) and gradient-

based local optimization methods (i.e. BFGS).

Chapter 4 introduced a new optimization algorithm based on the conver-

gence theory for radial basis functions (RBFs). This optimization algorithm has

strong theoretical guarantees and we have proved convergence without dense

sampling if the target function is in the native space of the RBF kernel and an

upper bound on the native space semi-norm is known. Future work includes

extending the algorithm to the case when the target function is not in the native

space and showing how to estimate the semi-norm given a global regularity

condition such as Lipschitz. One possible avenue to extend our algorithm is

via mollification of the target function so the mollified function is in the native

space of the given kernel. It may also be possible to prove convergence rates

that agree with the RBF theory, but proving this is technically challenging as

existing theory based on the fill distance does not apply.

Finally, Chapter 5 introduced a computational framework for asynchronous

surrogate optimization. Our event-driven optimization framework POAPmakes

it easy to build and combine new optimization algorithms for computationally
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expensive functions, while pySOT implements many popular surrogate opti-

mization methods in the POAP framework. We used POAP and pySOT to com-

pare the performance of serial, synchronous parallel, and asynchrony on a large

set of test problems and motivated why asynchronous parallel should be pre-

ferred over synchronous parallel. Using a large number of computational re-

sources makes it possible to do thousands of evaluations, in which case up-

dating the surrogate model becomes a bottleneck. This is especially true when

we observe gradient information and future work involves using the results in

Chapter 2 and Chapter 3 in this setting.
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