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This dissertation uses structured linear algebra to scale kernel regression meth-
ods based on Gaussian processes (GPs) and radial basis function (RBF) inter-
polation to large, high-dimensional datasets. While kernel methods provide a
general, principled framework for approximating functions from scattered data,
they are often seen as impractical for large data sets as the standard approach
to model fitting scales cubically with the number of data points. We introduce
RBFs in §1.3 and GPs in §1.4.

Chapter 2 develops novel O(n) approaches for GP regression with n points
using fast approximate matrix vector multiplications (MVMs). Kernel learn-
ing with GPs require solving linear systems and computing the log determi-
nant of an n X n kernel matrix. We use iterative methods relying on the fast
MVMs to solve the linear systems and leverage stochastic approximations based
on Chebyshev and Lanczos to approximate the log determinant. We find that
Lanczos is generally highly efficient and accurate and superior to Chebyshev
for kernel learning. We consider a large variety of experiments to demonstrate
the generality of this approach.

Chapter 3 extends the ideas from Chapter 2 to fitting a GP to both function
values and derivatives. This requires linear solves and log determinants with
an n(d + 1) x n(d + 1) kernel matrix in d dimensions, leading to O(n’d*) compu-

tations for standard methods. We extend the previous methods and introduce a



pivoted Cholesky preconditioner that cuts the iterations to convergence by sev-
eral orders of magnitude. Our approaches, together with dimensionality reduc-
tion, lets us scale Bayesian optimization with derivatives to high-dimensional
problems and large evaluation budgets.

We introduce surrogate optimization in §1.5. Surrogate optimization is a key
application of GPs and RBFs, where they are used to model a computationally-
expensive black-box function based on previous evaluations. Chapter 4 intro-
duces a global optimization algorithm for computationally expensive black-box
function based on RBFs. Given an upper bound on the semi-norm of the objec-
tive function in a reproducing kernel Hilbert space associated with the RBE, we
prove that our algorithm is globally convergent even though it may not sample
densely. We discuss expected convergence rates and illustrate the performance
of the method via experiments on a set of test problems.

Chapter 5 describes Plumbing for Optimization with Asynchronous Paral-
lelism (POAP) and the Python Surrogate Optimization Toolbox (pySOT). POAP
is an event-driven framework for building and combining asynchronous opti-
mization strategies, designed for global optimization of computationally expen-
sive black-box functions where concurrent function evaluations are appealing.
pySOT is a collection of synchronous and asynchronous surrogate optimization
strategies, implemented in the POAP framework. The pySOT framework in-
cludes a variety of surrogate models, experimental designs, optimization strate-
gies, test problems, and serves as a useful platform to compare methods. We
use pySOT, to make an extensive comparison between synchronous and asyn-
chronous parallel surrogate optimization methods, and find that asynchrony is

never worse than synchrony on several challenging multimodal test problems.
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CHAPTER 1
INTRODUCTION

1.1 Summary of introduction

We start by motivating a general framework for scattered data interpolation
with kernel methods in §1.2. We describe radial basis function (RBF) interpo-
lation in §1.3 as a special case of interpolation with kernel methods. The error
analysis for RBFs takes place in the native space, which is motivated in §1.3.1. In
§1.3.2, we summarize some of the error analysis for RBFs; we show in Chapter 4
that this leads to a very natural optimization algorithm. We end the RBF section
by briefly summarizing some stability bounds and how to efficiently add a few

new points to the RBF interpolant in §1.3.3 and §1.3.4 respectively.

We proceed to introduce Gaussian process (GP) regression in §1.4 and ex-
plain its numerous connections to RBFs. We explain how derivative informa-
tion can be incorporated in the GP model, and similarly in an RBF model. Scal-
ability issues for GPs are addressed in Chapter 2 and Chapter 3. In §1.5, we
introduce surrogate optimization and give an overview of surrogate optimiza-
tion techniques in §1.5.1. We explore surrogate optimization with asynchrony

in Chapter 5.

1.2 Kernel methods

Before introducing GPs and RBFs, we introduce a more general framework for

scattered data interpolation. Given a set of pairwise distinct data points X =



{xi}.; € Q and corresponding function values f(x),..., f(x,) we look for a
continuous function s;x(x) such that s;x(x) = f(x),i = 1,...,n. A common
choice is to look for a function s/ x(x) that is a linear combination of continuous
basis functions:
spx(0) = " Aibi(x)
i=1

and solve the linear system AxyA = fx, where (Ax);; = b;(x;) and (fx); = f(x;), to de-
termine the coefficients 4, ..., 4,. This problem is well-posed if there is a unique
solution to this linear system, i.e., Ay is non-singular. For d = 1, polynomial in-
terpolation with the monomial basis functions b;(x) = x'! yields a well-posed
interpolation problem for any pairwise distinct data points. If Q c RY, d > 2
contains an interior point, the famous Mairhuber-Curtis theorem states that in
order for detAy # O for all pairwise distinct data points in Q, the basis func-
tions must depend on the data points X [46, 11]. We will therefore restrict our

attention to basis functions that depend on X.

Characterizing all data dependent basis functions that lead to a well-posed
interpolation problem is challenging, so a simple restriction is to require Ay to
be symmetric and positive definite for any pairwise distinct data points [17].

This is achieved by considering symmetric positive definite (SPD) kernels:

Definition 1. A (continuous) symmetric function k : R x RY — R is called a

positive semi-definite kernel if

ZC,‘CJ']C()C,', Xj) >0 (11)
i=1 j=1
for any pairwise disjoint xy,...,x, € R? and ¢y,...,c, € R. The kernel is called
symmetric positive definite (SPD) if equality in (1.1) implies ¢, = -+ = ¢, = 0.

For consistency with the naming convention in the numerical linear algebra



literature, we deviate from the naming convention in the literature on kernel
methods in which positive definite and strictly positive definite are used in

place of positive semi-definite and positive definite.

RBF interpolation restricts the kernel to be radial, that is, k(x, y) depends only
on r := ||x — y|| and we often use ¢(r) to denote a radial kernel. It is common
to consider conditionally positive definite (CPD) kernels in RBF interpolation,

defined as follows:

Definition 2. A (continuous) function k : R* x RY — R is called conditionally
semi-positive definite kernel of order v if
Z Z cicjk(x;, x;) >0 (1.2)
=1 j=1

or any pairwise disjoint xy,...,x, € R®and cy,...c, € R that satis
yp ]

n

D cigxi) =0 (1.3)

i=1
for any real-valued polynomial q of degree at most v — 1. The kernel is called con-
ditionally positive definite (CPD) of order v if equality in (1.2) implies ¢; = --- =

¢, =0.

To end up with a well-posed interpolation problem, we need to modify the form
of the interpolant sy x by adding a low-degree polynomial of degree v—1, as well
as imposing a unisolvency condition of the points X. We will describe this in the
next section where we introduce RBFs. Note that an SPD kernel is automatically

CPD of order 0.

While RBFs are deterministic models, GPs are infinite dimensional stochas-

tic processes that are described by their mean and covariance functions. The



covariance function is modeled using a positive semi-definite kernel which de-
scribes interactions between points. We will give several examples of kernels in

§1.4 when we introduce GPs.

1.3 Radial basis functions

This section summarizes radial basis function interpolation and the associated
convergence theory in the setting of a native space. Radial basis function (RBF)
interpolation is one of the most popular approaches to approximating scattered
data in an arbitrary number of dimensions [5, 17, 63, 72]. The set of interpolation
points X are assumed to be pairwise distinct and ¢ is a radial kernel of order v.

The RBF model takes the form

spx() = > Al = xl) + p(x) (1.4)
i=1

d

v—17

where p € II¢_,, the space of polynomials with d variables of degree no more
than v — 1. There are many possible choices for ¢ and we summarize the most

popular choices and some of their properties in Table 1.1 on page 10.

Some kernels in Table 1.1 have a shape parameter € and a good choice is
critical to achieve a good function approximation [18, 62]. The coefficients A;
are determined by imposing the interpolation conditions s/x(x;) = f(x;) for i =

1,...,nand the discrete orthogonality condition

> Agx) =0, Vgelll,. (1.5)
i=1

Note that this condition is in agreement with Definition 2. If we let {n;}", be

v—1+d

1 )—dimensional linear space H‘Vi_1 we can write p(x) =

a basis for the m = (



iy cimi(x) and the interpolation conditions lead to the following linear system

of equations:
(DXX PX A _ fX , (16)
P 0llc 0
where (Qxx);; = ¢(llx; — x;ll), (Px)ij = mj(x;), and fx = [f(x)),... , f(x)]". The solu-
tion to the linear system of equations is unique as long as rank(Px) = m, which
is often referred to as a unisolvency condition on the points X; the coefficients of
¢ are uniquely determined from the values at X. We next show that the system
in (1.6) is non-singular by showing that the only solution to the homogeneous
linear system (fx = 0) is 4 = ¢ = 0. Multiplying the first set of equations by A"
yields A" ®xyd + A" Pxc = 0, but since A" Pxc = ¢"(P%1) = 0 we have A7 ®xxd = 0.
It follows that A = 0 since ¢ is CPD of order v. The first set of equations are now

Pxc = 0, and we conclude that ¢ = 0 since Py has full rank.

1.3.1 The native space

We study the convergence of interpolation with RBFs in an associated native
space. Before we introduce the native space we need to define the RBF space
A,, which is the space of functions s x of the form (1.4) that satisfy (1.5) for n(s)
pairwise distinct points X = {xj,...,x,4} € Q. The space A, can be equipped
with the semi-inner product

n(s)

(s,uy = > du(x)

i=1

for s, u € A, defined through

n(s) n(u)

sx(x) = 3 gl = xill) + p(x) and ugy(0) = Y el =yl + q)
i=1 j=1



where both {x,»}?z(sl) and {y j}j(z”l) are pairwise distinct, p,q € Hf_l, and both A and u
satisfy the discrete orthogonality condition (1.5). It is easy to verify that this is
indeed a semi-inner product; see e.g., [30]. We can now define a semi-norm on

A, via

2.
|Sf,X| = (Sf,x, Sf,X>

= an Aisrx(x;)
i=1

=3 S Akl -

i=1 j=1

= AT Dyx A

For a given kernel we can find a Hilbert space N,(Q) € C(Q2), which is usually
referred to as the native space. We define the native space as the functions f €
C(Q) that have uniformly bounded interpolant norms for any unisolvent set of
points X ¢ Q and the native space semi-norm is given by

|fln, == sup  Isyx].
XcQ, [X|<oo

The native space is hard to characterize for infinitely smooth kernels, but in the

special case of “polyharmonic” kernels

I'd/2-t 20—d
22/,54//2([_)1)!"’ d odd

Soph(r ) =
(~1y{+a-22

2R (-dio *~Ilog(r) deven

the native space turns out to be instances of Beppo-Levi spaces:
BL/(R?Y) = {f € CRY) : D°f € L*(RY), V|a| =€, a € N},

for ¢ > d/2. The following proposition is taken from [30] and is a useful charac-

terization of the native space for the most popular piecewise smooth kernels.



Proposition 1. Let ¢(r) = r, o(r) = r*log(r) or ¢(r) = r*. Further let k = 1 in
the linear case, k = 2 in the thin plate spline case and k = 3 in the cubic case, and
choose the integer m such that 0 < m < d in the linear case, | < m < d + 1 in the
thin plate spline case, and 1 < m < d + 2 in the cubic case. Define v := (d + «)/2 if
d + k is even, and v := (d + « + 1)/2 otherwise. If f € C"(RY) has bounded support,
then f € Nyx(RY).

1.3.2 Error estimates

In this section, we summarize the standard convergence theory for RBFs. We
need to introduce the cardinal basis functions, which are the solutions to the

linear system of equations

Oxx  Px||u"(x) _ Dy,

P)T( 0[[vix) P,

where x € Q. An immediate consequence is that we can write the RBF inter-

polant in the following form:
spx(x) = AT Oy, + " PL = [AT Oxx + " PRlu*(x) + AT Pyvi(x) = fyu'(x).
The next important ingredient is the power function Py (x), defined as

[Pxo(0)]* = ¢(0) = 2u"(x) O, + " (X) Oyxue” (x). (1.7)



Using the definition of the cardinal functions we can rewrite the power function

in the following way

[P (0] = @(0) — 2u"(x)" O, + " (X)[ Dy — Pxv*(x)]
= ©(0) — u* (x)" [Dyx + Pxv*(x)]
= 9(0) — u'(x)" Ox, — V' (0)" P,
= ¢(0) — b(x)" A™'b(x)

where

q)Xx cI)XX PX
b(x) = and A = .
P, P 0

It is possible to derive the following pointwise inequality based on the power

£ = sx ()] < Prp(0)\IfI, = Is7xly, < Pxe)Ifln,» (1.8)

which holds for all x € Q. This bound is often interpreted as a worst case bound;

function

it tells us the smallest and largest possible function values at x.

2.5

1.5 7

Py o(z)

Figure 1.1: An example of the power function for the points {-n, /2,0, x}.
The power function is zero at evaluated points and large when
the distance to the closest evaluated point is large.



Error estimates for the RBF interpolation problem are based on the fill-
distance

hxq := supmin [|x — x|,
xeQ Xj€

and convergence is studied as iy, — 0. The standard approach to proving a
pointwise convergence rate is to start from (1.8) and bound the power function
via a Taylor expansion. The bounds Pi, JX) < F o(hx ), which hold for sy o small
enough, are summarized in Table 1.1 on page 10 for the most common RBF
kernels [72]. Note that these results are only applicable in cases where the fill-
distance decreases with the number of points, which is not necessarily the case

in e.g., global optimization, which will be introduced in §1.5.1.

1.3.3 Stability

We saw in the previous section and in in Table 1.1 that we can achieve exponen-
tial convergence for the Gaussian kernel as the fill-distance decreases, but there
is a conflict between this theoretically achievable accuracy and numerical stabil-
ity. The goal of this section is to study what happens to the condition number

decreases. We will focus on symmetric positive definite kernels and refer to
Wendland [72] for a rigorous treatment of conditionally positive definite ker-
nels. In this case, ®xx will be symmetric and positive definite and saying some-
thing about the condition number of ®yx requires an upper bound on the largest

eigenvalue and a lower bound on the smallest eigenvalue since

/lmax(q)XX )

k(D = ||D . (D_l = A
(Dxx) 1= [[Dxxll - [[Dxxll 1. (D)



Finding an upper bound on A, (®xx) ends up being a straightforward applica-

tion of Gershgorin’s theorem which says that

|Amax(Pxx) — (Pxx)il < Z [(@xx)ijl,
=1
J#i

for somei € {1,...,n}. This allows us to conclude that

,,,,,

After establishing an upper bound on Ap.(Pxx) we turn our attention to finding
a lower bound G.(gx) < Amin(Pxx). Deriving these lower bounds is rather tech-
nical and we refer to Wendland [72] for more details, but lower bounds in terms

of gx have been summarized in Table 1.1.

Name o(r) Order Fo(hxo) Gy(gx)
Gaussian eerrZ y=0 e~¢llog)i/h o \/5 E)—d 674071512/(1152)2 q—d
Inverse multiquadric (1 + ezrz)ﬂ, B<0 v=0 et/ cqP T+ el
Multiquadric P (1+2P) ), 0<peN, | v=18] eelh cqP+ieclad
Radial powers (=DPB2pB 0 < B ¢ 2N v =1[8/2] n cq?
Thin-plate spline (=1P*'r2Plog(r), B e N v=F+1 h* cq?

Table 1.1: Some popular choices of kernels and their order and conver-
gence properties. The functions F,(hyq) are asymptotic up-
per bounds on the squared power function in terms of the fill-
distance, while G,(gx) are lower bounds on the smallest eigen-
value of ®xx based on the separation distance. The shape pa-
rameter € has to satisfy € > 0.

It has been shown that

Gy(gx) < Fy(hxa)

and if the data is well-distributed we have gx ~ hxq so a small value of F,(hxg)
implies a small value of G,(qx). We have arrived at something that is more com-

monly known as the trade-off principle, which tells us that a fast decrease in
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F,(hxq) implies a fast increase in the condition number of ®xx [17]. The the-
oretical guarantee of exponential convergence for the Gaussian and (inverse)
multiquadric kernels are not achievable in practice as the condition number of
Oyx grows exponentially, leading to numerical instabilities. This is one of the
reasons why the radial powers and thin-plate splines are often favored in prac-

tice, since they offer a better balance between convergence and stability.

Recent work has shown how to overcome these stability issues for the Gaus-
sian and (inverse) multiquadric kernels in the limit € — 0, relying on a complex
Contour-Padé integration algorithm [14, 20, 21, 53]. However, this approach is
limited to very small datasets, and thus leads to another trade-off principle stat-
ing that high accuracy is only achievable for very small datasets. Another way
to deal with the numerical instability caused by a small value of gy is to add reg-
ularization to the kernel, &(||x; — x;l|) = ¢(|lx; — x;I|) + 1 6;;, for some regularization

parameter > 0, where 1 is often chosen using cross-validation.

1.3.4 Incremental updates

A direct solver of the RBF system (1.6) requires computing a dense LU (or
Cholesky for SPD kernels) factorization at a cost of O((m + n)*) = O(n?) flops.
There are several contexts, including global optimization in §1.5, where we have
computed an RBF interpolant and want to add g < n new points to the model.
This section describes how to update the RBF interpolant in quadratic time.

Given an initial set of n points with rank(Py) = m we compute an initial LU

11



factorization with pivoting

0o Pl
A= :PTL11U11.

PX (DXX

Note that the blocks have been rearranged compared to (1.6) to make it more
natural to add new points. After adding the g new points X = {#}Z we want to

find an LU factorization of the extended system

0 Py Pt
A A B
A=| Py Oy | Dyg | =
BT C
Py Dgy | Oxg

Assuming the kernel ¢ is of order v and p(x) is of order at least v—1, a unisolvent
set of initial points X implies that the trailing Schur complement is positive semi-

definite, so we can look for a factorization of the form

A B| |P" o||L, O ||U;y Up| |P'L,Uy, P'L, Uy,
BT C 0 I||Ly Lxn 0 L;Z LUy L21U12+L22L;2

We need to solve the two triangular systems B = P'L;Uj; and B = L, Uy,
followed by computing a Cholesky factorization of C — L,;U;,. This implies
that we can update the factorization in O(gn* + ¢*) flops, which is better than
computing a new LU factorization in O(»*) flops. This incremental update idea
is very useful in the context of surrogate optimization, which we introduce in

§1.5.1 and consider in more detail in Chapter 5.
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1.4 Gaussian processes

A Gaussian process (GP) is a collection of random variables, any finite number
of which have a joint Gaussian distribution [56]. They share many similarities
with RBFs as both are based on kernel interpolation. More generally, a GP can
be used to define a distribution over functions f(x) ~ GP(u(x), k(x, x’)), where
each function value is a random variable indexed by x € RY, and i : R? - R and
k:RYxR? — R are the mean and covariance functions of the process. The mean
function is often a low-degree polynomial while the covariance function fills
the same role as the kernel in RBF interpolation, with the additional restriction
that it must be positive semi-definite. However, previous work by Wahba [69]
connects regression with smoothing splines to the use of improper priors. We
will show later in this section that we can also modify the spline kernels used in

RBF interpolation to make them positive definite on any compact domain.

The covariance function is often chosen to be the squared exponential (or

Gaussian) kernel

||x—y||2)

ksg(x,y) = s? eXp (_ 202

or Matérn kernel

21 llx = yll\’ llx = ¥l
kMatern(x»y) = SZF(V) (\/Z/ 7 Y K, \/5 7 Y

where I is the gamma function, K, is the modified Bessel function of the second
kind, s? is the signal variance, ¢ > 0 is the lengthscale, and v > 0. The Matérn
kernel is [v]—1 times differentiable and 1/2, 3/2, and 5/2 are common choices for
v to model heavy-tailed correlations. The length scale ¢ is used instead of the €
parameter in RBF interpolation, with the interpretation that a larger value of the

lengthscale indicates that more points are correlated. The parameter s is added
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to model the signal variance of the function. The spectral behavior of both these
kernels has been well-studied for years, and we recommend Wathen and Zhu
[71] for recent results. Particularly relevant is a theorem due to Weyl, which says
that if a symmetric kernel has v continuous derivatives, then the eigenvalues
decay like |1,] = O(n™"'/?). Hence, the eigenvalues decay much more slowly for
the Matérn kernel, which has two derivatives at zero for v = 5/2, one derivative

at zero for v = 3/2, and no derivatives at zero for v = 1/2.

The thin-plate spline and radial powers cannot be used in GP regression as
they are not positive definite, but we can modify them to make them valid GP

kernels on any compact domain Q [74]. This leads to the family of spline kernels

(Il = yIP + allx =yl + b) d odd
‘pspline(r ) = kspline(x’ y) =
s*(llx = yI* logllx = yll + allx = yI> + b) d even

where a, b are chosen to make the spline kernels SPD on the given domain. Let-

ting R = max, e lx — yll, we can impose the boundary conditions ¢(R) = 0 and

9¢(r)

> = 0. This leads to the kernels

r=R

s*(lx = yIP = 3RIlx = yIP* + 3R?) dodd
kspline(xa y) =
s2(Ilx = I log llx = yll = (4 + log R) llx — yII* + }R?)  d even
which are SPD on any compact domain Q and can therefore be used for GP

regression. We use the spline kernel for implicit surface reconstruction in Chap-

ter 3.

For an arbitrary kernel, we denote any kernel hyperparameters by the vec-
tor 6. To be concise we will generally not explicitly denote the dependence of
k and associated matrices on 6. For any locations X, fx ~ N(ux, Kxx), where ux

represent the vectors of function values u evaluated at each of the x; € X, and
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Kxyx is the covariance matrix. Suppose we have a vector of corresponding func-
tion values yx = [yi,...,y.l" € R", where each entry is potentially contaminated
by independent Gaussian noise with variance 0. The noise variance is often
unknown, so we learn it from the data. In the RBF setting we may use cross-
validation to learn o, but under a Gaussian process prior we learn o and 6 by

optimizing the log marginal likelihood
1 - -
LOx10) = =5 [0x = 10" Ky x = p1x) + log [Kx| + nlog 21 (1.9)

where Kyy = Kxy + o1. Optimization of (1.9) is expensive, since the cheapest
way of evaluating log |Kyx| and its derivatives without taking advantage of the
structure of Kyy involves computing the O(n*) Cholesky factorization of Kyx.
O(n’) computations are too expensive for inference and learning beyond even

just a few thousand points and we address these scalability issues in Chapter 2.

The posterior mean and posterior variance at a point x are given by

E[f(x)] = Ky (Kxx + D) (yx — pix),

VIf(x)] = Ky — Ky (Kxx + 0°1) " Ky,

The careful reader may recognize the similarities between not only the poste-
rior mean and the RBF prediction, but the predictive variance and the power
function. The predictive variance for GPs gives us an idea of the average case
error, while the RBF error bound in (1.8) is often interpreted as a worst case

bound.
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Branin SE no gradient SE with gradients

S\ S

Figure 1.2: An example where gradient information pays off; the true
function is on the left. Compare the regular GP without deriva-
tives (middle) to the GP with derivatives (right). Unlike the
former, the latter is able to accurately capture critical points of
the function.

1.4.1 Derivative information

The GP model can easily be extended to incorporate derivative information,
which is especially valuable in higher dimensions, but comes at a cost: the ker-
nel matrix K;X is of size n(d + 1)-by-n(d + 1). This makes scalability an even larger
issue as training and prediction become O(rn*d?) and O(nd) respectively [57]. We
address these scalability issues in Chapter 3. Figure 1.2 illustrates the value of
derivative information; fitting with derivatives is evidently much more accurate

than fitting function values alone.

We define a multi-output GP that allows us to both predict derivatives and
make inference based on derivative information. The multi-output GP model

takes the form

u(x) k(x, ') (@yk(x, x))"
pY(x) = . k(X)) = ,
.u(x) Ock(x,x')  OPk(x,x')

where 9.k(x,x) and 6*k(x, x’) represent the column vector of (scaled) partial
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derivatives in x and the matrix of (scaled) second partials in x and x’, respec-
tively. As in the scalar GP case, we model measurements of the function as
contaminated by independent Gaussian noise, but we can use different noise

variances for the function values and each partial derivative.

1.5 Surrogate optimization

Surrogate optimization techniques try to solve the global optimization problem
Find x* € Q such that f(x*) < f(x), Yx€Q (1.10)

where f: Q — R is continuous and Q c R? is compact. We are primarily inter-
ested in problems where evaluating f requires running a time consuming sim-
ulation model or that evaluating f has a high monetary cost. In addition, we
assume that f lacks special structure like linearity and convexity and assume
that there can be many local minima. We typically only observe the value of
f(x), but the case where we also observe derivatives will be considered in Chap-
ter 3. Several heuristic algorithms such as genetic algorithms, particle swarms
algorithms, differential evolution, and simulated annealing are popular choices
for global optimization Horst and Pardalos [38], but these algorithms generally

require many evaluations to find a good solution to (1.10).

A class of methods that has been shown to perform well with a small num-
ber of evaluations is surrogate optimization methods; these methods use a sur-
rogate model that approximates the objective function to choose where to eval-
uate next. The most popular approach is Bayesian optimization (BO) where we
place a GP prior on f [23]. It is also possible to approximate f using an RBF

model [29, 58, 60, 73]. Other possible surrogate models are polynomial regres-
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sion models and multivariate adaptive regression splines Friedman [24], but

this thesis will focus on RBFs and GPs.

1.5.1 Surrogate optimization overview

Most surrogate optimization methods follow the same main steps. The first step
consists of generating an experimental design with ny points that are evaluated
and used to fit an initial surrogate model. We proceed to the adaptive phase
where we solve an auxiliary problem at each step to find new point(s) to evalu-
ate. This auxiliary problem quantifies the expected value from choosing x as the
next evaluation. We evaluate the new point(s), update the surrogate model, and
repeat this procedure until a stopping criterion has been met. This is illustrated

in Algorithm 1.

Algorithm 1: Synchronous surrogate optimization algorithm

1: Model f using an RBF or place a GP prior on f
2: Generate an experimental design

3: Evaluate the points in the experimental design

4: while Stopping criterion not met do

5: Update the RBF model or the posterior distribution on f

6: Optimize auxiliary function a(x) for new point(s) to evaluate
7: Evaluate the new point(s)

The simplest experimental design is choosing the 2¢ corners of the hypercube
Q, often referred to as the 2-factorial design, but this is infeasible when d is

large and the evaluations are expensive. Two common alternatives are the Latin
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hypercube design (LHD) and the symmetric Latin hypercube design (SLHD),

which allows an arbitrary number of design points.

1.5.2 Surrogate optimization methods

Evaluating f is expensive, so we optimize an auxiliary function a(x) involving
the surrogate model and previously evaluated points to find the next point(s)
to evaluate. This auxiliary problem must balance exploration and exploitation,
where exploration emphasizes evaluating points far from previous evaluations
to improve the surrogate model and escape local minima, while exploitation
aims to improve promising solutions to make sure we make progress. We start
by introducing two popular auxiliary functions in BO, where they are often re-
ferred to as acquisition functions. We refer to Frazier [23] for a description of

several additional acquisition functions.

Expected improvement

Expected improvement (EI) is likely the most widely used auxiliary function in
BO, where the main idea is choosing the point that gives us the largest expected
improvement. El is one-step-optimal, it assumes we have evaluated f (without
noise) at n points and have exactly one evaluation left. If f; = l_ :r{nnn f(x;) and we
spend our last evaluation at a point x,.;, we will return min(f;’, f(x,.1)), in which

case the improvement from the last function evaluation is

1,(x) = max{0, f;/ = fu1(0)}.
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The expected value can be evaluated analytically under a Gaussian process pos-

terior

(fu —ELf()DP@) + yVIf(0lp(Z) i V[f(x)]>0
EL,(x) := E[1u(x)] =

0 if VIf(x)] = 0
where Z = (f — E[f(x)])/ V/V[f(x)], ® is the standard normal cumulative dis-
tribution function, and ¢ is the standard normal probability density function
[40]. EI is implemented in our surrogate optimization software pySOT, which

we describe in Chapter 5.

Lower confidence bound

The main idea of the lower confidence bound (LCB) is to choose the point that
minimizes the lower bound of the confidence interval based on the predicted

value and predicted variance. Formally, the LCB acquisition is defined as

LCB(x) = E[f(0)] -k yV[f ()],

where « is left to the user. We explore a similar idea for RBFs in Chapter 4.

Stochastic RBF

The weighted-distance merit function introduced in [58] was proposed in com-
bination with using an RBF model for f. The main idea is to generate a set of
candidate points A and pick the candidate point that provides the best balance
between a small predicted value and a large distance to previously evaluated
points. Exploration is achieved by giving preference to candidate points far

from previous evaluations. More specifically, for each x € A we let A(x) be the
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distance from x to the point closest to x that is currently being or has been eval-
uated. By defining A™ = max{A(x) : x € A} and A™" = min{A(x) : x € A} a good

measure of exploration is a small value of V?(x) = AT AW where 0 < VP(x) < 1

Amax _ Amin /

for all x € A. Exploitation is achieved through the surrogate model s x(x), where

spx(x)— gmin
smax _ gmin

a small value of the quantity V5 (x) = provides a measure of exploita-

max min

tion, where s™* = max{s;x(x) : x € A} and s™" = min{s;x(x) : x € A}.

The best candidate point is the minimizer of wV5(x) + (1 — w)V?(x), for a
given w € [0, 1], which shows that w serves as a balance between exploitation
and exploration. A weight close to 0 emphasizes exploration while a weight
close to 1 emphasizes exploitation. Algorithm 2 shows how to select the most

promising candidate point.

Algorithm 2: Candidate point selection

1: Compute s™ « max s;x(x) and s™" « mi/? s £ x(x)
xeA X€

2: for each x € A do

srx(x)—s
smax _ gmin

min .
if gmax 5 gmin
3: V3 (x) «

1 otherwise

4. foreach x € A do

5: A(x) « mind(x,y)
yeQ

6: Compute A™ max A(x) and A™" mi/{l A(x)
XE XE

7. for each x € A do

AT -A(x) . X i
D Amax_Amin lf Ama > Am "
8: VP(x) «
1 otherwise
return argmin wV® (x) + (1 — w)V2(x)
xXeEA
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The SRBF method works well for low-dimensional optimization problems.
Given a sampling radius y, the candidate points are generated as N(0,y?) per-
turbations along each coordinate direction from the best solution [58]. Large
values of the sampling radius will generate candidate points far away from the
best solution while smaller values of the sampling radius will generate candi-
date points that are close to the best solution. The sampling radius is initialized
to a large value and is updated depending on progress; we increase the sam-
pling radius after a series of successful improvements and decrease if we fail to
make improvement. We refer to Regis and Shoemaker [58] for exact details on

how the sampling radius is updated.

DYCORS

The DYCORS method was developed for high-dimensional problems and the
idea is to start by perturbing all coordinates and perturb only a few towards
the end of the optimization run [60]. This is achieved by assigning a proba-
bility to perturb each dimension. If n, points are used in the experimental de-
sign and the evaluation budget is given by ny,, each coordinate is perturbed

with probability p, for np < n < nn,. One possible probability function is

R _ _log(n=ny) _
DPn = mlIl( 4’ 1) X [1 log(nmax—no)]'

1.6 Outline

Chapter 2 shows how to resolve the scalability issues in GP regression using
structured linear algebra based on work published in NIPS 2017 [13]. This work

is generalized to include derivative information in Chapter 3 where one of our
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numerical experiments shows the connection between scalable GPs with deriva-
tives and Bayesian optimization. This work is accepted for publication in NIPS
2018 [16]. We introduce a novel surrogate optimization algorithm based on
RBFs in Chapter 4, and prove that it converges to the global minimum with-
out dense sampling given a bound on the native space semi-norm. We also
show how to compute an upper bound on the semi-norm given a Lipschitz con-
stant. Chapter 5 describes our open source software pySOT, which is designed
for asynchronous surrogate optimization, and we make an extensive between
asynchronous parallel and batch synchronous parallel. We conclude in Chap-

ter 6.
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CHAPTER 2
SCALABLE GAUSSIAN PROCESSES

This chapter will describe recent work on scaling Gaussian process (GP) regres-
sion to large datasets. We build on previous work utilizing fast matrix vector
multiplication (MVM) with the kernel matrix and show how to accurately es-
timate the log determinant and derivatives of the kernel matrix using Cheby-
shev and Lanczos. We find that Lanczos is generally superior to Chebyshev and
demonstrate the methods on a large set of experiments. Most of the content in

this chapter is based on [13].

2.1 Background

There have been many attempts to overcome the scalability issues with Gaus-
sian processes and many current approaches to scalable Gaussian processes
[e.g., 54, 43, 35] focus on inference assuming a fixed kernel, or use approxima-
tions that do not allow for very flexible kernel learning [77], due to poor scaling
with number of basis functions or inducing points. A popular approach to GP
scalability is to replace the exact kernel k(x, z) by an approximate kernel that ad-
mits fast computations [54]. Several methods approximate k(x,z) via inducing

points U = {u J-}?: . € R%. An example is the subset of regressor (SoR) kernel:
kSOR(x’ Z) = KxUKL_flUKUz

which is a low-rank approximation [64]. The SoR matrix Ky} € R™" has rank at
most g, allowing us to solve linear systems involving K3® = KR + o] and to

compute log |K3R| in O(¢*n + ¢°) time. Note that we need o > 0 to guarantee that
p g1 8yy q q g
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K33R is invertible. Another popular kernel approximation is the fully indepen-
dent training conditional (FITC), which is a diagonal correction of SoR so that
the diagonal is the same as for the original kernel [65]. Thus kernel matrices
from FITC have low-rank plus diagonal structure. This modification has had
exceptional practical significance, leading to improved point predictions and
much more realistic predictive uncertainty [54, 55], making FITC arguably the

most popular approach for scalable GPs.

2.1.1 SKI

Wilson and Nickisch [75] provides a mechanism for fast MVMs through propos-

ing the structured kernel interpolation (SKI) approximation,
Kxx ~ WKygWT (2.1)

where W is an n-by-¢ matrix of interpolation weights; the authors of [75] use
local cubic interpolation so that W is sparse. The sparsity in W makes it possi-
ble to naturally exploit algebraic structure (such as Kronecker or Toeplitz struc-
ture) in Ky when the inducing points U are on a grid, for extremely fast matrix
vector multiplications with the approximate Kxy even if the data inputs X are
arbitrarily located. For instance, if Ky is Toeplitz, then each MVM with the ap-
proximate Kyx costs only O(n + glog g). By contrast, placing the inducing points
U on a grid for classical inducing point methods, such as SoR or FITC, does
not result in substantial performance gains, due to the costly cross-covariance

matrices K,y and Ky ..

Approximating the log determinant is challenging with SKI and the scaled

eigenvalue method was introduced in [78] to estimate log |Kxx +0*1|. The eigen-
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values {1,}"

i=1

of Kxx can be approximated using the n largest eigenvalues of a
covariance matrix Kyy on a full grid with g points such that X c Y. Specifically,
27 — 2\ o n~ 2
log |[Kxx + 21| = ;mguiJrU ) ~ ;log(q/ll to )
The induced kernel Kyy plays the role of Kyy when the scaled eigenvalue
method is applied to SKI and the eigenvalues of Kyy can be efficiently com-
puted. Assuming that the eigenvalues can be computed efficiently is a strong

assumption.

2.1.2 Diagonal correction to SKI

The SKI approximation may provide a poor estimate of the diagonal entries
of the original kernel matrix for kernels with limited smoothness, such as the
Matérn kernel. We thus modify the SKI approximation to add a diagonal matrix

D,
Kxx * WKyyW' + D, (2.2)

such that the diagonal of the approximated Kyx is exact. In other words, D
substracts the diagonal of WKyyW” and adds the true diagonal of Kxx. This
modification is not possible for the scaled eigenvalue method for approximating
log determinants in [75], since adding a diagonal matrix makes it impossible to
approximate the eigenvalues of Kyx from the eigenvalues of K;,y. However, (2.2)
still admits fast MVMs. Computing D with SKI costs only O(n) flops since W is
sparse for local cubic interpolation. We can therefore compute (W”e;)" Kyy(We))

in O(1) flops.
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2.2 Approximating the log determinant

Our goal is to estimate, for a symmetric positive definite matrix K,

i ) g . _ (0K
log K| = tr(log(K)) and a—gi[‘og"(']:“(’( (%))

where log is the matrix logarithm [36]. We compute the traces involved in both

the log determinant and its derivative via stochastic trace estimators [39], which

approximate the trace of a matrix using only matrix vector products.

The key idea is that for a given matrix A and a random probe vector z with
independent entries with mean zero and variance one, then tr(A) = E[z"Az]; a
common choice is to let the entries of the probe vectors be Rademacher ran-
dom variables. In practice, we estimate the trace by the sample mean over n,

independent probe vectors. Often surprisingly few probe vectors suffice.

To estimate tr(log(K)) using Monte Carlo we need to multiply log(K) by the
probe vectors z;. We consider two ways to estimate log(K)z: by a polynomial
approximation of log or by using the connection between the Gaussian quadra-
ture rule and the Lanczos method [32, 68]. In both cases, we show how to re-use
the same probe vectors for an inexpensive coupled estimator of the derivatives.
In addition, we may use standard radial basis function interpolation of the log
determinant evaluated at a few systematically chosen points in the hyperpa-

rameter space as an inexpensive surrogate for the log determinant.
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2.21 Chebyshev techniques

Chebyshev polynomials are defined by the recursion
To(x) =1, Ti(x)=x, Tj(x)=2xTij(x)-T_1(x) for j>1,

where x € [-1,1]. For f : [-1, 1] — R the Chebyshev interpolant of degree ¢ is

t 2 _ 6 t
fx) = pix) := Z c;jTi(x), wherec;= /0 Zf(xk)Tj(xk)
k=0

= +1

where 6 is the Kronecker delta and x; = cos(n(i+1/2)/(t+ 1)) fork =0,1,2,....t;
see [26]. Using the Chebyshev interpolant of log(1 + ax), we approximate log|K|
by

t

log |K| — nlogp = log|I + aB| = Z cjtr(T;(B))
=0

when B = (K/B — 1)/a has eigenvalues 4, € (-1, 1).

For stochastic estimation of tr(7;(B)), we only need to compute 7' T;(B)z for
each given probe vector z. We compute vectors w; = T;(B)z and dw;/06; via the

coupled recurrences

Wo =2, Wi ZBZ, Wil =2BWj—Wj_1 fOI'jZ 1,
aW() 8W1 0B 6Wj+1 OB 8Wj 8Wj_1 .
— =0, - = —Z1, = 2 - i+ B_ - f Z 1
a6, a6, _ 96, a8, 96" " a6, )" "og 07

This gives the estimators

t

chZTWJ] and %loglf(le

J=0

log|K| ~ E

! ow;
} : TOW;j
CjZ —601}

J=0

Thus, each derivative of the approximation costs two extra MVMs per term.

28



2.2.2 Lanczos decomposition

We can also approximate 7z’ log(K)z via a Lanczos decomposition; see [28] for
discussion of a Lanczos-based computation of 7/ f(K)z and [68, 2] for stochastic
Lanczos estimation of log determinants. We run t steps of the Lanczos algo-

rithm, which computes the decomposition
KQ, = QT +,8161t+1€;T

e R™ is a matrix with orthonormal columns such

where @, = [ql 7@ -q;}
that ¢, = z/llzll, T € R™ is tridiagonal, g, is the residual, and e, is the rth Cartesian

unit vector. We estimate
' f(K)z ~ e fIPT)e (2.3)

where ¢, is the first column of the identity. The Lanczos algorithm is numeri-
cally unstable. Several practical implementations resolve this issue [10, 61]. The
approximation (2.3) corresponds to a Gauss quadrature rule for the Riemann-
Stieltjes integral of the measure associated with the eigenvalue distribution of
K. It is exact when f is a polynomial of degree up to 2¢ — 1. This approximation
is also exact when K has at most ¢ distinct eigenvalues, which is particularly rel-
evant to Gaussian process regression, since frequently the kernel matrices only

have a small number of eigenvalues that are not close to zero.

The Lanczos decomposition also allows us to estimate derivatives of the log

determinant at minimal cost. Via the Lanczos decomposition, we have
2=0(T "ellldl) » K 'z

This approximation requires no additional matrix vector multiplications be-

yond those used to compute the Lanczos decomposition, which we already
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used to estimate log(K)z; in exact arithmetic, this is equivalent to ¢ steps of CG.
Computing ¢ in this way takes O(tn) additional time; subsequently, we only
need one matrix-vector multiply by dK/d6; for each probe vector to estimate

tr(K~'(0K/06,)) = E[(K~'2)" (0K /06,)z].

2.2.3 Estimating higher derivatives

We have already described how to use stochastic estimators to compute the log
marginal likelihood and its first derivatives. The same approach applies to com-
puting higher-order derivatives for a Newton-like iteration, to understand the
sensitivity of the maximum likelihood parameters, or for similar tasks. The first

derivatives of the full log marginal likelihood are

oL 1[tr(f<_la_1<) T@K]

a6;) " a0,"

06, ~ 2

and the second derivatives of the two terms are

P _ PR 0k . 0k
—2__log|R|| = tr| & Y Gy ol
ae,.ae,.[og' | r( 96,96, a6, aej)’

i . 9K . 0k PR
- _ :2 T_K—]_ _ T ]
96,06, |6 p)"a] = 2 a6, a0," " 86,00,

Superficially, evaluating the second derivatives would appear to require several
additional solves above and beyond those used to estimate the first derivatives
of the log determinant. In fact, we can get an unbiased estimator for the second
derivatives with no additional solves, but only fast products with the deriva-
tives of the kernel matrices. Let z and w be independent probe vectors, and

define g = K™'z, h = K~'w, and @ = K~'(yx — ux). Then

82 - 82k af( af(
log|Kl| =E|g" ———z - g —w|[h =
86,00, [ og| l] [g 06,00, (g 06; W) (h aejz)] ’
lig T 0K r 9K r K
—aeiaej [(y — Uy) a/] =2E [(Z (9_6?,@) (g a—eja/) —a aeiagja/.
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Hence, if we use the stochastic Lanczos method to compute the log determinant
and its derivatives, the additional work required to obtain a second derivative
estimate is one MVM by each second partial of the kernel for each probe vector
and for @, one MVM of each first partial of the kernel with «, and a few dot

products.

2.3 Error properties

In addition to the usual errors from sources such as solver termination criteria
and floating point arithmetic, our approach to kernel learning involves several
additional sources of error: we approximate the true kernel with one that en-
ables fast MVMs, we approximate traces using stochastic estimation, and we

approximate the actions of log(K) and K~! on probe vectors.

We can compute first-order estimates of the sensitivity of the log likelihood
to perturbations in the kernel using the same stochastic estimators we use for
the derivatives with respect to hyperparameters. For example, if L™ is the like-

lihood for a reference kernel K™ = K + E, then
1
LEOl) = LOy) - 5 (E[s"Ez| - o” Ea) + OEIP),

and we can bound the change in likelihood at first order by ||E]| (||g||||z|| + ||a||2).
Given bounds on the norms of dE/d6;, we can similarly estimate changes in the
gradient of the likelihood, allowing us to bound how the marginal likelihood

hyperparameter estimates depend on kernel approximations.

If K = UAUT + ¢0%I, the Hutchinson trace estimator has known variance [1]

Var(z" log(K)z] = ) Tlog(R)T; < > log(1 + 4;/0™)’.
i=1

i+
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If the eigenvalues of the kernel matrix without noise decay rapidly enough
compared to o, the variance will be small compared to the magnitude of
tr(log K) = 2nlogo + Y, log(1l + A /o). Hence, we need fewer probe vectors to
obtain reasonable accuracy than one would expect from bounds that are blind
to the matrix structure. In our experiments, we typically only use 5-10 probes
— and we use the sample variance across these probes to estimate a posteriori
the stochastic component of the error in the log likelihood computation. If we
are willing to estimate the Hessian of the log likelihood, we can increase rates

of convergence for finding kernel hyperparameters.

The Chebyshev approximation scheme requires O( vk log(k/€)) steps to ob-
tain an O(e) approximation error in computing L log(lz )z, where K = Apax/Amin 1S
the condition number of K [32]. This behavior is independent of the distribu-
tion of eigenvalues within the interval [Amin, Amax], and is close to optimal when
eigenvalues are spread quasi-uniformly across the interval. Nonetheless, when
the condition number is large, convergence may be quite slow. The Lanczos
approach converges at least twice as fast as Chebyshev in general [68, Remark
1], and converges much more rapidly when the eigenvalues are not uniform
within the interval, as is the case with log determinants of many kernel matri-
ces. Hence, we recommend the Lanczos approach over the Chebyshev approach
in general. In all of our experiments, the error associated with approximating

7" log(K)z by Lanczos was dominated by other sources of error.
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2.3.1 Comparison to a reference kernel

Suppose more generally that K = K + o[ is an approximation to a reference
kernel matrix K™ = K™ + 021, and let E = K™ — K. Let £(6]y) and £L*(6y) be the

log likelihood functions for the two kernels; then

L7(@ly) = L@ - 5 [n(&™'E) — o” Ea| + O(IEI)

X 1 E K -
(%Lret(Hb’) £(0|y) - = [tr (K‘ 19 -K! 19 —K E)

7, 7, + O(IEIP).

a/—cx

06;

If we are willing to pay the price of a few MVMs with E, we can use these
expressions to improve our maximum likelihood estimate. Let z and w be in-
dependent probe vectors with ¢ = K-'z and § = K~'w. To estimate the trace
in the derivative computation, we use the standard stochastic trace estimation

approach together with the observation that E[ww’] = I

tr k—laE K! aKf( 'E|=El|g r0E é\—Kw o'E
6, 6, ~EE Be T g 00,8 °*

This linearization may be used directly (with a stochastic estimator); alternately,
if we have an estimates for ||E|| and ||[0E/06;||, we can substitute these in order
to get estimated bounds on the magnitude of the derivatives. Coupled with
a similar estimator for the Hessian of the likelihood function (described in the
supplementary materials), we can use this method to compute the maximum
likelihood parameters for the fast kernel, then compute a correction —H ™'V, L™

to estimate the maximum likelihood parameters of the reference kernel.

2.4 Experiments

We test our stochastic trace estimator with both Chebyshev and Lanczos ap-

proximation schemes on a large set of diverse numerical experiments. Through-
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out we use the SKI method [75] of Eq. (2.1) for fast MVMs. We find that the
Lanczos is able to do kernel recovery and inference significantly faster and more

accurately than competing methods.

2.4.1 Natural sound modeling

Here we consider the natural sound benchmark in [75], shown in Figure 2.1(a).
Our goal is to recover contiguous missing regions in a waveform with n =
59,306 training points. We exploit Toeplitz structure in the Ky matrix of our

SKI approximate kernel for accelerated MVMs.

The experiment in [75] only considered scalable inference and prediction,
but not hyperparameter learning, since the scaled eigenvalue approach requires
all the eigenvalues for an g x g Toeplitz matrix, which can be computationally
prohibitive with cost O(¢%). However, evaluating the marginal likelihood on this
training set is not an obstacle for Lanczos and Chebyshev since we can use fast

MVMs with the SKI approximation at a cost of O(n + glog g).

In Figure 2.1(b), we show how Lanczos, Chebyshev, and an RBF (surro-
gate) based on precomputed logdet values to scale with the number of inducing
points ¢ compared to the scaled eigenvalue method and FITC. We use 5 probe
vectors and 25 iterations for Lanczos, both when building the surrogate and for
hyperparameter learning with Lanczos. We also use 5 probe vectors for Cheby-
shev and 100 moments. Figure 2.1(b) shows the runtime of the hyperparame-
ter learning phase for different numbers of inducing points g, where Lanczos
and the surrogate are clearly more efficient than scaled eigenvalues and Cheby-

shev. For hyperparameter learning, FITC took several hours to run, compared

34



to minutes for the alternatives; we therefore exclude FITC from Figure 2.1(b).
Figure 2.1(c) shows the time to do inference on the 691 test points, while 2.1(d)
shows the standardized mean absolute error (SMAE) on the same test points.
As expected, Lanczos and surrogate make accurate predictions much faster than
Chebyshev, scaled eigenvalues, and FITC. In short, Lanczos and the surrogate
approach are much faster than alternatives for hyperparameter learning with a

large number of inducing points and training points.
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Figure 2.1: Sound modeling using 59,306 training points and 691 test
points. The intensity of the time series can be seen in (a). Train
time for SE kernel hyperparameters is in (b) and the time for in-
ference is in (c). The standardized mean absolute error (SMAE)
as a function of time for an evaluation of the marginal likeli-
hood and all derivatives is shown in (d). Surrogate is (—),
Lanczos is (- - -), Chebyshev is (— ¢ —), scaled eigenvalues is
(— +—), and FITC is (— o —).
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2.4.2 Daily precipitation prediction

This experiment involves precipitation data from the year of 2010 collected from
around 5500 weather stations in the US!. The hourly precipitation data is pre-
processed into daily data if full information of the day is available. The dataset
has 628,474 entries in terms of precipitation per day given the date, longitude
and latitude. We randomly select 100, 000 data points as test points and use the
remaining points for training. We then perform hyperparameter learning and

prediction with the SE kernel, using Lanczos, scaled eigenvalues, and exact.

For Lanczos and scaled eigenvalues, we optimize the hyperparameters on
the subset of data for January 2010, with an induced grid of 100 points per spa-
tial dimension and 300 in the temporal dimension. Due to memory constraints
we only use a subset of 12, 000 entries for training with the exact method. While
scaled eigenvalues can perform well when fast eigendecompositions are possi-

ble, as in this experiment, Lanczos nonetheless still runs faster and with slightly

lower MSE.
Method n g | MSE | Time [min]
Lanczos 528k | 3M | 0.613 14.3
Scaled eigenvalues | 528k | 3M | 0.621 15.9
Exact 12k - 10.903 11.8

Table 2.1: Prediction comparison for the daily precipitation data showing
the number of training points n, number of induced grid points
g, the mean squared error, and the inference time.

Incidentally, we are able to use 3 million inducing points in Lanczos and

scaled eigenvalues, which is enabled by the SKI representation [75] of covari-

lhttps://catalog.data.gov/dataset/u-s—hourly-precipitation-data
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ance matrices, for a a very accurate approximation. This number of inducing

points ¢ is unprecedented for typical alternatives which scale as O(¢?).

2.4.3 Hickory data

In this experiment, we apply Lanczos to the log-Gaussian Cox process model
with a Laplace approximation for the posterior distribution. We use the SE ker-
nel and the Poisson likelihood in our model. The scaled eigenvalue method
does not apply directly to non-Gaussian likelihoods; we thus applied the scaled
eigenvalue method in [75] in conjunction with the Fiedler bound in [19] for
the scaled eigenvalue comparison. Indeed, a key advantage of the Lanczos ap-
proach is that it can be applied whenever fast MVMs are available, which means
no additional approximations such as the Fiedler bound are required for non-

Gaussian likelihoods.

This dataset, which comes from the R package spatstat, is a point pattern
of 703 hickory trees in a forest in Michigan. We discretize the area into a 60 x 60
grid and fit our model with exact, scaled eigenvalues, and Lanczos. We see
in Table 2.2 that Lanczos recovers hyperparameters that are much closer to the
exact values than the scaled eigenvalue approach. Figure 2.2 shows that the

predictions by Lanczos are also indistinguishable from the exact computation.

Method Ry £ & —log p(y|6) | Time [s]
Exact 0.696 | 0.063 | 0.085 | 1827.56 465.9
Lanczos 0.693 | 0.066 | 0.096 | 1828.07 214
Scaled eigenvalues | 0.543 | 0.237 | 0.112 | 1851.69 2.5

Table 2.2: Hyperparameters recovered on the Hickory dataset.
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a) Point pattern data b) Prediction by exact
P y

(¢) Scaled eigenvalues (d) Lanczos

Figure 2.2: Predictions by exact, scaled eigenvalues, and Lanczos on the
Hickory dataset.

24.4 Crime prediction

In this experiment, we apply Lanczos with the spectral mixture kernel to the
crime forecasting problem considered in [19]. This dataset consists of 233,088
incidents of assault in Chicago from January 1, 2004 to December 31, 2013. We
use the first 8 years for training and attempt to predict the crime rate for the
last 2 years. For the spatial dimensions, we use the log-Gaussian Cox process
model, with the Matérn-5/2 kernel, the negative binomial likelihood, and the
Laplace approximation for the posterior. We use a spectral mixture kernel with
20 components and an extra constant component for the temporal dimension.

We discretize the data into a 17 x 26 spatial grid corresponding to 1-by-1 mile
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grid cells. In the temporal dimension we sum our data by weeks for a total of
522 weeks. After removing the cells that are outside Chicago, we have a total of

157,644 observations.

The results for Lanczos and scaled eigenvalues (in conjunction with the
Fiedler bound due to the non-Gaussian likelihood) can be seen in Table 2.3. The
Lanczos method used 5 Hutchinson probe vectors and 30 Lanczos steps. For
both methods we allow 100 iterations of LBFGS to recover hyperparameters and
we often observe early convergence. While the RMSE for Lanczos and scaled
eigenvalues happen to be close on this example, the recovered hyperparame-
ters using scaled eigenvalues are very different than for Lanczos. For example,
the scaled eigenvalue method learns a much larger o than Lanczos, indicat-
ing model misspecification. In general, as the data become increasingly non-
Gaussian the Fiedler bound (used for fast scaled eigenvalues on non-Gaussian

likelihoods) will become increasingly misspecified, while Lanczos will be unaf-

fected.
Method 4 O o’ Trecovery[s] Tprediction[s] RMSErain | RMSE;est
Lanczos 0.65 | 0.67 | 69.72 264 10.30 1.17 1.33
Scaled eigenvalues | 0.32 | 0.10 | 191.17 67 3.75 1.19 1.36

Table 2.3: Hyperparameters recovered, recovery time and RMSE for Lanc-
zos and scaled eigenvalues on the Chicago assault data. Here ¢;
and ¢, are the length scales in spatial dimensions and ¢ is the
noise level. Trecovery is the time for recovering hyperparameters.
Tprediction is the time for prediction at all 157,644 observations
(including training and testing).
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2.4.5 Deep kernel learning

To handle high-dimensional datasets, we bring our methods into the deep ker-
nel learning framework [79] by replacing the final layer of a pre-trained deep
neural network (DNN) with a GP. This experiment uses the gas sensor dataset
from the UCI machine learning repository. It has 2565 instances with 128 di-
mensions. We pre-train a DNN, then attach a GP with SE kernels to the two-
dimensional output of the second-to-last layer. We then further train all param-
eters of the resulting kernel, including the weights of the DNN, through the GP
marginal likelihood. In this example, Lanczos and the scaled eigenvalue ap-
proach perform similarly well. Nonetheless, we see that Lanczos can effectively
be used with SKI on a high dimensional problem to train hundreds of thousands

of kernel parameters.

Method DNN Lanczos Scaled eigenvalues
RMSE | 0.1366 + 0.0387 | 0.1053 + 0.0248 0.1045 + 0.0228
Time [s] 0.4438 2.0680 1.6320

Table 2.4: Prediction RMSE and per training iteration runtime.

2.4.6 1D cross-section plots

In this experiment we compare the accuracy of Lanczos and Chebyshev for 1-
dimensional perturbations of a set of true hyper-parameters, and demonstrate
how critical it is to use diagonal replacement for some approximate kernels.
We choose the true hyper-parameters to be (¢,s,0) = (0.1,1,0.1) and consider
two different types of datasets. The first dataset consists of 1000 equally spaced

points in the interval [0, 4] in which case the kernel matrix of a stationary kernel
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is Toeplitz and we can make use of fast matrix-vector multiplication. The second
dataset consists of 1000 data points drawn independently from a U(0, 4) distri-
bution. We use SKI with cubic interpolation to construct an approximate kernel
based on 1000 equally spaced points. The function values are drawn from a GP
with the true hyper-parameters, for both the true and approximate kernel. We
use 250 iterations for Lanczos and 250 Chebyshev moments in order to assure
convergence of both methods. The results for the first dataset with the SE and
Matérn kernels can be seen in Figure 2.3(a)-2.3(d). The results for the second

dataset with the SKI kernel can be seen in Figure 2.4(a)-2.4(d).
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Figure 2.3: 1-dimensional perturbations for the exact SE and Matérn 1/2
kernel where the data is 1000 equally spaced points in the inter-
val [0, 4]. The exact values are (), Lanczos is (—), Chebyshev
is (—). The error bars of Lanczos and Chebyshev are 1 stan-
dard deviation and were computed from 10 runs with different
probe vectors
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Figure 2.4: 1-dimensional perturbations with the SKI (cubic) approxima-
tions of the RBF and Matérn 1/2 kernel where the data is 1000
points drawn from N(0,2). The exact values are (o), Lanczos
with diagonal replacement is (—), Chebyshev with diagonal
), Lanczos without diagonal replacement is
(—), Chebyshev without diagonal replacement is (—), and
scaled eigenvalues is (x). Diagonal replacement makes no per-
ceptual difference for the SE kernel so the lines are overlapping
in this case. The error bars of Lanczos and Chebyshev are 1
standard deviation and were computed from 10 runs with dif-
ferent probe vectors

Lanczos yields an excellent approximation to the log determinant and its
derivatives for both the exact and the approximate kernels, while Chebyshev
struggles with large values of s and small values of o on the exact and approxi-
mate SE kernel. This is expected since Chebyshev has issues with the singularity
at zero while Lanczos has large quadrature weights close to zero to compensate

for this singularity. The scaled eigenvalue method has issues with the approxi-

replacement is (

mate Matérn 1/2 kernel.
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2.4.7 Why Lanczos is better than Chebyshev

In this experiment, we study the performance advantage of Lanczos over
Chebyshev. Figure 2.5 shows that the Ritz values of Lanczos quickly converge to
the spectrum of the SE kernel thanks to the absence of interior eigenvalues. The
Chebyshev approximation shows the expected equioscillation behavior. More
importantly, the Chebyshev approximation for logarithms has its greatest error
near zero where the majority of the eigenvalues are, and those also have the

heaviest weight in the log determinant.

Another advantage of Lanczos is that it requires minimal knowledge of the
spectrum, while Chebyshev needs the extremal eigenvalues for rescaling. In ad-
dition, with Lanczos we can get the derivatives with only one MVM per hyper-
parameter, while Chebyshev requires an MVM at each iteration, leading to extra

computation and memory usage.

2.4.8 The importance of diagonal correction

This experiment shows that diagonal correction of the approximate kernel can
be very important. Diagonal correction cannot be used efficiently for some
methods, such as the scaled eigenvalue method, and this may hurt its predic-
tive performance. Our experiment is similar to [54]. We generate 1000 uni-
formly distributed points in the interval [-10, 10], and we choose a small num-
ber of inducing points in such a way that there is a large chunk of the inter-
val where there is no inducing point. We are interested in the behavior of the
predictive uncertainties on this subinterval. The function values are given by

f(x) =1+ x/2 + sin(x) and normally distributed noise with standard deviation
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Figure 2.5: A comparison between the true spectrum, the Lanczos weights
(t = 50), and the Chebyshev weights (¢ = 100) for the SE kernel
with £ = 03, s = 1, and o = 0.1. All weights and counts are
on a log-scale so that they are easier to compare. Blue bars
correspond to positive weights while red bars correspond to
negative weights.

0.05 is added to the function values. We find the optimal hyper-parameters of
the Matérn 3/2 using the exact method and use these hyper-parameters to make
predictions with Lanczos, Chebyshev, FITC, and the scaled eigenvalue method.
We consider Lanczos both with and without diagonal correction in order to see

how this affects the predictions. The results can be seen in Figure 2.6.

It is clear that Lanczos and Chebyshev are too confident in the predictive
mean when diagonal correction is not used, while the predictive uncertainties
agree well with FITC when diagonal correction is used. The scaled eigenvalue
method cannot be used efficiently with diagonal correction and we see that this

leads to predictions similar to Lanczos and Chebyshev without diagonal correc-
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Figure 2.6: Example that shows how important diagonal correction can be
for some kernels. The Matérn 3/2 kernel was used to fit the
data given by the black dots. This data was generated from the
function f(x) = 1 + x/2 + sin(x) to which we added normally
distributed noise with standard deviation 0.05. We used the
exact method to find the optimal hyper-parameters and used
these hyper-parameters to study the different behavior of the
predictive uncertainties when the inducing points are given by
the green crosses. The solid blue line is the predictive mean
and the dotted red lines shows a confidence interval of two
standard deviations.

tion. The flexibility of being able to use diagonal correction with Lanczos and

Chebyshev makes these approaches very appealing.
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2.4.9 Surrogate log determinant approximation

The point of this experiment is to illustrate how accurate the level-curves of the
surrogate model are compared to the level-curves of the true log determinant.
We consider the SE and the Matérn 3/2 kernels and the same datasets that we
considered in 2.4.6. We fix s = 1 and study how the level curves compare when
we vary ¢ and o. Building the surrogate with all three hyper-parameters pro-
duces similar results, but requires more design points. We use 50 design points
to construct a cubic RBF with a linear tail. The values of the log determinant and
its derivatives are computed with Lanczos. It is clear from Figure 2.7 that the
surrogate model does a good job approximating the log determinant for both

kernels.

2410 Kernel hyper-parameter recovery

This experiments tests how well we can recover hyper-parameters from data
generated from a GP. We compare Chebyshev, Lanczos, the surrogate, the scaled
eigenvalue method, and FITC. We consider a dataset of 5000 points generated
from a N(0,2) distribution. We use SKI with cubic interpolation and a total
of 2000 inducing points for Lanczos, Chebyshev, and then scaled eigenvalue
method. FITC was used with 750 equally spaced points because it has a longer
runtime as a function of the number of inducing points. We consider the SE
kernel and the Matérn 3/2 kernel and sample from a GP with ground truth pa-
rameters (£,s,0) = (0.01,0.5,0.05). The GPs for which we try to recover the
hyper-parameters were generated from the original kernel. It is important to

emphasize that there are two sources of errors present: the error from the kernel
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Figure 2.7: Level curves of the exact and surrogate approximation of the
log determinant as a function of ¢ and o for the SE and Matérn
3/2 kernels. We used s = 1 and the dataset consisted of
1000 equally spaced points in the interval [0, 4]. The surrogate
model was constructed from the points shown with (e) and the
log determinant values were computed using stochastic Lanc-
Z0s.

approximation errors and the stochastic error from Lanczos and Chebyshev. We
saw in Figure 2.3 and 2.4 that the stochastic error for Lanczos is relatively small,
so this follow-up experiment helps us understand how Lanczos is influenced by
the error incurred from an approximate kernel. We show the true log marginal

likelihood, the recovered hyper-parameters, and the run-time in Table 2.5.

It is clear from Table 2.5 that most methods are able to recover parameters
close to the ground truth for the SE kernel. The results are more interesting for
the Matérn 3/2 kernel where FITC struggles and the parameters recovered by
FITC have a value of the log marginal likelihood that is much worse than the

other methods.
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RBF Matérn 3/2
True —log p(y16) —6.22e3 —4.91e3
Hypers (0.01,0.5,0.05) (0.01,0.5,0.05)
—log p(y10) —6.23e3 —-491e3
Exact Hypers | (1.01e-2,4.81e—1,5.03e-2) | (9.63e-3,4.87e—1,4.96e-2)
Time (s) 368.9 466.7
—log p(y10) —6.22¢3 —4.86¢3
Lanczos Hypers (1.00e-2,4.77e—1,5.03e—2) | (1.04e—2,4.87e—1,4.67e-2)
Time (s) 66.2 133.4
—log p(y10) —6.23e3 —4.81e3
Chebyshev Hypers | (9.84e-3,4.85e—1,5.12e-2) | (1.11e-2,4.66e—1,5.78e-2)
Time (s) 110.3 173.3
—log p(y10) —6.22¢e3 —4.86€3
Surrogate Hypers | (1.01e-2,4.88e—1,4.85e-2) | (1.02e-2,4.80e—1,4.66e-2)
Time (s) 48.2 443
—log p(y10) —6.22e3 —4.71e3
Scaled eigenvalues | Hypers | (1.04e-2,4.52e—1,5.14e-2) | (1.13e-2,4.53e—1,6.37e-2)
Time (s) 90.2 127.3
—log p(y16) —6.22e3 —4.11e3
FITC Hypers | (1.03e-2,4.90e-1,5.07e-2) | (1.34e-2,5.22e—1,891e-2)
Time (s) 86.6 136.9

Table 2.5: Hyper-parameter recovery for the SE and Matérn 3/2 kernels.
The data was generated from 5000 normally distributed points.
Lanczos, surrogate, and scaled eigenvalues all used 2000 induc-
ing points while FITC used 750. These numbers where chosen
to make their run times close to equal. Diagonal correction was
applied to the Matérn 3/2 approximate kernel. The value of the
log marginal likelihood was was computed from the exact ker-
nel and shows the value of the hyper-parameters recovered by
each method. We ran Lanczos 5 times and averaged the values.
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2.5 Conclusion

The methods presented in this chapter are general and rely only on fast ma-
trix vector multiplications (MVMs) with the kernel matrix. These MVMs can
be used to efficiently solve linear systems with the kernel matrix using the con-
jugate gradient (CG) method. The biggest computational challenge is the es-
timation of the log determinant and its derivatives, and we have illustrated
the promise of combining stochastic trace estimation with the Lanczos process.
We have shown the scalability and flexibility of our approach through experi-
ments with kernel learning for several real-world data sets using both Gaussian
and non-Gaussian likelihoods, and highly parametrized deep kernels. The next
chapter will show how to extend the work in this chapter to incorporate gradi-
ent information in the GP model. We discuss several additional extensions in

Chapter 6.
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CHAPTER 3
SCALABLE GAUSSIAN PROCESSES WITH DERIVATIVES

In this chapter we generalize the work from the previous chapter to incorpo-
rate derivative information into the GP model. For many simulation models,
derivatives may be computed at little extra cost via finite differences, complex
step approximations, adjoint methods, or algorithmic differentiation [22]. Ex-
act kernel learning is ill-suited for GPs with derivatives, which requires O(n*d*)
computation and O(n’d*) storage. We demonstrate our work on applications in
Bayesian Optimization (BO) [81], implicit surface reconstruction [45], and ter-

rain reconstruction. Most of the content in this chapter is based on [16].

3.1 Background

While many scalable approximation methods for GP regression have been pro-
posed, scalable methods incorporating derivatives have received little attention.
In this chapter, we propose scalable methods for GPs with derivative informa-
tion built on the structured kernel interpolation (SKI) framework [75], which uses
local interpolation to map scattered data onto a large grid of inducing points,
enabling fast MVMs using FFTs. As the uniform grids in SKI scale poorly to
high-dimensional spaces, we also extend the structured kernel interpolation for
products (SKIP) method, which approximates a high-dimensional product ker-
nel as a Hadamard product of low rank Lanczos decompositions [25]. Both SKI
and SKIP provide fast approximate kernel MVMs, which are a building block
to solve linear systems with the kernel matrix and to approximate log determi-

nants [13].
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The eigenspectrum of K;X, the kernel matrix with derivative information,
may exhibit slow decay, despite Ky itself possessing fast spectral decay. Fast
forward to Figure 3.1 for two examples. The unfavorable spectrum of K;X im-

plies low-rank approximation such as SoR and FITC are infeasible. As a result,

preconditioning is necessary for convergence of any iterative method.

3.2 Scalable GPs with derivatives

One standard approach to scaling GPs substitutes the exact kernel with an ap-
proximate kernel. When the GP fits values and gradients, one may attempt to
separately approximate the kernel and the kernel derivatives. Unfortunately,
this may lead to indefiniteness, as the resulting approximation is no longer a
valid kernel. Instead, we differentiate the approximate kernel, which preserves
positive definiteness. We do this for the SKI and SKIP kernels below, but our

general approach applies to any differentiable approximate MVM.

3.21 D-SKI

D-SKI (SKI with derivatives) is the standard kernel matrix for Gaussian pro-
cesses with derivatives, but applied to the SKI kernel. Equivalently, we differ-

entiate the interpolation scheme:
kxx') = ) wilok(e, x') = Vk(nx) = ) Vi(0k(x, x).

One can use cubic convolutional interpolation [41], which we did in Chapter 2,

but higher order methods lead to greater accuracy, and we therefore use quintic
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interpolation [49]. The resulting D-SKI kernel matrix has the form
T

Kxx (0Kxx)" w w WKyyW"  WKyy(@W)"
KUU = s

OKxx  0°Kxx ow ow OW)KyyWT  (OW)Kyy(0W)"

&

where the elements of sparse matrices W and dW are determined by w;(x) and
Vw;(x) — assuming quintic interpolation, W and W will each have 69 elements
per row. As with SKI with ¢ gridpoints, we use FFTs to obtain O(glog g) MVMs
with Kyy. Because W and oW have O(n6Y) and O(nd6%) nonzero elements, re-

spectively, our MVM complexity is O(nd6? + qlog g).

3.2.2 D-SKIP

Several common kernels are separable, i.e. they can be expressed as products
of one-dimensional kernels. Assuming a compatible interpolation scheme, this
structure is inherited by the SKI approximation for the kernel matrix without
derivatives,

Kxx ¥ WiIKiW]) 0 (WLK, W) 0 ... 0 (WK, WD),

where A © B denotes the Hadamard product of matrices A and B with the same
dimensions, and W; and K; denote the SKI interpolation and inducing point grid
matrices in the jth coordinate direction. The same Hadamard product structure

applies to the kernel matrix with derivatives; for example, for d = 2,

WKW WK oWT WKW | | Wako W WoKoW! WoKy OW!

Voo
Ky ~ ow KWl ow,K, oWT oW KiWT | O | WakaW! WakoW! Wak,ow? |- G 1)

WKW WK 0WT WiK\WT | oW, Ko W W, Ko W OW,K, OWT
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Equation 3.1 expresses Ky, as a Hadamard product of one dimensional ker-
nel matrices. Following this approximation, we apply the SKIP reduction [25]
and use Lanczos to further approximate equation 3.1 as (0,7,07) © (Q,T»0}).
This can be used for fast MVMs with the kernel matrix, see the appendix for de-
tails. Applied to kernel matrices with derivatives, we call this approach D-SKIP.
D-SKIP achieves better scaling with d than D-SKI as constructing the D-SKIP
kernel costs O(d*(n+ plog p+ p’nlog d)) flops, and each MVM costs O(dp*n) flops
where p is the effective rank of the kernel at each step (rank of the Lanczos

decomposition). We achieve high accuracy with p < n.

3.2.3 Preconditioning

Recent work has explored several preconditioners for exact kernel matrices
without derivatives [12]. We have had success with preconditioners of the form
M = 0%l + FF" where Ky, ~ FF" with F € R™". Solving with the Sherman-
Morrison-Woodbury formula (a.k.a the matrix inversion lemma) is inaccurate
for small o; we use the more stable formula M~'b = o72(f — 0,(Q!b)) where 0,

is computed in O(p*n) time by the economy QR factorization

Fl O
= R.

ol (0}

In our experiments with solvers for D-SKI and D-SKIP, we have found that
a truncated pivoted Cholesky factorization, Ky, ~ (IIL)IIL)" works well for
the low-rank factorization. Computing the pivoted Cholesky factorization is
cheaper than MVM-based preconditioners such as Lanczos or truncated eigen-

decompositions as it only requires the diagonal and the ability to form the rows
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where pivots are selected. Pivoted Cholesky is a natural choice when inducing
point methods are applied as the pivoting can itself be viewed as an inducing
point method where the most important information is selected to construct a
low-rank preconditioner [34]. The D-SKI diagonal can be formed in O(nd6?)
flops while rows cost O(nd6? + q) flops; for D-SKIP both the diagonal and the

rows can be formed in O(nd) flops.

3.2.4 Dimensionality reduction

In many high-dimensional function approximation problems, only a few direc-
tions are relevant. That is, if f : R — R is a function to be approximated, there
is often a matrix P with d < d orthonormal columns spanning an active subspace
of R? such that f(x) ~ f(PP"x) for all x in some domain Q of interest [8]. The op-
timal subspace is given by the dominant eigenvectors of the covariance matrix
C = fQ Vf(x) Vf(x)" dx, generally estimated by Monte Carlo integration. Once
the subspace is determined, the function can be approximated through a Gaus-
sian process on the reduced space, i.e. we replace the original kernel k(x, x") with
a new kernel k(x, x') = k(PTx, PTx’). Because we assume gradient information,
dimensionality reduction based on active subspaces is a natural pre-processing

phase before applying D-SKI and D-SKIP.

3.3 Experiments

Our experiments use the squared exponential (SE) kernel, which has product

structure and can be used with D-SKIP; and the spline kernel, to which D-SKIP
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does not directly apply. We use these kernels in tandem with D-SKI and D-SKIP
to achieve the fast MVMs derived in §3.2. We write D-SE to denote the exact SE

kernel with derivatives.

3.3.1 Eigenspectrum approximation

—True spectrum —True spectrum
=+ SKI spectrum =+ SKIP spectrum

Figure 3.1: (Left two images) log,, error in D-SKI approximation and com-
parison to the exact spectrum. (Right two images) log,, error in
D-SKIP approximation and comparison to the exact spectrum.

D-SKI and D-SKIP with the SE kernel approximate the original kernel well,
both in terms of MVM accuracy and spectral profile. Comparing D-SKI and
D-SKIP to their exact counterparts in Figure 3.1, we see their matrix entries are
very close (leading to MVM accuracy near 107°), and their spectral profiles are
indistinguishable. The same is true with the spline kernel. Additionally, scaling
tests in Figure 3.2 verify the predicted complexity of D-SKI and D-SKIP. We
show the relative fitting accuracy of SE, SKI, D-SE, and D-SKI on some standard

test functions in Table 3.1.
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A Comparison of MVM Scalings

——SE Exact
——SE SKI (2D)
——SE SKIP (11D

MVM Time
b

2500 5000 10000 20000 30000
Matrix Size

Figure 3.2: Scaling tests for D-SKI in two dimensions and D-SKIP in 11
dimensions. D-SKIP uses fewer data points for identical matrix
sizes.

3.3.2 Kernel learning on test functions

We consider several popular test functions in two and three dimensions to il-
lustrate that derivative information leads to higher accuracy. The results are

illustrated in Table 3.1.

Branin | Franke | Sine Norm | Sixhump | StyTang | Hartman3
SE | 6.02e-3 | 8.73e-3 | 8.64e-3 6.44e-3 | 4.49e-3 | 1.30e-2
SKI | 3.97e-3 | 5.51e-3 | 5.37e-3 5.11e-3 | 2.25e-3 | 8.59%e-3

D-SE | 1.83e-3 | 1.59¢-3 | 3.33e-3 1.05e-3 | 1.00e-3 | 3.17e-3

D-SKI | 1.03e-3 | 4.06e-4 | 1.32e-3 5.66e-4 | 522e-4 | 1.67e-3

Table 3.1: Relative RMSE error on 10000 testing points for test functions
from [66], including five 2D functions (Branin, Franke, Sine
Norm, Sixhump, and Styblinski-Tang) and the 3D Hartman
function. We train the SE kernel on 4000 points, the D-SE ker-
nel on 4000/(d + 1) points, and SKI and D-SKI with SE kernel on
10000 points to achieve comparable runtimes between methods.
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3.3.3 Dimensionality reduction

We apply active subspace pre-processing to the 20 dimensional Welsh test func-
tion in [4]. The top six eigenvalues of its gradient covariance matrix are well
separated from the rest as seen in Figure 3.3(a). However, the function is far
from smooth when projected onto the leading 1D or 2D active subspace, as Fig-

ure 3.3(b) - 3.3(d) indicates, where the color shows the function value.

0 ‘

5 5 . , 05

-10 0 10 ° ;: 

5 o 5 ke os| " 1HER
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(a) Log Directional Varia- (b) First Active Direction (C) Second Active Direction (d) Leading 2D Active Sub-
tion space

Figure 3.3: 3.3(a) shows the top 10 eigenvalues of the gradient covariance.
Welsh is projected onto the first and second active direction in
3.3(b) and 3.3(c). After joining them together, we see in 3.3(d)
that points of different color are highly mixed, indicating a very
spiky surface.

We therefore apply D-SKI and D-SKIP on the 3D and 6D active subspace, re-
spectively, using 5000 training points, and compare the prediction error against
D-SE with 190 training points because of our scaling advantage. Table 3.2 re-
veals that while the 3D active subspace fails to capture all the variation of the
function, the 6D active subspace is able to do so. These properties are demon-
strated by the poor prediction of D-SKI in 3D and the excellent prediction of
D-SKIP in 6D.
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D-SE | D-SKI (3D) | D-SKIP (6D)
RMSE | 4.900e-02 | 2.267e-01 | 3.366e-03
SMAE | 4.624e-02 | 2.073¢-01 | 2.590e-03

Table 3.2: Relative RMSE and SMAE prediction error for Welsh. The D-SE
kernel is trained on 4000/(d + 1) points, with D-SKI and D-SKIP
trained on 5000 points. The 6D active subspace is sufficient to
capture the variation of the test function.

3.3.4 Preconditioning

We discover that preconditioning is crucial for the convergence of iterative
solvers using approximation schemes such as D-SKI and D-SKIP. To illustrate
the performance of conjugate gradient (CG) method with and without the
above-mentioned truncated pivoted Cholesky preconditioner, we test D-SKI on
the 2D Franke function with 2000 data points, and D-SKIP on the 5D Friedman
function with 1000 data points. In both cases, we compute a pivoted Cholesky
decomposition truncated at rank 100 for preconditioning, and the number of
steps it takes for CG/PCG to converge are demonstrated in Figure 3.4 below. It
is clear that preconditioning universally and significantly reduces the number

of steps required for convergence.

3.3.5 Rough terrain reconstruction

Rough terrain reconstruction is a key application in robotics [27, 42], au-
tonomous navigation [31], and geostatistics. Through a set of terrrain measure-
ments, the problem is to predict the underlying topography of some region. In

the following experiment, we consider roughly 23 million nonuniformly sam-

58



No preconditioner Pivoted Cholesky

4
0.2 0.2 35
0 0 3
0.2 -0.2 25
2
-0.4 -0.4
15
-0.6 -0.6
4
0.8 -0.8 05
-1 -1 L] 0
-2 -1.5 -1 -0.5 0

2 15 -1 0.5 0
4
0.2 0.2 35
0 0 3
0.2 -0.2 25
2
0.4 0.4
15
06 06
;
0.8 0.8 05
1 -1 0
2 15 -1 -0.5 0 -2 15 -1 0.5 0

Figure 3.4: The color shows log,, of the number of iterations to reach a tol-
erance of le-4. The first row compares D-SKI with and without
a preconditioner. The second row compares D-SKIP with and
without a preconditioner. The red dots represent no conver-
gence. The y-axis shows log,,({) and the x-axis log,,(c") and we
used a fixed value of s = 1.

pled elevation measurements of Mount St. Helens obtained via LiDAR [7]. We
bin the measurements into a 970x 950 grid, and downsample to a 120x 117 grid.

Derivatives are approximated using a finite difference scheme.

We randomly select 90% of the grid for training and the remainder for test-
ing. We do not include results for D-SE, as its kernel matrix has dimension
roughly 4 - 10*. We plot contour maps predicted by SKI and D-SKI in Figure 3.5
—the latter looks far closer to the ground truth than the former. This is quanti-

tied in the following table:

The Korean Peninsula elevation and bathymetry dataset[48] is sampled at a
resolution of 12 cells per degree and has 180 x 240 entries on a rectangular grid.

We take a smaller subgrid of 17 x 23 points as training data. To reduce data
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Figure 3.5: On the left is the true elevation map of Mount St. Helens. In
the middle is the elevation map calculated with the SKI. On the
right is the elevation map calculated with D-SKI.

{ s o o, | Testing SMAE | Overall SMAE | Time][s]
SKI | 35.196 | 207.689 | 12.865 | n.a. 0.0308 0.0357 37.67
D-SKI | 12.630 | 317.825 | 6.446 | 2.799 0.0165 0.0254 131.70

Table 3.3: The hyperparameters of SKI and D-SKI are listed. Note that
there are two different noise parameters o, and o, in D-SKI, for
the value and gradient respectively.

noise, we apply a Gaussian filter with o = 2 as a pre-processing step. We

observe that the recovered surfaces with SKI and D-SKI highly resemble their

respective counterparts with exact computation and that incorporating gradient

information enables us to recover more terrain detail.

4 s o SMAE | Time[s]
SKI 16.786 | 855.406 | 184.253 | 0.1521 | 10.094
D-SKI | 9.181 | 719.376 | 29.486 | 0.0746 | 11.643
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(a) Ground Truth (b) sk1 (c) D-sKk1

Figure 3.6: D-SKI is clearly able to capture more detail in the map than
SKI. Note that inclusion of derivative information in this case
leads to a negligible increase in calculation time.

3.3.6 Implicit surface reconstruction

Reconstructing surfaces from point cloud data and surface normals is a standard
problem in computer vision and graphics. One popular approach is to fit an
implicit function that is zero on the surface with gradients equal to the surface
normal. Local Hermite RBF interpolation has been considered in prior work
[45], but this approach is sensitive to noise. In our experiments, using a GP
instead of splining reproduces implicit surfaces with very high accuracy. In this
case, a GP with derivative information is required, as the function values are all

zero.

In Figure 3.7, we fit the Stanford bunny using 25000 points and associated
normals, leading to a Ky, matrix of dimension 10°, clearly far too large for exact
training. We therefore use SKI with the thin-plate spline kernel, with a total of
30 grid points in each dimension. The left image is a ground truth mesh of the
underlying point cloud and normals. The middle image shows the same mesh,
but with heavily noised points and normals. Using this noisy data, we fit a GP
and reconstruct a surface shown in the right image, which looks very close to

the original.
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Figure 3.7: (Left) Original surface (Middle) Noisy surface (Right) SKI re-

construction from noisy surface (s = 0.4,0 = 0.12)

3.3.7 Bayesian optimization with derivatives

Prior work examines Bayesian optimization (BO) with derivative information

in low-dimensional spaces to optimize model hyperparameters [81]. Wang et

al. consider high-dimensional BO (without gradients) with random projections

uncovering low-dimensional structure [70]. We propose BO with derivatives

and dimensionality reduction via active subspaces, detailed in Algorithm 1.

1:

2:

3:

7

Algorithm 3: BO with derivatives and active subspace learning

while Budget not exhausted do
Calculate active subspace projection P € R”* using sampled gradients
Optimize acquisition function, u,,; = arg max A(u) with x,.1 = Puy.
Sample point x,.;, value f,,;, and gradient V£,
Update data D, = D; U {x,11, far1> Vns1)
Update hyperparameters of GP with gradient defined by kernel
k(P x, PTx")

end
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Algorithm 1 estimates the active subspace and fits a GP with derivatives in
the reduced space. Kernel learning, fitting, and optimization of the acquisition
function all occur in this low-dimensional subspace. In our tests, we use the
expected improvement (EI) acquisition function, which involves both the mean
and predictive variance. We consider two approaches to rapidly evaluate the
predictive variance v(x) = k(x, x) — Kxxl?;(}(KXx at a test point x. In the first ap-
proach, which provides a biased estimate of the predictive variance, we replace
K3\ with the preconditioner solve computed by pivoted Cholesky; using the

stable QR-based evaluation algorithm, we have
v(x)  9(x) = k(x, ) = 02 (IKxllP = 1107 Kol P).

In the second approach, we use a randomized estimator as in [3] to compute
the predictive variance at many points X’ simultaneously, and use the pivoted

Cholesky approximation as a control variate to reduce the estimator variance:
vy = diag(Kyy) — B, |20 (KyxKyyKxxz — KyxM™' Kxy2)| - vy

The latter approach is unbiased, but gives very noisy estimates unless many
probe vectors z are used. Both the pivoted Cholesky approximation to the pre-
dictive variance and the randomized estimator resulted in similar optimizer

performance in our experiments.

To test this algorithm, we consider five instances of the 5D Ackley and 5D
Rastrigin functions randomly embedded in [-10, 15]°° and [-4, 5]°°, respectively.
In Figure 3.8(a) and Figure 3.8(b), we show the performance of our algorithm
using the D-SKI kernel and the EI acquisition function. We fix d = 2, and at each
iteration we pick two directions in the estimated active subspace at random.
We also compare to three other methods: BO with EI and no gradients in the

original space; multi-start BEFGS with full gradients; and random search. In both
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Figure 3.8: In the following experiments, 5D Ackley and 5D Rastrigin are
embedded into 50 a dimensional space. We run Algorithm
1, comparing it with BO exact, multi-start BFGS, and random
sampling. D-SKI with active subspace learning clearly outper-
forms the other methods.

examples, the BO variants perform better than the alternatives, and our method

outperforms standard BO.

3.4 Conclusion

The work in this chapter extended the work from Chapter 2 to the case where we
observe both values and gradients. Gradients are a valuable additional source of
information for GP regression, but inclusion of d extra pieces of information per
point naturally leads to new scaling issues. We introduced two methods to deal
with these scaling issues: D-SKI and D-SKIP. Both are structured interpolation
methods, and the latter also uses kernel product structure. We have discussed
practical details — preconditioning is necessary to guarantee convergence of it-
erative methods and active subspace calculation reveals low-dimensional struc-

ture when gradients are available. We presented several experiments with ker-
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nel learning, dimensionality reduction, terrain reconstruction, implicit surface
titting, and scalable Bayesian optimization with gradients. For simplicity, these
examples all possessed full gradient information; however, our methods triv-
ially extend if only partial gradient information is available. Future work and

potential extensions are discussed in Chapter 6.
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CHAPTER 4
GLOBAL OPTIMIZATION IN RBF NATIVE SPACES

In this chapter we consider the global optimization problem of minimizing
f : Q — R where Q is compact. Given only continuity of f, an optimization
method will converge to a global minimum if and only if it eventually samples
densely in Q [67]. Given further information about the function, such as a Lip-
schitz constant, one can find a global minimum more efficiently. While prior
surrogate-based optimization methods achieve global convergence by dense
sampling, standard approximation theory results for these surrogates often re-
quire more structure than simple continuity. In particular, RBF approximations
converge only when f belongs to a certain reproducing kernel Hilbert space (the
native space for the RBF). In this chapter, we introduce a new global optimiza-
tion method based on this approximation theory. Given only an upper bound
on the native space norm of f, we use RBF approximation theory to develop a

new algorithm that converges globally without dense sampling.

4.1 Background

The inequality in (1.8) provides a lower bound for f(x) anywhere in the domain:

F@) 2 () 1= 57 = Py (JIFR, = 1sxP, . (4.1)

and this lower bound only depends on |f|y, and the set X. In this section, we
develop a greedy global optimization algorithm based on minimizing this lower
bound at each step. For this to be feasible we assume that f € N, and that we

know |f|y, or an upper bound p > |fly,. The assumption f € N, is not strong
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when we are working with e.g., polyharmonic kernels since the native spaces
are instances of Beppo-Levi spaces as was discussed on page 6. In particular,

we make the following assumptions:

1. feN,.
2. |fln, or an upper bound p is known.
3. X is (v — 1)-unisolvent (if ¢ is conditionally positive definite of order v).

4. We can find the global minimum of ¢;x, in Q.

4.1.1 The algorithm

The ideas from the previous section lead to an optimization algorithm that se-
lects the point that minimizes the lower bound. Global minimization of the
lower bounds may itself be challenging and have several local minima. It is pos-
sible to use a heuristic method such as a genetic algorithm or a particle swarm,
but since both the gradient and the Hessian of the lower bounds are easy to ob-
tain we can use a multi-start gradient method. The optimization algorithm is

given in Algorithm 4.

This algorithm will stop the optimization process when we have found a
function value within € of the global minimum value. This is achieved by using

the fact that the global minimum value f* satisfies
r}{ggglff’xn(y) < f* < min fy,, Yn > ny,
from which it is obvious that
|min fy, = £°[ < | min fy, = min £;.x,09).
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Algorithm 4: Optimization algorithm based on a semi-norm budget

1: Tolerance e
2: X, < {x1, Xx2,..., Xy} @ unisolvent set of initial points
3: fX"O — {f(xl)’ f(x2)7 .o ’f(xno)}

4: Build ssy, from (X, fx, )

IZO
5 n<ny

6: while |min fy, —min /()| > € do

XE
7: y « argmin sy, (x)
xeQ)

8: Xnr1 < X, U {y}

9% fxu < Sfx, YISO}
10: Build s;y,,, from (X1, fx,.,)

11: n—n+1

We also have the property that the sequence of lower bounds is non-decreasing;
that is, for each iteration n where s/x,(y) # f(y) we have that {,x,(x) < {;x,,,(x)
for all x ¢ X,. This property is what we will use to prove that this algorithm is
globally convergent without necessarily sampling densely in Q as long as the as-
sumptions are satisfied. In particular, if we are given an upper bound p > |fly,,
then Algorithm 4 will do more exploration and less exploitation since the lower
bounds are weaker. On the other hand, if p < |f|y,, then global convergence

cannot be guaranteed.
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4.2 Convergence of the method

In this section we prove that Algorithm 4 is globally convergent even though it
may not sample densely. We first show the result for SPD kernels in §4.2.1, then

explain how to extend the results to CPD kernels in §4.2.2.

4.2.1 Global convergence for SPD kernels

Suppose k(x,y) = ¢(r) is a radial SPD kernel and that there is some continuous
monotonically increasing function ¢ : Ryg — R, with ¢(0) = 0 such that |k(x, y)—
k(x, x)| < y(6) for any ||lx — y|| < 6. Note that this is a weak assumption and that it
is easy to construct such a function for the kernels introduced in Chapter 1. We
start by constructing an upper bound on the power function (1.7) by bounding

it by the power function based only on the closest point.

Lemma 2. Let X be any set of interpolation nodes. Then for any y,

Po)* < 20 mip Iy = ).

Proof. Let x be the closest point to y in X. Then

k(x,y)?

Px,(y)* < P y(y)* = k(y,y) — )

because the power function decreases with each new interpolation point. It

follows that

k(x,y)* (k(x, x) — k(x, y))*
o) k(y,y) — 2k(x,y) + k(x, x) — )

< [k(x, x) = k(x, p) + |k(y, y) = k(x, y)

k(y’y) -

< 2w(mi§1||y - xu).
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The following lemma is a trivial consequence of the fact that the sequence of

lower bounds is non-decreasing.

Lemma 3. Forany j > 0,

€f,X,,(-xn+j) < f*

Proof. By construction, {sx,,, ,(x.+;) < f*; and the lower bounds increase with

each additional point, so s, (X1 ;) < Crx,.,.,(Xut))- O

Next, we combine the previous two lemmas with the inequality in (1.8) to

bound how close a function value is from the global minimum value f*.

Lemma 4. Suppose ||x, — x4, || < 6. Then

[f i) = 71 < VBY(S) | fln, -

Proof. Lety = \/|f|fv¢ — Isyx, I3 LS | fln,- We first observe that

Qe ) = o, e ) = | FGne)) = S 1, (ne ) + ¥ P, (X )|
< |f(xn+j) - Sf,X,,(xn+j)| + ’yPX,,,tp(xnf/')
< 27PXn,¢(xn+j)

< 2| fIng Px, o (X )-

By Lemma 2 and Lemma 3,

i) = f7 < 2P, o I f In, < 2201 f, -
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We are now ready to prove that Algorithm 4 on page 68 is globally con-
vergent. The main idea of the proof is to use Bolzano-Weierstrass to pick a
convergent subsequence and show that the corresponding sequence of function
values is arbitrarily close to f*. The proof is valid if there are multiple global

minimizers of f since we can always pick one convergent subsequence.

Theorem 5. Let Q C R? be compact, and suppose p > |fly,. Then Algorithm 4 is

globally convergent; that is, min fx, — f*.

Proof. Let (x,) be the sequence selected by Algorithm 4. The Bolzano-
Weierstrass theorem guarantees a convergent subsequence (x,,) such that

X, — X € Q, and continuity of f guarantees that f(x,) — f(X). For any € > 0,
continuity of ¢ (together with y(0) = 0) implies 36 > 0 such that \/Wl fln, <€
For any convergent subsequence (x,,), there exists an i, such that for all j > 0,

1%, — Xiyll < 0; by the previous lemma, this implies

0< fxi+)—f <e

We are therefore guaranteed f(X) = f~. m]

4.2.2 Global convergence for CPD kernels

Now consider the case where the kernel k(x,y) = ¢(r) is a radial CPD kernel
relative to some polynomial space with basis functions ny, 75, ... 7,,. In this set-
ting, we need a modification to Lemma 2. We assume a function ¢ that controls
both the kernel (as before) and the polynomial basis functions — that is, we also

require |7;(x) —m;M < yY(llx =y, j=1,...,m.
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Lemma 6. Let X be any set of interpolation nodes consisting of a fixed subset X,
which is unisolvent with respect to interpolation in I1_ and a subset X, containing
the remaining nodes. Then there exists a constant C that does not depend on X, such

that for any y,

Py () < 2Cy (min Iy - x||) .
xeX

Proof. For any points u, v not in X,, we can define the modified SPD kernel func-

tion
ke(u, v) = k(u, v) — w(u)T Ay ' w(v)
where
KX()X() PX() KXO”
Ao = , w(u) =
Py, 0 PT

By compactness of Q and continuity of the kernel and polynomial basis func-
tions, there exists some C > 1 such that ||A;'w(w)ll, < C -1 for all u € Q. Note
that
e, v) = ke, 10)] < [kGut, v) = kG, w)] + wn)" Ag' (w(v) = w())
< y(llv —ull) + (C = DIw(v) = ww)lle
<Y(llv —ull) + (€ = Dy(llv — ull)
= Cy(llv — ul)),
The modified kernel is SPD on Q \ X, and the power function Py(y) for the

original kernel is the same as the power function P x,.0(y) for the modified kernel.

Let x be the point in X, that is nearest to y. Then

Px,(3)? < Pxyor o) = Prp() < 2Cu(llx = yl),

by applying Lemma 2. O
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The proof of Theorem 5 for a CPD kernel parallels what we saw in the SPD

case, except that we must work with the scaled function {(5) = Cy/(6).

4.2.3 Convergence rates

The standard convergence rate theory for RBF interpolation was summarized
in §1.3.2. However, these results do not apply in our setting as convergence is
measured in terms of the fill distance. Algorithm 4 may not sample densely
which will prevent the fill-distance from approaching zero. We are interested in

how fast min fx, approaches f(x*), and if we use the fact that

<) = €rx, (),

|f(x*) — min fx,

it is enough to find a rate for how fast £y, (x*) approaches f(x*). Mimicking the

main steps in Lemma 4,

) = £x, () = | F(X) = 570,(x7) + ¥ P, (")
<[ = s, ()] + YPx, o (x7)

< 2yPy, o(x")
we need to find the rate of convergence for the power function evaluated at x*.

The easiest way to achieve a convergence rate that relates to the smoothness
of the kernel is to modify the algorithm so a point is selected uniformly from
the domain with probability €, and the minimizer of the lower bound is selected
with probability 1 — e. This approach is used by Bull [6] to prove convergence
rates for expected improvement (EI), but the results are miss-leading as the con-
vergence rates comes from the quasi-uniformity of the points selected uniformly

at random and does not depend on how the other points are selected.
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4.3 Experiments

This section will test Algorithm 4 on a set of popular test problems. We will ver-
ify that the sampling pattern is promising and compare estimated convergence

rates with convergence rates based on the fill distance.

4.3.1 Implementation details

We use MATLAB R2018b for the numerical experiments and rely on fmincon to
minimize the lower bounds. In particular, we use the SQP method since it works
with bound constraints and can make use of gradient information for the lower
bounds. We use SQP in a multi-start fashion by starting from a perturbation
of each previously evaluated point. This approach was compared to using a
genetic algorithm and the multi-start gradient approach consistently did better.
The true semi-norm was approximated based on a regular grid consisting of

10,000 points.

4.3.2 Sampling pattern and feasible region

This experiment illustrates the sampling pattern of Algorithm 4, using a cubic
kernel and a linear tail, on the two-dimensional six-hump camel function, which
has 6 stationary points. The true semi-norm was estimated based on a 100 x 100
grid and we used an SLHD with 6 points as the experimental design and a total
of 250 function evaluations. Figure 4.1 shows the sampling pattern and we see

that the algorithm was eventually only sampling close to the two global minima.
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It is also clear that regions with large function values were barely explored.

Figure 4.1: The sampling pattern of Algorithm 4 on the six-hump camel
function. We used a cubic kernel and a linear tail and a total of
250 evaluations.

4.3.3 Estimated convergence rates

We focus on the cubic kernel which converges at a polynomial rate according
to Table 1.1. We consider four different test functions and estimate the true
semi-norm in a similar way as in the previous experiments, which makes this
experiment limited to low-dimensional functions. We look for a convergence
rate of the form

en = | (") = min £y, (0] = Cn”.

If the points are quasi-uniformly distributed we expect 8 ~ 2/d since hx, o =
O(n~"?) and the cubic kernel is of order 2. Algorithm 4 may not sample densely,

so the convergence rate results from §1.3.2 do not apply, but gives a baseline of
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comparison. The constants C and g are found by finding the optimal degree-1
polynomial in the least-squares sense that fits the data points {log(n), log(e,)}_,.
We ignore the first 100 evaluations since they are not part of the asymptotic
region and has too much influence on the resulting fit. We use a total of 250
function evaluations and the experimental design is chosen to be a SLHD with

2(d + 1) points. The resulting convergence plots can be seen in Figure 4.2.
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Figure 4.2: Estimated convergence rates for different functions using Al-
gorithm 4 with a cubic kernel and a linear tail. (Blue dots) Val-
ues of ¢,. (Red line) Least squares fit of the form Cn*

Figure 4.2(a) shows the six-hump camel function which is a two-dimensional
function with 6 stationary points. The lower bound was within 0.0248 of the
global optimum value after 250 evaluations and the exponent 8 was estimated
to be 3.02, which is much larger than the expected value of 1 for a quasi-uniform
point distribution. The best function value found is within 4.27¢ -7 of the global

minimum value and the R? of the linear fit is 0.994.
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Figure 4.2(b) shows the 3-dimensional Rosenbrock function, a common test
function in optimization. The narrow valley from the local minimum (0, 0, 0) to
the global minimum (1, 1, 1) makes it challenging for many optimization algo-
rithms. We notice that the lower bounds are 516.00 from the global minimum
value, mainly since the sharp valleys result in a large value of |f|y,. The best
solution found is within 8.1e — 3 of the global minimum value and the estimated
exponent is § = 0.95, which is slightly larger than the expected convergence rate

of 2/3 for a quasi-uniform point distribution. The R? of the linear fit is 0.939.

Figure 4.2(c) shows the 3-dimensional Hartman3 function, which has 4 local
minima. The lower bound is within 0.81 of the global optimum value after 250
evaluations and the estimated value 8 = 1.75 is much better than the expected
value 2/3 in the quasi-uniform setting. The function value of the best solution
found is within 1.7¢ — 7 of the global minimum value. The R? of the linear fit is

0.939.

Figure 4.2(d) shows the 6-dimensional Hartmané function, which has 6 local
minima. Estimating the semi-norm is challenging in six dimensions and we
used a regular grid with 5° points. For this reason, the estimated semi-norm
may be much smaller than the true semi-norm. The lower bound is within 10.06
of the global minimum value and the estimated value of § = 0.83 is larger than
the expected value of 1/3 for a quasi-uniform point distribution. The function
value of the best solution found is within 0.19 of the global minimum value and

the R? of the linear fit is 0.935.
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4.4 Conclusion

We have introduced a new RBF-based global optimization algorithm for expen-
sive black-box functions that uses native space semi-norm bounds to pick the
next evaluation. We have proved that the algorithm is globally convergent for
functions in the native space of the given RBF kernel given an upper bound on
the semi-norm. Our numerical experiments demonstrate that Algorithm 4 con-
verges at a rate that is better than what we expect from RBF interpolation theory,
and that the sampling pattern on the six-hump camel function looks promising.
Future work includes estimating the semi-norm from a global regularity condi-
tion, such as Lipschitz as well as extending the algorithm to work with functions
outside the native space of the kernel. We also want to prove convergence re-
sults that agree with the RBF interpolation theory in §1.3.2 without modifying

the algorithm to select additional points uniformly at random.
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CHAPTER 5
PYSOT AND POAP: ASYNCHRONOUS GLOBAL OPTIMIZATION

This chapter describes Plumbing for Optimization with Asynchronous Paral-
lelism (POAP) and the Python Surrogate Optimization Toolbox (pySOT). POAP
is an event-driven framework for building and combining asynchronous op-
timization strategies, designed for global optimization of expensive functions
where concurrent function evaluations are appealing. pySOT is a collection of
synchronous and asynchronous surrogate optimization strategies, implemented
in the POAP framework. We support the stochastic RBF method by Regis and
Shoemaker [58] along with various extensions of this method, as well as several
Bayesian optimization methods. We have implemented many different surro-

gate models, experimental designs, and a large set of test problems.

We have tested that our implementation is consistent with previously re-
ported results and make an extensive comparison between synchronous and
asynchronous parallel. We find that asynchrony is never worse than synchrony
on several challenging multimodal test problems and conclude that launching
evaluations asynchronously is consistently better when increasing the variance

in the evaluation time or the number of processors.

51 Background

Several parallel algorithms have been developed for computationally expen-
sive black-box optimization. Regis and Shoemaker [59] developed a syn-

chronous parallel surrogate optimization algorithm based on radial basis func-
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tions (RBFs). They made two assumptions: (i) that the resources are homoge-
neous and (ii) that the evaluation time is constant. The first assumption does not
hold for heterogeneous parallel computing platforms and the second assump-
tion is unlikely to hold in cases where the complexity of evaluating the objective
depends spatially on the input. The first assumption can almost always be as-
sessed before the start of the optimization run while the second assumption may
not be easy to assess in practice. Another limitation of the work in [59] is that the
algorithm does not handle the possibility of worker failures and crashed evalu-
ations. Being able to handle failures is critical in order to run the algorithm on
large-scale systems. The natural way of dealing with cases where (i) or (ii) are
violated is to launch function evaluations asynchronously, which is illustrated

in Figure 5.1.

5.1.1 Survey of Software

A library with similar functionality

Batch Synchronous Asynchronous

as POAP is SCOOP [37], a Python
based library for distributing concur-
rent tasks while internally handling

the communication. POAP provides

similar functionality for global op-

timization problems and also han-

dles all of the communication inter- —

lly, which makes it to imple-
HATY, WRICH mattes 1 casy 1o wmpie Figure 5.1: Synchronous vs asyn-
ment asynchronous optimization al- chronous parallel

gorithms.
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HOPSPACK (Hybrid Optimization Parallel Search PACKage) [52] is a C++
framework for derivative-free optimization problems. HOPSPACK supports
parallelism through MPI or multi-threading and supports running multiple op-
timization solvers simultaneously, a functionality similar to combining strate-
gies in POAP. The framework implements an asynchronous pattern search
solver and supports non-linear constraints and mixed-integer variables, but

there is no support for surrogate optimization.

MATSuMoTo (MATLAB Surrogate Model Toolbox) [50] is an example of a
surrogate optimization toolbox. MATSuMoTo is written in MATLAB and has
support for computationally expensive, black-box global optimization prob-
lems that may have continuous, mixed-integer, or pure integer variables. MAT-
SuMoTo offers a variety of choices for surrogate models and surrogate model
mixtures, experimental designs, and auxiliary functions. The framework is not
designed to support a large class of surrogate optimization algorithms and the
lack of object orientation makes it hard to extend the framework. Parallelism
is only supported through MATLAB’s Parallel Computing Toolbox and there is
no support for asynchrony, combining strategies, or dynamically changing the

number of workers.

Nonlinear Optimization by Mesh Adaptive Direct Search (NOMAD) [44] is a
library intended for time-consuming black-box simulation with a small number
of variables. The library implements mesh adaptive direct search (MADS) and
there is support for asynchronous function evaluations using MPI. The frame-
work is fault resilient in the sense that it supports objective function failing to
return a valid output. Similar fault resilience is provided by POAP, which allows

the user to decide what action to take in case of a failure.
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Dakota [15] is an extensive toolkit with algorithms for optimization with
gradient and nongradient-based methods; uncertainty quantification, nonlin-
ear least squares methods, and sensitivity /variance analysis. These components
can be used on their own or with strategies such as surrogate-based optimiza-
tion, mixed integer nonlinear programming, or optimization under uncertainty.
The Dakota toolkit is object-oriented and written in C++ with the intention of
being a flexible and extensible interface between simulation codes and there is

support for parallel function evaluations.

BayesOpt [47] is a library with Bayesian optimization methods to solve non-
linear optimization problems. Bayesian optimization methods build a posterior
distribution to capture the evidence and prior knowledge of the target function.
Built in C++, the library is efficient, portable, and flexible. There is support for
commonly used methods such as sequential Kriging optimization (SKO), se-
quential model-based optimization (SMBO), and efficient global optimization
(EGO). The software is sequential and there is no support for parallel function

evaluations.

RBFOpt [9] is a radial basis function based library that implements and ex-
tends the global optimization algorithm proposed by Gutmann [29]. RBFOPT
is written in Python and supports asynchronous parallelism through Python’s
multiprocessing library, but there is no support for MPI. The software is not
designed to cover a large class of surrogate optimization methods and there is
no support for dynamically changing the number of workers and combining

different optimization strategies.

Cornell-MOE is a Python library that implements Bayesian optimization

with the expected improvement and knowledge gradient acquisition functions.
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The software is built on work that extends these acquisition functions to batch
synchronous parallel, both with and without gradient information [80, 81].
There is no support for asynchronous parallelism and it is not possible to dy-

namically change the number of workers.

5.2 The asynchronous algorithm

A surrogate optimization in the flavor of Algorithm 1 on page 18 is easy to im-
plement, but may be inefficient if the evaluation time is not constant. This can be
because evaluating the simulation model requires larger computational efforts
for some input values (e.g., evaluating a PDE-based objective function may re-
quire smaller step sizes for some values of the decision variable x). Computation
time can also vary because of variation in the computational resources. Deal-
ing with potential function evaluation crashes is less obvious in a synchronous
framework, where we may either try to re-evaluate or exclude the points from
the batch. Finally, dynamically changing the number of resources is much more

straightforward in an asynchronous framework, which we describe next.

Just as in the synchronous parallel case we start by evaluating an experi-
mental design. These points can be evaluated asynchronously, but the fact that
we want to evaluate all design points before proceeding to the adaptive phase
introduces an undesirable barrier. This becomes an issue if there are straggling
workers or if some points take a long time to evaluate. The most natural solu-
tion is to generate an experimental design that makes it possible to let workers
proceed to the adaptive phase once all points are either completed or pending.

To be more precise, assume that we have p workers and that ¢ points are needed
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to construct a surrogate model. We can then generate an experimental design
with > p + ¢ — 1 points, which will allow workers to proceed to the adaptive
phase once there are no outstanding evaluations in the experimental design.
The adaptive phase differs from Algorithm 1 in the sense that we propose a

new evaluation as soon as a worker becomes available.

We use an event-driven framework where the master drives the event loop,
updates the surrogate, solves the auxiliary problem, etc., and we have p workers
available to do function evaluations. The workload of the master is significantly
less than of the workers, so we can use the same number of workers as we have

available resources. The asynchronous algorithm is illustrated in Algorithm 5.

5.2.1 Updating the sampling radius in Stochastic SRBF

We now elaborate on how to pick the value of the sampling radius y that is used
to generate the candidate points used in the LMS-RBF and DYCORS methods.
We follow the idea in [58] where counters Cgyccess and Cr,; are used to track the
number of consecutive evaluations with and without significant improvement.
This idea is extended to synchronous parallel in [59] by processing a batch at a
time. If Cgyecess reaches a tolerance Fgyccess the sampling radius is doubled and
Csuccess 18 set to 0. Similarly, if Cy,; reaches 7, the sampling radius is halved and

Cry is set to 0.

In the asynchronous setting, we update the counters after each completed
function evaluation. We do not update the count