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This dissertation will discuss the recent progress that has been made in the

metrology of spin-orbit torques (SOTs). Metrology, the study of measure-

ment(s), is an effective epistemological strategy to improve our understanding

of spin-orbit torques, magnetic dynamics, and the additional physical processes

that “pervade” the measurements, but can prove to be quite interesting in their

own right. In this dissertation, we will focus on three measurements techniques:

1. The lineshape analysis of spin-torque ferromagnetic resonance (ST-FMR),

which has been known to be susceptible to other artifact signals that are

resonant, such as spin pumping and resonant heating. We find that we

are able to cancel these artifacts by performing the measurement in a Hall

geometry and exploiting differences in the lineshape symmetries between

artifacts and the desired signals generated from SOTs.

2. The linewidth analysis of ST-FMR, which has been shown to give inflated,

unrealistic results that disagree with all corroborating measurement tech-

niques in many cases. This turns out to be caused by interface-localized

resonant magnetic dynamics that nearly coincide with the bulk resonance.

Although small volumetrically, these interfacial dynamics can significantly

affect the sensitive measurement of the linewidth modulation by dc cur-

rent. We find that we are able to minimize the spurious effect of the

interfacial magnetic layer through a systematic data analysis prescrip-

tion.

3. Second-harmonic Hall performed on perpendicularly-magnetized devices,

where consideration of the planar Hall magnetoresistance in the measure-

ments of SOTs has resulted in unreasonable and sometimes unphysical
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quantifications. Previous results have suggested that ignoring contribu-

tions from the planar Hall magnetoresistance brings this technique into

agreement with corroborating measurements, and we verify this is a sound

procedure by measuring the same magnetic dynamics optically, for the

first time.
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Introduction

Metrology is the study of measurements. It turns out that many of the

common measurement techniques we use to quantify SOTs give results that

disagree with one another, and depending on the practitioner, can give results

that disagree with themselves. These discrepancies are not rarities. In fact

they occur frequently and serve as the underpinning motivation for this whole

thesis.

As the field of SOTs has progressed, standard measurement techniques have

persisted and have been used to measure various material systems, and discrep-

ancies are often chalked up to material complications. However, similar mea-

surement discrepancies exist even for simple, bread-and-butter SOT material

systems (e.g. Pt/Py, where, in this work, Py = Ni81Fe19 – a very-weakly-

magnetoelastic alloy). To re-litigate these measurements and understand the

cause of these measurement discrepancies, our studies will focus on standard,

widely-studied heavy metal/ferromagnet (HM/FM) bilayers where the under-

standing and interpretation of measurement results ought to be simple. We

will see that measurement results are complicated, even in these systems.

In Chapter 1, we will see that long-known artifacts (spin pumping and

resonant heating) affect the most common measurement technique used to

quantify SOTs in in-plane-magnetized heterostructures in various HM/FM sys-

tems: spin-torque ferromagnetic resonance. These artifacts are particularly

pronounced when the HM or FM thickness is large. In Chapter 2, we will

see that improper data analysis and unintended experimenter bias can have a

huge effect on the quantification of SOTs in another very common measure-

ment technique used to quantify SOTs in in-plane-magnetized heterostructures

in various HM/FM systems: dc-biased spin-torque ferromagnetic resonance.

This bias and discrepancy is abated by following a systematic data analysis

framework that we outline. In Chapter 3, we see the very surprising result

that the planar Hall magnetoresistance seems to not contribute to the quantifi-
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cation of SOTs in the most common measurement technique used to quantify

SOTs in out-of-plane-magnetized heterostructures in various HM/FM systems:

the second-harmonic Hall method. Our suggestion is to ignore the planar Hall

magnetoresistance when quantifying the SOT, suggesting that the planar Hall

effect manifests differently when the magnetization is tilted with a magnetic

field vs. a SOT. This challenges our conventional understanding of the planar

Hall magnetoresistance, altogether.
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Chapter 0

Preface

In this chapter, we will review a variety of topics ranging from the motivation for

my work and thesis to the working details of certain laboratory instrumentation.

There is no unifying theme of this chapter – it will be a medley of information

that will serve readers from a variety of backgrounds.

0.1 Computer Memory

In this section, we will broadly frame the goal of SOT studies: to use SOTs to

create efficient magnetic random access memory (MRAM), a technology that

would store information as a remnant magnetic configuration. To supplant cur-

rent memory technologies and meet future industry demand, MRAM should be

fast, non-volatile, and require little power to operate; magnetic heterostructures

harnessing SOTs would check all of these boxes.

The Von Neumann computing paradigm has necessitated the engineering of

a memory hierarchy that increases the speed of the computation pipeline while

preserving information integrity. This hierarchy, shown in Fig. 0.1, connects

the (hopefully non-volatile) human user to the CPU through storage media of

increasing read/write speed and of increasing volatility.

The speed of MRAM technologies gives it the potential to supplant the

current DRAM and SRAM architectures, providing a fast yet non-volatile al-
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Figure 0.1: Hierarchy of the current paradigm of computing memory.

ternative. The non-volatility is quite important here because the DRAM and

SRAM volatility reduces computing efficiency. DRAM and SRAM both require

power to retain their information. In the case of DRAM, which stores infor-

mation in a capacitor, the capacitor charge leaks off into the circuit slowly, so

a “refresh” write operation is required for each bit. This of course takes addi-

tional power and some time (every 64 ms or less) to perform. SRAM, which

stores data in a multi-transistor latch circuit, does not require a refresh, but

it does require a constant power input to keep the transistors gated and cur-

rent flowing. Additionally, SRAM requires multiple transistors so its on-chip

footprint is around 0.06 µm2 as of 2019 [1], quite large even after decades of

development. MRAM technology is available from Intel at a density of less

than 0.05 µm2 even in the early stage of its development.

0.2 How do you solve a problem like...the LLGS

equation?

In this section we will show the basic recipe for solving the Landau-Lifshitz-

Gilbert-Slonczewski (LLGS) equation and the basic results that one should end
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up with. This equation is the fundamental differential equation in SOT studies

that one ends up frequently solving under various conditions. First, we will

do some setup. The system under consideration will be a thin-film magnetic

heterostructure. The film extends in the XY -plane and the Z-direction is out-

of-plane. We can write the LLGS equation that we’d like to solve as

dm̂

dt
= −γm̂×

[
H + µ0Meff(m̂ · Ẑ)Ẑ

]
+ α

dm̂

dt
+ τ (0.1)

where γ = 2µB/~ is the gyromagnetic ratio (I will let it be ≈ 28 GHz/T

throughout this document); m̂ is the normalized magnetic moment; H is the

applied magnetic field; α is the Gilbert damping that ensures that the magnetic

moment relaxes to the direction of applied field; Meff is the saturation magne-

tization minus any out-of-plane anisotropy: µ0Meff = µ0Ms − 2K⊥/Ms; and

τ is some arbitrary torque that is applied to the system that could originate

from microwave fields due to a coplanar waveguide in a ferromagnetic resonance

(FMR) measurement or damping-like and field-like torques generated from a

spin source layer adjacent to the magnetic layer in a ST-FMR measurement.

The sign of Meff, which is normally a large number compared to the magnitude

of the external field |H|, will determine whether the magnetization prefers to be

in-plane or out of plane. With my definition, positive Meff will mean that the

magnetization likes to remain in-plane, and we will assume that Meff > 0 in the

following. Furthermore, we will also assume that H lies in the XY -plane and

that the within-plane anisotropy is sufficiently weak (we haven’t even included

a term to account for that) such that m̂ ‖ H in equilibrium. In the presence of

non-equilibrium excitations of the magnetization that are applied at a driving

frequency of ω (e.g. by the application of microwave torques τ = τeiωt), we

write the magnetic moment as

m̂ = m̂0 + δm̂e−iωt (0.2)
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where m̂0 ‖ H is the equilibrium magnetic moment and the δm̂eiωt describes

(very small) oscillations about that equilibrium at a frequency ω. We want to

solve for δm̂. We plug this into Eq. (0.1) to get

−iωδm̂e−iωt =− γ(m̂0 + δm̂e−iωt)×H + α
[
(m̂0 + δm̂e−iωt)×−iωδm̂eiωt

]
+ γµ0Meff((m̂0 + δm̂e−iωt) · Ẑ)((m̂0 + δm̂e−iωt)× Ẑ) + τe−iωt.

(0.3)

Already, a few simplifications can be made. First, δm̂ is very small so its higher-

order terms are negligible. Second, we assumed that m̂0 lies in the XY-plane

so m̂0 · Ẑ = 0. Lastly, we have assumed no within-plane anisotropy so m̂0 ‖ H,

which means that m̂0 ×H = 0. We have

−iωδm̂e−iωt =− γδm̂e−iωt ×H + α
[
m̂0 ×−iωδm̂e−iωt

]
+ γµ0Meff(δm̂e−iωt · Ẑ)(m̂0 × Ẑ) + τe−iωt. (0.4)

The simplest next step is to just align the coordinate system so that a principal

axis, say Ŷ , such that m̂0 ‖ H ‖ Ŷ ; no generality is sacrificed here. Now we

will write down some vectors explicitly

m̂ = m̂0 + δm̂e−iωt =


δmXe

−iωt√
1− δm2

Xe
−2iωt − δm2

Ze
−2iωt

δmZe
−iωt

 =


0

1

0

+


δmX

0

δmZ

 e−iωt

H = H


0

1

0

 (0.5)

τ =


τX

τY

τZ

 .
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The m̂ vector was be simplified by recognizing that δm2
X , δm

2
Z << 1. Simply

taking the above vectors and rewriting Eq. (0.4) as a matrix equation gives

−iωe−iωt


δmX

0

δmZ

 = −γHe−iωt


δmX

0

δmZ

×


0

1

0

+−iωαe−iωt


0

1

0

×

δmX

0

δmZ



+γµ0MeffδmZe
−iωt


0

1

0




0

0

1

+ e−iωt


τX

τY

τZ

 . (0.6)

Doing the cross products and canceling the common e−iωt gives

−iω


δmX

0

δmZ

 =


γHδmZ + γµ0MeffδmZ − iαωδmZ + τX

τY

−γHδmX + iαωδmX + τZ

 . (0.7)

We rewrite this as a matrix equation

− iωI2δm̂ = Mδm̂ + τ =

− iω

1 0

0 1


δmX

δmZ

 =

 0 γH + γµ0Meff − iαω

−γH + iαω 0


δmX

δmZ

+

τX
τZ

 .

(0.8)

We will simplify this equation a little bit by defining some new variables. Let

ω1 = γH and ω2 = γ(H + µ0Meff). The equation becomes

− iω

1 0

0 1


δmX

δmZ

 =

 0 ω2 − iαω

−ω1 + iαω 0


δmX

δmZ

+

τX
τZ

 .

(0.9)

One simple thing to do at this stage is to just ignore the effect of the torques

and the damping and solve the system to find the resonance frequencies. To do
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this, we set τ = α = 0 and calculate the determinant |M + iωI2| = 0 to get

−iω0 = ±γ
√
−ω1ω2, (0.10)

but both H and Meff are greater than zero, so ω1(2) > 0 and the square root

will always yield an imaginary value and thus (ignoring the negative frequency

branch)

ω0 = γ
√
H (H +Meff). (0.11)

This is the Kittel equation [2]. Beginning at Eq. (0.9), we (Mathematica) will

now just solve it for δmX and δmZ

δmX = − τZω2 − iω(ατZ + τX)

(α2 + 1)ω2 + iαω(ω1 + ω2)− ω1ω2

(0.12)

δmZ =
τXω1 − iω(ατX − τZ)

(α2 + 1)ω2 + iαω(ω1 + ω2)− ω1ω2

(0.13)

The time dependence of the original trial solution was e−iωt for ease of algebra,

but only the real part of the solution is meaningful so we will take the real part

of the above.

δmX =
αω2ω1(ατZ + τX) + ω2ω2(ατX − τZ) + τZω1ω

2
2

ω2 (α2 (ω2
1 + ω2

2)− 2ω1ω2) + (α2 + 1)2 ω4 + ω2
1ω

2
2

(0.14)

δmZ =
−τXω2 (α2ω2 + ω2

1) + ατZω
2(ω1 + ω2) + τXω

2ω1

ω2 (α2 (ω2
1 + ω2

2)− 2ω1ω2) + (α2 + 1)2 ω4 + ω2
1ω

2
2

(0.15)

In most ferromagnets, α is quite small so we will ignore higher order terms in

α

δmX =
αω2ω1τX + ω2ω2(ατX − τZ) + τZω1ω

2
2

ω2 (α2 (ω2
1 + ω2

2)− 2ω1ω2) + (2α2 + 1)ω4 + ω2
1ω

2
2

(0.16)

δmZ =
−τXω2ω

2
1 + ατZω

2(ω1 + ω2) + τXω
2ω1

ω2 (α2 (ω2
1 + ω2

2)− 2ω1ω2) + (2α2 + 1)ω4 + ω2
1ω

2
2

. (0.17)
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Remembering that ω2
0 = ω1ω2 and defining ω+ = ω1 + ω2, we can simplify to

δmX =
αω2ω+τX + ω2(ω2 − ω2

0)τZ
(ω2 − ω2

0)2 + α2ω2(ω+)2
(0.18)

δmZ =
αω2ω+τZ − ω1(ω2 − ω2

0)τX
(ω2 − ω2

0)2 + α2ω2(ω+)2
. (0.19)

0.2.1 Now the Antiferromagnets

In an collinear antiferromagnet, magnetism is carried by two lattices that in-

teract with exchange to keep their respective magnetic moments antiparallel.

We model the antiferromagnet explicitly as two lattices that are coupled via

exchange using a two-lattice LLG model:

dm̂A(B)

dt
= −γm̂A(B) ×

(
H−HEm̂B(A) − µ0Meff(m̂A(B) · Ẑ)Ẑ

)
(0.20)

where A and B are the two sublattices and HE is the effective (mean-field)

exchange field felt by one lattice due to the moment of the other. Again we

expand m̂ as the sum of equilibrium and oscillatory components

m̂A(B) = m̂0
A(B) + δm̂A(B)e

−iωt. (0.21)

We will also let H ‖ ŷ. Plugging in, we get

−iωδm̂A(B)e
−iωt =− γ(m̂0

A(B) + δm̂A(B)e
−iωt)×

[
H−HE(m̂0

B(A) + δm̂B(A)e
−iωt)−

µ0Meff((m̂0
A(B) + δm̂A(B)e

−iωt) · Ẑ)Ẑ
]
. (0.22)
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We will simply multiply the terms through

−iωδm̂A(B)e
−iωt = −γ(m̂0

A(B) ×H−HE(m̂0
A(B) × m̂0

B(A) + m̂0
A(B) × δm̂B(A)e

−iωt)

−µ0Meff((m̂0
A(B) + δm̂A(B)e

−iωt) · Ẑ)(m̂0
A(B) × Ẑ)

+δm̂A(B)e
−iωt ×H

−HE(δm̂A(B)e
−iωt × m̂0

B(A) + δm̂A(B)e
−iωt × δm̂B(A)e

−iωt)

−µ0Meff((m̂0
A(B) + δm̂A(B)e

−iωt) · Ẑ)(δm̂A(B)e
−iωt × Ẑ))

(0.23)

We will ignore the small terms, keeping only terms that are linear in δm̂A(B).

We will also make some simplifications, assuming that m̂A(B) lies with the XY -

plane

−iωδm̂A(B)e
−iωt = −γ(m̂0

A(B) ×H−HE(m̂0
A(B) × m̂0

B(A) + m̂0
A(B) × δm̂B(A)e

−iωt)

−µ0Meff(δm̂A(B)e
−iωt · Ẑ)(m̂0

A(B) × Ẑ)

+δm̂A(B)e
−iωt ×H−HE(δm̂A(B)e

−iωt × m̂0
B(A))) (0.24)

Now we are a bit stuck. In the equation above, there are some terms that are

not oscillatory, which would make the rest of the derivation quite challenging.

The solution is to invoke a property of antiferromagnets: that when a strong

enough external field is applied the moments of the two sublattices “flop” to be

aligned perpendicular to the external field but still almost antiparallel to one

another. This is called a “spin-flop.” After this occurs, the external magnetic

field cants the moments of the two sublattices to have a components along the

field, which creates a net magnetization in the system. By minimizing the free

energy, we can express this cant angle, φ, as sinφ = H/2HE [3]. Thus assuming

the spins have flopped already and are being canted by the external field, the
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following is true [4]

m̂0
A(B) ×H−HEm̂0

A(B) × m̂0
B(A) = 0. (0.25)

This conveniently cancels all of the non-oscillatory terms in the expression

leaving us with

−iωδm̂A(B)e
−iωt = −γ(−HEm̂0

A(B) × δm̂B(A)e
−iωt

−µ0Meff(δm̂A(B)e
−iωt · Ẑ)(m̂0

A(B) × Ẑ)

+δm̂A(B)e
−iωt ×H−HE(δm̂A(B)e

−iωt × m̂0
B(A))).

(0.26)

Now we will define a new effective field

Heff = H−HEm̂0
B(A) (0.27)

=⇒ Heff = HEm̂0
A(B) and δm̂A(B)e

−iωt ×Heff = −Heffm̂0
A(B) × δm̂A(B)e

−iωt.

(0.28)

We now have the much simpler expression

−iωδm̂A(B)e
−iωt = −γ(−HEm̂0

A(B) × δm̂B(A)e
−iωt

−µ0Meff(δm̂A(B)e
−iωt · Ẑ)(m̂0

A(B) × Ẑ)

−Heffm̂0
A(B) × δm̂A(B)e

−iωt), (0.29)

which through factoring and canceling the common e−iωt simplifies to

−iωδm̂A(B) = γm̂0
A(B) × (Heffδm̂A(B) +HEδm̂B(A) + µ0Meff(δm̂A(B) · Ẑ)Ẑ).

(0.30)
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At this point, it is convenient to write down the vectors explicitly and solve the

equation

m̂0
A(B) =


± cosφ

sinφ

0

 (0.31)

δm̂A(B) =


δmx

A(B)

δmy
A(B)

δmz
A(B)

 (0.32)

H =


0

H

0

 , (0.33)

where the ± in the m̂0 expression accounts for sublattice A and B respectively.

We will plug these in and rewrite as a matrix equation like so

M · δm̂ = 0. (0.34)

To find the dispersion of this system, we will set det[M ] = 0 and solve to get

ω1 = γ

√
2HEMs

(
1− H2

4H2
E

)
(0.35)

ω2 = γH

√
Ms + 2HE

2HE

(0.36)

0.2.2 An Antiferromagnet (AF) with anisotropy and the

hard axis along external field

We will start with the two-lattice LLG equation again, but with an added hard-

axis, uniaxial anisotropy within the XY-plane and along the k̂-direction i.e. the
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magnetic moment does not want to lie along k̂

dm̂A(B)

dt
= −γm̂A(B) × (H−HEm̂B(A) −Ms(m̂A(B) · Ẑ)Ẑ−HA(m̂A(B) · k̂)k̂).

(0.37)

In this specific case, we will let k̂ ‖ H and the same assumptions as in the last

section

m̂A(B) = m̂0
A(B) + δm̂A(B)e

−iωt (0.38)

H ‖ ŷ. (0.39)

Plugging these in, we have

−iωδm̂A(B)e
−iωt = −γ(m̂0

A(B) + δm̂A(B)e
−iωt)× (H−HE(m̂0

B(A) + δm̂B(A)e
−iωt)

−Ms((m̂
0
A(B) + δm̂A(B)e

−iωt) · Ẑ)Ẑ

−HA((m̂0
A(B) + δm̂A(B)e

−iωt) · k̂)k̂).

(0.40)

Multiplying through

−iωδm̂A(B)e
−iωt = −γ(m̂0

A(B) ×H−HE(m̂0
A(B) × m̂0

B(A) + m̂0
A(B) × δm̂B(A)e

−iωt)

−Ms((m̂
0
A(B) + δm̂A(B)e

−iωt) · Ẑ)(m̂0
A(B) × Ẑ)

−HA((m̂0
A(B) + δm̂A(B)e

−iωt) · k̂)(m̂0
A(B) × k̂)

+δm̂A(B)e
−iωt ×H

−HE(δm̂A(B)e
−iωt × m̂0

B(A) + δm̂A(B)e
−iωt × δm̂B(A)e

−iωt)

−Ms((m̂
0
A(B) + δm̂A(B)e

−iωt) · Ẑ)(δm̂A(B)e
−iωt × Ẑ)

−HA((m̂0
A(B) + δm̂A(B)e

−iωt) · k̂)(δm̂A(B)e
−iωt × k̂)).

(0.41)
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Ignoring the small terms

−iωδm̂A(B)e
−iωt = −γ(m̂0

A(B) ×H−HE(m̂0
A(B) × m̂0

B(A) + m̂0
A(B) × δm̂B(A)e

−iωt)

−Ms(δm̂A(B)e
−iωt · Ẑ)(m̂0

A(B) × Ẑ)

−HA((m̂0
A(B) + δm̂A(B)e

−iωt) · k̂)(m̂0
A(B) × k̂)

+δm̂A(B)e
−iωt ×H−HE(δm̂A(B)e

−iωt × m̂0
B(A))

−HA(m̂0
A(B) · k̂)(δm̂A(B)e

−iωt × k̂)). (0.42)

Again we are stuck and must invoke a similar relation to the last time. Thank-

fully the non-oscillatory terms cancel with one another because the new cant

angle φ with anisotropy can be expressed as sinφ = H/(2HE + HA), so the

following is true

m̂0
A(B) ×H−HEm̂0

A(B) × m̂0
B(A) −HA(m̂0

A(B) · k̂)(m̂0
A(B) × k̂) = 0. (0.43)

The non-oscillatory terms are canceled leaving us with

−iωδm̂A(B)e
−iωt = −γ(−HE(m̂0

A(B) × δm̂B(A)e
−iωt)

−Ms(δm̂A(B)e
−iωt · Ẑ)(m̂0

A(B) × Ẑ)

−HA(δm̂A(B)e
−iωt · k̂)(m̂0

A(B) × k̂)

+δm̂A(B)e
−iωt ×H−HE(δm̂A(B)e

−iωt × m̂0
B(A))

−HA(m̂0
A(B) · k̂)(δm̂A(B)e

−iωt × k̂)). (0.44)
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We will write out the vectors explicitly again and begin to solve the equation

m̂0
A(B) =


± cosφ

sinφ

0

 (0.45)

δm̂A(B) =


δmx

A(B)

δmy
A(B)

δmz
A(B)

 (0.46)

H =


0

H

0

 (0.47)

k̂ =


0

1

0

 , (0.48)

which we again rewrite as a matrix equation like so

M · δm̂ = 0. (0.49)

Letting det[M ] = 0 and solve for ω again

ω1 = Re

[
−iγ

√
(H2(HA − 2HE)−HA(HA + 2HE)2)(2HE +Ms))

(HA + 2HE)2

]
(0.50)

ω2 = Re

−iγ√(H2 − (HA + 2HE)2)Ms

HA + 2HE

 , (0.51)

where in this case we explicitly take the real part because the relative mag-

nitudes of the effective fields can affect the real/imaginary components of the

resonance frequencies.
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0.2.3 An AF with anisotropy and the hard axis perpen-

dicular to the external field

This derivation is similar to the previous, and results in

ω1 = Re

[
−iγ

√
(−HA(HA − 2HE)2 +H2(HA + 2HE))(HA − 2HE −Ms)

(HA − 2HE)2

]

(0.52)

ω2 = Re

−iγ√(H2 − (HA − 2HE)2(HA −Ms)

HA − 2HE

 (0.53)

0.2.4 An AF with anisotropy strong enough such that

the external field did not cause a spin flop

If there is strong enough (usually crystalline) anisotropy in an AFM, the ex-

ternal field may be too weak to overcome the anistropy and cause the lattice

moments to align perpendicular to the external field in a spin flop. This situa-

tion can still be analyzed to find the resonance frequencies, and the derivation

is a bit simpler than those above. Again, we will start with the two-lattice LLG

equation

dm̂A(B)

dt
= −γm̂A(B) × (H−HEm̂B(A) −Ms(m̂A(B) · Ẑ)Ẑ−HA(m̂A(B) · k̂)k̂)

(0.54)

with k̂ ⊥ H (recall k̂ is the hard axis). We will make the same initial assump-

tions as before

m̂A(B) = m̂0
A(B) + δm̂A(B)e

−iωt (0.55)

H ‖ ŷ. (0.56)
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Plugging this in again we have

−iωδm̂A(B)e
−iωt = −γ(m̂0

A(B) + δm̂A(B)e
−iωt)× (H−HE(m̂0

B(A) + δm̂B(A)e
−iωt)

−Ms((m̂
0
A(B) + δm̂A(B)e

−iωt) · Ẑ)Ẑ

−HA((m̂0
A(B) + δm̂A(B)e

−iωt) · k̂)k̂),

(0.57)

but now there is the added assumption that the external field has not caused

a spin flop event prior to the measurement, so we have m̂0
A(B) ‖ H ⊥ k̂, which

leads to a great deal of simplification when we multiply through

−iωδm̂A(B)e
−iωt = −γ(−HE(m̂0

A(B) × δm̂B(A)e
−iωt)

−Ms((m̂
0
A(B) + δm̂A(B)e

−iωt) · Ẑ)(m̂0
A(B) × Ẑ)

+δm̂A(B)e
−iωt ×H

−HE(δm̂A(B)e
−iωt × m̂0

B(A) + δm̂A(B)e
−iωt × δm̂B(A)e

−iωt)

−Ms((m̂
0
A(B) + δm̂A(B)e

−iωt) · Ẑ)(δm̂A(B)e
−iωt × Ẑ)

−HA((m̂0
A(B) + δm̂A(B)e

−iωt) · k̂)(δm̂A(B)e
−iωt × k̂)).

(0.58)

Ignoring the small terms again we have

−iωδm̂A(B)e
−iωt = −γ(−HE(m̂0

A(B) × δm̂B(A)e
−iωt)

−Ms((m̂
0
A(B) + δm̂A(B)e

−iωt) · Ẑ)(m̂0
A(B) × Ẑ)

+δm̂A(B)e
−iωt ×H−HE(δm̂A(B)e

−iωt × m̂0
B(A))

−Ms(m̂
0
A(B) · Ẑ)(δm̂A(B)e

−iωt × Ẑ)

−HA(m̂0
A(B) · k̂)(δm̂A(B)e

−iωt × k̂)). (0.59)
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In this non-spin-flopped case, all of the terms are oscillatory so we can just

solve this equation by plugging in the vectors

m̂0
A(B) =


0

±1

0

 (0.60)

δm̂A(B) =


δmx

A(B)

δmy
A(B)

δmz
A(B)

 (0.61)

H =


0

H

0

 (0.62)

k̂ =


1

0

0

 , (0.63)

which finally results in

ω1 = Re

[
− iγ

(
−
(√

H2(HA +Ms)(HA + 4HE +Ms) +H2
E(HA −Ms)2

+H2 +HA(HE +Ms) +HEMs

))1/2
]

(0.64)

ω2 = Re

[
− iγ

(√
H2(HA +Ms)(HA + 4HE +Ms) +H2

E(HA −Ms)2

−H2 −HA(HE +Ms)−HEMs

)1/2
]
. (0.65)
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0.3 Homodyne Detection

0.3.1 Basics

How do we measure a weak signal that results from a external drive in the

presence of overwhelming noise? A smart thing to do is have the external drive

turn on and off periodically to see if the signal buried in the noise changes.

A smarter thing to do is to just vary the external drive with a smooth peri-

odic function such as a sinωt and use the convenient properties Fourier trans-

forms/expansions to extract the periodic signal buried in the noise. This is

known as homodyne (means: same frequency) detection and it can drastically

decrease the noise present in the system by rejecting noise that does not vary

at the drive frequency as the signal does. A number of instruments can perform

a homodyne measurement, but the workhorse instrument of the Ralph group

is the lock-in amplifier.

Knowing the detailed working principles of a lock-in amplifier can help one

avoid common measurement pitfalls, improve one’s understanding of the physics

being measured, and help with the theoretical modeling of measurement out-

comes. At a very simplified level, a lock-in amplifier is just an adjustable mixer

that feeds into a low-pass filter that feeds into a voltmeter as shown in Fig.

0.2. An input signal, Vs(t) = Vs sinωt comes into a homodyne mixer which will

have the effect of

Mixer [Vs(t)] = Vs(t)Vr(t) = Vs sinωt× sinωt/
√

2 =
Vs√

2
sin2 ωt =

Vs

2
√

2
(1− cos 2ωt)

(0.66)

Next, this signal is fed into a low-pass filter, the effect of which can be expressed

as an integration

LP

[
Vs

2
√

2
(1− cos 2ωt)

]
=
ω

π

∫ 2π/ω

0

dt
Vs

2
√

2
(1− cos 2ωt) =

Vs√
2
. (0.67)
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Figure 0.2: This figure was adapted from [5].

The voltmeter measures this signal, which is the root-mean-squared (RMS)

input voltage.

0.3.2 Filter minutiae

How do we think of a lock-in amplifier more formally and get an intuition for

the time constants and filters? A lock-in amplifier is, in terms of control theory,

a first-order linear, time-invariant (LTI) system. LTI systems are characterized

by a differential equation like so

dV (t)

dt
+
V (t)

τ
=
f(t)

τ
(0.68)

where τ is the time constant, V is the output response, and f(t) is the external

force/drive. Let us assume that f(t) = Aeiωt, which matches many of our

homodyne experimental setups. Define

du(t)

dt
= e

∫ t
0 dt

1
τ = e

t
τ . (0.69)
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Multiplying both sides of Eq. (0.68) by u(t), we get

dV (t)

dt
e
t
τ +

V (t)

τ
e
t
τ =

f(t)

τ
e
t
τ , (0.70)

which is quite convenient because the left hand side can now be re-expressed

like so:

d

dt
(V (t)u(t)) =

f(t)

τ
u(t). (0.71)

Now, we can just perform a direct integration

∫ t

0

dt′
d

dt′
(V (t′)u(t′)) =

∫ t

0

dt′
f(t′)

τ
u(t′). (0.72)

The solution of this is just

V (t) =

∫ t
0
dt′ f(t′)

τ
u(t′) + V (0)u(0)

u(t)
. (0.73)

Plugging in all of the functions

V (t) = e−t/τ
(
A

τ

∫ t

0

dt′eiωt
′+t′/τ + V (0)

)
, (0.74)

which has the simple solution

V (t) = V0e
−t/τ + A

1/τ

iω + 1/τ

(
eiωt − e−t/τ

)
, (0.75)

where we have just enfored V (t = 0) = V0. Let’s look at the real part of this

solution for a few different values of τ in Fig. 0.3(a). As we can see, the curve in

blue with the smallest time constant achieves the steady state oscillations the

fastest. The longer the time constant the longer it takes these signals to achieve

a steady state. In Fig. 0.3(b) we show the steady-state frequency response of

the LTI solution where we have achieved steady-state by letting t → ∞ in
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Figure 0.3: (a) The real part of the LTI solution (Eq. (0.75)) as a function of
time for three different values of the time constant, τ . We have set
V0 = A = 1 and ω = 10. (b) The frequency response of the steady-state
solutions (Eq. (0.75) with t→∞).

Eq. (0.75). These curves are just equivalent to low-pass filters. As the time

constant (τ) is increased, the bandwidth decreases, too. This is of course why

the amplitude of the signals diminishes for larger time constants in Fig. 0.3(a)

where we chose ω = 10.

During lock-in measurements, the input signal is mixed with a homodyne

reference signal to a produce an ideally dc (zero-frequency) signal, so the band-

width set by the time constant will not cut off the desired signal from the

measurement – the desired signal has a center frequency of 0. The reduced

bandwidth set by the time constant will, however, filter resultant nonzero-
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frequency signals due to noise and higher-harmonics. Therefore, setting the

time constant to a larger values reduces the noise present in the system, but

this comes at the cost of having to wait longer to achieve steady-state.

When using a lock-in amplifier, the user selects the width and also roll-off

(sharpness) of the low-pass filter described above and shown in Fig. 0.3(b). This

is a good feature because the width and roll-off together determine accuracy of

the measurement, the SNR of the measurement, and also length of time that

a measurement will take. Fig. 0.4 (available on [5]) is the perfect reference for

determining the timing of a measurement when using a lock-in amplifier. Here

Figure 0.4: This figure was adapted from [5].

is how this figure (table) ought to be consulted:

1. Determine how much time you have and want to spend on a measurement.

2. Figure out what you would like your settling time to be. This number

is the wall-clock time that you will have to wait between changing an

external parameter of the measurement and measuring each data point.

3. Determine the accuracy you want from those numbers on the right-hand-

side of the table (63.2%, 90%, 99%, or 99.9%. You probably want at least

90%), and also the roll-off your lockin amplifier is capable of. (The DSPs

go up to 24 dB/oct, while the Zurichs can go up to 48 dB/oct. In general,

it pays to use a sharper filter roll-off and reduce your time constant to

compensate. By this we mean: you will get the same SNR in a shorter
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amount of wall-clock time by using a sharper filter. You can see this is

the case by looking at the fNEP/f-3dB column.

4. Take your settling time from step 2 and consult the right-hand-side of the

table to determine the settling time factor for your measurement from the

accuracy and roll-off you determined in step 3.

5. Divide your settling time from step 2 by that number and set the time

constant of your lockin to the quotient.

6. Set your measurement settling time to the number from step 2.
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0.4 Microwave Calibration and Measurement

Using a Vector Network Analyzer

A vector network analyzer (VNA) is a very useful tool for calibrating a mi-

crowave electronic circuit and also for performing high-frequency measurements

of e.g. FMR.

0.4.1 Calibrating Microwave Current

ST-FMR measurements are performed with microwave currents and microwave

currents are not always easy to deal with mathematically i.e. one cannot just

discuss electric currents and voltages, one must treat all signals as waves. A

more detailed microwave analysis is needed to be quantitative about the actual

currents in the circuit and measured device. This is where the VNA comes

in. The VNA is a highly-sensitive, multi-port microwave current generator and

detector. The VNA has two ports that can each output a microwave current

of known power and each read a microwave current, distinguishing both the

magnitude and phase of the received signal, and even comparing the phase

with the outputted signal. The two ports of the VNA are usually just called

port 1 and port 2. The quantities that one usually measures with a VNA are

complex scattering parameters S11, S12, S21, S22 that populate the scattering

matrix for “power waves” in a two-port network where signals are just incident

on a “black box.” b1

b2

 =

S11 S12

S21 S22


a1

a2

 . (0.76)

Here, |a1|2 is the incident power at port 1, |b1|2 is the reflected power at port

1, |a2|2 is the incident power at port 2, |b2|2 is the reflected power at port 2.
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Figure 0.5: A two-port network with labels for the transmitted and reflected
“power waves.”

This is all well and good, but how do we actually use these numbers? Our

goal is to determine a quantity usually denoted by Γ, which is the known as

the reflection coefficient. This quantity is complex and, in a two-port network,

is conveniently equal to S11. Before we can do this, we need to calibrate the

VNA. The calibration is essential because it discounts all of the other elements

of the circuit except the device under test (DUT), so when we actually do

the measurement, we only get information about the DUT. To use the jargon:

the calibration procedure sets the “reference plane” of the VNA as close to

the DUT as possible. To perform the calibration we essentially connect the

network exactly as we would if we were doing the measurement, but we replace

the DUT with certain calibration standards. For a reflection measurement

(what we use when calibrating ST-FMR current), we only need to do a one-port

calibration. Calibration is simple, just follow the instructions on the calibration

menu on the VNA, which will have us calibrate the network by replacing the

DUT with an open, a short, and a 50 Ω load. There is a calibration wafer with

these three devices lithographically patterned on it so that we can connect to

them with the microwave probe. Just touch the probe down to each device

and press the corresponding button on the VNA calibration menu. For an

FMR measurement that uses both ports, we need to perform the full two-port

calibration, which requires a few more calibration standards. In this calibration,

we use the microwave calibration kit with screw-on SMA open/short/loads.

Once the calibration is complete, we can measure S11. The VNA will by
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default measure all of the quantities while varying the frequency of applied

microwave current. Make sure the range of frequencies at which you perform

the measurements are contained within or equal to the VNA’s range during

calibration. After we measure complex S11 as a function of frequency, we have

Γ because Γ = S11. Now Γ is the complex reflection coefficient and we want the

power transmitted to the device, so we want 1 − |Γ|2. The power transferred

to the device for an input power P0 is

Pdev =
(
1− |Γ|2

)
P0. (0.77)

The current is

Idev =

√
Pdev

Z0

(
|Γ| − 1

|Γ|+ 1

)
=

√
(1− |Γ|2)P0

Z0

(
|Γ| − 1

|Γ|+ 1

)
. (0.78)

The quantity (|Γ| − 1)/(|Γ| + 1) is the reciprocal of the “standing wave ratio”

(SWR). The input power, P0, is just what we read off of the microwave gener-

ator. Recall that to get the power in Watts we must convert the power that we

read off the microwave generator like so

P (W) =
10P (dBm)/10

1000
. (0.79)

An alternative, but equivalent, way to calculate the current is by just measuring

the complex impedance of the device rather than S11. We can do this by cali-

brating the VNA as we did before, but now reading off the complex impedance

from the Smith chart view of the VNA. Once we have the complex impedance

ZL, we can calculate the current like so [6]

Pdev =

1−

∣∣∣∣∣ZL − Z0

ZL + Z0

∣∣∣∣∣
2
P0 (0.80)

Idev =

√
Pdev

Z0

. (0.81)
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If a device is mostly resistive and not very reactive i.e. Re[ZL]� Im[ZL], then

we can settle for measuring ZL with a dc current using a multimeter, and plug

in that value (again Z0 = 50 Ω and is real). This is not a bad assumption for

most of the devices we fabricate, but a VNA should be used to test it if we are

being careful.

0.5 Measuring FMR with a VNA

Because the VNA functions simultaneously as signal generator and detector,

it may be conveniently used to measure FMR. This is particularly useful for

exploring the parameter space of FMR, when the resonance conditions may

not be known a priori as shown in Fig. 0.6. To do an FMR measurement, we

can hook up the VNA to a waveguide (such as the one shown in Chapter 1,

Fig. 1.1). It is important to first calibrate the VNA because we want all of

the parts of the network, other than the DUT, to be considered as background

and subtracted. A full 2-port calibration procedure must be followed because

the FMR mesurement is a transmission measurement and not a reflection mea-

surement as in ST-FMR. Once the calibration is completed, we perform an S21

measurement with the DUT on the CPW. What we get is shown in Fig. 0.6.

Figure 0.6: S21 as a function of the applied external magnetic field and
applied microwave frequency from the VNA.
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Here, we have measured a bulk crystal of CrSBr, which is a layered, 2D

antiferromagnet [7]. The 4 figures reflect the 2 degrees-of-freedom we have when

doing this measurement: because the CrSBr crystal has crystalline anisotropy

(defined by the Neel axis), we can orient the Neel axis along or perpendicular to

the CPW, and we can orient the external magnetic field along or perpendicular

to the external applied magnetic field. The resonance conditions for these

different situations are derived in the previous sections and the best-fits to

these resonance conditions are the white, dashed lines overlayed on the figures.

Fitting in this figure was simultaneously performed to all data across all 4 figures

shown, with only 3 free parameters: µ0Meff = 1.04(3) T, µ0HE = 0.186(7) T,

and µ0HA = 0.167(4) T. All of the defintions for these parameters are described

in the previous sections where we derive the equations. The fitting itself was an

interesting and valuable exercise. To accomplish this, we first had to convert the

dark absorption curves in Fig. 0.6 to data points because the actual magnitude

of the S21 that is measured is not so meaningful, and we would like to dimension-

reduce to get fit-able 2d data. To accomplish this, we scanned along vertical

linecuts in each figure and put a data point at the minima along that line

(always minima because this is an absorption measurement). After we had

data points that we could fit to, we concatenated all of the data together into

a piecewise data set, then fit to a piecewise function that was constructed by

concatenating the appropriate fit functions together. The piecewise data and

piecewise fit functions have a 1-to-1 correspondence. Once have these, we can

do a global least squares optimization with the piecewise fit function over the

piecewise data. That results in a combined fit over all data sets with consistent

best-fit free parameters.
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Chapter 1

ST-FMR, Artifacts and Hall

ST-FMR

1.1 Introduction

The discovery of SOTs prompted the need for reliable measurement techniques

to quantify them. It is also desireable to have measurement techniques that

allow the quantification of SOTs without fully switching a FM’s moment; this

can make fabrication simpler, as one does not need to fabricate nanopillars or

magnetic tunnel junctions (MTJs), allowing for more throughput in device mea-

surement. A natural alternative to applying enough current to fully switch is to

apply a small current that torques the magnetic moment perturbatively. Luck-

ily, FMs often have anisotropic magnetoresistance (AMR), so the resistance of a

simple HM/FM device will depend on the orientation of the magnetic moment

and the perturbation can be read out as a change in the device resistance.

ST-FMR was one of the first techniques developed to measure the strength

of SOTs [8]. This technique measures SOTs perturbatively and reads out the

perturbation as a change in the device resistance, as described above. The

measurement is performed by applying a microwave current on the order of a

few GHz over a HM/FM bilayer device because this is the frequency regime of

ferromagnetic resonance. Ordinarily, the microwave current is modulated by
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amplitude modulation (AM, we will see how this can lead to some issues in the

next chapter), and the AM is referenced by a lock-in amplifier that measures

the voltage across the device. The voltage is measured because the resistance

oscillations due to the AMR are homodyne with the applied microwave current,

which means the two mix to produce a dc voltage. In the most popular version

of this measurement, an external magnetic field is applied and swept to meet

the Kittel resonance condition (Eq. 0.11), resulting in a resonant lineshape from

which one can extract the magnitude of the SOTs that caused the perturbations

by fitting.

One key assumption in the modeling used to fit is that the resonance line-

shape is wholly due to the SOTs acting on the magnetization, and not additional

processes that could produce spurious resonant voltages. However, it has been

known that additional phenomenon, most saliently spin pumping [9], can pro-

duce resonant lineshapes that have the same structure as those produced by

SOTs [10]. Dealing with the spin pumping addition to the ST-FMR signal from

the SOTs has been difficult in the past because there is no endogenous param-

eter of the technique to vary that allows for a distinguishing of spin pumping

from the SOT signal. Many previous works have used the derived equations

of the spin pumping signal to either argue it is negligible or simply subtract

the theoretically-determined value from the measurement. The problem with

both of these methods is that spin pumping can be difficult to quantify from

theory because some parameters that go into the model are difficult to measure

accurately (e.g. g↑↓eff, the effective spin mixing conductance at the interface).

A more reliable and consistent method is therefore needed to determine

the true contribution of spin pumping (and other artifacts) to the measured

ST-FMR signals. In this chapter, we present such a method, which we call

“Hall ST-FMR” because it is a Hall measurement of ST-FMR signal. This

method is simple in that it does not complicate the conventional technique

much – Hall leads are added to the second-level lithography mask and the
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Hall voltage is measured simultaneously to the conventional longitudinal. The

Hall voltage that is read out is a result of different magnetoresistances from

that of the conventional longitudinal. Most importantly, the anomalous Hall

effect (AHE, couples to the out of plane magnetization component) will also

contribute to the Hall measurement and can be separated from the signal due

to the planar Hall effect (PHE, the Hall analogue of the AMR, both couple to

the in-plane magnetization component). This separation allows us to leverage

the differences in the measured signals due to the AHE vs. the PHE/AMR to

fully cancel artifacts such as spin pumping, experimentally. What’s more, is

that the method of cancellation is robust enough to cancel any resonant signal

that depends only on the amplitude of the magnetic perturbations and not the

phase. We describe this technique below.

In the following, much is taken and adapted from Ref. [11].

1.2 Preface

I will begin by reviewing the basic working principles of ferromagnetic resonance

(FMR) measurements and then spin-torque ferromagnetic resonance (ST-FMR)

measurements [8], the latter of which is most popular method for measuring

SOTs on a heterostructure with in-plane magnetization.

1.2.1 FMR

The magnetization of a film can be reoriented using magnetic fields, and the

equations of motion for a film magnetization can be written as the LLG equation

(Eq. 0.1, reproduced here):

dm̂

dt
= −γm̂×

[
H + µ0Meff(m̂ · Ẑ)Ẑ

]
+ α

dm̂

dt
+ τ (1.1)

Like many equations of motion, this is nothing more than a (excusing the

oxymoron) more complicated damped simple harmonic oscillator. If an external
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drive is added to the system, there will be a condition under which the oscillator

(magnetic moment) will be in resonance. From the derivation in the preface,

we got Eq. (0.11), which is the exactly the resonance condition of an in-plane-

magnetized film: ω0 = γ
√
H(H +Meff). The drive frequency here is set by the

scale of γ. We like the units where γ ≈ 28 GHz/T, and we will treat it as such

throughout this document. Clearly from the resonance condition, ω0 can really

be anything because of the proportionality with the external field applied, H;

however, to measure a whole resonance lineshape that will be fittable, H will

have to be non-zero. This means that, to get a whole resonance lineshape, ω0

ought to be on the order of GHz.

Something remains that deserves more explanation: what is doing the exter-

nal drive here? In conventional FMR, the drive is provided by electromagnetic

fields that are produced outside of the magnetic film under investigation. For

a chunk of magnetic material, this can be done inside a resonant cavity where

the magnetic material lies in between signal and receiver antennas. Some of

the energy from the electromagnetic fields produced by the signal antenna will

be absorbed by the magnetic material as the reorientation or precession of the

sample magnetization. This amount of energy absorption is proportional to

the precession amplitude of the magnetization, so if the magnet has a larger

precession, such as when its resonance condition is met, less energy will make it

to the receiver antenna, which will be detectable. For thin films, a cavity is not

necessary, and the geometry of the film allows for FMR detection via a copla-

nar waveguide as shown in Fig. 1.1. This is the Ralph group “flip-chip” FMR

apparatus. In the figure, there is an upside-down wafer with a thin magnetic

film on it in contact with a copper ground-signal-ground coplanar waveguide.

Microwave SMA cables carry a microwave current through the signal stripline

of the coplanar waveguide, which produces microwave electromagnetic fields.

These microwave electromagnetic fields reorient the film magnetization, absorb-

ing some of the electromagnetic energy, just as in the case of the cavity FMR.
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Once magnetization precesses, a mutual inductance with the film and stripline

changes the current that makes it through the stripline. The current that makes

it through the coplanar waveguide is again related to the precession amplitude

of the magnetization in the thin film and may be detected.

It is difficult to get any quantitative information out of the amplitudes of

these FMR signals. This is not so difficult to see because, just by looking at

Fig. 1.1, one can see that this wafer piece with a strange shape feels many non-

trivial stray fields from the coplanar waveguide. Something like finite element

simulation with the exact shape of the wafer piece could be a solution to this

issue. Usually, FMR like this is used to determine specific parameters that are

not as sensitive to these “edge effects.” For example, FMR makes for an excel-

lent measurement of the effective magnetization, Meff, or the Gilbert damping,

α. These two parameters can be measured via the frequency dependences of

the resonant field (Eq. 0.11) and the resonance linewidth ∆ = fα/γ.
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Figure 1.1: The Ralph Group “flip-chip” FMR apparatus. In the center there
is an upside-down wafer chip with a thin-film magnetic layer on the bottom.
This thin film is in close proximity with the copper coplanar waveguide that
carries microwave current from the SMA cables above it. Two wound-coil
electromagnets on either side of the coplanar waveguide carry a small, AC
magnetic field that is used for homodyne detection. On the left and right
edges of the figure, the core poles of the larger electromagnet are shown.
These apply the DC magnetic field, H, that is used to meet the resonance
condition.
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1.2.2 An On-Chip CPW

One can extract useful information from the amplitudes of an FMR measure-

ment by fabricating a CPW on-chip i.e. lithographically patterning a chan-

nel made of a bilayer of a ferromagnetic film interfaced with a generic, non-

magnetic, conducting metal with with small spin-orbit coupling such as Cu.

By having a channel of known size, one can easily determine the magnetic

fields acting on the magnetic layer produced by the current flowing in the non-

magnetic conducting layer via Ampere’s law applied to an infinite sheet of

current:

HØ =
µ0JctNM

2
Ŷ (1.2)

where Jc is the charge current density flowing through the non-magnetic ma-

terial, tNM is the thickness of the non-magnetic layer, and the charge current

flows in the X̂-direction. This works because the thickness of these thin films is

orders of magnitude smaller than the lateral dimensions even when nanofabri-

cated. We usually call this current-induced magnetic field the Ørsted field. Of

course, there will still be stray fields near the edges of the device i.e. there will

be components of HØ that are along the Ẑ axis. One can usually see effects

such as this when the measurement of magnetization can be resolved spatially

e.g. in a MOKE measurement [12]. These edge effects normally cancel out or

account for a very small part of the total measured signal in electrical measure-

ments that effectively integrate over the path connecting the leads that measure

the device voltage.
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1.3 ST-FMR

ST-FMR relies on the same device principle introduced in the previous subsec-

tion (on-chip CPW) where now, instead of using a metal such as Cu to carry the

current, a heavy metal with strong spin-orbit coupling is used (e.g. Pt). Now

there will be additional fields/torques affecting the magnetic moment due to

the spin Hall effect in the heavy metal and spin accumulation at the interface of

the ferromagnet and heavy metal. In conventional ST-FMR, a microwave cur-

rent is injected along a rectangular sample of a heavy metal (HM)/ferromagnet

(FM) bilayer to induce FMR through current-induced torques acting on the

magnetization. Within a simple macrospin model, the Landau-Lifshitz-Gilbert-

Slonczewski (LLGS) equation captures the resulting dynamics of the magnetic

moment:

˙̂m = γm̂× dF

dm̂
+ αm̂× ˙̂m

+ τ 0
DLm̂× (σ̂ × m̂) + τ 0

FLσ̂ × m̂
(1.3)

where m̂ is the normalized magnetic moment of the FM, F is the free energy

density of the FM, γ = 2µB/~ is the gyromagnetic ratio with µB the Bohr mag-

neton, and α is the Gilbert damping parameter. The final two terms represent

the current-induced damping-like and field-like torques, with prefactors

τ 0
DL = ξDL

µBJe
eMStFM

(1.4)

τ 0
FL = ξFL

µBJe
eMStFM

+
µBµ0JetHM

~
. (1.5)

Here ξDL and ξFL are dimensionless spin-torque efficiencies that one might wish

to measure for a given material system. Je is the charge current density in the

HM, e is the magnitude of the electron charge, MS is the saturation magneti-

zation of the FM, tFM(HM) is the thickness of the ferromagnetic (heavy metal)

layer, and σ̂ denotes the polarization of the spin current incident on the ferro-
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magnet. The second term in Eq. (1.5) comes from the current-induced Ørsted

field. For a non-magnetic heavy metal with an ordinary high-symmetry crystal

structure, σ̂ is required by symmetry to be in-plane and perpendicular to the

applied current so that, for an in-plane magnetization, the damping-like torque

points in the sample plane and the field-like torque points out of plane; we will

assume this to be the case throughout this document.

The magnetic resonance can be detected via a rectified longitudinal DC

voltage (oriented along the length of the wire parallel to the current) caused

by the mixing of the microwave current with resistance oscillations produced

by the precessing magnet via the anisotropic magnetoresistance (AMR) or spin

Hall magnetoresistance (SMR) [13, 14]. The resonance peak shape as a function

of magnetic field magnitude at a constant field angle for this rectified signal is

the sum of symmetric and antisymmetric Lorentzian functions. For a magnetic

layer with in-plane anisotropy and and in-plane magnetic field, the symmetric

component arises from τ 0
DL and the antisymmetric component from τ 0

FL: the

combination of the current-induced Ørsted field and field-like SOT. Once the

microwave current is calibrated, the measurement allows determinations of both

ξDL and ξFL, assuming there are no other artifacts contaminating the signal.

When the FM layer is resonantly excited, a pure spin current resulting from

spin pumping (SP) or the longitudinal spin Seebeck effect (LSSE) can also flow

from the FM layer into the HM layer and produce a measurable voltage through

the ISHE of the HM [9, 15, 10, 16, 17, 18, 19, 20, 21]. Furthermore, an out-of-

plane temperature gradient within the heterostructure due to resonant heating

can produce a thermoelectric voltage from ordinary or anomalous Nernst ef-

fects [22, 23]. In all of these processes, the result is a DC voltage perpendicular

to the magnetization axis with a symmetric Lorentzian lineshape [24, 25, 10].

Consequently, if these artifact signals are sufficiently large, they can contami-

nate ST-FMR measurements of τ 0
DL. The signals from spin-torque rectification

and the spin-pumping/resonant-heating artifacts all have the same dependence
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on the angle of an in-plane magnetic field: ∝ sin(2φ) cos(φ), with φ measured

relative to the positive applied current direction [10, 26, 27, 28], making artifact

effects difficult to disentangle.

In what follows, we demonstrate that if one performs a ST-FMR exper-

iment as a function of the angle of an in-plane magnetic field by measuring

the resonant DC voltage transverse to the current (i.e., in a Hall geometry)

the rectified spin-torque contribution and the spin pumping/resonant heating

can be distinguished.Previous works have performed ST-FMR in the transverse

geometry [29, 27], but these studies did not illustrate how to separate the rec-

tified spin-torque contribution from the artifact signals. A closely-related idea

was used previously in experiments which studied SP/ISHE signals from mag-

netic precession excited using oscillating magnetic fields, in order to separate

out unwanted (in that context) rectification signals [18, 30]. Harder et al. have

published a review mapping out the field-angle dependence expected for reso-

nance experiments in both longitudinal and transverse geometries for different

orientations of excitation [31].

1.4 ST-FMR Theory

1.4.1 Conventional (Longitudinal)

We consider a thin-film macrospin magnet with in-plane anisotropy subject to

an external in-plane magnetic field oriented at an angle φ with respect to the

positive current direction, that aligns the equilibrium direction of the magne-

tization (see Fig. 1.2). We define the ŷ axis to be parallel to the equilibrium

direction of the magnetization and ẑ to be perpendicular to the sample plane

so that x̂ = ŷ × ẑ is in-plane. We will also use capital letters to indicate a

separate coordinate system fixed with respect to the sample, where X̂ is along

the current direction, Ẑ = ẑ, and Ŷ = Ẑ × X̂. Spherical polar coordinates θ, φ

for the magnetization orientation are defined relative to the X, Y, Z axes.
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(a) (b)

Figure 1.2: (a) Optical image of our Hall ST-FMR device, showing the
geometry of the contact pads. This particular device featured a
Pt(6)/CoFeB(6) bilayer measuring 20×80 µm2 (in the center, dark blue). The
scale bar is 100 µm. (b) Zoomed-in optical image of the bilayer and contacts
with our coordinate definitions. The XY Z (capital) coordinates are fixed
relative to the device geometry while xyz (lowercase) coordinates are relative
to the equilibrium orientation of the magnetization. The scale bar is 20 µm.

A microwave current IRFRe [e−iωt] is applied, producing alternating torques

with amplitudes τx = τ 0
DL cos(φ) and τz = τ 0

z cos(φ) = (τ 0
FL + τ 0

Oe) cos(φ) in

the x̂ and ẑ directions. With these definitions, τ 0
Oe takes a positive value by

Ampere’s Law and τ 0
DL is positive for the spin Hall effect of Pt. Linearization

and solution of the LLGS equation (see Chapter 0) allows us to calculate the

oscillatory components of the magnetic moment, in complex notation,

mx =
−ω2τz + iωτx

−γ(B −B0)ω+ + iαωω+

mz =
ω1τx + iωτz

−γ(B −B0)ω+ + iαωω+
.

(1.6)

Here B0 is the resonance field, B is the applied external field, ω1 = γB0,

ω2 = γ(B0 + µ0Meff), and ω+ = ω1 + ω2; Meff is the in-plane saturation magne-

tization (MS) minus any out-of-plane anisotropy. Note that by our definition

of coordinate axes, during the precession mx = −dφ and mz = −dθ.

Assuming that the anisotropic magnetoresistance has the form RXX =

R0 +RAMRm
2
X , the spin-torque mixing voltage in conventional ST-FMR can be
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written

V mix
XX =

IRF

2
RAMRRe [mx] sin 2φ, (1.7)

or

V mix
XX =

IRFRAMR

2αω+
sin(2φ) cos(φ)

×
(
S(B)τ 0

DL + A(B)
ω2

ω
τ 0
z

) (1.8)

where we have defined the symmetric and antisymmetric Lorentzians

S(B) =
∆2

(B −B0)2 + ∆2
(1.9)

A(B) =
(B −B0)∆

(B −B0)2 + ∆2
(1.10)

and the half-width at half-maximum linewidth ∆ = αω/γ. Here RAMR includes

contributions from both the anisotropic magnetoresistance in the magnet and

the spin Hall magnetoresistance in the Pt layer, as these produce identical

contributions to the ST-FMR signals for our sample geometry. Indeed, the total

magnetoresistance for a longitudinal measurement can be written in spherical

coordinates as

RXX = R0 +RAMR sin2 θ cos2 φ−RSMR sin2 θ sin2 φ. (1.11)

where R0 is a constant offset, RAMR is the scale of the anisotropic magnetore-

sistance, and RSMR is the scale of the spin Hall magnetoresistance [32]. We

consider small angle precession such that θ = θ0 + ∆θ and φ = φ0 + ∆φ with

∆θ,∆φ� 1 and expand to get

RXX = R0+RAMR

(
sin2 θ0 cos2 φ0 + ∆θ sin 2θ0 cos2 φ0 −∆φ sin2 θ0 sin 2φ0

)
−RSMR

(
sin2 θ0 sin2 φ0 + ∆θ sin 2θ0 sin2 φ0 + ∆φ sin2 θ0 sin 2φ0

)
.

(1.12)
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The only pieces of Eq. (1.12) that are current-rectifiable (able to produce a

mixing voltage with the rf current) are the terms linear in ∆θ and ∆φ. For an

in-plane magnet we have θ0 = π/2, and therefore the mixing voltage becomes

V mix
XX =

IRF

2
(RAMR +RSMR) (−∆φ sin 2φ0) =

IRF

2
(RAMR +RSMR) (Re[mx] sin 2φ0) .

(1.13)

Only the in-plane deflections of the magnet are rectified to produce a mixing

voltage, and the AMR and SMR contributions simply add. For simplicity of

notation in the main text, we therefore incorporate both the AMR and SMR

contributions in one magnetoresistance amplitude RAMR.

1.4.2 Hall

We can compute the transverse spin-torque mixing voltage within the same

framework. We assume that the Hall resistance has the symmetry RXY =

RPHEmXmY + RAHEmZ , where RPHE is the scale of the planar Hall effect and

RAHE is the scale of the anomalous Hall effect, in which case [33]

V mix
XY =

IRF

2
(−RPHE cos 2φRe [mx] +RAHERe [mz]) . (1.14)

Using the results from Eq. (1.6),

V mix
XY = −IRFRPHE

2αω+
cos (2φ) cos(φ)

×
(
S(B)τ 0

DL + A(B)
ω2

ω
τ 0
z

)
+
IRFRAHE

2αω+
cos(φ)

×
(
S(B)τ 0

z − A(B)
ω1

ω
τ 0

DL

)
.

(1.15)

1.4.3 Artifacts

The artifact signals due to spin pumping and resonant heating can also con-

tribute to both the longitudinal and transverse ST-FMR voltages [26, 6, 27]. All
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of the artifacts we consider, spin pumping/inverse spin Hall effect (SP/ISHE),

longitudinal spin Seebeck effect/inverse spin Hall effect (LSSE/ISHE), and

Nernst effect (NE), produce resonant DC electric fields that are in-plane and

perpendicular to the magnetization axis, and proportional to the square of the

precession amplitude (with the precession amplitude ∝ cosφ). Because these

signals depend only on the precession amplitude and not phase, they have sym-

metric lineshapes. Taking the components in the longitudinal and transverse

directions, the artifact voltages are therefore

Vart = E0
artS(B) cos2 φ


L sinφ longitudinal

W cosφ transverse

(1.16)

where E0
art = E0

SP+E0
LSSE+E0

NE is the total electric field generated by all artifact

signals. The artifact voltages for the longitudinal and transverse measurements

differ only by geometric factors and angular symmetry: L is the device length

(parallel to the current flow) and W is the transverse device width.

Spin Pumping

The electric field due to the spin pumping/inverse spin Hall effect can be cal-

culated following the methods of refs. [9, 10]. SP describes a process where

the precessing magnetization at FMR causes the ferromagnetic layer to inject

a spin current into the heavy metal layer; this can create a voltage through the

ISHE. The time-averaged spin current in the heavy-metal layer can be written

as [9, 15, 10]

←→
j SP
σ̂ (z) = σ̂ ⊗~jSP(z) =

~
4π
g↑↓eff

sinh [(tHM + z)/λsd]

sinh [tHM/λsd]

〈
m̂× ˙̂m

〉
⊗ (−ẑ) (1.17)

where ~jSP ∝ −ẑ is the direction of the spin current flow, σ̂ ∝
∣∣∣〈m̂× ˙̂m

〉∣∣∣ ‖ −m̂
is the polarization of the pumped spin current (where the negative sign is to
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account for enhanced Gilbert Damping due to Spin pumping [34, 35]), g↑↓eff is the

effective spin mixing conductance at the interface, and λsd is the spin diffusion

length of the HM. The resultant voltage is

VISHE = −RtotI = −Rtot

∫
ΣHM

~jHM
e · d ~A (1.18)

where Rtot is the total device resistance (that will differ for the longitudinal

and transverse cases), ΣHM is the cross-section of the heavy-metal layer, ~jHM
e =

(2e/~)θSH
~jSP × σ̂ is the charge current arising from the ISHE [10] and d ~A is a

differential surface area normal, which points along the vector connecting the

leads that we are measuring across. The negative sign in Eq. (1.18) is due

to the fact that we are measuring the electric field that arises from the open

circuit condition of the device [10]. Simplifying the integrals we have (for the

longitudinal geometry)

VISHE = −Rtot

∫
ΣHM

~jHM
e · d ~A

= −Rtot

∫ W/2

−W/2

∫ −tHM

0

~jHM
e · d ~A

= −RtotW sinφ

∫ −tHM

0

∣∣∣~jHM
e

∣∣∣ dz
(1.19)

where W is the width of the Hall bar (dimension along Ŷ ). Note that in the

transverse measurement W sinφ → L cosφ where L is the device bar length.

The only part of ~jHM
e that depends on the thickness is

∫ −tHM

0

sinh((tHM + z)/λsd)

sinh(tHM/λsd)
dz = λsd tanh

(
tHM

2λsd

)
. (1.20)

At this point, we have (for the longitudinal geometry)

VISHE = −2e

~
θSHRtotW sinφ

~
4π
g↑↓effλsd

∣∣∣〈m̂× ˙̂m
〉∣∣∣ tanh

(
tHM

2λsd

)
. (1.21)

We now only need to calculate
〈
m̂× ˙̂m

〉
, but we already have the oscillatory
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magnetization components from before (Eq. (1.6)). We can write
〈
m̂× ˙̂m

〉
=

ωIm [mxm
∗
z] (−m̂), so therefore

ωIm [mxm
∗
z] =

ω2

(γω+)2(B −B0)2 + (ωαω+)2

[
ω1τ

2
x + ω2τ

2
z

]
(1.22)

=
ω1τ

2
x + ω2τ

2
z

(αω+)2
S(B), (1.23)

where S(B) = ∆2/ [(B −B0)2 + ∆2] is a symmetric Lorentzian and ∆ ≡ ωα/γ.

The voltage in the device resulting from the pumped spin can then be written

as (for the longitudinal geometry)

VISHE = −2e

~
θSHRtotW sinφ

~
4π
g↑↓effλsd

[
ω1τ

2
x + ω2τ

2
z

(αω+)2
S(B)

]
tanh

(
tHM

2λsd

)
.

(1.24)

Putting all of this together, using that ω1 = γB0, ω2 = γ(B0 + µ0Meff),

and ω+ = ω1 + ω2 = γ(2B0 + µ0Meff), noting that τx and τz have the angu-

lar dependence specified in Eq. (8), and that for the transverse case one has

W sinφ→ L cosφ, the spin-pumping voltages in the longitudinal and transverse

directions become

VISHE = − eB0RtotθSH

2πα2γ(2B0 + µ0Meff)2
g↑↓effλsd tanh

(
tHM

2λsd

)[
(τ 0

DL)2 +

(
1 +

µ0Meff

B0

)
(τ 0

z )2

]

× S(B) cos2 φ


W sinφ, longitudinal

L cosφ, transverse

(1.25)

= − eB0θSH

2πα2γ(2B0 + µ0Meff)2

1∑
i tiσi

g↑↓effλsd tanh

(
tHM

2λsd

)[
(τ 0

DL)2 +

(
1 +

µ0Meff

B0

)
(τ 0

z )2

]

× S(B) cos2 φ


L sinφ, longitudinal

W cosφ, transverse

.

(1.26)

In the final equation we have expressed the values of Rtot for the longitudinal

and transverse cases in terms of the conductivities of the i = HM and FM layers
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added as parallel conductors. The final, simplified expression we use for the

electric field due to SP/ISHE is

E0
SP =

eθSHg
↑↓
eff

2π
∑

i σiti
λsd tanh

(
tHM

2λsd

)
×[

(τ 0
DL)2ω1 + (τ 0

z )2ω2

α2 (ω+)2

]
.

(1.27)

Recall θSH is the spin Hall ratio in the HM (related to the damping-like spin

torque efficiency by θSH = ξDL/Tint, where Tint is an interfacial spin transmission

factor), g↑↓eff is the real part of the effective spin mixing conductance, σi (ti) the

charge conductivity (thickness) of layer i, and λsd the spin diffusion length of

the HM.

Resonant Heating

If one assumes that the artifacts due to resonant heating by the current-induced

torques are proportional to the energy absorbed by the magnetic layer during

resonant excitation, the peak DC electric field due to LSSE/ISHE and NE can

be calculated similarly [22, 36]. Here, we begin with the magnetic free energy

per unit area assuming no in-plane anisotropy

F/A = − ~B ·M +
1

2
µ0tFMMsMeffm

2
z. (1.28)

We assume the external field saturates the magnetization in the y-direction

F/A = −BmyMstFM +
1

2
µ0tFMMsMeffm

2
z (1.29)

and using |m| = 1,

F/A = −BMstFM +
MstFM

2

[
Bm2

x + (B + µ0Meff)m2
z

]
. (1.30)
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Taking a time derivative, we have

∂tF/A = MstFM

[
Bmx

dmx

dt
+ (B + µ0Meff)mz

dmz

dt

]
. (1.31)

To calculate the energy absorbed from the current-induced torques, we set

dmx/dt = τx and dmz/dt = τz. Averaging over one precession cycle, the power

per unit area absorbed by the magnet is

〈∂tF/A〉 =
MstFM

2
{BτxRe[mx] + (B + µ0Meff)τzRe[mz]} (1.32)

=
MstFMαω

+

2γ

[
ω1τ

2
x + ω2τ

2
z

(αω+)2

]
S(B). (1.33)

The in-plane torque τx contains contributions from both the antidamping spin-

orbit torque and the out-of-plane component of the Oersted field, but when

averaged over the width of the sample the antidamping spin-orbit torque gives

the larger contribution.

Using equation (1.33), with some parameters determined on a Pt(6 nm)/CoFeB(tFM)

thickness series, we calculate the power absorbed per unit area within the mag-

netic layer of the Pt/CoFeB samples as a function of the magnetic layer thick-

ness. This is plotted as a fraction of the Ohmic dissipation in the magnetic layer

in Fig. 1.3. The relative amount of heating for the thinnest samples is greater

primarily because of increased magnetic damping for the thinnest samples.

The final, simplified form of the resonant heating effects we use is

E0
LSSE + E0

NE = C
MstFMαω

+

2γ
∑

i σiti

[
(τ 0

DL)2ω1 + (τ 0
z )2ω2

α2 (ω+)2

]
. (1.34)

Here C is a material-dependent prefactor. Due to the factor of tFMαω
+ in

the numerator, the resonant heating contributions scale differently than the

SP/ISHE as a function of FM thickness, damping, and measurement frequency.
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Figure 1.3: The ratio of resonant power absorbed to the Ohmic dissipation in
the ferromagnetic layer as a function of the ferromagnetic layer thickness, for
the Pt(6 nm)/CoFeB(tFM) series of samples.

1.4.4 Putting it all together

Adding the rectification and artifact contributions [and using that cos2 φ sinφ =

(sin 2φ cosφ)/2 and cos3 φ = (cosφ+cos 2φ cosφ)/2], the amplitudes of the sym-

metric and antisymmetric components of the total longitudinal and transverse

ST-FMR signals have the angular dependence

SXX(φ) = S
AMR/art
XX sin 2φ cosφ

AXX(φ) = AAMR
XX sin 2φ cosφ

SXY (φ) = S
PHE/art
XY cos 2φ cosφ+ S

AHE/art
XY cosφ

AXY (φ) = APHE
XY cos 2φ cosφ+ AAHE

XY cosφ

(1.35)
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with the amplitude coefficients

S
AMR/art
XX =

IRF

2αω+
RAMRτ

0
DL −

L

2
E0

art

≡ SAMR
XX + Vart

AAMR
XX =

IRF

2αω+
RAMR

ω2

ω
τ 0
z

S
PHE/art
XY = − IRF

2αω+
RPHEτ

0
DL −

W

2
E0

art

APHE
XY = − IRF

2αω+
RPHE

ω2

ω
τ 0
z

S
AHE/art
XY =

IRF

2αω+
RAHEτ

0
z −

W

2
E0

art

AAHE
XY = − IRF

2αω+
RAHE

ω1

ω
τ 0

DL.

(1.36)

One can see that all of the SXX and SXY rectification signals are contaminated

by artifact voltages. If one measures just SXX and AXX for in-plane magnetic

fields (as in conventional ST-FMR) there is no way to distinguish τ 0
DL from

the artifact contributions. However, τ 0
DL appears by itself, without any artifact

contamination, in the coefficient AAHE
XY . One way to achieve a measurement of

τ 0
DL, free of these artifacts, is therefore to directly use the expression for AAHE

XY in

Eq. (1.36) along with careful calibration of IRF, α, and RAHE. The out-of-plane

torque τ 0
z can similarly be determined from AAMR

XX or APHE
XY . Alternatively, the

expressions in Eq. (1.36) also allow E0
art and the torque efficiencies ξDL and

ξFL to be measured without calibrating IRF, α, and the the magnetoresistance

scales by taking appropriate ratios to cancel prefactors. We can do so using

measurements of either the set of parameters {SAMR/art
XX , AAMR

XX , S
AHE/art
XY , AAHE

XY }

or {SPHE/art
XY , APHE

XY , S
AHE/art
XY , AAHE

XY }. We do not expect that the equations in-

volving RAMR and RPHE are physically independent because anisotropic mag-

netoresistance and the planar Hall effect originate from the same microscopic

mechanism. Therefore if the assumptions of our model are correct these two

strategies for taking ratios to cancel prefactors must agree modulo experimen-

tal noise. We will perform both calculations, and test their agreement as a

consistency check.
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First, using that on resonance ω =
√
ω1ω2 we calculate the ratio η ≡

(τ 0
DL/τ

0
z )
√
ω1/ω2 employing the pair of parameters S and A associated with

each of the AMR, PHE, and AHE:

η =
−AAHE

XY

S
AHE/art
XY +W (Eart/2)

=


S

PHE/art
XY +W (Eart/2)

APHE
XY

S
AMR/art
XX + L(Eart/2)

AAMR
XX

(1.37a)

(1.37b)

Using the measured amplitude coefficients, one can solve separately for Eart

using either equation (1.37a) or (1.37b), and check consistency.

It still remains to determine τ 0
DL and to separate the two contributions to

τ 0
z = τ 0

FL + τ 0
Oe. We choose to do this using a method from ref. [37], in a way

that determines both the of the spin-torque efficiencies ξDL and ξFL at the same

time without requiring a separate calibration of IRF. We perform measurements

for a series of samples with different thicknesses of the ferromagnetic layer and

determine η = (τ 0
DL/τ

0
z )
√
ω1/ω2 for each sample from any of the expressions in

Eqs. (1.37a,1.37b), after solving for Eart. We then define

ξFMR ≡ η
eµ0MstHMtFM

~

√
1 +

µ0Meff

B0

(1.38)

so that using Equations (1.4) & (1.5), and that by Ampere’s Law τ 0
Oe =

γµ0JetHM/2 one has

1

ξFMR

=
1

ξDL

(
1 +

~
e

ξFL

µ0MstFMtHM

)
. (1.39)

Performing a linear fit of 1/ξFMR vs. 1/tFM then can be used to determine 1/ξDL

(from the intercept) and ξFL (from the slope).
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1.5 Results

We used DC-magnetron sputtering to grow multiayers with the structure

substrate/Ta(1)/Pt(6)/ferromagnet(tFM)/Al(1) (where numbers in parentheses

are thicknesses in nm), using three different ferromagnets (FMs): Co40Fe40B20

(CoFeB), permalloy (Ni81Fe19 = Py) and Co90Fe10 (CoFe). Each of the three

FMs is expected to have different AMR, PHE, and AHE values, and therefore

different strengths of rectified spin-torque signals relative to the artifacts. In

particular, CoFeB has weak planar magnetoresistances (AMR and PHE), and

has been argued previously to exhibit a significant contribution from SP/ISHE

in ST-FMR [26, 6]. The CoFeB devices were grown with tFM = {2, 3, 4, 6, 8, 10}

in separate depositions. The Py and Co90Fe10 devices were grown with single

relatively-large thicknesses to give measurable artifact signals: tPy= 8 nm and

tCoFe= 6 nm. All devices were grown on high-resistivity (> 2 × 104 Ω-cm),

thermally-oxidized silicon wafers to prevent RF current leakage or capacitive

coupling. The Ta was used as a seed layer and has negligible contribution to

the SOTs we measure due to the low conductivity of Ta relative to Pt (ρPt =

20.4 µΩcm, ρCoFeB = 110 µΩcm). The Al cap layer protects the layers below

it, and is oxidized upon exposure to atmosphere.

The as-deposited samples were patterned using photolithography and Ar

ion-milling to define rectangular bars ranging in size from 20 × 40 µm to 40

× 80 µm with various aspect ratios. The transverse leads and contact pads

were then made using a second photolithography step, deposited by sputtering

Ti(3 nm)/Pt(75 nm) and formed by lift-off so that the side channels extended

a few microns on top of the main bar (see Fig. 1.2). We were careful that the

magnetic layer did not extend beyond the defined rectangle into the transverse

leads. In early devices, we etched full Hall-bar shapes within the first layer of

lithography so that the transverse leads included some of the same magnetic

layer as the main channel. For those early devices, we found that the resulting

analyses of spin-orbit torques produced anomalous results, varying with the
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dimensions of the leads and the contact separation. This could possibly be

due to spatial non-uniformities in the magnetic orientation and precession, as

was speculated in ref. [29]. Ultimately, the magnetic bilayer was left to be

simply rectangular to promote uniform precession modes, and this removed the

anomalous geometry dependence.

For the ST-FMR measurements, we connected the devices to an amplitude-

modulated (“AM” with fAM ≈ 1700 Hz) microwave source through the AC port

of a bias tee and to a lock-in amplifier through the DC port, which detected the

longitudinal signal. Another lock-in amplifier measured the DC voltage across

the Hall leads of the device. Both lock-in amplifiers referenced the same AM

signal, and we collected ST-FMR data in both the longitudinal and transverse

directions simultaneously. An in-plane applied magnetic field was applied at

varying angles φ using a projected-field magnet. We used fixed microwave

frequencies in the range 7-12 GHz, applied 20 dBm of microwave power, and all

measurements were performed at room temperature. In Figs. 1.4(a) and 1.4(d)

we show examples of the detected resonant signals from the parallel (XX) and

transverse (XY ) lock-ins for the Pt(6)/CoFeB(6) sample.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4: ST-FMR measurements of a Pt(6 nm)/CoFeB(6 nm) sample for a
measurement frequency f = 8 GHz. (a) Longitudinal resonant signals for
field sweeps with two different field angles. (b) & (c) Symmetric (SXX) and
antisymmetric (AXX) Lorentzian fit components for the longitudinal resonant
signal as a function of the external field angle. (d) Transverse resonant
signals for field sweeps with two different field angles. (e) & (f) Symmetric
(SXY ) and antisymmetric (AXY ) Lorentzian fit components for the transverse
resonant signal as a function of the external field angle. The orange fit line in
(b) & (c) is a fit to sin 2φ cosφ (AMR); the light and dark blue fit lines in
(e,f) are fits to cos 2φ cosφ (PHE) and cosφ (AHE), respectively, and their
sum (orange) fits the data.
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Both the longitudinal and transverse resonances are well-fit to a sum of

symmetric and antisymmetric Lorentzian peaks, with varying relative weights.

For each sample we performed field-swept measurements at a variety of angles φ,

extracting the symmetric and antisymmetric components of the resonances for

both the longitudinal and transverse signals. The results for a Pt(6)/CoFeB(6)

sample are shown in Fig. 1.4(b,c,e,f), along with fits to Eq. (1.35). Analogous

results for Pt(6)/Py(8) and Pt(6)/CoFe(6) samples are below
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(a) (b)

(c) (d)

(e) (f)

Figure 1.5: Hall ST-FMR results collected on Pt(6)/Py(8).
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(a) (b)

(c) (d)

(e) (f)

Figure 1.6: Hall ST-FMR results collected on Pt(6)/CoFe(6).

We find excellent agreement with the expected angular dependences for SXX,

AXX, and AXY. For SXY the dominant contributions to the angular dependence

are, as expected the cos 2φ cosφ and cosφ terms, but in addition, we detect a

small component approximately proportional to sin 2φ. This additional contri-
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bution is less than 10% of the larger terms in SXY for all thicknesses of CoFeB,

small enough that it is not included in the fit shown in Fig. 1.4(e). It is more

significant in the CoFe and Py samples that we measured, though still smaller

than the cos 2φ cosφ and cosφ amplitudes in SXY. A sin 2φ contribution can

only arise from a breaking of mirror symmetry relative to the sample’s Ŷ -Ẑ

plane. This symmetry is broken in our samples by the different contact ge-

ometries on the two ends of the sample wire (see Fig. 1(a)). The form of

the sin 2φ signal can be explained as due resonant heating that produces an

in-plane thermal gradient in the longitudinal direction of the sample (due e.g.

to differences in heat sinking at the two ends) that is transduced to a tran-

verse voltage with the symmetry of the planar Hall effect (∝ mXmY ). We have

checked that the signal is not due to a sample tilt or to a non-resonant DC

current that might arise from rectification of the applied microwave signal at

the sample contacts. All of the other Fourier components that are the main

subject of our analysis maintain the Ŷ -Ẑ-plane mirror symmetry, and so they

cannot be altered at first order by a process that breaks this symmetry. Being

a separate Fourier component, the sin 2φ contribution also does not affect the

fits to Eq. (1.35) to determine the six amplitude coefficients S
AMR/art
XX , AAMR

XX ,

S
PHE/art
XY , APHE

XY , S
AHE/art
XY , and AAHE

XY . Using these coefficients, we calculate Eart

by solving Eqs. (1.37a) or (1.37a). There is a potential ambiguity in which roots

of Eqs. (1.37a) and (1.37a) to select when applying the quadratic formula. In

our measurements, one root would give unphysical results, e.g. a sign change of

ξDL. An important check of our method (and a check that the sin 2φ term in

SXY does not contaminate the analysis) is that these two independent methods

for determining E0
art (Eqs. (1.37a) and (1.37b)) give consistent results. We show

below that this is indeed the case.
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(a)

(b)

Figure 1.7: (a) The uncorrected measured value of SAMR
XX vs. tFM, together

with the value corrected by removing the artifact voltage. (b) The inverse
ξFMR vs. inverse tFM. The y-intercept of the line is 1/ξDL and the slope is
proportional to ξFL as in Eq. (1.39). The two fit lines are color-matched fits
to the data points from the AHE/PHE and AHE/AMR corrections.
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Figure 1.7(a) shows the total amplitude of the longitudinal symmetric ST-

FMR component (labeled as “Measured”), and the corrected value SAMR
XX from

which Vart has been subtracted. For CoFeB layer thicknesses 6 nm and below,

the magnitude of Vart is much less than the magnitude of SAMR
XX , so that the

artifacts have little effect on ST-FMR measurements of the spin-orbit torques.

However, with increasing CoFeB thickness the magnitude of SAMR
XX decreases

and Vart grows, so we find experimentally that for the CoFeB layers thicker

than 6 nm the artifact voltage becomes a significant fraction of the total signal.

In this regime, Vart and SAMR
XX contribute to SXX(φ) with opposite signs [38],

with the consequence that if the artifact contributions are neglected in the

conventional ST-FMR analysis, the result is an underestimate of the strength

of τ 0
DL. In this respect our results conflict with some conclusions [26, 6] that

neglecting the SP/ISHE contribution produces an overestimate of τ 0
DL.

Analysis of the dependence of 1/ξFMR as a function of 1/tFM allows a deter-

mination of the underlying spin-torque efficiencies ξDL and ξFL using Eq. (1.39).

The results for the CoFeB series of samples is shown in Fig. 3(b). If one does

not correct for the contribution of the artifacts, the calculated values of 1/ξFMR

depart upward from the expected linear dependence for tFM & 6 nm. Similar

results have been reported previously in [37] where the non-linearity was spec-

ulated to be from SP/ISHE, and the spin-torque efficiencies were determined

by fitting only to the thinner FM stacks. After we correct for the artifact con-

tribution, we find good agreement with the expected linear dependence over

the full thickness range. From the linear fit, we determine ξDL = 0.090(6) and

ξFL = -0.020(2).

For the Pt(6 nm)/Py(8 nm) and Pt(6 nm)/CoFe(6 nm) samples we find

the same configuration of signs as for the thicker Pt/CoFeB samples: Vart par-

tially cancels SAMR
XX so that the true mixing signal is larger than the measured
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Figure 1.8: ξFMR for various device stacks. The gray (left) bars show values
without correction for the artifacts, and the orange and blue (center, right)
bars show values corrected using the determination of the artifact voltages
using Eqs. (1.37a) and (1.37b), respectively.

amplitude of SXX(φ). The results of the calculation of ξFMR according to Eq.

(1.38) are shown in Fig. 1.8 for five selected samples, both without and with

the correction for artifacts. In determining ξFMR we use values for Ms deter-

mined by room temperature vibrating sample magnetometry (VSM) and values

for µ0Meff determined by fits of the ST-FMR resonant fields as a function of

frequency. These values are: for CoFeB Ms = 9.8 × 105 A/m, µ0Meff = 0.6 –

1.4 T (depending on thickness); for Py Ms = 7.5× 105 A/m, µ0Meff = 1.01 T;

and for CoFe Ms = 9.1 × 105 A/m, µ0Meff = 1.66 T. If a magnetic dead layer

was observed in VSM, the dead layer thickness was subtracted from tFM. In

all cases shown in Fig. 4, we find that correcting for the artifact contribution

increases our estimates for the values of ξFMR. The value of ξFMR is smaller

for the Pt/Py sample than for Pt/CoFeB or Pt/CoFe primarily because ξFL is

both small and has a positive sign for Pt/Py [39, 40].

The dependence of the artifact voltage, Vart, on the ferromagnetic layer

thickness is shown in Fig. 1.9 for the longitudinal ST-FMR component of the

Pt/CoFeB series of samples.
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Figure 1.9: The artifact voltage as a function of the FM thickness in Pt(6
nm)/CoFeB samples. The two types of data points reflect the two correction
equations ((1.37a) and (1.37b)). The line is the estimated SP/ISHE
contribution, determined using the parameters described in the text, with no
adjustable parameters.

The data are compared to an estimate of the SP/ISHE contribution from

Eq. (1.27), using the parameters (appropriate for the resistivity of our Pt lay-

ers, ρPt = 20.4 µΩcm): θSH = 0.32 [41, 37], g↑↓eff = 8.26 × 1018 m−2 [41], and

λsd = 3.7 nm [42]. The other quantities in Eq. (1.27) were measured for our

samples, including the variation as a function of CoFeB thickness. The compar-

ison therefore includes no adjustable fitting parameters, but given that there

is considerable disagreement in the literature about the values of the param-

eters θSH, g↑↓eff, and λsd, one should still be careful about drawing quantitative

conclusions. The comparison indicates to us that for the samples with tFM ≥

3 nm the SP/ISHE theory predicts the correct sign and can roughly capture

the overall magnitude and thickness-dependence of the measured artifact sig-
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nal. However, the measured artifact voltage for tFM= 2 nm has the opposite

sign, inconsistent with the SP/ISHE. We are confident that the measured sign

change is real, because we have measured and performed the analysis on five

Pt(6 nm)/CoFeB(2 nm) devices with varied geometries, with consistent results.

Given that the SP/ISHE cannot explain the sign change in the artifact volt-

age for our tFM= 2 nm samples, we suggest that resonant heating effects might

be comparable to the SP/ISHE in our Pt(6 nm)/CoFeB samples, with suffi-

cient strength to reverse the overall sign of the artifact voltage for our thinnest

samples. This suggestion differs from previous studies on Pt/YIG samples, for

which frequency-dependent measurements demonstrated that SP/ISHE signals

dominate over resonant heating artifacts [25, 43]. However, the relative strength

of the heating effects and SP/ISHE should scale proportional to the damping

α (compare Eqs. (1.27) and (1.34)), so that the heating effects should be more

significant in higher-damping ferromagnetic metals compared to lower-damping

YIG. We calculate that the resonant heating due to the excitation of magnetic

precession for our 2 nm samples is ∼ 2.5× 104 Wm−2, only about a factor of 5

less than the Ohmic heating per unit area in the CoFeB, ∼ 1.2×105 Wm−2 (see

Fig. 1.3). We suggest that this is sufficient to measurably alter the thermal

gradients within the sample at resonance and induce resonant signals from the

LSSE and/or Nernst effects. Due to an increase in the damping coefficient α

with decreasing magnetic thickness, the ratio of the resonant heating to Ohmic

heating is significantly greater for the 2 nm CoFeB samples than for the thicker

magnetic layers (see Fig. 1.3)..

As noted in the introduction, past experiments have shown a discrepancy

between measurements of ξDL using low frequency second harmonic Hall and

ST-FMR techniques. To see if our correction for the artifact voltages in ST-

FMR alleviates the discrepancy between the two techniques, we carried out low

frequency second harmonic Hall measurements on the same Pt/CoFeB bilayers,

but found that the low frequency second harmonic measurements of ξDL were
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still approximately 60% larger than what we measured by ST-FMR, even after

correcting ST-FMR for spin pumping and resonant heating. This persisting

quantitative difference suggests that the assumptions used in analyzing one or

both of these experiments are missing an important bit of physics. Our analysis

indicates that this missing physics is not simply the neglect of spin pumping or

a simple heating-induced voltage in the ST-FMR results, and therefore more

work must be done to understand the source of the disagreement.

1.6 Conclusions

In conclusion, we have demonstrated that the rectification signal used to mea-

sure the strength of spin-orbit torques in spin-torque ferromagnetic resonance

(ST-FMR) can be separated from artifact voltages that may arise due to spin

pumping and resonant heating by performing ST-FMR in the transverse (Hall)

configuration as well as the usual longitudinal configuration. For Pt(6 nm)/

CoFeB(tFM) samples, the artifact voltages are small compared to the rectifi-

cation signal for tFM < 6 nm, but they can become a significant part of the

measured signal for thicker magnetic layers. The sign and overall magnitude

of the measured artifact voltage for these thicker layers are consistent with

expectations for the SP/ISHE effect signal. However, the sign of the artifact

voltage is reversed for our thinnest magnetic layers, with tFM = 2 nm. This

sign reversal cannot be explained by the SP/ISHE, so we suggest that it may

be caused by a resonant heating effect.
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Chapter 2

DC-biased ST-FMR

2.1 Introduction

In addition to the method of ST-FMR described in the previous chapter, where

a resonance lineshape (LS) is measured, fitted, and from the fits, SOT magni-

tudes are extracted, there is another method of doing ST-FMR. In this other

method, which we will call dc-biased ST-FMR or the linewidth (LW) analy-

sis of ST-FMR (contrasted with the LS method of ST-FMR described in the

previous section), a dc current is applied device in addition to the microwave

current along the same path. In a HM/FM bilayer, the dc current produced dc

damping-like SOTs (e.g. through the spin Hall effect) in the HM that impinge

on the FM causing a rescaling of the FMs damping. Like any harmonic sys-

tem, the damping is closely related to the LW of the measured resonant signal.

Therefore, the applied dc current will rescale the LW of the measured reso-

nance, so a variation of the LW with different amounts of applied dc current is

measured and, from this, the size of the damping-like SOTs can be quantified.

There is also a known issue with this LW technique where it can result in

very unreasonable numbers for the SOT that very much disagree with other cor-

roborating measurement techniques. This is a common issue in measurements

performed by the Ralph/Buhrman groups and has eroded our groups’ trust in

the technique. Also consistent disagreement between LS and LW methods of
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ST-FMR can be found in the literature, e.g. refs. [44, 45]. An explanation for

these frequent discrepancies has, so far, been lacking.

In this chapter, we closely analyze both the LS and LW methods of ST-FMR

on bread-and-butter Pt/Py samples. We find that the results of the LS and LW

methods disagree, and that the disagreement is almost all due to shortcomings

of the LW method. Fitting the measured signals to the conventional models

of ST-FMR, we find that significant fit residuals remain that originate from

periodic heating and from an interface-localized FM layer that has different

dynamics from the FM bulk. The latter contribution has a very broad LW is

highly sensitive to the application of dc current, so the application of dc current

affects this interfacial layer, causing a spurious interfacial contribution to the

measured linewidth of the as-measured resonance signal. We also find that there

is a reliable, systematic way to remove this spurious LW contribution to the LW

method of ST-FMR, which we call “windowed fitting.” This entails sequentially

fitting the measured data over a smaller and smaller range (window) centered

about the resonance field i.e. discounting more and more data. We find that, as

the window gets smaller, the result of the LW method of ST-FMR approaches

the result measured from the LS analysis and eventually the two agree. This

data analysis prescription offers a novel and reliable way to consider the LW

ST-FMR data and ensure consistent results, free from spurious effects.

In the following, much is taken and adapted from Ref. [46].

2.2 Background and Theory

During ST-FMR, a microwave current is applied in-plane into a heavy metal/ferromagnet

bilayer, so that current-induced SOTs and Ørsted fields induce ferromagnetic

precession. Magnetic precession causes resistance variations in the device due

to anisotropic magnetoresistance. Mixing between the microwave current and

resistance oscillations then produces a DC voltage that is measured. The signal-

to-noise ratio (SNR) is vastly improved if an endogenous parameter of the tech-

74



nique is modulated and the voltage is measured with a lock-in amplifier. There

are a number of choices for the modulated parameter: amplitude modulation

(AM) [8, 47], magnetic field modulation [48], frequency modulation (FM), or

phase modulation (the latter two of which are equivalent). Save a few works

that have employed magnetic field modulation [48, 49, 50, 51, 52, 45], almost

all experiments featuring ST-FMR employ AM because it is the simplest pa-

rameter to modulate – it does not complicate the experimental apparatus nor

the fitted model.

Typically, one assumes that a macrospin approximation is appropriate for

describing the current-induced magnetic dynamics for experiments performed

at suffficiently large microwave frequencies and magnetic fields, in which case

the results of ST-FMR are modeled by the Landau-Lifshitz-Gilbert-Slonczewski

(LLGS) equation

ṁ = −γm×B + αm× ṁ + τ (2.1)

where m is the magnetic moment, γ = 2µB/~ is the gyromagnetic ratio, B is

the external field, α is the Gilbert damping constant, and τ = τDL+τz describes

the torque present in our system. The torques produced by a polycrystalline

thin film must obey the Rashba symmetry [53]. For a film spanning the X −Y

plane, with current flowing along the X-direction we have

τDL = τ 0
DL(m× (m× Y )) =

ξDLµB
eMstFM

Je cosφ0 (2.2)

τz = τ 0
z (m× Y )

=

[
ξFLµB
eMstFM

+
γµ0tHM

2

]
Je cosφ0.

(2.3)

ξDL(FL) is the damping-like (field-like) SOT efficiency, µB is the Bohr magneton,

Ms is the saturation magnetization of the ferromagnet, tF(N) is the thickness of

the ferromagnet (normal metal) layer, µ0 is the vacuum permeability, Je is the

electric current density flowing through the heavy metal, and φ0 is the angle
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between the direction of applied field and current flow (X-direction). Solu-

tions to the LLGS equation for a sample with in-plane magnetic anisotropy

predict that resonant ferromagnetic precession will occur when the Kittel equa-

tion, ω0 = γ
√
B(B + µ0Meff) [2], is satisfied. Here, µ0Meff = µ0Ms − 2K⊥/Ms

accounts for shape anisotropy minus any out-of-plane anisotropy. The total

resonance lineshape will have contributions from symmetric (S) and antisym-

metric (A) Lorentzians [54, 8], which we define as

S =
∆2

(B −B0)2 + ∆2
(2.4)

A =
∆(B −B0)

(B −B0)2 + ∆2
(2.5)

where B0 is the resonance field, and ∆ is the half-width-at-half-maximum

linewidth related to the Gilbert damping by ∆ = αω/γ. The DC mixing

signal is a weighted sum of these two lineshapes with coefficients VS and VA

determined by the the torques and material parameters in our system [8, 54, 11]

Vmix = VSS + VAA+ C (2.6)

with

VS =
Irf

2αω+
RAMRτ

0
DL sin 2φ0 cosφ0

VA =
Irf

2αω+
RAMR

ω2

ω
τ 0

z sin 2φ0 cosφ0.

(2.7)

Irf is the total microwave current that flows through the bilayer, ω+ = γ(2B0 +

µ0Meff), RAMR is the amplitude of the anisotropic magnetoresistance of the

whole bilayer, and ω2 = γ(B0 + µ0Meff). C is a constant voltage offset that is

included to account for non-resonant signals. For samples with thick magnetic

layers, there can also be a significant additional contribution to the symmetric

resonance component from spin pumping/resonant heating and the inverse spin

Hall effect [11] that we will mention below.
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The experimental signal-to-noise ration (SNR) is significantly improved by

modulating the microwave amplitude; this is captured by letting Vmix(Irf) →

Vmix(Irf(1 + µ cosωmt)) ≈ Vmix + 2µVmix cosωmt where µ ∈ [0, 1] is the AM-

depth. A lock-in amplifier demodulates the total signal by mixing with a cosωmt

reference and applying a low-pass filter. The AM signal is therefore simply:

2µVmix.

If, alternatively, frequency modulation is used instead of amplitude mod-

ulation, the expected FM signal can be derived in a similar manner. We let

Vmix(ω) → Vmix(ω + δω cosωmt) where δω � ω; this admits the simple expan-

sion near the microwave carrier frequency, ωc

V FM
mix (ω) = Vmix(ω + δω cosωmt) =⇒

V FM
mix (ω) ≈ Vmix(ωc) +

dVmix

dω

∣∣
ω=ωc

δω cosωmt.
(2.8)

V FM
mix is again demodulated by a lock-in amplifier, which leaves us with only

dVmix

dω

∣∣
ω=ωc

δω. Therefore, the ratio of the detected mixing signal to the ampli-

tude of the frequency modulation is

V FM
mix /δω =

∂Vmix

∂ω

∣∣
ω=ωc

=
∂VS
∂ω

S +
∂VA
∂ω

A

+
1

ωc

[
2VSA

2 + VA
(
2A3/S − A

)]
+

ωc
Meffγ2∆

[
2VSSA+ VA

(
A2 − S2

)]
+ C.

(2.9)

Here we have used that ∂ωS = 2S [(1− S)∂ω∆ + A∂ωB0] /∆

and ∂ωA = [A(1− 2S)∂ω∆− (S + 2A2)∂ωB0] /∆. Equation (2.9) is nearly

identical to a previously derived result where the magnetic field was modulated

[48]. Compared to the AM result, Eq. (2.6), the FM result has two additional fit

parameters, dVS/dω and dVA/dω to account for possible frequency dependence

of microwave transmission through the measuring circuit to the device.
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Lineshape (LS) Analysis

After measuring with either amplitude or frequency modulation and then fit-

ting the ST-FMR resonance to determine VS and VA using either Eq. (2.6) or

Eq. (2.9), the torque efficiencies may be determined directly from Eq. (2.7) if

Irf is well-calibrated, since the other parameters in Eq. (2.7) are independently-

measurable. However, since it is often challenging to determine accurately the

value of Irf within the sample, we generally prefer to determine the torque ef-

ficiencies by taking appropriate ratios of VS and VA [37]. We first calculate an

intermediate quantity, ξFMR, defined as

ξFMR =
VS
VA

eµ0MstHMtFM

~

√
1 +

µ0Meff

B0

. (2.10)

By using Eqs. (2.2), (2.3), & (2.10), as long as the torque efficiencies are in-

dependent of the ferromagnetic-layer thickness in the range of thickness we

analyze, then ξFMR can be related to the damping-like and field-like torque

efficiencies as [37]

1

ξFMR

=
1

ξDL

(
1 +

~
e

ξFL

µ0MstHMtFM

)
. (2.11)

Therefore, by taking results form a series of samples with different ferromagnet

thicknesses, tFM, we can then determine ξDL and ξFL from a linear fit of 1/ξFMR

versus 1/tF .

Linewidth (LW) Analysis: Change of Linewidth Versus DC Current

In DC-biased ST-FMR, a DC current is applied parallel to the microwave cur-

rent, such that the damping-like torque from the DC current rescales the effec-

tive Gilbert damping of the magnetic layer and causes the resonance linewidth

to change linearly as a function of IDC. The damping-like SOT efficiency can
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be calculated from DC-current linewidth modulation as [8, 40]

ξDL =
eMsω

+tFM

~ωc sinφ0

WtHM

x

d∆

dIDC

(2.12)

where W is the width of the current-carrying channel and x is the fraction of

the total DC current that flows through the HM.

2.3 Measurements

All our samples are grown using DC-magnetron sputtering (in a system with

base pressure < 4 × 10−8 torr) onto a surface-passivated high-resistivity Si

wafer (ρ > 20,000 Ωcm). Each sample is grown in an independent deposi-

tion. Samples shown in the main text have the stacking order: Substrate/Ta(1

nm)/Pt(6 nm)/Py(tFM)/Al(1 nm), with the magnetic layer being Permalloy

(Py = Ni81Fe19). The Ta is used as a seed layer to promote smooth growth and

the Al is oxidized upon exposure to air an is used as a capping layer to prevent

oxidation of the Py. The Pt (ρ = 20.4 µΩcm) and Py (ρ = 25 µΩcm) are far

more conductive than the Ta or oxidized Al so we assume all of the current

flows through just the Pt and Py layers. Analogous results for which the Py is

substituted with Co40Fe40B20 are also shown.

After growth, we pattern the samples into rectangular bars of varying dimen-

sion using photolithography and Ar ion milling. The devices have dimensions:

40 µm × 80 µm, 20 µm × 60 µm, or 20 µm × 80 µm. All measurements shown

in this work are taken on 20 µm × 80 µm devices, and the quantitative conclu-

sions do not depend on the device geometry. We attach Ti(3 nm)/Pt(75 nm)

contacts to the devices by another step of photolithography, DC-magnetron

sputtering, and lift-off.

All data shown are measured on microwave-compatible Hall-bar structures

that allow measurements of both longitudinal and transverse mixing voltages,

as described in ref. [11]. Here, we will analyze only the longitudinal mixing
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voltages, as that is the usual ST-FMR measurement geometry. The devices are

connected to the circuit shown in Fig. 2.1(b). A RF source inputs a microwave

current into the device through the AC port of a bias tee with either ampli-

tude or frequency modulation (Fig. 2.1(a)), while the magnitude of an external

magnetic field is swept at a fixed angle φ0 through the Kittel resonance con-

dition. The DC voltage along the longitudinal direction generated by mixing

is detected with a lock-in amplifier that references the modulating signal. For

the DC-biased measurements, an additional DC current is applied through the

DC port of the bias tee to flow through the device in addition to the microwave

current. All measurements are performed at room temperature.

Measurements in the main text are performed at a 10 GHz carrier frequency

(fc = ωc/2π). The modulating signal for both AM and FM measurements is

applied at 1.7 kHz modulation frequency (fm = ωm/2π). The external magnetic

field is applied at φ0 = 45◦ with respect to the direction of applied microwave

current. The AM measurements are done with 100% AM-depth as depicted

in Fig. 2.1(a) to maximize the measured signal. We find that reducing the

AM-depth has no effect on the results shown. The FM measurements are done

with a frequency deviation (δf = δω/2π) of 16 MHz. Both the AM and FM

are applied by the internal circuitry of the RF source, an Agilent 8257D. Both

the 16 MHz frequency deviation and the 1.7 kHz modulation frequency are far

smaller than the carrier frequency of 10 GHz, so that within either measurement

mode the modulation has negligible effect on the microwave current over one

precession cycle, a key assumption of the modeling.

2.3.1 Results of Lineshape Analyses

Examples of the longitudinal resonant mixing signals from a Pt(6 nm)/Py(5

nm) sample for both the AM and FM measurements are shown in Fig. 2.2.
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Figure 2.1: The measurement setup used in this Chapter. (a) Schematic
representations of the time dependence of microwave current that is injected
into the device under test for amplitude-modulated and frequency-modulated
experiments. Offsets are added and the scale of the frequency modulation is
exaggerated for clarity. (b) The circuit used in this measurement. The colors
of the wires correspond to the colors of the signals in the top panel which the
wire carries.
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Figure 2.2: Examples of measured resonances and fit residuals for a Pt(6
nm)/Py(5 nm) sample at 20 dBm, 10 GHz, φ0 = 45◦, fm = 1.7 kHz, IDC = 0.
(a) AM resonance taken at 100% AM-depth with a fit to Eq. (2.6). (b) FM
resonance taken ∆f = 16 MHz with a fit to Eq. (2.9). The range of magnetic
field shown here corresponds to [B0 − 15∆, B0 + 15∆] for the primary
resonance.
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The AM measurement (Fig. 2.2(a)) is fit to Eq. (2.6) with the five fit param-

eters VS, VA, C,B0,∆ while the FM measurement (Fig. 2.2(b)) is fit to Eq. (2.9)

including the two additional fit parameters dVS/dω, dVA/dω. The fit to the AM

measurement looks good by eye, but the best fit nevertheless produces signifi-

cant systematic residuals (=V measured
mix −V best-fit

mix ), which hints that the framework

of conventional ST-FMR analysis (Eq. (2.6)) gives an incomplete description.

To rule out spurious measurement artifacts, we have repeated the AM mea-

surements on three independent ST-FMR apparatuses at Cornell and have also

performed measurements on different sample stacks; all of these measurements

show the same systematic residuals for the AM fits. In contrast, for the FM

measurements the scale of the residuals after fitting to Eq. (2.9) is significantly

smaller relative to the full signal magnitude.

For the AM fits in Fig. 2.2(a), we see that the residuals have a lineshape

near the resonance field that closely resembles a Lorentzian derivative, sug-

gesting that an additional parameter in Eq. (2.6) is varying at the modulation

frequency and contributing to the homodyne mixing signal. Quantitative esti-

mates suggest that a varying Meff will contribute far more than other candidate

sample parameters and that an Meff oscillating at the AM frequency, presum-

ably due to heating, can result in the residual lineshape we observe near the

resonance field. That is, suppose (in addition to the amplitude modulation

of IRF ) that Meff also varies periodically as Meff → Meff + δMeff cosωmt; this,

analogously to the frequency modulation, would allow the expansion

Vmix(Meff + δMeff cosωmt)

≈ Vmix(Meff) +
∂Vmix

∂Meff

δMeff cosωmt.
(2.13)

The total mixing signal will thus consist of the sum of two terms that vary
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periodically with the AM

(
2µVmix +

∂Vmix

∂Meff

δMeff

)
cosωmt (2.14)

and both will be demodulated by the lock-in amplifier. To confirm that the

residuals can arise from heat-driven Meff oscillation, we measure Meff while

heating the sample. We find that the measured Meff is sensitive to the sample

temperature as shown in Fig. 2.3.

Figure 2.3: The effective magnetization µ0Meff vs. sample temperature. The
sample was heated with a substrate heater placed under the device substrate.

A homodyne signal from an oscillating value of Meff cannot by itself explain

the full residual in the AM fits; in addition the AM residuals appear to contain

an ordinary AM resonance lineshape (Eq. (2.6)) with a very large linewidth.

In Fig. 2.4 we show the fit residuals of an AM measurement taken on a Py(3

nm) sample (with no DC current bias). We fit the residuals to the sum of

a homodyne signal corresponding to an oscillating value of Meff (green curve)

and a large-∆ resonant background (Eq. (2.6)) (blue) with ∆large = 41.6 mT,

much larger than the value ∆ = 7.3 mT for the primary resonance. The sum of
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Figure 2.4: (a) Measured fit residuals for an AM measurement of a Py(3 nm)
sample taken at zero DC bias, with a fit to the sum of contributions from a
heating-induced oscillation of Meff and a large-∆ resonant background. The
linewidth of the primary resonance for Py(3 nm) samples is greater than for
Py(5 nm) samples, so the range of magnetic field shown here still corresponds
to [B0 − 15∆, B0 + 15∆] for the primary resonance.

the two contributions (red curve) fits the residuals very well. Based on direct

measurements of Meff versus temperature on the same device [d(µ0Meff)/dT =

8 × 10−4 T/◦C], the scale of the temperature oscillations needed to produce

the oscillating-Meff homodyne signal is approximately 1◦C. VS and VA for the

large-∆ resonance for the data in Fig. 2.2 are 12 µV and 7 µV, while for the

primary resonance VS = 311 µV and VA = 684 µV.

We have considered two options for the origin of the large-∆ resonance: a

region of increased damping (a) near the sample edges or (b) near a magnetic

interface. If the origin were due to increased damping near the sample edges, we

would expect the ratio of the amplitudes for the large-∆ and primary resonances

to scale inversely with the sample width and to be approximately independent of

the ferromagnetic-layer thickness. Instead, we find that this ratio is insensitive
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to the sample width (a change of < 10% in the symmetric and < 4% in the

antisymmetric component upon changing the sample width by a factor of 2),

while it is sensitive to the ferromagnetic layer thickness as shown in Fig. 2.5.

Figure 2.5: Measured and fitted parameters of the broad-linewidth resonance
in the residual signal as a function of ferromagnet thickness and dc current.
Subscript 2’s indicate that the quantity is a result of the fit to the
broad-resonance residual signal, while variables without a subscript 2 are from
the primary, measured resonance.

This suggests that the portion of the sample with increased damping is an

interfacial region. Additional evidence for an origin associated with the heavy-

metal/ferromagnet interface in Fig. 2.5 comes from the fact that the large-∆

linewidth is very sensitive to applied DC current, consistent with a very thin

and/or low-moment region under the influence of the spin current generated by

the heavy metal.

Our observations might be related to recent findings from the IBM group

of interfacial regions in CoFeB/MgO/CoFeB magnetic tunnel junctions whose

dynamics can become partially decoupled from the bulk of the magnetic films

[55, 56]. The two experiments differ, however, in that the IBM work deduced a

difference in effective magnetic anisotropy (compared to the bulk of the mag-
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netic film) for the interfacial layers at CoFeB/MgO interfaces, while in our

devices the large-∆ resonance corresponds to an increased damping near a

Pt/ferromagnet interface without a large difference in anisotropy.

We suggest that there are two reasons why the fit residuals for the FM

measurements are reduced compared to the AM measurements. First, tem-

perature oscillations at the modulation frequency will be smaller for the FM

measurements because the magnitude of IRF will be approximately constant

in time, so Ohmic heating caused by IRF will also be approximately constant

rather than oscillating at the modulation frequency. Temperature oscillations

will not be eliminated completely however, since FM near the resonance will

cause the energy absorbed by resonant heating of the magnetic layer (energy

transfer associated with magnetic excitation by the current-induced torques) to

oscillate at the modulation frequency. We suggest that this resonant heating is

likely the main cause of the small remaining systematic residuals near the reso-

nance field in the fits to the FM data (Fig. 2.2(b)). Second, contributions from

the large-∆ resonance to the FM measurements are reduced precisely because

the linewidth is so broad, so this part of the signal is relatively insensitive to

variations in applied frequency.

If one proceeds with the standard ST-FMR macrospin analysis – Eqs. (2.10),

(2.11) – (ignoring the residuals for now) the resulting values of 1/ξFMR for

both the AM and FM measurements are shown in Fig. 2.6 for samples with

ferromagnet layer thicknesses tF varying from 2 nm to 10 nm.

The samples with the thickest ferromagnet layers (tF ≥ 8 nm) show devia-

tions from a linear dependence of 1/ξFMR vs. 1/tF that can be understood as

due to the effect of an inverse spin Hall voltage resulting from spin pumping

or resonant heating [37, 11]. We therefore perform the linear fits only to the

four samples with the thinnest F layers, extracting the values shown in Table

2.1. ξDL and ξFL are calculated from the y-intercept and slope of the fits, re-

spectively, following the prescription of Eq. (2.11). The FM and AM methods
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Figure 2.6: Fits to Eq. (2.11) to determine the spin torque efficiencies ξDL and
ξFL from the lineshape analyses. The values of ξFMR plotted are calculated
according to Eq. (2.10), corresponding to measurements of VS and VA done at
20 dBm, 10 GHz, φ0 = 45◦, fm = 1.7 kHz, and IDC = 0. The resonance fits
are performed over the same window as the LW measurements: [B0 − 15∆,
B0 + 15∆]. AM measurements are done with 100% AM-depth and FM
measurements with δf = 16 MHz.

yield values for both ξDL and ξFL that differ by considerably more than the

estimated statistical uncertainty in the results. The difference in the values of

ξDL is about 30%, while for ξFL the FM result nearly double that of the AM.

AM FM
ξDL 0.0650(4) 0.0835(7)
ξFL 0.0050(2) 0.0094(2)

Table 2.1: ξDL and ξFL that result from the linear fits shown in Fig. 2.6.

We suggest that the differences between these AM and FM LS results can

be explained by the neglect of the residual terms. If we take the values of ξDL

and ξFL determined by the FM measurements and use them in fitting to the

AM data, the result is a residual similar to that shown in Fig. 2.3 that can be

fit just as well to a sum of a signal due to an oscillating value of Meff plus a

large-∆ resonance as shown in Fig. 2.7.
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Figure 2.7: Fits to the AM measured resonance by forcing the ξDL and ξFL

values of the AM measurement to be the same as those in the FM
measurement. The fit quality is not severely reduced and the fit difference is
absorbed into the fit residuals.

Fits to the AM data that include both the primary resonance and the two

artifact contributions therefore possess near-degenerate fitting parameters, that

can make determination of the spin-torque efficiencies imprecise.
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2.3.2 Results of Linewidth Analyses

The LW measurement proceeds identically to the LS measurement, but for the

application of a DC current parallel to the microwave current. A full resonance

lineshape (e.g., Fig. 2.2) is collected for DC currents ranging from −4 mA to 4

mA and the resonances are fit to Eq. (2.6) for the AM measurements or Eq. (2.9)

for the FM measurements to extract the linewidth, ∆ (ignoring residuals for

now). We find that the value of ∆ that we get from the fits for the AM

measurement depends strongly on whether and to what extent we include the

tails of the resonance. Figure 2.8 shows the current dependence of linewidths for

a Pt(6 nm)/Py(5 nm) sample extracted from fits over the field range [B0−15∆,

B0 + 15∆] (with ∆ adjusted for each sample corresponding to the linewidth of

the primary resonance at zero DC current). This is the largest fit window that

is possible while consistently excluding artifacts associated with deviations from

magnetic saturation at low field for all samples. The zero-current value of ∆

is subtracted from each of the plots in Fig. 2.8 to highlight the difference in

the slopes of the best-fit lines. We apply Eq. (2.12) to the slopes of the best-fit

lines and get the results for ξDL shown in Table 2.2.

ξDL AM FM
45◦ 0.234(5) 0.082(2)
225◦ 0.237(5) 0.087(2)

Table 2.2: Table of ξDL values for a Pt(6 nm)/Py(5 nm) sample using the LW
method. The values are extracted from the slopes of the best fit lines in
Fig. 2.8 and Eq. (2.12).
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Figure 2.8: Dependence of the resonance linewidth (∆) on IDC for a Pt(6
nm)/Py(5 nm) sample based on fits to Eq. (2.6) for the AM measurements
and Eq. (2.9) for the FM measurements, for data collected at 20 dBm, 10
GHz, φ0 = 45◦/225◦, fm = 1.7 kHz. Linewidths are extracted using a fit
window [B0 − 15∆, B0 + 15∆]. The zero-DC-current linewidths (5.27 mT for
AM and 5.24 mT for FM) are subtracted. The solid lines are least-squares
best fit lines to the data.
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For this sample, we see that the FM LW measurements agree with the

FM LS result within the experimental uncertainties (Table 2.2), while the AM

LW measurements differ by more than a factor of 3 from both the FM results

and the AM LS measurements. Figure 2.9 compares the results of similar LW

analyses for all of the Pt(6 nm)/Py(tFM) samples with different magnetic-layer

thicknesses using the same fit window [B0 − 15∆, B0 + 15∆]. The AM LW

measurements (black points) give far larger values for ξDL compared to any

of the other techniques. The FM LW measurements are reasonably consistent

with the FM LS value in the range tF = 4 - 10 nm (with small deviations for

tF = 10 nm possibly due to the neglect of an inverse spin Hall voltage generated

by spin pumping or a spin Seebeck effect), but the FM LW measurements also

differ increasingly from the the LS results for Py thicknesses below 4 nm.

Figure 2.9: Extracted values of the damping-like spin-torque efficiency ξDL for
samples with different ferromagnet layer thicknesses. Symbols show the
results of the AM and FM linewidth analyses using fits over the field range
[B0 − 15∆, B0 + 15∆]. The green and blue lines are the results of the
lineshape analyses for the thickness series shown in Fig. 2.6.

In Fig. 2.10 we show the results of the same LW analysis using different
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sizes for the window of magnetic field included in the fits. The panels on

the left show the values of ξDL extracted for window sizes from [B0 − 15∆,

B0 + 15∆] to [B0 − 2∆, B0 + 2∆]. For both the AM and FM data sets, the

extracted values of ξDL decrease with decreasing window size. We interpret

this dependence as a clear indication that the LW analysis can be disrupted

by the long tails of the residual terms that are not included as part of the

standard linewidth analysis. For a fixed value of fit-window size, the disruption

is most severe for magnetic layers thinner than 4 nm because the linewidth of

the primary resonance increases for thin layers, making the primary resonance

more difficult to disentangle from the large-linewidth residual signal.

The right panels of Fig. 2.10 show zoom-ins of the same LW results to better

visualize the extrapolation of the measurements to zero linewidth. We find that

this extrapolation brings the results of both the AM LW and FM LW analyses

into reasonable quantitative agreement with the lineshape results.

We emphasize that the sensitive dependence on fit-window size shown by

Fig. 2.10 occurs despite the fact that the individual fits look quite good by

eye for any choice of window size. The LW analyses are based on quite subtle

changes in the resonance lineshape, e.g. about a 2% change in linewidth over the

full range of IDC for the FM measurements shown in Fig. 2.8. Therefore, even

small changes in Vmix associated with current-dependent residuals can affect the

LW analysis – the small tails of the ST-FMR resonances can be substantially

affected even if the overall magnitude of the residual signals near the resonance

field is small. The large-∆ resonance in particular has a large effect on the LW

analyses because its linewidth is strongly current dependent (see Fig. 2.5). This

is why the windowed fitting works – as the window size is reduced the strong

current dependence associated with the tails of the large-∆ residual signal is

excluded.

We have tried fitting the AM resonances to a generalized Eq. 2.6 that in-

cludes the models for the residuals directly in the fit, but this is not able to pro-
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Figure 2.10: The DL-SOT efficiency, ξDL, vs. the size of the fit window
(normalized by the resonance linewidth, ∆). All data in this figure is from the
LW analysis method with φ0 = 45◦. (a) The full range of fit windows with
AM. (b) A zoomed view of the AM data with best-fit lines superimposed. ξDL

is linear in the fit window and the y-intercept of the best-fit lines agrees well
with the corresponding result of the AM LS analysis. (c) The full range of fit
windows with FM. (d) A zoomed view of the FM data with best-fit
second-degree polynomials superimposed. ξDL is quadratic in the fit window
and the y-intercept of the best-fit lines agrees well with the corresponding
result of the FM LS analysis.

vide improved quantitative results because of near-degenerate fit parameters.

We therefore recommend the procedure depicted in Fig. 2.10 as the simplest

approach to improving ST-FMR linewidth analyses – performing the standard

ST-FMR fits using a series of different fit-window sizes and then extrapolating

to small windows to minimize the influence of the large-linewidth residuals.

2.4 Conclusions

We have identified a cause of inconsistencies between measurements of spin-

orbit torque determined via lineshape and linewidth analyses of ST-FMR data

– that the standard model for analyzing ST-FMR data does not fully account for

all of the magnetic dynamics that can affect the measurements. The standard
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analysis leaves residuals that we identify as due to (i) current-induced excitation

of a magnetic mode with larger damping than the bulk of the magnetic layer

and also (ii) temperature oscillations (≈ 1 ◦C) associated with the modulation

schemes employed for lock-in amplifier measurements. The residuals are not

large, with amplitudes of order 1% of the primary resonance, but nevertheless

they can affect the current dependence of the resonance tails sufficiently to

disrupt an extraction of the anti-damping spin-orbit torque efficiency based on

the current dependence of the ST-FMR linewidth. The influence of the large-

linewidth residuals can be minimized by performing the standard lineshape

analysis using different choices for the range of magnetic field values used to

fit the ST-FMR resonances, and then extrapolating to zero fit window. We

recommend this procedure for all future uses of the LW analysis. The effect

of the residuals can also be reduced by performing ST-FMR using frequency

modulation rather than amplitude modulation, but frequency modulation alone

does not cure inconsistencies between the lineshape and linewidth results for

our thinnest magnetic layers without extrapolation of the fit window to small

values.

It remains an interesting open question what is the microscopic origin of

the large-linewidth mode that contributes to the residual signal. Based on the

scaling of signal amplitudes with the widths and thicknesses of our samples,

we identify this mode with the heavy-metal/magnet interface rather than as

due to increased damping at the lateral edges of our magnetic layers. It is

therefore possible that this mode is due to an interface magnon or magnetic

impurities caused by intermixing near the interface. We have also considered

whether it might be due to a magnetic proximity layer within the platinum,

but amplitude-modulated ST-FMR measurements on a W(3 nm)/Py(5 nm)

sample also exhibit a contribution from a large-linewidth resonance as shown

in Fig. 2.11. Since magnetic proximity effects should be negligible in W at room

temperature, this argues against this mechanism as the dominant contribution
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Figure 2.11: Residuals and window-size dependence of a W(3)/Py(5) sample.

in the Pt samples. Future experiments as a function of varying the interface

structure or with the insertion of spacer layers might help to reveal the origin

of the large-linewidth mode.

96



Chapter 3

Second-Harmonic Hall,

Magneto-optic Kerr Effect

(MOKE) Sagnac Interferometry,

and the Planar Hall Correction

3.1 Introduction

The ST-FMR techniques desribed in the previous chapters are most easily and

most often applied to HM/FM systems with easy-plane magnetic anisotropy.

However, for technological applications, FMs with out-of-plane anisotropy (per-

pendicular magnetic anisotropy, PMA) have been shown to have better reten-

tion and stronger TMR effects, so they are often preferred over their easy-

plane counterparts. The most common measurement technique used to quan-

tify SOTs perturbatively is second harmonic Hall [33]. The idea is very similar

to ST-FMR: an AC current is applied to a device, the magnetization is re-

oriented causing resistance oscillations, and a voltage is read out through the

mixing of resistance and current oscillations. The difference from ST-FMR is

that the AC current is now at a much smaller frequency (usually a few kHz), so

now the magnetization is perturbed quasistatically and not driven into resonant
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precession. The measurement technique begins with an out-of-plane magnetic

moment; an AC current is applied and the Hall voltage is measured; meanwhile,

an external magnetic field is applied in the plane of the device, which tilts the

magnetization partly into the plane. The first harmonic voltage contains infor-

mation about the magnetic-field-induced tilt and the second harmonic voltage

contains information about the small tilts that are caused by SOTs acting on

the magnetization. In the Hall measurement geometry, the AHE and PHE are

measureable in the first harmonic voltage by tilting the magnetic moment by

an external field, so to correctly quantify the SOTs, the second harmonic signal

must be analyzed assuming that both the AHE and PHE contribute. This is

based on the long-held assumption that a SOT’s effect on the magnetization is

indistinguishable from that of a magnetic field.

A very common issue with this technique is that it often gives unreasonable

(strong disagreement with corroborating measurements) [57] or even unphysical

(wrong sign of SOT) [58] when the correct analysis is performed. Additionally,

it has been seen that if the PHE contribution to the second harmonic signal

is ignored, then agreement between the technique and corroborating ones is

restored [59]. Ignoring the PHE in this way is tantamount to claiming that

SOTs affect the PHE differently than an external magnetic field does. An

explanation or convincing verification of this prescription has not yet been

offered, and we offer the latter in this chapter.

We design and build a MOKE Sagnac interferometer with remarkable sen-

sitivity that is capable of optically measuring (for the first time) the small,

quasistatic reorientations of the magnetic moment that occur during a second

harmonic Hall measurement. We built the setup in such a way that the optical

and harmonic Hall signals may be measured at the exact same time. This is a

simultaneous corroborating measurement of the same magnetic dynamics using

two different read out mechanisms, a gold-standard.

We find that when we perform and analyze the results of the optical and elec-
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trical measurements on strongly-PMA stacks that the quantified SOTs disagree

between the two methods. The disagreement between them is quite significant:

about 60% in Pt/Co stacks and up to 1500% in Pd/Co stacks, with the har-

monic Hall measurement resulting in an unreasonably large result for Pd/Co.

In addition, we find that if we force a weakly-PMA Pt/Co stack to be fully in-

plane and perform an in-plane second harmonic Hall measurement [28] that the

results agree with the optical measurement on the strongly-PMA stacks. The

harmonic Hall results performed on strongly-PMA samples are the outliers. We

find that when the PHE contribution to the second harmonic signals is ignored,

that agreement is achieved across all of the measurements. This suggests that

SOTs and applied magnetic fields express differently through the PHE, but as

of yet we have not determined the reason for this and it remains an open (and

very interesting) question.

Much of the following is taken and adapter from ref. [60].

3.2 Harmonic Hall Tilting Derivation

In this section, we will derive the transport signals in a way that differs from

ref. [33] but arrives at the same answer. We assume a magnetic layer with

perpendicular magnetic anisotropy (PMA). The moment is tilted slightly in-

plane (θ0 > 0) by varying the strength of an in-plane external magnetic field,

H that is applied in the plane of the sample. During this external-field-induced

tilting, an AC current is applied through the device and the first- and second-

harmonic voltages are measured.

We begin the derivation by writing the equilibrium magnetic free energy
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Figure 3.1: The device under consideration for the PMA harmonic Hall
measurements. The coordinates match those in the derivation below.

divided by the total magnetic moment in the absence of any applied current

Feq(θ, φ)

Ms

= −µ0m ·H−
µ0Meff

2
(m · Ẑ)2

= −µ0H sin θ sin θH cos(φ− φH)− µ0

2
cos θ(2H cos θH +Meff cos θ).

(3.1)

Here Feq is the equilibrium free energy, Ms is the saturation magnetization, m

is the vector magnetic moment, H is the vector external magnetic field, and

µ0Meff = 2K⊥/Ms − µ0Ms is the effective magnetization. PMA is indicated by

a positive Meff. The angles in the second line denote the direction of external

applied magnetic field when subscripted with an H and refer to the the direction

of the magnetic moment when they lack a subscript. Minimization of this

free energy yields the equilibrium magnetic orientation θ0,φ0. As we apply a

low frequency AC current the SOTs produced will act as effective fields that

reorient the magnetic moment. This is a “slow” process (ṁ� γ|H|) so it may

be described as an effective modification of equilibrium free energy (equation

3.1). With the perturbation from a general, current-induced effective magnetic
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field, ∆H (assumed small compared to H), the free energy becomes

F (θ, φ)

Ms

=
Feq(θ, φ)

Ms

− µ0m ·∆H

≈Feq(θ0, φ0)

Ms

+
1

2Ms

∂2Feq

∂θ2

∣∣∣
θ0,φ0

(∆θ)2

+
1

2Ms

∂2Feq

∂φ2

∣∣∣
θ0,φ0

(∆φ)2

+
1

Ms

∂2Feq

∂θ∂φ

∣∣∣
θ0,φ0

∆θ∆φ

− µ0(sin θ cosφ∆HX + sin θ sinφ∆HY + cos θ∆HZ).

(3.2)

(The first derivatives of Feq are zero when evaluated at the equilibrium orien-

tation.) We have included the cross second derivative in this expression, but

when evaluated it gives zero. The new magnetic orientation in the presence of

the current-induced magnetic field can then be calculated as a minimization

problem

∂F

∂θ
=
∂F

∂φ
= 0. (3.3)

We will henceforth assume that θH = π/2 to match the experimental technique

(the external magnetic field is applied in the plane of the device), so that

sin θ0 = H/(Meff). We will also assume negligible within-plane anisotropy so

that the in-plane projection of the equilibrium magnetic moment is aligned with

the external field i.e. φ0 = φH . The solutions of equation (3.3) to first order in

the current-induced field yield

∆θ =
∆HZ sin θ0 − cos θ0(∆HX cosφH + ∆HY sinφH)

Meff cos 2θ0 +H sin θ0

(3.4)

∆φ =
∆HX sinφH −∆HY cosφH

H
. (3.5)

To get from the above equations to the full expected transport signal (equa-

tions (3) and (4) in the main text) we begin with the the expression for the
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Hall resistance

RXY = RPHEmXmY +RAHEmZ (3.6)

=
RPHE

2
sin2 θ sin 2φ+RAHE cos θ. (3.7)

(Note that our definition of RAHE is equal to ∆RA/2 as defined in ref. [33].)

We let θ and φ each consist of an equilibrium contribution due to the exter-

nal magnetic field and a time-dependent contribution due to the AC-current-

induced spin-orbit fields: θ → θ0 + ∆θ and φ→ φ0 + ∆φ with ∆θ,∆φ� 1 and

then Taylor expand

RXY ≈
RPHE

2

(
sin2 θ0 + ∆θ sin 2θ0

)
(sin 2φ0 + 2∆φ cos 2φ0) +RAHE (cos θ0 −∆θ sin θ0) .

(3.8)

We disregard the second-order terms (e.g. ∝ ∆θ∆φ)

RXY ≈RPHE

(
1

2
sin2 θ0 sin 2φ0 + ∆φ sin2 θ0 cos 2φ0 +

1

2
∆θ sin 2θ0 sin 2φ0

)
+RAHE (cos θ0 −∆θ sin θ0) . (3.9)

Here we use that sin θ0 = H/Meff and φ0 = φH , we substitute in the expressions

for ∆θ and ∆φ that were derived previously, and we separate the first and

second harmonics. For weak applied fields H �Meff we get

V ω
XY =

[
±RAHE

(
1− H2

2M2
eff

)
+RPHE

H2

2M2
eff

sin 2φH

]
∆I (3.10)

V 2ω
XY =

1

2

H

M2
eff

∆we [(±RAHE −RPHE sin 2φH) (∆HX cosφH + ∆HY sinφH)

+RPHE cos 2φH (∆HX sinφH −∆HY cosφH)] . (3.11)
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The latter expression can be simplified to

V 2ω
XY =

1

2

H

M2
eff

∆we [±RAHE (∆HX cosφH + ∆HY sinφH)

−RPHE (∆HX sinφH + ∆HY cosφH)] . (3.12)

These previous equations are valid for arbitrary angles φH for the orientation

of the in-plane applied magnetic field. When evaluated for φH = 0 and π/2,

they are equivalent to the final expressions in ref. [33] taking into account the

difference in notation: RAHE = ∆RA/2.

3.2.1 Calculating the Torques: Conventional Means

Following the lead of [33], we calculate the effective fields (and therefore, ξDL

and ξFL in the main text) with the following expressions

∆Hno PHC
X(Y ) = −2∆BX(Y ) = −2× dV 2ω

XY

dHX(Y )

(
d2V ω

XY

dH2
X(Y )

)−1

. (3.13)

We also account for the PHC using the procedure in ref. [33]

∆HPHC
X(Y ) = −2

∆BX(Y ) ± ε∆BY (X)

1− ε2
(3.14)

where ε = RPHE/RAHE.

3.2.2 Calculating the Torques: Overconstrained linear

system

We may also calculate the torques in more balanced way that reduces the

errorbar of the result. Eqs. (14) and (15) may be recast into an overconstrained
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linear system

CH = S =⇒ (3.15)

−CAHE CPHE

−CAHE CPHE

CPHE −CAHE

−CPHE CAHE


∆HX

∆HY

 =



S+
X

S−X

S+
Y

S−Y


(3.16)

where S±X(Y ) = dV 2ω/dHX(Y )

∣∣
±M and CAHE(PHE) = −∆weRAHE(PHE)

2M2
eff

. We can

solve this system for H by taking the psuedoinverse H = C+S where C+ =

(CTC)−1CT .
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3.3 Introduction to the Sagnac Interferometer

Conventional methods of measuring the magneto-optic Kerr effect (MOKE)

lack the sensitivity to measure small-angle magnetic tilting in PMA heterostruc-

tures in a way that is analogous to the standard PMA harmonic Hall measure-

ment [33]. Indeed, small-angle magnetization tilts in the PMA harmonic Hall

measurement account for a few mRad of magnetization oscillation, and typical

optical couplings to magnetic signals are again a few parts in a thousand, so

one would have to measure a signal of a few µRad. A more sensitive measure-

ment apparatus is needed. The Sagnac MOKE interferometer boasts a very

high sensitivy as it was first developed to (successfully) measure spins in super-

conductors [61, 62]. The Sagnac MOKE interferometer works by translating

the effect of MOKE into a phase difference between two beams that travel the

same physical path back and forth as shown in Fig. 3.2.
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Figure 3.2: A diagram of the beamline of the Sagnac MOKE interferometer
along with a cartoon of the beam polarization optics as the beam follows the
Sagnac path. In the cartoon the black arrows and labels indicate the beams
interaction with an optical element; everything in red indicates the state of
the beam with arrows indicating linear polarization and circles indicating
circular polarization; the green labels indicate the phase of the component
beam to which the green label is closest.
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This Sagnac MOKE interferometer is modeled after those in refs. [61, 63],

mixing elements from each of these two works. The beamline begins with

a 770 nm superluminescent diode (SLED). The beam goes through a pair of

Faraday isolators that provide > 65 dB of backward isolation and prevent back-

reflections into the diode that would cause intensity fluctuations and other

source instabilities. Next, the beam goes through a beam splitter, polarizer,

and half-wave plate (HWP) that prepare the beam polarization to be 45◦ with

respect to the slow axis of a polarization-maintaining (PM) fiber into which it is

focused. The beam will henceforth be discussed as an equal linear combination

of two separate beams of linearly-polarized light: one polarized along the slow

axis and one polarized along fast axis of the PM fiber. A fiber electro-optic

phase modulator (EOM) applies time-dependent phase to the beam traveling

along the slow axis: φm sinωt. The beam then travels along 15 meters of

PM fiber, whereupon it is collimated and focused by a long-working-distance

objective through a quarter-wave plate (QWP) and onto a sample. The QWP

is oriented such that one beam is converted to left-circularly-polarized light

and the other is converted to right-circularly-polarized light. The beams then

reflect off of a sample, exchanging the handedness of the beams and, if the

sample is magnetic, imparting both the effects of circular dichroism and circular

birefringence (the δ±); the latter is equivalent to a Kerr rotation of linearly-

polarized light and the two beams are now exchanged. Upon reflection, the two

beams (now exchanged) backpropagate and the previously-unphased beam is

now phased by φm sin(ω(t+τ)) where τ is the time it takes for the light to make

the round trip back to the EOM. The driving frequency ω is chosen such that

the EOM phases are nearly equal between the two beams (ω = π/τ [61]) and so

the two beams are nearly coherent again (δ± is small) and interfere to produce

homodyne intensity oscillations at the EOM frequency. The backpropagating

beams are then routed by the beam splitter and focused into a broadband

avalanche photodetector (APD). The APD’s output voltage is measured by a
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lock-in amplifier that references the driving frequency of the EOM, ω. The

frequency ω in this system turns out to be [2π(3.3477 MHz)]. To maximize

the Kerr rotation signal, the phase modulation depth φm is set by tuning the

magnitude of AC voltage applied to the EOM to be φm = 0.92 [63].

3.4 Some Details about the Sagnac’s Construc-

tion

The work by Fried et al., Rev. Sci. Instrum. 85, 103707 (2014) [63] is a great

reference. This paper served as the most helpful resource when building and

debugging our interferometer. The entire setup, including all of the optics,

sample stage, and magnet are housed on a floating optic table and enclosed in

a rigid polycarbonate box affixed with sound-proof foam to block air currents

and external vibrations.

For the source, we use a 770 nm SLED, which has a broad (≈ 15 nm)

linewidth. In our original design we used a ultra-narrow-linewidth 780 nm

diode, but we found that the broad-linewidth source reduced our noise by about

a factor of two; this is because the small-linewidth source has a long beam

coherence length. Therefore, the forward-going beam remained coherent with

the reflected beam upon cycling through the apparatus, which gave them the

opportunity to interfere and produce spurious interference signals not related

to the Kerr rotation. The diode and most of its pigtailed fiber are stored

inside a closed styrofoam box within the polycarbonate box to further prevent

temperature fluctuations and air currents.

We use two Faraday isolators that provide > 65 dB of isolation to protect the

diode from backreflections. The EOSpace fiber electro-optic phase modulator

(EOM) is driven by a 50-MHz-bandwidth Zurich Instruments HF2LI lock-in

amplifier and all of the signals (transport and optics) are detected on the same

lock-in using its multiple demodulators. Our EOM is permanently pigtailed
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with a 5 m fiber and we append a 10 m fiber to it for a total length of 15 m.

Both the EOM and the fiber are stored inside a closed styrofoam box (not the

same box as the diode) within the polycarbonate box.

Upon exiting the fiber, the beam is collimated by a screw-on FC/APC lens

adapter to a beam diameter of about 8 mm. We choose such a large beam

diameter to maximize the filling of the back aperture of the objective lens and

reduce our beam spot size on the sample. The beamsplitter after the collimating

lens is retractable and it is illuminated with white light and inserted only to

align the desired sample properly under the beam. The beam does not go

through this beamsplitter during measurement. For the objective we choose

to use a 20× near-IR ultra-long-working-distance objective lens to minimize

the spot size, maximize the numerical aperture and field-of-view, and leave

enough room for probes to make contact to the sample. The quarter-wave

plate (QWP) is placed after the lens so that light is still linearly polarized

while going through the lens. Most lenses have non-negligible Verdet constants

so this is very important for reducing the spurious Faraday rotation incurred

by the beam while it traverses the lens.

Our beam spot size on the sample is approximately 6 µm and our power

incident on the device is < 70 µW. We find that optical powers exceeding a few

hundred µW can begin to show local heating effects on the sample as indicated,

e.g., as a change in the magnetic coercivity. To accommodate such a low-power

beam, we detect the signal with a 50-MHz-bandwidth avalanche photodiode

(APD) because it maintains a very low noise equivalent power (NEP) while

sacrificing its saturation power, which we remain safely below.

3.5 Images and Tour of the Actual Apparatus

In Fig. 3.3, we show an image of the sample area of the Sagnac apparatus.

1. Camera for imaging the device
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Figure 3.3: Image of the sample area of the Sagnac apparatus.

2. Tilt knobs for the fiber collimator. These knobs should not be touched

unless the beam direction is seriously messed up.

3. Focus knobs that adjust the lens position relative to the sample stage.

This is a really awesome design for this heavy lens. We really only have

to have two out of the four knobs in contact with the Thorlabs MB612F

table. Focusing should be done for each sample/device and the focusing

strategy is this: unscrew the knobs a bit, push down on the X-shaped cage

holder under the number 3’s to bring the lens close to the sample, screw

two of the knobs in simultaneously while looking at the Zurich lock-in
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readout on the computer, turn the knobs until the demodulator tracking

the 2ω (ω is the EOM frequency) is maximized, stop. The retractable

beamsplitter can change the focus a little, so make sure it is out before

settling on a final focus.

4. Mount for the retractable beamsplitter. Push it in by hand and use a

1-inch optics post to hold it there when imaging a device on the camera.

Take the beamsplitter out when focusing and doing measurements.

5. Probe holders. The probes just barely fit under the QWP (8), so be very

careful when raising them.

6. X-Y motion stages for fine sample translation. These are connected to the

metal diving-board, which is where the sample sits. Do rough positioning

by hand when the motion stages are around the center of their travel.

7. Projected-field electromagnet.

8. Quarter-wave plate (QWP). This mount can be rotated to change the

orientation of the QWP, but we should not have to do this unless it

gets messed up. The relative rotation of QWP should be matched to the

principal axes of the fiber at the top of the cage so that the QWP converts

the linerly polarized light into circularly polarized light.

9. 20× ultra-long working distance, near-infrared objective lens.

10. Resistive heater connected to a LakeShore temperature controller. The

temperature of the metal diving board actually makes a difference because

the focus depth of the lens is small and thermal expansion/contraction

of the metal stage can affect focus. The temperature is able to be held

constant very well when the polycarbonate box is closed.
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In Fig. 3.4, we show the optical components of the Sagnac apparatus with

labels for each component.

Figure 3.4: Image of the optics of the Sagnac apparatus with labels overlayed.
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In Fig. 3.5, we show the optical components of the Sagnac apparatus with

the beam path drawn on.

Figure 3.5: Image of the optics of the Sagnac apparatus with the beam
overlayed. Solid lines mean the beam is in free space, while dashed lines
indiciate the beam is in fiber.

113



3.6 Polarization-Maintaining Fiber

Polarization-maintaining (PM) fiber is actually a misnomer. PM fiber does not

maintain the polarization of beams that enter it, except under very specific

circumstances. Ordinary fiber does not maintain the polarization of input light

at all because fiber has strong birefringence and that birefringence can change

if the fiber is bent, heated etc. PM fiber solves this problem to some degree

by making a fiber that has two unique axes with vastly different degrees of

birefringence. When linearly polarized light is sent along one of these axes,

the phase of that light changes dramatically so as to be incoherent with any

other modes of polarization that would come from the intrinsic, inexorable

birefringence of the fiber. The PM fiber we use is usually of the “Panda”

variety as shown in Fig. 3.6. In this sort of fiber there are the unique fast and

Figure 3.6: Panda PM fiber. Image taken from ThorLabs.
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slow axes. Linearly-polarized light will maintain its polarization if it is sent in

polarized along one of these axes.

3.6.1 Aligning it

We need to send linearly polarized light into these axes in a way that maintains

the polarization for our Sagnac interferometer. To do this, we have to orient

the HWP and QWP in a way that matches with the axes of the PM fiber that

they couple light to. In particular, the HWP must be aligned such that the

light that enters the PM fiber is linearly polarized at 45◦ with respect to the

fast/slow axes, and the QWP must be aligned such that the two independent

beams of linearly polarized light that exit the PM fiber are perfectly converted

to LCP/RCP light. The problem is that there is no easy way to know how the

fast and slow axes are oriented for a given PM fiber. On all of the ThorLabs

fiber patch cables we use, the connector key notch is aligned with the slow axis,

but we need more precision than that. It turns out that if we just carry out

the math below of the Sagnac signal assuming misalignments of the HWP and

QWP, we get some factors that diminish the measured 2ω (ω is the EOM drive

frequency) signal by the angles of misalignment. The diminishment is actually

exactly what one would expect from the symmetry of the optical element: the

HWP diminishes the 2ω signal by cos2 φmis and the QWP diminishes the 2ω

signal by cos4 φmis where φmis is the angle of misalignment. This means that

rather than physically trying to determine and orient the fast/slow axes of the

PM fiber, we can just set up the whole apparatus and turn the HWP and QWP

to maximize the 2ω signal in the lock-in amplifier! This is the procedure that

we should use if the HWP, QWP or PM fiber collimators are rotated in any

way.
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3.6.2 Getting Light Into it

Getting light to go from fiber to fiber is easy, just use a premade fiber-fiber

coupler. Getting light to go from free space to fiber is hard. The fiber core

(green part of Fig. 3.6) is a few µm in diameter. To get light to go into the

fiber, we have to focus free space light into the core of the fiber and do it so that

the light goes straight in and is not reflected very much. Thankfully, there are

screw-on lenses called “fiber collimators” with carefully-designed focal lengths

to make life a little easier. To choose one with the proper focal length, we use

the following equation:

f =
πDMFw

4λ
(3.17)

where DMF is the “mode field diameter” of the fiber (we can find this on

the fiber spec sheet, for our 780 nm fibers it is 5.3 ± 1 µm), w is the di-

ameter of the free space beam that we want to get into the fiber, and λ

is the beam’s wavelength. Actually getting the light into the fiber is dif-

ficult to explain. We ourselves learned how by using this YouTube video

(https://www.youtube.com/watch?v=kQvhbJbDG0M&ab channel=ManojPeiris

for paper readers) that we used to learn how to get light into the fiber. Hope-

fully it still exists. If not, I will describe the procedure poorly below:

1. Get your free-space laser that you intend on shining into the fiber and

also get a separate fiber-coupled laser.

2. Screw on the proper fiber collimator onto one end of your fiber and put

the fiber collimator in a holder on a post secured to an optical table.

Adjust the height to be roughly the height of your free-space beam.

3. Screw the other end of the fiber into the fiber-coupled laser. Light should

come out of the fiber collimator now because the fiber-coupled laser is

good at shining light into the entrance of the fiber.
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4. Get two mirrors onto posts and adjust their height so that their center is

roughly the same height as the fiber collimator lens. Don’t secure them

yet.

5. Place the two mirrors such that you roughly get the free space laser to

bounce into the fiber collimator lens. Secure them a bit.

6. Use some paper somewhere in between the mirror and the fiber collimator

to find both beams (one from the free space, one exiting the fiber that

comes from the fiber-coupled laser).

7. Adjust the mirrors such that these two beams overlap as best as you can.

Secure the mirrors when you are done.

8. Unscrew the fiber end connected to the fiber-coupled laser and point that

end into a sensitive optical power meter. You should have some optical

power coming through the fiber at this point that is due to the free space

laser making into the fiber, but unless you’re very lucky, it will be small.

9. Make small adjustments to the mirror knobs to maximize the power read-

ing on the power meter.

The video did something called “walking the beam,” which is essentially a

systematic detuning and retuning of the optical power to its maximum, but we

found this doesn’t usually improve things very much.

3.7 Derivation of the Sagnac Signal

Now that we understand how the Sagnac apparatus ought to work and we know

how to set it up, we can move forward and find what we expect the resulting

signals to actually be.
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3.7.1 Measurement of the Kerr rotation angle θk in the

absence of applied current

We will use the language of Jones matrices to derive the Sagnac MOKE signal

following the beam path and cartoon laid out in Fig. 3.2. First, we define some

general Jones matrices:

P(θ) =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

 (3.18)

WP(θ, φ) =

cos φ
2

+ i sin φ
2

cos 2θ i sin φ
2

sin 2θ

i sin φ
2

sin 2θ cos φ
2
− i sin φ

2
cos 2θ

 (3.19)

EOM(t) =

eiφ‖ sinωt 0

0 eiφ⊥ sinωt

 (3.20)

S =
1

2

 e−iδ+

r+
+ e−iδ−

r−
i
(
e−iδ+

r+
− e−iδ−

r−

)
−i
(
e−iδ+

r+
− e−iδ−

r−

)
e−iδ+

r+
+ e−iδ−

r−

 . (3.21)

Here, our Jones vectors are in the basis of the laboratory: P(θ) is a polarizer

oriented at an angle θ. WP(θ,φ) is a φ-wave plate oriented at an angle θ. EOM

is the electro-optical phase modulator that applies a voltage-dependent phase

(φ⊥ or φ‖ depending on whether the polarization of the incoming beam is along

or perpendicular-to the optical axis of the EOM crystal) at a frequency of ω.

In the main text we say that the EOM only applies the phase to the beam

traveling along the slow axis of the fiber; this is how the EOMs are designed,

but our Jones matrix is more general to account for some phase shifts in the fast-

axis beam, as well. Our final result is unchanged by this. S is the effect of the

sample, which quite generally, has left- and right-circularly polarized light as its

eigenvectors and applies an unequal phase (δ+ 6= δ−; “circular birefringence”)

and an unequal Fresnel reflectance (r+ 6= r−; “circular dichroism”) to each of

the two helicities of light. The effect of the sample reflectance exchanging the

handedness of circularly polarized light is not captured by S, but will rather be
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accomplished by a complex conjugation later.

At the start of the beam path for the interferometer, unpolarized light exits

our laser and encounters a polarizer, P, oriented such the power lost through

cross-polarization of the source beam is minimized (the source diode outputs

partially-polarized light). We will assume without loss of generality that polar-

izer angle is 0◦ so the starting point for our Jones calculus is

v =

1

0

 .

From our beam path we can simply apply the time-ordered Jones matrices of

our optical components:

P(0)WP(π/8, π)EOM(t+ τ)WP(π/4, π/2) [S WP(π/4, π/2)EOM(t)WP(π/8, π)v]∗ .

(3.22)

In words, we begin with linearly-polarized light that is polarized at 0◦ (v), the

beam goes a half-wave plate that rotates the polarization of the beam to 45◦,

then goes through an EOM at time t, then through a quarter-wave plate, reflects

from the sample, the LCP and RCP beams exchange due to the reflection (this

is captured by the complex conjugation), goes through the quarter-wave plate

again, through the EOM at a (now later) time t + τ , and finally through the

polarizer. We define τ as the time it takes for the beam to travel from the EOM

to the sample and back. The result of the above matrix product is

ie−i(δ++δ−)
(
r−e

i(δ−+φ⊥ sinωt+φ‖ sin[ω(t+τ)] + r+e
i(δ++φ‖ sinωt+φ⊥ sin[ω(t+τ)]

)
2 r+r−

1

0

 .

(3.23)

In our experiment, we specifically tune EOM frequency, ω, such that τ = π/ω
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[61, 63]; this results in a substantial simplification:

(
ie−iδ−+iφm sinωt

2 r−
+
ie−iδ+−iφm sinωt

2 r+

)1

0

 (3.24)

where φm = φ‖−φ⊥. We detect the time-averaged intensity of light so we take

half of the complex square of the above to get:

1

8 r2
−

+
1

8 r2
+

+
1

8 r−r+

(
ei(δ+−δ−)e2iφm sinωt + e−i(δ+−δ−)e−2iφm sinωt

)
. (3.25)

We then apply the Jacobi-Anger expansion to the exponentials and let 2θk =

δ+ − δ−

1

8 r2
−

+
1

8 r2
+

+
1

8 r−r+

(
e2iθk

∞∑
n=−∞

Jn(2φm)einωt + e−2iθk

∞∑
n=−∞

Jn(2φm)e−inωt

)
.

(3.26)

To measure the first harmonic signal, we use a lock-in amplifier to isolate the

component proportional to sin(ωt)

Iω =
1

T

∫
T

dt

[
1

8 r2
−

+
1

8 r2
+

+
1

8 r−r+

(
e2iθk

∞∑
n=−∞

Jn(2φm)einωt + e−2iθk

∞∑
n=−∞

Jn(2φm)e−inωt

)]
sinωt

=
1

2iT

∫
T

dt

[
1

8 r−r+

(
e2iθk

∞∑
n=−∞

Jn(2φm)einωt + e−2iθk

∞∑
n=−∞

Jn(2φm)e−inωt

)]

×
[
eiωt − e−iωt

]
=

1

2iT

∫
T

dt

[
1

8 r−r+

(
e2iθk

∞∑
n=−∞

Jn(2φm)
(
ei(n+1)ωt − ei(n−1)ωt

)
+e−2iθk

∞∑
n=−∞

Jn(2φm)
(
e−i(n−1)ωt − e−i(n+1)ωt

))]
.

(3.27)

The only terms in the sums that will survive the integration are those for which
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the complex time-dependent exponentials are identically 1 (i.e. when n+ 1 = 0

or n− 1 = 0):

Iω =
1

2iT

∫
T

dt

[
1

8 r−r+

[
e2iθk (J−1(2φm)− J1(2φm)) + e−2iθk (J1(2φm)− J−1(2φm))

]]
=

1

T

∫
T

dt
1

8 r−r+

[sin 2θk (J−1(2φm)− J1(2φm))]

=
1

8 r−r+

[sin 2θk (J−1(2φm)− J1(2φm))]

= −sin 2θkJ1(2φm)

4 r−r+

.

(3.28)

Here we have used properties of the Bessel-J functions that J−n(x) = (−1)nJn(x).

We can compute the second harmonic (the cos 2ωt component) using an analo-

gous procedure (just by going back to the part where we introduced the sinωt

and replacing that with a cos 2ωt instead)

I2ω = −cos 2θkJ2(2φm)

4 r−r+

. (3.29)

Now we can calculate θk and also normalize out all of the dependences on the

Fresnel amplitude coefficients (r+ and r−) by simply taking the ratio of the two

signals:

θk =
1

2
arctan

[
J2(2φm)Iω

J1(2φm)I2ω

]
. (3.30)

This is the MOKE signal with no MCD contribution and also no contribution

from laser intensity fluctuations due to the normalization. Because we canceled

the Fresnel amplitudes and normalized the laser intensity, this is the actual

Kerr rotation in real units. Most conventional MOKE shown in the literature

report Kerr rotation signals in a.u. For our measurements, we maximize the

first harmonic signal (∝ θk) by tuning φm to maximize J1(2φm); this results in

φm = 0.92 [63] and J2(2φm)/J1(2φm) ≈ 0.543. The final expression that we use
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to measure the Kerr rotation is

θk =
1

2
arctan

[
0.543

Iω

I2ω

]
. (3.31)

3.7.2 Measurement of changes in the Kerr angle ∆θk due

to current-induced magnetic deflections

To derive a similar result with an AC applied current, we can begin at equation

(3.26) with an added oscillation from a time-dependent θk that results from

current-induced tilting of the magnetic moment at the current frequency ωe:

1

8 r−r+

(
e2i(θk+∆θk sinωet)

∞∑
n=−∞

Jn(2φm)einωt + e−2i(θk+∆θk sinωet)

∞∑
n=−∞

Jn(2φm)e−inωt

)
.

(3.32)

We can apply the Jacobi-Anger expansion again

1

8 r−r+

(
e2iθk

∞∑
n,m=−∞

Jn(2φm)Jm(2∆θk)e
i(nω+mωe)t (3.33)

+e−2iθk

∞∑
n,m=−∞

Jn(2φm)Jm(2∆θk)e
−i(nω+mωe)t

)
. (3.34)

Now we demodulate this signal at the sideband frequency ω±ωe. We will only

show the ω+ωe derivation for sign simplicity, but the result is identical for the

122



upper and lower sidebands:

Iω+ωe =
1

T

∫
T

dt
1

8 r−r+

(
e2iθk

∞∑
n,m=−∞

Jn(2φm)Jm(2∆θk)e
i(nω+mωe)t+

e−2iθk

∞∑
n,m=−∞

Jn(2φm)Jm(2∆θk)e
−i(nω+mωe)t

)
× cos (ωt+ ωet)

=
1

2T

∫
T

dt
1

8 r−r+

(
e2iθk

∞∑
n,m=−∞

Jn(2φm)Jm(2∆θk)e
i(nω+mωe)t+

e−2iθk

∞∑
n,m=−∞

Jn(2φm)Jm(2∆θk)e
−i(nω+mωe)t

)

×
(
eωt+ωet + e−ωt−ωet

)
(3.35)

Again, to first order, the only complex exponentials that will survive integration

are the ones where the exponent is identically zero. This leaves us with:

Iω+ωe =
1

16 r−r+

[
e2iθk (J−1(2φm)J−1(2∆θk) + J1(2φm)J1(2∆θk)) +

e−2iθk (J−1(2φm)J−1(2∆θk) + J1(2φm)J1(2∆θk))
]

=
1

4 r−r+

cos 2θkJ1(2φm)J1(2∆θk).

(3.36)

In our experiments ∆θk is very small so we use that J1(x) ≈ x/2 for small x

Iω+ωe =
cos 2θkJ1(2φm)

4 r−r+

∆θk. (3.37)

Finally, we take the ratio of this signal with the second harmonic (at ω) derived

earlier to reach a simple expression for the current-induced change in the Kerr

signal

∆θk =
J2(2φm)Iω+ωe

J1(2φm)I2ω
. (3.38)
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Again we use φm = 0.92, which results in the final expression we use to calculate

∆θk is

∆θk = 0.543
Iω+ωe

I2ω
. (3.39)

3.8 Background and Definitions for this Chap-

ter

3.8.1 Spin-Orbit Torques

For both the HH and Sagnac measurements, we again model the current-

induced magnetic deflections using the Landau-Lifshitz-Gilbert-Slonczewski (LLGS)

equation within a macrospin approximation [64]

˙̂m = γm̂× dF

dm̂
+ αm̂× ˙̂m

+ τ 0
DLm̂× (σ̂ × m̂) + τ 0

FLσ̂ × m̂
(3.40)

where m̂ is the normalized magnetic moment of the FM, F is the free energy

density of the FM, γ = 2µB/~ is the gyromagnetic ratio with µB the Bohr

magneton, α is the Gilbert damping parameter, and σ̂ is the direction of spin

polarization impinging on the FM. The last two terms are a result of the SOT

and can be written as

τ 0
DL(FL) = ξDL(FL)

µBJe
eMstFM

(3.41)

where ξDL(FL) is the dimensionless SOT efficiency for the damping-like (field-

like) torque, Je is the electric current density in the spin source layer applied

in the X direction, Ms is the saturation magnetization of the FM, and tFM is

the thickness of the FM layer. The X̂ and Ŷ axes are defined as depicted in

Figs. 3.1 & 3.7. In an amorphous-film system with high symmetry, we expect
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σ ‖ Ŷ for a current that goes in the X-direction; we will use this assumption

throughout.

For samples with the magnetic moment oriented out-of-plane, the effects

of current-induced torques can alternatively be expressed in terms of current-

driven effective magnetic fields. The current-driven effective field in the X

direction will correspond to the damping-like torque, µ0∆HX = ∓τ 0
DL/γ , where

the ∓ corresponds to the magnetic orientations mZ = ±1. The current-induced

effective field in the Y direction will be the sum of the field-like spin-orbit-torque

contribution and the Ørstead field, µ0∆HY = µ0HOe ± τ 0
FL/γ.

Figure 3.7: Schematic of the Sagnac interferometer. The left inset shows the
Sagnac signal for magnetic-field-swept hysteresis of a Pt(4 nm)/Co(1.15 nm)
device with µ0Meff ≈ 0.42 T; this is the same device for which we show data
in Figs. 3.10 & 3.12. The right inset depicts the device structure and
coordinate definitions. In our measurements, H is always applied in the XY
-plane at φH = 0 or π/2.
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3.8.2 Harmonic Hall Measurement Technique

We consider harmonic Hall (HH) measurements for a spin-source/ferromagnet

bilayer in which the magnet has PMA and is initially saturated along the ±Z-

axis. A small external magnetic field, H, is applied in-plane at an angle φH = 0

or π/2 relative to the X-axis using a projected-field magnet. In the absence

of applied current, the equilibrium polar angle (measured from Z-axis) of the

magnetization, θ0, can be written to good approximation as sin θ0 = H/Meff

where the effective magnetization, µ0Meff = 2K⊥/Ms − µ0Ms, is the out-of-

plane anisotropy minus the saturation magnetization; with this definition Meff

is a positive quantity for a magnet with PMA. A low-frequency (non-resonant)

AC voltage, V (t) = ∆IRXX sinωet [ωe = 3137 (2π)s−1 in our measurements], is

applied to the device along the X-axis to generate deflections of the magnetic

moment that can be characterized by current-induced effective fields ∆HX and

∆HY . The Hall voltage along the Y -axis is measured.

For a system with a conducting magnet, the Hall resistance can depend on

the magnetization orientation via both the anomalous Hall (AHE) and planar

Hall effects (PHE), RXY = RPHEmXmY + RAHEmZ . Given the AC current in

the X direction, the Hall voltage will have a contribution at the drive frequency

ωe associated with the equilibrium magnetic orientation and a second-harmonic

signal at 2ωe due to mixing between the AC current and the oscillations in RXY

produced by the magnetic deflections. For φH = 0 or π/2, and within a small-

angle approximation for θ0 [33],

V ω
XY =±RAHE

(
1− H2

2M2
eff

)
∆I (3.42)

V 2ω
XY = [±RAHE (∆HX cosφH + ∆HY sinφH)

−RPHE (∆HX sinφH + ∆HY cosφH)]

× H

2M2
eff

∆I, (3.43)
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where the ± accounts for magnetic saturation along the ±Z-axis. The current-

induced effective fields ∆HX and ∆HY acting on the out-of-plane magnetic

moment can then be calculated as [33]

∆HX = −2
D0 ± εDπ/2

1− ε2
(3.44)

∆HY = −2
Dπ/2 ± εD0

1− ε2
(3.45)

where

DφH =
dV 2ω

XY (φH)

dH

(
d2V ω

XY (0)

dH2

)−1

. (3.46)

and ε = RPHE/RAHE. (These results are consistent with ref. [33] because our

variable RAHE is equal to ∆RA/2 in ref. [33] and hence our variable ε is equal

to 2ξ in ref. [33].)

3.8.3 Sagnac MOKE Interferometry Technique

In our experiments we remain below the maximum values of θ0 < 0.25 Rad

and ∆θ < 10 mRad. Given a typical value of the Kerr rotation angle upon full

reversal of a 1 nm PMA Co film (2κ = θk(π)−θk(0) ∼ 9 mRad, see Fig. 3.7) and

that for small-angle-deflections from an out-of-plane configuration θk = κmZ

so that the change in polar angle has a maximum value |∆θk| ≈ κ sin(θ0)∆θ,

the oscillations in Kerr angle associated with the current-induced deflections

are at most about 20 µRad. To achieve the sensitivity necessary to measure

such small signals, we adapted a Sagnac interferometer design [61, 62, 65] able

to measure Kerr rotation with noise less than 5 µRad/
√

Hz. The design of

the Sagnac MOKE apparatus is described in the preceding sections, and we

compare the performance of conventional MOKE with our Sagnac apparatus

in Fig. 3.8.

For measurements of current-induced torques with the Sagnac interferom-

eter, we perform Sagnac and HH measurements simultaneously on the same
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samples to make sure that any effects of the LED illumination do not cause

differences between the two techniques. We therefore apply the same low-

frequency AC voltage drive (at frequency ωe) as in the HH experiments and

detect the time-varying signal MOKE signal from the interferometer demodu-

lated by a lock-in amplifier at both the driving frequency ω of the electro-optic

phase modulator and (separately) at the lower-sideband frequency ω − ωe (see

preceding sections). The signals at these frequencies measure the DC Kerr rota-

tion (θk) associated with the magnetic-field-induced equilibrium tilt angle (θ0)

and the oscillations in the Kerr signal (∆θk) associated with current-induced

tilt (∆θ), respectively. The expected Sagnac signals have the form

θk = ±κ
(

1− H2

2M2
eff

)
(3.47)

∆θk = ±κ (∆HX cosφH + ∆HY sinφH)
H

M2
eff

. (3.48)

Here κ is the constant of proportionality that relates the out-of-plane compo-

nent of magnetization to the Kerr rotation, analogous to RAHE for the electrical

measurement. There is no MOKE contribution that acts like the PHE in equa-

tion [3.43] because Sagnac signal has negligible dependence on the in-plane

components on the magnetic moment as shown in Fig. 3.9.
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Figure 3.8: A comparison of a conventional MOKE measurement (top) and a
Sagnac MOKE measurement (bottom). The conventional MOKE
measurement is taken on a Ta(4 nm)/CoFeB(0.85 nm)/MgO sample, while
the Sagnac MOKE measurement is taken on a Ta(4 nm)/CoFeB(0.65
nm)/MgO. The conventional MOKE measurement was taken with multiple
back-and-forth averages (5 min measurement), so we estimate the noise
equivalent power to be about 500 µRad/

√
Hz. The sagnac MOKE

measurement was taken with one back-and-forth scan (15 second
measurement), so we estimate the noise equivalent power to be about 5
µRad/

√
Hz.
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Figure 3.9: HH and Sagnac measurements as a function of the azimuthal
angle (φH) of an in-plane-applied magnetic field with respect to the direction
of applied current. (a) Measured first harmonic Hall voltage as a function of
φH . (b) Measured Kerr rotation as a function of φH . The angle dependence
of the Kerr rotation is very weak and does not have the proper symmetry
expected from quadratic MOKE. The angle dependence of the Kerr rotation
shown here is due to unintended out-of-plane stray magnetic field, which is
also evident in the mismatched peaks in (a).
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Based on these equations, for a PMA sample the component of the current-

induced effective fields are simply

∆HX = −d∆θk(φH = 0)

dH

(
d2θk
dH2

)−1

(3.49)

∆HY = −d∆θk(φH = π/2)

dH

(
d2θk
dH2

)−1

. (3.50)

3.9 Experimental Results

We will present measurements on two series of samples:

Substrate/Ta(1.5)/Pt(4)/Co(0.85−1.3)/MgO(1.9)/Ta(2) and

Substrate/Ta(1.5)/Pd(4)/Co(0.55−0.65)/MgO(1.9)/Ta(2) heterostructures where

the numbers in parentheses are thicknesses in nanometers. Studying devices

with different Co-layer thicknesses allows us to tune the strength of the out-of-

plane magnetic anisotropy. The Hall-bar devices measured are 20 µm × 80 µm

in size.

For each sample we calibrate the anomalous Hall coefficient RAHE by mea-

suring the change in Hall resistance upon magnetic switching as a function

of out-of-plane magnetic field. The constant of proportionality κ relating mZ

to the Kerr-rotation angle is calibrated similarly (Fig. 1). To calibrate RPHE,

we rotate the field angle φH while applying a sequence of values of constant-

strength in-plane magnetic field, and we measure the Hall voltage as shown

in Fig. 3.10(a). We determine the magnetic anisotropy term µ0Meff from the

first-harmonic Hall signal as a function of in-plane magnetic field swept along

φH = 0 or π/2 (see the discussion of Fig. 3.12(a,b) below) and then determine
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RPHE by fitting the measured dependence on φH to the form

V ω
XY

∆I
=RAHE cos

(
H

Meff

)
+RPHE sin2

(
H

Meff

)
sinφH cosφH

+RAHE
H2 sin θoff

(Meff)2
sin

(
H

Meff

)
cos(φH − φoff), (3.51)

where the final term allows for a small misalignment of the applied field from

the sample plane. The data fit well to this expected dependence – for the

sample shown in Fig. 3.10 with an AC current amplitude ∆I = 9 mA we

determine RPHE = 0.188(3) Ω and θoff = 0.96(2)◦. Figure 3.10(b) shows that

the amplitude of the planar-Hall voltage oscillations is proportional to H2 as

expected from equation [3.51]. The deflection angle induced over this range of

applied magnetic field is in the range θ0 < 15◦, the same range for which the

SOT measurements are performed.

For the conversion from an effective field to spin-orbit torque efficiency (Eq.

(3.41)), it is also necessary to calibrate the saturation magnetization Ms and

the current density Je in the spin-source layer. We measure Ms for each het-

erostructure using vibrating-sample magnetometry. We calculate Je using a

parallel-conduction model after determining the thickness-dependent conduc-

tivities of the different layers in the heterostructures as shown in Fig. 3.11.

3.9.1 Electrical Detection of SOT-induced tilting

The first- and second-harmonic Hall voltages measured for a Pt(4 nm)/Co(1.15

nm) device with a current amplitude ∆we = 15 mA are shown in Fig. 3.12 for

initial magnetic orientations both mZ = 1 and −1.

We fit these data to Eqs. (3.42) & (3.43). From the curvature of the

first harmonic we extract µ0Meff = 0.424(3) T, which is the result used in the

calibration for RPHE. The second-harmonic data in Fig. 3.12(c,d) fit well to

straight lines, indicating that the effective fields ∆HX and ∆HY are constant
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Figure 3.10: (a) First-harmonic PHE data measured on the Pt(4
nm)/Co(1.15 nm) device (µ0Meff ≈ 0.42 T). The lines overlayed are best fits
to equation [3.51]. (b) The amplitude of the PHE signal in (a) vs. (µ0H)2.
The line is a best fit that goes through the origin.

to a good approximation over the range of tilt angles in the measurement.

From the slope of these lines and the curvature of the first harmonics, we use

Eq. (3.46) to calculate that for mZ = −1: µ0D0 = −2.01(2) mT and µ0Dπ/2 =

0.62(1) mT, and for mZ = +1: µ0D0 = 2.21(2) mT and µ0Dπ/2 = 0.45(1) mT.

Together with the values RPHE = 0.188(3) Ω and RAHE = 0.355(6) Ω calibrated
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Figure 3.11: The measured conductance of the Pt(4 nm)/Co(tCo) device
stacks. All measurements were performed on the same wafer, which was
grown as a Co wedge. The red line is a best fit to the thicker Co data.

as described, the standard HH analysis framework (equations (3.44) & (3.45))

then yields the effective fields µ0∆HX = 6.75(6) mT and µ0∆HY = −4.94(3)

mT for the mZ = −1 initial state and µ0∆HX = −6.80(4) mT and µ0∆HY =

−4.33(3) mT for the mZ = +1 configuration.

3.9.2 Optical Detection of SOT-Induced Tilting

The Sagnac MOKE readouts measured simultaneously with the HH data from

Fig. 3.12(a-d) are shown in Fig. 3.12(e-h). The signal-to-noise ratio for ∆θk

in the Sagnac measurements is not quite as high as for V 2ω
XY in the HH mea-

surements, but it is good enough to test inconsistencies between the results

of the standard HH analysis on PMA samples and the spin-orbit-torque effi-

ciencies determined by HH measurements on in-plane samples [66]. A fit of

the parabolic dependence of θk to equation [3.48] yields µ0Meff = 0.418(3) T,

in good agreement with value determined by HH. The values of the current-

induced effective fields for this sample are determined from the slopes of the
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Figure 3.12: Measured HH and optical tilting data collected on a Pt(4
nm)/Co(1.15 nm) device with µ0Meff ≈ 0.42 T and current amplitude
∆I = 15 mA. First-harmonic Hall data as a function of magnetic field swept
(a): along the current direction and (b): perpendicular to the current
direction. Second-harmonic Hall data as a function of magnetic field swept
(c): along the current direction and (d): perpendicular to the current
direction. Equilibrium Kerr rotation θk as a function of magnetic field swept
(e): along the current direction and (f): perpendicular to the current
direction. Current-induced change in the Kerr rotation ∆θk as a function of
magnetic field swept (g): along the current direction and (h): perpendicular
to the current direction. The second-harmonic Hall and ∆θk data for the two
different magnetic configurations are offset for clarity.

lines in Fig. 3.12(g,h) together with Eqs. (3.49) & (3.50). For a current of

∆I = 15 mA we find µ0∆HX = 5.1(3) mT and µ0∆HY = −0.9(2) mT for

the mZ = −1 initial state and µ0∆HX = −5.0(3) mT and µ0∆HY = −0.9(2)
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mT for the mZ = +1 configuration. These signs result in a positive DL SOT

efficiency, ξDL (consistent with literature [66]) and a negative net FL torque,

which indicates that there is a contribution from the FL torque counteracting

the torque from the Ørsted field [67].

We have performed similar analyses for two series of Pt/Co/MgO and

Pd/Co/MgO samples with different Co thicknesses. The final results for the ef-

fective fields measured by Sagnac interferometry normalized by current density

flowing through the Pt or Pd are shown by the symbols in Fig. 3.13. To obtain

these values, for each sample we measured ∆HX and ∆HY for a sequence of

applied voltage amplitudes and fit to a linear dependence (see Eq. (3.41)). We

compare these Sagnac results to values determined by the HH technique, for

both the standard analysis that takes into account the planar Hall signal using

the measured value of ε (filled lines) and, following the suggestion of Zhu et

al. [66] to arbitrarily set ε = 0 in equations (3.44) & (3.45) (empty lines). The

width of each line indicates the 1-σ error bar for that sample. (Note in Fig. 3.14

that for the tCo = 1.25 nm sample we do not present a value for the conven-

tional HH analysis or µ0∆HY /Je. Because of the relatively-weak PMA of this

sample, to prevent domain formation during sweeps of in-plane magnetic field it

was necessary to apply simultaneously a small constant out-of-plane magnetic

field. Our projected-field magnet was capable of performing this measurement

for φH = 0 but not for φH = π/2 without moving the sample.)

From Fig. 3.13 we see that for both the Pt/Co and Pd/Co samples the

Sagnac results are very different from the results of the standard HH analysis

that takes into account the expected planar Hall signal. They are in much

better agreement with the HH results if one assumes that the planar Hall effect

somehow makes a negligible contribution to the second-harmonic Hall voltage.

For the Pt/Co samples (for which ε = RPHE/RAHE ≈ 0.5), the standard HH

analysis determines a value of µ0∆HX/Je that is is approximately 60% larger

than the other values, while for the Pd/Co samples (for which ε = 0.7 - 0.9), the
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standard HH framework can overestimate µ0∆HX/Je by as much as a factor of

15.

For the Pt/Co samples, the values of the field-like component µ0∆HY /Je

extracted by the standard HH analysis are also in stark disagreement with the

Sagnac results, while the HH analysis with ε arbitrarily set to 0 again agrees

much better with the Sagnac values. For the Pd/Co samples, µ0∆HY /Je is

sufficiently weak that the uncertainties in the Sagnac measurements are com-

parable to the measured values, so we do not show them.

Figure 3.13: Calculated current-induced effective fields normalized by the
current density in the Pt or Pd layer. (a): µ0|∆HX |/Je across seven devices
on the Pt/Co wafer and three devices on the Pd/Co wafer. The data points
are results from the Sagnac optical measurements. Filled lines are results from
the conventional HH analysis. Empty lines are results of a HH analysis
assuming arbitrarily that ε = 0 in equations (5) and (6). The thicknesses of
the lines denote 1σ error bars.

3.9.3 Electrical and Optical Measurements on a PMA

Sample Tilted In-Plane

Our results so far have demonstrated that the conventional HH analysis gives re-

sults inconsistent with the Sagnac measurements, but they do not prove which
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Figure 3.14: Calculated current-induced effective fields normalized by the
current density in the Pt or Pd layer. µ0∆HY /Je for devices on the Pt/Co
wafer. The data points are results from the Sagnac optical measurements.
Filled lines are results from the conventional HH analysis. Empty lines are
results of a HH analysis assuming arbitrarily that ε = 0 in equations (5) and
(6). The thicknesses of the lines denote 1σ error bars.

technique is incorrect. For that we consider additional measurements on a

sample from the same wafer as our other Pt/Co/MgO devices, but with a

sufficiently-thick Co layer that the PMA is weak – specifically, we measure a

Pt(4 nm)/Co(1.3 nm) sample with µ0Meff = 0.05 T. This weak value of PMA

allows us to force the magnetization in-plane with a sufficiently-large in-plane

magnetic field, and perform in-plane HH measurements as a function of the

field angle φH . In this geometry, the current-induced damping-like effective

field points out-of-plane, and it can be measured with no confusion about con-

tributions from the planar Hall effect to first order.

Figure 3.15 shows both Sagnac MOKE and second-harmonic Hall data as a

function of φH for this Pt(4 nm)/Co(1.3 nm) sample with a current amplitude

∆I = 13 mA, subject to a constant magnitude of magnetic field (µ0H = 0.1,
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0.15, and 0.2 T).

Figure 3.15: (a) Second-harmonic Hall voltage (V 2ω
XY ) and (b) differential

Kerr rotation (∆θk) measured as a function of the angle of magnetic field, φH
for a weakly PMA Pt/Co/MgO device with µ0Meff = 0.05 T with an applied
current of ∆I = 13 mA. (c) Amplitude of the cosφH components in both
measurements with linear fits to to equations (3.52) and (14).

139



We fit to the form of the signals expected for small-angle deflections in the

case of an in-plane equilibrium angle [33, 28, 53]

∆θk =− κ∆HDL cosφH
H −Meff

(3.52)

V 2ω
XY =(V 2ω

AHE + V 2ω
ANE) cosφH + V 2ω

PHE cosφH cos 2φH (3.53)

=− ∆IRAHE∆HDL cosφH
2(H −Meff)

+ V 2ω
ANE cosφH

− ∆IRPHE∆HFL cosφH cos 2φH
2H

,

where V 2ω
ANE is a voltage contribution from the anomalous Nernst effect. To

isolate the signals due to ∆HDL, we plot the amplitude of cosφH components

as a function of 1/µ0(H−Meff) and perform linear fits as shown in Fig. 3.15(c).

We find µ0∆HX/Je = 4.3(3) (×10−14 T/(A/m2)) from the HH measurement

and µ0∆HX/Je = 4.5(2) (×10−14 T/(A/m2)) from the Sagnac MOKE mea-

surement. These points are included in the overall summary plot in Fig. 3.13

with the arrow indicating “in-plane measurement.” We observe no significant

cosφH cos 2φH component in the HH data for this sample. This could be be-

cause ∆HFL might simply be small for this sample due to accidental cancellation

between the Ørsted field and the field-like torque, so we do not draw any con-

clusions about the contribution of the planar Hall effect to the output signal

for this particular sample. For other samples with fully-in-plane anisotropy, the

planar Hall effect does contribute unambiguously to give strong cosφH cos 2φH

signals for in-plane second-harmonic Hall measurements (see, e.g., [11]).

The results of the in-plane HH and Sagnac measurements for the weakly-

PMA device agree well with one another. They are also consistent with the

extrapolation of the Sagnac measurements from the PMA samples to a Co

thickness of 1.3 nm, but they are considerably less than expected from an

extrapolation of the conventional HH analysis for the PMA samples (Fig. 3.13).
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Based on this we argue that the conventional HH analysis that includes the

expected contribution from the planar Hall effect is incorrect. We also note

that if we arbitrarily ignore the expected planar Hall contribution to the HH

experiment by seting ε = 0 in Eqs. (3.44) and (3.45), then the results of the

PMA HH measurements become reasonably consistent with all of the other

measurement techniques.

To be more quantitative, we compare the measured values of the damping-

like torque efficiency ξDL between different samples and different measurement

techniques. Unlike the current-induced effective fields, ξDL is expected to be

approximately independent of tCo, and indeed we find this to be the case for

the strong-PMA samples as shown in Fig. 3.16.

Figure 3.16: ξDL and ξFL as a function of Co thickness in both Pt/Co and
Pd/Co stacks. These are the same data as those shown in Figs. 3.13 & 3.14,
with the y-axis rescaled from effective fields to unitless SOT efficiencies.

Table 3.1 compares the average value of ξDL extracted from the HH mea-

surements on the strong-PMA samples (using both the measured value of ε

and then arbitrarily setting ε = 0) to the Sagnac-MOKE measurements on the
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strong-PMA samples, as well as to the HH and Sagnac-MOKE measurements

on the weakly-PMA sample. Clearly, the outlier is the conventional HH analysis

that includes the expected signal from the planar Hall effect.

ξDL HH Sagnac MOKE
strong-PMA tilting 0.23(1) 0.146(8)

strong-PMA tilting (ε = 0) 0.145(6) −
weak-PMA angle-dependence 0.127(7) 0.132(6)

Table 3.1: Comparison of the dampinglike spin-orbit torque efficiencies ξDL

measured on strong-PMA devices using small-angle tilting from an initial
out-of-plane magnetic orientation (Fig. 3.13 and Fig. 3.16) with values
measured on a weakly-PMA sample using small-angle tilting from in-plane
initial configurations (Fig. 3.15).

3.9.4 Discussion

What is wrong about the standard framework for analyzing HH measurements

of PMA samples, that it yields values for the current-induced effective fields that

differ from the other techniques? Why does arbitrarily ignoring the expected

planar Hall signal (i.e., arbitrarily setting ε = 0 in Eqs (3.44) & (3.45) in the

HH analysis) give results in better agreement with these other methods?

We have considered whether the form of the current-induced effective fields

might differ from the standard assumption that ∆HX and ∆HY are approx-

imately constant in the neighborhood of equilibrium tilt angles near θ0 = 0.

If the current-induced effective fields were purely polar, so that there was no

in-plane component to the current-induced magnetic deflections, this could ex-

plain the lack of a contribution to the second-harmonic Hall voltages from the

planar Hall effect for φH = 0 and π/2. However, we believe that this is unphys-

ical. The HH results on the strongly-PMA samples imply that current-induced

effective fields extrapolate to non-zero values at θ0 = 0, so if they were purely

polar this would require a an unphysical discontinuity. A purely-polar effec-

tive field would furthermore alter the dependence of the HH measurements

on φH for values other than 0 and π/2, making them inconsistent with our
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angle-dependent measurements.

We have also considered whether the PMA samples might possess a nonlinear-

in-current Hall effect not associated with magnetic dynamics that might largely

cancel the signal expected from the PHE read-out of the current-excited mag-

netic dynamics. Nonlinear-in-current Hall effects have been detected in topological-

insulator-based devices [68, 69] and might also arise from heating-induced Nernst

signals. We suggest that this possibility deserves further analysis for heavy-

metal-based structures, but we would find it a curious coincidence if a mecha-

nism of this sort could approximately cancel the planar-Hall readout signal of

spin-orbit torques in both the Pt/Co and Pd/Co devices.

We therefore conclude that the error in the standard HH analysis is most

likely in the read-out mechanism involving the planar Hall effect. Our exper-

iments suggest that for our PMA samples magnetic deflection induced by an

applied current does not produce the same change in planar Hall resistance as

the same magnetic deflection produced by an applied magnetic field. We do not

claim that the contribution of the planar Hall effect to HH signals of current-

induced magnetic deflection in PMA samples is necessarily exactly zero, but it

does appear to be far smaller than expected based on calibration of the planar

Hall effect using magnetic-field-induced magnetic deflection – and negligible to

a good approximation.

We do not yet have a good microscopic explanation for why the planar Hall

effect should not contribute to second-harmonic Hall signals for PMA samples

while it does for samples with in-plane anisotropy [11]. We can speculate that

magnetic tilting associated with spin-orbit torques will involve non-equilibrium

spin-accumulations that are not present for magnetic-field-induced magnetic

tilting, and that perhaps such spin accumulations might affect the Hall signal.

In any case, this puzzle highlights that we still lack a basic understanding about

fundamental aspects of interactions among charge currents, spin currents, and

ferromagnets.
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3.10 Conclusion

We have shown measurements of current-induced torques in PMA Pt/Co/MgO

and Pd/Co/MgO samples performed by simultaneously detecting small-angle

current-induced magnetization tilting using both harmonic Hall (HH) measure-

ments and Sagnac MOKE interferometry. We find that the conventional HH

analysis, which takes into account the expected read-out signals due to the

planar Hall effect, is inconsistent with the Sagnac MOKE results. The Sagnac

measurements for the damping-like torque in the PMA samples are, however,

consistent with both harmonic Hall and Sagnac measurements on a weakly-

PMA sample forced to an initial in-plane orientation by an applied magnetic

field. These results indicate that the conventional harmonic Hall analysis for

PMA samples, used in hundreds of published papers, gives incorrect values

for spin-orbit torques in samples for which the planar Hall effect is significant.

(For materials in which the magnetic-field-induced planar Hall effect is neg-

ligible, we do not claim any problem.) We find phenomenologically that the

conventional HH analysis for PMA samples can be improved, yielding results

in better agreement with other measurement techniques, by arbitrarily ignor-

ing the expected signal from the planar Hall effect (i.e., arbitrarily setting ε

equal to zero in equations (3.44) & (3.45)). Our findings help to explain previ-

ous reports of apparently-unphysical results from the conventional HH analysis

[57, 58, 70, 71, 59, 66]. We do not yet have a microscopic understanding of why

current-induced magnetization tilting produces a negligible planar Hall signal

in PMA samples, while the same magnetization tilting produced by an applied

magnetic field does generate a planar Hall effect.
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Chapter 4

Concluding Remarks

The current suite of SOT measurement techniques leaves something to be de-

sired: consistency. Consistency is needed to demonstrate the viability of the

SOT mechanism for technologies; without it, industries cannot trust the num-

bers and will not dedicate funding to pursue SOT technology. Therefore, study-

ing the measurements, metrology, is an important pursuit for the community.

Relitigating the measurements that we (the community) use every day through

the lens of metrology can teach us from where the discrepancies arise and how

to fix them. Metrology is also a unique epistemological direction from which

to discover new physics – found artifacts in measurements can be interesting

themselves.
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S. M. Rezende, “Simultaneous spin pumping and spin Seebeck experiments

148



with thermal control of the magnetic damping in bilayers of yttrium iron

garnet and heavy metals: YIG/Pt and YIG/IrMn,” Phys. Rev. B, vol. 95,

p. 134432, Apr 2017.

[23] N. Roschewsky, E. S. Walker, P. Gowtham, S. Muschinske, F. Hellman,

S. R. Bank, and S. Salahuddin, “Spin-orbit torque and Nernst effect in

Bi-Sb/Co heterostructures,” Phys. Rev. B, vol. 99, p. 195103, May 2019.

[24] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, “Conversion of spin

current into charge current at room temperature: Inverse spin-Hall effect,”

Applied Physics Letters, vol. 88, no. 18, p. 182509, 2006.

[25] R. Iguchi and E. Saitoh, “Measurement of spin pumping voltage separated

from extrinsic microwave effects,” Journal of the Physical Society of Japan,

vol. 86, no. 1, p. 011003, 2017.

[26] K. Kondou, H. Sukegawa, S. Kasai, S. Mitani, Y. Niimi, and Y. Otani,

“Influence of inverse spin Hall effect in spin-torque ferromagnetic resonance

measurements,” Applied Physics Express, vol. 9, p. 023002, Jan 2016.

[27] A. Kumar, S. Akansel, H. Stopfel, M. Fazlali, J. Åkerman, R. Brucas, and
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