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1. Introduction. In this paper, we consider the problem of locating a local minimizer of a smooth
nonlinear function subject to bounds on the variables:

(1.1 Iin f(z), 1<z <,

where I € {RU{-0}}" u € {RU{x}}" 1 < u, and f: R* — R!. We denote the feasible set
F¥ 1<z < u} andthc:strictinteriorint(.?-')déf {z:l<z<u}

We propose a new strictly feasible trust region approach for problem (1.1). Global convergence to a
second-order point is achieved, under reasonable assumptions, and a local quadratic convergence rate is
also obtained.

Minimization problems with upper and/or lower bounds on some of the variables form an important
and common class of problems. There are many algorithms for this type of optimization problem, some
of which are restricted to quadratic (in some cases convex quadratic) objective functions and some are
more general (e.g., [1,4,5,7,8,9, 10, 12, 14, 15, 16, 20, 21, 22, 26]). Almost all of the existing methods
for problem (1.1) are active set methods.

Trust region methods form a respected class of algorithms for solving unconstrained minimization
problems. Their high regard is partially due to their strong convergence properties, partially due to their
naturalness, and partially due to the recent development of reliable, efficient software.

The idea behind a trust region method formingegn f(z)is very simple. Theincrement sy = Zx41—2Zk
is a solution to a quadratic subproblem with a bound on the step:

. 1 _
1.2) ar‘x51§}er'1'{1/)k(s) & s+ isTBks . || Dgsll2 < Ak}

Here By is a symmetric approximation to the Hessian matrix V2 f(zx), D is a scaling matrix and Ay is a
positive scalar representing the trust region size.

A general scheme for unconstrained minimizationof f(z) is described in Figure 1. An iteration with
pi > u is said to be successful. Otherwise, the iteration is unsuccessful. The aim of trust region size
updating is to force p£ > p and hence ensure sufficient reduction of the objective function.

Computing a solution to the trust region problem (1.2) in a reliable and efficient way is a nontrivial
task. There are several papers on this topic, e.g., [2, 3, 7, 8, 13, 19, 23, 24, 25].

Trust region methods have also been developed for the solution of linearly constrained optimization
problems (e.g., [9] and [11]). A quadratic trust region subproblem with linear inequalities is usually
approximately solved to obtain an improved point [9]. An iterative procedure must to be used to solve the
subproblem. For example, Fletcher [11] proposed an algorithm for the linearly constrained optimization
subproblem

min{f(z) : ETz < d}
in which the subproblem is of the form

(13) min {V/(z4)7s + %sTBk.s . ET (2 + 8) < d, || Des|| < Ax}-
s n
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Algorithm 0: Unconstrained Trust Region Method

Fork =0,1,---

Compute f(zx) and the model .

Define an approximate solution s to subproblem (1.2).
Compute p; = (f(zk + sk) — f(zk))/Yr(sk)-

If p{ > pthen set zgy, = z + Sk. Otherwise set T4, = .
Update the model v, the scaling matrix Dy, and A.

Nk W=

Updating Trust Region Size
Leto<pu<np<landy, <1< 7, begiven
1. If p,{ < pthenset Agyy € (0, 7,Ak].
2. If p£ € (u,n) then set Agy, € [11Ak, Ak)-
3. If pi > nthen set Axy, € [Ak, 128%).

FIG. 1. Trust Region Method for Unconstrained Minimization

As pointed out in [18], convergence theory for trust region methods based on quadratic programming
subproblems — such as (1.3) — usually require that the computed trial step be a global solution to the
subproblem. However, the subproblem is usually solved by methods which guarantee local optimality
at best. Therefore, there is a mismatch between theory and practise for trust region methods based on
quadratic programming subproblems (with linear inequalities).

In this paper, we propose trust region methods for (1.1) without the need to solve a general quadratic
programming subproblem at each iteration. These methods are related to the line search based reflection
methods proposed by Coleman and Li [7] — scaling strategies and requirement of strict feasibility are
common to both approaches. The primary difference is that in [7] a line search based method is proposed,
alohg with a “reflection ” strategy to guarantee sufficient descent, whereas here we propose a pure trust
region method.

The proposed methods are developed by forming a quadratic model with an appropriate quadratic
function and scaling matrix such that there is no need to handle the constraints explicitly. In particular, itis
possible to obtain an approximate trust region solution which can guarantee second-order convergence by
simply solving an unconstrained trust region subproblem and then satisfying the feasibility requirement
through further restricting the step if necessary. Our proposed methods become standard trust region
algorithms for unconstrained minimization when ! = —oo and u = +00. Moreover, all the convergence
proofs essentially reduce to established proofs for the unconstrained trust region approach when ! = —oo
and v = +o0.

We motivate the method in §2 and establish the convergence in §3. In §4, preliminary numerical
results for small dense problems are presented. The computational investigation of the method for large
problems will be presented in a subsequent paper.

2. Trust Region Method for Bound-Constrained Problems. In this section, we propose a trust re-
gion method for bound-constrained problems by choosing an appropriate scaling matrix Dy and quadratic
3



model ¥x(z). We motivate our choice by examining the optimality conditions for (1.1).
First, we define a vector function v(z) : ®* — R as follows.

DEFINITION 1. The vector v(z) € R" is defined:
(i).  IfVf(z) <O0andu; < oo thenv; < z; — u;.
(ii). IfVi(z); > 0andl; > —oo then v; = z; — I;.

(iii). If Vf(z); < 0 and u; = oo then v; =& —1.
(iv). IfVf(z); >0andl; = —co then v; = 1.

Following Matlab notation, for any s € ", diag(s) denotes an n-by-n diagonal matrix with the
vector s defining the diagonal entries in their natural order. In addition, we define

@.1) D(z) ¥ diag(|v(z)| %)

i.e., D=2 is a diagonal matrix with the i** diagonal component equal to |v;(z)|.
Optimality conditions for problem (1.1) are well-established. Assuming feasibility, first-order nec-
essary conditions for z. to be a local minimizer are:

Vf(z,,),- =0 ifl;' < (.’t*),‘ < ug,
2.2) first order: Vf(z.)i <0 if (z.); = u,
Vf(:z:.); Z 0 if (:E,.),' = I,'.
Equivalently, D;2g, = 0. Second-order conditions involve the Hessian matrix of f, H = H(z) df
V2 f(z). Let Free, denote the set of indices corresponding to “free” variables at point z,:

Free. = {i:1l; < (z.)i < ui}.

Second-order necessary conditions can be written?: if a feasible point z, is a local minimizer of (1.1)
then D;2g, = 0 and HF e+ > 0 where HF7ee* is the submatrix of H, = H(z.) corresponding to the
index set Free,

These conditions are necessary but not sufficient. Sufficiency conditions that are achievable in
practise often require a nondegeneracy assumption. This is the case here.

DEFINITION 2. A point z € F is nondegenerate if, for each index i:
2.3) Vf(:z:),- =0 = [; < z; < u.

A problem (1.1) is nondegenerate if (2.3) holds for every z € F.

2 Notation: if a matrix A is a symmetric matrix then we write A > 0 to mean A is positive definite; A > 0 means A is

positive semi-definite.



With this definition we can state second-order sufficiency conditions: if a nondegenerate feasible
point z, satisfies (2.2) and HF7**+ > 0, then z, is a local minimizer of (1.1).
Similar to [6], we consider the following diagonal system of nonlinear equations:

(2.4) D(z)™2Vf(z) = 0.

It is easy to see that system (2.4) is an equivalent statement of the first order necessary conditions. System
(2.4) is continuous but not everywhere differentiable. Nondifferentiability occurs when v; = 0; we avoid
such points by restricting z; € int(F). Strictly speaking v; may not be differentiable at a point where
Vf; = 0; however, D~2(z)Vf(z) is continuous at such points. Moreover, Coleman and Li [6] show that
it is easy to define a Jacobian matrix at such points to allow for a second-order Newton process.

Assume that z; € int(F). A Newton step for (2.4) satisfies

(2.5) (D;2Hy, + diag(Vf(zx))J}P)dx = — D2 Vf(z),

where J¥(z) € R™*" plays the role of the “Jacobian” matrix of |v(z)|. If all the components of / and u
are finite, we define J¥ = diag(sgn(Vf)). If variable z; has a finite lower bound and an infinite upper
bound (or vice-versa) and Vf; = 0, we define J}; = 0 at such a point.

In our presentation, B(z) is an approximation to H(z) %ef V2 f(z) and g(z) f Vf(z). Based on the
Newton step for system (2.4), we define our quadratic model in the same way as in [6]:

1
(2.6) Vi(s) € s gi + 55" Mis

where

C(z) & D(z)diag(g(z))J*(z)D(z),

M(z) &ef B(z) + C(z).

Note that C(z) is a positive semi-definite diagonal matrix.
Define

o def , 1
9k = D;lgx = diag(|vk|2)gx,

My & D' My D;* = diag(|vxl?) Bidiag(|vi|?) + diag(ge) I},

A 1 A
Pr(w) & 57w + EwTMkw.

The following lemma can be easily proved.

LEMMA 1. Assume that z. € F and B(z.) = H(z.).

(a) g« =0ifandonly if (2.2) is satisfied.

(b) M, is positive definite and §. = 0 if and only if the second order sufficiency conditions
are satisfied at z..



(c) M, is positive semi-definite and §. = O if and only if the second order necessary
conditions are satisfied.

The results of Lemma 1 imply that z, is a local minimizer of (1.1) if and only if w = 0 is a solution
to

@.7) min{Px(w) : [[wll2 < Ak}

where z; = z.. Hence solving the subproblem (2.7) is a reasonable step to attempt when zj is not a
local minimizer. Let s = D;l w. Subproblem (2.7) is equivalent to the following problem in the original
variable space:

2.8) msin{tpk(s) || Des|l2 < A}.

Moreover, in the neighborhood of a local minimizer, the Newton step to (2.4) is a solution to the trust
region subproblem (2.8) if the trust region size Ay, is sufficiently large.

The purpose of the scaling matrix Dy, in (2.8) is distinctively different from that in an unconstrained
trust region method. The scaling matrix D measures the distance to the boundary of the feasible region.
Its purpose is to prevent a step directly towards a boundary point. In contrast, a scaling matrix used in the
unconstrained trust region method is usually employed for numerical reasons: the scaling matrix helps to
improve the conditioning of the problem.

If a bound—constrained problem (1.1) is badly scaled, the subproblem (2.8) can be replaced by

min{yx(s) : || DxDisll2 < A},

where Dy, is chosen to improve the scaling and is a diagonal matrix with the property that {D; '} is
bounded and {D;} is uniformly bounded. To emphasize the role of the scaling matrix Dy, we assume
that Dy = I in our presentation.

Next we illustrate that it is possible to develop trust region methods for the bound-constrained problem
(1.1) based on (2.8). First we introduce a few notations and assumptions.

In our presentation, px denotes a solution to (2.8). Assume that d; € R". The scalar a;, denotes the

stepsize along dj to the boundary:
2.9) o = min{max{ L2k %= %kiy . gy,
di; di;
If problem (1.1) is unconstrained, i.e., | = —oco and u = oo, we define ax = +0o. We use ¥;[dk] to

denote the minimum value of () along the direction dj, within the feasible trust region, i.e.,

(2.10) rldk] % vr(st) = min{y(s) : s = Tdx, || Dis|| < A, zx + s € F}.

Since we always require zx € int(F), a possible step-back may be necessary to stay strictly feasible.
We use aj[di] to denote the step obtained from dj with a possible step-back. The exact definition
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of aj[di] is given below. Let 7; denote the minimizer along d; within the feasible trust region, i.e.,
o = argmin, {¢x(7dx) : ||7Dudk|| < Ax,xx + 7dx € F}, O € [60,1] for some 0 < 6; < 1 and
0x — 1 = O(||dk]|). Then

. . Td if oy + 7dr € int(F),
@.11) a,,[dk]“éfokrkdk"éf{ ROk T TKC (%)
Ox7idr  otherwise.

The above definition implies that 8; = 1if zx + 7 dx € int(F).
A few assumptions:

(AS.1) Given an initial point zg € F, itis assumed that £ is compact, where L is the level set,
ie,L={z: z€ Fand f(z) < f(z0)}.

(AS.2) There exists a positive scalar xp such that || Bx|| < xp for all k.

(AS.3) There exists a positive scalar x, such that for z € £, ||g]lo < Xg-

Assumption (AS.2) is also required in the convergence analysis of trust region methods for uncon-
strained problems. Assumption (AS.1) is needed for the boundedness of the scaling matrix {D;'}.
Condition (AS.3) is a weak assumption and is satisfied if the gradient Vf(z) is continuous on L. As-
sumptions (AS.1) and (AS.2) imply that there exist positive scalars xp, xa such that

1D < xp, 1Mkl < xaa-

Note that { M} is unbounded in general.

Next we will present two trust region algorithms for the bound-constrained problem (1.1). The first,
called the double-trust region method, is theoretically interesting. It illustrates the essential ideas. The
second method represents a more efficient approach.

2.1. The Double-Trust Region Method. Our objective is to develop a trust region method for (1.1)
based on the trust region subproblem (2.8): a solution py to the trust region subproblem (2.8) is obtained
and then truncated, i.e., sy = aj[pk), to ensure strict feasibility.

The essential idea of trust region methods is to use the trust region size to ensure sufficient decrease
of the objective function. Consider the trust region approach to unconstrained problems: the trust region
size is updated to ensure that the reduction of the nonlinear function f(z) is at least a fraction of the
reduction of the quadratic model within the trust region. Specifically, the updating of the trust region size
forces the condition

ol = f(=x +¢3k) —fe) o,
k(sk)
for some constant x> 0. (We use the superscript f to emphasize the dependence on f(z).) To obtain first
order convergence of unconstrained trust region methods, a sufficient reduction of the quadratic model
1, within the trust region is guaranteed if

(2.12) Vr(sk) < Bmin{y(s) : s = 7D T gk, || Drs|| < Ak}, || Drskll < BoAx
7



for some constants 3, o > 0. In our notation, (2.12) is the same as

(2.13) ¥r(sk) < BYi[-DrTgr), ||Deskll < BoAk.

Since our quadratic model k() is defined to include the constraint information, a natural extension
of the definition of pi is given by

1 det f(zk + k) — f(zx) + 3L C(z) sk
kT Yr(sk) )

Similar to unconstrained trust region methods, pi measures the agreement between the nonlinear function
f(z) and its quadratic approximation. As we will prove from Lemma 2 in §3, for our trust region
approaches, if sy satisfies

P

2.14) ¥r(sk) < BYi[-Dr2gkls

the trust region model is sufficiently reduced for first order convergence.

Unfortunately a truncated step along an exact solution pi of (2.8) may not sufficiently reduce the
quadratic model v, due to the effect of truncation, i.e., (2.14) is not guaranteed when s; = aj[px] and pi
solves (2.8). However, a step along the scaled steepest descent direction —D;zgk does produce enough
reduction of k(). Since, for any trust region subproblem with nonzero gradient, the trust region solution
approaches the gradient direction if the trust region size is reduced to zero, the trust region size can be
used to ultimately guarantee sufficient decrease. In particular, the trust region size updating can be used
to force the condition

Vi(sk)
Yil-Di ]
Hence, we can adjust the trust region size so that both the quadratic model function 1x(s) and the nonlinear
function f(z) are sufficiently reduced. This gives us the trust region algorithm described in Figure 2. We
call it the double-trust region method because the trust region size is adjusted for both nonlinearity and
feasibility. For this method, an iteration is successful if both p{ > nand p§ > 7. Otherwise, an iteration

Pk = > B, ie, Vr(sk) < BYil-Dilgx)-

is unsuccessful.
In §3, we will prove that the double-trust region method has reasonable convergence properties under
the nondegeneracy assumption.

2.2. A Practical Trust Region Method. In the last section, we proposed a double-trust region
method for bound-constrained problems (1.1) through solving an ellipsoidal trust region subproblem
(2.8). In this algorithm, sufficient decrease of the quadratic model is achieved through monitoring the
ratio p§ and adjusting the trust region size accordingly. Since pf, is determined by % (sk), an exact
solution to the subproblem (2.8) is assumed in order for pj, to be reliable. However, for large problems,
the assumption that s, be in the direction of the exact trust region problem (2.8) is impractical. Moreover,
the convergence of the method is established under the assumption that problem (1.1) is nondegenerate.
In this section, we suggest a more practical model algorithm.

8



Algorithm 1: The Double-Trust Region Method
zo € int(F)
Fork =0,1,---
1. Compute f(zk), gk, Hx, and Ci; Define the quadratic model ¥x(s) =
gt s+ 18T (Hy + Ci)s.
2. Compute px, a solution to (2.8).
3

. Compute
sk = oi[pk],
ps = —Pr(sk)
* T G-Da
of = f(zk + sk) = f(zx) + 185 Czx)sk
! = .

Yr(sk)

>

pr{ > pand p§ > B thenset zry; = Tx + si. Otherwise set T4y, = Ti.
Update the model 1, the scaling matrix Dy and A as specified.

“

Updating A for the Double-Trust Region Method
Leto< pu,B<n<landy, <1<+ begiven
1. if p] < p then set Ap4, € (0, 1Ak)-
2. ifp{ € (p,n) then set Axy, € [11Ak, Ak).
3. if p{ > 7 then
if p§ > n, set Ax € [Ak, 1Ak],
if B < p§, < 1, set Ag € [k, Ak],
if p§, < B, set Ax € (0, 1Ak

FIG. 2. Double-Trust Region Method for Minimization Subject to Bounds

It is clear that sufficient reduction of the quadratic model within the feasible trust region is not
difficult to achieve: for example, moving along the scaled gradient D;z gk guarantees this. If we assume
the availability of a step which sufficiently decreases the quadratic function within the feasible trust region,
the trust region size is only needed to force the condition p{ > p.

In Figure 3, we describe a trust region method for bound-constrained problems in which the trust
region size is primarily updated according to p,{. However, we have allowed more freedom than usual in
the adjustment of A to permit further reduction in A, thus encouraging the use of the trust region step
(2.8).

In order to satisfy the first order necessary conditions, given two positive constants # and fy, it is
required that the approximate trust region solution s, satisfy

(AS4) Pi(sk) < BYEl—Drgx]
[| Drsk|l < BoAk, zk + sk € int(F).

In other words, the condition p§ > £ is assumed. More explicitly, we require that (k) to be less
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Algorithm 2: A More Practical Model
zo € int(F)
Fork =o0,1,---
1. Compute f(z), gk, Hi, and Cy; Define the quadratic model ¥x(s) =
gFs+ %sT(Hk + Ck)s.
2. Compute s, based on (2.8), such that z + s € int(F).
3. Compute

f(zk + sk) — f(zk) + §SZC($k)Sk'

f_
P = VYr(sk)

4. If p,{ > pthen set Ty, = zx + Sk. Otherwise set x4, = k.
5. Update the model 1, the scaling matrix Dj, and A as specified.

Updating Trust Region Size A
Leto<p<n<1,7 <1< vand 0 < A; be given
1. pr{ < pthen set Ag4; € (0, 71Ak]-
2. If p£ € (u,n) then set Agy, € [11Ak,Ak)-
3. If pf > nthen
if Ax > A; then
set Ax4, € either [,Ak, Ax] Or [Ak, 124k,
otherwise,
set Ax41 € [Ak, T2Ak).

FIG. 3. Trust Region Method for Minimization Subject to Bounds

than a fraction of the minimum of 1 (s) along the scaled gradient —D;z gx within the feasible trust region.
We point out that condition (AS.4) is satisfied for every successful step of Algorithm 1. For Algorithm 2,
an iteration is successful if the condition p{ > 7 holds. Otherwise, an iteration is unsuccessful.

Condition (AS.4) can be easily satisfied for 0 < 8 < 1. Let wy be the solution to min{¢(s) : D2s =
Vgk, ||Dks|| £ Ak, zx + s € F}. Then sy = wy satisfies (AS.4) except for the possible violation
of zx + s¢ € int(F). Assume that z; + wr ¢ int(F). Since ¥k(s) is continuous, a small step-back
sk = fwi where 0 < 6 < 1 can ensure both the condition zx + si € int(F)and ¥r(sk) < ﬂw}:[—D;zgk].

Assumption (AS.4) will not necessarily guarantee a solution at which the second order necessary
condition is satisfied. To achieve this we make the following stronger assumptions on the quadratic model
and the approximate solution:

(AS.5) ¥i(s) = Vf(zk)Ts + 1sT(V f(zx) + C(zk))s.

(AS.6) Assume that py is a solution to mingegn {1k (s) : || Dis|| < Ax} and 37 and 5§ are two
positive constants. Then sy satisfies ¥x(sx) < B9Y;[pk], || Drsk|| < B3Ak, zk + sk €
int(F).

Since both conditions (AS.4) and (AS.6) can be satisfied by simply solving a quadratic trust region

10



subproblem min, {9 (s) : || Drs|| < Ak}, itis not necessary to solve a quadratic programming subproblem
to achieve convergence. For example, one can first compute a solution py to the following unconstrained
trust region problem

min {$x(s) : | Dsl] < Au,

and then choose s so that ¥;(sx) is the minimum of the values }[pi] and 9[- D;2gx]. However,
requirements (AS.4) and (AS.6) are not restrictive. There are many ways of computing such approxima-
tions. As another example, one can consider the reflection techniques used in [6]. It is also possible to
have a subspace adaptation of this trust region approach in which low-dimension subspace trust region
problems are solved. We leave investigation of these computational issues to a subsequent paper.

Before we study the convergence properties of the two trust region methods proposed, we make the
following important observation. If we assume that ! = —oo and « = +oo then C(z) = 0 and D(z) =
and the quadratic model is the same as that for unconstrained problems. Moreover, the conditions (AS.4)
and (AS.6) are the same as the conditions required for unconstrained trust region methods (e.g., [18])
since the feasibility constraints are always satisfied.

3. Convergence Properties. The convergence proofs for the double-trust region algorithm in Figure
2, and the practical algorithm in Figure 3, follow the same main steps. Lemmas 3 and 4 make it possible to
present the proofs for both algorithms simultaneously in a clean fashion. The major results are Theorems
5,6, 11, and 12.

The main difference between the double-trust region method and the practical method is that condition
(AS.4) is satisfied through the ratio pf, for the first while assumed by the latter. However, a common
property of the two methods is that, for any successful step, (AS.4) is satisfied. Moreover, condition
(AS.6) is always satisfied for the double-trust region method.

The convergence results of the two methods are similar. However, the assumptions required by the
double-trust region method are stronger: For Algorithm 1 we assume that problem (1.1) is nondegenerate.
This nondegeneracy assumption is not needed for Algorithm 2.

Notational note: In all expressions to follow, the norm symbol without subscript, || - ||, refers to the
2-norm.

The following result is required to express (AS.4) in a manageable form. It is similar to Lemma (4.8)
in [18].

LEMMA 2. Assume that (AS.1)-(AS.3) are satisfied. If s;. satisfies (AS.4) then

_ Mgkl gl
Pr(sk) 2 ﬂllgkllm{ Ak ”gk”oo}

Proof. Define ¢ : ® — R by setting di, = —D;l(“%in) and

(1) def p[rdy).

11



Let 7;; be the minimizer of ¢ on [0, min{A, o }] where a is the first stepsize, along dj, to the boundary:

— Thi Ui — Tk
b
di; di;

Since o > 0 and the components of d; have the same sign as that of — gy, the absolute value of the

ap = min{max{l" }:1<i<n}.

numerator equals |v;], i.e.,

_ ol _ Jowilllgell
|diil  [okillgn:]
Hence
o> el
= lgklloo
By definition of ¢(7)
1 det GF My
$() = —7llgell + 5720k, pe = F—m.
(r) = =rllgell + 57, o

If ;7 € (0,min{A, o }] then 73 = ||§x||/px and thus

LR 1 el

1) < —.
A0S =3 = T2

If 77 = Ak then pxAx < ||gx|| and hence

H) = $(8) < 5 8ullael

If 0 = ag, prax < ||gx|| and hence

1o 1 |13l
o(15) = P(ag) £ —za < -z .
( k) ( ) 2 k”gk” ) ||gk“°°
Since ¥ (sk) < Bo(T*), the result follows from the above estimates. =

Assume that sy, is a successful step from either Algorithm 1 or Algorithm 2. From Lemma 2,

f(zk) = f(zht1) — %SkaSk > —utk(sk)

] el g
> L gual min{ay, D2l 1G]y
2 AN P

Hence, under assumptions (AS.2), (AS.3) and (AS.4),
1 1 . ) g g
J(@k) = F(@ke1) 2 ST Chsi + ~Bullgel minga, 241 19¢ly
2 2 XM Xy

Notice that stksk > 0. The reduction in f is guaranteed to be better than a multiple of the reduction
achieved in the (negative) scaled gradient direction, i.e.,

@.1) f(zx) = f(Tr41) 2 %ﬂ,ullakll min{Ay, M, ”g—k”},
XM Xg
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This inequality is important for the convergence proof.

Next, in Theorems 5 and 6, we prove that the first order necessary conditions are satisfied at every
limit point of {z}. Several technical results are required first.

Recall that py is a solution to the trust region subproblem (2.8). Using Theorem (3.11) in [18], there
exists a parameter A; and upper triangular matrix Rx € R"*" such that

(Mi + M) = R{Rx, (M + MeI)Dipr = =Gk, Mk >0,
with Ax(Ax — || Dkpkl||) = 0. Equivalently, py is the solution to

3.2 (M + D'CiD7Ype = =D (9k + Bipk)-

LEMMA 3. Suppose that {zy} is a sequence generated by Algorithm 1. Assume that problem
(1.1) is nondegenerate, (AS.1) and (AS.2) hold and {z} converges. If {Ar} converges to zero and
lim infx o {||3x||} > O then p§, > 1 for sufficiently large k.

Proof. Since {Dypi} converges to zero and ||px|| < xp||Dkpkl|, {px} converges to zero. By the
assumption that lim infx— oo {|| D5 'gkl|} > 0 and (3.2), it is clear that {\s} converges to +oo. But
{D,:z(g;c + Bipk)} is bounded and the problem is nondegenerate. We claim that limg_,o, ax = 400
where oy is the stepsize to the boundary of the constraints. This can be easily seen from the additional
fact that, for k sufficiently large, the components of —g; and p; have the same sign if the corresponding
component of the limit point g, is nonzero. Subsequently, sy = aj[px] = px. Thus, for k sufficiently

large
min{Yk(3) : s = T, ||Dis|| < Ak, 2k + s € F} = min{9x(38) : 8 = 7px, || Dis|| < Ax}.
Hence
Yk(pr) = min{te(s) : s = Tpk, || Dis|| < Ak, =k + s € F} > $i[-Di2 g,

and therefore

Yr(ske)  _ _ d(pe) .
vil-Di%gx]l  ¥il-Di’gxl ~

Pk =

LEMMA 4. Assume that {A} is updated by Algorithm 2. If p{ > 7 for sufficiently large k then {Ax}
is bounded away from zero.
Proof. By assumption, there exists & such that when k > , p{ > 7. We prove, by induction, that for

k>k,
(33) Ak Z min{'ylA;,A,-c}.

First, it is clear that (3.3) is true when k = k.
13



Assume that (3.3) is true for k, i.e., Ax > min{'ylAl,AL}. If Ax < Ay, Agy1 > Ax > min{y11A;,AL}.
If Ax > A, A1 > min{mA;, AL}
Hence (3.3) is true for all k > k. Therefore {A;} is bounded away from zero. n

The proof of the following theorem is a slight modification of Theorem (4.10) in [18].

THEOREM 5. Assume that f : R™ — R is continuously differentiable and bounded below on L,
(AS.1) and (AS.2) hold. For Algorithm 2, if {si} satisfies (AS.4), then

(3.4) lim inf ||diag(|ve|2 )gx|| = O.

For Algorithm 1, (3.4) is true under the further assumption that problem (1.1) is nondegenerate.
Proof. We need to show that {||§x||} is not bounded away from zero. Assume that there is an € > 0
such that ||§x|| > € for all sufficiently large k. We now show that

o0
(3.5) Y Ak < +oo.
k=1
If there are a finite number of successful iterations then Ax4+; < 71Ax for all k sufficiently large and then
(3.5) clearly holds. If there is an infinite sequence {k;} of successful iterations then inequality (3.1) shows
that

oo
ZA"i < 4o00.

i=1
Now the updating rules of Algorithm 1 & 2 imply that

(oo} [e o}

72
A < (14 E Ag.
1 k—( 1_71)i=l i

k=

and thus (3.5) holds in this case as well.
Next we prove that (3.5) implies that {|p£ — 1]} converges to zero. First,

lzk+1 — zkll < [Iskll < xDBoAk

and hence (3.5) shows that {z} converges. Now (AS.1) and (AS.2) imply that

1 1
[¥k(sk) = VF(zk)T sk — zsfckéikl = |gfsk+ ‘2‘3{Bk3k — Vf(zk)T sk

IA

1
EXBX%IIDkSkllz-

But || Dgsk|| < Ak. Therefore
1 1
[f(zk + sk) — f(zk) + §S{Ck8k — P(sk)| < EXBX%Ai

14



Since Lemma 2 implies that
1
—p(sk) 2 EﬂfAk

we readily obtain that {| p{ — 1]} converges to zero.

For Algorithm 2, using Lemma4, {A, } cannot converge to zero. This contradicts (3.5) and establishes
the result.

For Algorithm 1, using Lemma 3, Ay is not decreased for sufficiently large k. Thus {Ax} cannot
converge to zero. This contradicts (3.5) and establishes the result. [ ]

The next theorem establishes that {diag( |vk|% )Vf(zk)} converges to zero. This result is established
despite the fact that { D} is not uniformly bounded. This may be somewhat surprising, perhaps, since
the analogous convergence result in the unconstrained setting requires the sequence of diagonal scaling
matrices to be uniformly bounded.

THEOREM 6. Assume (AS.1-2) hold and Vf(z) is uniformly continuous on L. If {z}} is generated
by Algorithm 2 and (AS.4) holds for si. Then

(3.6) Jim ||diag(|oel2)Vf(z)]| = 0.

Result (3.6) holds for Algorithm 1 when problem (1.1) is nondegenerate.

Proof. The proof is by contradiction and is the same for Algorithm 1 and Algorithm 2. (The
nondegeneracy assumption is needed for Algorithm 2 because the proof uses Theorem 5.)

Let ¢; in (0, 1) be given and assume that there is a sequence {m;} such that ||§m,|| > €;. Theorem 5
guarantees that for any ¢; in (0, € ) there is a subsequence of {m;} (without loss of generality we assume
that it is the full sequence) and a sequence {/;} such that

(3.7 gkl > €2, mi <k<l; |3 < e.

If the k-th iteration is successful then

1 ) 6 €
f(zk) — f(zr41) 2 Eﬂufz min{Ag, —, 2}, mi <k <l
XM Xg

Since {f(zx)} converges, {f(zx) — f(zk+1)} converges to zero. From ||zx41 — zk|| < BoxDAk, it
follows that, for sufficiently large i,

(3.8) (=) = f(Tk41) 2 esl|zeer — zkll, mi <k <,
where €3 = (%ﬂuez) /(Boxp). Using (3.8) and the triangle inequality,
f(@m) = f(zx) 2 &sllze, — zmill, mi <ki <L
The uniform continuity of Vf and the convergence of { f(zx)} can now be used to deduce that

3.9 ”gm.' - gl.‘” < e,
15



for ¢ sufficiently large.

Consider a subsequence of /; (without loss of generality assume that it is the full sequence) such that
{z,} convergesto z.. Then {z,,, } converges to z... Based on the definition of v(z), if the j-th component
of g(z.) is nonzero, then, for ¢ sufficiently large, the corresponding component of ||vy,;| — |v;;|| is no
greater than that of |z,,, — z;,|. Thus {diag(lvm,.ﬁ - |vl.-|%)gl,~} converges to zero. Therefore, for i
sufficiently large,

(3.10) ID7(Dm; — Di,) D} il = Ildiag(low| = |omi])gnll < €2
Using the triangle inequality for any m and [
(3.11) 1gmll < 1D I|gm — @il + |1 D! (D — D) D gil] + [14]]-
Combining (3.11) with (3.7), (3.9) and (3.10), we obtain that
&1 < (xp +2)e.

Since €; can be any number in (0, €;), this is a contradiction. .

Next we consider the second order necessary conditions. As mentioned in §2, we assume the
following quadratic model: ¥x(s) = Vf(zx)Ts + 3sT(Vf(zx) + C(zx))s. Moreover, in addition to
(AS.4), the condition (AS.6) holds, i.e., the reduction of the quadratic model satisfies

Yr(sk) < Bmin{yi(s) : s = Tpk, || Dis|| < Ak, zx + s € F},
|| Disk|l < BoAk, zk + sk € int(F),

where py is a solution to the unconstrained subproblem
min{¢(s) : || Des|| < Ax}.

Before we state the second order convergence result, several technical lemmas are required. First,
we quote Lemma (4.10) in [19] below.

LEMMA 7. Let z., be an isolated limit point of a sequence {z} in R". If {zx} does not converge
then there is a subsequence x; which converges to ., and an € > 0 such that

lzi,41 — @i,]| > €.

Now we examine the consequences of (AS.6) in greater detail. Using Theorem (3.11) in [18], if px
is a solution to (2.8), there exists a parameter Ax such that

(My + MI) = RF Ri, (My + MI)Dipr = =gk, M 20

16



with Ag(Ax — || Dkpk||) = 0. Furthermore, as mentioned before, pj satisfies

(AT + D%Cr)pr = —Di%(gx + Bipr)-

LEMMA 8. Assume that (AS.6) is satisfied. Then

q
—Pr(sk) > ﬁ—[min{l, oZ}\kA} + min{1, o }|| R Dipil*]
2

where ay is the stepsize along py to the boundary and py is a solution to the trust region subproblem
(2.8).
Proof. Let ¢(T) def Yi(7px) and 7 € [0,min{1, ax}] where ai is the stepsize along pi to the
boundary. Let 7* to be the minimizer of ¢(7) in [0, min{1, ax }].
It is easy to see that
1
#(r) = Tgimk+ ETZPZMkPk
N 1,5, 1
= 79f Dipi — irzngkak - §T2/\kI|DkPk||2
1 1
= 7l BeDipl + 57| Re Dipil|* — 57° kA

But 72 < 7 since 7 < 1. Hence, from (AS.6),

—r(s) > —Bl(T*) > %[min{l,ai}AkAi + min{1, o }|| R Dicpi | *]-

The following lemma provides estimates of the reductions in the objective function and quadratic
model.

LEMMA 9. Assume that the conditions of Theorem 6 and (AS.6) hold. Furthermore, {z\} is any
sequence generated by either Algorithm 1 or Algorithm 2. If every limit point of {z\} is nondegenerate,
then there exists 0 < €g < 1 such that, for k sufficiently large,

4 2
[(xg + AxxBXD)xDP [(Xs + AkXxBXD)

—r(sk) > %min{l, ]Z}AkAi

and if sy is successful,

X A
"[(xg + AkxBxD)X5? [(Xg + BexBXD)]

q
f(ex) — f(erar) > 2 pming1 Il
Proof. Using Lemma 8,

q
—r(sg) > %min{l,ai},\kls’;’;
17



where a is the stepsize along py to the boundary:

I — Zh; U — Ths _
(3.12) o = min{max{ Tki L kri1<i<al
Pk Pk

Since the problem is nondegenerate at every limit point and {z } is bounded, there exists 0 < ¢p < 1 and
2¢p < min(u — 1), such that, for sufficiently large &,

min(zg — I, u — z4) + |g(zx)| > 2c0e, e =[1,---,1]T € ®™.

(Otherwise, there would be a degenerate limit point of {z}).
Following Theorem 6, {diag([vkﬁ )9(zx)} converges to zero. Hence, for sufficiently large k,

|Idiag(|ox1)g(2)lloo < €5-
Assume that k is sufficiently large. If |gx;| < €, then
min{zg; — l;, u; — Tk;} > €.
Hence, from (3.2), (3.12) and
llgx + Brpklloo < X + xBIID; I Dxpell < xg + xBXDAE,

we obtain:

ag > Ak€o
k -z .
(xg + AkXBXD)X5

If |gk;| > o, then |vg;| < €. If ax = |vk;|/|pk;|, then from (3.2) and (3.12),

Ak
ap > ——.
Xg + AkXBXD

If ar # |vk;|/|pk;|, the numerator determining oy is greater than €p. Hence, using (3.12)

ar > /\kfo
k> X
(xg + AXBXD)X5

When M is positive definite, we denote the Newton step for (2.8) by

(3.13) N DI g, ie. MiDrsl = —gi.

LEMMA 10. If the sequence of trust region subproblem (2.8) solution {py} converges to zero, {z}
converges to z. and M, is positive definite, then

. Yr(ak[pE]) .o Vrlpx]
b ], = R on 2

18



Moreover, for sufficiently large k,
|klpe]l > emin{A, || DesyY |1}

for some constant € > 0.
Proof. Let o be the stepsize, along py, to the boundary:

o = min{max{li — zki, S zki} :1<i<n}.
Dk Pk
Since p is a solution to (2.8), 7. = min{1, a;} in (2.11). By definition (2.11), §; < 6y < 1,0, -1 =

O(|lpx)). Since Mj is positive definite for sufficiently large k, we have that p} Mipx > 0. Therefore,

o opk(aglme) . TEOkgE pe + Ae202pT Mipi
liminf ——"==* = liminf—=— T 1, +2, T
k—oo P[Pk k—oo  TRgr Pk + 3Tk Pk Mkpk
> lim 6
k—o0
= 1.

Since M, is positive definite, z, is nondegenerate. If all variables are free at a limit point z,, then from
the assumption that {px } converges to zero, it is clear that

liminfa; > 1.
k—o0

. . . : 14+
If there exist variables on the boundary at z., since {px} converges to zero, ay = l—:fl_—l = gkl? = gk o -
J J

for some v;(z.) = 0 and g7 # 0. This means that

(3.14) lik“_‘,?,}f{ak} >1.

Assume that g > 0 is a lower bound on the eigenvalue of M.,. Since Pk = sfcv if A = 0, using Lemma 8§,
[Wiloell > 5eomin{1, o2} min{a%, | Dust I}

where Disly = —M; k. Let O < € < }eo. Then, for k sufficiently large,

|¥i[pk]| > emin{AZ, || Dxpk|/*}-

In addition,
* x T 12T pr
liminf PP jining T ngpk + 2lTkTPk kPk
k—oo ¢k(Pk) k—o0 95 Pk + 3Dk Mkpk
> liminfmin{a, 1}
k=00
= 1.
Hence

lim infdjk_[pk] > 1.
k—oo Yr(Pk)
19



|
The next theorem indicates that the first order and second order necessary conditions can be satisfied.
THEOREM 11. Let the level set L = {z € R" : f(z) < f(z0), ¢ € F} becompactand f : F — R
be twice continuously differentiable on L. Let {z} be the sequence generated by Algorithm 2 under
assumption (AS.5) on the model 1y, and under assumptions (AS.4) and (AS.6) on the step sx. Then
(a) The sequence {Jx} converges to zero.
(b) If every limit point is nondegenerate, then there is a limit point x. with M, positive
semidefinite.
(c) If z. is an isolated nondegenerate limit point, then M, is positive semidefinite.
(d) If M, is nonsingular for some limit point z., of {1} then M., is positive definite, {21}
converges to z., all iterations are eventually successful, and {Ay} is bounded away
from zero.
Under the additional assumption that problem (1.1) is nondegenerate, equivalent results hold for the
sequence generated by Algorithm 1.
Proof. We prove each result in order.
(a) The sequence {jx = diag(lvk[%)Vf(zk)} converges to zero: this has been proved in
Theorem 6.

(b) If {\x} is not bounded away from zero, the result immediately follows.
We prove that {\} is not bounded away from zero by contradiction. Assume that
Ak > € > 0. First we show that {Ax} converges to zero.
From Lemma 9, we have that, for sufficiently large &,

q
—Pi(sk) > %ékai,

where
ee & ,
[(xg + AkxpxB)XH) [(Xg + AkxBXD)? "

& = min{1,
Moreover, for sufficiently large k and successful steps

(3.15) f(zx) = Flarsn) > 5% uenedd.

The rest of arguments are similar to the proof of Lemma 5. If there are finite number of
successful steps, {Ax} converges to zero. Otherwise, let {k;} be the infinite sequence
of successful iterations. Inequality (3.15) implies that there exists a constant ¢ > 0
such that €, > €. This fact and inequality (3.15) imply that |

[ ]
EAz'. < 0o.
i=1
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Now the updating rules of Algorithm 1 & 2 imply that
Z 2 7% 2
< —_ .
k=lAk_(1+ 1_71)§Ak'

Hence {A} converges to zero. Since ||sg| < ||D;1Dk.sk[| < xpBAk and ||pi|| <
XDAk, we conclude that both {s } and {p} converge to zero.
From the fact that {A} converges to zero,

& > ¢ forsomeé > 0.
Hence
—k(sk) > %ieeAi.
Now a standard estimate is that

[Fax+ 58) — f(z4) + 55F Cis — ha(sp)
< llsel max, IV (e + €)= P

and thus the last two inequalities show that {p£ — 1} converges to zero. We conclude
that the entire sequence { p£ } converges to unity.

For Algorithm 2, using Lemma 4, {A;} cannot converge to zero, which is a contradic-
tion.

Now we consider Algorithm 1. Let oy be the stepsize to the boundary along py:

l. - . u- - z .
aj = min{max{~—ki 2= Tkiy
Pki Pk

If all variables are free at a limit point z., then a,. = +00. Otherwise, consider a limit
point z, with some variables at their bounds. Since this limit point is nondegenerate
and limg_, », diag(|vk|)gx = O, using (3.2), we have

_ |oks| _ lgk;| + Ak
Ipe;l lgk; + (Bepk);l

for sufficiently large k with g.; # 0. But A¢ > €. Thus the corresponding limit o, > 1.
Hence

liminfa; > 1.
k—oo

In other words, sy = aj[pkr] = pi for sufficiently large k. Therefore pi > 1 for
sufficiently large k. Hence, {A} cannot converge to zero. This is again a contradiction.
In conclusion, there is a limit point with M, positive semidefinite.
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@

If {zx} converges to z., the result follows from (b). If {zx} does not converge then
Lemma 7 applies. Thus, if {z;;} is the subsequence guaranteed by Lemma 7 then
Ay > x—Dl—ﬁge. From Lemma 9, {\;;A;; } converges to zero. Hence {);;} converges to

zero. Thus M, is positive semidefinite.

If M, is nonsingular at a limit point z, of {z4}, then z, is an isolated limit point and
hence M, is positive definite following (). Since ¥x(sk) = g¥ sk + 35T Mysi < Owe
have that

1 r — A
S IDksill < 1917 134l
whenever M is positive definite. This means that
1 1 I
Sllsill < 3xplIDisil < xolI B 113

whenever M is positive definite. But {D;'gx = diag(]vkl%)Vf(zk)} converges to
zero. Following Lemma 7, {zx} converges. Since limg_,, §x = 0, {zx} converges to
z, and M, is positive definite, {px} and {s:} converge to zero.

Next we prove that {Ax} is bounded away from zero. Assume that € > 0 is a lower
bound on the eigenvalues of M. Using Lemma 10, for sufficiently large k,

|$ilpell > emin{AZ, || Disi|I%}.

But recall that, whenever Mj, is positive definite,
S1Disill < 138 il
Let & be an upper bound on the condition number of M. From §x = — M} DysY,
2IDesil < Kl1Dastl.
Hence, there exists € > 0O such that

5
—(sk) > €| Diskl* > —-lsell*-
x5

This estimate and

[F(zk+ s8) = f(z) + 55F Chsk = ¥a(ov)
< Nl goa, IS o + 1) = PG

0<é<1
yield that p{ > 7 for k sufficiently large.
For Algorithm 2, using Lemma 4, we immediately conclude that {Ax } is bounded away
from zero.
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Now we consider Algorithm 1. Using Lemma 10, for & sufficiently large,

Vi (Pr) Yrlok]  Yr(ailpx])
Gil-D g wk(or) < il T

Therefore all the iterations are eventually successful and {Ax} is bounded away from
zero.

Pk =

THEOREM 12. Assume the conditions of Theorem 11 hold and M, is nonsingular for some limit
point . of {zx}. Let s) be the Newton step (3.13) when it exists. Moreover, s = a}[sl] whenever
| Disl || < Ak. Then {zi} converges to . quadratically.

Proof. From Theorem 11, {A;} is bounded away from zero. But under our assumptions, { D; ' gx}
converges to zero and {z} converge to z,. Hence {D;s) } converges to zero where s} is the Newton
step:

MkD;Isiv = —§k.
Using definition (2.11), for sufficiently large &,
= off = agled) - = rituslf ol +rpall - of

where 77 = min{1, ax}. From Lemma 11 in [6], |7} — 1| = O(||zx — z.||). But |6x — 1| = O(||s¥|}).
Hence ||sk — sl || = O(||zx — 2||). Using Theorem 10 in [6], {zx} converges quadratically to z..  m

4. Preliminary Numerical Experiments. In this section we report on preliminary experiments with
the practical trust region method, Algorithm 2, on a set of standard test problems of low dimension. The
method solves these problems quite satisfactorily indicating that this approach has practical potential.

We implemented the “practical trust region algorithm” described in Figure 3 in a straightforward
manner. Either sy = af[px] where pi is a solution to the trust region subproblem (2.8), or s; =
a;[-D;%gx]. The exact implementation is described below.

The computed step sj satisfies the condition

Yi(sk) < BYr(ai[—Digkl), | Drskll < Ak, zk + i € int(F),
and
Yr(sk) < Yr(ax[pr]), | Diskll < Ak, Tk + sk € int(F).
Note: It is easy to verify that condition (AS.4) can be replaced with

Y(sk) < BYr(et[—Di2gk]), || Diskll < BoAk, zk + sk € int(F)
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The Method Implemented
Let o = 0.25,8 = 0.1, = 0.75, 7, = 0.0625,7, = 05,7, = 2, Ay = 1 and
z, € int(F)
Fork =0,1,---
1. Compute f(zk), gk, Hi, and Ci; Define the quadratic model ¢ =
gL sk + LT (Hi + Ck)sk.

2. Computc asolution pi of (2.8). Compute p§ = m"%ﬁl)iﬂ)— If pg > B,

Sk = a}[pk]. Otherwise, sy = —ai[—D;>gx].
3. Compute

t_ f(zk+sk) = f(zi) + 2sFC(zi)sk
Pk = (k) '

pr£ > pthen 2y, = z + 8. Otherwise x4, = Tk.
Update the model ), the scaling matrix Dy, and A as specified.

“nh

Updating 'Il'ust Region Size A
1. Ika < 0then Agy; = YoAk-
2. Ifo < pf < pthen Agy, = max{YeAk, 1| Df " sk|l}-
3. If p] > nthen
if p§ > nthen
Ak41 = max{Ag, %.|| Dy skll}
else
if Ax > Ajand pf < pthen
Agy = max{7lAk’ ”Dl:lsk”}'

and condition (AS.6) can be replaced with
Yr(sk) < BUk(ai[pk]), || Disk|l < BEAk, zk + sk € int(F).

Thus, the implemented method has the convergence properties listed in Theorems 11 and 12.
The experiments were done on a Sun (Sparc) workstation using MATLAB 4.0 [17]. The stopping
criteria used are:

M. > 0 and (i) < 0.5 % 10712,

The test problems are taken from [9]. However, the starting points as described in [9] may not be strictly
feasible. Assume that z ., is the starting point specified in [9]. We modify the starting points as follows:

zo; = Ui + 0.1 % (u; — 1;), if Zstare; < Ii + 100¢,
zo; = u; — 0.1 % (u; — I;), if Zytare; > ui — 100¢,

where € ~ 10~1¢ is the machine precision.
In Table 1, we report the number of function and gradient evaluations taken by the method to obtain
the required accuracy. The number of function evaluations required by the method in [9] is cited in the
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last column as a relative comparison. We point out that the starting points and the stopping criteria of the
two methods are different. The approximate solutions obtained by the two methods may also differ. The
stopping accuracy of the method in [9] is not usually as stringent as that used in our experiments — the
method in [9] terminates when the norm of the projected gradient is less than 105,

5. Conclusions. We have proposed a trust region approach to the bound-constrained nonlinear
minimization problem. This approach generates strictly feasible iterates and possesses strong convergence
characteristics. In particular, we have established second-order convergence properties. Moreover,
the convergence results match the implementation in the sense that a global solution to a quadratic
programming problem, with linear inequality constraints, is not required by the theory. Instead, an
approximate minimization of a quadratic function subject to an ellipsoidal constraint is required (and
achievable).

The computational experiments reported, on a well-known test collection of small-dimensional
problems, indicate that Algorithm 2 has practical potential. However, from a practical computational
point of view we believe the real promise of the underlying ideas presented here is in the large-scale setting.
The method as described is not directly suitable for large-scale problems — computation of a (suitably)
accurate solution to the trust region problem in high dimensions is probably too costly. Nevertheless,
there is considerable scope for modifying and adapting the basic idea, with efficiency in mind, to the
large-scale setting. This is a subject of current investigation.

Finally, we remark that the trust region ideas developed in this paper, for box constraints, can be
extended to the case where there are also linear equality constraints present, i.e., min{ f(z) : Az = b,1 <
z < u}. This generalization is a subject of current research.



| Number of Function/Gradient Evaluations |

PROB n | NEW | CGT
GENROSE U 8 |45 (38| 42
GENROSE C 8 |15(14| 15

CHAINROSEU 252319 20
CHAINROSEC |[25|28 (23| 18
DEGENROSEU (253030 95
DEGENROSEC |25 |28 |23 17
GENSING U 20127 127] 10
GENSING C 20 | 23 | 22 4
CHAINSINGU 20|26 (26| 18
CHAINSINGC |[20|22]21 3
DEGENSINGU |20 26|26 155
DEGENSINGC |20 | 35|34 3
GENWOOD U 8 | 68|57 107
GENWOOD C 8 110| 9 5
CHAINWOOD U | 8 |57 |48 | 77
CHAINWOODC | 8 | 10| 9 5

HOSC45 U 1028 27| 19
HOSC45 C 1010 9 12
BROYDENIAU (30| 14|14 | 11
BROYDENIAC [ 30|14 | 13 8
BROYDENIBU (30| 7 | 7 7
BROYDENIBC [30| 9 | 8 6
BROYDEN2AU (30|19 |16 | 14
BROYDEN2AC |30 (24 (22| 10
BROYDEN2BU (30| 9 | 9 9
BROYDEN2BC |30 | 15| 14 9
TOINTBROYU (30| 8 | 8 8
TOINTBROYC |30 12| 11 8
TRIG U 1013 |11 7
TRIG C 10|16 | 14 8
TOINTTRIG U 10| 8 | 6 13
TOINTTRIG C 10/ 8 [ 6 10
CRAGGLEVYU | 8 |33 |31 | 24
CRAGGLEVYC | 8 13029 | 20
PENALTY U 15124 (24| 27
PENALTY C 15129(29| 80

AUGMLAGNU (1512926 31
AUGMLAGNC |[15]|46 44| 31

BROWNI U 102020 27
BROWNI C 1031 30| 27
BROWN3 U 10099 7
BROWN3 C 0(10] 9] 6
BVP U 10]2121] 4
BVP C 10[20(20] 4
VAR U ®l12|12| 6
VAR C 20(12|11] 6
TABLE 1

Experiments with a Practical Trust Region Method for Bounded Constrained Problems



REFERENCES

[1] A.BIORCK, A direct method for sparse least squares problems with lower and upper bounds, Numerische Mathematik, 54
(1988), pp. 19-32.

[2] R.H.BYRD AND R. B. SCHNABEL, Approximate solution of the trust region problem by minimization over two-dimensional
subspaces, Mathematical Programming, 40 (1988), pp. 247-263.

[3] T. F. COLEMAN AND C. HEMPEL, Computing a trust region step for a penalty function, SIAM Journal on Scientific and
Statistical Computing, 11 (1990), pp. 180-201.

[4] T.F.COLEMAN AND L. A. HULBERT, A direct active set algorithm for large sparse quadratic programswith simple bounds,
Mathematical Programming, 45 (1989), pp. 373—406.

[5] ——, A globally and superlinearly convergent algorithm for convex quadratic programs with simple bounds, Tech.
Rep. TR 90-1092, Computer Science Department, Comell University, February, 1990 (to appear in SIAM Journal on
Optimization).

[6] T.F.COLEMAN AND Y. L1, On the convergence of reflective Newton methods for large-scale nonlinear minimization subject
to bounds, Tech. Rep. TR 92-1314, Computer Science Department, Cornell University, 1992.

[71 ——, A reflective Newton method for minimizing a quadratic function subject to bounds on the variables, Tech. Rep. TR
92-1315, Computer Science Department, Comell University, 1992.

[8] A.R.CoNN, N.I. M. GOULD, AND P. L. TOINT, Global convergence of a class of trust region algorithms for optimization

with simple bounds, SIAM Journal on Numerical Analysis, 25 (1988), pp. 433—460.

[9] , Testing a class of methods for solving minimization problems with simple bounds on the variables, Mathematics
of Computation, 50 (1988), pp. 399—430.

[10] R.S. DEMBO AND U. TULOWITZKI, On the minimization of quadratic functions subject to box constraints, Tech. Rep. B
71, Yale University, 1983.

[11] R. FLETCHER, An algorithm for solving linearly constrained optimization problems, mprog, 2 (1972), pp. 133-165.

[12] R.FLETCHER AND M. P. JACKSON, Minimization of a quadratic function of many variables subject only to lower and upper
bounds, Journal of the Institute for Mathematics and its Applications, 14 (1974), pp. 159-174.

[13] D.M. GAY, Computing optimal locally constrained steps, SIAM Journal on Scientific and Statistical Computing, 2 (1981),
Pp. 186-197.

[14] P.GILL AND W. MURRAY, Minimization subject to bounds on the variables, Tech. Rep. Report NAC 71, National Physical
Laboratory, England, 1976.

[15] J.J. JODICE AND F. M. PIRES, Direct methods for convex quadratic programs subject to box constraints, departamento de
matemética, Universidade de Coimbra, 3000 Coimbra, Portugal, 1989.

[16] P. LOTSTEDT, Solving the minimal least squares problem subject to bounds on the variables, BIT, 24 (1984), pp. 206-224.
27



[17] C.B.MOLER, J. LITTLE, S. BANGERT, AND S. KLEIMAN, ProMatlab User’s guide, MathWorks, Sherborn, MA, 1987.

[18] J.J.MORE, Recent developments in algorithms and software for trust region methods, in Mathematical Programming: The
State of the Art, M. G. A. Bachem and e. B. Dorte, eds., Springer Verlag, Berlin, 1983.

[19] J.J. MORE AND D. SORENSEN, Computing a trust region step, SIAM Journal on Scientific and Statistical Computing, 4
(1983), pp. 553-572.

[20] J.J. MORE AND G. TORALDO, Algorithms for bound constrained quadratic programming problems, Numerische Mathe-
matik, 55 (1989), pp. 377-400.

[21] D. P. O’LEARY, A generalized conjugate gradient algorithm for solving a class of quadratic programming problems,
Linear Algebra and its Applications, 34 (1980), pp. 371-399.

[22] U. OREBORN, A direct method for sparsé nonnegative least squares problems, PhD thesis, Department of Mathematics,
Linkdping University, Link8ping, Sweden, 1986.

[23] G. A. SCHULTZ, R. B. SCHNABEL, AND R. H. BYRD, A family of trust-region-based algorithms for unconstrained mini-
mization with strong global convergence properties, SIAM Journal on Numerical Analysis, 22(1) (1985), pp. 47-67.

[24] D. SORENSEN, Trust region methods for unconstrained optimization, SIAM Journal on Numerical Analysis, 19 (1982),
Ppp. 409-426.

[25] T. STEIHAUG, The conjugate gradient methods and trust regions in large scale optimization, SIAM Journal on Numerical
Analysis, 20 (1983), pp. 626-637.

[26] E.K.YANG AND J. W. TOLLE, A class of methods for solving large convex quadratic programs subject to box constraints,

tech. rep., Department of Operations Research, University of North Carolina, Chapel Hill, North Carolina, 1988.

28



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif

