SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853-7501

TECHNICAL REPORT NO. 767

January 1988
(Revised October 1989)

Minimizing Separable Convex Objectives
on Arbitrarily Directed Trees of
Variable Upper Bound Constraints
by

Peter L. Jackson and Robin O. Roundy

Research supported under NSF grants MEA—8121429 and ECS—8404641.

ABSTRACT

An extension of the Economic Order Quantity (EOQ) model to multi—stage
production—distribution systems and the isotonic regression problem are known to be
equivalent and to be solvable in O(N4) time. The following specializations of the model
are solvable in O(Nlog N) time: joint replenishment systems, pure assembly systems,
nested policies in pure distribution systems, non—nested policies in one—warehouse
multi—retailer systems, nested policies in multi—item, one—warehouse, multi—retailer
systems, and systems in which the underlying network is a series—parallel digraph. We show
here that a generalization of this problem is solvable in O(Nlog N) time whenever the
undirected version of the underlying network is a tree. The algorithm we propose is used as
a subroutine in an algorithm solving the EOQ problem on general circuitless directed graphs,

the subject of a companion paper.

Keywords: production planning, isotonic regression, network optimization, inventory,
polynomial—time algorithms.

ACKNOWLEDGEMENTS

The authors wish to extend their sincere thanks to an anonymous referee who devoted

considerable effort towards correcting and improving the presentation of these results.

1. INTRODUCTION
Let G denote a circuitless directed graph with node set N(G) and arc set A(G).
The graph G is said to be an arbitrarily directed tree if the undirected version of G is a

tree. In this paper we present an algorithm to solve problems of the form

*a) {an?iﬁiléliﬁr?@)} neg}r(a)fn(Tn) (1)

subject to T >T_ ~V (mn)e A(G) (1.2)

where G is an arbitrarily directed tree, and the functions f (-) , n€ N(G) satisfy
Assumptions 2.0—2.2 below. These assumptions are satisfied if, for example, the fn(-) are
strictly convex and continuously differentiable, and if they achieve their minima within a
bounded interval.

The motivation for considering problems of the form PG on arbitrarily directed
trees is the subject of a companion paper (Jackson and Roundy, 1987). It is shown there
that such 'tree problems" arise as sub—problems in an algorithm to solve problems of the
form PG where G is a general circuitless directed graph, not necessarily an arbitrarily
directed tree. The importance of such general problems arises from their application in
production planning and isotonic regression.

The production planning version of P G is referred to as PPG’ It is the special case

in which the functions £ (-) are given by EOQ—type cost formulas: for n € N(G),
f(T)=XK,/T+g, T+ P(T) (1.3)
where K >0, g >0, K +g >0,and P(-) is a penalty function to enforce a

non—negativity restriction:

0 if T>0;

P(T) =
+o otherwise.

Such functions are neither strictly convex nor continuously differentiable but they do satisfy
Assumptions 2.0—2.2 below. In production planning applications K n is the setup cost for
operation n g, is the holding cost coefficient for the inventory of operation n, and T is
the reorder interval for production of operation n. The constraints (1.2) are related to bill
of material relationships between different operations.

P for general circuitless directed graphs is known to be solvable in at most O(N4)
time where N is the cardinality of N(G) (Maxwell and Muckstadt, 1985; Picard and
Queyranne, 1985). The following specializations of PP, are solvable in O(N log N) time:
pure assembly systems, joint replenishment systems, nested policies in pure distribution
systems, non—nested policies in one—warehouse, multi—retailer systems, and nested policies
in multi~item, one—warehouse, multi—retailer systems (Jackson, Maxwell, and Muckstadt,
1985; Roundy, 1983, 1984; Muckstadt and Roundy, 1985). For the first three of these
specialized models, the graph G is an arbitrarily directed tree.

We unify these latter results by showing that PP, can be solved in O(N log N)
time whenever G is an arbitrarily directed tree. The so—called Tree Algorithm that we
propose also solves P G if G is an arbitrarily directed tree. In this latter case the running

time is O(N log N) exclusive of at most 2N computations of the form

minimize {(T,C)= X £(T) (1.4)
T neC

where C C N(G).

The remainder of the paper is organized as follows. Section 2 introduces the
assumptions on the objective functions that are sufficient to guarantee the validity of the
algorithm. Section 3 develops the terminology to describe arbitrarily directed trees and to
describe the characterization of the solution to PG' The concepts are illustrated by means

of an example. Section 4 presents the Tree Algorithm and illustrates several steps of the

algorithm by example. Section 5 establishes the validity of the Tree Algorithm. Section 6
presents an analysis of the running time and space requirements of the Tree Algorithm.

Section 7 concludes the paper. A glossary of the notation used is included in the appendices.

2. ASSUMPTIONS
A cluster is defined to be any subset of the node set N(G). Let . denote the set of

all non—empty clusters. Let R =R U {~w,+w}.

AssumMpTION 2.0: The functions f (-),n € N(G) are convexon R.

AssuMPTION 2.1: There exists a cluster function T: /=R such that T(C) uniquely solves

(1.4) foreach Ce A

AssumpTioN 2.2: If C’ and C" are non—empty disjoint clusters with T(C’) < T(C")
then
T(C’) < T(C’ U C") < T(C").

The important aspect of Assumption 2.2 is the strictness of the inequalities, as the following

lemma points out.

LemMa 2.3: Under Assumption 2.0 and 2.1,if C- and C" are non—empty disjoint clusters

with T(C’) ¢ T(C") then

T(C’) < T(C’ U C") < T(CM).

Proor: Jackson and Roundy, 1987.

Assumptions 2.0—2.2 are satisfied if, for each n € N(G), fn(-) is strictly convex and
continuously differentiable, and is minimized by a finite real number.

For the production planning version of the objective function, (1.3), T(C) is given
by

n
T(C) = |-REC | (2.1)
Y 3
neC

To simplify notation let K(C)= ¥ K_ and g(C)= X g . Then
neC neC

T(C) = (K(C)/g(C)/2.

PROPOSITION 2.4: Assuming K ,g >0 and K +g >0 forall ne N(G) , (2.1) is
well-defined. Assumptions 2.0 —2.2 hold for PP with T(C) given by (2.1).

Proor: Clearly, Assumption 2.0 is satisfied. The assumption Kn + g, > 0 rules out
division of zero by zero, so (2.1) is well defined, though possibly infinite. By examining
cases, it is straightforward to verify that (2.1) uniquely minimizes (1.3) over R. Thus
Assumption 2.1 is satisfied.

Suppose C’ and C" are non—empty disjoint clusters with T(C’) < T(C"). The
assumption K_+g >0 V neN(G) implies that 0 < T(C’ UC") < w. Suppose
T(C’) = T(C” U C"). In that case g(C’) and K(C’) are both positive. Hence

K(C")/g(C") = T(C’)? = T(C” u C")? = (K(C") + K(C"))/(g(C") + &(C")) ,

which implies T(C’) = T(C") , a contradiction. Therefore T(C’) < T(C’ uC").
Similarly, T(C- UC") < T(C"). o

The simple structure of (2.1) enables us in Section 6 to tailor the proposed Tree
Algorithm to PP and bound the running time to O(N log N). By extension, a family of
d—additive convex objectives which includes isotonic regression can also be minimized on G

in O(Nlog N) time. The following result is Corollary 2.5 of Jackson and Roundy, 1987.

PROPOSITION 2.5: PG has a unique optimal solution.

3. OPTIMAL PARTITIONS OF ARBITRARILY DIRECTED TREES

In this section we characterize the solution to problem PG for the special case in
which G forms an arbitrarily directed tree. Section 5 below presents a detailed analysis of
this characterization. The key results of that analysis are summarized here in preparation to
present the Tree Algorithm in the next section. These results are illustrated by means of an
example.

The example is based on the arbitrarily directed tree depicted in Figure 1. The
results of this section are general to problems of the form PG but the example is a
production planning problem, PPG , using the setup and holding cost data (K n’gn) listed

in Table 1. In particular, to simplify the arithmetic, the holding cost factors g n have been

Node Parent Sign K g
n p(n) ! !
1 2 L 75 1
2 3 U 65 1
3 15 L 105 1
4 5 L 30 1
5 6 U 20 1
6 10 L 42 1
7 8 L 75 1
8 9 U 69 1
9 10 U 91 1

10 12 L 28 1
11 12 U 99 1
12 13 U 36 1
13 15 U 38 1
14 15 U 85 1
15 16 U 61 1
16 17 L 275 1
17 — L 75 1

Table 1. Graph and Cost Data for Tree Example.
5

set to unity, so the optimal reorder interval T(C) of any cluster C is simply the square
root of the average setup cost for that cluster. Since reorder intervals are used only for
comparing clusters, it is sufficient to report only squared reorder intervals, that is, to report

the average setup costs of the clusters.

Figure 1. Graph Structure for Tree Example.

In describing the special structure of G and the solutions to P we make use of the

following definitions. The root of the tree is an arbitrary element of N(G). If there are N

nodes in the tree, we assume for convenience that the root is labelled N. Since G is a tree
there is a unique simple path connecting any node n with the root N. For n# N denote
the immediate neighbor, or parent, of n on that path by p(n). Let
s(n) = {i € N(G); p(i) =n} , the set of sons of n. Let S(n) denote the set of all nodes i in
N(G) such that the simple path from N to i includes node n. Thus n € S(n) and
s(n) C S(n). The elements of S(n) are called the successors of n. A node m is an ancestor
of n if neS(m). A node is both a successor and an ancestor of itself. In Figure 1,
p(10) = 12, s(10) = {6,9} , S(10) = {4,5,6,7,8,9,10} and 15 is an ancestor of 10 while

11 is not.

Nodes can be classified by the direction of the arc connecting them to their respective
parents. We say a node n is upper, written n€ U, if (n,p(n)) € A(G). We say a node is
lower, neL ,if (p(n),n) e A(G). Arbitrarily we say that the root of the tree is lower,
N e L. The sign of a node n, written sign(n), is its classification, either upper or lower.

Node i is said to be above (resp., below) node n if i€ S(n), i# n, and the path
from i to n,including i but excluding n , consists entirely of upper (resp., lower) nodes.
Node i is said to be level with node n, written i~n, if i€ S(n), i# n, and the path
from i to n, inclusive, consists of both upper and lower nodes. In Figure 1, node 11 is
above nodes 12,13, 15, and 16, and it is level with nodes 16 and 17. Note that node
11 is both above and level with node 16.

For any cluster C , the root of the cluster is taken to be the node in C closest to

N, with ties broken arbitrarily. If C is connected in G then the root of C is the node m
uniquely satisfying m € C € S(m). A cluster is said to be upper (resp., lower) if its root is
upper (resp., lower). For any cluster C,let s(C) = {j; p(j) € C,j¢ C}. The elements of
s(C) are called cluster—sons of C. Observe s({n})=s(n). In Figure 1,
s({6,9,10}) = {5,8}. If C is connectedin G withroot m then s(C) C S(m) and

C= S(m>\{, u sm].
jes(C)
That is, a connected cluster is defined by its root and cluster—sons.
Let A(n) = {(m,j) € A(G); m,j € S(n)}, the arc set associated with S(n). Let
G(n) = (S(n),A(n)) and observe that G(n) is an arbitrarily directed tree. Let

Pn = PG(n) , the tree problem associated with the successor set of node n.

*
THEOREM 3.1: {Tj ;j€S(n)} is the optimal solution to P if and only if there exists an

index set R(n) € S(n) and a set of clusters {C o | € R(n)} satisfying

(a) {C,;m € R(n)} is a partition of §(n);
(b) C,, is connectedin G(n) and me C ¢ S(m) for all m € R(n);

(c) for each m € R(n) and each jes(C,),
T(C;) 2 T(Cpy) if j€ U, and
T(C) € T(Cpy) if jEL;

(d) for each m € R(n) and each jeC_ ,j#m,
T(C, nS@J) <T(C,) if jeU,and
T(C, nS(J) > T(C) if jeL;

. » *
(e) if je C, then Tj =T(C)
Proor: Appendix A.

A set of clusters satisfying (a), (c), and (d) of the theorem is said to be an optimal
partition for Pn. By property (b), the clusters in an optimal partition are connected in
G. Hence property (b) defines the index set to be the set of roots of clusters in the optimal
partition. R(n) is referred to as the optimal index set for P , and its elements are called

optimal nodes for Pn‘

*
By Proposition 2.5, there is a unique optimal solution {Tj; j€S(n)} to P_. We

now strengthen Theorem 3.1 by proving the uniqueness of the optimal partition.

*
PROPOSITION 3.2: If {Tj; j€S(n)} is the optimal solution to P and {C_;m e R(n)} is

an optimal partition, then j€ R(n) if and only if

T({k e S() Ty =T} =T, (3.1)

feeS() Ty =T} =

= (Cu NS U

kEIU{(n)*
T(Ck)sz

ke]?l(nl)J ns(j)
T(Cy)=T%

(C

ProoF: Expressing the argument of T(-) in (3.1) in terms of the optimal partition,

1 N5()

Cy

J
km

where je C o Repeated application of Lemma 2.3 reveals that

T U G =T
keR(n) nS(j) J
T(C,)=T*

(Cy)=T3
L k#m

By Assumption 2.2, (3.1) holds if and only if

T(C_, nS() = T’; = T(C,)-

By Theorem 3.1(d) this can happen if and only if j=m € R(n). O

CorOLLARY 3.3: There is a unique optimal partition to Pn'

*k
ProoF: By Proposition 2.5, there is a unique optimal solution {Tj; j€ S(n)} to P_. By

Proposition 3.2, this solution uniquely defines the optimal index set. Theorem 3.1(a) and

(b) uniquely associate the optimal index set with an optimal partition. o

COROLLARY 3.4: Let m € R(n). Then R(m)= R(n)n S(m) and the clusters containing

node m in P n and P m coincide.

ProoF: It is easily seen that R(n)n S(m) generates a partition satisfying (a)—(d) of
Theorem 3.1. Uniqueness of the optimal partition establishes the result. o

Henceforth, Cn denotes the cluster rooted at n in the optimal partition for Pn‘ It
is referred to as the lead cluster for problem P_. As Corollary 3.4 indicates, the optimal

partition for]PI1 is composed of the lead clusters for problems Pm , m € R(n).
CoRrOLLARY 3.5: For any n € N(G),

R(n) = {n} U [metsl(cn)R(m)

Corollary 3.5 suggests that problem PN can be solved by recursively solving
problems of the form P beginning with the leaves of the tree and working towards the root
N. At each node n it is sufficient to identify the lead cluster Cn' The remainder of this
section is directed toward illustrating a more explicit characterization of R(n) and C,-

For the example problem defined by Figure 1 and Table 1, Table 2 reports a complete
analysis of Py and all its subproblems P, n € N(G) by listing the optimal index set
Rn , the composition of the lead cluster C N and the squared reorder interval of the lead
cluster T(C n)2 , for each node n. For example, the solution to P, is characterized by
four clusters, C10 , 09 , C7 ,and C 47 whose squared reorder intervals are 30,80, 75 , and
30 , respectively. The properties of optimal partitions as described in Theorem 3.1 and
Corollary 3.5 can all be verified with respect to the example. The lead clusters of the
example are displayed in Figure 2. In the figure, upper clusters are contained by solid lines
and lower clusters are contained by dashed lines. The squared reorder interval of each

cluster is listed below the root of the cluster.

10

A number of important new definitions and properties can be illustrated by the

example. They will be taken up in greater detail in Section 5. A node m € S(n) , m # n is

said to be dominated in S(n) if there exists a node k € S(n) such that k#m, me Cy >

and k and m have the same sign; otherwise it is said to be undominated in S(n). If m is

dominated in S(n) then m cannot be in R({) for any ancestor £ of n (see
Proposition 5.5). In the example, node 12 is dominated in S(15) ; node 11 is

undominated for all of its ancestors. Let D denote the set of nodes dominated in S(n):

D, ={jeS(n)| 3m e S(n)\{j}, sign(j) = sign(m); and je C_},
and let M~ denote the set of nodes undominated in S(n):

M_ = S(@n)\D,.

A node m € S(n) is said to be isolated in S(n) if the path of nodes from n to m,
inclusive, includes both upper and lower nodes (i.e., m is level with n), and if there does
not exist any node k € S(n) such that k#m, me Cy > and k is undominated in S(m). If
m is isolated in S(n) then R(m) c R(£) for all ancestors £ of n (see Proposition 5.9).
For example, node 9 isisolated in S(10) and it appears in the optimal index set for all of
the ancestors of node 10. Node 11 isisolated in S(16) but not in S(15), since the path
from 15 to 11 consists entirely of upper nodes. Node 7 is an element of CS , but since 8
is dominated in S(9) , node 7 isisolated in S(9). Let I denote the set of nodes that are
isolated in S(n):

Inz{ZES(n)[ern; ‘¢ U cm}.
meM_\{¢}

11

Node

© e ~ Oy Ut W

10
11
12
13
14
15
16
17

Optimal Index Set
R(n)

9,7
10,9,7,4
11
12,11,10,9,7,4
13,11,10,9,7,4
14

15,14,11,10,9,7,4,2
16,11,10,9,7,4,3,1
17,11,10,9,7,4,3,1

Lead Cluster
C

n

1
2,1
3,2
4
5,4
6,5
7
8
9,8
10,6,5
11
12
13,12
14
15,13,12,3
16,15,14,13,12
17,16,15,14,13,12

Squared Reorder Interval
T(C,)’
75
70
85
30
25
31
75
72
80
30
99
36
37
85
60
99
95

Table 2. Solutions to P_, for each node n € N(G).

12

Upper Clusters

Lower Clusters

Figure 2. Lead Clusters and Squared Reorder Intervals.

A node m € S(n) is said to be finalin S(n) if node m belongs to the optimal index
set of any node that is isolated in S(n). Hence isolated nodes are final nodes. Nodes 4,7,
9, and 10 are final in S(12). Nodes 7,9, and 10 are isolated (and final) in S(12).

Node 4 is final by virtue of being an element of R(10). Let F_ denote the set of nodes

final in S(n):

F_ = U R().
n
EeIn

A node m € S(n) is said to be defeated in S(n) if m has an ancestor k that is
isolated in S(n) but node m is not in the optimal index set for Py. If m is defeated in
S(n) then k cannot bein R({) for any ancestor £ of n (see Corollary 5.11). Node 5 is

defeated in S(12) even though it is undominated in S(12). Let E_denote the set of nodes

defeated in S(n):
13

E = {ﬁelljn 5(4) } \F_.

A node m € S(n) is said to be a candidate in S(n) if it is not dominated, not final,
and not defeated in S(n). Node n is always a candidate in S(n). Node 1 of the example
is a candidate in the successor sets of all of its ancestors. Let Qn denote the set of

candidate nodes in S(n):
Q= Iva\(En UF,).

Table 3 lists the sets of candidate and final nodes in the successor set of each node in
the example. The relationships between Cn , R(n), Q 4 and F_~are taken up in greater
detail in Section 5. The following results are summarized from that study.

S(n) can be partitioned into three disjoint sets: F 4 Qp > and the set of all nodes
that are either dominated or defeated in S(n). If a node k is dominated (resp., isolated,
final, defeated) in S(n) then it is dominated (resp., isolated, final, defeated) in S(¢) for
every ancestor £ of n. Consequently, if k € Qn then k € Q m for all m that are both
ancestors of k and descendants of n. For example, since 7 € Fg ,node 7 isin the optimal
index set R(n) for all ancestors of 9 ,n =9, 10, 12, 13, 15, 16, 17. Node 8 is dominated
in S(9) , and it is both defeated and dominated in S(n) for n € {10, 11, 12, 13, 15, 16, 17}.
Node 11 isin Qn for n =11, 12, 13, 15.

The relationship between optimal index sets and candidate sets is given by (see

Proposition 5.13):

R(a) = {(Qn NU)UF_ ifneU, 652)

(anL)UFn if neL.

14

Node Optimal Index Set Candidate Nodes Final Nodes

n R(n) Qn F

1 1 —

2 2 2.1 _

3 3,1 39,1 —

4 4 4 —

) 5 54 —_

6 6,4 6,54 —

7 7 7 —

8 8 8,7 —

9 9,7 9 7
10 10,9.7.4 10,5,4 9,7
11 11 11 e
12 12,11,10,9,7,4 12,11 10,9,7,4
13 13,11,10,9,7,4 13,11 10,9,7,4
14 14 14 —
15 15,14,11,10,9,7,4,2 15,14,11,3.2.1 10,9,7,4
16 16,11,10,9,7,4,3,1 16,15,14,3,2,1 11,10,9,7.4
17 17,11,10,9,7,4,3.1 17,15,14,3,2,1 11,10,9,7,4

Table 3. Candidate and Final Nodes for Tree Example.

For example, node 15 is upper, so for n = 15 the right hand side of (3.2) is {15, 14, 11, 2}
U {10, 9, 7, 4} , which is the optimal index set for node 15.

Let Q"= U Q and F'= U F_. Then ne Q_ C{n}juQ®™, F'CF
mes(n) mes(n) n ‘

and F C Q" uF". Let A ={n}u{ieS(n); i is above n} and let

n b

B = {n} U{ieS(n); i is below n}. The lead cluster C, for problem P _ is related to

Qn by the following two equivalent statements (see Corollary 5.22 and Proposition 5.19):

15

C = |A U v Coll\ U Cy s (3.3)

meQ™nL keQ™nU
T(Cm)>T(Cn) T(Ck)zT(Cn)
and
C,=|B,U nU Cpl |\ nu Cyl- (3.4)
meQ nU keQ nL
T(Cm)<T(Cn) T(Ck)gT(Cn)

For example, consider node 12. In this case A12 = {12, 11}, By = {12, 10, 6} ,
Q% ={11,10,5,4}, Q2 nU = (11,5}, and Q'%nL = {10, 4}. Noting that T(Cyq) >
T(Cyo) > T(Cyp) = T(Cy) > T(Cy) , (see Figure 2), the right hand side of (3.4) becomes

[B15 U C51\[Cyg U Gyl = [{12,10,6} U {5,4}] \ [{10,6,5} U {4}] = {12} = C,,,

The right—hand sides on equations (3.3) and (3.4) are functions of T(C L)+ 50
T(Cn) is a solution to a fixed point problem. It is shown in Section 5 that Assumption 2.2
guarantees that the solution is unique and can be found in a simple one—pass procedure (see
Algorithm 4.1). The procedure can be initiated with A~ and used to solve (3.3), or
initiated with B_~and used to solve (3.4). If n€ U and (3.4) is solved, orif n € L and

(3.3) is solved, then CIl , Q, and F , ¢an be computed in the process of solving the fixed

point problem.
4, THE TREE ALGORITHM

In this section we present an algorithm for solving Py where G is an arbitrarily

directed tree. We continue to use the notation of the previous section and we assume that

16

the nodes of G have been indexed by depth—first search. The two key properties of such an
indexing scheme are listed below (Aho et al. 1974, pp. 176—179).

ProPERTY 1: p(n) >n for all n.
PROPERTY 2: There exist numbers o(n) such that S(n) = (m; ¢(n) < m < n).

For any index set M C N(G) let Cyp denote the set of lead clusters indexed by M:
Cy = {C D€ M}. Using the depth—first search indexing scheme we define a complete
order on Cy, as follows. For mne M, C_ < C_ ifeither (a) T(C,) < T(C),or (b)
T(Cm) = T(Cn) and any of the following conditions hold: m € L. and n€ U; mn e L and

m<n;or mnéeU and m >n. We will make use of two order—related operations:

1. MIN (M): Returns the element k of M that satisfies Ckng for all
jeM. .

2. MAX (M): Returns the element k of M that satisfies Cy 2 Cj for all
jeM.

We now present the basic iteration step of the Tree Algorithm.
ALGORITHM 4.1: Find the lead cluster C, atnode n of G.
Input: n, A=A B:Bn,Q=Qn,F=Fn,CQuF.
Output: Q = Q Fan’CQUF'
Method: If ne U then execute procedure SOLVE_UPPER(n,B,Q,F,CQuF) given in

Figure 3; else execute procedure SOLVE_LOWER(n,A,Q,F,CQuF) given in the same
figure.

17

The output of Algorithm 4.1 consists of the index sets Qn and Fn and the pool of
clusters indexed by Qn U Fn' By (3.2), this pool contains the optimal clusters for Pn’
including cluster Cn’

The validity of Algorithm 4.1 is established in Section 5. Figures 4 to 6 illustrate
three applications of the algorithm to the example developed in the preceding section.
Figure 4, summarizing the steps for node 12, is the most interesting because it illustrates
(a) the formation of C1o by solving (3.4); (b) the identification of an isolated node (node
10); (c) the identification of a node as final even though it is not isolated (node 4); and (d)
the elimination from Q of a defeated candidate even though it is undominated (node 5).

Figure 5, summarizing the steps of the algorithm for node 15 , is interesting because
it illustrates the elimination from Q of a dominated node (node 13). Figure 6 is included
for completeness, illustrating the formation of a lead cluster (016) by solving (3.3).

Finally, we present the Tree Algorithm.
ALcoriTHM 4.2: Solve Py (The Tree Algorithm).

Input: An arbitrarily directed tree G indexed by depth—first search and a procedure to
compute T(C) for C ¢ N(G).

Output: A = AN , B= BN , Q= QN , F= FN , CQUF’ The optimal partition for
problem PN 18 given by C(QHL)UF‘

Method: Execute procedure TREE_SOLVE(N,A,B,Q,F,CQuF) given in Figure 7.

18

A

6.1
6.2
6.3

7.1
7.2
7.3

10.
11.

procedure SOLVE_UPPER(n,B,Q,F,Cqp)

begin

end

(resp., SOLVE_LOWER(n,A,Q,F,CQuF))
C«B (resp.,, C+A)
FOUND « FALSE
While Q #¢ and FOUND = FALSE do begin
Compute T(C)
k « MIN(Q) (resp., k « MAX(Q))
If keL and T(C) 2 T(Cy)
(resp.,if k€ U and T(C) < T(Cy))
then "PRUNE":
begin
Q - Q\{k}
F«Fu{k}
C« C\Ck
end
else if ke U and T(C) > T(C,)
(resp.,if ke L and T(C) < T(Cy))
then "GRAFT":
begin
Q « Q\{k}
Cqur - CqurMCy}
C-CuC,
end
else "STOP": FOUND « TRUE
end
Q- QU {n}
Cn «C
Cqur © Cqur Y {Cy}

Figure 3. Procedure to Find the Lead Cluster at Node n.

19

Input: n=12, A, ={1211} , B, ={12106} , F2={97} and
Q2 = {11,10,5,4).

Method: SOLVE_UPPER

Q F C T(C)’ k= Sign T(CQ)® Action
(sorted) MIN(Q) ofk
5,4,10,11 9,7 12,10,6 35.3 5 U 25 GRAFT
4,10,11 9,7 12,10,6,5,4 31.2 4 L 30 PRUNE
10,11 9,7,4 12,10,6,5 31.5 10 L 30 PRUNE
11 10,9,7,4 12 36.0 11 U 99 STOP

Qutput: C; o= {12}, F 5 ={10,9,7,4} and Q,, = {12,11}.

Figure 4. Finding the Lead Cluster at Node 12.

Input: n=15, A ={1514131211} , B, ={153}, F° ={109,74} and
QY = {14,13,11,3,2,1}.

Method: SOLVE_UPPER

Q F C T(C)> k= Sign T(Cp)? Action
(sorted) MIN(Q) ofk

13,2,1,3,14,11 10,9,7,4 15,3 83.0 13 U 37 GRAFT

2,1,3,14,11 10,9,7,4 15,13,12,3 600 2 L 70 STOP

Output: Cy . = {15,13,12,3}, F . = {10,9,7,4} , and Qq, = {15,14,11,3,2,1}.

Figure 5. Finding the Lead Cluster at Node 15.

20

Input: n=16, A ={1615141312,11} , By ={16}, F1®={10974} and
Q0 = {15,14,11,3,2,1}.

Method: SOLVE_LOWER

Q F C T(C)* k= Sign T(Cp? Action
(sorted) MAX(Q) ofk

15,2,1,3,14,11 109,74 16,15,14,13,12,11 99.0 11 U 99 PRUNE

15,2,1,3,14 11,109,7,4 16,1514,13,12 950 14 U 8 STOP

Output: G = {16,15,14,13,12} , Fyo = {11,10,9,7,4} and Q, = {16,15,14,3,2,1}.

Figure 6. Finding the Lead Cluster at Node 16.

procedure TREE__SOLVE(n,A,B,Q,F,CQuF)
begin
L. A«{n}, B«{n}, Q+¢, Fe4¢, CQuF‘"d’
2. For each m € s(n) in decreasing order of m do
begin
3. TREE_SOLVE(m,A*B*,Q",F",.Co),)
4. fmeU then A~AUA"
5. else B+ B UB-
6. Q-QuUQ’
7. F«FUF’
7. F«FUF’
8. Cqur “ Cqur Y Cq -y p-
end
9. If neU then SOLVE_UPPER(n,B,Q,F,Cy)
else SOLVE__LOWER(n,A,Q,F,CQuF)
end

Figure 7. Recursive Procedure to Solve Pn'

21

The validity of the Tree Algorithm follows inductively from the validity of Algorithm

4.1, the definitions of An’ B F, and Q" , and the recursive definition of the

n’
procedure TREE_SOLVE.

In Section 6 we argue that none of the lines in Figures 3 and 7 is performed more
than 2N times, and with the exception of Line 4 in Figure 3, each line in Figures 3 and 7
can be performed in at most O(log N) time. Consequently the running time of the TREE
Algorithm is at most O(N log N) , exclusive of at most 2N operations of the form (1.3).
In the case of the production planning problem PPG , we show that the algorithm can be
implemented to run in at most O(N log N) time overall. By extension, certain d—Schur

convex objectives including isotonic regression can also be minimized on G in O(N log N)

time.

5. VALIDITY OF THE TREE ALGORITHM

In this section we establish the validity of Algorithm 4.1 and, hence, the validity of
Algorithm 4.2, the Tree Algorithm. The section is organized into three parts. Section 5.1
develops a detailed characterization of optimal index sets, Section 5.2 develops a
characterization of lead clusters, and Section 5.3 relates these characterizations to

Algorithms 4.1 and 4.2.

5.1 Characterization of Optimal Index Sets

In this subsection we define candidate and final nodes, establish the characterization
(3.2) of optimal index sets in terms of candidate and final sets, and characterize candidate
and final sets in recursive terms that involve the lead clusters.

Let T" = {TIJ.l; j€S(n)} denote the optimal solution to problem P , andlet R(n)
denote the corresponding optimal index set. Table 4 lists the squared reorder intervals
(T?)‘? for three nodes j and for several successive planning problems P_ , taken from the

example of Section 3.

22

The following three lemmas establish several simple relations between the solutions to
successive problems. They can be illustrated with reference to Table 4. Note that
Tg = T(C;) by Theorem 3.1(e).

LemmA 5.1: If je S(n) then T? = T% if and only if j€ R(n).

Proor: Corollary 3.4 implies that if j€R(n) then T7 = Tj Let T§= Tj Then the
constraint represented by the arc between j and p(j) is not binding in the solution to PIl ,
so TM = {Tﬁ; k € 5(j)} must be optimal for problem Pj' By Proposition 2.5, ™ = T,

Since j € R(j) , by Proposition 3.2 we have

T[{k € S(j); T8 = TIJ.I}] - T[{k € S(j); T) = Tg}] -Ti=1}

By Proposition 3.2, je R(n). o

(T?)z j 1 2 3
n Sign L U L
*
1 L 75 X X
*
2 U 70 70 X
* *
3 L 75 85 85
* *
15 U 75 70 60
* *
16 L 75 85 85
* *
17 L 75 85 85
X j#S(n)
* j € R(n)

Table 4. Squared Reorder Intervals from Successive Problems.

23

Lewn 5.2: Let j e S(n). Then TIJ}ZT:% if jeU,and T ¢ if jeL.

Proor: If TIJ} < Tji and je U then we can construct an alternative feasible solution to Pn
using T\ = {Ti:; k € S(n)\S(j)} together with TJ. This solution must also be optimal for
P_ , thereby contradicting uniqueness (Proposition 2.5). Therefore T? > T:% if jeU. The

proof for j€ L is similar. o

LemvA 5.3: Let me S(n) and je S(m). Then TIJ.lzTIJI.l if meU, and TIJ?ngJF‘ if

m € L.

Proor: Suppose m € U but TIJ}<TI§1. On the path from m to j let node k be the

node closest to m for which Ti < TII?. By the previous lemma k#m. Hence

k Lo TE . . S ol N L
p(k) € S(mm) and Tp(k) > Tp(k) Suppose k€ U. Then Ty > T} > Tp(k) 2 Th k)
Since TII? > TI;I(k) , the solution Tk _ {TI?; £¢ S(k)} must be optimal for P,. Hence

we can construct an alternative optimal solution to P using To\k {TT; L€ S(n)\S(k)}

and ka. This contradicts uniqueness. Similarly, suppose k€ L. Then T
m n . n n . nk _ ;mn, .
Tp(k) < Tp(k)‘ Since Ty < Tp(k) the solution T = {T o L€ 5(k)} must be optimal
for Pk. Hence we can construct an alternative optimal solution to Pm using
ok {TI?; £e S(m)\S(k)} and Tk This, too, contradicts uniqueness. Therefore

T? > TIJ]?. The result for m € L follows similarly. o

2
1

< T%G < T:f since node

As an example of Lemma 5.3, observe from Table 4 that T
2eU, 3€L,andboth 2 and 3 are successors of node 16.

An immediate consequence of these lemmas is the following.

24

CoroLLaRy 5.4: If C nC #¢, meL,and neU then T(C_)> T(C)).

Proor: Since C = ~and C_ are each connected in G (Theorem 3.1(b)), either m € C, or
neC . Ineither case, T(C)= T(C,) is impossible by Lemma 5.1 and T(Cm) < T(C))

is impossible by Lemma 5.2. o

As in Section 3, let D_denote the set of nodes dominated in S(n):

D, ={ieS(n)/ ImeS(m)\{j}; sign(m)=sign(j); and je C_}, (5.1)

Clearly, if m € S(n) then D_ ¢ D . That is, if j is dominated in S(m) then it is
dominated in the successor set for all ancestors of m. The next result establishes that if a

node j is dominatedin S(n) then it does not belong to the optimal index set of n.
ProposITION 5.5: If je€ D_, then j¢ R(n).

Proor: Since je D_, there exists a node m with m € S(n)\{j}, sign(j) = sign(m), and
J€ Cm. Suppose jm € U. By Lemmas 5.2 and 5.3 we have ’I‘Ij1 > TI? > Ti If TIEI = Tg
then by Lemma 5.1 we would have je R(m). However je¢ C, implies j¢ R(m).
Consequently Tg.l > TI? > Tj If je R(n) then T? = T:% by Lemma 5.1. Hence j¢ R(n).
The proof for j,m € L is similar. o

As in Section 3,let M , denote the set of nodes undominated in S(n):
M, =S@\D,. (5.2)

Clearly, since lead clusters are connected in G, if two nodes k and m are undominated in

S(n) and have the same sign then Cy and C_ are disjoint.

25

CoroLLARY 5.6: R(n) C M_.

A node Z¢€ S(n) is said to be level with node n, written £~ n , if the path from /
to n , inclusive, includes both upper and lower nodes. A node cannot be level with itself. A
node £ is isolated in S(n) if £ islevel with n and there does not exist another node
m € Mn such that £€ C o As in Section 3, let In denote the set of nodes that are isolated

in S(n):

I = {¢eSm);¢~vn,t u C_t. 5.3
n (n); £~ n ﬁmeMn\{Z} m (5.3)

ProposiTioN 5.7: 1 ¢ R(n).

Proor: By Corollary 5.6, R(n) C M . Now {C M€ R(n)} forms a partition of S(n)
but the only cluster in Mn containing an isolated node, f€l 0’ is C R Consequently

Le R(n) V tel . o

The following lemma and proposition establish that if a node ¢ is isolated in S(m)

then it is isolated, and hence is in the optimal index set, for all ancestors n of m.
Lewma 5.8: If m € s(n), £€ S(m),and £€I \I then sign(n) # sign(¥).

Proor: Suppose n and £ have the same sign. Since £~ n, there exists a node on the path
from n to £ with the opposite sign to both n and £ It follows, therefore, that £~ m
and hence £# m. Since £¢ Im there exists a node k € Mm such that ¢ Ck. Now l€ In
implies £€ R(n) by Proposition 5.7 and, hence, £¢ M by Corollary 5.6. This implies ¢

and k have opposite signs. It must also be the case that k ¢ Mn ;else £ ¢ In. Now, since

26

n=p(m), ke M~ and k¢ M can happen only if ke C, andif k and n have the

same sign, contradicting the assumption that n and £ have the same sign. o
PrOPOSITION 5.9: If m € S(n) then I CI CR(n).

Proor: I c R(n) by Proposition 5.7. By induction, it suffices to show that I ¢l for
n = p(m). Suppose L€ Im\In. Now {~m implies £~ n, so by definition there exists a
node k € M suchthat £€ C,. By (5.1) D €D, ,s0 M nS(m)c M_ . We must have
k = n; otherwise k ¢ M and £¢1 . Therefore {€ I \I, implies £€ C, and {¢ R(n).
We will produce a contradiction by showing that £€ R(n).

Let j be the node closest to £ on the path from m to ¢ such that ¢ Ij' By
Lemma 5.8, ¢ and j have opposite signs. By Proposition 5.7, £¢€ R(j), so we have
T)= T by Lemma 5.1. Suppose £€ U and jeL. By Lemma 5.3, T < Ty = Th< 1%,
Therefore Tﬁ = Tll} and, by Lemma 5.1, £¢ R(n). A similar argument holds for £€ L and
jeU. o

A node is final in S(n) if it belongs in the optimal index set of a node isolated in

S(n). Asin Section 3, the set of final nodes in S(n) F_,is given by

F = . .
n egl R({) (5.4)
n
The following two corollaries follow immediately from Proposition 5.9 and Corollary 3.4.

COROLLARY 5.10: If m € S(n) then F C¢F, CR(n)

A node is defeated in S(n) if it is not final in S(n) and it is a successor of a node

that is isolated in S(n). Asin Section 3, let E , denote the set of nodes defeated in S(n):

27

B = { egxn 5(11)} \F,.

As the following corollary indicates, defeated nodes cannot be in the optimal index set.

CoroLLary 5.11: E_ ¢ S(n)\R(n).

A node in the successor set of an isolated node is either final or defeated. Hence the
set Q of candidate nodes in S(n) (that is, the set of nodes that are not dominated, not

final, and not defeated in S(n)) is given by
Q,=M\(E UF). (5.5)
By (5.4) and Theorem 3.1(a),

u C,=u 8(j).
L~ .
Ean Jel

Furthermore, by (5.3) and Theorem 3.1(b), if me Q and jeI then C nS(j) = 0.

Consequently,

[OEARPR B

The following lemma and proposition establish the desired characterization of optimal

index sets.

Lewma 5.12: If m € S(n) and £€s(C) then either sign({) = sign(m) or £el CF .

28

Proor: By Proposition 5.9 it suffices to show that either sign(4) = sign(m) or £e I, By
Corollaries 3.5 and 5.6, L€ s(C,,) implies € R(m) and hence fe M - Suppose m and
¢ have opposite signs. In that case, either ¢ Im or there exists a node k¢ Mm on the
path from m to £,k # £, such that f¢ Cy- Now [e M~ implies that £ and k have
opposites signs. However, {¢ s(Cm) implies that k € C,,- Since ke M_, we must have
sign(k) # sign(m). Consequently ¢ and m must have the same sign, which is a

contradiction. Henceif ¢ and m have opposite signs we must have £¢ I, o
ProposSITION 5.13: If m ¢ Fn U Qn then
F N S(m), if meF_,

R(m) ={(F, U (Q,nTU))NnS(m), if meQ NU,
(F, u (Q, NL))NnS(m), if meQ nL.

ProOF: The result follows from a straightforward induction argument based on Corollary 3.5

and Lemma 5.12. o

Observe that n € Q, so that (3.2) follows immediately from the proposition.
Proposition 5.13 characterizes optimal index sets in terms of final nodes and
candidate nodes. We turn now to the problem of recursively computing Fn and Qn.

Corollary 5.14 below is found to be the key relationship in solving this problem.

COROLLARY 5.14: If ne U then

T(Cp) 2 T(C)) ¥ meQ U and T(C,)>T(C,) ¥V meQ nL.

29

If neL then
T(C)<T(C)) VmeQ nL and T(C) <T(C)) VmeQ nU.

ProoF: Suppose neU and me Q, By (5.6), m¢g U C,. Suppose meU. By
EFn
Proposition 5.13, m € R(n). Let k denote the root of the optimal cluster next to C m on

the path from n to m. That is, keR(n) and p(m)eC,. Since meU,
T(C,,) 2 T(Cy). By Proposition 5.13 and by (5.6), k€ Q, NU. By induction, therefore,
T(C,)> T(C,). Suppose me L. Then me Cy for some ke Q nU ; otherwise m is
isolated in S(n). By Corollary 5.4, T(Cm) > T(Ck). As just established, T(C,) 2 T(Cn)
since. k € Q NU. Hence T(C_)>T(C). A parallel argument establishes the result for

nel. o

As in Section 3,1let Q" = U ()Qm and let I and F" be similarly defined. By
mes(n

Corollary 5.10, F* ¢ Fn' The set difference F n\Fn is the set of nodes identified as final in

S(n) but not final in S(m) for any son m of n.

F\F" = gg R(£)|\ UnR(k)
n kel
- ZgIn\In RN k:InR(k) : Zgln\ln RN kgl ZR(k)
since I,C 1" for all £€ S(n)\{n}. Therefore
Fn\Fn C fgIn\In (R(£)\F). (5.7)

LemMa 5.15: All elements of Fn\Fn have the opposite sign of node n.

30

Proor: By Lemma 5.8, In\In consists entirely of nodes which have the opposite sign of n.
By Proposition 5.13, R(£)\F, consists entirely of nodes with the same sign as £ By (5.7),
therefore, F Il\Fn consists of nodes with the same sign of nodes in In\In and the opposite

sign of node n. o

The next two propositions reveal that final sets and candidate sets can be computed

recursively, given the T(-) value of the current lead cluster.
PRrOPOSITION 5.16: For n € N(G),

. ={F“U{Ze Q*nL: T(C)<T(C,)} if neU,
" F'u{teQ"nTU: T(Cp)2T(C)} if ne L.

PRroOF: As observed, F'c Fn. Let £¢ Fn\Fn. By Lemma 5.15, n and { have opposite
signs. Suppose n € U; then £€ L and, in particular, £€¢ Q" nL. Let m be the ancestor
of £ that is a cluster—son of C, me s(Cn) ,£€S(m). Since £¢F", fe Qp,NL Now
m € s(C) implies m e R(n) and le F CR(n) then implies £€ R(m). Therefore, by
Proposition 5.13, £/ and m have the same sign; else {¢ F™. By Corollary 5.14,
T(Cy < T(C,)- By Theorem 3.1(c), T(C,) < T(C,). Hence T(C, < T(C,). The result
follows similarly if n € L.

Now suppose neU, £LeQ"™nL, and T(C) ¢ T(C,)). By Corollary 5.14,
l¢ Q,NL. Node £ cannot be dominated in S(n) because £€ Q™ and ¢ and n are of
opposite sign. Suppose { is defeated in S(n). In that case, by (5.4) and Theorem 3.1(a),
there exists a node m € F ~suchthat £¢ Cm. It cannot be the case that m € F* because
£e Q" Thus, me F \F". By Lemma 5.15, m € L , implying £ is dominated in S(m) , a
contradiction. If £ is not dominated, not defeated, and not a candidate in S(n) then it
must be final in S(n) ; £€ F . The result follows similarly for n€ L, £e Q" nU, and
T(C)2T(CY). b

31

ProrosiTION 5.17: If ne U then

Qu=1{n}u{keQ"nL; T(C,) > T(C)} U {k e Q" n U; T(C,) 2 T(C}.
If neLl then

Q,=1{n}u{keQ"nT; T(Cp) < T(C)} u{k e Q" nL; T(C}) < T(C)}.

PrOOF: It is easily seen that Q_C{n}U Q" Suppose neU. If ke Q \{n} then
T(Cy) > T(C) if keL and T(Cy) 2 T(C,) if ke U, by Corollary 5.14. Hence Q, is
a subset of the right hand side of the first equation.

Suppose k€ Q" nL and T(Cy) > T(C,). By Proposition 5.16, k¢ F . If k is
defeated in S(n) then I /L€ Fn\Fn such that k € C,. By Lemma 5.15, £€ L, implying k
is dominated in S(¢), a contradiction. If k is dominated in S(n) then there exists
me {n} UQ" such that ke C, and m and k have the same sign. If me Q" then
k¢ Qn » @ contradiction. Nodes k and =n have opposite signs. Therefore k is
undominated, undefeated, and not finalin S(n): k € Q-

Suppose k € Q"N U and T(Cy)> T(C,). By Proposition 5.16, k ¢ F . If k is
defeated in S(n) then I /¢ Fn\Fn such that ke C,. By Lemma 5.15, {eL. By
Corollary 5.14, T(C)>T(Cy) since keQ"nS(#)CQ,. Hemce T(C)>T(C,),
violating Proposition 5.16. Consequently k is undefeated in S(n). If k is dominated in
S(n) then ke C, since ke Q". But T(Cy) 2 T(C,) violates Lemma 5.1 if the equality
holds and violates Lemma 5.2 if the strict inequality holds. Therefore k is undominated,
undefeated, and not final in S(n) ,ie., k € Q-

A parallel proof establishes the result for n€ L. o

32

5.2 Characterization of Lead Clusters
In this section we establish that Cn , the lead cluster of problem P L is the unique
solution to a fixed point problem.

Let C_(T) be the point to set mapping defined by

Cy(T)={n}u| u Cm}\ U Cplu| U Cel |- (5.8)
meQ™ keQ™nU keQ™nL
T(C,)>T T(C,)<T

LeMMA 5.18: The clusters in {Ck; either ke Q" nU and T(Ck) >T,or ke Q®nL and
T(C,) < T} are all mutually disjoint.

Proor: Since candidate nodes are undominated, the clusters {Ck: k€ anU} are
mutually disjoint, as are the clusters {C,:keQ"nL}. Suppose keQ®n U,

meQ"nL, CenCp#¢,and T(C) 2 T2 T(C). By Corollary 5.4, T(C,) > T(Cy) ,

a contradiction. no

The fixed point problem is to find a value T° such that T(C_(T°))=T°. The
n

existence of a fixed point is ensured by the following.

ProPOSITION 5.19: If T° = T(C,) then C_(T°)=C_.

33

Proor: Setting T = T° in (5.8) and by employing (5.6), we have

C(T°) ={n}u[u CAM[U Cufu . ClU[U] Cp
£eQ"UF" keF" keQ"nU keQ'nL
T(Cy)2T T(C 4T
=Sm)\([u CJuf U CJU[U Cy
keF" keQ™nU keQ™nL

T(Cy)2T° T(Cy)<T®

since R(m)C QMUF® for all me s(n) by Proposition 5.13. Suppose ne U. By
Propositions 5.16 and 5.17, if T° = T(C_) then

C,(T°) = S(n)\ [u ck] u { u CkJ :
k(—:FII keanU\{n}
Hence, by Proposition 5.13,
T = SO

By Corollary 3.5 and Theorem 3.1(a),

¢, (T°) = S(a)\ Y =S(n)\[u)S(m)J:Cn.

m mes
mes (C_)

The proof for n € L is parallel. o

34

Proposition 5.19 implies that T(C_) is a fixed point of the function T(C,(T)). The
following proposition states that this is the only fixed point of T(CR(T)). The proof uses

the strict monotonicity property of Assumption 2.2.

PROPOSITION 5.20: If T° €R satisfies T® = T(C (T°)) then T° is the unique point
satisfying T = T(C_(T)).

Proor: By (5.8), T(C,(T)) is a piecewise—constant function of T with a finite number of
discontinuities. ~For arbitrary T* , let C = Cn(T*) , C = Cn(T*——e) , and
ct = Cn(T*—l—e) where ¢ is a very small positive number. By (5.8), C" = CuUC_ for
some (possibly empty) set C_ , and ct=cuc n for some (possibly empty) set C 4

Corollary 5.4 implies that

C = Un Cy and C 4= un Ck.
keQ nL . keQ'nU .
T(Ck)=T T(Ck)=T

* *
By Lemma 2.3, T(C_)=T if C_+#0, and T(C+) =T if C, #0. Assumption 2.2

implies that

ok * - * +
if T >T(C) then T >T(C") and T > T(CM),

o * - * +
if T <T(C) then T <T(C") and T <T(C"), and

. * * — * +
if T =T(C) then T =T(C”) and T =T(CH).

*
In the latter case T is not a discontinuity of T(CL(T)).
Let T° = T(C,) = T(C,(T°)). Then T(C,(T)) is continuous at T°. Since

T(Cn(T)) is piecewise constant with a finite number of discontinuities,

35

T(C(T°+¢€)) =T° < T° + ¢ for all sufficiently small €>0. By induction on the
discontinuities of T(C_(T)) , the preceding paragraph implies that T(Cn(T)) < T for all
T > T°. Similarly, T < T(C(T)) forall T < T°. o

We are now in a position to establish (3.3) and (3.4) as alternative equivalent
statements of the fixed point problem. As defined in Section 3, A = {n} U
{k € S(n); k is above n}. and B = {n} U{k € S(n); k is below n}.

LEMMA 5.21:

Anu[u Ck}={n}u{u C
keQ™nU

keQ™nL meQ"

Proor: By (5.3), (5.4), and Proposition 5.13 we have ANntc U C,- Let
m

n .
Le man C,, and le s(An). Clearly, £€ Q" nL. By Proposition 5.13 and (5.6),

U Cp=U C

”
keQ™nS(£) keQ™nLNS(¢)
. n
Since A. N Q" NL=¢ we have
{n}U[U Cp|=A,U| U U Cyll =AUl U Cyl-
meQ™ £es(A) | eqnLns(e) keQ™NL

The result involving B follows similarly. o

COROLLARY 5.22: If T° = T(C,) then Cn(To) is given equivalently by the right hand
sides of (3.3) and (3.4).

36

Proor: 'The result follows upon substituting T(C_) for T in (5.8), employing the
substitutions suggested by Lemma 5.21, and noting that An nQ*nL = B, N Q"nU =)

and Lemma 5.18 permit reordering the set difference and set union operations. o

5.3 Validity of the Tree Algorithm

In this subsection we relate the characterizations of the previous two subsections to

Algorithms 4.1 and 4.2.

1,2 e :
Let q = |Q"| andlet Q"= {ky, k2, ..., k "} where cki < Cki+1 for all i,
. . n - n -
using the ordering defined in Section 4. Let rll1 = {ki]f 1<j<i} and SII1 = {kl-]1 i<j<aqy}
q +1
fori=1,2, .., Apy1- Note that rll1 = snn =¢. Let
i_
C,={n}u|u nCK]\ ui Cy| U Ui Cy (5.9)
eQ k(-:rnnL kesnnU
LemmA 5.23: For each i=1,2, ..., q,+1, the clusters {C;:ke (rIi1 nNL)u (in1 nU)} are

mutually disjoint.
Proor: The proof is parallel to that of Lemma 5.18. o

The following proposition indicates that the clusters C; can be computed

recursively for both increasing and decreasing values of i.

1 .
. 1 qn+ _ - . 1
PROPOSITION 5.24: Cn = BX1 and Cn = An. For i=1,2,..., 4 > if kII € U then
i ~i+1 i+l _ Ad e 11 1_ A1+l
Cn = Cn \Cki and CI1 = CIl U Cki , and if kIl € L then CII = Cn U Cki and
n n n
i+1 _ Ai
Cn = Cn\Cki.
n

37

PRrOOF: Since rrl1 =¢ and 8111 = Q" , Lemma 5.21 and (5.9) imply

1
C.=B U| U C,I\| U C, |
noon [keanU k] [keanU k}
n 1 . qn+1 A
Clearly B_n Ck =¢ V ke Q nU. Hence Cn =B_. Similarly, Cn =A_.

Lemma 5.23 implies C . is disjoint from {C,; k € (r;nL) U (sril'*'an)}. Therefore
k

if k! €U then C . ccitl andif k! €L then C . ¢ Cl. The result now follows by
n kl n n kl n
n n

(5.9). o

We next establish conditions under which the constructs of this subsection, rll1 , sll1 ,

and C_ , match up with the desired sets, Q F_,and C_.

n H
i . 0_ 941 .
Let t, =T Cki for 1_1,...,qn, tn——m,and t = +w. We say that i
n
is critical in n if the following conditions hold:

(171 < el if i>1 and kil e U

n n’’ n '

i—1 i p s i-1 .

| t, < T(C)), if i>1 and k € L;

(5.10)

i i .p . i)
T(C,) <ty ifi<q, and k €U; and

i i .e . i
T(C,) <ty ifi<q and k € L.

I

ProposiTioN 5.25: If i is critical in n then

(a) ;nU {£eQ"nU: T(C) < T(C)},
(b) IllnL_{ZeQ nL: T(C,) < T(C)},
(c) I—‘;nL—{mQ nL: T(Cp) > T(C,)},
(d) Ilan {£eQ"nU:T(C) > T(C))},
(e) C;~Cn,

38

© F = F'u(r,nL) if neU,

n ;
F'u(s,nU) if neL,
® {n}Uinl1anU,
g == .
n {n}UrlllianL.

Proor: If i iscritical in n then it is easily seen that

L ¢ {feQ"nL: T(Cp < T(CL)}.

Suppose that there is an £¢€ inl NL such that T(Cg) < T(Cril). Since T(Clil) < tIi1 we must

have T(C,) = T(Clil) = trir By the ordering rule, {€ L implies inl €L and hence
T(C 111) < tril , & contradiction. Therefore

r' L ={fe Q"nL: T(C, ¢ T(Cl))

n : = n’/J-

Similarly

sinU={£eQ"nT: T(C) > T(Cl)}.

By (5.8) and (5.9), therefore, CIi1 = Cn(T(Cxil)) and by Proposition 5.20, CIi1 = Cn‘

Properties (a)—(e) follow immediately. Properties (f) and (g) follow from Propositions
5.16 and 5.17. o

The last major step in establishing the validity of the Tree Algorithm is to show that
the termination criteria of the algorithm are equivalent to the condition of finding a value of

i that is critical in n. For this purpose we make use of the strict monotonicity property of
Assumption 2.2.

39

ProrosiTioN 5.26: If either of the following sets of conditions hold then i is critical in n:

roo.

il <l ifi>1and K e U
71 ¢ mcly, ifi>1and K€ L -
‘ T(CIH) ¢ ¢l if i< q and Kl € U; and (5:11)
T(CIiI'H) < tIi1 if 1< q, and k:l el ;
or
'tlil"l < T(Ci’l) if i>1 and klil"1 e U;
e erEelt)y i1 and K7l e 1 N
‘ T(Cl) <t if i< q and k! € U; and (512)
T(Cl) <l if i< q_ and kKl eL.

Proor: Consider the first set of conditions, (5.11). If inl € U then by Proposition 5.24,

i+1 _ Ad . i . i

C, "=C,u Cki. Since C_ and Cki are mutually disjoint, T(C_) > T
_ n n

imply T(Ct) > T[C |

k

n

(5.11). Consequently T(Clil) < txil‘ If inl € L then by Proposition 5.24, Cli1 = C;’H e

n
, by Assumption 2.2, and thereby violate the third condition of

C i} would
K

i
kn

By Assumption 2.2, T(Cl) < T =t Tt follows that i is critical in n. A parallel

n

proof establishes the result for the second set of conditions. o

THEOREM 5.27: Algorithm 4.1 returns with Q = Qn , C= Cn ,and F = Fn‘

40

Proor: If k= kli;1 after step 5 of SOLVE_LOWER , orif Q=¢ (i.e.,,i=1), then a

simple induction proof shows that C = CIi1 , F=F'y (in1 nu), Q= IIIl , T(CIII+1) < txll

if kleU,and T(Cit)<tl it kleL. 1f SOLVE_LOWER then terminates, cither
because Q =¢ or step 8 of SOLVE_LOWER is executed for this value of k, then by

(5.11) of Proposition 5.26, i is critical in n and by Proposition 5.25, C = Cn , F=F_,

and Q= Qn\{n}. Step 9 then results in Q = Q- A parallel proof establishes the result
for SOLVE_UPPER using (5.12) of Proposition 5.26. o

The validity of the Tree Algorithm is an easily established consequence of Theorem

5.27. We conclude this section by proving the following lemma, which is used in Section 6.

e g iy i+l i iy i
Lewma 5.28: If k€ U then S(k})ncClt!= cki . If k! €L then S(k})nC) = cki .

n n
Proor: In view of Proposition 5.24, it suffices to show that if kri1 € U then S(k;) n C1i1+1
o i i i i i
gcki ,and that if k €L then S(k)N C] ¢ Cki . Let k, €U andlet me S(kn)\cki .

n n n
Then m € C, for some £¢€ R(kIll) L4 kIll. By Lemma 5.13, either £€ F" or £e Q" nU.

If £eF" thenby (5.6), m¢ C*L If 26 Q"N U then =1 forsome j#i. But £=
. . o
kI € S(k,) implies k) e Q " nU. By Corollary 5.14, T(C j) >T(C ;),s0 j>i By
kn kn
i+1 i o
(5.9), m g C_"". The proof for k €L issimilar. o

41

6. IMPLEMENTATION AND RUNNING TIME
In this section we show that the Tree Algorithm can be implemented in O(Nz) time
in O(N) space. For a very wide class of objective functions it runs in O(N log N) time

and O(N) space.

6.1 Data Structures and Operations

Three types of data structures are used in the algorithm, as shown below.

Type &
Used for: C, Cn , An ;and B_.
Operations Performed:
Union (Figure 7: Lines 4 and 5, Figure 3: Line 7.3);
Set Differences (Figure 3: Line 6.3).
Total size of all type % structures: < 4N.

Structure Used: 2—3 trees with ordered leaves.

Type 2
Used for: Q.
Operations Performed:
Union (Figure 7: Line 6, Figure 3: Line 9);
Find smallest element, Find largest element (Figure 3: Line 5);
Remove smallest element, Remove largest element (Figure 3: Lines 6.1, 7.1).
Total size of all type 2 structures: < N.

Structure Used: 2—3 trees with unordered leaves.

42

Type &
Used for: F.
Operations Performed:
Union (Figure 7: Line 7);
Add an element (Figure 3: Line 6.2).
Total size of all type & structures: < N.

Structure Used: List.

In the tree algorithm, we store Cm only for those m currently in a type 2 data
structure. In Figure 7, we discard the data structures A’ (resp., B/, Q/, F’) after Line 4
(resp., 5, 6, 7) has been executed. Roughly speaking, we only store A (resp., B Q>
Fm) for those m for which Am (resp., B> Qp Fm) has been created, but Ap(m)
(resp., Bp(m) , Qp(m) , Fp(m)) has not been created. These facts limit the total size of all
data structures to O(N).

THEOREM 6.1: The Tree Algorithm can be implemented to run in O(N) space and in

O(N log N) time, exclusive of at most 2N computations of the form (1.4).

Proor: Note that Procedure TREE_SOLVE is called exactly once for each node n in the
tree, in reverse depth—first—search order (from n = N down to n = 1). Either
SOLVE_UPPER or SOLVE_LOWER is called once for each node in the tree, in
standard depth—first—search order (from n=1 up to n = N).

We first show that the Tree Algorithm can be implemented in O(N) space, and that
the number of times that either Line 6.1 or Line 7.1 of Figure 3 is executed is < N. Note
that each node n enters a type 2 data structure at most once, in Line 9 of Figure 3.
Since Q is discarded in Line 6 of Figure 7, no node can be in two different type 2 data

structures at the same time. Therefore the total size of all type 2 data structures is at

43

most N . Similarly, the total size of all type "A" and type "B" data structures cannot
exceed N. Furthermore each node can be deleted from a type 2 data structure at most
once, so the total number of times that either Line 6.1 or 7.1 of Figure 3 is executed is at
most N. Since a node enters a type & data structure only if it is simultaneously deleted
from a type 2 data structure (see Lines 6.1 and 6.2 of Figure 3), the total size of all type
& data structures can not exceed N.

Lemma 5.28 implies that a node is never in more than two type "C" or type "C n"
data structures at any one time. Therefore the total number of nodes in all type € data
structures can not exceed 4N. Since the space required by these data structures is linear in
the number of elements they contain (Aho et.al., 1974), the algorithm can be implemented
in O(N) space.

We now claim that each line in Figures 3 and 7 is executed at most 2N times.
Clearly all lines of Figure 7 and lines 1, 2, and 9—11 of Figure 3 are performed exactly N
times, once for each node in the tree. The number of times that the loop of Figure 3 Lines
3-8 is performed is at most N, plus the number of times that an element is removed from
Q in either Line 6.1 or Line 7.1 . A 2 data structure can be expanded only N times
(Figure 7, line 6). Once removed from a 2 data structure, an element cannot re—enter.
Therefore, deletions from type 2 data structures cannot occur more than N times, so
each of Lines 3-8 is executed at most 2N times.

Clearly, each of the operations listed above is executed at most O(N) times. It
therefore suffices to show that each of the operations can be implemented in at most
O(log N) time. It is well known that this is true for type 2 and type & data structures
(Aho et.al., 1974).

Consider the set unions and set differences performed on type & data structures.
By Lemma 5.28 and Proposition 5.24, the set unions are all of the type C+ C’ U C" where
C"cS(m) and S(m)n C’ =¢ for some m € N(G) , and the set differences are all of the
form C’ = C\C" where C" = C n S(m) for some m € N(G). The nodes in a type &

data structure are stored in increasing order of n. For both unions and set differences,

44

Property 2 of the depth—first indexing of the nodes (see Section 4) implies that the nodes in
C" are consecutive in C. Thus both the set unions and the set differences can be performed

in O(log N) time by a combination of split and concatenate operations (Aho et.al., 1974). o

6.2 Overall Running Time: Production Planning
For the production planning problem PP, , T(C) is given by (2.1). Let

K(C) = ECKH and g(C) = Ecgn. T(C) can be computed in constant time if K(C) and
n n

g(C) are known. Let Kl = K(Cj) and gj = g(Cj) for all je Q™. Thus we need to
maintain K(C) and g(C) for C, atype ¢ data structure. Proposition 5.29 implies that
all set unions performed on type ¢ data structures involve disjoint sets, and all set
differences involve computing C\C’ where C’ is a subset of C. This justifies the following

changes to the algorithms.

Figure 7, Line 1: ~ A~ {n} becomes K(A)+K_ ; g(A)~g,. B« {n} issimilarly
changed.

Figure 7, Line 4: A +«AUA’ becomes K(A)~K(A)+ K(A"); g(A)«g(A)+g(A).
Similar changes are made to Figure 7, Line 5 and to Figure 3, Line 7.3.

Figure 3, Line 6.3: C«C\C, becomes K(C)+K(C)~ K(C,); 8(C) ~8(C) —8(Cy)-

Note that these modifications completely eliminate the need for type ¢ data structures.
The sets {Cn ;n e R(N) = Fy U (QN N L)} can easily be computed by a simple search

procedure once the algorithm terminates and the set R(N) has been determined.

6.3 Overall Running Time: d—Schur Convex Objectives

In Appendix B we show that if f is a proper convex function of

T ={T_:n € N(G)}, the dual of

45

(PSg) minimize: {(T) + IzlgnTn

such that: (1.2) holds

is

(DS) minimize: f (z)
such that:
(n?k)eA(G)Xnk - (mi,}n)eA(G)xmn —z =g forall neN(G), (6.3)
Xq 2 0 forall (mn)e A(G) (6.4)

where f* is the conjugate function of f. Veinott (1971) has shown that if f is proper,
convex, and d—Schur convex then f* is proper, convex, and d—Schur convex. (Not all
d—Schur convex functions are convex.) He also showed that a single vector
(x g (mn) € A(G)) is optimal for every d—Schur convex function £, The corresponding
set of optimal clusters in PSG is therefore optimal for every convex, d—Schur convex
function f.

An interesting subclass of the d—Schur convex functions is the d—additive convex

functions, i.e., functions of the form f(T)=2¥d g(T /d) where g is convex. The
n

objective function (1.1) of the production planning problem PP is d—additive convex
with g(x) =x " and d= HK—H‘ ne N(G)}. Since PPy can be solved in O(N log N)
time, optimal clusters for PSG can be found for any convex, d—Schur convex function f in

O(N log N) time. Optimal values of T are then found by solving

46

(PC) minimize: {(T) + ignTn
such that: T =T(C)) forall meC ,ne R(N).

If the optimal value of T in PC is not unique, care should be taken to ensure that a

solution is selected for which (1.2) holds (Veinott, 1971).

The isotonic regression problem is PS5 with {(T) = % % wnTIZ1 and g =-—w pu,

where w 0 is the size of a sample from random variable n and ey is the sample mean.
Adding « to all sample means p 0 simply translates the solution to (PSG) by a, so we

can and do assume that p <0 forall n. Since f(T) is d—additive convex with d = w_

and with g(x) = %XZ , the isotonic regression problem is equivalent to the production

2

planning problem PP(}. The proper choice of parameters is Kn = di =w,

and g, =

—w_p,- Note that (2.1) becomes

-1/2
-3 Wby /
Y w
neCc B
Thus T(C) > T(C’) if and only if
Y w_p Y w.u
ne¢ M1 . neC’ nn
Y w Y w ’
neC o ne¢’ ©

i.e., if the weighted average of the sample means for all n € C is greater than the
corresponding average for all n € C’. Consequently the isotonic regression problem can be
solved in O(N log N) time overall. The same is true of many other d—additive objective

functions.

47

7. CONCLUSIONS

Both an extension of the Economic Order Quantity (EOQ) model to multi—stage

production—distribution systems and the isotonic regression problem are known to be

equivalent and to be solvable in O(N4) time. We have shown that these problems are

solvable in O(N log N) time whenever the undirected version of the underlying network is a

tree, and that a generalization of these problems is solvable in O(Nlog N) time exclusive of

at most 2N side computations. This algorithm is used as a subroutine in an algorithm for

solving the EOQ problem and the isotonic regression problem on general circuitless directed

graphs, the subject of a companion paper.

REFERENCES

Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison—Wesley, Reading, Massachusetts, 1974.

Avriel, M., Nonlinear Programming: Analysis and Methods, Prentice—Hall,
Englewood Cliffs, New Jersey, 1976.

Federgruen, A. and H. Groenevelt, "Polynomial Network Flow Models with
Multiple Sinks: Transformation to Standard Network Models," Working Paper
Series No. QM 8531, Graduate School of Management, The University of Rochester,
July 1985.

Federgruen, A. and H. Groenevelt, "Two Algorithms for Maximizing a Separable
Concave Function over a Polymatroid Feasible Region," Working Paper Series No.
QM 8532, Graduate School of Management, The University of Rochester, August
1985.

Jackson, P.L., W.L. Maxwell, and J.A. Muckstadt, "Determining Optimal Reorder
Intervals in Capacitated Production — Distribution Systems," Technical Report
No. 624, School of Operations Research and Industrial Engineering, Cornell
University, February 1984.

Jackson, P.L., W.L. Maxwell, and J.A. Muckstadt, "The Joint Replenishment
Problem with a Powers—of~Two Restriction," IIE Transactions, Vol. 17, No. 1
(March 1985), pp. 25—-32.

Jackson, P.L. and R.O. Roundy, "Constructive Algorithm for Planning Production
in Multi—Stage Systems with Constant Demand," Technical Report No. 632, School
of Operations Research and Industrial Engineering, Cornell University, September
1987.

48

[8] Maxwell, W.L. and J.A. Muckstadt, "Establishing Consistent and Realistic Reorder
Intervals in Production — Distribution Systems," Operations Research, Vol. 33,
No. 6 (November—December 1985), pp. 1316—1341.

[9] Muckstadt, J.A. and R.O. Roundy, "Planning Shipping Intervals in Multi—Item,
One—Warehouse, Multi—Retailer Distribution Systems," Technical Report No. 646,
School of Operations Research and Industrial Engineering, Cornell University,
January 1985.

[10] Picard, J-C and M. Queyranne, "Integer Minimization of a Separable Convex
Function Subject to Variable Upper Bound Constraints," Faculty of Commerce and
Business Administration, University of British Columbia, Vancouver, BC, Canada,
April 1985.

[11] Rockafellar, R.T., Convezr Analysis, Princeton University Press, Princeton, New
Jersey, 1970.

[12] Roundy, R.O., "A 98%—Effective Lot Sizing Rule for a Multi—Product, Multi—Stage
Production/Inventory System," Technical Report No. 642, School of Operations
Research and Industrial Engineering, Cornell University, December 1984.

[13] Roundy, R.O., "98%—Effective Integer—Ratio Lot—Sizing for One—Warehouse
Multi—Retailer Systems," forthcoming in Management Science.

[14] Veinott, A.F., Jr., "Least d—Majorized Network Flows with Inventory and
Statistical Applications," Management Science, Vol. 17, No. 9 (May 1971), p. 547.

APPENDIX A

*
THeoREM 3.1: {T i j€S(n)} is the optimal solution to P_ if and only if there exists an
index set R(n) C S(n) and a set of clusters {C_; m € R(n)} satisfying
(a) {C; me R(n)} isa partition of 5(n);
(b) C,, is connectedin G and me C € S(m) forall me R(n);
(c) for each m € R(n) and each jes(C_),
T(Cy) > T(Cy,) if j€ U, and
T(C;) € T(Cp,) if jeL;
(d) for each m € R(n) and each je€ Cp,itm,
T(C_, NS()) < T(C,) if jeU,and
T(C_ NS()) > T(C,) if jeL;
. . *
(e) if jeC, then Tj = T(C_,)-

49

Proor: Theorem 2.3 in Jackson and Roundy (1987) gives four properties, labeled (a)—(d),
which also use clusters to characterize solutions to Pn' We will show the equivalence of
those properties to ours. Properties (a), (c), and (e) above are equivalent to properties (a),
(b), and (d), respectively, of Theorem 2.3 in Jackson and Roundy (1987). Properties (c)
and (d) above imply that each cluster is connected in G and therefore has a unique root
satisfying property (b) above. The index set R(n) is simply the collection of the roots of
the clusters in the optimal partition. It remains to establish the equivalence of property (d)
above and Theorem 2.3(c) in Jackson and Roundy (1987).

A directed cut of a node set C ¢ N(G) is a partition of C into nonempty sets
C+, C™ such that there is no arc (i,j) € A(G) ,ie C ,j¢€ Cct. Theorem 2.3(c) in
Jackson and Roundy (1987) states that for each cluster C_ , m € R(n) , there is no directed
cut (C+,C-) of C, satisfying T(C+) > T(C™). Trivially, a violation of property (d)
above implies a violation of Theorem 2.3(c) in the companion paper. Suppose, for an
arbitrary connected cluster C_ CN(G) with root m , that there exists a directed cut
(C+,C—) satisfying T(C+) > T(C), or equivalently by Assumption 2.2 and Lemma 2.3,
T(C+) > T(Cm). We will show that property (d) is also violated for this cluster.

Let {C(j);je€ H+} denote the connected components of ct in G(C m) , and let
{C(j); je H } denote the connected components of C . Let j be the root of C(j). Figure
8 illustrates for C_ = N(G) in the example of Figure 1. If T(C(j)) < T(C_) for some
jE€ A then we set C, - C+\C(j) and C_+« C UC(j). Lemma 2.3 implies that C, ¢ 0)
and T(C+) > T(C_) > T(C_). Consequently we can and do assume that T(C(j)) 2
T(C,,) forall je H'. Similarly, we can assume that T(CT) < T(C_) forall j e H .

50

ut = {179}, T(CT)* = 89.5;
H™ = {1,10}, T(C)* = 39.0.

Figure 8. Connected Components of a Directed Cut.

Since C_ =~ is connected, G(Cm) is a tree and there must exist at least one root
jeHT U H™ such that C m NS0 = C(j) ; otherwise one could construct a circuit in
G(C,,)- In Figure 8, nodes 1 and 9 are the only such roots. If j=m then C(j)=C_
and either HT =¢ or H =¢. Consequently j# m. Suppose je€ HT. Observe that
p(j) € C ; else j cannot be the root of C(j)g. Thus je U, and T(Cm nS@) = T(C(3)) 2
T(C,,) , violating (d) above. Similarly, if je H then (d) is violated. o

51

APPENDIX B

In this appendix we show that the dual of PS5 is DSG' Following Avriel (1976),

let

(1) + 2g T, AT —-T 2¢ for all (m,n) € A(G),
n

4o otherwise.

d10={
The dual of PSG is to minimize

¢ (x) = sup [x¢ — ¢(T,0)]. (B
T, ¢

b

where x = (x__: (m,n) € A(G)) and (= (Cmn: (m,n) € A(G)).
*
Note that ¢ (x) =w if x_ <0 for some (mpn)eA (let ¢ - —m). Assurning
x 2 0, it is optimal to choose ¢ =T —T in (B.1), so we have

0 (x) = sup E Tz -—f(tr)] = (2)

*
where z_ is defined by (6.3). Therefore the dual of PS is to minimize f (z) subject to
(6.3) and (6.4).

52

GLOSSARY

Section 1
G = (N(G),A(G)) Graph with node set N(G) and arc set A(G)
T, Decision variable, n € N(G)
f£.(+) Cost function, n € N(G)
P G Constrained minimization problem defined on G
K8, Coefficients in EOQ cost function
P(-) Penalty function
PP G Production planning problem defined on G
N Cardinality of N(G)

f(T,C)= % £ (T) Cost of common decision, T , over C C N(G)
neC

Section 2

ﬂ—z=[RU{—m,+m}

T(C) Cost minimizing decision for C C N(G)

K(C)= X K, Setup cost for cluster
neC

g(C)= % g, Holding cost factor for cluster
neC

Section 3

N Root of tree

p(n) Parent of node n

s(n) Sons of node n

S(n) Successors of node n

U Set of upper nodes

53

L Set of lower nodes

Sign (n) Sign (upper/lower) of node n
i~rn Node i is level with node n
Ch Cluster with root m. (Later, the unique cluster in

optimal partition rooted at m.)

s(C) Cluster—sons of cluster C
A(n) Arc set associated with S(n)
G(n) Sub—tree rooted at node n
P Cost minimization problem defined on G(n)
R(n) Optimal index set for P_
{C_; m € R(n)} Optimal partition for P_
{T;; j € S(n)} Optimal solution to P
D/ Set of nodes dominated in S(n)
M, Set of nodes undominated in S(n)
I Set of nodes isolated in S(n)
E_ Set of nodes defeated in S(n)
F Set of nodes final in S(n)
Q Set of candidate nodes in S(n)
An Set of nodes above n , including n
B, Set of nodes below n , including n
Section 4
Cyr = {C o DE M} Collection of lead clusters for arbitrary index set, M
C,F,Q A,B Working sets to build Cn , Fn , Qn , An , and Bn ,

respectively

54

Section 5

T" = {TIJ.I; j€S(n)} Optimal solution to P

C,(T) Point—to—cluster function (5.8)

T° Fixed point solution: T(C_(T°)) = T°

d, Cardinality of Q"

rli1 the (i —1)-st smallest elements of Q"

inl the (q, —i+ 1)-st largest elements of Q"

Cli1 Index to cluster function (5.9)

tIiI T(C,) where k is the i—th smallest element of Q"
Section 6

4 2—3 trees with ordered leaves

2 2—3 trees with unordered leaves

F Lists

PS G d—Schur convex cost minimization problem defined on G

DS Dual of PSq

55

