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Abstract 
This research is to improve the analysis of cycling demand subject to weather conditions by analyzing 

time series of automatic cycling counts.  I examined the performance of several ridership prediction 

models, including the Negative Binomial regression and time-series models such as SARIMA and 

SARIMAX. Using cycling counts for Portland, I show that the SARIMAX model that includes weather 

conditions (temperature and precipitation) as explanatory variables performs best in out-of-sample 

prediction. Future research in State Space models is needed for overcome the problems of SARIMAX 

when predicting ridership in periods with poor weather. 
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Chapter 1: Introduction 

Background 
There has been considerable growth in bicycle ridership over the past few decades – the total number of 

bike trips in the U.S. more than tripled between 1977 and 2009, while the bike share of total trips almost 

doubled, rising from 0.6% to 1.0% (Pucher, et al., 2011).  The rising bicycle ridership suggests that 

careful planning and appropriate investment in bicycle infrastructure are necessary in order to 

accommodate increasing bicycle travel. Since accurate ridership prediction will be indispensable for those 

planning and investment decisions, it is important to understand various ridership prediction models 

which are capable of identifying significant factors related to the motivation for people to bicycle. This 

study examines the forecasting capability of various econometric models for bicycle counts. 

In past studies, bicycle counts data have been primarily treated as cross-sectional. As is often the case 

with traffic count analysis, Poisson and Negative Binomial (NB) models have been used to analyze cross-

sectional and time-series count data of bicycle riders. For example, Nasal and Miranda-Moreno (2011) 

estimated both a Poisson regression model and a Negative Binomial regression model using hourly 

ridership count and found that recreational facilities are more affected by weather conditions than 

utilitarian facilities in general, and non-recreational facilities are more sensitive to weather conditions on 

weekends. However, in their analysis, an independent and identically distributed error term was assumed 

– an assumption unlikely to hold in time series data. In addition, the data was treated as cross-sectional 

without checking for stationarity, ignoring thus the dynamics of cycling ridership, trends, seasonality, or 

within-week cycles. Modeling time series count data using Poisson regression or NB regression may 

result in inefficient parameter estimates as the time series data are often serially correlated. An 

appropriate prediction model is necessary in order to account for the serial correlation that exists in 

bicycle ridership. The key objective of this study therefore is to examine the effects of weather on bicycle 

ridership using cross-sectional count models and time-series models, and to examine their relative 
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performances. I will discuss the strengths and weaknesses of these models and then examine the 

performance of alternative models, namely the so-called “state space” models.  The rest of this chapter is 

organized as follows. In the next section, I will describe the econometric models I used for the analysis. I 

will then explore in detail the bicycle count data collected using an inductive loop bicycle counter in 

Portland, Oregon. Finally, I will present our results and discuss the limitations of this study and the 

directions for the future research. 
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Chapter	
  2:	
  Methodology	
  

Models for Count Data 

The models for integer event count data are well developed and applied in various fields.  Cross-

sectional count data are often modeled using a Poisson regression model or a Negative Binomial 

regression if over-dispersion is present. When a Poisson model is appropriate for an outcome Y, 

the probabilities of observing any specific count, y, are given by the formula: 

𝑃 𝑌 = 𝑦 =
𝜆!𝑒!!

𝑦!
 

where λ is known as the population rate parameter (which usually needs to be estimated). A 

Poisson random variable Y has expectation E(Y) = λ, and variance var(Y) = λ. The fact that the 

expectation and variance coincide provides a quick check on whether a Poisson model might be 

appropriate for a sample of observations. The Poisson regression is simply an extension of the 

Poisson model, where parameters for covariates are estimated to describe the relationship 

between covariates (e.g., weather variables) and responses covariates (e.g., ridership counts).This 

relationship can be parameterized by a log-linear model, 

log  (λ 𝑋!,𝑋!,… ,𝑋! = a + 𝛽!𝑋! + 𝛽!𝑋! +∙∙∙ +𝛽!𝑋! 

𝐸 𝜆 = 𝑣𝑎𝑟 𝜆 = 𝜇 

The Poisson regression has the severe limitation that the variance of the counts as well asthat of 

explanatory variables is equal to the mean. If this fails to be true (i.e., count data shows “over-

dispersion”), the estimates of the coefficients can still be consistent, but the standard errors can 
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be biased. The Negative Binomial regression (NB) is an extension of the Poisson regression that 

can account for over-dispersion among variables. More specifically, the NB model will estimate 

an additional parameter, θ (dispersion parameter), for the variance:  

𝑣𝑎𝑟 𝜆 = 𝜇 + 𝜃𝜇! 

The Negative Binomial regression is often more appropriate than the Poisson regression when 

the data is observational as I would not expect that every variable that contributes to the rates of 

events is measured, and so there will always be residual variation. I will therefore use a Negative 

Binomial regression for our analysis, which is specified as follows: 

log 𝜇!,! = 𝛼 + 𝛽𝑋!,! + 𝛾 + 𝜖!,! , 

where 

m, d = indexes representing the month and day of the week, respectively; 

µm,d = mean number of bicycle counts during a specific month m, and day of the week d; 

Xm,d= weather conditions (precipitation, temperature, and dew point depression) 

ϒ = a dummy variable for weekend days 

ϵm, d= independent error term 

Models for Time Series Data 

The models for continuous autoregressive time series data were introduced by Box and Jenkins 

(1976), and have been applied in different fields such as finance and economics. The Box and 

Jenkins model such as the seasonal autoregressive integrated moving average (SARIMA) model 

is capable of taking into account the trend and seasonality (and hence the serial correlation) 
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normally present in time series data. An extension to this model was proposed by Box and Tiao 

(1975) by adding the ability to examine the effects of various regressors (or/and interventions) as 

explanatory variables along with the trend and seasonal components. This model, called Auto 

Regressive Integrated Moving Average with Exogenous Input (ARIMAX), can be expressed as 

follows: 

𝑌! = 𝛽𝑋! + 𝐸! 

where  Yt = the dependent variable for a particular time t; 

Xt = the deterministic effects of independent variables; 

Et= the stochastic variation; 

The stochastic variation can be represented by an ARIMA model as ARIMA (p,d,q) (for a non-

seasonal time series), or a SARIMA model (for a seasonal time series) denoted as SARIMA 

(p,d,q)×(P,D,Q)S. In these models,pis the orderof the non-seasonal autoregressive (AR) process, 

P is the order of the seasonal AR process,dis the order of the non-seasonal difference, D is the 

order of the seasonal difference, q is the order of the non-seasonal moving average (MA) 

process,Qis the order of the seasonal MA process and the subscriptsis the length of seasonality 

(Box et al., 2008).    

State Space Models 

Recently there has been an increasing interest in the application of state space models in time 

series analysis. One major drawback of ARIMA models is the requirement of stationarity. The 

analysis on nonstationary time series requires a preliminary transformation of the data to get 

stationarity. The stationarity requirement becomes problematic in two ways: (1) stationarity may 
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be difficult to attain through differencing; and (2) the coefficient estimates of regressors, if 

introduced in the model, are difficult to interpret. Multiple differencing is sometimes required for 

the series to exhibit stationarity, and additionally, the criterion for the series to be stationary is 

arbitrarily based on statistical tests such as Dickey-Fuller test. Inclusion of explanatory variables 

can provide a greater explanatory power to the model; however, since most series require 

differencing, the interpretation of the physical meanings of coefficient estimates of differenced 

variables can be arbitrary. The state space models solve all of those problems.   

State space models allow a direct analysis on data that exhibits non-stationarity. In the state space 

model, the development of the system, yt, is determined by unobserved series of states, θt, whose 

relation with yt is specified by model. In general, a dynamic linear state space model is written 

as: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 ∶           𝑌! = 𝐹!𝜃! + 𝑣! ,                                      𝑣!~𝑁!(0,𝑉!) 

𝑆𝑡𝑎𝑡𝑒  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                                            𝜃! = 𝐺!𝜃!!! + 𝑤! ,                          𝑤!~𝑁!(0,𝑊!) 

The state vector, θt is specified by a prior distribution. For example, a Normal prior distribution 

for the k-dimensional state vector at t = 0 is 𝜃!~𝑁!(0,𝐶!). In the classical approach, the 

estimation of a vector of unknown parameters is done by maximum likelihood. However, I will 

apply the Bayesian approach as it offers a more consistent formulation of the problem (Petris and 

Campagnoli, 2009). Estimation of unknown parameters is solved by computing conditional 

distributions of the quantities of interest given the most recent data using filtering. Filtering is the 

recursive steps needed to compute the densities p(θt|Yt) in the state space model. In the filtering 

problem, it is assumed that the data arrives sequentially in time and the object of filtering is to 

update our knowledge of the system each time new data arrives. Filtering involves the following 
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steps: 

• One step ahead predictive distribution for θt given Yt-1,based on the filtering density p(θt-1|Yt-

1):  

𝑝(𝜃!|𝑌!!!) = 𝑝(𝜃!|𝜃!!!)𝑝(𝜃!|𝑌!!!)𝑑𝜃!!! 

• One step ahead predictive distribution for the next observation: 

𝑝(𝑦!|𝑌!!!) = 𝑝(𝑦!|𝜃!)𝑝(𝜃!|𝑌!!!)𝑑𝜃! 

• The posterior distribution π(θt|y1:t) usingthe prior distribution p(θt|Yt-1) and the likelihood 

p(yt|θt):   

𝑝(𝜃! 𝑌! =
𝑝(𝑦!|𝜃!)𝑝(𝜃!|𝑌!!!)

𝑝(𝑦!|𝑌!!!)
 

The Kalman filter allows us to compute the predictive and filtering distributions recursively, 

using θ0 ~N(u0, v0) to compute p(θ1|y1), and proceeding recursively as new data become 

available.   

In this study, I will apply the random walk plus noise model: 

𝑌! = 𝛼! + 𝑣! ,                                      𝑣!~𝑁!(0,𝜎!!) 

𝜇! = 𝛼!!! + 𝑤! ,                          𝑤!~𝑁!(0,𝜎!!) 

wherevt and wt are all mutually independent and independent of αt. The prior distribution of αt is 

assumed to be d-inverse Gamma.  
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Chapter	
  3:	
  Cyclist	
  Count	
  Data	
  Analysis	
  

Introduction 

The bicycle count data was collected in the Hawthorne Bridge in Portland, Oregon using an 

inductive loop bicycle counter. The counter detects bicycles by monitoring changes in an electric 

current in sub-pavement loops of cable and is capable of distinguishing cyclists from other traffic 

(Nasal and Miranda-Moreno, 2011). The data was acquired between 5 am and 7 pm each day 

from April to November in 2010. As shown in Figure 4-1, the Hawthorne Bridge is equipped 

with a cycle track and carries commuters from the east side of the city into the downtown area. 

The City of Portland has a population of about 1.6 million with a relatively high percentage of 

bicycle commuting (2.6 %) compared to other large US cities (Dill& Carr, 2003).  

Data Description 

Figure 2 shows the average hourly counts of bicycle ridership observed at the Hawthorne Bridge. 

The ridership peaks twice a day, in the morning (8am) and in the evening (5pm), which indicates 

that the facility is used primarily for utilitarian purposes. Figure 3 shows the average daily counts 

and the average monthly counts of bicycle ridership. The ridership stays relatively flat on 

weekdays reaching its peak on Wednesday and dramatically descends on weekend, which further 

indicates that the bridge is used as a utilitarian facility. Figure 3 also shows the average daily 

counts over months.  The ridership gradually increases toward warmer months, achieving its 

peak in August and gradually decreases afterward. A drastic drop in the ridership is observed 

between October and November. To illustrate the cause of this drop in the ridership, Figure 4 

shows the average temperature and precipitation in Portland between April and November of 

2010. As the figure shows, the temperature and precipitation change dramatically in November. 

In particular, the temperature decreases rapidly from October to November.  
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Based on the data described above, I will estimate the following four models: SARIMA, 

Negative Binomial, SARIMAX, and the State Space model with a random walk plus noise to 

compare their fits and forecasting accuracy. As described above, the month of November in 

Portland is characterized by much colder weather with a high level of precipitation and much 

lower ridership (see Figures 5 and 6); therefore I will first use data from April to September to 

make out-of-sample predictions for October. The issue associated with the presence of inclement 

weather in November will be further discussed later on.   

Figure 1  Hawthorne bridge in Portland, OR 

 

Figure 2  Average cyclists per hour 
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Figure 3 Average cyclists per hour per day, per day of the week (left) and month (right) 

 

Figure 4 Average monthly precipitation (left) and temperature (right) 

 

Figure 5 Average ridership per day, during the month of November 
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Figure 6 Average temperature per day, during the month of November 

 

Stationarity 

I next examined the ridership as a time-series object. Figure 7 shows a plot of the average cyclist 

counts per day and Figure 8 shows a plot of autocorrelation function (ACF). The ACF plot 

exhibits a significant auto-correlation at lag 1 and a seasonal auto-correlation with neighboring 

effects at lag 7, i.e., a group of autocorrelations at the lag 6, 7, and 8 appear repeatedly every 7 

periods. An augmented Dickey-Fuller Test of lag order 10 shows the presence of a unit root,i.e. 

the series is non-stationary.Figure 4-9 show plots of the series and ACF of the average ridership 

after differencing. After differencing, the Augmented Dickey-Fuller Test rejected the presence of 

a unit-root at the 1% level; meaning that the series is now stationary. There still appears a strong 

seasonal autocorrelation at period 7 as shown in the ACF plot in Figure 9.   
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Figure 7 Time series of daily ridership 

 

Figure 8 Autocorrelation function (ACF) 
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Figure 9 Average ridership and ACF after differencing 
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Chapter	
  4:	
  Results	
  

SARIMA 

I first estimated SARIMA model and produced predicted values for the ridership in October. 

After study of ACF and PACF of the series and with the AIC criterion, I identify the appropriate 

model as ARIMA (5,1,2)(0,0,1)7. The model was successful in removing auto-correlation as the 

Ljung-Box test gives a chi-square value of 10.3 with a p-value of 0.42. Figure 10 shows the 

observed daily ridership between April and September and the fitted valuesfrom the model. 

Figure 11 shows the observed ridership in October and the forecast from the SARIMA model.  

As can be seen in Figure 11, the forecast from SARIMA tend to overpredict the ridership, 

especially for weekends.  The root mean square error is 1048.56, and the root mean forecast error 

is 2543.5. 

Figure 10 Observed and fitted daily ridership between April and September, SARIMA  
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Figure 11 Predicted ridership for the month of October, SARIMA 

 

Negative Binomial 

I next estimated a NB model with temperature, squared temperature, precipitation, weekend 

dummy, and dew point depression as explanatory variables.  Figure 12 shows the fitted values, 

and Figure 13 shows the forecast from the NB model. The weather variables seem to explain the 

ridership very well. The prediction from NB model is much better than that from the ARIMA 

model,though the forecast tends to underpredict the ridership for weekdays and overpredict for 

weekends. The root mean square error is 805.21, and the root mean forecast error is 993.44. 

SARIMAX 

After the study of ACF and PACF, I specified the model as a SARIMAX (0,1,1)(0,0,1)7. The 

model was successful in removing auto-correlation as the Ljung-Box test gives a chi-square 

value of 7.22 with a p-value of 0.70. Figure 14 shows the fitted values, and Figure 15 shows 

predicted ridership in October. As is obvious from Figure 15 and Table 1, SARIMAX 

outperforms both the SARIMA model and the NB model in terms of both model fit and 

forecasting accuracy.  The root mean square error is 760.2, and the root mean forecast error is 
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842.29.   

Figure 12  Observed and fitted daily ridership between April and September, NB 

 

Figure 13  Predicted ridership for the month of October, NB 
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Figure 14  Observed and fitted daily ridership between April and September, SARIMAX 

 

Figure 15  Predicted ridership for the month of October, SARIMAX 
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Table 1  Coefficients Estimates 

 

 

ARIMA(5,1,2)(0,0,1)7 

 

ARIMAX(0,1,1)(0,0,1)7 

 

Negative Binomial 

  Coef t - stat   Coef t - stat   Coef t - stat 

MA1 -1.219 -44.663 

 

-0.869 

-

14.480 

 

- - 

MA2 0.978 24.037 

 

- - 

 

- - 

Seasonal MA1 0.206 2.772 

 

0.208 2.893 

 

- - 

AR1 0.648 8.503 

 

- - 

 

- - 

AR2 -0.739 -8.530 

 

- - 

 

- - 

AR3 -0.231 -2.285 

 

- - 

 

- - 

AR4 -0.191 -2.176 

 

- - 

 

- - 

AR5 -0.233 -3.140 

 

- - 

 

- - 

         Precipitation - - 

 

-4.19 -3.051 

 

-0.002 -3.54 

Temperature  - - 

 

477.31 6.101 

 

0.12 6.37 

Temperature square - - 

 

-10.81 -5.482 

 

-0.003 -5.15 

Weekend - - 

 

-2285.77 -16.09 

 

-0.60 -15.50 

dpd - - 

 

121.57 3.826 

 

0.032 3.83 

         Log-likelihood -1536.41 - 

 

-1474.90 - 

 

-1534.55 - 

AIC 3090.82 - 

 

2965.80 - 

 

3083.10 - 

Root mean square error 1048.56 - 

 

760.20 - 

 

805.21 - 

Root mean square 

forecast error 
2543.5 - 

 
842.29 - 

 
993.44 - 
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Figure 16 Summary of predictions (green: SARIMA; blue: SARIMAX; red: NB; black: 
observed values) 
 
 

 
 

The performance of the fitted models was investigated using the relative forecast error. The result 

of this study suggests that the SARIMAX model has the best prediction power. This is due to the 

fact that SARIMAX is able to take into account both serial correlation and exogenous factors 

influencing the ridership. However, my finding has some limitations – when modeling 

nonnegative integer-valued count data such as traffic count, Box and Jenkins models may be 

inappropriate because of the normality assumption on which the ARIMA model is based.  

To illustrate this problem, I forecasted the ridership in November using the same models. As 

discussed above, the weather in the latter part of November is characterized by much colder 

temperatures and higher precipitation than any other month included in the data. As a result, 

some of the predicted ridership for November from the SARIMAX model becomes negative as 
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shown in Figure 17. This suggests that although SARIMAX model has the highest forecasting 

power as well as the best fit, it is less appropriate as ridership count becomes smaller. In those 

cases, the NB model performs reasonably well without the problem of negative forecast values.   

Figure 17  Prediction of the SARIMAX model for the month of November 

 

My conclusion above suggests a doubt on the conventional statistical analysis on time-series 

count data. Poisson regression and Negative Binomial regression guarantees the integer forecast 

values, but ignores autocorrelation in the series. Although ARIMA-type models have been 

popular method to analyze time-series data, I found that using ARIMA-type models has at least 

three major problems when applied on count data: 

1. Stationality requirement (pre-transformation of data) 

2. Difficulty in making inferences on explanatory variables when data is transformed 

3. Negativity of forecast values resulting from the normality assumption 

For example, in this study I needed to take a first difference in order to get stationarity in the 

data. As a result, the coefficient estimates of weather variables became difficult to interpret. The 

negative sign of precipitation in our estimated model means that a positive difference of 
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precipitation between days has a negative impact on the ridership; however, the positive 

difference can mean either increase in precipitation in the current period or a decrease in the last 

period.  State Space models (or more specifically, dynamic regressions) solve all of the problems 

listed above as they do not require stationarity in data. 

State Space Model 

The estimation of State Space model involved estimation of the two unknown variances, dV and 

dW. Figure 18 displays the MCMC output. The ergodic means seem to be stable in the last part 

of the plot. Figure 19 shows the observed daily ridership between April and September and the 

fitted valuesfrom the State Space model, and Figure 20 shows the predicted ridership in October. 

Since the model follows a random walk with noise, the forecast values are simply the filtered 

estimate from the last day in September.  

Figure 18 MCMC plots 
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Figure 19 Observed and fitted daily ridership between April and September, State Space Model 

 

Figure 20  Predicted ridership for the month of October, State Space Model 

 

State space models may include explanatory variables as in the following specification.  

𝑌! = 𝑋𝜃! + 𝑣!𝑣  !~𝜏 0,𝜎!!  

𝜃! = 𝑍𝜃!!! + 𝑤!𝑤  !~𝜏 0,𝜎!!  

𝑤ℎ𝑒𝑟𝑒  𝑌! = 𝑌!,! ,∙∙∙,𝑌!,!
!,   𝜃! = 𝛽!,⋯ ,𝛽! !~𝜑(𝑙,𝑚), 

𝑋 =
1      𝑓! 𝑥!   ⋯   𝑓!(𝑥!)

⋮
1      𝑓! 𝑥!   ⋯   𝑓!(𝑥!)
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𝑍 = 𝑑𝑖𝑎𝑔(𝛿!,⋯ , 𝛿!) 

𝜎!! = 𝑑𝑖𝑎𝑔(∅!
!!,⋯ ,∅!

!!) 

𝜎!! = 𝑑𝑖𝑎𝑔(𝜔!!!,⋯ ,𝜔!!!) 

The model can be extended in order to accommodate count data. With alternative distributional 

assumptions of vt, wt, and θt, I will be able to estimate a dynamic Poisson regression and 

dynamic Negative Binomial regression, which (1) does not require stationarity, (2) produces 

integer-forecast values, and (3) produces coefficient estimates that are much more intuitive to 

interpret.  
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Chapter	
  4:	
  Discussion/Conclusion	
  

In this project I have analyzed different econometric methods for making statistical inference on 

the demand for nonmotorized transportation, with a focus on cycling.  I investigated the factors 

that influence people's decision to use bicycles as a means of transportation. In particular, the 

methodological framework I applied in this study looked at seasonality and time-dependency of 

bicycle ridership as well as effects of weather conditions on ridership.  Since the time series data 

was only one-year long, I did not (could not) investigate possible trends in ridership over years.  

Given the availability of data, an examination of long term ridership growth would be an 

interesting research area to explore as it is important for planning for growth in traffic demand 

and consequentially for infrastructure investments.  In this research, I focused on short-run 

prediction accuracy of several ridership prediction models, including the Negative Binomial 

regression and time-series models such as ARIMA and ARIMAX (e.g., Nihan & Holmesland, 

1980 and Houston & Richardson, 2002). The result of this study suggests that the SARIMAX 

model has the best prediction as that model is able to take into account both serial correlation and 

exogenous factors influencing the ridership.  However, I also found that Box and Jenkins models 

may be inappropriate for count data because of the normality assumption on which the general 

ARIMA models are based, especially when ridership counts are small This problem is especially 

relevant for months with weather conditions that discourage the use of cycling. The special 

family of State Space models has the potential to addresses the non-normality issues. Although 

estimation of State Space models is computationally intensive, software implementations have 

increased with the progress in computing capabilities and the modernization of computer 

software. Many well-known statistical and econometric software packages currently have 

options for the use of state space methods (Durbin & Koopman, 2012). However, most of them 
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are currently only capable of estimating the basic state space model that predicts averages – 

identical to the model I used in this study.  The estimation of more generalized state space 

models requires much more intensive computer programming, and therefore I leave this task to 

future research.  
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