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This thesis presents an approach of classifying multiple targets of interest

in minimum time with satisfactory confidence by an imaging sensor on an

underwater robot. The overall goal is achieved by sequentially solving a single

target classification problem and a global target ordering problem. First, a

multi-view single-target classification algorithm is developed based on the

POMDP framework, which incorporates a deep convolutional neural network

and a support vector machine as the observation model. The classification

algorithm allows the underwater robot to adaptively select its next configuration

state near the target of interest in order to maximize the increase of classification

confidence. Next, a traveling salesman algorithm is used to generate the global

target visiting order. Simulation results of an unmanned underwater vehicle

equipped with a side-scan sonar validate the effectiveness of the proposed

algorithm and demonstrates the ability to find significantly shorter path for

multi-view based multi-target classification.
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CHAPTER 1

INTRODUCTION

The problem of autonomous target classification with imaging sensors

has the potential to play a critical role in a wide range of applications. An

autonomous robot equipped with onboard imaging sensors are now routinely

employed for underwater, ground, and aerial target classification task. In

many instances, although prior measurements may be available, accurate target

classification requires images obtained from multiple view points in order to

overcome environmental uncertainty and clutter. One approach that has been

proposed in the literature [1] introduces frameworks that are based on either the

Dempster-Shafer (DS) concept of fusion from a single-view classifier or direct

multi-instance classification. In [2], the measure of similarity was used in order

to classify the shape of a target by comparing set of views of a test target to

a set of views from a training target whose the shape is known. The shape

of maximum similarity was then used for classification obtaining significant

performance improvements as the number of views of the test target increased.

In [3], a multilayer perceptron (MLP) was used to enhance a hidden Markov

model (HMM), and the enhanced model was used to classify underwater targets

from multiple aspects.

The approach presented in this thesis is inspired by the partially observable

Markov decision process (POMDP) model presented in [4] and [5], for the

classification of a single underwater target using sonar images obtained from

multiple view points. The method in [5] allows the vehicle to move around the

target adaptively to acquire additional views that are expected to mostly reduce

classification uncertainty. The POMDP approach in [5] was demonstrated via
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synthetic aperture sonar (SAS) high-resolution images and, thus, an observation

model was based on the similarity between the sonar image and a set of

pre-generated image templates. However, the use of pre-generated templates

limits the generalization capabilities of the observation model and, thus, the

applicability of the view planning algorithm. Also, for different applications, the

image templates need to be re-designed by the experts in order to capture the

characteristics of the chosen sensor application, domain, and targets. Moreover,

template-matching may become inefficient when the environmental conditions

are complex. Meanwhile, low image resolution decreases the classification

performance because it is typically challenging to match measurements to

templates. Finally, the approach in [5] does not extend to the case of multiple

targets, since the view point is selected incrementally, without the ability to

optimize the robot path or avoid obstacles.

The approach presented in this thesis overcomes the aforementioned

limitations by learning a POMDP and observation model from a convolutional

neural network (CNN) and support vector machine (SVM) classifier [6] [7]

trained with a database of underwater images obtained via side-scan sonar.

Adopting the approach previously presented by the authors in [8], a pre-trained

CNN AlexNet [9] is applied to extract convolutional features from segmented

target sonar images. CNN is one of the deep learning architect that has a

satisfying performance at visual image feature extraction [10] [11] [12] [13] [14].

The convolutional features are then used as inputs to an SVM [15] [16], thus

making it possible to utilize the power of CNN with a relatively small database

of target images. Subsequently, the approach presented by the authors in [17] is

adopted for fusing the observations from multiple target images via CNN and

SVM, such that the posterior distribution for target features and classification
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are updated by probability inference based on image obtain via multiple view

points for each target. The approach in [17] is utilized to provide an estimate of

classification confidence level that can be used to adaptively select the next robot

configuration with which to obtain the next best image.

This thesis presents a multi-aspect classification approach that obtains a

POMDP model of a robot-based sensor from the image features extracted from

CNN and SVM. The approach presented in this thesis adopts a traveling salesman

problem (TSP) algorithm [18]. The traveling salesman problem (TSP) can be

described as a traveling salesman starts at his home city and need to visit all cities

around exactly once a time and return to the home city with a minimum time

[19] [20]. It represents a large class of problems called combinatorial optimization

problems and has a wide range of applications such as path planning [21] [22].

The problem is relatively hard to solve and in this thesis, the cross-entropy

(CE) algorithm introduced in [23] and [24], is used to find an approximate

solution. The combination of the POMDP mode and the TSP allow the proposed

algorithms to plan the optimal robot path while adaptively selecting the next

robot configuration so as to maximize the target classification confidence.

In the next section, the multi-view, multi-target classification problem is

formulated. Then, the general POMDP framework is reviewed in Chapter 3. The

proposed multi-view multi-target classification algorithm is described in Chapter

4. Finally, validation and performance evaluation is shown in Chapter 5.
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CHAPTER 2

PROBLEM FORMULATION

Consider the problem of classifying N fixed targets in an underwater ROI,

W ∈ R2. An unmanned underwater vehicle (UUV) is deployed at the chosen

starting configuration with a side scan sonar to classify targets as shown in Figure

2.1.

Figure 2.1: Side-scan and forward-looking sonar investigating underwater
environment and corresponding sonar image

The onboard side-scan sonar takes acoustic measurements of the seabed

and generates the sonar images while the UUV maintains a constant speed and

heading. It is assumed that the UUV travels at a constant height and, thus, the

vehicle has two degrees-of-freedom (DOF). It also has a minimum turning radius.

It is assumed that the accurate measurements of UUV position and orientation are

computed online via an onboard simultaneous localization and mapping (SLAM)

algorithm described in [25]. Also, it is assumed that prior measurements of target

positions in W are known from prior sorties. Each target has a classification
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label y ∈ Y , where Y = {y1, ..., yd} is a finite set of possible target categories. The

UUV obtains an observation o ∈ Ω of the target class from a sonar image. The

characteristics of sonar images are such that it is challenging to recognize target

due to its low resolution and segmentation. Therefore, the UUV typically needs

to acquire multiple observations from different aspect angles in order to estimate

the features and classification of an underwater target. This thesis addresses the

problem of classifying all the targets with satisfactory confidence using minimum

time. The first step is to adaptively select the local viewpoint around each target

and classify each target with sufficient confidence. The second step is to find an

optimal global path that visits and classifies targets in minimum time.
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CHAPTER 3

GENERAL POMDP FORMULATION

POMDP is an efficient approach for modeling sequential decision process

in which decisions and transition probabilities obey the Markov property [26]

[27]. Markov decision process (MDP) is defined by a collection of elements

{T ,S,A, P (st+1|st, at), R(st, at)}, where each element is described as follows. T

is a set of decision epochs, where T = {1, 2, ..., T}, T ∈ N. S represents a finite

set of possible system states and each system state is denoted as s ∈ S . A stands

for a finite set of actions and its element is denoted as a ∈ A. The transition

probability is denoted by P (·|st, at), ∀st ∈ S, ∀at ∈ A. For example, P (st+1|st, at)

is the probability of the system states st+1 at the next decision epoch t + 1, as

a result of choosing action at in state st at current decision epoch t. R(st, at) is

a reward that the agent receives as a result of choosing action at in state st at

decision epoch t.

Since the system state s is often not fully observable, an extension of

MDP, POMDP is introduced [28]. POMDP contains an observation set Ω and

observation model P (ot+1|st, at, st+1) in addition to the elements included in MDP.

The observation model P (ot+1|st, at, st+1) stands for a probability distribution

which determines the observation that the system receives at time epoch t+ 1,

given that the unobserved system occupies state st at decision epoch t, the agent

chooses action at, and the unobserved system occupies state st+1 at decision

epoch t + 1. It is often assumed that the observation at next time epoch ot+1

is not depend on the current states st. Thus the observation model becomes

P (ot+1|at, st+1). Therefore, POMDP can be formulated by the collection of

the elements {T ,S,A, P (st+1|st, at), R(st, at),Ω, P (ot+1|at, st+1)}. This extension
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enables POMDP to model the process whose true states are not observable.

To solve the partially observable problem, POMDP introduces the belief state

bt ∈ B, which is the probability distribution over the possible states S at time

epoch t. b(s) is used to denote the probability of state s in the distribution b. The

belief states b is updated by a new observation ot+1 as

bt+1(s′) = P (s′|ot+1, at, bt)

=
P (ot+1|at, s′)

∑
s∈S P (s′|at, s)bt(s)

P (ot+1|at, bt)
, (3.1)

where s′ ∈ S is an arbitrary state in state space S. The action should be taken

based on the reward function that can be estimated using current belief state,

and therefore, the intermediate reward for taking action at in the belief state bt is

ρ(at, bt) =
∑
st∈S

bt(st)R(at, st). (3.2)

Using the belief state and the intermediate reward function, the POMDP can

be solved similarly to the MDP formulated by {T ,B,A, ρ(at, bt), τ(bt+1, at, bt)},

where the transition function between belief states is formulated by

τ(bt+1, at, bt) = P (bt+1|at, bt)

=
∑

ot+1∈Ω

P (bt+1|bt, at, ot+1)P (ot+1|at, bt). (3.3)

P (bt+1|bt, at, ot+1) = 1 only if action at taken at belief state bt obtaining

observation o will lead to belief state bt+1. The value iteration of the above

MDP formulation aims to find a series of action which maximizes the sum of

expected future value of the next m time steps, E[
∑m−1

t=0 rtγ
t], where rt is the

reward received on time t. γ ∈ [0, 1] is a discount factor. The optimal value
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function V ∗t at step t can be computed by

V ∗t (bt) = max
at∈A

E[
m−1∑
t=0

rtγ
t]

= max
at∈A
{ρ(at, bt) + γ

∑
bt+1∈B

τ(bt+1, at, bt)V
∗
t−1(bt+1)}

= max
at∈A
{ρ(at, bt) + γ

∑
ot+1∈Ω

P (ot+1|at, bt)V ∗t−1(bat,ott+1 )}, (3.4)

where bat,ott+1 is the belief states from action at and observation ot starting from

belief states bt. The optimal action at any time step is the argument that

maximizes the value function at that time step.
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CHAPTER 4

IMAGE TEMPLATE ISSUE

In the paper [4] and [5], an image template M is generated for each possible

target-aspect pair. In their work, there are four different object shape types, a

cylinder, a truncated cone, a wedge-shaped object, and an irregularly shaped

non-target object. In addition, the possible views are discretized into 8 aspects of

45 degrees each. Therefore, there are 32 image templates in total and the pixel

size of them is 119 * 460. As shown in the Figures 4.1 4.2, the image templates

are clearly different from each other depend on their shape and view orientation.

It is because the raw image data is acquired by synthetic aperture sonar (SAS)

images and those images have high resolution.

In our sonar image data, the segmented images are divided into 8 different

regions depend on the distance between the target and the vehicle and the

relative angle theta of the vehicle heading and target heading. Our targets have

2 types of shape, circle and square. Thus we should have 16 image templates in

order to implement the same algorithm. However, our segmented images pixel

size is too small to recognize the difference between different shape of targets

as well as different regions. Figure 4.3 demonstrates 9 segmented images of a

specific target (ID520) which has a rectangle shape, the pixel size of image is 6 *

201. Figure 4.4 shows 4 segmented images of another target (ID517) which has a

circle shape, the pixel size of image is 11 * 151. Even though those two target have

different shape, one is circle and the other is rectangle, all of those segmented

images look the same here because of the low resolution. We can’t really tell the

difference between each regions as well. Therefore, we can’t follow the algorithm

in [4] to generate best matching image templates for each possible target-aspect
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Figure 4.1: Cylinder target from several aspects and ranges with the
corresponding matching templates (Myers, 2012)

Figure 4.2: Wedge target from several aspects and ranges with the corresponding
matching templates (Myers, 2012)
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Figure 4.3: Segmented sonar images of rectangle shape target from several
different regions

pair. Instead we need to figure out another way to get an observation model

in the form of confidence level of target/non-target. The observation model is

introduced in the next chapter.
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Figure 4.4: Segmented sonar images of circle shape target from several different
regions
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CHAPTER 5

POMDP-BASED UNDERWATER ROBOT PATH PLANNING

5.1 Observation Model

In the general POMDP formulation, an observation model is required. In [5], the

observation model of a classification POMDP is based on a template matching

approach. An image template is generated for each possible target-aspect pair.

However, a set of good templates are not always available for some applications.

The performance of template matching can be affected by the resolution of the

sensor images. To overcome this issue, we proposed an observation model that

incorporates a deep Convolutional Neural Network (CNN) and Support Vector

Machine (SVM). The proposed approach avoids the use of templates that need

to be known to the robot a-priori. The proposed observation model can be easily

adapted to other applications with different image sensors and environmental

conditions.

The observation models is the probability of observing o ∈ Ω given a current

state and an action taken. These probabilities P (ot+1|st, at, st+1) are represented

by a conditional probability table (CPT) learned from a training dataset by

statistical analysis. Figure 5.1 shows the entire POMDP work flow.

Movement CNN &
SVMSonar Image POMDP

Observation
(Classification result)

Move to the next 
target

Declaration Action

Movement Action

Start

Figure 5.1: Work flow chart of PODMP-based underwater robot path planning
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K1

Q

Object Orientation

R

Vehicle Orientation

Discretization

K2

K3

R/2

Figure 5.2: The discretization of the C-target based on the sensor range and
aspect angle, which is defined as a region, and vehicle waypoints K1, K2, K3.

5.2 C-target formation and Waypoints Selection

In compliance with the POMDP formulation, discretized robot configuration

states are needed. This can be done by discretizing the C-target around each

target of interest. C-target is defined as the set of configurations where the robot

can observe the target. The C-target of every target is discretized into 8 regions

of configurations C = {1, . . . , 8} for all targets as shown in Figure 5.2. The 8

regions are generated by uniformly discretizing the aspect angle into four cases

and the radius into two cases. The target orientation is the bisector of the region

c = 1. During each POMDP process, the robot will inspect a single target. Thus,

the robot’s configuration is described using c only. In order for the onboard

side-scan sonar to get good quality sonar image, the robot has to move in a

straight line, which for the given C-target discretization, is either parallel or

14



perpendicular to the target orientation. Therefore, three waypoints have been

created for the vehicle to explore each region as shown in the Figure 5.2. Q is

the centroid of the target and the waypoint K2 is placed at the midpoint of the

region in both distance and orientation. K1K3 is perpendicular to QK2 and K1,

K2, K3 three waypoints form a line segment as vehicle trajectory. The angles

∠K1QK2 = ∠K2QK3 = α.

5.3 POMDP Supplement

For target classification and robot path planning, the system state is defined

as a label-region pair s = (y, c) to describe the label y of the current inspecting

target and robot’s configuration c. There will be one absorbing end state s̄. Once

the system reaches the end state, the system remains in the end state with any

actions. The set of possible state S is defined as follows,

S = {(y, c)|y ∈ Y , c ∈ C} ∪ s̄. (5.1)

Since each region of configurations is large, it is assumed that the current

configuration region c is known to the robot. Thus, the robot only needs to

observe the target label from sonar images. The observation o only include the

observed target label from sonar images via CNN and SVM.

The actions are divided into two types, ‘movement’ and ‘declaration’.

Movement type of action moves the vehicle into a certain region of the current

target of interest. The set of movement type actions is Am. Each action in set Am

moves the robot to one of the other regions of the current target. Declaration

type of action declares the final classification label of the current target. Thus,

15



the set of actions is

A = Am ∪ Ad. (5.2)

In this specific problem, the transition model is defined as deterministic for both

movement and declaration actions. For a movement action a ∈ Am, the vehicle

obtains a view at the desired region with probability one. This model assumes

that the vehicle can move to the exact commanded region around the target.

p(st+1 = (yn, cn,t+1)|s = (yn, cn,t), at ∈ Am)

=


1 if cn,t+1 ≡M(cn,t, at)

0 otherwise
(5.3)

where cn,t represents the configuration of the robot is at region cn at time epoch

t. M(cn,t, at) is a function that outputs the next robot configuration region with

current configuration region cn,t and action at. A declaration action a ∈ Ad

declares the target classification and ends the POMDP process, which is modeled

as entering into the absorbing end state s̄.

The reward function is designed to treat all errors equally and not penalize

the system for obtaining an additional view of the target as shown in Equation

(5.4).

R(s, a) =


1 Correct classification; a ∈ Ad, s ∈ S

−100 Incorrect classification; a ∈ Ad, s ∈ S

0 Additional view; a ∈ Am, s ∈ S

(5.4)

The discount factor γ is set to 0.75 to compute the value function of the model.

The algorithm will computes sum of expected discounted reward of m = 5 future

steps.
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5.4 Target ordering using TSP algorithm

The current POMDP algorithm will generate a policy for each target that consists

of multiple movement actions and a declaration action in the end. The waypoints

for the local path around each target is selected based on the policy of POMDP.

Since each target is visited and classified once, the problem is formulated as

a traveling salesman problem. Finding the optimal target visiting order is

equivalent to solving the equivalent traveling salesman problem. This thesis

uses the cross-entropy (CE) algorithm introduced in [23] and [24] to find an

approximate solution to this TSP.
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CHAPTER 6

NUMERICAL RESULTS

6.1 CNN and SVM performace

To validate the proposed approach for robot path planning and demonstrate

the performance of the proposed algorithm, the first step is to train a POMDP

observation model from a pre-collected sonar image dataset obtained by an

underwater robot equipped with a side-scan sonar. The observation set is

denoted by Ω = {0, 1} and y is the true classification label of each target. For

each target in the training dataset, an observation label o from the combination of

CNN and SVM is generated. The classification performance of the trained CNN

and SVM is verified on a similar sonar image dataset. The results are shown

in Table 6.1, where the elements of the confusion matrix are True Positive Rate

(TPR), False Positive Rate (FPR), False Negative Rate (FNR), and True Negative

Rate (TNR).

Table 6.1: Classification performance of the CNN and SVM confusion matrix

y = 1 y = 0
o = 1 0.8837(TPR) 0(FPR)
o = 0 0.1163(FNR) 1(TNR)

The observation model P (ot+1|st, at) is then learned from the dataset. Finally,

the observation model is constructed and shown in Table 6.2.
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Table 6.2: Conditionally probability table of observation model

Region rm 1 2 3 4 5 6 7 8
y = 1 o = 0 0.294 0.273 0.353 0.188 0.125 0.188 0.333 0.077

o = 1 0.706 0.727 0.647 0.813 0.875 0.813 0.667 0.923
y = 0 o = 0 1 1 1 1 0.997 0.987 0.987 0.997

o = 1 0 0 0 0 0.003 0.013 0.014 0.003

6.2 Observation Model Validation

The observation model is validated by comparing it with the probability

distribution of randomly selected test data set. 30 objects (10 targets and 20

non-targets) are randomly selected from the total 520 objects for the simulation

and those objects have 269 segmented sonar images. The same count method

which gets the observation model is used here on the 269 test image data in order

to get the conditional probability distribution and it is demonstrated in Table 6.3

and Table 6.4.

Table 6.3: The conditional probability table of test data when the ground truth yi
is 1 (target)

Region rm 1 2 3 4 5 6 7 8
o = 0 0.2222 0.25 0.4167 0.1 0.2 0.0769 0.4 0.1111
o = 1 0.7778 0.75 0.5833 0.9 0.8 0.9231 0.6 0.8889

Table 6.4: The conditional probability table of test data when the ground truth yi
is 0 (non-target)

Region rm 1 2 3 4 5 6 7 8
o = 0 1 1 1 1 1 1 0.95 1
o = 1 0 0 0 0 0 0 0.05 0
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In order to prove the observation model works on the test data, we have to

measure the similarity between the conditional probability in Table 6.2 and Table

6.3 for target, Table 6.4 for non-target. The chi-squared goodness of fit test is

used to determine whether there is a significant difference between the expected

frequencies and the observed frequencies in one or more categories [29] [30] [31].

It is the sum of differences between observed and expected outcome frequencies

(that is, counts of observations), each squared and divided by the expectation:

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei

(6.1)

where n is the degree of freedom and equal to 1 since it is a binary case, Ei

is the expectation value from the Table 6.2, Oi is the observation value from the

Table 6.3 and Table 6.4.

Table 6.5: The chi square value when the ground truth yi is 1 (target)

Region rm 1 2 3 4 5 6 7 8
χ2 for o = 0 0.0176 0.0019 0.0115 0.0408 0.045 0.0652 0.0133 0.0152
χ2 for o = 1 0.0073 0.0007 0.0063 0.0094 0.0064 0.015 0.0067 0.0013

Table 6.6: The chi square value when the ground truth yi is 0 (non-target)

Region rm 1 2 3 4 5 6 7 8
χ2 for o = 0 0 0 0 0 0 0.0002 0.0013 0
χ2 for o = 1 0 0 0 0 0.003 0.0132 0.0985 0.0027

The results of the chi-square test are shown in the Table 6.5 and Table 6.6.

If we set the confidence level to 95%, according to the chi-square possibilities
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distribution table [32], the χ2 value has to be less than 0.004. Therefore, 14

out of 16 χ2 values for the non-target objects in the Table 6.5 have passed the

test, while in the Table 6.5 only 3 out of 16 χ2 values for the target objects have

passed the test. The results demonstrates that the two conditional possibility

distributions for the non-target objects are the same regardless of 5% noise level.

So the observation model for the non-target object is relatively accurate.

However, for target objects, the chi-square test rejects most of the relationship

between the test data possibility distribution and the observation model. The

main reason is that the population of the data is too small. There are only 129

out of 3113 segmented sonar images of the target objects in the whole data set.

For each of 8 regions, the number of the observation images is way less than the

minimum sample size for the chi-square test. On the other hand, the sample size

of the image of the non-target objects, which is 2984 out of 3113, is large enough

for the chi-square test.

For small sample size such as the case of target objects, the Fisher’s exact test

is the more appropriate statistical significance test [33] [34]. The cross-validation

techniques can also be implemented for both cases of target and non-target

objects [35] [36]. It will be helpful to the validation and can also test whether the

maximum likelihood observation model will perform well with new data [37]

[38].

6.3 Simulation Results

The proposed path planning algorithm is implemented in a simulation

environment including 15 targets. The ROIW has a square shape with 3000-meter
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Figure 6.1: Robot trajectory generated by proposed algorithm

side length. Ten of the targets are in class y = 0 and the other five are in class y = 1.

A sonar onboard robot is sent out to classify all the target using the proposed

algorithm. The range of the sonar is 150 meters. For each target of interest,

the initial belief state is set to be uniformly distributed over the state space S,

which indicates that the robot agent does not have prior information about the

targets. The robot visited and classified targets within the ROI following the order

generated by TSP solver. The robot will start the POMDP based classification

algorithm from region c = 1 of each target.

The algorithm generates a robot trajectory as shown in Figure 6.1 and the

different zoom-in trajectories generated by POMDP policy for a single target are

shown in Figure 6.2 Figure 6.3 Figure 6.4.

The performance is compared with other algorithms including multiple
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Figure 6.2: An example of vehicle paths for a POMDP policy in the data set. The
regions visited are determined by the policy, and the waypoints are set to allow
the vehicle to follow a straight line that will get a good quality sonar image.

Figure 6.3: An example of vehicle paths for a POMDP policy in the data set.
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Figure 6.4: An example of vehicle paths for a POMDP policy in the data set.

aspect coverage (MAC) algorithm [39] and some of its extension. MAC algorithm

solves the path planning problem as a coverage problem in several aspect

angles by considering the estimated targets locations as a multivariate Gaussian

distribution. For a large area, MAC algorithm can improve the efficiency by

clustering nearby targets and visiting each cluster in the optimal order, as

described in [40]. Figure 6.5 and Figure 6.6 shows the path generated by the

MAC algorithm with or without clustering.

The classification and path planning performances are shown in Table 6.7.

The results indicate that the proposed algorithm effectively acquire additional

views to improve the classification accuracy and TSP provides an optimized path

in the case of distance and travel time for the robot to visit each target. Although

the proposed algorithm has similar good classification accuracy with other path

planning algorithms for underwater robots, such as the MAC algorithms, the
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Table 6.7: Performance comparison of the proposed algorithm and two MAC
algorithms

Algorithm
Distance
Traveled
(m)

Time
(h)

Average
Number of
Images per
Target

TPR FPR Accuracy

POMDP
and TSP 9754 1.32 3.33 0.8 0 0.93

MAC 61326 6.93 4.47 1 0 1
MAC with
Clustering 42045 5.00 7.07 1 0 1

 

P
o

si
ti

o
n

 i
n

 N
o

rt
h

 (
m

) 

Position in East (m) 

Figure 6.5: Robot trajectory generated by MAC algorithm
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Figure 6.6: Robot trajectory generated by MAC algorithm with clustering

advantage of the POMDP and TSP algorithm is that this algorithm produces

significantly shorter path while it still maintains satisfactory classification

performance. Comparing to the MAC algorithm with or without clustering,

the proposed algorithm find a path that is 76.8% and 84.1% shorter, respectively.

Notice that the proposed algorithm has a true positive rate of TPR = 0.8 that is

lower than other MAC algorithms (TPR = 1). One possible reason is that the

number of targets in class y = 1 is limited and much less than the number of

targets in class y = 0 in the current training dataset.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis introduces a multi-target multi-view classification algorithm that

uses the image features extracted from sonar images by CNN and SVM as an

observation model of a POMDP framework. The robot can move around the

targets and select the region to visit adaptively in order to acquire additional

views that most benefit the classification. The proposed algorithm decides which

region should be visited next according to the reward function. A cross-entropy

(CE) TSP algorithm is utilized to generate the optimal order of visiting all targets.

Compared with state-of-the-art underwater robotic path planning algorithms,

the numerical results demonstrate that the proposed algorithm can generate a

much shorter path, while maintaining satisfactory performance in classification

accuracy. The combination of the TSP and POMDP is an efficient solution of path

planning.

One area of future work will be improving the classification rate of target

class y = 1. Now the true positive rate of the proposed algorithm is not ideal

comparing to other MAC algorithms. The other interesting direction of the

future work is about the POMDP model for multi-target environment. Instead

of using TSP to decide the target visiting order, the POMDP algorithm has

the capability of making the decision to go to the configurations of different

targets. The challenging part of multi-target POMDP framework is that the time

complexity and the space complexity of the POMDP formulation is exponential

to the number of states.
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