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Small-molecule signaling serves important functions at all levels of organismal 

organization and requires diverse biosynthetic mechanisms for encoding biological 

information in chemical structures. Whereas fungi and bacteria have dedicated 

biosynthetic machinery that enables production of a great diversity of chemical 

structures, e.g. polyketides and non-ribosomal peptides, most animals are presumed to 

lack the ability to produce elaborate small-molecule architectures.  

Herein, the author describes the integrated use of 2D NMR and high resolution 

HPLC-MS/MS to aid global metabolomics of complex natural samples. Applications of 

this methodology to metabolomes of Caenorhabditis elegans and Pristionchus pacificus 

showed that these nematodes generate a library of complex signaling molecules, 

ascarosides and paratosides, via selective assembly of building blocks from several 

primary metabolic pathways, including an unusual xylopyranose-based nucleoside. 

These compounds act as interorganismal signals controlling larval development, adult 

morphology, or function as potent attraction pheromones. These findings further 

indicate species-specific evolution of chemical signaling in nematodes, with regard to 

both chemical structures and their biological functions. The library of small molecule 

signals presented in this dissertation, provide striking examples for combinatorial 



generation of structural diversity in nematodes and connect primary metabolism to 

regulation of development and adult phenotypic plasticity. 

Further the author used comparative metabolomics to investigate ascaroside 

biogenesis in C. elegans. Profiling ascarosides in C. elegans wild-type and peroxisomal 

-oxidation mutant metabolomes via HPLC-MS/MS and 2D NMR clarified the functions 

of the acyl-CoA-oxidase, ACOX-1, and the β-ketoacyl-CoA thiolase, DAF-22 in 

ascaroside biogenesis. Following peroxisomal β-oxidation, the ascarosides are 

selectively derivatized with moieties of varied biogenetic origin that can dramatically 

affect biological activity. 

Finally, using a 2D NMR-based comparative metabolomics approach, the author 

identified the endogenous ligands of the C. elegans nuclear hormone receptor (NHR), 

DAF-12, a vitamin D and liver X receptor homolog that regulates larval development, fat 

metabolism, and lifespan. The identified molecules include only one of two previously 

predicted DAF-12 ligands and feature unusual structural motifs, e.g. a 1-desaturated 

steroid. These results demonstrate the advantages of comparative metabolomics over 

traditional candidate-based approaches and provide a blueprint for the identification of 

ligands for other C. elegans and mammalian NHRs. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Nematodes as model systems for studying small molecule signaling: 

Nematodes or roundworms are simple, fully differentiated, multi-cellular organism group 

that comprise the most speciated phylum in the animal kingdom.1 Most of the nematode 

species described are parasitic, many of which infect about 25% of the world’s 

population and significantly impact agricultural crops and animals.2,3 Several nematode 

species, both free-living and parasitic, have been established as laboratory model 

systems for studying various aspect of biology, medicine, and pest control.4-12 Of these, 

the most studied and well-established is the free living soil nematode Caenorhabditis 

elegans.  

C. elegans, among the first organisms whose genomes were sequenced,13 is 

small enough for high-throughput whole-organism screens, yet fully differentiated. Many 

of signaling pathways elucidated in C. elegans show strong analogies or are directly 

homologous to corresponding pathways in higher animals.14 This high level of genetic 

conservation allows ancient features of endocrine pathways to be explored in C. 

elegans. Significantly, C. elegans research has also produced interesting insights into 

the signaling pathways that control metabolism, growth, reproductive maturation, and 

lifespan regulation, which revealed a deeply intertwined regulatory network that 

remains, at best, partly understood.15-24 Considerable knowledge of disease pathways 
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for Alzheimer’s disease,25 diabetes,26 and depression27 has emerged through C. 

elegans research. More recently, other nematode species, most notably the free-living 

necromenic roundworm Pristionchus pacificus have been established as satellite model 

systems for the study of evolutionary and developmental biology.4 Satellite model 

organisms are species that are sufficiently closely related to major model organisms so  

 

 

Figure 1.1: (a) Life cycle of C. elegans and P. pacificus at 20 °C. Nematodes propagate through 
four larval/juvenile stages, called L1/J1 to L4/J4 in C. elegans and P. pacificus. In contrast to C. 
elegans, for P. pacificus the J1 to J2 molt is embryonic and only the J2 stage hatches from the 
egg. Under harsh environmental conditions a L2/J2 larva progresses into an alternate noon-
feeding, seemingly non-aging stage of developmental arrest, caller dauer (figure adopted from 
Ref. 29). (b) Dimorphism of the buccal cavity observed in P. pacificus: narrow/stenostomatous 
(left) and wide/eurystomatous (figure adopted from Ref. 43). 
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that the genetic regulation of homologous biosynthetic, cellular, and developmental 

processes can be studied, enabling the identification of the molecular changes that 

underlie phenotypic and biochemical differences or variation.28
 

In favorable laboratory conditions both C. elegans and P. pacificus develop from 

eggs and mature through four larval stages, named L1-L4 (C. elegans) or J1-J4 (P. 

pacificus) before molting into reproductive adults (Figure 1.1a).29 However, under 

unfavorable conditions such as lack of food, high temperatures, and high population 

density, L2/J2 larva enter a stage of developmental arrest called the dauer (from 

German ‘dauer’ for ‘enduring’, Figure 1.1a), instead of developing into normal L3/J3 

worms.30-34 Dauer larvae are non-feeding and can stay alive for many months until 

conditions improve, much longer than the typical adult lifespan of 2-3 weeks. Dauer 

development represents a unique example of developmental plasticity in metazoans.  

Unlike C. elegans, P. pacificus belong to the family Diplogastridae, and like all 

species of this family, the first embryonic molt (J1 larvae) is not free-living and non-

feeding and molt to J2 before they hatch from the egg (Figure 1.1a). In the wild, P. 

pacificus forms an unusual association to scarab beetles: residing on the beetles as 

dauers for the most part and resuming development by feeding on the microbes that 

infest the beetle carcass. Such a necromenic association with beetles may represent a 

pre-adaptation to the evolution of true parasitism.35 In addition to dauer formation, P. 

pacificus further exhibits a dimorphism in mouth development: adult worms can either 

have a "stenostomatous"/narrow- or a "eurystomatous"/wide-buccal cavity, the latter 

developing in response to conditions of low food availability (Figure 1.1b).36 
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Genomics and proteomics are highly developed for C. elegans and developing 

rapidly in P. pacificus.29 However, comprehensive structural and functional 

characterization of these model nematode’s metabolomes has been explored only to a 

very limited extent. Recent studies have shown that C. elegans utilizes small-molecule 

architectures, namely ascarosides (Figure 1.2a) of unanticipated diversity and 

complexity and bile acid-like steroids, called dafachronic acids (Figure 1.2b) in exocrine 

and endocrine signaling.34,37-48 These molecules play a central role in the nematode’s 

life history by regulating developmental timing, lifespan, stress resistance, phenotypic 

plasticity, and a wide range of social behaviors. Of these, the ascarosides form a 

modular library that integrates building blocks derived from conserved primary metabolic 

pathways in which different combinations of "modules" are associated with different 

signaling contexts.  

 

 

 

Figure 1.2: Structures of two types of signaling molecules identified from C. elegans - (a) 
ascarosides, which form a modular library of small-molecule signals, e.g. ascr#2, icas#9, and 

hbas#3 and (b) bile-acid like steroids, called dafachronic acids (DAs), e.g. 7- and 4-DA.  
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Research efforts at the Schroeder group suggest that a vast majority of C. 

elegans and P. pacificus metabolites remain unidentified. The knowledge gained from 

their structural elucidation and functional characterization will greatly advance 

understanding of the biology of these model systems, in particular signaling processes 

that regulate lifespan and conserved primary metabolism as well as associated disease-

relevant pathways in mammals. Thus there exists a clear rationale for developing C. 

elegans and P. pacificus as model organisms for small molecule signaling and 

metabolism. 

 

1.2. Developing a global metabolomics approach for investigating nematode 

small molecule signaling: Small molecules typically are defined as organic, non-

polymeric chemical entities with molecular mass <1000 Daltons. Biogenic small 

molecules serve a variety of biological functions, such as facilitating communication, 

chemical defense, and predation; functioning as hormones and second messengers in 

animals and plants; as well as serving as building blocks for biological 

macromolecules.49  

"Metabolomics" is the systematic study for identification and quantitation of 

biogenic small molecules in mixtures, extracted from a complex biological matrix (such 

as a cell, tissue, organ or an organism), representing a specific metabolic state.50 A 

related field of study, "natural product chemistry" aims at isolation and structural 

characterization of small molecules with specific biological or otherwise desirable 

activities from complex natural samples.50 Even though the two fields have overlapping 
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objectives - structural and functional characterization of metabolites from complex 

natural mixtures - there exists a basic difference in experimental design and techniques 

used. Natural products research traditionally relies on activity guided fractionation to 

isolate or highly enrich individual compounds; whereas metabolomics utilizes statistical 

methods to identify a subset of small molecules relevant in a specific biological 

context.50 Traditionally, metabolomics primarily uses mass spectrometry-based 

metabolite profiling of complex mixtures prior to the application of statistical 

techniques.51,52 On the other hand, Nuclear Magnetic Resonance (NMR) spectroscopy 

has been traditionally employed for unambiguous structural assignment of pure or 

highly enriched individual compounds as in natural products chemistry, and only rarely 

for broad metabolite profiling.53-55 Each field of study has its limitations and biases: 

metabolomics suffers due to the absence of in-depth structural information from mass 

spectrometry based metabolite profiling; and natural products is biased towards the 

identification of only stable metabolites that can handle multiple rounds of 

chromatography used to purify the active compound(s).  

Groundbreaking contributions by Schroeder et al. demonstrated that, contrary to 

the accepted notion, application of 2D NMR spectroscopy on crude biological samples 

can provide a broad overview of the composition (similar to mass spectrometry), as well 

as reveal full or partial structural information of the metabolites therein.56,57 These initial 

studies were done on crude metabolite extracts from Myrmicaria ants utilizing double 

quantum filtered correlation spectroscopy (dqfCOSY, a 2D NMR spectroscopy 

experiment) to identify novel oligocyclic alkaloids. The use of 2D NMR spectroscopy 

also proved extremely useful for the characterization of labile small molecule products  
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Figure 1.3: Sections of dqfCOSY spectra of (a) synthetic ascr#2 and (b) a natural sample 
containing ascarosides. Characteristic crosspeaks arising due to the spin system of an 
ascarylose ring are boxed red. These crosspeaks can be discerned even from a very complex 
spectrum of a natural sample containing thousands of compounds by the analysis of the 
associated chemical shifts and fine-structures.    



8 
 

of the orphan gene cluster pksX from B. subtilis as it helped to eliminate detrimental 

chromatography steps.58 In the subsequent years the Schroeder group at Cornell 

University has taken the lead in combining ideas from both metabolomics and natural 

products chemistry to overcome the biases of the two fields for structural and functional 

characterization of small molecules. The group has pioneered the use of 2D NMR-

based comparative metabolomics tools such as: DANS (Differential Analysis by 2D 

NMR Spectroscopy) which greatly aided the linking of small molecule metabolites with 

their functions and biogenesis.29,56,57 Further, mvaDANS (multivariate DANS) was 

developed that enabled automated processing and comparative computational analysis 

of 2D NMR spectra.37 

Central to the use of 2D NMR as a metabolomics tool is the use of the dqfCOSY 

experiment. dqfCOSY is a high-resolution, high dynamic range, 1H-1H, 2D NMR 

experiment that displays an array of crosspeaks symmetrically placed across a 

diagonal. Each crosspeak marks scalar J-coupling-based interaction of two different 

classes of protons with different chemical shift values. In-depth analysis of dqfCOSY 

crosspeak fine-structures (Figure 1.3) provides accurate chemical shifts and scalar J-

coupling values for the associated protons, which are indispensible for assigning 

molecular structures. In addition, dqfCOSY spectra have a high dynamic range (~200:1 

or more) and are able to capture correlations, i.e. show crosspeaks, for a large number 

of different molecular species, as typically present in a crude natural small-molecule 

extract. Furthermore, interconnected sets of crosspeaks (with their associated fine-

structures) in a dqfCOSY spectrum represent as unique identifiers (fingerprints) of 

particular structural features, which are often discernible even from highly complex 
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mixtures (Figure 1.3). In summary, dqfCOSY can provide an unbiased overview of the 

metabolome’s composition and frequently allows detection and partial identification of 

even very minor metabolites.59-61 

Inspired by the advancement of 2D NMR-based metabolomics, this dissertation 

reports the use of a "global metabolomics" approach - an innovative analytical workflow 

that utilizes a combination of 2D NMR (predominantly dqfCOSY) and high resolution 

HPLC-MS/MS; activity guided fractionation, and chemical synthesis to achieve broad 

metabolite profiling of complex biological matrices. This technique was successfully 

used for the identification, functional characterization, and studying the biogenesis of 

novel secondary metabolites from the model nematodes C. elegans and P. pacificus.37-

40,43 This integrative metabolomics approach utilized in this dissertation largely 

overcomes the biases of the fields of metabolomics and natural products chemistry. 

However, this methodology suffers to some extent from the limitations of the analytical 

techniques used and specific aspects of experimental design. To list a few: (1) the 

primary 2D NMR technique used, dqfCOSY, only provides structural information of 

small-molecules that exhibit 1H-1H scalar coupling(s), hence molecules with inter-

connected quaternary carbons or exchangeable 1Hs will not be observed; (2) the HPLC-

MS/MS technique used only record and provide data for molecules that ionize under a 

specified set of experimental conditions; and (3) the extraction protocols used for the 

most part may not be suitable for highly polar compounds (e.g. nucleotides).  
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1.3. Small molecule signaling in nematodes: Small molecule signaling serves 

important functions at all levels of organismal organization and requires diverse 

biosynthetic mechanisms for encoding biological information in chemical structures.62 

Whereas microorganisms have well-studied biosynthetic machinery that enables 

production of a great diversity of structures (e.g. non-ribosomal peptides and 

polyketides),63,64 most animals were presumed to lack the ability to produce elaborate 

small-molecule architectures. However, recent studies showed that C. elegans, a fully 

differentiated multi-cellular metazoan produces a modular library of complex small 

molecule signals, called ascarosides (Figure 1.2a) that regulate nematode 

development,33,45,48,65 act as sex pheromone,34,47 and mediate aggregation behavior.39,40 

In addition, steroid hormones, called dafachronic acids (4- and 7-DA, Figure 1.2b) 

were identified, which act as ligands for the nuclear hormone receptor DAF-12 that 

regulates both adult lifespan and larval development in C. elegans.18,65,66 

Genetic dissection of ascarosides and dafachronic signaling in C. elegans has 

revealed a complex interconnected network of signal transduction pathways, reviewed 

in Ref. 20 (Figure 1.4). Cues from the environment in the form of nutrient levels, 

temperature, and small molecule pheromones are perceived by GPCRs in sensory 

neurons of the worm.46,67,68 Signals from the GPCRs are transduced via G-proteins and 

membrane resident guanylyl cyclase, DAF-1169 to cGMP-gated ion-channels, TAX-2, -4 

on the neuron membrane.70,71 When conditions are favorable, DAF-7/TGF- and insulin-

like peptides (ILPs) are produced. Binding of ILPs and TGF- to their cognate cell 

surface receptors DAF-2 (Insulin/IGF-1 receptor) and DAF-1, -4, respectively, results in 

nuclear localization of DAF-8,-14/SMADs and retention of phosphorylated DAF-
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16/FOXO in the cytoplasm.20,72-80 These events are believed to directly or indirectly 

regulate expression of putative hormone synthesis enzymes (e.g., DAF-9/CYP) that 

produce ligands for the nuclear hormone receptor DAF-12/NHR, a homolog of 

mammalian vitamin D and Liver-X receptors. Ligand-bound DAF-12 putatively recruits  

 

Figure 1.4: Schematic model for small molecule-signaling in C. elegans, reviewed in Ref. 20. 
Environmental signals (e.g. small molecule pheromones) are perceived by GPCRs and 
transduced via evolutionarily conserved signaling cascades, including the: guanylyl cyclase, 

TGF-, and insulin/IGF-1 pathways. When environmental conditions are favorable, upstream 
signaling results in expression of genes required for the biosynthesis of steroids ligands 
(dafachronic acids) of DAF-12/NHR. Liganded DAF-12 promotes development, in part via 
transcription of the let-7-family microRNAs mir-84 and mir-241. Under unfavorable conditions, 
ligand biosynthesis is inhibited, resulting in interaction of unliganded DAF-12 with its 
corepressor DIN-1 and target gene repression for dauer formation.  
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yet unidentified coactivators and promotes reproductive development. Upon sensing 

inclement conditions, Insulin/IGF-1 and TGF- signaling shut off and DAF-16/FOXO is 

nuclear localized to promote dauer programs and directly or indirectly inhibit expression 

of DAF-12-ligand biosynthesis genes. In contrast, unliganded DAF-12 promotes dauer 

programs through association with its corepressor DIN-1/SHARP.81-83 Figure 1.4 is a 

simple scheme to represent the central players that transduce small molecule signals in 

nematodes. The pathway does not necessarily work in sequence as represented, can 

work in parallel, and have independent outputs. 

 

1.4. Dissertation outline: The central theme of this dissertation is the use of global 

metabolomics of complex nematode-derived mixtures, encompassing orthogonal 

analytical data sets from 2D NMR and high resolution HPLC-MS/MS. At the time when 

the author started his graduate research, only a few of examples of signaling molecules 

were known in C. elegans and none were reported from P. pacificus. The few that were 

identified relayed that small molecule signaling is indispensible and associated with 

many distinct phenotypes in nematodes.31-34,47,84,85 Hence, these model nematodes 

stood extremely suitable systems to explore metazoan small molecule signaling by the 

application of an innovative analytical workflow.  

In the subsequent chapters, the author extends the understanding of nematode-

derived small molecules that functions from conferring environmental cues to the 

downstream regulation of NHR activity (Figure 1.4). Structural and functional 

characterization of small molecule signals in nematodes described in this dissertation 
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provide additional routes to investigate evolutionarily conserved signaling pathways, 

such as guanylyl cyclase, TGF-, and Insulin/IGF-1 that are implicated in many grave 

disease such as: cancer, diabetes, and atherosclerosis.86-88 Many of the identified 

signaling molecules feature unusual structural complexities, such as xylopyranose-

based nucleosides, uncharacteristic of developed metazoans. However, these 

molecules are generated via simple combinatorial assembly of building blocks derived 

from primary metabolism that are essentially available to all organisms. This suggests 

that higher metazoans may have under-appreciated biosynthetic capabilities and thus 

provide an opportunity to re-investigate mammalian metabolome using techniques from 

global metabolomics approach described in this dissertation.  
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CHAPTER 2 

 

COMPARATIVE METABOLOMICS REVEALS BIOGENESIS OF ASCAROSIDES, A 

MODULAR LIBRARY OF SMALL MOLECULE SIGNALS IN C. ELEGANS 

 

2.1. Introduction: Several different aspects of the life history of the nematode 

Caenorhabditis elegans are regulated by ascarosides, glycosides of the dideoxysugar 

ascarylose (Figure 2.1).1-6 The ascarosides ascr#1−3 were originally identified as major 

components of the dauer pheromone, a population-density signal that promotes entry 

into an alternate larval stage, the non-feeding and highly persistent dauer 

diapause.1,2,4,5,7 Entry into the dauer stage is mediated by several highly conserved 

signaling pathways, including insulin/IGF-1 signaling and transforming growth factor 

beta (TGF-β) signaling,8-12 which contributed to interest in the ascarosides’ structures, 

their biosynthesis, and their mode of action. More recent work showed that specific 

mixtures of ascarosides including the 4-aminobenzoic acid derivative ascr#8 act as 

strong male-specific attractants,3,5 whereas ascarosides including a tryptophan-derived 

indole-3-carboxy moiety function as aggregation signals at femtomolar concentrations.6  

The biosynthetic pathways that control specific assembly of the ascarylose, lipid 

side chain, and peripheral building blocks are largely unknown. Earlier work showed 

that worms carrying a mutation in the gene daf-22 are defective in the biosynthesis of 

both the dauer pheromone and male-attracting signals.3,5,13,14 daf-22 encodes a protein  
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Figure 2.1: Ascarosides that regulate development and behavior in C. elegans. ascr#1-4, 
ascr#5 and icas#9 were identified via activity guided fractionation,1,2,15 ascr#7 and ascr#8 were 
identified using differential analysis of 2D NMR spectroscopy (DANS),5 and ascr#9 and #10 
were detected using mass spectrometric techniques.6 

 

with strong homology to human sterol carrier protein SCPx and in C. elegans functions 

in peroxisomal β-oxidation of long-chained fatty acids, producing the 3−9-carbon side 

chains of the ascarosides.7 Two other components of peroxisomal β-oxidation were 

shown to participate in ascaroside biosynthesis: the acyl-CoA oxidase ACOX-116 and 

the β-hydroxyacyl-CoA dehydrogenase DHS-28,7,17 a partial homologue of human 

multifunctional enzyme type 2 (MFE-2).  

Among the studies that aimed at elucidating ascaroside biosynthesis, the 

publication by Joo et al. (2010),16 is of particular importance for this dissertation chapter. 

In this paper, the authors proposed that the enzyme ACOX-1 acts as the acyl-CoA 

oxidase in peroxisomal β-oxidation pathway for ascaroside biosynthesis in C. elegans. 

Further, relative quantification of ascr#1-3 (for structures see Figure 2.1) at 
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temperatures 20 and 25 oC of wild-type and acox-1(ok2257) mutant, the authors 

concluded that acox-genes likely contribute to the dynamic balance of ascarosides in 

response to temperature variations. However, for this study the authors worked with a 

limited set of previously published ascarosides and did not venture into identifying shunt 

metabolites (if any) that accumulate in the acox-1 mutant metabolome. Hence, the 

predicted role of ACOX-1 in ascaroside biogenesis remained putative. Similarly, the 

exact role of DHS-287,17 in ascaroside biosynthesis remained unclear, because the 

effect of dhs-28 mutations on ascaroside production was only partially characterized.  

The recent discovery of new structural variants with important divergent 

functions, e.g., icas#3 and icas#9,6,15 suggested that knowledge of ascaroside 

structures and functions in C. elegans remains incomplete. Results from biological 

studies further indicate that even small structural differences between ascarosides can 

be associated with significant functional differences; for example, ascr#3 is a potent 

male attractant, whereas the structurally similar ascr#7 is nearly inactive in this male 

attraction assay.5,18 Correspondingly, several previous studies indicate that ascaroside 

biosynthesis is tightly controlled by environmental factors such as temperature, nutrient 

availability, and population density.7,16,19 Therefore, detailed investigation of ascaroside 

structures and their biosynthetic pathways is essential for many aspects of the biology 

of this model organism. 

To facilitate sensitive detection and quantitation of the known ascarosides in the 

metabolomes of different C. elegans strains and mutants and aid with the discovery of 

new ascaroside derivatives, Dr. Stephan H. von Reuss, Schroeder group, developed a 

robust HPLC-MS/MS-based metabolomics tool.20 Because of the vast complexity of the 
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C. elegans metabolome, HPLC-MS analysis of metabolite extracts resulted in extremely 

crowded chromatograms that are difficult to interpret (Figure 2.2a). Investigation of ESI 

MS/MS fragmentation of a series of synthetic ascarosides showed that with negative-ion 

electrospray ionization (ESI−), ascarosides give rise to an intense and highly diagnostic 

product ion at m/z 73.02939 [C3H5O2] which originates from the ascarylose unit (Figure 

2.2b).  

 

 

Figure 2.2: (a) HPLC-MS total ion current chromatogram of wild-type C. elegans excretome 
(ESI−). (b) MS/MS fragmentation of ascarosides.  

 

This detection method proved suitable for all known ascarosides, except for 

ascr#2 and ascr#4 which do not ionize well under ESI− conditions. Hence a screen for 

precursor ions of m/z 73 was used to detect known as well as yet unidentified 

ascarosides in the C. elegans wild-type and mutant metabolomes.20 
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In this dissertation chapter, the author has utilized Dr. von Reuss’s new HPLC-

MS/MS- as well as 2D NMR-based metabolomics as tools for ascaroside profiling in C. 

elegans. Application of these methods to wild-type C. elegans revealed that the 

previously described ascarosides are part of a much larger, structurally diverse library of 

compounds derived from modular combination of building blocks from three different 

metabolic pathways. Subsequently the author used HPLC-MS/MS and 2D NMR on wild-

type, acox-1, and daf-22 metabolomes to interrogate ascaroside biosynthesis and 

homeostasis. 

 

2.2. Identification of novel ascarosides using HPLC-MS/MS-based metabolomics: 

For the initial HPLC-MS/MS-based metabolomics screen that Dr. von Reuss developed, 

liquid culture (Appendix Section A.1.3) metabolite extracts from wild-type worms were 

used, which contain accumulated excreted metabolites from large numbers of worms 

(the worm "exo-metabolome"). The resulting HPLC-MS/MS chromatograms from wild-

type C. elegans showed a large number of well-resolved peaks, most of which were 

found to represent ascarosides, including several families of previously undetected 

compounds. Dr. von Reuss first confirmed the identities of the known ascarosides using 

synthetic standards. In addition, the author in collaboration with Dr. von Reuss found 

that the known saturated ascarosides ascr#1, ascr#9, and ascr#10 are accompanied by 

substantial quantities of homologues with 6−16-carbon side chains (Figures 2.3a, 2.4a, 

2.5b, and Appendix Table A.1). Identification of this homologous series was based on 

high-resolution MS/MS, HPLC retention times, and synthesis of representative 

members (see Appendix Section A.1.7 and Appendix Figure A.1). The HPLC-MS/MS 
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screen further revealed that ascarosides with side chains of 5−11 carbons are 

accompanied by smaller quantities of slightly less polar isomers. These ascaroside 

isomers are produced more abundantly by acox-1 mutant worms (Figures 2.3b, 2.4b 

and 2.5b, vide infra). 

Several additional peaks in the wild-type MS/MS chromatograms could not be 

assigned to any of the known ascaroside classes. For two of these compounds, Dr. von 

Reuss noticed that they produced high resolution MS/MS product ions at m/z 301.1651 

[C15H25O6] suggestive of ascr#3 derivatives. The putative ascr#3 derivatives were  

 

 

Figure 2.3: HPLC-MS/MS screen (precursors of m/z 73) of (a) wild-type and (b) acox-1 exo-

metabolome reveals known ascarosides (black), new homologues (blue), new -oxygenated 
isomers (red), and new 4'-acylated derivatives (green) (* indicates signals from non-
ascarosides). The highly polar ascr#5 elutes at 6.5 min, outside of the retention time range 
shown. 
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Figure 2.4: Representative ascaroside classes identified in wild-type and acox-1 mutant worms 

via HPLC-MS/MS: (a) (−1)-oxygenated ascarosides, (b) -oxygenated ascarosides, and (c) 
examples for 4’-acylated derivatives. The stereochemistry of compounds that were not 
synthesized was proposed as shown on the basis of analogy and HPLC-MS retention times 
(Appendix Figure A.1). See also Appendix Figure A.2. 

 

isolated by preparative HPLC and analyzed using 2D NMR spectroscopy (dqfCOSY, 

see Chapter 1, Section 1.2 for details on dqfCOSY and Appendix Figures A.3 and 

A.4 for dqfCOSY spectra of the two novel compounds) by the author of this dissertation, 

which confirmed that these compounds are ascr#3-based and further indicated the 

presence of a 4-hydroxybenzoyl and a (E)-2-methyl-2-butenoyl (tigloyl) moieties 

attached to the 4-position of the ascarylose (Figure 2.4c). These structural assignments 

were corroborated via total synthesis of authentic samples by Dr. von Reuss (reported 

in Ref. 20). In analogy to the recently reported indole-3-carboxy derivative of ascr#3 

("icas#3"),6 the 4-hydroxybenzoyl and (E)-2-methyl-2-butenoyl derivatives of ascr#3 

were named with the small molecule identifiers or SMIDs (www.smid-db.org) "hbas#3" 

and "mbas#3", respectively. hbas#3 and mbas#3 are the first ascarosides to incorporate 
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4-hydroxybenzoyl and (E)-2-methyl-2-butenoyl moieties, which in analogy to the indole-

3-carboxy moiety in icas#36 could be derived from amino acid precursors.  

Next, synthetic samples of hbas#3 were submitted to Prof. Paul W. Sternberg’s 

research group at Caltech, Pasadena, CA for testing this compound’s effects on worm 

behavior. Results from Dr. Jagan Srinivasan, Sternberg group showed that the 

compound strongly attracts C. elegans at concentrations as low as 10 fM,20 which 

exceeds the potency of any previously known C. elegans small-molecule signal.3,6 Low 

femtomolar activity is unusual for small-molecule signals in animals but matched by 

some classes of peptide hormones.21,22 

 

2.3. Role of ACOX-1, a conserved component of peroxisomal -oxidation in 

ascaroside biosynthesis: Next, the author in collaboration with Dr. von Reuss used 

comparative HPLC-MS/MS to investigate ascaroside biogenesis. Previous studies 

suggested that the side chains of the ascarosides are derived from peroxisomal β-

oxidation of longer-chained precursors and that the acyl-CoA oxidase ACOX-1 

participates in the first step of ascaroside sidechain β-oxidation, introducing α,β-

unsaturation (Figure 2.5a).16 In vertebrates as well as in Drosophila, the next two steps 

in peroxisomal β-oxidation, hydration of the double bond and subsequent 

dehydrogenation to the β-ketoacyl-CoA ester, are catalyzed by one protein, e.g., MFE-

2. These two enzymatic functions appear to be separated in C. elegans such that the 

hydratase and dehydrogenase are distinct proteins.20,23  
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Figure 2.5: (a) Proposed roles of peroxisomal β-oxidation enzymes ACOX-1, MAOC-1, DHS-

28, and DAF-22 in ascaroside biosynthesis. (b) (−1)-Oxygenated ascarosides in wild-type and 
acox-1 mutant with saturated (blue), α,β-unsaturated (red), and β-hydroxylated (green) side 

chains. (c) -Oxygenated ascarosides in wild-type and acox-1 mutants. (d) ACOX-enzymes' 
involvement in ascaroside biosynthesis: ACOX-1 works with other unidentified ACOX-2, 3, etc. 

for chain shortening of C10 and longer side chained (-1)-oxygentaed ascarosides and C6 or 

longer side chained ()-oxygentaed ascarosides. Further, ACOX-1 is essential for ascr#10-

SCoA to ascr#3-SCoA (-1, C9-side chain) as well as oscr#9-SCoA to ascr#5 (, C5-side chain) 
conversions. Both ascr#3 and ascr#5 are observed abundantly in wild-type samples, but starkly 
downregulated or absent in acox-1 mutants (Figure 2.5b,c).  
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Previous work showed that C. elegans DHS-28, a protein with homology to the 

(R)-selective β-hydroxyacyl-CoA dehydrogenase domain of human MFE-2, likely 

participates in converting β-hydroxyacyl-CoA-derivatives into the corresponding β-

ketoacyl-CoA intermediates, which are subsequently cleaved by the β-ketoacyl-CoA 

thiolase DAF-22.7,17 Using the newly developed MS/MS-based ascaroside screen, Dr. 

von Reuss re-investigated the ascaroside profiles of dhs-28(hj8), and daf-22(ok693) 

mutant worms to establish their roles as a dehydrogenase and a thiolase in ascaroside 

biosynthesis (Figure 2.5a).20,24 Additionally, Dr. von Reuss analyzed the exo-

metabolomes of several other peroxisomal mutants, including maoc-1(hj13), a 

peroxisomal 2-enoyl-CoA hydratase,25 which he showed participates in the hydration 

step of ascaroside β-oxidation (Figure 2.5a).20 

The author of this dissertation focused on ascaroside-profiling of acox-1(ok2257) 

mutant in C. elegans to corroborate its role in ascaroside side-chain -oxidation. ACOX-

1 has previously been proposed to act as the acyl-CoA oxidase in ascaroside 

biosynthesis.16 However, the metabolome of the mutant acox-1 was not properly 

investigated to validate the putative role of the enzyme. HPLC-MS/MS analysis of the 

exo-metabolome of acox-1(ok2257) mutant worms revealed that the abundance of the 

α,β-unsaturated ascr#3, the dominating component of wild-type exo-metabolome, was 

greatly reduced (Figures 2.3 and 2.5b). This decrease in ascr#3 and other α,β-

unsaturated ascarosides does not appear to be the result of overall down-regulation in 

ascaroside production, but instead is accompanied by accumulation of a series of 

saturated ascaroside, e.g. ascr#10, the dihydro-derivative and direct precursor of 

ascr#3 is 13.6 times more abundant in acox-1(ok2257) than in the wild-type exo-
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metabolome. The corresponding homologues with 11- and 13-carbon side chains, 

ascr#18 and ascr#22, are 29 times and 66 times more abundant in acox-1 than in the 

wild-type exo-metabolome, respectively (Figure 2.5b). The buildup of longer chained 

saturated ascarosides in the acox-1(ok2257) exo-metabolome confirms the importance 

of ACOX-1 in α,β-dehydrogenation of the ascaroside side chain (Figure 2.5a). Because 

ascaroside biosynthesis is not abolished in acox-1(ok2257) worms, it seems likely that 

other, yet-unidentified ACOX-enzymes contribute to peroxisomal β-oxidation of long 

chain ascaroside precursors. However, HPLC-MS/MS analysis of exo-metabolome of 

several other peroxisomal acox mutants (see Appendix Section A.1.2 and Appendix 

Figure A.5) revealed largely wild-type-like ascaroside profiles. 

 

2.4. Shunt metabolites from peroxisomal β-oxidation mutants provide deeper 

insights into ascaroside biosynthesis: The author further used HPLC-MS/MS 

analysis and 2D NMR-based metabolomics for identifying additional ascaroside-based 

shunt metabolites upregulated in C. elegans acox-1 and daf-22 mutants. HPLC-MS/MS 

analysis of acox-1(ok2257) further revealed the complete absence of ascr#5, one of the 

major dauer-inducing ascarosides produced abundantly in wild-type (Figure 2.5c). 

ascr#5 differs from all other previously identified ascarosides in that its side chain is 

attached to the ascarylose sugar via the terminal carbon (" linkage") and not the 

penultimate carbon ("−1 linkage") (Figure 2.4b). Instead of ascr#5, the author 

detected large quantities of a new homologous series of saturated ascarosides in acox-

1(ok2257), smaller amounts of which were also present in the wild-type exo-

metabolome (Figures 2.4b and 2.5c). The most abundant component of this series of 
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isomers was isolated via preparative HPLC and identified by dqfCOSY as an -linked 

ascaroside with a C5 side chain (Figure 2.4b and Appendix Figure A.6). This 

suggested that the additional series of compounds observed in acox-1 represents -

linked saturated ascarosides (Table A.2), which were confirmed by synthesis of C5 and 

C9 -linked ascarosides by Dr. von Reuss (reported in Ref. 20). In order to differentiate 

the -linked ascarosides from their previously described (−1)-linked isomers, the newly 

found -linked compounds were named with the SMID “oscr”, e.g., -linked isomers of 

ascr#9 and ascr#10 were named oscr#9 and oscr#10 (Figure 2.4b).  

Thus production of -linked ascr#5 is abolished in acox-1(ok2257) worms, 

whereas production of longer chain homologues with 5−13-carbon side chains, e.g., 

oscr#9, is starkly up-regulated (Figure 2.5c). These results indicate that β-oxidation in 

acox-1(ok2257) worms is strongly dependent on whether the side chain is (−1)- or -

functionalized (Figure 2.5d). Chain shortening of (−1)-oxygenated substrates appears 

to stall at a chain length of 9 carbons as in ascr#10, whereas -oxygenated substrates 

are processed for two additional rounds of β-oxidation to afford large quantities of -

oxygenated oscr#9 featuring a 5-carbon side chain. This suggests that side-chain 

oxygenation precedes peroxisomal β-oxidation. In contrast, the time point of ascarylose 

attachment seems less certain. The absence of any (−1)- or -hydroxylated fatty acids 

in the investigated C. elegans mutant metabolome samples suggests a biosynthetic 

model in which very long-chain ascarosides (VLCAs) serve as substrates for 

peroxisomal β-oxidation; however, the possibility that β-oxidation occurs prior to 

ascarylose attachment cannot be excluded.  
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In contrast to wild-type and acox-1(ok2257) worms, Dr. von Reuss’s data showed 

that short-chain (<C9) ascarosides were not detected in maoc-1(hj13) and dhs-28(hj8) 

worms, which instead accumulate several series of (−1)- and -oxygenated medium- 

and long-chain ascarosides (≥C9).
20 The ascaroside profile of the maoc-1(hj13) exo-

metabolome20 was dominated by α,β-unsaturated ascarosides such as ascr#21 (C13) 

and ascr#25 (C15), supporting the hypothesis that MAOC-1 functions as an enoyl-CoA 

hydratase in the ascaroside biosynthetic pathway (Figure 2.5a). Dr. von Reuss further 

showed that the dhs-28(hj8) ascaroside profile20 is dominated by compounds with side 

chains ranging from C9−C21. The major components included (−1)- and -oxygenated 

β-hydroxyascarosides (SMIDs associated with for (−1)- and -oxygenated β-

hydroxylated ascarosides are bhas and bhos) with odd-numbered side chains from 

C13−C21, consistent with the proposed biosynthetic role of DHS-28 as a β-hydroxyacyl-

CoA dehydrogenase.7,17 The ascaroside-based shunt metabolites from maoc-1 and 

dhs-28 mutants, smaller amounts of some of which were also detected in wild-type and 

acox-1 mutants, originally identified by Dr. von Reuss are presented in Appendix 

Figure A.2 and their identification reported in Ref. 20. 

Preliminary analysis of daf-22(ok693) exo-metabolome20 by Dr. von Reuss 

revealed the absence of all ascarosides with side chains shorter than 12 carbons, as 

reported earlier.5,7,17 Additionally, daf-22(ok693) produced small amounts of 

homologous series of (−1)- and -oxygenated long-chain ascarosides featuring 

saturated (ascr and oscr) and β-hydroxylated side chains (bhas and bhos). To 

investigate the major ascaroside-shunt metabolites in daf-22(ok693), the author used 
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2D NMR-based comparative metabolomics (mvaDANS, Chapter 1, Section 1.2, 

developed in collaboration with Yevgeniy Izrayelit, Schroeder research group and Dr. 

Steven L. Robinette, Imperial College London, London, United Kingdom).24 This 

analysis (reported in Ref. 24) revealed that daf-22(ok693) exo-metabolome contains 

large amounts of long-chained ascarosides belonging to the series: (-1)-oxygenated 2-

ketoascarosides, (-1)-oxygenated -ketoascaroside ethanolamides, (-1)-oxygenated 

-methyl ,-unsaturated ascaroside ethanolamides, and (-1)-oxygenated -methyl 

ascaroside ethanolamides (Figure 2.6). The abundance of -ketoascarosides in daf-22 

confirmed its role as a β-ketoacyl-CoA thiolase in ascaroside biosynthesis. The 

upregulation of ascaroside ethanolamides in daf-22 mutants were concurrent with an 

observed downregulation of N-acyl-ethanolamine (NAE) production,24 including the 

most active endocannabinoid in C. elegans,26 eicosapentaenoyl ethanolamide (EPEA), 

and the ligand of mammalian cannabinoid receptors, arachidonoyl ethanolamide (AEA, 

or anandamide), suggesting a shift of ethanolamine utilization from the NAEs to 

VLCAs.24 

 

Figure 2.6: daf-22 mutant-specific long-chained ascarosides identified via 2D NMR-based 
metabolomics and subsequent HPLC−MS analysis.  
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2.5. Identification of new indole ascarosides: Indole-3-carbonylated ascarosides are 

much less abundant than the corresponding unfunctionalized ascarosides and have 

recently been shown to function as highly potent aggregation signals.6 The author in 

collaboration with Dr. von Reuss used HPLC-MS/MS to screen wild-type and 

peroxisomal -oxidation mutant metabolomes and revealed several new types of indole 

ascarosides (Figure 2.4c, Appendix Figure A.2, and Appendix Tables A.3, A.4). Dr. 

von Reuss showed using synthetic samples of icas#3, icas#9, and icas#1,6 that indole 

ascarosides exhibit a characteristic fragmentation pattern that includes neutral loss of 

143 amu [C9H5NO] due to cleavage of the indole-3-carbonyl unit, as well as the 

ascaroside-diagnostic product ion at m/z 73.20 HPLC-MS/MS screening for components 

with this fragmentation pattern by the author revealed that known (−1)-oxygenated 

isomers icas#1, icas#9, and icas#10 in acox-1(ok2257) are accompanied by a series of 

-oxygenated indole ascarosides (SMIDs: icos#1, icos#9, and icos#10), which was 

confirmed by chemical synthesis of icos#10 as a representative example by Dr. von 

Reuss (reported in Ref. 20).  

 

2.6. Indole ascaroside biogenesis: Using application experiments with deuterium-

labeled tryptophan and axenic in vitro cultures, it was previously shown that the indole-

3-carbonyl moiety of indole ascarosides originates from L-tryptophan.6 A similar L-

tyrosine or L-phenylalanine origin seems likely for the 4-hydroxybenzoyl moiety of 

hbas#3, whereas the tigloyl group of mbas#3 could be derived from L-isoleucine.27 

However, it remained unclear at what stage in ascaroside biosynthesis the indole-3-
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carbonyl moiety is attached. Comparison of ascaroside and indole ascaroside profiles 

revealed that indole ascaroside biosynthesis is tightly controlled. For example, the 

author found that in acox-1 mutants the -ascaroside oscr#9 is over 100 times more 

abundant than the (−1)-ascaroside ascr#9, whereas (−1)-indole ascaroside icas#9 is 

much more prominent than -indole ascaroside icos#9 (Figure 2.7a). Similarly, icas#3 

and icas#9, the dominating indole ascarosides in the wild-type exo-metabolome are 

produced in roughly equal amounts, whereas ascr#3 is about 20 times more abundant 

than ascr#9 (Figure A.7). This strong dependence of indole ascaroside biosynthesis on 

side-chain length and (−1)- vs -oxygenation suggested that these compounds 

originate from specific attachment of an indole-3-carbonyl unit to the corresponding non-

indole ascarosides.  

To test whether non-indole ascarosides serve as precursors for indole 

ascarosides, the author incubated daf-22(m130) worms (which are devoid of all short-

chain indole and non-indole ascarosides) with a 1:1 mixture of ascr#10 and oscr#10 for 

5 days. Subsequent analysis by HPLC-MS showed partial conversion into icas#10 and 

icos#10 (Figure 2.7b), indicating that non-indole ascarosides serve as specific 

precursors to their corresponding indole derivatives. Moreover, conversion of (−1)-

ascaroside ascr#10 was preferred over conversion of - ascaroside oscr#10, reflecting 

the ratios of these compounds in wild-type and acox-1 mutants. Similarly, the author 

found that daf-22(m130) worms convert added ascr#3 into icas#3 (data not shown). 

Further conversion of indole or non-indole ascarosides into shorter chain derivatives 

(e.g., ascr#1 or icas#1) was not observed. These results indicate that attachment of an  
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Figure 2.7: Indole ascaroside biosynthesis. (a) Relative abundance of (–1) and -oxygenated 
C5-ascarosides ascr#9 and oscr#9 and their corresponding indole ascarosides icas#9 and 
icos#9 in acox-1 indicates that indole-3-carbonyl attachment is highly specific. (b) HPLC-MS ion 
traces of daf-22(m130) excretome following incubation with a 1:1 mixture of ascr#10 and 

oscr#10, showing a preference for indole-3-carbonyl attachment to the (–1)-oxygenated 
ascr#10. 

 

L-tryptophan-derived indole-3-carbonyl unit represents the final step in indole 

ascaroside biosynthesis. 

2.7. Ascaroside excretion is selective: Despite detailed investigations of ascaroside 

function, little is known about how ascarosides are released and transported from their 

site of biosynthesis. In collaboration with Dr. von Reuss, the author compared the 

ascaroside profiles of the wild-type exo-metabolomes (liquid culture supernatant 

extracts) and endo-metabolomes (worm pellet extracts) to identify possible non-

excreted ascaroside derivatives and to determine quantitative differences. The results 

indicated that ascaroside profiles of worm pellet extracts differed significantly from those 

excreted into the media, indicating that ascarosides are differentially released by C. 

elegans (Figure 2.8). In the worm pellets, the most abundant ascarosides, for example 
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ascr#3 in wild-type and ascr#10 in acox-1 worms, are accompanied by significantly 

more-polar derivatives, which are absent from the media extracts (Figure A.8). MS/MS 

analysis suggested that these components represent ascaroside O-glycoside esters. 

Isolation of the putative ascr#10 glycoside from acox-1(ok2257) worm pellet extracts 

and subsequent dqfCOSY analysis (Appendix Figure A.9) by the author indicated 

esterification of ascr#10 with the anomeric hydroxyl group of β-glucose (SMID for 1-β-D-

glucosyl ascr#10 is glas#10, Figure 2.8), which was subsequently confirmed via total 

synthesis by Dr. von Reuss (reported in Ref. 20). The fact that large quantities of highly 

polar glas#10 and other ascaroside glucosides (Table A.5) are retained in the worm 

bodies but not excreted suggests that they represent transport or storage forms of the 

ultimately excreted signaling molecules. 

 

 

 

Figure 2.8: Analysis of worm body ascaroside profiles reveals ascaroside glucosides (e.g., 

glas#10) and indicates preferential excretion of unsaturated ascarosides ( indicates 
components with (E)-configured α,β-unsaturated sidechains). Significance, *=p<0.01, 
**=p<0.001, ***=p<0.001, Appendix Section A.1.8. 
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2.8. Discussion: Ascarosides play important roles for several different aspects of C. 

elegans biology. This functional diversity is paralleled by corresponding structural 

diversity and a complex biosynthetic pathway. The data presented in this dissertation 

chapter revealed several novel ascaroside classes, which show unexpected features 

including -oxygenation of the fatty-acid-derived side chains, 4-hydroxybenzoylation or 

(E)-2-methyl-2-butenoylation of the ascarylose unit, and glucosyl esters. Most 

ascarosides occur as members of homologous series of compounds with (−1)- or -

linked saturated, α,β-unsaturated, or β-hydroxylated side chains ranging from 3 to 21 

(occasionally more) carbons. Importantly, only a few members of each series are 

produced abundantly in wild-type, and incorporation of specific structural features such 

as modification in position 4 of the ascarylose (e.g., as in indole ascarosides) appears to 

be tightly controlled. Given their assembly from carbohydrate, lipid, and amino-acid-

derived building blocks, the ascarosides appear as a modular library of small-molecule 

signals that integrate inputs from three basic metabolic pathways (Figure 2.9a). The 

ascarosides then transduce input from these pathways via their diverse signaling 

functions in C. elegans’s behavior and development, including dauer formation, mate 

attraction, hermaphrodite repulsion, and aggregation.6,18 Their specific biosyntheses 

suggest that many of the newly identified ascarosides also contribute to known or as yet 

undetermined functions in C. elegans. More comprehensive biological evaluation will 

require consideration of synergistic activities (i.e., testing of compound mixtures), which, 

given the very large number of compounds, may necessitate high-throughput 

approaches, for example based on microfluidic devices.28  
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The results presented further allowed the author to propose a working model for 

ascaroside biogenesis (Figure 2.9b). The finding that ascarosides are members of 

several homologous series with side chains up to 21 (and more) carbons suggests their 

origin from peroxisomal β-oxidation of very long-chain precursors. Previous studies 

reported the presence of VLCAs with C29 and C31 side chains in wild-type and daf-22 

mutants, which could represent precursors or intermediates in ascaroside 

biosynthesis.5,29 Alternatively, VLCFAs could undergo peroxisomal β-oxidation prior to 

(−1)- or -functionalization and subsequent attachment of the ascarylose. The 

observation that the acox-1 mutation affects (−1)- and -oxygenated ascarosides 

differently suggests that (−1)- and -functionalization of VLCFA precursors occurs 

upstream of their breakdown by peroxisomal β-oxidation. Given the large range in side-

chain lengths, it seems likely that resulting (−1)- and -hydroxy VLCFAs are linked to 

ascarylose prior to entering the β-oxidation pathway, though the presence of a 

promiscuous ascarosyl transferase cannot be excluded (Figure 2.9b).  

Chain shortening of VLCA then progresses via repetitive cycles of peroxisomal β-

oxidation. Results from HPLC-MS/MS- and 2D NMR-based comparative metabolomics 

allowed the author to propose precise roles for enzymes participating in the first and the 

fourth step of the β-oxidation cycle: acyl-CoA oxidase ACOX-1 and β-ketoacyl-CoA 

thiolase DAF-22.20,24 HPLC-MS/MS screen by Dr. von Reuss further elucidated the 

roles of enoyl-CoA hydratase MAOC-1 and β-hydroxyacyl-CoA dehydrogenase DHS-

28, for steps two and three for -oxidation cycle in ascaroside biogenesis.20 These data 

show that mutations in acox-1, maoc-1, dhs-28, and daf-22 result in specific changes of 

the corresponding ascaroside profiles, in agreement with their proposed functions. 
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Figure 2.9: (a) Modular assembly of ascarosides from amino acid (green), fatty acid (blue), and 
carbohydrate (red) building blocks. (b) Model for ascaroside biogenesis. Chain elongation of 

fatty acids by putative elongase homologues elo-1−930 is followed by (−1)- or -oxygenation of 
VLCFAs and ascarylose attachment. The resulting VLCAs enter peroxisomal β-oxidation via 
ACOX-1, MAOC-1, DHS-28, and DAF-22, producing short-chain ascarosides, which are linked 
to amino-acid-derived moieties and other building blocks. 

 

The acyl-CoA oxidase ACOX-1 has been the subject of a previous study which 

suggested that mutations in acox-1 primarily affect the biosynthesis of ascr#2 and 

ascr#3, but not of ascr#1.16 However, the author’s results indicate that acox-1(ok2257) 

mutants have a reduced ability to process C9 (−1)-functionalized ascarosides, resulting 
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in diminished production of all shorter-chained ascarosides and buildup of C9 and 

longer-chained saturated ascarosides.  

In addition to HPLC-MS/MS, 2D NMR-based comparative metabolomics 

revealed long-chained ascarosyl ethanolamides in daf-22(ok693) as an unexpected 

class of shunt metabolites in daf-22 mutant worms. The identification of β-keto 

derivatives and methyl ketones among the identified long-chain ascarosides confirms 

the role of daf-22 as a thiolase in ascaroside biosynthesis. The abundance of 

ascaroside ethanolamides in daf-22(ok693) connect nematode and mammalian fatty-

acid metabolism to endocannabinoid signaling and phosphatidylethanolamine 

utilization. In C. elegans, reduced NAE levels promote dietary restriction-induced 

lifespan extension,26 suggesting that defects in peroxisomal β-oxidation may affect 

lifespan via changes in NAE levels.  

The data reported in this dissertation chapter further shows that attachment of 

the tryptophan-derived indole-3-carbonyl unit in indole ascarosides likely represents the 

last step in their biosynthesis, and that this step is highly specific. As attachment of an 

indole-3-carbonyl group to ascarosides can dramatically alter their biological function, 

such tight regulation makes sense. For example, indole-3-carbonyl addition to the 

dauer-inducing and strongly repulsive signal ascr#3 results in the potent hermaphrodite 

attractant icas#3.6 Therefore, identification of the enzymes that attach indole-3-carbonyl 

and other functional groups to the ascarosides will be of great interest. The biosynthesis 

of ascarylose in C. elegans has not been investigated, but detection of ascarosides in 

axenic C. elegans cultures demonstrated that C. elegans produce ascarylose 

endogenously.6 Ascarylose biosynthesis in bacteria is well understood, and the C. 
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elegans genome includes several homologues of bacterial genes in this pathway, for 

example, ascE from Yersinia pseudotuberculosis (Appendix Figure A.11),31 providing 

potential entry points for the study of ascarylose biosynthesis and its regulation in 

nematodes. In addition, the oxidases catalyzing (−1)- or -functionalization of VLCFA 

precursors remain to be identified.  

Finally, the author demonstrates that ascaroside excretion is surprisingly specific. 

Given the high sensitivity and selectivity of HPLC-MS/MS, the author believes that 

ascaroside profiling using this method will aid identification of additional genes and 

environmental factors that participate in ascaroside biosynthesis and homeostasis.  

 

2.9. Author’s note: HPLC-MS/MS-based workflow to analyze C. elegans wild-type and 

peroxisomal -oxidation mutants was developed by Dr. Stephan von Reuss, 

postdoctoral researcher in Prof. Frank C. Schroeder’s group at Cornell University, 

Ithaca, NY (currently Project Leader, Bioorganic Chemistry Department, Max Planck 

Institute for Chemical Ecology, Jena, Germany). Dr. von Reuss took the lead in the 

analysis of the metabolomes of C. elegans wild-type and maoc-1, dhs-28, and daf-22 

mutants via HPLC-MS/MS in collaboration with the author. Dr. von Reuss also 

performed the total synthesis of representative ascarosides (mbas#3, hbas#3, oscr#9, 

icos#10, and glas#10) to corroborate the structural assignments of new ascarosides 

made by the author, detailed reaction conditions and experimental procedures are 

reported in Ref. 20. The 2D NMR-based comparative metabolomics study (mvaDANS) 

to identify specific VLCAs in daf-22 mutants was done in collaboration with Mr. 
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Yevgeniy Izrayelit, graduate student, Department of Chemistry and Chemical Biology, 

Cornell University, Ithaca, NY and Steven L. Robinette, Imperial College London, 

London, UK. Biological assays to elucidate the activity of hbas#3 were done by Dr. 

Jagan Srinivasan, postdoctoral researcher in Prof. Paul W. Sternberg’s group at 

Caltech, Pasadena, CA (currently Assistant Professor, Worcester Polytechnic Institute, 

Worchester, MA).   
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CHAPTER 3 

 

COMPLEX ARCHITECTURES DERIVED FROM MODULAR ASSEMBLY OF 

PRIMARY METABOLITES REGULATE DEVELOPMENT AND PHENOTYPIC 

PLASTICITY IN P. PACIFICUS 

 

3.1. Introduction: Small molecule signaling serves important functions at all levels of 

organismal organization and requires diverse biosynthetic mechanisms for encoding 

biological information in chemical structures. They facilitate inter- and intra-species 

chemical communication, are used for chemical defense and predation, function as 

hormones and second messengers in animals and plants, and serve as building blocks 

for biological macromolecules.1 In contrast to many groups of microorganisms and 

plants, whose genomes encode a great variety of "secondary" small-molecule 

biosynthetic pathways (for example, for polyketides and non-ribosomal peptides),2,3 

most animals are not known to have dedicated biosynthetic pathways to generate 

structurally complex small molecules. Correspondingly, many unusual metabolites that 

have been isolated from basal animals (e.g., sponges and bryozoans, among others) 

and arthropods have turned out to be of microbial origin or acquired through their diet.4-7  

Studies in the model organism Caenorhabditis elegans (see Chapter 2) showed 

that this nematode produces a family of small molecule signals, the ascarosides, e.g. 

ascr#1-3, and hbas#3 (Figure 3.1a), which control multiple aspects of C. elegans life 

history, including larval development, mating, and social behaviors.8-13 The structures of 
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these C. elegans signaling molecules derive from combination of the dideoxysugar 

ascarylose with a variety of lipid- and amino acid-metabolism derived moieties, 

suggesting that nematodes, and perhaps other animals, harbor yet unrecognized 

biosynthetic capabilities. 

As part of a broad 2D NMR-spectroscopic screen of nematode metabolomes, the 

author analyzed the exo-metabolome (the entirety of all secreted and excreted 

metabolites) of the necromenic roundworm Pristionchus pacificus. Like C. elegans, P. 

pacificus is a free-living nematode that has been established as a model organism for 

the study of developmental and evolutionary biology.14 P. pacificus forms a necromenic 

association with beetles, which may represent a pre-adaptation to the evolution of true 

parasitism.15 P. pacificus exhibits two types of phenotypic plasticity that are key to its 

survival in the wild. Like in many other nematode species, harsh environmental 

conditions, for example food shortage, trigger developmental arrest as dauer worms, a 

highly stress-resistant alternate larval stage.16 P. pacificus further exhibits a unique 

dimorphism in mouth development, representing an example for phenotypic plasticity of 

morphology in an adult metazoan (Figure 3.1b). Adult worms can have either a narrow 

("stenostomatous") or a wide and more complex ("eurystomatous") mouth opening, the 

latter developing in response to conditions of low food availability. The two different 

mouth forms are associated with different feeding habits: stenostomatous worms are 

considered to feed primarily on bacteria, whereas the eurystomatous form is suited for 

predatory behavior toward other nematodes. Previous studies showed that both dauer 

formation and mouth dimorphism are regulated by population density, suggesting that 

these two examples of phenotypic plasticity are driven by inter-organismal small-
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molecule signaling (Figure 3.1b).17 Interestingly, crude dauer pheromones isolated from 

multiple P. pacificus wild (natural) strains from around the world show markedly different 

efficacies in dauer formation when cross-tested on each other.18 This suggests that 

there is a significant natural variation in small molecule profiles that comprise the dauer 

pheromone in P. pacificus.  

 

 

In this dissertation chapter, the author shows that P. pacificus generates 

structurally complex signaling molecules via selective assembly of building blocks from 

several primary metabolic pathways, including an unusually modified nucleoside based 

on xylopyranose instead of ribofuranose.19 These modular compounds act as 

interorganismal signals controlling larval development, adult morphology, and lifestyle. 

A subset of compounds induces developmental arrest as highly persistent dauer larvae, 

whereas a different set of compounds promotes alternate mouth-form development, the 

body-plan change that enables predatory behavior.19 These results demonstrate small 

molecule regulation of adult phenotypic plasticity in a metazoan, which relies on co-

Figure 3.1: (a) Structures of previously identified 
small molecule signals regulating development and 
behavior in C. elegans. (b) P. pacificus exo-
metabolome samples induce dauer arrest and affect 
mouth-form dimorphism, promoting eurystomatous 
mouth development. The author herein identifies the 
active components via activity guided fractionation 
and 2D NMR-based global metabolomics. 
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option of conserved endocrine signaling pathways. Furthermore, the author’s findings 

indicate species-specific evolution of chemical signaling in nematodes, with regard to 

both chemical structures and their biological functions. The P. pacificus small-molecule 

library provides striking examples for combinatorial generation of structural diversity in a 

metazoan and connect primary metabolism to regulation of development and adult 

phenotypic plasticity. In addition, comparative HPLC-MS metabolomic analysis of 6 P. 

pacificus natural isolates show both qualitative and quantitative differences in small 

molecule profiles and in part explain the previously observed natural variation in dauer 

pheromone production by P. pacificus.18  

 

3.2. Global metabolomics using 2D NMR and HPLC-MS/MS reveals novel modular 

small molecules from P. pacificus: P. pacificus RS2333 (formerly known as PS312)20 

was grown in large 3 L liquid cultures (see Appendix Section B.1.4) by Dr. Akira 

Ogawa, Sommer research group, Max-Plank Institute (MPI) for Developmental Biology, 

Tuebingen, Germany. Dr. Ogawa subsequently performed a round of preliminary 

fractionation of the corresponding exo-metabolome (liquid culture supernatant) and 

generated three fractions I, II, and III (see Appendix Section B.1.4). Fraction II showed 

the most activity in his dauer formation assays and was used by the author for 2D NMR- 

and HPLC-MS/MS-based metabolomics for the presence of novel molecular 

architectures in P. pacificus.  

The author first used dqfCOSY (Chapter 1, Section 1.2), a 2D NMR experiment 

on Fraction II to achieve a broad overview of the different structural features that 
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comprise this active fraction. Analysis of crosspeaks and associated fine-structures of 

the dqfCOSY spectrum of Fraction II revealed a striking diversity of signals suggestive 

of primary metabolites, for example, xylose, threonine, adenosine, short-chain fatty 

acids, succinate, phenylethanolamine, and several dideoxysugar derivatives (Figure 

3.2). Specifically, the dideoxysugar derivatives fell into two chemically different 

subgroups, as judged by dqfCOSY crosspeak fine-structure analysis. One group was 

based on ascarylose, a sugar that is widely produced by nematodes,21 whereas a 

second group of compounds appeared to include a related sugar, paratose, which 

previously had been reported only in bacteria (Figure 3.2).22 Further analysis of the 

dqfCOSY and corroboration via the analysis of HMBC spectrum of Fraction II indicated 

that most of primary metabolic building blocks are part of larger assemblies based on 

the dideoxysugars (Figures 3.2 and 3.3).  

In addition, the author analyzed the crude P. pacificus exo-metabolome extract 

(Appendix Section B.1.4) by HPLC-MS/MS8 for the presence of previously identified 

compounds from C. elegans. A detailed description of this HPLC-MS/MS procedure is 

presented in Chapter 2, Section 2.1. Briefly, in this protocol, crude nematode-derived 

extracts are screened in negative ionization mode for precursor ions of m/z 73, a highly 

diagnostic fragment ion originating from ascarosides (or paratosides, molecules based 

on the dideoxysugar paratose, C-2 epimer of the ascarylose sugar, vide infra). The 

results of the HPLC-MS/MS analysis of crude P. pacificus exo-metabolome extract 

revealed the presence of ascr#1, ascr#9, and ascr#12, as previously reported from P. 

pacificus (Figure 3.4, and Appendix Figure B.1).21 Further, the HPLC-MS/MS total ion 

chromatogram (TIC) showed several additional peaks (Appendix Figure B.1) that did  
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Figure 3.2: Example section of 2D NMR (dqfCOSY) spectrum of P. pacificus exo-metabolome 
Fraction II (see Appendix Section B.1.4), revealing a complex metabolite mixture, including 
known primary metabolites as well as unknown components. Detailed analysis of crosspeak fine 
structure and additional HMBC spectra (Figure 3.3) led to detection of a series of unusual 
chemical structures based on combinations of ascarylose, paratose, threonine, xylose, and 
other building blocks. 
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Figure 3.3: NMR spectroscopic structure elucidation of major P. pacificus small 
molecules: pasc#9, npar#1, dasc#1, and ubas#1. The bold lines indicate spin systems in 
dqfCOSY spectra. Curved arrows indicate key HMBC correlations used to assign the structures. 
Marked protons ( ---H) in npar#1 are characteristic of N6-carbamoyl adenosine and observed in 
1H, HSQCAD, and HMBC spectra. 

 

not correspond to known compounds and hence suggested the presence of 

dideoxysugar-based novel small molecules in P. pacificus. 

The structures of the unknown compounds of interest were enriched via preparative 

HPLC (Appendix Section B.1.6) and their structures assigned based on subsequent 

NMR (1H, dqfCOSY, and HMBC) and molecular formula as established from high 

resolution MS analyses (Figures 3.3, Appendix Figure B.1, and Appendix Table B.1). 

The most abundant ascaroside derivative, named pasc#9 (see Appendix Section 

B.1.1 for nomenclature) was proposed as an N-succinyl-1-phenylethanolamide linked to 

ascarylose by way of a 4-hydroxypentanoic acid chain (Figures 3.3 and 3.4b). This 

compound was accompanied by two dimeric ascaroside derivatives, a dimer (dasc#1) 
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Figure 3.4: (a) HPLC-MS analysis showing molecular ion traces for small molecules identified 
from P. pacificus. See Appendix Figure B.1 for HPLC-MS/MS analysis. (b) Major components 
of the P. pacificus exo-metabolome derived from assembly of building blocks from fatty acid 
(blue), carbohydrate (black), amino acid (green), and nucleoside (red) metabolism, as well as 
TCA cycle-derived succinate (magenta). Also shown is the related hyper-modified tRNA 
nucleoside, N6-threonylcarbamoyl adenosine (t6A).  
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of the known ascr#1 in which one ascr#1 unit is attached to carbon 4 of the other ascr#1 

unit, and a second dimer (ubas#1) consisting of ascr#9 to which the ()-oxygenated 

ascaroside oscr#9 is attached at position 2 (Figures 3.3 and 3.4b). This second dimer, 

ubas#1, also has a 3-ureido isobutyrate moiety attached to carbon 4. To the author’s 

knowledge, neither dimeric ascarosides nor ureido isobutyrate-substituted metabolites 

have previously been reported from nature. These ascarosides were accompanied by 

two abundant metabolites that included paratose instead of ascarylose, npar#1 and 

part#9 (Figures 3.3 and 3.4b). In npar#1, the paratose moiety was linked to a short lipid 

side chain, which in turn was connected to threonine. This amino acid was connected 

further by way of a carbamoyl group to a derivative of the nucleoside adenosine 

(Figures 3.3 and 3.4b). Strikingly, this adenosine was found to include a xylopyranose, 

and not ribofuranose or deoxyribofuranose as in DNA, RNA, and known nucleoside-

based signaling molecules. The accompanying part#9 represents the paratose and 

side-chain portions of npar#1 (Figures 3.4b). 

To exclude the possibility that the identified compounds are bacterial metabolites, 

the author additionally analyzed the metabolome of the E. coli OP50 bacteria used as 

food for P. pacificus. None of the identified compounds (pasc#9, dasc#1, ubas#1, 

npar#1, and part#9) were found to be present in the bacterial metabolome (Appendix 

Figure B.2). Furthermore, the author showed that all identified compounds are also 

produced in P. pacificus cultures fed with Pseudomonas sp. instead of E. coli as well as 

in axenic9,23 (bacteria-free) cultures (Appendix Figure B.3).  
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Scheme 3.1: Overview of synthesis of npar#1. Reagents and conditions: (a) TMSBr, DCM, -
40 °C to r.t.; (b) toluene, reflux; (c) L-threonine, pyridine, 107 °C; (d) 2-benzyloxy-1-
methylpyridinium triflate,24 Et3N, PhCF3, 83 °C; (e) EDC, DMAP, DCM; (f) 10% Pd/C, H2 (g) 10% 
formic acid in MeOH. Details of synthetic procedures in  

 

Scheme 3.2: Overview of synthesis of dasc#1. Reagents and conditions: (a) EDC, DMAP, 
DMF. 
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3.3. Total synthesis for the identified metabolites and assignment of their relative 

and absolute stereochemistries: To confirm these structural assignments, determine 

the stereochemistry, and explore their biological functions the author in collaboration 

with Mr. Joshua J. Yim and Dr. Stephan H. von Reuss, Schroeder group, designed total 

syntheses for each of the proposed structures, taking advantage of their modular 

nature. The author designed and completed the total syntheses of npar#1 and dasc#1 

outlined in Schemes 3.1 and 3.2 (see Appendix Sections B.3.1 and B.3.2 for detailed 

synthetic procedures). Synthesis of pasc#9, ubas#1, part#9, and several non-natural 

isomers of pasc#9, npar#1, and part#9 were completed by Mr. Yim and Dr. von Reuss 

(detailed reaction conditions are reported in Ref. 19). Mr. Yim also provided the 

dibenzyl-part#9 (7, Scheme 3.1), a key intermediate for npar#1 synthesis to the author.  

 Comparison of the 1H NMR spectra of natural pasc#9 with synthetic pasc#9-

diastereomers including either a (R)-N-succinyl-1-phenylethanolamide moiety or a (S)-

N-succinyl-1-phenylethanolamide moiety established the configuration of the N-

succinyl-1- phenylethanolamide moiety in natural pasc#9 as R (Figures 3.4b and 3.5). 

Similar comparison of dqfCOSY spectra of natural dasc#1 with an authentic synthetic 

sample allowed the author to confirm the structural and stereochemical assignments for 

dasc#1 (Figure 3.4b and Appendix Figure B.4). 

Comparison of the HPLC-MS retention times of natural part#9 and two synthetic 

part#9 diastereomers (D-paratosyl-4R-hydroxypentanoic acid and D-paratosyl-4S-

hydroxypentanoic acid, Figure 3.6) showed that natural part#9 is either D-paratosyl-4S-

hydroxypentanoic acid or its enantiomer L-paratosyl-4R-hydroxypentanoic acid. (Figure 

3.6).  
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Figure 3.5: Comparison of sections of 1H-NMR spectra of natural pasc#9 (black), synthetic 
pasc#9 including a (R)-Nsuccinyl-1-phenylethanolamide moiety (red), and synthetic pasc#9 
including a (S)-N-succinyl-1-phenylethanolamide moiety (blue) shows that natural pasc#9 
contains (R)-N-succinyl-1-phenylethanolamide. 

 

The author initially assumed that part#9 and npar#1 contained D-paratose, which 

had previously been described from bacteria, whereas L-paratose had not been found 

in nature. Furthermore, D-paratose is a putative intermediate in the biosynthesis of L-

ascarylose,22 on which all ascarosides in nematodes are based.8,21,25 However, the 

HPLC retention time of a synthetic npar#1 diastereomer including D-paratosyl-4S-

hydroxypentanoic acid did not match the data obtained for natural npar#1 (Figure 3.7a). 

Therefore, the author concluded that npar#1 must be based on L-paratosyl-4R-

hydroxypentanoic acid, which was confirmed by synthesizing the corresponding npar#1 

diastereomer and comparing its 1H NMR and HPLC-UV retention times with those of 

natural npar#1 (Figure 3.7b,c). Using chiral derivatization agents (Mosher’s acid 

chlorides, Appendix Section B.3.3),26 the author further showed that part#9 is also 
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based on L-paratose (Appendix Figure B.5). The sugar L-paratose has not previously 

been found in nature; however, its occurrence in nematodes might result from 

epimerization of L-ascarylose at position 2.  

Similarly, comparison of the NMR spectra and HPLC retention times allowed the 

author to corroborate the structure and assign the stereochemistry of ubas#1 (Figure 

3.4b and Appendix Figure B.6). The R-configuration of the 3-ureido isobutyrate moiety 

in ubas#1 is consistent with its likely origin from thymine catabolism.27
 

 

 

 

Figure 3.6: Comparison of HPLC-MS retention times (ESI-, ion chromatogram for m/z = 247) of 
natural mixture of ascr#9 and part#9 (red), synthetic samples of part#9 (blue), and a 1:1 mixture 
of the natural and synthetic sample (dotted black). (a) Synthetic D-paratosyl-4R-
hydroxypentanoic acid. HPLC-retention times do not match natural part#9, indicating that 
neither D-paratosyl-4R-hydroxypentanoic acid nor its enantiomer could be natural part#9. (b) 
Synthetic D-paratosyl-4S-hydroxypentanoic acid. HPLC-retention times of D-paratosyl-4S-
hydroxypentanoic acid match that of natural part#9. This indicates that natural part#9 is either 
D-paratosyl-4S-hydroxypentanoic acid or its enantiomer L-paratosyl-4R-hydroxypentanoic acid. 
(c) Structures of D-paratosyl-4R-hydroxypentanoic acid and D-paratosyl-4S-hydroxypentanoic 
acid (synthesized by Mr. Yim and reported in Ref. 19).  
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Figure 3.7: Comparison of HPLC-UV (260 nm) retention times of natural sample containing 
npar#1 (red), synthetic samples of npar#1 (blue), and mixtures of the natural and synthetic 
samples (dotted black). (a) Synthetic npar#1 diastereomer derived from D-paratosyl-4S-
hydroxypentanoic acid coupled to L-threonine and D-xyloadenosine. HPLC-retention times do 
not match that of natural npar#1. (b) Synthetic npar#1 diastereomer derived from L-paratosyl-
4R-hydroxypentanoic acid coupled to L-threonine and D-xyloadenosine. HPLC-retention times 
match that of natural npar#1. (c) Comparison of sections of 1H-NMR spectra of synthetic npar#1 
derived from L-paratosyl-4R-hydroxypentanoic acid coupled to L-threonine and D-
xyloadenosine (bottom), natural npar#1 (top), and a 1:1 mixture of the two (middle) shows that 
changes in pH and concentrations affect the shifts of the three characteristic methyl doublets 
(indicated by the red and blue boxes in the figure and colored atoms in the accompanying 
structure). In the mixed sample however, no new peaks show up and the relative intensity of the 
methyl doublets increases in comparison to unrelated peaks in the natural sample (marked with 
*). In combination with the HPLC-UV results from (a) and (b), these findings show that natural 
npar#1 consists of L-paratosyl-4R-hydroxypentanoic acid coupled to L-threonine and D-
xyloadenosine. 
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3.4. Identification of related small molecules using high-resolution HPLC-MS/MS 

reveals specificity of modular assembly: Next the author asked whether assembly of 

the identified small molecules from sugar, amino acid, lipid, and nucleoside-derived 

building blocks is selective. To address this, the author carefully re-analyzed the entire 

P. pacificus exo-metabolome by high-resolution HPLC-MS/MS, quantified the identified 

compounds using synthetic standards (Table B.1), and screened for homologues or 

alternative combinations of the primary metabolism-derived building blocks in the 

identified structures (Section 3.2). The author found that pasc#9 is accompanied by 

trace amounts of two homologues including six- and seven-carbon side chains, which 

were also detected by NMR spectroscopy (Appendix Figure B.7). In addition, a small 

amount of a homologue of ubas#1 as well as a derivative of npar#1 whose MS data 

indicated loss of the xylose (ubas#2 and npar#2, Appendix Table B.1) was detected.  

Importantly, the author did not observe any non-specific or seemingly random 

combinations of building blocks that would suggest a non-enzymatic genesis of the 

identified compounds. 

 

3.5. Biological activities exhibited by the novel small molecules: Next synthetic 

samples of the identified compounds were submitted to Prof. Ralf J. Sommer’s group for 

testing their activities in the P. pacificus dauer- and mouth-form-dimorphism assays 

(see Appendix Sections B.1.7 and B.1.8). As expected from previous studies that 

showed that C. elegans-derived extracts are not active in the P. pacificus mouth-form 

dimorphism and dauer assays,28 ascr#1, a compound abundantly excreted 
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Figure 3.8: Regulation of mouth dimorphism and dauer induction by synthetic samples of 
identified P. pacificus metabolites. All experiments were performed in triplicate for each 

treatment. (a,b) Compounds were assayed at 1 M concentration (Significance, *=p<0.01, 
**=p<0.001, ***=p<0.001, Appendix Section B.1.9). (c,d) Compounds with significant activity at 

1 M (p<0.01) were subsequently tested at a range of concentrations. 

 

by C. elegans,8,29 was found to have no dauer-inducing activity in P. pacificus, even at 

concentrations higher than what is physiologically observed (20 μM, Appendix Figure 

B.8). In contrast, physiological concentrations of the nucleoside derivative npar#1 

strongly induced dauer formation and appear to account for most of the reported dauer-

inducing activity in the non-fractionated exo-metabolome (Figures 3.8a,c).18 

Additionally, weaker dauer induction than npar#1 was observed with part#9, whereas all 

other compounds tested were inactive in this assay.  

Testing synthetic compounds in the mouth dimorphism assay revealed that the 

dimeric compound dasc#1, which was inactive in the dauer-formation assay, strongly 
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induces the eurystomatous mouth form (Figures 3.8b,d). In addition, weaker induction 

of the eurystomatous mouth form was observed for high concentrations of pasc#9, 

ascr#1, and npar#1, whereas ascr#9 and part#9 as well as the dimeric ubas#1 were 

inactive at physiological concentrations in the wild-type strain tested (Figure 3.8b and 

Table B.1). 

 

3.6. Natural variation of small molecule production in P. pacificus wild isolates: 

The dauer stage plays a very important role in P. pacficus’ survival in the wild. These 

worms stay as dauers on scarab beetles for the majority of their lifespan, resuming 

development only when the beetle dies, feeding on the microbes that infest the beetle 

carcass. Melanie G. Mayer at the Sommer group explored P. pacificus dauer entry and 

exit using a natural variation approach.18  

Dauer exit study with 8 P. pacificus wild isolates from around the world showed 

that dauer larvae in P. pacificus can survive for up to 1 year under experimental 

conditions (with different mean survivals for the wild isolates), significantly higher than 

the C. elegans wild-type strain (N2, Bristol).18 In addition, dauer pheromones from 16 P. 

pacificus wild strains were isolated, and subsequently tested for natural variation in 

pheromone production and sensitivity in cross-reactivity assays. Interestingly, majority 

of the strains (13 out of 16) produce a pheromone (a blend of small molecules) that is 

more active on individuals of another genotype.18 These results were intriguing to the 

author as they suggested that there exists a significant natural variation in small 
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molecule production in different P. pacificus wild isolates, i.e. each P. pacificus natural 

isolate produces a different blend of small molecules.  

To explore natural variation of small molecule production in P. pacificus, the 

author in a proof-of-principle study, screened the metabolomes of 6 P. pacificus wild 

(natural) isolates using HPLC-MS for qualitative and quantitative variations in the newly 

identified small molecules from P. pacificus RS2333.  

 

Figure 3.9: Exo-metabolome small molecule profiles of 6 P. pacificus wild isolates, represented 
by the mole percentage of the 12 identified small molecule signals from strain RS2333 (Figure 
3.4b and Table B.1).  

 

The author found that each of the 6 wild isolates release a unique and strain-specific 

blend of small molecules (Figure 3.9). The observation of a different blend of small 

molecules by various wild isolates potentially explains the previously observed natural 

variation in dauer pheromone efficacy in P. pacificus.18 Interestingly, while most 
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compounds were present in all strains, ubas#1 and ubas#2 were not detected in the 

metabolomes of RS5205 and RSB020 (Figures 3.9 and 3.10, Appendix Figures B.9 

and B.10). This indicates that certain strains may have evolved to lose the capacity to 

biosynthesize ubas- and plausibly other compounds.  

Alternatively, these strains may produce the apparent deficient compounds only 

under specific conditions that were not explored in this study, such as elevated 

temperatures. Also to note is P. pacificus is androdioecious, i.e. comprised of males and 

hermaphrodites. Under conditions of this natural variation study (P. pacificus liquid 

cultures, Appendix Section B.1.4), ~99.8% of the worms were hermaphrodites, hence 

low level production of a specific compound (e.g. ubas#1) only by the male population 

of a particular strain (e.g. RSB020) will not be observed, given the dynamic range and 

sensitivity of the techniques used. Further studies, beyond the scope of this dissertation, 

may reveal the biochemical reasons for the absence of certain compounds in a 

particular strain. 

The author further compared the small molecule profiles of the exo-metabolome 

(liquid culture supernatant extracts) and endo-metabolomes (worm pellet extracts) for 

the 6 P. pacificus wild isolates to see if there were evidence for differential regulation in 

small molecule release. The author found that the worm pellet small molecule profiles 

differ significantly from those excreted into the supernatant. The endo-metabolome 

profiles were dominated by simple ascarosides, namely ascr#1, ascr#9, and ascr#12, 

which were only minor components of the exo-metabolome (Figure 3.10 and Appendix 

Figure B.10). The more complex small molecules such as ubas#1, dasc#1, and npar#1 

showed clear preference for being released into the supernatant for most strains  
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Figure 3.10: (a) Absolute comparison of representative small molecules in the exo- and endo-
metabolomes of 6 P. pacificus wild isolates (also see Appendix Figure B.10). (b) Relative 
comparison of the exo- and endo-metabolome small molecule profiles for RS2333, represented 
by the mole percentage of the identified small molecules (c) HPLC-MS ion traces comparing the 
relative proportions of ascr#9/part#9 in the RS2333 exo- and endo-metabolomes. 

 

(Figure 3.10 and Appendix Figure B.10). Notably, ascr#9 and part#9 (Figure 3.4b) 

are chemically very similar and elute very closely in the HPLC method (Figure 3.10c, 

Table B.1), hence if polarities of the two compounds were the only factor influencing 

compound release, there should not be any detectable difference in their excretion 
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profiles. However, ascr#9 is almost entirely retained in the worm body, whereas, part#9 

shows no preference for being released or retained (Figure 3.10a). These data suggest 

that P. pacificus exhibits remarkable control over the release of small molecule signals 

that is conserved across several natural isolates from across the world. 

 

3.7. Discussion: The identified small molecules in P. pacificus appear to integrate 

specific inputs from the major primary metabolic pathways: fatty acid, carbohydrate, 

amino acid, and nucleoside metabolism (Figure 3.11). Specific assembly of building 

blocks from these pathways using ester and amide linkages generates the modular 

molecules identified, which are further distinguished from previously known animal 

metabolites by the inclusion of L-paratose and xylopyranose-based adenosine. This 

unprecedented nucleoside is likely derived from metabolism of canonical 

(ribo)threonylcarbamoyl adenosine (t6A, Figures 3.4b and 3.11), a highly conserved 

nucleoside found directly adjacent to the anticodon triplet of a subset of tRNAs.30 t6A 

plays an important role in maintaining translational fidelity; however, it usually accounts 

for only a very small fraction of tRNAs, and the production of large quantities of 

xylopyranose derivative in P. pacificus is surprising. 

Results from biological testing of synthetic samples show that adult phenotypic 

plasticity and larval development in P. pacificus are controlled by distinct yet partially 

overlapping sets of signaling molecules. Whereas mouth-form dimorphism is primarily 

regulated by dasc#1, the product of highly specific ascaroside dimerization, dauer 
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Figure 3.11: Small-molecule signaling in nematodes occupies a central position connecting 
primary metabolism to evolutionarily conserved transcription factors, including DAF-16/FOXO 
and the nuclear hormone receptor (NHR) DAF-12, a vitamin D and liver X receptor homologue. 
Comparison of the structure of npar#1 with t6A suggests the unusual xylopyranose-based 
adenosine in npar#1 is probably derived from metabolism of canonical ribofuranose-based 
adenosine in t6A. t6A is a conserved hyper-modified nucleoside found directly adjacent to the 
anticodon triplet of a subset of tRNAs, plays an important role in maintaining translational fidelity 
in all metazoans, and putatively is biosynthesized utilizing primary metabolic building blocks.  

 

formation is controlled by a molecule combining a paratoside with an unusual 

nucleoside. Previous work showed that the signaling molecules controlling phenotypic 

plasticity in P. pacificus act upstream of evolutionarily conserved transcription factors, 

including DAF-16/FOXO and the nuclear hormone receptor DAF-12 (Figure 3.11),31,32 

whereby daf-12 is required for both dauer induction and mouth-form dimorphism, 

whereas daf-16 is required for dauer induction but dispensable for regulation of mouth-

form dimorphism.32 Therefore, the different subsets of small molecules regulating dauer 

formation and mouth-form dimorphism appear to target different downstream effectors. 
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Based on the recent identification of several G-protein coupled receptors (GPCRs) of 

the C. elegans dauer pheromone,33-35 it is probable that GPCRs expressed in specific 

chemosensory neurons connect npar#1 and dasc#1 with their respective downstream 

pathways in P. pacificus. 

The results presented further demonstrate species-specific co-option of small 

molecule biosynthetic pathways for regulating different aspects of development, as 

ascr#1 contributes to dauer in C. elegans,29 whereas its dimer dasc#1 regulates adult 

morphology in P. pacificus. Similar to the multifunctional signaling properties of 

ascarosides in C. elegans,8-13 it is possible that dasc#1, npar#1, and the other identified 

compounds serve additional signaling functions in P. pacificus, for example, in 

mediating social behaviors and sex-specific attraction.  

P. pacificus provides a powerful system for using Next-Generation Sequencing-

based population genomics and genome-wide association studies (GWAS) to study 

small molecule biosynthesis. The genome of 104 strains has already been fully 

analyzed; another set of 154 complete genome sequences has just been obtained and 

is currently in the bioinformatics pipeline (Roedelsperger et al., submitted; personal 

communication with Prof. Ralf J. Sommer). In a proof-of-principle study reported in this 

dissertation chapter, the analysis of the metabolomes of 6 different P. pacificus wild 

isolates using HPLC-MS revealed that the relative abundances of the monitored 

compounds differ between strains and that most strains produce all compounds. 

However, the author also found two strains defective in production of ubas#1 and 

ubas#2. The ubas- defective strains are not genetically clustered and originate from 

different geographical locations. Extending the HPLC-MS-based metabolomic analysis 
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to include all of the wild isolates (~360) may identify additional strains defective in ubas, 

as well as other small molecule production. Corresponding bioinformatic analysis based 

on comparison of genome data from the compound-defective strains with that of the 

compound-producing strains will provide a unique route to identifying candidate genes 

responsible for small molecule biosynthesis and homeostasis.  

In summary, the results reported in this chapter provide direct evidence for small-

molecule control of adult phenotypic plasticity in a metazoan that relies on conserved 

endocrine signaling pathways. Whether the biosynthesis of the identified signaling 

molecules involves conserved pathways or depends on dedicated enzymes specific to 

P. pacificus (and perhaps other nematodes) is not known. However, the finding that the 

P. pacificus compounds are derived from assembly of modified primary metabolites 

suggests that their biosynthesis is largely based on conserved biochemical pathways 

(Figure 3.11). Notably, the P. pacificus genome contains more than 25,000 predicted 

genes with many specific gene duplication events among genes encoding primary 

metabolic enzymes.36,37 Supporting the involvement of primary metabolism in the 

biosynthesis of nematode signaling molecules, recent investigations of ascaroside 

biogenesis in C. elegans showed that the lipid-like ascaroside side chains are derived 

from conserved peroxisomal-β-oxidation (Chapter 2).8,38 Known signaling molecules 

and co-factors in higher animals, for example, S-adenosyl methionine or 

phosphatidylinositols, often rely on the combination of building blocks derived from one 

or two different primary metabolic pathways. The author’s results demonstrate that 

metazoans may extend such strategies to produce signaling molecules of much greater 

structural complexity, suggesting that detailed spectroscopic re-analysis of 
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metabolomes from higher animals, including mammals, may also reveal novel types of 

modular small-molecule signals. 

 

3.8. Author’s note: Synthesis of pasc#9, ubas#1, part#9, and several non-natural 

isomers of pasc#9, npar#1, and part#9 were completed by Joshua J. Yim and Dr. 

Stephan H. von Reuss, Schroeder research group, Cornell University, Ithaca, NY 

(reported in Ref. 19). Mr. Yim also provided the dibenzyl-part#9 (7, Scheme 3.1), a key 

intermediate for npar#1 synthesis to the author. 1-3 L liquid cultures of P. pacificus 

strains RS2333, RS5205, RS5380, RS5134, RS5399, and RSB080 and the preliminary 

fractionation of RS2333 exo-metabolome was done by Dr. Akira Ogawa. Biological 

assays to test for activities of synthetic compounds identified from P. pacificus included 

in this dissertation chapter were performed by Dr. Akira Ogawa (dauer assay) and Dr. 

Erik J. Ragsdale (mouth-form dimorphism assay). Dr. Ogawa and Dr. Ragsdale are 

postdoctoral researchers in Prof. Ralf J. Sommer’s group at Max Planck Institute for 

Developmental Biology, Tuebingen, Germany.  
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CHAPTER 4 

 

COMPARATIVE METABOLOMICS REVEALS ENDOGENOUS LIGANDS OF DAF-12, 

A NUCLEAR HORMONE RECEPTOR REGULATING C. ELEGANS DEVELOPMENT  

 

4.1. Introduction: Small-molecule ligands of nuclear hormone receptors (NHRs), an 

evolutionarily conserved family of ligand-activated transcription factors, control diverse 

aspects of metazoan metabolism, cell differentiation, development, and aging. Precise 

knowledge of ligand structures and biosynthetic pathways is essential for understanding 

NHR function,1,2 because even small differences in ligand structures may result in 

dramatic changes of transcriptional activity and specificity.3,4 However, the endogenous 

ligands of many NHRs have remained poorly characterized, in part because ligands 

often constitute very minor components of highly complex animal metabolomes.5 The 

free living nematode C. elegans has 284 NHRs, allows easy genetic manipulation, and 

can be grown in large quantities, providing an opportunity to investigate structures, 

biosynthesis, and functions of NHR ligands in a relatively simple model system.6,7  

In C. elegans, DAF-12, a homolog of vertebrate vitamin D (VDR) and liver X 

receptors (LXR), functions as a ligand-gated switch that regulates both adult lifespan 

and larval development.8-11 The biosynthesis of the steroidal ligands of DAF-12 is 

controlled by a complex endocrine signaling network, of which many components 

appear to be highly conserved between C. elegans and mammals.9 Perception of 

environmental stimuli by chemosensory neurons regulates signaling via the conserved 
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insulin/IGF and TGF-β pathways, which converge on genes implicated in DAF-12-ligand 

biosynthesis (Figure 4.1a, see Chapter 1, Section 1.3 for a more detailed picture of the 

signal transduction pathway). Under unfavorable conditions such as overcrowding or 

scarcity of food, ligand biosynthesis is suppressed, and unliganded DAF-12 interacts 

with its co-repressor DIN-1.12 The resulting transcriptional repression of DAF-12 target 

genes causes developmental arrest and entry into a highly stress-resistant larval stage 

called the dauer diapause.13-15 In contrast, favorable environmental conditions trigger 

upregulation of DAF-12-ligand biosynthesis. DAF-12-ligand binding then results in 

dissociation of the corepressor DIN-1 to allow expression of DAF-12-target genes, 

promoting rapid developmental progression from larvae to reproductive adults.9,12 

Based on extensive biochemical studies, two bile acid-like steroids named 4- and 7-

dafachronic acid were proposed as endogenous ligands of DAF-12 (Figure 4.1b).16 

Central to identification of the dafachronic acids (DAs) as DAF-12-ligand candidates 

were precursor studies in which a variety of 3-keto sterols were identified as substrates 

for the cytochrome P450, DAF-9, which had been shown to act upstream of DAF-12 in 

DAF-12-ligand biosynthesis.16-18 DAF-9 was further shown to act on the sidechain in 

these cholestenones introducing a terminal carboxyl group (Figure 4.1b).16 In a 

separate study, a DAF-12-activating isomer of 3-hydroxy cholest-5-enoic acid was 

detected in C. elegans metabolite extracts.19 However, given the very low 

concentrations of the putative DAF-12-ligands in C. elegans, isolation and full 

spectroscopic characterization of these compounds were not pursued.16 Although none 

of the structures of the proposed DAF-12-ligands have been confirmed based on 

comprehensive spectroscopic analysis of C. elegans-derived samples, a biosynthesis 
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Figure 4.1: Steroidal ligands control C. elegans development and lifespan via the nuclear 
hormone receptor DAF-12. (a) Under favorable conditions, signaling via the insulin/IGF and 
TGF-β pathways drive biosynthesis of steroidal DAF-12-ligands. Liganded DAF-12 promotes 
development, in part via transcription of the let-7-family microRNAs mir-84 and mir-241. Under 
unfavorable conditions, ligand biosynthesis is inhibited, resulting in interaction of unliganded 
DAF-12 with its corepressor DIN-1 and target gene repression (see also Chapter 1, Figure 
1.4).12 (b) Previously described DAF-12 ligands and proposed biosynthetic pathway.20-26 DAF-12 
ligand biosynthesis is downregulated in response to dauer pheromone,15 a blend of 
ascarosides, e.g. the shown ascr#2 (red). 
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model has been developed (Figure 4.1b), and the biochemical roles of genes proposed 

to function upstream of DAF-9 in DAF-12-ligand biosynthesis have been studied 

extensively.20,22-26 More recent work has shown that the proposed DAF-12-ligands do 

not explain all DAF-12 associated functions and has suggested a functionally divergent 

biosynthetic network with the possibility of alternative DAs.25,26 

In this dissertation chapter, the author describes the identification of the 

endogenous ligands of DAF-12 using a 2D NMR-based comparative metabolomics 

approach27 and subsequent structural confirmation using Selective Ion Monitoring 

(SIM)-GC/MS. This method revealed steroid molecules with unusual functionalization as 

novel ligands of DAF-12 in C. elegans. 

 

4.2. Customizing a comparative metabolomics approach: The author, in 

collaboration with Parag Mahanti, Schroeder research group, set out to identify the 

endogenous ligands of DAF-12 based on direct spectroscopic evidence, in contrast to 

earlier work that had relied on combining classical genetics and biochemical 

experiments. For this purpose the author employed a combination of activity-guided 

fractionation and NMR-based comparative metabolomics via DANS (Differential 

Analyses by 2D NMR Spectroscopy, Figure 4.2a, see also Chapter 1, Section 1.3). 

dqfCOSY, a 2D NMR spectroscopy technique (Chapter 1, Section 1.3) can provide a 

largely unbiased overview of the metabolome composition, and comparing dqfCOSY 

spectra of different mutant backgrounds via DANS often permits detection and partial 
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Figure 4.2: Detection of DAF-12-ligands in C. elegans mutant metabolomes. (a) 
Fractionation of active, ligand-rich daf-22 and inactive daf-9;daf-12 metabolomes is followed by 
2D NMR-based comparative metabolomics of active fractions. (b) Assessment of DAF-12-ligand 
content using (1) an in vitro luciferase assay in HEK-293T cells transfected with full-length DAF-
12 and a mir84p-luciferase reporter vector and (2) in vivo daf-9(dh6) dauer rescue assays. (c) 

daf-9;daf-12 metabolome fractions are inactive in the luciferase assay. 100 nM 7-DA is used as 
a positive control. (d) Luciferase assays of daf-22 metabolome fractions reveal three active 
regions (see Appendix Figure C.1 for wild-type data). (e) daf-9(dh6) dauer rescue assays of 
daf-22 metabolome fractions show activity in the same three regions (see Appendix Figure C.1 
for wild-type data). For worm images of scored phenotypes see Appendix Figure C.1c.  

 

identification of very minor metabolites such as signaling molecules.28,29 DANS relies on 

correlating genetic changes with metabolomic changes for compound identification and 

thereby reduces the need for extensive fractionation, which frequently results in activity 

loss or the introduction of artifacts.29 The author envisioned that this approach could be 

applied to identify DAF-12-ligands if one compared a C. elegans mutant metabolome 
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lacking DAF-12-ligands with the metabolome of animals that produces DAF-12-ligands 

abundantly. 

 For DANS-based ligand identification, the author chose daf-9;daf-12 double 

mutants as the ligand-deficient strain and daf-22 mutants as a ligand-rich reference 

strain. daf-9;daf-12 double mutants do not produce DAF-12-ligands, but nonetheless 

bypass the dauer stage, because lack of DAF-12 prevents the execution of genetic 

programs required for dauer formation30 and therefore can be grown in quantities large 

enough for NMR spectroscopic analyses. daf-22 mutant worms develop normally to 

adulthood, but are defective in the biosynthesis of the dauer-inducing ascarosides 

(Chapter 2),31,32 which was hypothesized may adversely affect DAF-12-ligand 

production in wild-type liquid cultures (Figure 4.1b). Downregulation of DAF-12-ligand 

biosynthesis by ascarosides is also suggested by the finding that exposure to high 

concentrations of dauer pheromone abolished expression of DAF-9, one of the key 

enzymes in the proposed biosynthetic pathway of DAF-12-ligands.15 

In preparation for DANS analysis, metabolome extracts of daf-9;daf-12, wild-type, 

and daf-22 mixed-stage liquid cultures were fractionated using an automated, highly 

reproducible chromatography system (Figure 4.2a and Appendix Sections C.1.4 and 

C.1.5). The resulting parallel sets of metabolome fractions were assessed for DAF-12-

ligand content using in vivo and in vitro bioassays (Figure 4.2b). The in-vivo assay 

(Appendix Section C.1.7) used daf-9(dh6) worms, which are defective in DAF-12-

ligand production. In the absence of exogenously added DAF-12-ligand or a suitable 

precursor, developing daf-9(dh6) worms arrest as dauer larvae, because DAF-12 

constitutively interacts with its corepressor DIN-1 (Figure 4.2b).12,21,30 The assay scored 
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the ability of added metabolome fractions to rescue the arrested dauer larvae and 

promote development to adulthood, providing a measure for the presence of a DAF-12 

ligand or suitable precursor in the exogenously added fractions that would dissociate 

the DAF-12/DIN-1 corepressor complex. The in vitro assay (Appendix Section C.1.8) 

measured DAF-12 transcriptional activation of a luciferase reporter in HEK-293T cells 

that were co-transfected with full-length DAF-12 and the reporter construct.33 This assay 

provided a measure for ligand-dependent interaction of DAF-12 with mammalian 

coactivator(s) endogenous to the cell line. Both of these assays consistently showed 

activity for three groups of daf-22 and wild type metabolome fractions (regions I-III in 

Figures 4.2c-e; for wild-type assay data, see Figure C.1), suggesting the presence of 

DAF-12-ligands or precursors, whereas all daf-9;daf-12 fractions were inactive in both 

assays, as expected based on previous work.16,21,30 As anticipated, daf-22 fractions 

were significantly more active in both assays than the corresponding wild-type fractions, 

suggesting much higher production of DAF-12-ligands in daf-22 mutants (Figure C.1, 

vide infra). 

 

4.3. DANS revealed steroid with unexpected 1-desaturation as a novel ligand for 

DAF-12: dqfCOSY spectra of the most active group of daf-22 fractions, active region I, 

revealed the presence of long-chained ascarosides,28 in addition to a complex mixture 

of fatty acids, glycerides, other lipids, and several epidioxy sterol derivatives, (Figures 

4.3, 4.4, and Appendix Figure C.2),34,35 all of which were also present in similar 

concentrations in corresponding daf-9;daf-12 metabolome fractions. However, closer 

inspection of dqfCOSY spectra of region I revealed several sets of signals that were 
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consistently absent in daf-9;daf-12, and thus appeared to be daf-9-dependent (Figure 

4.3). Further analysis of these differential signals strongly suggested steroidal structures 

(Figure 4.4 and Appendix Figure C.4). Because of their extremely low concentrations, 

detailed characterization of the putative daf-9-dependent steroids required additional 

fractionation via HPLC (Appendix Section C.1.5), which resulted in two active samples 

each containing 1-2% of daf-9-dependent components (Figure 4.4, Appendix Figures 

C.3 and C.4). NMR-spectroscopic analysis of the most active fractions showed a distinct 

set of daf-9-dependent signals at 5.9 and 7.0 ppm with a coupling constant of 10 Hz, 

which strongly suggested the presence of an unusual 1-desaturated 3-keto steroid 

(Figures 4.3 and 4.5a).  

 

 

Figure 4.4: 1H NMR Analysis of HPLC-enriched fractions. Comparison of representative 
sections of 1H-NMR spectra of active HPLC-enriched fractions with the proposed DAF-12 

ligands36 revealed the presence of 7-DA in fraction 25-8, and an unknown steroid ligand in 

fraction 25-6 that is distinctly different from the previously proposed 7- and 4-DA. 1H-NMR 
spectra of the natural fractions also show that C. elegans derived lipids (i, ii) constitutes the 
majority of the active fractions. 
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Comparison with literature data suggested 3-oxocholesta-1,7-dienoic acid ("1,7-DA"), 

which had not previously been described from worms. In addition, DANS comparison of 

strm-1 mutants,37 which had previously been shown to produce elevated levels of DAF-

12-ligands revealed the known 7-DA16 (Figures 4.3 and 4.5a). The methyltransferase, 

STRM-1, regulates DAF-12-ligand levels by converting cholesterol-derived 

intermediates of ligand biosynthesis into 4-methylated steroids, thereby rendering them 

unsuitable as ligand precursors.37 1-desaturated steroids are rare in nature, and the 

author is aware of only one other example in animals, the identification of (25S)-3-

oxocholesta-1,4-dienoic acid from the Indonesian soft coral, Minabea sp.38 

Further, the author in collaboration with Mr. Mahanti analyzed the active region II 

via similar comparative metabolomics, which led to the identification of an unusual 

(25S)-3α-hydroxy cholest-7-enoic acid ("3-OH-7-DA") as a second novel ligand of 

DAF-12 (Figure 4.5a). Details of the structural characterization and biological activity of 

this compound will be included in the Ph.D dissertation of Mr. Mahanti. Active region III, 

was represented by a series of metabolome fractions with comparatively low daf-9(dh6) 

dauer rescue activity that were not characterized further. To corroborate the structural 

assignments of the novel steroidal ligands of DAF-12 and biological testing, robust total 

syntheses were developed by Mr. Joshua C. Judkins, Schroeder research group, for 

each of the proposed ligands. The details of the synthetic procedures and experimental 

conditions will be included in the Ph.D dissertation of Mr. Judkins, the manuscript in 

question (Judkins, et al.) is in preparation.  
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Figure 4.5: Structures and biological activity of endogenous DAF-12 ligands. (a) 
Structures of endogenous DAF-12 ligands in C. elegans. (b) Assessment of DAF-12 
transcriptional activation in HEK-293T cells by the identified endogenous DAF-12 ligands from 
active region I. Luciferase assays were measured in triplicates, error bars as SD. (c) daf-9(dh6) 
dauer rescue with the identified endogenous DAF-12-ligands from active region I at 27 °C. For 
each data point there were two replicates with 100 animals per replicate, error bars as SD. (d) 
Alphascreen assay for ligand-dependent recruitment of SRC1-4 peptide by DAF-12, showing 
fold activation of DAF-12 with different ligand candidates over control (ethanol). Data for 

biological activities of 3-OH-7-DA will be included in the Ph.D dissertation of Mr. Mahanti.  

 

Next the author used synthetic samples of 1,7- and 7-DA for testing in the in 

vivo daf-9(dh6) dauer rescue and in vitro luciferase assays developed for assessing 

ligand content of metabolome fractions (Figure 4.2b) . Results from the bioassays 

showed that the novel 1,7-DA activates DAF-12 in mammalian cells (EC50 = 146 nM) 

and that its potency in the daf-9(dh6) dauer rescue assay is similar (EC50 = 2 nM) or 

slightly higher than that of Δ7-DA (Figure 4.5b,c and Appendix Table C.1). To test 

whether the 1,7-DA and 7-DA (endogenous DAF-12 ligands from active region I) 

constitute bona fide ligands of DAF-12, Mr. Mahanti measured ligand dependant binding 
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of DAF-12 with the SRC1-4 peptide containing the nuclear receptor box ("NR box") 

motif of mammalian coactivator SRC-1 in a cell-free in vitro system.16,39 Detailed 

procedures for this "Alphascreen assay" will be included in the Ph.D dissertation of Mr. 

Mahanti; a brief description is included in Appendix Section C.1.9. The results showed 

both 7-DA and 1,7-DA effect concentration-dependent recruitment of SRC1-4, with 

EC50 values of 8 nM and 15 nM for 7-DA and 1,7-DA, respectively (Figure 4.5d and 

Appendix Table C.1). These relative potencies of 7-DA and 1,7-DA are similar to 

relative activities observed in the luciferase assay (Figure 4.5b). 

 

4.4.SIM-GC/MS based structural confirmation of 1,7- and 7-DAs and absence of 

the previously proposed 4-DA in C. elegans metabolome: To confirm the structures 

of the endogenous steroid ligands of DAF-12 proposed using 2D NMR-based 

comparative metabolomics and for their quantification in C. elegans-derived fractions, 

the author developed a highly sensitive Selective Ion Monitoring (SIM)-GC/MS method 

(see Appendix Sections C.1.10-C.1.12). Briefly, for this method, the author first 

reacted known quantities of synthetic standards of 1,7- and 7-DA or 1-10 % of active 

metabolome fractions with an excess of trimethylsilyldiazomethane to produce the 

corresponding DA-methyl esters (e.g., 1,7-DA-methyl ester, Figure 4.6c). The reaction 

mixtures were then analyzed by SIM-GC/MS where the retention times of characteristic 

mass spectrometric fragments of volatile DA-methyl ester derivatives’ from active 

natural fractions in region I were matched with those of synthetic samples of 1,7- and 


7-DA methyl esters (Figure 4.6a-c and Appendix Figure C.4e-i). 
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Figure 4.6: SIM-GC/MS-based structural confirmation and quantification of DAF-12 
ligands from region I. (a) SIM-GC/MS of active daf-22 metabolome fraction suggesting the 

presence of 1,7-DA. An additional peak (*) eluting at ~29.4 minutes in the ion trace m/z = 426 
does not match the fragmentation profile consistent with dafachronic acids and hence was not 

pursued further. (b) SIM-GC/MS of synthetic 1,7-DA methyl ester confirm retention times and 

fragmentation patterns. (c) Major EI-MS fragments of 1,7-DA used in Figure 4.6a,b. (d) In vivo 

concentrations of 7-DA and 1,7-DA derived from SIM-GC/MS-based quantification in wild-type 
(N2) and daf-22 mutant (error bars, SD) grown in mixed stage liquid cultures. (e) SIM-GC/MS 

total ion chromatograms (TIC) of synthetic 4-DA methyl ester, 1% injection of methylated 

inactive fraction 26 from daf-22 to which trace amounts of synthetic 4-DA (100 ng, ~20-fold less 

than 7-, 1,7-DAs in active metabolome fractions) had been added, and 100% injection of a 

methylated and HPLC-enriched natural fraction matching the LC retention time of synthetic 4-

DA. The EI-MS fragmentation profile for 4-DA methyl ester is reported in Appendix Figure C.5 

 

Results from SIM-GC/MS unambiguously confirmed the structures of both 1,7- and 7-

DA as endogenous ligands of DAF-12 in C. elegans from region I (Figure 4.6a). 

Quantification of DAs using SIM-GC/MS by the author (Appendix Section 

C.1.12) showed that 1,7-DA is slightly more abundant than 7-DA in daf-22 worms, 

whereas in wild-type animals 1,7-DA is more than twice as abundant as 7-DA, with 
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concentrations (averaged over the worm bodies) of 40 nM and 130 nM for 7-DA and 


1,7-DA, respectively (Figure 4.6d). Based on the specific activities determined for 

synthetic samples of Δ7-DA and Δ1,7-DA it appears that these two compounds can 

account for all of the activity in region I in both wild-type and daf-22 metabolomes.  

Using SIM-GC/MS, the author also checked the daf-22 mutant and wild-type 

metabolomes for the presence of the previously reported 4-DA. The author was unable 

to detect 4-DA in any of the analyzed C. elegans metabolome samples, whereas 

metabolome fractions spiked with trace quantities of synthetic 4-DA confirmed the 

sensitivity of the author’s detection methods (Figure 4.6e and Appendix Figure C.5). 

The author then considered the possibility that the growth conditions used may have 

affected the production of the 

 

Figure 4.7: Identification of dafachronic acid precursors. Comparison of representative 
sections of 1H-NMR spectra of enriched fractions from daf-22 with synthetic 4-cholesten-3-one 
and lathosterone suggested the presence of the 3-keto-steroids in the natural sample. 
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putative precursor of 4-DA, 4-cholesten-3-one.16,25 However, analysis of wild-type 

metabolome samples by NMR spectroscopy (Figure 4.7 and Appendix Figure C.6) 

and SIM-GC/MS (Appendix Figure C.6) revealed that 4-cholesten-3-one is as 

abundant as lathosterone, a putative precursor of 7-DA,16,40 suggesting that absence of 


4-DA is not the result of a lack of suitable precursors. Therefore, it appears that 4-DA 

may not play a significant role as a DAF-12 ligand under the author’s culture conditions 

(Appendix Section C.1.2), although it’s transient or very low-level production cannot be 

excluded.  

Taken together, these results indicate that 1,7-DA and 7-DA are high-affinity 

ligands of DAF-12 that promote reproductive development and adult longevity and Δ4-

DA is not present at physiologically relevant concentrations. These findings indicate that 

previous hypotheses about DAF-12-ligand structures and their biosynthetic pathways 

must be revised. 

 

4.5. Discussion: Identification of the endogenous ligands of NHRs is central to 

understanding their role as transcriptional regulators in metazoans. Screening of 

synthetic ligands of the vitamin D receptor and other mammalian NHRs has 

demonstrated that even small changes in ligand structures can strongly affect gene 

transcription.2-4 Yet there are few approaches to comprehensively identify the 

endogenous NHR ligands from complex animal metabolomes, whose chemical 

annotations remain largely incomplete. In this dissertation chapter, the author 

demonstrates the use of comparative metabolomics to identify the endogenous ligands 
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of DAF-12, a central regulator of development and adult lifespan in C. elegans and an 

important model for ligand-regulated NHRs in higher animals. In contrast to earlier work 

that, primarily based on screening candidate structures, proposed 4-DA and 7-DA as 

endogenous DAF-12 ligands, this dissertation chapter revealed 1,7-DA as the most 

abundant ligand in wild-type worms, in addition to smaller amounts of  7-DA and 3-

OH-7-DA.  

Steroids featuring a 1-double bond have been described from very few natural 

sources,38 although it is well known that introduction of 1-desaturation in natural 3-keto 

sterols, e.g. testosterone, can have pronounced effects on biological properties.41 

Analysis of X-ray structures of the DAF-12-ligand binding domain complexed with DAs 

have demonstrated that small structural changes in the A and B rings of the bound 

steroid have significant effects on the ligand's affinity to DAF-12,42,43 suggesting that 

specific modifications in the steroid A-ring may serve to fine-tune DAF-12 transcriptional 

regulation. Identification of the enzyme(s) introducing the 1-double bond will play an 

important role in elucidating functional differences between 1,7- and 7-DA and may 

motivate re-analysis of mammalian metabolomes for the presence of endogenous 1-

steroids.  

It should be noted that both the transcriptional activation assay in mammalian 

cell-culture (Figure 4.5b) and the Alphascreen assay (Figure 4.5d) have limited 

cogency for judging the relative potency of different DAF-12 ligands in vivo, as both 

assays depend on recruitment of mammalian coactivators such as SRC-1, whereas in 

vivo function of DAF-12 is thought to involve ligand-dependent dissociation of the 



89 
 

endogenous C. elegans corepressor DIN-1 followed by binding of yet unidentified co-

activators.12 The identification of multiple endogenous small molecule regulators of 

DAF-12 in this study will accelerate the pursuit of yet elusive DAF-12 interactors and 

other components of DAF-12-dependent dauer and lifespan regulation.  

   

 

Figure 4.8: Comparison of NHR signaling in nematodes and mammals. In nematodes, 
oxidation/epimerization in position 3, oxidation in position 7, and side chain oxidation produces 
ligands of DAF-12. Recent work show that similar modifications of the steroid skeleton in 
mammals produce bile acids that might serve as ligands of liver X receptor44 (LXR) and 
farnesoid X receptor45 (FXR). Although DAF-9 has often been assumed to act directly upstream 
of DAF-12, our results suggest that DAF-9 may act on a variety of different substrates, including 
both 3-keto and 3-hydroxy sterols. A unique color has been associated for the known enzymes 
in the pathway and the corresponding transformations, whereas enzymes introducing the 
structural features highlighted in gray are not known.  

 

Whereas it is well established that DAF-12-ligands are ultimately derived from dietary 

cholesterol, identification of 1,7-DA and the absence of 4-DA necessitates revision of 

DAF-12-ligand biosynthesis models (Figures 4.1b). Subsequent studies (Mahanti and 
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Bose et al., Cell Metabolism, in revision) revealed DAF-36 as well as HSD-1 participate 

in the biosynthesis of 7-DA and possibly 1,7-DA, whereas previously, HSD-1 had been 

assumed to function in 4-DA biosynthesis25 (Figure 4.8). In addition we found that 

mutation of dhs-16 affects 
7-DA much more strongly than 

1,7-DA production 

suggesting that, introduction of the 3-keto moiety in 1,7-DA may involve a different 

enzyme (Mahanti and Bose et al., Cell Metabolism, in revision). Therefore, it appears 

that different DAF-12-ligands are produced via partially divergent biosynthetic pathways, 

which is also supported by the subsequent finding that in strm-1 mutants 7-DA 

production is increased to a much greater extent than that of 1,7-DA (Mahanti and Bose 

et al., Cell Metabolism, in revision) .  

Taken together, the identification of Δ1,7-DA and 3α-OH-Δ7-DA, indicates that 

several DAF-12-ligand biosynthetic enzymes remain to be identified. Ultimately, 

elucidation of DAF-12-ligand biosynthetic pathways will require combining comparative 

metabolomics with tissue-specific manipulation of candidate genes. This will entail 

consideration of life-stage specific aspects of ligand functions and biosynthesis, 

especially with regard to the intriguing role of DAF-12-ligands for adult longevity, which 

depends on additional signaling from the germline.46 DAF-12-ligand biosynthetic 

enzymes link conserved insulin/IGF and TGF-β signaling to transcriptional regulation by 

DAF-12.40 Although the enzymes in DA biosynthesis are not strict orthologs of 

functionally corresponding enzymes in mammalian bile-acid biosynthesis, the striking 

similarities of steroidal NHR-ligand biosynthetic pathways in nematodes and humans 

demonstrate the utility of C. elegans as a model organism for endocrine signaling in 

metazoans (Figure 4.8). Further functional characterization of the identified DAF-12-
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ligands will advance understanding of the roles of ligand-dependent NHRs in organism-

wide coordination of metazoan development and aging.  

In summary, this dissertation chapter shows that NMR-based comparative 

metabolomics provide detailed insight into metazoan small molecule signaling 

pathways, and that this approach can reveal signaling molecules and biosynthetic 

functions not suspected based on classical genetics and biochemical approaches. 

Finally, the novel ligands discovered here will yield important insights to combat 

nematode parasitism, which uses the DAF-12/DA signaling mechanism to regulate 

emergence from the infective stage.42,47 

 

4.6. Author’s note: The work presented in this dissertation chapter was done in 

collaboration with Mr. Parag Mahanti. Synthetic sample of 1,7- and 7-DA were 

provided by Mr. Joshua C. Judkins. Mr. Judkins also provided enriched natural samples 

of 4-cholesten-3-one and lathosterone, putative precursors of 4- and 7-DAs for 

analysis using NMR and SIM-GC/MS. Mr. Mahanti and Mr. Judkins are both graduate 

students in the Department of Chemistry and Chemical Biology, Cornell University, 

Ithaca, NY.  
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CHAPTER 5 

 

CONCLUSIONS AND OUTLOOK  

 

5.1. Global metabolomics to investigate nematode and other metazoan 

metabolomes: In this dissertation, the author has utilized an innovative analytical 

workflow integrating aspects of 2D NMR, high resolution HPLC-MS/MS; activity guided 

fractionation, and chemical synthesis to achieve global metabolite profiling of complex 

nematode-derived samples. Application of this methodology for the investigation of 

Caenorhabditis elegans wild-type and peroxisomal -oxidation mutant metabolomes 

(Chapter 2) revealed several novel ascarosides,1 a class of signaling molecules that 

regulate different aspects of C. elegans biology. This functional diversity of ascarosides 

is paralleled by corresponding structural complexity featuring several unusual structural 

elements, such as -oxygenation of the fatty-acid-derived side chains, 4-

hydroxybenzoylation or (E)-2-methyl-2-butenoylation of the ascarylose unit, and 

glucosyl esters. The data presented allowed the author to propose a model for 

ascaroside biogenesis that is tightly regulated. In this model a modular library of 

ascarosides are produced integrating components of primary metabolism, e.g. 

peroxisomal -oxidation of fatty acids, carbohydrate-, and amino acid-metabolism.  

Given the structural complexity and specificity of biogenesis exhibited by the 

library of ascarosides, it appears that many of the newly identified compounds also 
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contribute to known or as yet undetermined functions in C. elegans. Given the large 

number of compounds identified, comprehensive functional characterization of the 

ascarosides will require design of high-throughput assays, for example based on 

microfluidic devices.2 

The structural complexity exhibited by the library of ascarosides in C. elegans 

and the unique mode of ascaroside biogenesis suggested that nematodes, and perhaps 

other animals, harbor yet unrecognized biosynthetic capabilities. To test this idea, the 

author embarked on global metabolomics of several nematode species including the 

necromenic roundworm Pristionchus pacificus (Chapter 3). 2D NMR and high 

resolution HPLC-MS/MS analyses revealed that P. pacificus produces small molecule 

architectures of unanticipated complexity that regulate the worm’s developmental 

decisions and phenotypic plasticity.3 The inclusion of P. pacificus’ small molecules 

considerably expands the nematode-derived modular library of signaling molecules. 

This library of compounds is generated via integrating building blocks derived from all 

conserved primary metabolic pathways, including lipid-, amino acid-, carbohydrate-, and 

nucleoside-metabolism. Unprecedented structural features in this library include 

xylopyranose- (as opposed to ribose-) derived nucleosides and moieties derived from 

neurotransmitter metabolism and TCA cycle. Further 2D NMR and HPLC-MS/MS-based 

analysis revealed pasa#9 as a minor component of the P. pacificus metabolome. This 

compound is a complex derivative of the reported pasc#93 including an additional 

anthranilate module (Figure 5.1). The endogenous function of pasc#9 has not yet been 

elucidated, suggesting specific inputs from the incorporation of the anthranilate in 

pasa#9 may serve important yet to be known biochemical functions. The identification of 
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pasa#9 further extends the scope of modularity in nematode small molecule assembly. 

Such striking examples for combinatorial generation of nematode small molecules 

unfold a new paradigm of small molecule assembly in metazoans.  

 

Figure 5.1: Structures of pasc#9 (confirmed) and pasa#9 (putative) derived from assembly of 
building blocks from carbohydrate- (black), fatty acid- (blue), amino acid- (green), and as well as 
TCA cycle-derived succinate (magenta) and anthranilate (chrome yellow). pasc#9 is a major 
component of the P. pacificus metabolome, whereas pasa#9 is a very minor component. The 
endogenous function of pasc#9 has not yet been determined.  

 

Nematodes are arguably the most numerous animals on earth with regard to 

both numbers of species and individuals. Only ~3% of an estimated 1 million different 

nematode species have been isolated and described.4 In-depth analysis of the 

metabolome of just two model species resulted in hundreds of novel small molecules 

displaying structural complexities unexpected from fully differentiated multi-cellular 

metazoans. Traditionally, structural characterization and biological testing of natural 

products isolated from plants and microbes have been used extensively for designing 

small molecule-based therapeutics.5 However, results presented in this dissertation and 

the diversity of the phylum suggest that nematodes may be a veritable source for 

complex natural products. Thus, a concerted effort is called for to identify additional 

nematode-derived small molecules using global metabolomics and subsequent testing 

in disease models, which may lead to advanced small molecule therapies.  
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The recognition of molecular patterns or signals associated with specific 

pathogens (or food sources) is fundamental to ecology and plays a major role in the 

evolution of symbiotic and predator-prey relationships.6 Recent studies suggest that 

ascarosides are not only limited to the model nematodes C. elegans and P. pacificus, 

but are widely distributed in the nematode phylum, including both human- and plant-

parasitic nematodes.7 Hence, ascarosides (and perhaps other nematode-derived small 

molecules such as dafachronic acids) may represent an evolutionarily conserved 

molecular signature of nematodes that may be perceived by a wide range of organisms 

that nematodes interact with, including plant and animal hosts as well as 

microorganisms associated with nematodes. This idea is supported by recent studies 

that demonstrated that nematophagous fungi perceive ascarosides. In nematophagous 

fungi,8 which are natural predators of soil-dwelling nematodes, ascarosides trigger trap 

formation, an essential morphological change that enables predatory behavior.9 These 

results indicate that nematode-derived small molecules may be developed into 

therapeutics in humans, livestock, and plants to combat nematode parasitism. This 

provides additional incentives to expand the library of nematode-derived small 

molecules using global metabolomics on a wider selection of parasitic and free-living 

nematodes.  

 

The identification of the nematode small molecule-signals reported in this 

dissertation demonstrates underappreciated biosynthetic capabilities in metazoans. The 

generation of this library may be dependent on dedicated nematode-specific 

biosynthetic genes. However, it is important to note that the library is derived from 
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specific modular assembly of primary metabolites available to nearly all organisms. 

Also, known signaling molecules and co-factors in higher animals, for example, S-

adenosyl methionine, phosphatidylinositols, etc. rely on modular assembly of 

components from multiple conserved primary metabolic pathways. Thus metazoans 

may extend analogous strategies to produce signaling molecules of much greater 

structural complexity. This ultimately requires fresh spectroscopic re-analysis of 

metabolomes from higher animals, including mammals, which may also reveal novel 

small molecule signals. 

 

5.2. Harnessing comparative metabolomics and genomics, a unique route for the 

study of small molecule biogenesis: Nematode-derived small molecules are involved 

in the regulation of several aspects of C. elegans and P. pacificus biology; hence 

elucidation of the biosynthesis of molecules reported in this dissertation will be essential 

for the field.10-13 P. pacificus is a powerful system for using Next-Generation 

Sequencing-based population genomics and genome-wide association studies 

(GWAS). The genome of 104 natural isolates has already been fully analyzed; another 

set of 154 complete genome sequences has just been obtained and is currently in the 

bioinformatics pipeline.14 Together, the large collection of P. pacificus isolates and the 

observed genetic diversity make this species an excellent candidate for studying the 

biosynthesis of modular small molecules via comparative genomics. Proof-of-principle 

evidence for natural variation in small molecule production is provided in Chapter 3. In 

this study the author used HPLC-MS-based analysis of the metabolomes of 6 P. 
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pacificus wild strains. 2 out these 6 strains (RS5205 and RSB020) were deficient in 

ubas#1 and ubas#2 biosynthesis (at least under our experimental conditions).  

Extending this idea of natural variation, the author conducted additional 

preliminary studies aiming to analyze the metabolomes of 27 different P. pacificus wild 

isolates and profile the recently identified3 small molecules. All strains were grown in 

triplicate, and the exo-metabolome analyzed by HPLC-MS. As before (results for 6 

strains analyzed in Chapter 3) the author found that each strain is represented by a 

specific small molecule profile, but most strains produce all of the previously identified 

compounds. Notably, two strains did not produce the dimeric ascaroside dasc#1, 

RS5419 and RS5412 (Figure 5.2a). In addition six strains were defective in production 

of ubas#1 and ubas#2 (Figure 5.2b). These data are deemed preliminary by the author 

since the study was based on small 10 mL cultures and the current analytical technique 

used to profile small-molecules have limited sensitivity and dynamic range. Future 

research at groups of Prof. Frank C. Schroeder and Prof. Ralf J. Sommer will be 

directed towards scaling up of the deficient strains as well as analysis via more sensitive 

MS detection methods such as Selective Ion Monitoring (SIM)-LC/MS to rule out low 

level production of the apparent deficient compounds.  

 

Figure 5.2: Results from preliminary HPLC/MS screen of 27 P. pacificus strains. (a) Two strains 
do not produce dascr#1 and (b) eight strains are defective in ubas#1 (ubas#2 not shown).  
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The ubas- and dasc-defective strains are not genetically clustered and originate 

from different geographical locations, which is advantageous for bioinformatic 

comparison of dasc- and ubas-producing strains with non-producers. Preliminary 

bioinformatic analysis based on comparison of the two dasc#1-defective strains with 

genome data from the dasc#1-producing strains by Dr. Gabriel Markov, Sommer 

research group, MPI, Tuebingen, Germany identified several hundred single nucleotide 

polymorphisms (SNPs), which is small compared to the total number of SNP's between 

strains (> 50,000). Incorporation of data from additional dasc#1-producing and non-

producing strains will rapidly decrease this number further and produce a small number 

 

 

Figure 5.3: Harnessing comparative metabolomics and genomics. A high-throughput 
workflow for culturing, metabolite extraction, and targeted HPLC-MS analysis for 360 
sequenced P. pacificus wild isolates. Subsequent bioinformatics and mutant design will identify 
and establish the biochemical roles of genes that regulate small molecule biogenesis and 
export. This strategy may uniquely correlate the genomes to the metabolomes of worm strains 
from around the world.  
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of protein-coding sequences from which candidates will be selected. The author is 

optimistic about this approach, since analysis of only 27 strains (about 10% of the total 

number of genotyped strains) 8 were found to have significant defects.  

Based on these preliminary observations, the author has designed (for future 

research in the Schroeder research group) a high-throughput workflow for culturing, 

metabolite extraction, and targeted HPLC-MS analysis for the remaining ~300 

sequenced P. pacificus wild isolates represented in Figure 5.3. Subsequent inputs from 

bioinformatics will provide candidate genes that influence small molecule biogenesis, 

the biochemical role of which will be confirmed via mutant design and comparative 

HPLC-MS analysis of the mutant and wild-type metabolomes (Figure 5.3). This strategy 

will uniquely correlate the genomes to the metabolomes of worm strains from around 

the world and provide a novel route for investigating small molecule biogenesis.  

 

5.3. Comparative metabolomics to provide a blueprint for the identification of 

ligands for other C. elegans and mammalian NHRs: Small-molecule ligands of 

nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan 

development, cell differentiation and metabolism. Even though the proper structural 

characterization of endogenous ligands of NHRs is central to understanding their role as 

transcriptional regulators in metazoans, there are only few approaches to 

comprehensively identify the endogenous NHR ligands from complex animal 

metabolomes. The incomplete chemical annotation of metazoan metabolomes is one of 

the major reasons for several "orphan" (or ligand-less) NHRs in model systems such as 
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C. elegans as well as in higher organisms. In Chapters 2 and 3 the author described 

the development of a global metabolomics workflow that the author is optimistic will 

significantly impact proper chemical annotation of complex metazoan metabolomes.  

Synthetic ligand screen for the vitamin D receptor and other mammalian NHRs 

has demonstrated that even small changes in ligand structures can strongly affect gene 

transcription, further bolstering the need for the identification of endogenous NHR 

ligands.15-17 Using 2D NMR-based comparative metabolomics, the author identified the 

endogenous ligands of the C. elegans NHR, DAF-12, a vitamin D and liver X receptor 

homolog that regulates larval development, fat metabolism and lifespan (Chapter 4). 

Studies by the author demonstrated the advantages of comparative metabolomics over 

traditional candidate-based approaches and provide a blueprint for the identification of 

ligands for other C. elegans and mammalian NHRs. 

Interestingly, a steroid with 1 –desaturation was found to be an endogenous 

ligand for DAF-12. Steroids featuring a 1-double bond have rarely been described in 

nature,18 although it has been shown that introduction of 1-unsaturation in natural 3-

keto sterols, e.g. testosterone, greatly enhances their biological properties.19 The 

enzyme that incorporates this critical 1 –desaturation is not known, identification of 

which in C. elegans may motivate characterization of homologous genes in mammals 

and may initiate a spectroscopic re-analysis of mammalian metabolomes for the 

presence of endogenous 1-steroids.  

Ultimately, DAF-12-ligand biosynthetic enzymes link evolutionarily conserved 

insulin/IGF and TGF-β signaling to transcriptional regulation by DAF-12 (Chapter 1, 
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Figure 1.4 and Chapter 4, Figure 4.1).20 Structural and functional characterization of 

small molecule signals in nematodes described in this dissertation provides additional 

routes to investigate these conserved pathways that are implicated in many grave 

disease such as: cancer, diabetes, and atherosclerosis.21-23. Further functional 

characterization of the identified DAF-12-ligands will advance understanding of the roles 

of ligand-dependent NHRs in organism-wide coordination of metazoan development 

and aging. 
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APPENDIX A 

 

COMPARATIVE METABOLOMICS REVEALS BIOGENESIS OF ASCAROSIDES, A 

MODULAR LIBRARY OF SMALL MOLECULE SIGNALS IN C. ELEGANS 

 

A.1. Materials and Methods: 

A.1.1. Analytical instrumentation: NMR spectra were recorded on Varian INOVA 600 

(600 MHz for 1H, 151 MHz for 13C), INOVA 500 (500 MHz for 1H, 125 MHz for 13C), or 

INOVA 400 (400 MHz for 1H, 100 MHz for 13C) spectrometers. NMR spectra were 

processed using Varian VNMR, MestreLabs MestReC and MestRecNova software 

packages.  

Low-resolution HPLC–MS and HPLC–MS/MS was performed using an Agilent 

1100 Series HPLC system equipped with a diode array detector and connected to a 

Quattro II mass spectrometer (Micromass/Waters). High resolution MS/MS was 

performed using an LTQ Orbitrap Velos Hybrid FT mass spectrometer (Thermo 

Scientific, Cornell University Life Sciences Core Laboratories Center). High resolution 

HPLC-MS was performed using a Waters nanoACQUITY UPLC System equipped with 

a Waters Acquity UPLC HSS C-18 column (2.1 x 100 mm, 1.8 µm particle diameter) 

connected to a Xevo G2 QTof Mass Spectrometer. MassLynx software was used for MS 

data acquisition and processing. 
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HPLC was performed using the Agilent 1100 Series HPLC system equipped with 

an Agilent Eclipse XDB-C18 column (9.4 x 250 mm, 5 µm particle diameter) coupled to 

a Teledyne ISCO Foxy 200 fraction collector. 

 

A.1.2. C. elegans strains and general culture methods: C. elegans variety Bristol, 

strain N2 (wild type), acox-1(ok2257), daf-22(m130), daf-22(ok693), F58F9.7(tm4033), 

C48B4.1(ok2619), F59F4.1(ok2119), and F08A8.3(tm5192) were maintained at 20 oC 

on NGM agar plates, made with Bacto agar (BD Biosciences) and seeded with E. coli 

OP50 grown overnight.  

 

A.1.3. Preparation of metabolite extracts: Wild-type (N2, Bristol) or acox-1(ok2257), 

and daf-22(ok693) mutant worms from four 10 cm NGM plates were washed using M9-

medium into a 100 mL S-medium pre-culture where they were grown for four days at 22 

oC on a rotary shaker at 220 rpm. Concentrated E. coli OP50 derived from 1 L of 

bacterial culture was added as food at days 1 and 3. Subsequently, each pre-culture 

was divided equally into four 500 mL Erlenmeyer flasks containing 100 mL of S-medium 

on day 4. These cultures were grown for 5 days at 22 oC on a rotary shaker and fed with 

concentrated OP50 derived from 500 mL of bacterial culture every day from day 1 to 

day 4. On day 5 they were harvested, centrifuged, and the resultant supernatant media 

and worm pellets were frozen over dry ice-acetone slush and lyophilized separately. The 

lyophilized materials from the supernatant were extracted with 150 mL of 95% ethanol 

at room temperature for 16 h. The worm pellets were crushed with ~2 g of granular 
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NaCl using a mortar pestle and extracted with 100 mL of 100% ethanol at room 

temperature for 16 h. The resulting suspensions were filtered and the filtrate evaporated 

in vacuo at room temperature, producing media metabolite (the worm "exo-

metabolome") extracts and worm pellet metabolite ("endo-metabolomes") extracts. 

 

A.1.4. Ascaroside feeding experiment with daf-22(m130): Ascaroside feeding 

experiments were performed with the daf-22(m130) mutant, which is less sensitive to 

growth defects due to added ascarosides than the daf-22(ok693) mutant (Schroeder, 

unpublished results). HPLC-MS analysis of daf-22(m130) showed similar ascaroside 

profiles as daf-22(ok693), notably a total lack of short chain ascarosides with chain 

length less than 12 carbons. Cultures of daf-22 (m130) were grown as described before 

with the addition of 5 µM ascr#3 or a 1:1 mixture of 2.5 µM of each of ascr#10 and 

oscr#10 per culture on day 1 after pre-culture splitting. 

 

A.1.5. HPLC-MS/MS Sample preparation: Media or worm pellet metabolite extracts 

were resuspended in ~15 mL methanol, centrifuged and the supernatant collected. The 

supernatant were then concentrated in vacuo at room temperature and resuspended in 

1 mL methanol, centrifuged, and 30 L of this extract was directly injected for LC-

MS/MS analysis. 

 

A.1.6. HPLC-MS/MS analysis: A 0.1% acetic acid – acetonitrile solvent gradient was 

used at a flow rate of 3.6 ml/min, starting with an acetonitrile content of 5% for 5 min 
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which was increased to 100% over a period of 40 min. Metabolite extracts were 

analyzed by HPLC-ESI-MS in negative ion mode using a capillary voltage of 3.5 kV and 

a cone voltage of -40 V. HPLC-MS/MS screening for precursor ions of m/z = 73.0 was 

performed using argon as collision gas at 2.1 mtorr and 30 eV. Ascaroside 

fragmentation was further analyzed by high-resolution MS/MS using the LTQ Orbitrap. 

To confirm elemental composition of new compounds, wild-type and mutant 

metabolome samples and fractions were additionally analyzed by high-resolution HPLC-

MS using the Xevo G2 QTof.  

 

A.1.7. Identification and quantification of ascarosides: For the identification of 

putative ascarosides detected in C. elegans wild-type and mutants1 (ascr, oscr, icas, 

icos, and glas; see Figures 2.4 and Appendix Tables A.1-A.6 for bhas, bhos, ibha, and 

ibho see Appendix Figure A.2 and Ref. 1), HPLC-retention times were plotted versus 

m/z (or chain length). Components belonging to a homologous series exhibited almost 

linear elution profiles (Appendix Figure A.1), indicating that components within a series 

share the same relative stereochemistry. The structure and stereochemistry of the 

various series were then identified based on (1) isolation of representative examples 

and 2D NMR analysis (for examples see Appendix Figures A.3, A.4, A.6, and A.9), (2) 

comparison of representative examples with synthetic standards provided by Dr. 

Stephan H. von Reuss, (3) molecular formula as established from high-resolution MS 

(Tables A.1-A.6), (4) characteristic MS/MS fragmentation, and (5) HPLC-retention times 

that matched retention time values extrapolated from those of the synthetic samples. 

The (E)-configuration of α,β-unsaturated ascarosides was established by comparison 
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with ascr#3, (Z)-configured ascr#3, and ascr#7, and is also suggested by the 

stereoselectivity of acyl-CoA-oxidase (ACOX) activity.  

Quantification of ascarosides was performed by integration of HPLC-MS signals 

from the corresponding ion-traces. Ascaroside concentrations were calculated using 

response factors determined for synthetic standards of ascr#1, #3, #5, #7, #9, #10, 

oscr#9, #10, icas#3, #9, icos#10, and glas#10 (provided by Dr. Stephan von Reuss and 

reported in Ref. 1). For most compounds, mass spectrometer response was roughly 

linear (less than 10% error) for amounts of 1 pmol to 2 nmol per injection. Response 

factors for ascarosides that were not synthesized were extrapolated based on data 

observed for the available standards. Generally, strong differences between the 

response factors of short-chained members of each series (side-chains less than C7) 

were observed, whereas differences between response factors of longer-chained 

homologs were small. Since not all short-chained members of all series were 

synthesized, the systematic errors of the absolute amounts reported for some short-

chain ascarosides could be larger than for longer-chained compounds. 

In order to roughly account for culture duration and worm biomass, ascaroside 

content of the excretome and worm pellet samples are reported in fmol ascarosides 

produced per hour of culture time per mg of worm pellet dry weight. All quantitative data 

reported in the Figures were derived from at least two independent biological repeats. 

A.1.8. Statistical analysis: Unpaired student’s t-tests with Welch’s correction were 

used for comparing ascaroside profiles between wild-type and mutant metabolomes. 
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A.2. Figures: 

 
Figure A.1: HPLC elution profiles of ascarosides identified in wild-type and mutant excretome 

extracts of C. elegans ( indicates components with (E)-configured α,β-unsaturated sidechains). 
Data represents collaborative efforts of the author of this dissertation and Dr. Stephan H. von 
Reuss and reported in Ref. 1.  
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Figure A.2: Representative -hydroxyascaroside classes1 identified in wild-type, acox-1, maoc-

1, dhs-28, and daf-22 worms via HPLC-MS/MS: (a) (−1)-oxygenated -hydroxyascarosides, 

(b) -oxygenated -hydroxyascarosides, and (c) examples for 4’-indole-3-carbonylated -
hydroxyascarosides. See also Figure 2.4. 
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Figure A.3: Sections of dqfCOSY spectra (600 MHz, methanol-d4) of mbas#3-enriched fraction 
from wild-type C .elegans media extracts (a) and synthetic mbas#3 (b) showing characteristic 
signals for methyl groups of the ascarylose ring and the side chain (blue), the allylic methyl 
group of the tiglate unit (red), and the pH dependant signal for the side chain double bond 
(green).   

a 

b 
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Figure A.4.1. Sections of dqfCOSY spectra (600 MHz, methanol-d4) of hbas#3-enriched fraction 
from wild-type C .elegans media extracts (a) and synthetic hbas#3 (b) showing characteristic 
signals for methyl groups of the ascarylose ring and the side chain (blue), the para-substituted 
4-hydroxybenzoyl unit (red), and the side chain double bond (green).  

Figure A.4.2 

Figure A.4.2 

a 

b 
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Figure A.4.2: Enlarged sections of dqfCOSY spectra (600 MHz, methanol-d4) of hbas#3-
enriched fraction from wild-type C .elegans media extracts (a) and synthetic hbas#3 (b) showing 
characteristic signals for methyl groups of the ascarylose ring (blue), and the ascarylose spin 
system (black). 

  

a 

b 
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ACOX-1          MVHLNKTIQEGDNPDLTAERLTATFDTHAMAAQIYGGEMRARRRREITAKLAEIPELHDS 60 

F08A8.3         ----MSSICKGDNSDLTEERKNATFDTDKMAAVIYGREEIASRRRQLTESISRIHELAES 56 

F59F4.1         ---MSRWIQPGDNVDITNERKKATFDTERMSAWIHGGTEVMKRRREILDFVKSVDDFKDP 57 

C48B4.1         -MPLNKLIQDGDNQDLTDERFKATFDTDALAAVFHGGEDALKRIRELRDEVTKRWHLFDA 59 

 

ACOX-1          MPLPYMTREEKIMESARKLTVLTQRMSEI-IDPTDAGELYHLNNEVLGIEGNPMALHGVM 119 

F08A8.3         KPLVFMTREEKIAESCRKLEVLSRHWNQTPFNRDNEEDALHIYREVLGMEGHPLALHDTM 116 

F59F4.1         VPTEFMSREERILNNARKVVAMTNNTDQI-DGSDFFGEGMYYQALTMGRDLHAMSLHYVM 116 

C48B4.1         LPGAHRTRAERMEDVSRKLKNLMESVGEF-ADFTNNLDMLVIIRDVMGIEGFPLALHNLM 118 

 

ACOX-1          FIPALNAQASDEQQAKWLIRALRREIIGTYAQTEMGHGTNLQNLETTATYDIGTQEFVLH 179 

F08A8.3         FIPTLVAQASQEQQEKWLGRARRKEIIGCYAQTEMGHGTNLRKLETTATYSPDTQEFILN 176 

F59F4.1         FIPTLQGQTDDDQLDEWLTKTISRAVVGTYAQTELGHGTNLSKLETTATYDPATEEFVMN 176 

C48B4.1         FVPTIQNQADDEQTEWWLMDALQGKIIGTYAQTELGHGTNLGAIETTATYDKLTEEFIIH 178 

 

ACOX-1          TPKITALKWWPGNLGKSSNYAVVVAHMYIKGKNFGPHTFMVPLRDEKTHKPLPGITIGDI 239 

F08A8.3         TPTITALKWWPGALGKSSNNAIVVANLLIKDQNYGPHPFMVQLRDEKTHIPLKGIVVGDI 236 

F59F4.1         SPTITAAKWWPGGLGKSSNYAVVVAQLYTKGECKGPHPFIVQLRDEDTHYPLKGIRLGDI 236 

C48B4.1         TPTTTATKWWPGGLGTSCTHVVLVANLIIDTKNYGLHPFFVPIRDRNSYSVMSGVRVGDI 238 

 

ACOX-1          GPKMAYNIVDNGFLGFNNYRIPRTNLLMRHTKVEADGTYIKPPHAKINYSAMVHVRSYML 299 

F08A8.3         GPKMAFNGADNGYLGFNNHRIPRTNLLMRHTKVEANGTYIKPSHAKIGYSSMVKVRSRMA 296 

F59F4.1         GPKLGINGNDNGFLLFDKVRIPRKALLMRYAKVNPDGTYIAPAHSKLGYGTMVFVRSIMI 296 

C48B4.1         GTKMGVNCVDNGFLAFDNYRIPRRNMLMKHSKVSKEGLYTAPSHPKVGYTTMLYMRSEMI 298 

 

ACOX-1          TGQAIMLSYALNIATRYSAVRRQGQIDKNEPEVKVLEYQTQQHRLFPFIARAYAFQFAGA 359 

F08A8.3         MDQGLFLASALVIAVRYSAVRRQGFLEDKTQKVKVLDYQTQQHRLFPSLARAYAFIFTGF 356 

F59F4.1         KDQSTQLAAAATIATRYAAVRRQGEITPGKGEVQIIDYQTQQFRVFPQLARAFAFMAAAT 356 

C48B4.1         YHQAYYLAMAMAISIRYSAVRRQGEIKPGTQEVQILDYQTQQYRIFPGLARCFAFNTAAA 358 

 

ACOX-1          ETVKLYERVLKEMKSGNVSLMADLHALTSGLKSVVTHQTGEGIEQARMACGGHGYSMASY 419 

F08A8.3         ETIHLYSQLLKDVDMGNTSGMADLHALTSGLKSVVTHQTGEGIEQARMACGEHGYSMASY 416 

F59F4.1         EIRDLYMTVTEQLTHGNTELLAELHVLSSGLKSLVSWDTAQGIEQCRLACGGHGYSQASG 416 

C48B4.1         TVRQMTENCIKQLSHGNSDVLADLHALSCGLKAVVTHQASQSIDQARQACGGHGYSDASY 418 

 

ACOX-1          ISEIYGVAIGGCTYEGENMVMLLQLARYLVKSAALVKSGKASQLGPLVAYLGARSEPTSL 479 

F08A8.3         ISEIYGVAIGGCTYEGENMVMLLQLARYLVKSVELIKSGEEKKLGPMVSYLAAKGGHPDL 476 

F59F4.1         FPEIYGYAVGGCTYEGENIVMLLQVARFLMKAAEGVRKGTAN-LADIGAYIGKPGRKTSR 475 

C48B4.1         LPTLYTCSVGACTYEGENMVMLLQLSKYLMKAAAKAEKGEEM--APLVAYLVKPD----- 471 

 

ACOX-1          IDRVPNGGITEYIKTFQHIAKRQTLKAANKFFGLMENGEKREIAWNKSSVELNRASRLHT 539 

F08A8.3         SS--LNG----YVTAFEHMARRQAWKATEKFLKLMETGESREVAWNKSAVELTRASRLHT 530 

F59F4.1         LTTHHHYTDADIVEDLEHVARKQVFRAYDRLKKAQEHLRP-EDAWNSVSVELAKASRWHV 534 

C48B4.1         -ITETNDKFAKMLSHFEHIARHRVMHAYRQMIEEEKQGIERDYAFANHSVDWTKAARAHT 530 

 

ACOX-1          RLFIVEAFARRVNEIGDITIKEALSDLLHLHVNYELLDVATYALEDGFMSSTQLDYVRDQ 599 

F08A8.3         RLFIIEAFMRRVSRIEDIPVKEVLTDLLHLHVNYELLDVATYALE--FMSSTQLDYIRDQ 588 

F59F4.1         RLYLVKNLLHKVS-IAPQDLKIVLFDVARLYAYDIITSSIGAFLEDGYMSSNQMNEVKEG 593 

C48B4.1         KLFIARGFVKSVQEVSDEAVHDVLTTLAELYLSYELIEMSADLTANGYLSESDVQQIRHQ 590 

 

ACOX-1          LYFYLQKIRPNAVSLLDSWEFSDRELRSVLGRRDGHVYENLFKWAKESPLNKTDVLPSVD 659 

F08A8.3         LYLYLEKIRPSAVSLVDSFQISDMQLRSVLGRRDGNVYENLFKWAKSSPLNKSDVLPSVD 648 

F59F4.1         IYKCLSNMRPNAVGLVDCWDYDDKELKSVLGRRDGNVYPALLQWAQNSQLNRSEVLPAYE 653 

C48B4.1         IYDSMRKTRRNAVSIVDSFDICDRELRSVLGRRDGHVYENLYKWAQMSPLNER-NLPHVE 649 

 

ACOX-1          TYLKPMMEKARQSKL 674 

F08A8.3         KYLKPMMEKAKL--- 660 

F59F4.1         KYLGPMMKDARSKL- 667 

C48B4.1         KYLKPMTSKL----- 659 

 

Figure A.5: Alignment of C. elegans’ ACOX-1 isoform a.1 with other peroxisomal acyl-CoA 
oxidases was performed using ClustalW. Identical amino acids are marked in grey, similar 
amino acids are marked in light grey, and the peroxisomal targeting signal is marked in black.  
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Figure A.6: dqfCOSY spectrum (600 MHz, methanol-d4) of oscr#9–enriched fraction from acox-
1(ok2257) media extracts. 
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Figure A.7: Relative abundance of ascarosides ascr#3 and ascr#9 and their corresponding 
indole ascarosides icas#3 and icas#9 in wild-type excretome extracts indicates that indole 
attachment is highly dependent on side chain length. 

 

 

 

Figure A.8: HPLC-MS/MS chromatograms (precursor ions of m/z = 73) of acox-1(ok2257) 
worm body extracts showing glucosyl esters glas#10, glas#18, and glas#22 and the 
corresponding non-glycosylated ascarosides ascr#10, ascr#18, and ascr#22. 
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Figure A.9: Sections of dqfCOSY spectra (600 MHz, methanol-d4) of glas#10–enriched fraction 
from acox-1(ok2257) worm pellet extract fraction (a) and synthetic glas#10 (b), showing 
characteristic signals for methyl groups of the ascarylose ring and the side chain (blue), the 
anomeric hydrogen of the glucose unit (red), the glucose spin system (green), and the 
ascarylose spin system (black). 

  

a 

b 
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Figure A.10: Differential excretion of ()-oxygenated ascarosides by wild-type C. elegans. 
(Significance, *=p<0.01, **=p<0.001, ***=p<0.001, Appendix Section A.1.8) 

 

 
 

ascE            MGVIVPHYLMIFKKLDIEGC---YLIEFNKFIDSRGTFVKTFHSDFFSE-NGIVLDMREE 56 

C14F11.6        MSHPTPGKRFQLEKEVIEAIPDLLVIKPKVFPDERGFFSESYNKTEWAEKIGYTEDLQQD 60 

                 

 

ascE            FYSISAKNVIRGMHFQMPPAEHDKLVYCVNGAVLDVILDIRKDSKTYGEYFSIELSYENS 116 

C14F11.6        NHSFSHYGVLRGLHTQP---HMGKLVTVVSGEIFDVAVDIRKDSPTYGKWHGVVLNGDNK 117 

                  

 

ascE            LALWVPKGLAHGFLSLADN-SIMFYKTSSVHNVECDSGIK--WNSFGFKWPIDNP---II 170 

C14F11.6        HAFWIPAGFLHGFQVLSKEGAHVTYKCSAVYDPKTEFGINPFDEDINVDWPIRDKTVVIV 177 

                  

 

ascE            SEKDNSLCYFDEFDSSF 187 

C14F11.6        SERDTQHASFKSL---- 190 

                     

 

Figure A.11: Alignment of Yersinia pseudotuberculosis CDP-3, 6-dideoxy-D-glycero-D-glycero-
4-hexulose-5-epimerase or ascE (AAA88702.1) with C. elegans homolog C14F11.6 
(CCD64543.1) was performed using ClustalW. Identical amino acids are marked in grey and 
similar amino acids are marked in light grey. 
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Figure A.12.1: 1H NMR spectrum (400 MHz, methanol-d4) of 5-(3’R,5’R-dihydroxy-6’S-methyl-
(2H)-tetrahydropyran-2’-yloxy)pentanoic acid (oscr#9).  
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Figure A.12.2: 13C NMR spectrum (100 MHz, methanol-d4) of 5-(3’R,5’R-dihydroxy-6’S-methyl-
(2H)-tetrahydropyran-2’-yloxy)pentanoic acid (oscr#9).   
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Figure A.13.1: 1H NMR spectrum (600 MHz, methanol-d4) of 9-(5’R-(1H-indole-3-carbonyloxy)-

3’R-hydroxy-6’S-methyl-tetrahydro-(2H)-pyran-2’-yloxy)nonanoic acid (icos#10).   
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Figure A.13.2: dqfCOSY spectrum (600 MHz, methanol-d4) of 9-(5’R-(1H-indole-3-carbonyloxy) 
-3’R-hydroxy-6’S-methyl-tetrahydro-(2H)-pyran-2’-yloxy)nonanoic acid (icos#10).   
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Figure A.13.3: HSQC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of 9-(5’R-(1H-
indole-3-carbonyloxy)-3’R-hydroxy-6’S-methyl-tetrahydro-(2H)-pyran-2’-yloxy)nonanoic acid 
(icos#10).   
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Figure A.13.4: HMBC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of 9-(5’R-(1H-
indole-3-carbonyloxy)-3’R-hydroxy-6’S-methyl-tetrahydro-(2H)-pyran-2’-yloxy)nonanoic acid 
(icos#10).   
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Figure A.14.1: 1H NMR spectrum (600 MHz, methanol-d4) of (8R)-(3’R-hydroxy-5’R-(4-
hydroxybenzoyloxy)-6’S-methyl-(2H)-tetrahydropyran-2’-yloxy)non-(2E)-enoic acid (hbas#3).   
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Figure A.14.2: dqfCOSY spectrum (600 MHz, methanol-d4) of (8R)-(3’R-hydroxy-5’R-(4-
hydroxybenzoyloxy)-6’S-methyl-(2H)-tetrahydropyran-2’-yloxy)non-(2E)-enoic acid (hbas#3)   
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Figure A.14.3: HMBC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of (8R)-(3’R-
hydroxy-5’R-(4-hydroxybenzoyloxy)-6’S-methyl-(2H)-tetrahydropyran-2’-yloxy)non-(2E)-enoic 
acid (hbas#3).   

O

O
H

O

O

h
b

a
s
#

3

O
H

O

O
H

O



131 

 

 

 

Figure A.15.1: 1H NMR spectrum (600 MHz, methanol-d4) of (8R)-(3’R-hydroxy-5’R-(E)-(2-
methylbut-2-enoyloxy)-6’S-methyl-(2H)-tetrahydropyran-2’-yloxy)non-(2E)-enoic acid (mbas#3).   
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Figure A.15.2: dqfCOSY spectrum (600 MHz, methanol-d4) of (8R)-(3’R-hydroxy-5’R-(E)-(2-
methylbut-2-enoyloxy)-6’S-methyl-(2H)-tetrahydropyran-2’-yloxy)non-(2E)-enoic acid (mbas#3).   
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Figure A.16.1: 1H NMR spectrum (600 MHz, methanol-d4) of 2-(8R)-(3’R,5’R-di-hydroxy-6’S-

methyl-(2H)-tetrahydropyran-2’-yloxy)nonanoyl-3,4,5-trihydroxy-6-hydroxymethyl-(2H)-

tetrahydropyran (glas#10).   
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Figure A.16.2: dqfCOSY spectrum (600 MHz, methanol-d4) of 2-(8R)-(3’R,5’R-di-hydroxy-6’S-
methyl-(2H)-tetrahydropyran-2’-yloxy)nonanoyl-3,4,5-trihydroxy-6-hydroxymethyl-(2H)- 
tetrahydropyran (glas#10).   
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Figure A.16.3: HMQC Spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of 2-(8R)-
(3’R,5’R-di-hydroxy-6’S-methyl-(2H)-tetrahydropyran-2’-yloxy)nonanoyl-3,4,5-trihydroxy-6-
hydroxymethyl-(2H)-tetrahydropyran (glas#10).   
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Figure A.16.4: HMBC spectrum (600 MHz, methanol-d4) of 2-(8R)-(3’R,5’R-di-hydroxy-6’S-
methyl-(2H)-tetrahydropyran-2’-yloxy)nonanoyl-3,4,5-trihydroxy-6-hydroxymethyl-(2H)-
tetrahydropyran (glas#10).   
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A.3. Tables: 

Table A.1: HPLC-ESI-MS data of (-1)-oxygenated ascarosides (ascr).  

 





ascr
(m = 2-16)

O

OH

HO

O

ascr
(n = 0-16)

O

OH

HO

O (CH2)m

ascr#11O

OH

HO

O
CO2H

(CH2)n
CO2H CO2H

-1 -1-1

 

 

Side chain 
length 

(n, m) 

SMID2 Molecula
r 

formula 

Molecular 
weight 

[amu] 

m/z [M-H]– 

calculated 

m/z [M-H]– 

observed 

Retention 
time 

[min] ±SD 

C4 ascr#11* C10H18O6 234.1103 233.1025 233.1031 10.21 ±0.03 

C5, n = 0 ascr#9*3 C11H20O6 248.1260 247.1182 247.1189 11.69 ±0.01 

C6, n = 1 ascr#12 C12H22O6 262.1416 261.1338 261.1343 13.09 ±0.02 

ΔC7, m = 2 ascr#7*4 C13H22O6 274.1416 273.1339 273.1337 13.96 ±0.07 

C7, n = 2 ascr#1*5 C13H24O6 276.1573 275.1495 275.1497 14.52 ±0.04 

ΔC8, m = 3 ascr#13 C14H24O6 288.1573 287.1495 287.1481 15.61 ±0.18 

C8, n = 3 ascr#14 C14H26O6 290.1729 289.1651 289.1647 15.96 ±0.03 

ΔC9, m = 4 ascr#3*6 C15H26O6 302.1729 301.1651 301.1652 16.90 ±0.02 

C9, n = 4 ascr#10*3 C15H28O6 304.1886 303.1808 303.1800 17.44 ±0.02 

ΔC10, m = 5 ascr#15 C16H28O6 316.1886 315.1808 315.1817 18.34 ±0.02 

C10, n = 5 ascr#16 C16H30O6 318.2042 317.1964 317.1959 18.98 ±0.05 

ΔC11, m = 6 ascr#17 C17H30O6 330.2042 329.1964 329.1957 19.75 ±0.02 

C11, n = 6 ascr#18 C17H32O6 332.2199 331.2121 331.2130 20.43 ±0.02 

ΔC12, m = 7 ascr#197 C18H32O6 344.2199 343.2121 343.2120 21.36 ±0.03 

C12, n = 7 ascr#20 C18H34O6 346.2355 345.2277 345.2278 21.97 ±0.03 

ΔC13, m = 8 ascr#217 C19H34O6 358.2355 357.2277 357.2273 22.83 ±0.02 

C13, n = 8 ascr#22 C19H36O6 360.2512 359.2434 359.2437 23.58 ±0.02 

ΔC14, m = 9 ascr#237 C20H36O6 372.2512 371.2434 371.2444 24.46 ±0.01 

C14, n = 9 ascr#24 C20H38O6 374.2668 373.2590 373.2596 25.29 ±0.03 



138 

 

ΔC15, m = 10 ascr#257 C21H38O6 386.2668 385.2590 385.2598 26.15 ±0.02 

C15, n = 10 ascr#26 C21H40O6 388.2825 387.2747 387.2743 27.09 ±0.02 

ΔC16, m = 11 ascr#27 C22H40O6 400.2825 399.2747 399.2734 27.89 ±0.03 

C16, n = 11 ascr#28 C22H42O6 402.2981 401.2903 401.2901 28.97 ±0.04 

ΔC17, m = 12 ascr#29 C23H42O6 414.2981 413.2903 413.2891 29.80 ±0.03 

C17, n = 12 ascr#30 C23H44O6 416.3138 415.3060 415.3067 30.96 ±0.03 

C18, m = 13 ascr#31 C24H44O6 428.3138 427.3060 427.3075 31.78 ±0.03 

C18, n = 13 ascr#32 C24H46O6 430.3294 429.3216 429.3221 33.02 ±0.02 

ΔC19, m = 14 ascr#33 C25H46O6 442.3294 441.3216 441.3215 33.74 ±0.03 

C19, n = 14 ascr#34 C25H48O6 444.3451 443.3373 443.3374 35.12 ±0.08 

ΔC20, m = 15 ascr#35 C26H48O6 456.3451 455.3373 455.3371 35.59 ±0.06 

C20, n = 15 ascr#36 C26H50O6 458.3607 457.3529 457.3501 37.14 ±0.07 

ΔC21, m = 16 ascr#37 C27H50O6 470.3607 469.3529 469.3519 37.71 ±0.13 

C21, n = 16 ascr#38 C27H52O6 472.3764 471.3686 471.3697 39.15 ±0.06 

* confirmed using synthetic standards. 

 

Table A.2: HPLC-ESI-MS data of ()-oxygenated ascarosides (oscr). 







oscr
(m = 2-16)

O

OH

HO

O
(CH2)n



ascr#5O

OH

HO

O
CO2H



oscr
(n = 0-16)

O

OH

HO

O
(CH2)m

CO2H CO2H

 

Side chain 
length 

(n, m) 

SMID2 Molecular 

formula 

Molecular 
weight 

[amu] 

m/z [M-H]– 

calculated 

m/z [M-H]– 

observed 

Retention 
time 

[min] ±SD 

C3 ascr#5*8 C9H16O6 220.0947 219.0869 219.0871 6.53 ±0.07 

C5, n = 0 oscr#9*1 C11H20O6 248.1260 247.1182 247.1192 11.88 ±0.02 

C6, n = 1 oscr#12 C12H22O6 262.1416 261.1338 261.1345 13.40 ±0.02 

ΔC7, m = 2 oscr#7 C13H22O6 274.1416 273.1339 273.1350 14.67 ±0.02 

C7, n = 2 oscr#1 C13H24O6 276.1573 275.1495 275.1503 14.95 ±0.03 



139 

 

C8, n = 3 oscr#14 C14H26O6 290.1729 289.1651 289.1672 16.45 ±0.02 

ΔC9, n = 4 oscr#3 C15H26O6 302.1729 301.1651 301.1636 17.58 ±0.03 

C9, n = 4 oscr#10*1 C15H28O6 304.1886 303.1808 303.1814 18.00 ±0.02 

ΔC10, m = 5 oscr#15 C16H28O6 316.1886 315.1808 315.1816 18.91 ±0.06 

C10, n = 5 oscr#16 C16H30O6 318.2042 317.1964 317.1967 19.48 ±0.03 

ΔC11, m = 6 oscr#17 C17H30O6 330.2042 329.1964 329.1956 20.39 ±0.01 

C11, n = 6 oscr#18 C17H32O6 332.2199 331.2121 331.2124 20.98 ±0.08 

ΔC12, m = 7 oscr#19 C18H32O6 344.2199 343.2121 343.2125 21.86 ±0.06 

C12, n = 7 oscr#20 C18H34O6 346.2355 345.2277 345.2302 22.54 ±0.03 

ΔC13, m = 8 oscr#21 C19H34O6 358.2355 357.2277 357.2271 23.41 ±0.02 

C13, n = 8 oscr#22 C19H36O6 360.2512 359.2434 359.2452 24.19 ±0.02 

ΔC14, m = 9 oscr#23 C20H36O6 372.2512 371.2434 371.2436 25.04 ±0.03 

C14, n = 9 oscr#24 C20H38O6 374.2668 373.2590 373.2589 25.91 ±0.02 

ΔC15, m = 10 oscr#25 C21H38O6 386.2668 385.2590 385.2567 26.74 ±0.01 

C15, n = 10 oscr#26 C21H40O6 388.2825 387.2747 387.2739 27.73 ±0.02 

ΔC16, m = 11 oscr#27 C22H40O6 400.2825 399.2747 399.2728 28.54 ±0.03 

C16, n = 11 oscr#28 C22H42O6 402.2981 401.2903 401.2905 29.67 ±0.02 

ΔC17, m = 12 oscr#29 C23H42O6 414.2981 413.2903 413.2900 30.42 ±0.02 

C17, n = 12 oscr#30 C23H44O6 416.3138 415.3060 415.3080 31.68 ±0.04 

ΔC18, m = 13 oscr#31 C24H44O6 428.3138 427.3060 427.3053 32.44 ±0.02 

C18, n = 13 oscr#32 C24H46O6 430.3294 429.3216 429.3207 33.78 ±0.02 

ΔC19, m = 14 oscr#33 C25H46O6 442.3294 441.3216 441.3218 34.44 ±0.05 

C19, n = 14 oscr#34 C25H48O6 444.3451 443.3373 443.3372 35.86 ±0.05 

ΔC20, m = 15 oscr#35 C26H48O6 456.3451 455.3373 455.3384 36.23 ±0.05 

C20, n = 15 oscr#36 C26H50O6 458.3607 457.3529 457.3545 37.96 ±0.05 

ΔC21, m = 16 oscr#37 C27H50O6 470.3607 469.3529 469.3504 38.08 ±0.19 

C21, n = 16 oscr#38 C27H52O6 472.3764 471.3686 471.3679 40.19 ±0.13 

* confirmed using synthetic standards  
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Table A.3: HPLC-ESI-MS data of (-1)-oxygenated indole ascarosides (icas). 

 

O

OH

O

O

N
H

O

(CH2)n

O

OH

O

O

N
H

O

(CH2)m 


-1

icas
(n = 0-8)

-1

icas
(m =2-8)

CO2H CO2H

 

 

Side chain 
length (n, 

m) 

SMID2 Molecular 
formula 

Molecular 
weight 
[amu] 

m/z [M-H]– 

calculated 

m/z [M-H]– 

observed 

Retention 
time 

[min] ±SD 

C5, n = 0 icas#9*9 C20H25NO7 391.1631 390.1553 390.1555 20.18 ±0.02 

C6, n = 1 icas#12 C21H27NO7 405.1788 404.1709 404.1703 21.02 ±0.04 

ΔC7, m = 2 icas#7*3 C22H27NO7 417.1788 416.1709 416.1719 21.74 ±0.03 

C7, n = 2 icas#1*3 C22H29NO7 419.1944 418.1866 418.1864 22.06 ±0.03 

C8, n = 3 icas#14 C23H31NO7 433.2101 432.2022 432.2013 23.20 ±0.04 

ΔC9, m = 4 icas#3*3 C24H31NO7 445.2101 444.2022 444.2029 23.94 ±0.03 

C9, n = 4 icas#103 C24H33NO7 447.2257 446.2179 446.2185 24.55 ±0.03 

ΔC10, m = 
5 

icas#15 C25H33NO7 459.2257 458.2179 458.2198 25.21 ±0.05 

C10, n = 5 icas#16 C25H35NO7 461.2414 460.2335 460.2369 25.89 ±0.04 

ΔC11, m = 6 icas#17 C26H35NO7 473.2414 472.2335 472.2344 26.68 ±0.04 

C11, n = 6 icas#18 C26H37NO7 475.2570 474.2492 474.2494 27.44 ±0.03 

ΔC12, m = 
7 

icas#19 C27H37NO7 487.2570 486.2492 486.2486 28.20 ±0.06 

C12, n = 7 icas#20 C27H39NO7 489.27265 488.2648 488.2628 28.98 ±0.03 

ΔC13, m = 
8 

icas#21 C28H39NO7 501.27265 500.2648 500.2640 29.71 ±0.04 

C13, n = 8 icas#22 C28H41NO7 503.28830 502.2805 502.2807 30.66 ±0.03 

* confirmed using synthetic standards 
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Table A.4: HPLC-ESI-MS data of ()-oxygenated indole ascarosides (icos).  

 

O

OH

O

O

N
H

O

(CH2)n

O

OH

O

O

N
H

O

(CH2)m






icos
(n = 0-6)



icos
(m = 4-6)

CO2H CO2H

 

 

Side chain 
length (n, 

m) 

SMID2 Molecular 
formula 

Molecular 
weight 
[amu] 

m/z [M-H]– 

calculated 

m/z [M-H]– 

observed 

Retention 
time 

[min] ±SD 

C5, n = 0 icos#9 C20H25NO7 391.1631 390.1553 390.1541 20.48 ±0.03 

C7, n = 2 icos#1 C22H29NO7 419.1944 418.1866 418.1858 22.63 ±0.03 

ΔC9, m = 4 icos#3 C24H31NO7 445.2101 444.2022 444.2049 24.66 ±0.04 

C9, n = 4 icos#10*1 C24H33NO7 447.2257 446.2179 446.2171 25.29 ±0.03 

ΔC10, m = 
5 

icos#15 C25H33NO7 459.2257 458.2179 458.2170 26.02 ±0.05 

C10, n = 5 icos#16 C25H35NO7 461.2414 460.2335 460.2350 26.73 ±0.04 

ΔC11, m = 
6 

icos#17 C26H35NO7 473.2414 472.2335 472.2325 27.45 ±0.03 

C11, n = 6 icos#18 C26H37NO7 475.2570 474.2492 474.2490 28.21 ±0.04 

* confirmed using synthetic standards 
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Table A.5: HPLC-ESI-MS data of glucosyl ascaroside esters (glas). 

 

O

OH

HO

O (CH2)n O

O

O
HO OH

OH

OH

O

OH

HO

O (CH2)m O

O

O
HO OH

OH

OH

glas
(n = 2-10)

glas#3
(m = 4)

 

 

Side chain 
length (n, 

m) 

SMID2 Molecular 
formula 

Molecular 
weight 
[amu] 

m/z 
[M+Cl]– 

calculated 

m/z 
[M+Cl]– 

observed 

Retention 
time 

[min] ±SD 

C7, n = 2 glas#1 C19H32O11 438.2101 473.1795 473.1803 11.99 ±0.04 

ΔC9, m = 
4 

glas#3 C21H36O11 464.2258 499.1952 499.1932 14.64 ±0.03 

C9, n = 4 glas#10*1 C21H38O11 466.2414 501.2108 501.2112 15.05 ±0.03 

C10, n = 5 glas#16 C22H40O11 480.2571 515.2265 515.2269 16.19 ±0.05 

C11, n = 6 glas#18 C23H42O11 494.2727 529.2421 529.2402 17.34 ±0.04 

C12, n = 7 glas#20 C24H44O11 508.2884 543.2578 543.2551 18.41 ±0.04 

C13, n = 8 glas#22 C25H46O11 522.3040 557.2734 557.2720 19.49 ±0.05 

C14, n = 9 glas#24 C26H48O11 536.3197 571.2891 571.2896 20.59 ±0.04 

C15, n = 
10 

glas#26 C27H50O11 550.3353 585.3047 585.3095 21.77 ±0.04 

* confirmed using synthetic standards 
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Table A.6: HPLC-ESI-MS data of ascr#8, 4-(4-hydroxybenzoyl)- and 4-(2-(E)-methyl-2-
butenoyl)-ascarosides (hbas and mbas).  

 

O

OH

HO

O

H
N

O
CO2Hascr#8O

OH

O

O (CH2)4

O

HO

O

OH

O

O (CH2)4

O

hbas mbas

CO2H CO2H

 

 

Side 
chain 
length 

SMID2 Molecular 
formula 

Molecular 
weight 
[amu] 

m/z [M-H]– 

calculated 

m/z [M-H]– 

observed 

Retention time 

[min] ±SD 

ΔC7 ascr#8*4 C20H27NO7 393.1788 392.1709 392.1712 16.77 ±0.04 

ΔC9 hbas#3*1 C22H30O8 422.1941 421.1862 421.1866 22.41 ±0.03 

C9 hbas#10 C22H32O8 424.2097 423.2019 423.2018 22.94 ±0.04 

ΔC9 mbas#3*1 C20H32O7 384.2148 383.2070 383.2079 25.66 ±0.04 

C9 mbas#10 C20H34O7 386.2305 385.2226 385.2239 26.38 ±0.04 

* confirmed using synthetic standards 

  



144 

 

Table A.7: 1H (600 MHz), 13C (151 MHz), and HMBC NMR spectroscopic data for icos#10 in 
methanol-d4. Chemical shifts were referenced to (CD2HOD) = 3.31 ppm and (CD2HOD) = 49.05 
ppm.  

 

 

 

Position δ 
13

C [ppm] δ 
1
H [ppm] JHH Coupling [Hz] Key HMBC correlations 

1 176.4    

2 35.5 2.26 J2,3 = 7.5 C-1, C-3, C-4 

3 26.1 1.62   

4-5 30.1 1.38   

6 21.0 1.38   

7 27.1 1.43   

8 30.4 1.65   

9 68.2 3.49, 3.77 J9,9 = 9.7, J9,8 = 6.5 C-1′ 

1′ 100.2 4.60  C-3′, C-9 

2′ 68.8 3.85   

3′ 33.2 2.02 (ax) J3′ax,3′eq = 13.1, 

J3′ax,4′ = 11.3, J2′,3′ax = 3.0 

C-4′, C-5′ 

  2.21 (eq) J3′ax,3′eq = 12.9, J3′eq,4′ = 4.0 C-1′, C-4′, C-5′ 

4′ 70.3 5.13 J4′,5′ = 9.8 C-5′, C-6′, C3′′ 

5′ 68.2 4.00 J5′,6′ = 6.3  

6′ 17.8 1.25  C4′, C-5′ 

2′′ 133.1 7.96  C-3′′, C3a′′, C7a′′ 

3′′ 108.1    

3′′-CO 166.0    

3a′′ 137.9    

4′′ 121.5 8.02  C5′′, C3a′′ 

5′′ 123.4 7.20  C4′′, C3a′′ 

6′′ 122.3 7.20  C7′′, C7a′′ 

7′′ 112.7 7.45  C6′′, C7a′′ 

7a′′ 127.0    

O

OH

O

O

icos#10

H
N

O

OH

O
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Table A.8: 1H (600 MHz), 13C (151 MHz), and HMBC NMR spectroscopic data for hbas#3 in 
methanol-d4. Chemical shifts were referenced to (CD2HOD) = 3.31 ppm and (CD2HOD) = 49.05 
ppm.  

 

 

 

 

Position δ 
13

C [ppm] δ 
1
H [ppm] JHH Coupling 

[Hz] 

Key HMBC 
correlations 

1 171.7    

2 124.4 5.83 J2,3 = 15.6 C-4 

3 149.0 6.90 J3,4 = 7.0 C-1, C-4, C-5 

4 33.1 2.26  C-2, C-3, C5, C-6 

5, 6 29.2, 26.5 1.40 – 1.54  C-4, C-6 

7 38.1 1.53, 1.62  C-5, C-6, C-8 

8 72.7 3.83  C-6, C-7, C-9 

9 19.4 1.16 J8,9 = 6.1 C-7, C-8 

1′ 97.5 4.73  C-3′, C-5′, C-8 

2′ 69.5 3.77  C-4′ 

3′ 33.1 1.95 (ax) J3′ax,3′eq = 12.9, J3′ax,4′ = 11.2, 
J2′,3′ax = 2.9 

C-4′, C-5′ 

  2.15 (eq) J2′,3′eq = 3.2, J3′eq,4′ = 4.7 C-2′, C-4′, C-5′ 

4′ 71.5 5.05 J4′,5′ = 9.6 C-5′, C-6′, C-7′′ 

5′ 68.4 3.98 J5′,6′ = 6.3 C-4′, C-6′ 

6′ 18.1 1.18  C4′, C-5′ 

7′′-COO 167.2    

1′′ 122.1    

2′′,6′′ 132.8 7.85 J = 8.9 C-1′′,C-3′′,5′′,C-4′′,C-
7′′ 

3′′,5′′ 116.2 6.83  C-2′′,6′′, C-4′′ 

4′′ 163.6    

O

OH

O

O

hbas#3

OH

O

O
HO



146 

 

Table A.9: 1H (600 MHz), 13C (151 MHz), and HMBC NMR spectroscopic data for mbas#3 in 
methanol-d4. Chemical shifts were referenced to (CD2HOD) = 3.31 ppm and (CD2HOD) = 49.05 
ppm.  

 

 

 

Position δ 
13

C 

[ppm] 

δ 
1
H 

[ppm] 

JHH Coupling 

[Hz] 

Key HMBC  

correlations 

1 171.7    

2 124.4 5.82 J2,3 = 15.6  

3 149.0 6.88 J3,4 = 7.0  

4 33.0 2.23  C-5, C-6 

5, 6 29.3, 26.4 1.42–1.55   

7 37.9 1.60 

1.52 

  

8 72.4 3.81   

9 18.9 1.14 J8,9 = 6.1 C-7, C-8 

1′ 97.4 4.70  C-3′, C-5′, C-8′ 

2′ 69.3 3.73   

3′ 32.8 1.85 (ax) J3′ax,3′eq = 12.9, J3′ax,4′ 
= 11.2, J2′,3′ax = 2.9 

 

  2.07 (eq) J2′,3′eq = 3.2, J3′eq,4′ = 

4.7 
 

4′ 71.4 4.90 J4′,5′ = 9.6  

5′ 68.2 3.89 J5′,6′ = 6.1  

6′ 17.8 1.13  C-4′, C-5′ 

1′′-COO 168.5    

2′′ 129.2    

3′′ 138.8 6.85 J3′′, 4′′ = 7.0  

4′′ 14.2 1.81  C-2′′, C-3′′ 

5′′ 11.8 1.82  C-1′′, C-2′′, C-3′′ 

O

OH

O

O

mbas#3

OH

O

O
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Table A.10: 1H (600 MHz), 13C (151 MHz), and HMBC NMR spectroscopic data for glas#10 in 
methanol-d4. Chemical shifts were referenced to (CD2HOD) = 3.31 ppm and (CD2HOD) = 49.05 
ppm.  

 

 

 

 

Position 

 

δ 
13

C 

[ppm] 

δ 
1
H 

[ppm] 

JHH Coupling 

[Hz] 

Key HMBC correlations 

1 173.8    

2 34.7 2.41 J2,2 = 15.4, J2,3 = 7.8 C-1 

3 25.5 1.64  C-1, C-2 

4  1.37   

5, 6 29.8, 30.1 1.30-1.50   

7 26.6 1.45 – 1.55   

8 72.3 3.78   

9 19.2 1.12 J8,9 = 6.1 C-8, C-7 

1′ 97.4 4.60  C-9, C-3′, C-5′ 

2′ 69.8 3.71   

3′ 35.8 1.77 (ax) J3′ax,3′eq = 13.0, J3′ax,4′ = 11.4, 
J2′,3′ax = 2.9 

 

  1.95 (eq) J2′,3′eq = 3.2, J3′eq,4′ = 4.7  

4′ 68.2 3.52 J4′,5′ = 9.5  

5′ 71.0 3.63 J5′,6′ = 6.3, J5′,4′ = 9.3  

6′ 18.0 1.22  C-5′, C-4′ 

1′′ 95.4 5.47 J1′′,2′′ = 8.1 C-1 

2′′ 73.8 3.32 J2′′,3′′ = 9.1  

3′′ 77.8 3.41 J3′′,4′′ = 9.7  

4′′ 70.9 3.35 J4′′,5′′ = 9.7  

5′′ 78.7 3.36   

6′′ 62.2 3.67 J6′′,6′′ = 12.0, J6′′,5′′ = 4.8  

  3.83 J6′′,6′′ = 12.0, J6′′,5′′ = 1.9  

  

O

OH

HO

O

glas#10

O

O

O
HO OH

OH

OH
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APPENDIX B 

 

COMPLEX ARCHITECTURES DERIVED FROM MODULAR ASSEMBLY OF 

PRIMARY METABOLITES REGULATE DEVELOPMENT AND PHENOTYPIC 

PLASTICITY IN P. PACIFICUS 

 

B.1. Materials and methods: 

B.1.1. Pristionchus pacificus metabolite naming: All newly identified compounds are 

named with four letter "SMID"s (Small Molecule IDentifiers), e.g. "icas#3" or "ascr#10" 

or "npar#1". The SMID database (www.smid-db.org) is an electronic resource 

maintained by Frank C. Schroeder and Lukas Mueller at the Boyce Thompson Institute 

in collaboration with Paul Sternberg and WormBase (www.wormbase.org). This 

database catalogues newly identified nematode small molecules, assigns a unique four-

letter SMID (a searchable, gene-style Small Molecule IDentifier), and for each 

compound includes a list of other names and abbreviations used in the literature. In this 

dissertation chapter,1 the author introduces the following new four-letter SMIDs: pasc 

(phenylethanolamide ascaroside), ubas (3-ureido isobutyrate ascaroside), dasc 

(dimeric ascaroside), part (paratoside), and npar (nucleoside-based paratoside).  

 

B.1.2. Analytical instrumentation: NMR spectra were recorded on a Varian INOVA-

600 (600 MHz for 1H, 151 MHz for 13C), INOVA-500 (500 MHz for 1H and 125 MHz for 

13C), and INOVA-400 (400 MHz for 1H, 100 MHz for 13C) instruments. HPLC-MS, 

http://www.wormbase.org/
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MS/MS, and single-ion monitoring (SIM-LCMS) was performed using an Agilent 1100 

Series HPLC system equipped with a diode array detector and connected to a Quattro II 

spectrometer (Micromass/Waters). High resolution mass spectra were acquired using a 

Xevo G2 QTOF mass spectrometer. Flash chromatography was performed using a 

Teledyne ISCO CombiFlash system. HPLC fractionation was performed using an 

Agilent 1100 Series HPLC system equipped with an Agilent Eclipse XDB-C18 column 

(9.4 x 250 mm, 5 μm particle diameter) coupled to a Teledyne ISCO Foxy 200 fraction 

collector. 

 

B.1.3. P. pacificus strains and culture conditions: The following P. pacificus strains 

were used for this study: (1) exo-metabolome preparation: RS2333, (2) dauer formation 

assay: RS5134, (3) mouth-form dimorphism assay: RSB020, (4) exo- and endo-

metabolome preparation for natural variation of small molecule production: RS2333, 

RS5205, RS5134, RS5380, RS5399, and RSB020. 

Plates and liquid cultures of worms were prepared as described previously.2 For 

axenic cultures, P. pacificus (RS2333) gravid adults from ten 10 cm plates were washed 

with M9 buffer and treated with alkaline hypochlorite solution to isolate eggs.3 Isolated 

eggs were washed thoroughly with M9 buffer and allowed to hatch in fresh sterile M9 for 

24 h. The resulting synchronized J2 larvae were transferred to the modified chemically 

defined growth medium described earlier4,5 and allowed to grow for 26 days at 20 °C 

and 80 rpm. After 26 days the population consisted of mostly of gravid adults and large 

numbers of J2 larvae. 
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B.1.4. Preparation of metabolome extracts and preliminary fractionation: 3 L 

culture of P. pacificus strain RS2333 was filtered and centrifuged at 10,000 rpm for 10 

min to separate the supernatant and worm pellets. The culture supernatant was applied 

to a C18 column (Chromabond, Macherey Nagel), which was followed by elution with 

50% MeOH in H2O. This step removed strongly lipophilic components (e.g. triglycerides, 

long-chain fatty acids) but did not reduce bioactivity. The eluate was evaporated and 

resuspended with mixture of chloroform and methanol (2:1). The sample was applied to 

a SiOH column (Chromabond, Macherey Nagel) equilibrated with chloroform/methanol 

(2:1). The column was washed with chloroform/methanol (2:1, Fraction I), 

chloroform/methanol (1:5, Fraction II), and chloroform/methanol/water (6:10:1, Fraction 

III). Fraction II showed the most activity in subsequent dauer formation assays (see 

Appendix Section B.1.7) and was used for 2D NMR spectroscopic analysis.  

Several additional 1 L-batches of culture supernatant were prepared to obtain 

larger quantities of the compounds detected by 2D NMR and studying natural variation 

of small molecule production in P. pacificus (see Appendix Section B.1.3). These 

cultures were harvested, centrifuged, and the resultant supernatant media and worm 

pellets were frozen over dry ice-acetone slush and lyophilized separately. The 

lyophilized materials from the supernatant were extracted with 300 mL of 95% ethanol 

at room temperature for 16 h. The worm pellets were crushed with ~8 g of granular 

NaCl using a mortar pestle and extracted with 150 mL of 100% ethanol at room 

temperature for 16 h. The resulting suspensions were filtered and the filtrate evaporated 

in vacuo at room temperature, producing media metabolite (the worm "exo-

metabolome") extracts and worm pellet metabolite ("endo-metabolome") extracts. 
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For high-resolution HPLC-MS analysis, 100 mL sample of unfractionated culture 

supernatant were lyophilized to a fine powder, which was subsequently extracted with 

50 mL of 95% ethanol for 16 h. The extract was concentrated in vacuo, resuspended in 

150 μL of methanol, filtered, and used for HPLC-MS. For bacterial control experiments, 

1 L of E. coli OP50 bacteria culture grown overnight was lyophilized and extracted as 

described above.  

For the analysis of P. pacificus axenic cultures, the culture was centrifuged at the 

end of the 26-day incubation period, and the supernatant was lyophilized and extracted 

with 50 mL of methanol. To remove the large amounts of glucose contained in the 

axenic medium, the extract was loaded onto 8 g of ethyl acetate-washed Celite® and 

filtered over a RediSep Rf GOLD 30 g HP C18 reverse-phase column using a water-

methanol solvent gradient, starting with 15 min of 98% water, followed by a linear 

increase of methanol content up to 100% at 60 min. The first 300 mL of eluate 

contained mostly glucose and were discarded. The remainder of the eluate was 

concentrated in vacuo. The resulting extract was resuspended in 100 μL methanol, 

filtered, and analyzed by selective ion monitoring (SIM)-LCMS.  

 

B.1.5. 2D NMR spectroscopic analyses: Non-gradient phase-cycled dqfCOSY spectra 

were acquired using the following parameters: 0.8 s acquisition time, 400-600 complex 

increments, 8-32 scans per increment. dqfCOSY spectra were zero-filled to 8k × 4k and 

a cosine bell-shaped window function was applied in both dimensions before Fourier 

transformation. Gradient and non-gradient HSQCAD and HMBC spectra were acquired 

using 0.25 s acquisition time and 256-500 complex increments. NMR spectra were 
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processed using Varian VNMR, MestreLabs’ MestReC, and MestRecNova software 

packages.  

 

B.1.6. HPLC protocol, HPLC-MS/MS, and SIM-LC-MS analyses: HPLC-MS was 

performed using an Agilent 1100 Series HPLC system equipped with an Agilent Eclipse 

XDB-C18 column (9.4 x 250 mm, 5 μm particle diameter) connected to a Quattro II 

spectrometer (Micromass/Waters) using a 10:1 split. A 0.1% acetic acid-acetonitrile 

solvent gradient was used at a flow rate of 3.6 mL/min, starting with an acetonitrile 

content of 5% for 5 min which was increased to 100% over a period of 40 min.  

Exo-metabolome fractions and samples for studying natural variation in small 

molecule production were analyzed by HPLC-ESI-MS in negative and positive ion 

modes using a capillary voltage of 4.0 kV and a cone voltage of -40 V and +20 V 

respectively. HPLC-MS/MS screening for precursor ions of m/z = 73.0 (negative mode) 

performed using argon as collision gas at 2.1 mtorr and 40 eV. The HPLC protocol 

mentioned in this section is also used for enrichment of minor components of the P. 

pacificus exo-metabolome and isolation of synthetic compounds.  

For the analysis of exo-metabolome samples from P. pacificus axenic cultures, 

the spectrometer was operated in selective ion monitoring (SIM) mode, and the 

following ions were selectively observed: m/z = 247 (ascr#9, part#9), 466 (pasc#9), 533 

(dasc#1), 605 (ubas#1), and 641 (npar#1).  

 

B.1.7. Dauer formation assay: Dauer formation assays were performed by Dr. Akira 

Ogawa, Sommer group as described previously2 using heat or kanamycin-killed E. coli 
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OP50 and P. pacificus strain RS5134. Briefly, synthetic compounds were dissolved in 

ethanol (0.5 mM, stock solution) and combined with water to make a 100 L solution 

and subsequently added to 3 mL NGM agar without peptone (3, 1, 0.3, 0.1 μM final 

concentrations). The dauer formation assay was conducted in triplicate for each 

compound and concentration. 60-100 worms were screened for each condition. 

 

B.1.8. Mouth-form dimorphism assay: Mouth-form dimorphism assays were 

performed by Dr. Erik J. Ragsdale, Sommer group using P. pacificus strain RSB020. 

The synthetic compounds dissolved in ethanol (0.5 mM) were diluted with water to 

make 100 μL solution and subsequently added to 3 mL NGM-agar (1 μM final 

concentration). The assay plates were seeded with 50 μL OP50 culture in LB medium 

and incubated overnight at 20 °C to allow bacterial growth. Each replicate included the 

progeny of two mothers, which were picked as adult hermaphrodites of a consistent age 

(carrying 4-6 eggs) and which were all from the same P. pacificus culture plate. 

Following placement of mothers on assay plates, plates were kept at 20 °C for six days, 

such that the entire broods were adults at the time of screening. A random sample of 50 

hermaphrodite progeny was screened per plate. All animals were screened by 

differential interference contrast (DIC) microscopy on a Zeiss Axioskop. The following 

discrete characters were used to discriminate eurystomatous from stenostomatous 

individuals, respectively: (1) claw-shaped vs. flint-shaped (i.e. dorsoventrally 

symmetrical) dorsal tooth; (2) presence vs. absence of a subventral tooth; (3) strongly 

vs. weakly sclerotized stomatal walls. No intermediate mouth-forms were observed. 

Experiments were conducted in triplicate for each treatment.  
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In assays of responses to compounds of several concentrations (1, 0.3, 0.1, 

0.03, 0.01 μM final concentrations), experiments were performed as described above, 

with the following modifications. To allow greater resolution of responses to lower 

concentrations, 60 randomly screened individuals in each of five replicates per 

concentration per compound were assayed. All concentration-curve experiments were 

performed in parallel using mothers picked randomly from the same two source 

populations. To prepare large numbers of individual mothers for these experiments, 

source populations were established from virgin hermaphrodites to constrain the 

presence of males and were conditioned to well-fed and ambient conditions for at least 

one generation before mothers were picked for the assays. 

 

B.1.9. Statistical analyses: Error bars represent a 95% confidence interval in Figure 

3.8a-d calculated using a binomial test on the total count data. All experiments were 

conducted in triplicate (or in five replicates for mouth-form concentration-curve assays) 

for each treatment. Significant differences (*p<0.01 and **p<0.001) between each 

chemical treatment and the control (EtOH) treatment in Figure 3.8a,b were determined 

using Fisher’s exact test in the program R. 
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B.2. Figures: 

 

 

Figure B.1: HPLC-MS/MS screen (precursors of m/z 73, Chapter 2, Section 2.1) of P. 
pacificus RS2333 exo-metabolome reveals known ascarosides (black), and several novel 
dideoxysugar-based compounds (red, ascarosides: pasc#9, pasc#12, pasc#1, ubas#1, ubas#2, 
and dasc#1; paratosides: part#9, npar#1, and npar#2) (* indicates signals from non-
ascarosides). See also Figures 3.3, 3.4, and Appendix Table B.1. This indicates that 
paratosides also produce the diagnostic fragment ion m/z 73. 
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Figure B.2: Small molecule architectures identified from P. pacificus exo-metabolome are 
not of bacterial origin. Sections of dqfCOSY spectra (600 MHz, methanol-d4) of (a) P. 
pacificus exo-metabolome extract and (b) E. coli OP50 metabolome extract. Characteristic 
crosspeaks for ascarosides are boxed blue and that of paratosides are boxed red. Comparison 
of the two spectra indicates that the complex small molecules identified from P. pacificus exo-
metabolome are not of bacterial origin. Correspondingly, HPLC-MS analyses of bacterial 
extracts did not show any of the peaks detected in P. pacificus exo-metabolome samples.  

b 

a 
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Figure B.3: (a) HPLC-MS analysis of exo-metabolome extract from P. pacificus cultures fed 
with Pseudomonas sp. and (b) SIM-LC-MS analysis of exo-metabolome extract from P. 
pacificus axenic cultures (see Appendix B, Section B.1.6). 

  

b 

a 
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Figure B.4: Sections of dqfCOSY spectra (600 MHz, methanol-d4) confirming presence of 

dasc#1 in P. pacificus exo-metabolome. (a) HPLC-enriched P. pacificus exo-metabolome 

extract fraction containing dasc#1. (b) Synthetic sample of dasc#1. Characteristic crosspeaks 

for dasc#1 are boxed blue whereas unrelated crosspeaks from other metabolites present in the 

natural sample are boxed red. The precise match of crosspeaks between the natural and 

synthetic sample proves dasc#1 structural and stereochemical assignments.

b 

a 
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Figure B.5: Determination of absolute configuration of part#9. (a) Conversion of synthetic 
L-paratosyl-4R-hydroxypentanoic acid and isolated natural part#9 into the corresponding methyl 
esters, which were reacted with S- and R-α-methoxy-α-trifluoromethylphenylacetyl chlorides 
(Mosher’s acid chlorides, S- and R-MTPA-Cl) to form the diasteromeric di-esters1 following 
previously published reaction protocols.6 (b) Comparison of 1H-NMR spectra (CDCl3, 600 MHz) 
of the derivatization products of natural and syntehtic part#9 etablish natural part#9 as L-
paratosyl-4R-hydroxypentanoic acid. (*)s indicate peaks due to side products resulting from 
incomplete reaction of starting materials. For detailed reactions conditions see Appendix 
Section B.3.3. 
  

b 

a 
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Figure B.6: Determination of stereochemistry of ubas#1. (a) Comparison of HPLC-MS 
retention times (ESI-, ion chromatogram for m/z = 605) of natural ubas#1 (red), a synthetic 
mixture of ubas#1 diastereomers containing the 3-ureido-2R-isobutyrate and 3-ureido-2S-
isobutyrate in a ~95:5 ratio (blue), and a mixture of the natural and synthetic samples (dotted 
black). The HPLC-retention time of synthetic (3-ureido-2R-isobutyrate)-derived ubas#1 matches 
that of natural ubas#1 and is distinctly different from the (3-ureido-2S-isobutyrate)-derived 
ubas#1 diastereomer (marked *) indicating that natural ubas#1 includes a 3-ureido-2R-
isobutyrate moiety. (b) Comparison of sections of 1H-NMR spectra of synthetic (3-ureido-2R-
isobutyrate)-derived ubas#1 (bottom), a natural sample containing ubas#1 (top), and a 1:1 
mixture of these two samples (middle) shows that the relative intensity of the four characteristic 
methyl doublets (indicated by the red and blue boxes in the accompanying structure) increases 
upon adding synthetic ubas#1 to the natural sample (unrelated peaks in the natural sample are 
marked *). This confirms that natural ubas#1 contains 3-ureido-2R-isobutyrate, and not 3-
ureido-2S-isobutyrate. Differences in pH and concentrations between the natural and synthetic 
samples slightly affect chemical shifts of the methyl doublets, resulting in small changes of 
chemical shift values upon mixing of natural and synthetic sample.  

b 

a 
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Figure B.7: Characteristic 1H NMR signals for pasc#12 in HPLC-enriched P. pacificus exo-
metabolome extract fraction. 

 

 
 

Figure B.8: ascr#1 is not active in dauer formation assays. ascr#1 does not induce dauer 

formation in P. pacificus, even at very high concentrations (20 M). npar#1 (1 M) was used as 
a positive control for P. pacificus dauer formation. 

 

 
 

Figure B.9: RS5205 is incapable of biosynthesizing ubas#1 and ubas#2. HPLC-MS ion 
traces for ubas#1, ubas#2, and dasc#1 comparing the exo-metabolomes of RS2333 and 
RS5205 shows that RS5205 is incapable of producing ubas-compounds under conditions 
tested, whereas dasc#1 production is reduced as compared to RS2333.   
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Figure B.10: Absolute comparison of representative small molecules in the exo- and endo-
metabolomes of 6 P. pacificus wild isolates (also see Figure 3.10a).   
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Figure B.11.1: 1H NMR spectrum (600 MHz, methanol-d4) of 4-(((R)-2-(((R)-4-(((2R,3R,5R,6S)-
3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-2-phenylethyl)amino)-4-oxo 
butanoic acid (pasc#9).  
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Figure B.11.2: dqfCOSY spectrum (600 MHz, methanol-d4) of 4-(((R)-2-(((R)-4-
(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-2-
phenylethyl)amino)-4-oxo butanoic acid (pasc#9).  
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Figure B.11.3: HMQC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of 4-(((R)-2-
(((R)-4-(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-2-
phenylethyl)amino)-4-oxobutanoic acid (pasc#9).  
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Figure B.11.4: HMBC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of 4-(((R)-2-
(((R)-4-(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy) pentanoyl)oxy)-2-
phenylethyl)amino)-4-oxobutanoic acid (pasc#9).  
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Figure B.12.1: 1H NMR spectrum (600 MHz, methanol-d4) of (R)-4-(((2R,3S,5R,6S)-3,5-
dihydroxy -6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (part#9).  
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Figure B.12.2: dqfCOSY spectrum (600 MHz, methanol-d4) of (R)-4-(((2R,3S,5R,6S)-3,5-
dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (part#9).  
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Figure B.12.3: HMQC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of (R)-4-
(((2R,3S,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (part#9).  
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Figure B.12.4: HMBC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of (R)-4-
(((2R,3S,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (part#9).  

O
O

H

O

H
O

O

O
H

p
a

rt
#
9



172 
 

 

Figure B.13.1: 1H NMR spectrum (600 MHz, methanol-d4) of (2S,3R)-3-(((R)-4-(((2R,3S,5R,6S) 
-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-2-(3-(9-((2R,3R,4S,5R)-
3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)ureido) butanoic acid (npar#1).  
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Figure B.13.2: 13C NMR spectrum (151 MHz, methanol-d4) of (2S,3R)-3-(((R)-4-
(((2R,3S,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-2-(3-(9-
((2R,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)ureido) butanoic acid 
(npar#1).  
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Figure B.13.3: dqfCOSY spectrum (600 MHz, methanol-d4) of (2S,3R)-3-(((R)-4-
(((2R,3S,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-2-(3-(9-
((2R,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)ureido) butanoic acid 
(npar#1).  
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Figure B.13.4: HSQCAD spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of (2S,3R)-
3-(((R)-4-(((2R,3S,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-
2-(3-(9-((2R,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)ureido) butanoic 
acid (npar#1).  

O
O

H

O

H
O

O

O

N
H

O
N

H

N

N
N N

O
O

H

O

O
H

O
H

H
O

n
p

a
r#

1



176 
 

 

Figure B.13.5: HMBC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of (2S,3R)-3-
(((R)-4-(((2R,3S,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-2-
(3-(9-((2R,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)ureido) butanoic 
acid (npar#1).  
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Figure B.14.1: 1H NMR spectrum (600 MHz, methanol-d4) of (R)-6-(((2R,3R,5R,6S)-5-(((R)-6-
(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)heptanoyl)oxy)-3-hydroxy-
6-methyltetrahydro-2H-pyran-2-yl)oxy)heptanoic acid (dasc#1).  
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Figure B.14.2: dqfCOSY spectrum (600 MHz, methanol-d4) of (R)-6-(((2R,3R,5R,6S)-5-(((R)-6-
(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)heptanoyl)oxy)-3-hydroxy-
6-methyltetrahydro-2H-pyran-2-yl)oxy)heptanoic acid (dasc#1).  
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Figure B.14.3: HMQC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of (R)-6-
(((2R,3R,5R,6S)-5-(((R)-6-(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl) 
oxy)heptanoyl)oxy)-3-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)heptanoic acid (dasc#1).  
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Figure B.14.4: HMBC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of (R)-6-
(((2R,3R,5R,6S)-5-(((R)-6-(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl) 
oxy)heptanoyl) oxy)-3-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)heptanoic acid (dasc#1).  

O

O

H
O

O
H

O

O

O

O

O
H

O
H

O

d
a
s
c

#
1



181 
 

 

Figure B.15.1: 1H NMR spectrum (600 MHz, methanol-d4) of (R)-4-(((2R,3R,5R,6S)-3-((5-
(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-6-methyl-
5-(((R)-2-methyl-3-ureidopropanoyl)oxy)tetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (ubas#1).   
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Figure B.15.2: dqfCOSY spectrum (600 MHz, methanol-d4) of (R)-4-(((2R,3R,5R,6S)-3-((5-
(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl) oxy)-6-methyl-
5-(((R)-2-methyl-3-ureidopropanoyl)oxy)tetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (ubas#1).   
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Figure B.15.3: HMQC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of (R)-4-
(((2R,3R,5R,6S)-3-((5-(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy) 
pentanoyl)oxy)-6-methyl-5-(((R)-2-methyl-3-ureidopropanoyl)oxy)tetrahydro-2H-pyran-2-yl) 
oxy)pentanoic acid (ubas#1).   
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Figure B.15.4: HMBC spectrum (600 MHz for 1H, 151 MHz for 13C, methanol-d4) of (R)-4-
(((2R,3R,5R,6S)-3-((5-(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy) 
pentanoyl)oxy)-6-methyl-5-(((R)-2-methyl-3-ureidopropanoyl)oxy)tetrahydro-2H-pyran-2-
yl)oxy)pentanoic acid (ubas#1).   
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B.3. Chemical synthesis: 

B.3.1. Synthesis of npar#1: 
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Scheme B.1: Overview of synthesis of npar#1. Reagents and conditions: (a) TMSBr, DCM, -
40 °C to r.t.; (b) toluene, reflux; (c) L-threonine, pyridine, 107 °C; (d) 2-benzyloxy-1-
methylpyridinium triflate7, Et3N, PhCF3, 83 °C; (e) EDC, DMAP, DCM; (f) 10% Pd/C, H2 (g) 10% 
formic acid in MeOH.  
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B.3.1.1. Synthesis of (3R,4S,5R)-3,4,5-tris(benzyloxy)-2-bromotetrahydro-2H-pyran 
(3) 

O

BnO
BnO

BnO

2

O

BnO
BnO

BnO

3

BrOAc

 

To a solution of 28 (550 mg, 1.19 mmol) in dry dichloromethane (1.5 mL) cooled to -40 

°C was added trimethylsilyl bromide (3.2 mL, 24.2 mmol) dropwise with constant 

stirring. The reaction mixture was then allowed to warm up to r.t. and stirred for 45 

minutes to afford 3. The excess reagent and solvent was removed in vacuo. The 

product decomposed in contact to moisture and hence was not characterized further 

and used for the next step directly.  

 

B.3.1.2. Synthesis of (2S,3R)-benzyl 3-hydroxy-2-(3-(9-((3R,4S,5R)-3,4,5-
tris(benzyloxy)tetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)ureido)butanoate (6): 
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19 (500 mg, 1.12 mmol) was dried thorougly in vacuo and added to a solution of 3 in 12 

mL dry toluene. The reaction mixture was refluxed for 2.5 h. Toluene was evaporated to 

reduce the volume to ~3 mL in vacuo and 3 mL of petroleum ether was added to it. The 
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resulting brown suspension was filtered and the precipitate washed with warm 

chloroform (3 x 10 mL). The filtrate and the washings were combined and washed with 

10 mL 30% aq. KI solution, 10 mL water, dried over Na2SO4, and concentrated in 

vacuo. Flash column chromatography on silica using a gradient of 0-20% methanol in 

dichloromethane afforded 4 (160 mg, 262 µmol, 22% over two steps, mixture of α and  

anomers in ratio ~ 2:3) as a pale yellow oil. 4 was reacted with L-threonine and worked 

up following conditions reported for the corresponding 2,3,5-tri-O-acetylribofuranoside-

derivative.9 Flash column chromatography on silica using a gradient of 0-30% methanol 

in dichloromethane containing 0.25% acetic acid afforded 5 (117 mg, 172 µmol, 66%, 

mixture of α and -anomers in ratio ~ 2:3) as a yellow solid. A mixture of 5 (72 mg, 106 

µmol) and 15 µl triethylamine (210 µmol) in 300 µl trifluoromethylbenzene was treated 

with 2-benzyloxy-1-methylpyridinium triflate7 (71 mg, 210 µmol) and stirred at 83 °C for 

15 h. The products were partitioned between 2 mL ethyl acetate and 2 mL water, the 

organic phase washed with 1 mL water, 1 mL brine, dried over Na2SO4, and 

concentrated in vacuo. Flash column chromatography on silica using a gradient of 0-

20% isopropanol in dichloromethane afforded 6 (8.1 mg, 10 µmol, 10%, -anomer) as a 

yellow solid. 1H NMR (500 MHz, methanol-d4): δ (ppm) 8.39 (s, 1H), 8.27 (s, 1H), 7.43-

7.25 (m, 15H), 6.99-6.95 (m, 1H), 6.91-6.86 (m, 2H), 6.67-6.62 (m, 2H), 5.53 (d, J = 8.9 

Hz, 1H), 5.25 (d, J = 12.7 Hz, 1H), 5.23 (d, J = 12.7 Hz, 1H), 5.01 (d, J = 11.2 Hz, 1H), 

4.88 (d, J = 11.2 Hz, 1H), 4.74 (s, 2H), 4.62-4.56 (m, 2H), 4.48 (dq, J = 6.4 Hz, 2.5 Hz, 

1H), 4.26-4.15 (m, 3H), 3.94-3.88 (m, 1H), 3.84-3.79 (m, 1H), 3.53-3.46 (m, 1H), 1.31 

(d, J = 6.5 Hz, 3H). 13C NMR (125 MHz, methanol-d4): δ (ppm) 172.2, 156.6, 152.1, 

151.5, 151.4, 143.7, 139.9, 139.7, 138.4, 137.2, 129.65, 129.53, 129.46, 129.37, 
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129.24, 129.13, 129.08, 129.06, 128.90, 128.88, 128.74, 128.71, 121.5, 86.5, 85.6, 

79.6, 78.8, 76.5, 75.7, 74.1, 68.5, 68.1, 67.7, 60.6, 20.7. 

 

B.3.1.3. Synthesis of (2S,3R)-3-(((R)-4-(((2R,3S,5R,6S)-3,5-dihydroxy-6-
methyltetrahydro-2H-pyran-2-yl)oxy)pentanoyl)oxy)-2-(3-(9-((2R,3R,4S,5R)-3,4,5-
trihydroxytetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)ureido)butanoic acid (npar#1):  
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A solution of 7 (4 mg, 9 µmol, provided by Joshua J. Yim) in 450 µL dry 

dichloromethane was treated with 4-dimethylaminopyridine (2.5 mg, 20 µmol) and EDC 

hydrochloride (4 mg, 21 µmol). After stirring for 15 minutes, 6 (7.3 mg, 9 µmol) in 300 µL 

dry dichloromethane was added to the mixture. After stirring for 12 h, the reaction was 

concentrated in vacuo. Flash column chromatography on silica using a gradient of 0-

15% isopropanol in dichloromethane afforded 8 (5.5 mg, 4.6 µmol, 51%). A solution of 

Pd/C (7 mg, 10%, w/w) in 500 µL of methanol containing 10% formic acid was first 

flushed with argon for 5 minutes and subsequently with a moderate flow of H2 gas. To 

this stirring solution was added a solution 8 (5.5 mg, 4.6 µmol) in 500 µL methanol. After 

4 h, the reaction was filtered over a pad of silica and concentrated in vacuo. HPLC 

purification afforded npar#1 (1.1 mg, 1.7 µmol, 37%) as a colorless oil.   
   = -14.5 (c. 

0.11, methanol). For NMR spectroscopic data, see Table B.4.   
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B.3.2. Synthesis of dasc#1: 
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Scheme B.2: Overview of synthesis of dasc#1. Reagents and conditions: (a) EDC, DMAP, 
DMF. 

 

Synthesis of (R)-6-(((2R,3R,5R,6S)-5-(((R)-6-(((2R,3R,5R,6S)-3,5-dihydroxy-6-
methyltetrahydro-2H-pyran-2-yl)oxy)heptanoyl)oxy)-3-hydroxy-6-methyl 
tetrahydro-2H-pyran-2-yl)oxy)heptanoic acid (dasc#1): 

O

O

HO

OH
ascr#1

OH

O O

O

HO

OH
dasc#1

O

O

O

O

OH

OH

O

 

A solution of ascr#1 (15 mg, 54 µmol) in 15 mL dry DMF was added to a solution of 4-

dimethylaminopyridine (13.5 mg, 110.7 µmol) and EDC hydrochloride (11 mg, 57.3 

µmol) in 7 mL dry DMF. The reaction was monitored by ESI- MS and was quenched 

with few drops of glacial acetic acid and concentrated in vacuo when polymer peaks 

(m/z = 791 etc.) were observed in significant quantities. Flash column chromatography 

on silica using a gradient of 0-30% methanol in dichloromethane containing 0.25% and 

further HPLC purification (see Methods) of crude product mixture afforded dasc#1 (1.1 

mg, 2.1 µmol, 7.8 %) as a colorless oil.   
   = -115.0 (c. 0.11, methanol). For NMR 

spectroscopic data, see Table B.5. 
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B.3.3. Synthesis of bis-R- and bis-S- MTPA-derivative of part#9 methyl ester: 

B.3.3.1. Synthesis of bis-R-MTPA-derivative of part#9 methyl ester: 
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part#9 Methyl L-paratosyl-4R-hydroxypentanoate
(part#9-methyl ester) bis-R-MTPA-derivative of

part#9-methyl ester

A solution of part#9 (240 µg, 0.97 µmol) in a 1:1 mixture (v/v) of methanol and toluene 

(200 µL) was treated with 2.0 M (trimethylsilyl)diazomethane solution (70 µL) in diethyl 

ether. After stirring for 30 minutes excess reagent was destroyed by addition of acetic 

acid and the solution concentrated in vacuo to yield part#9-methyl ester, which was 

used without further purification. A solution of part#9-methyl ester (110 µg, 0.42 µmol) 

in CDCl3 (300 µL) and dry pyridine (3 µL, 37.5 µmol) was stirred with 4-

dimethylaminopyridine (1.4 mg, 11.5 µmol) for 5 min under argon atmosphere and then 

treated with (S)-(+)-α-methoxy-α-trifluoromethylphenylacetyl chloride6 (S-MTPA-Cl) (7 

µL, 36.4 µmol) and allowed to stir at r.t. After 8 h, the crude reaction mixture was diluted 

with CDCl3 (300 µL) and directly placed in an NMR tube for 1H-NMR analysis.  

 

B.3.3.2. Synthesis of bis-S-MTPA-derivative of part#9-methyl ester. bis-S-MTPA-

derivative of part#9-methyl ester was prepared following analogous reaction conditions 

from part#9-methyl ester and using R-(-)-α-methoxy-α-trifluoromethylphenylacetyl 

chloride6 (R-MTPA-Cl).  
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B.4. Tables: 

 

Table B.1: HPLC-ESI-MS and concentration estimation data for small molecule signals 
identified from P. pacificus RS2333 

 

SMID 
 

Molecular 
formula 

 

LC retention 
time [Min] 

±SD 

m/z [M-H]- 

calculated 
 

m/z [M-H]- 

observed** 
 

Estimated 
concentrations in 

culture supernatant 

(M)*** 

ascr#9* C11H20O6 11.68 ± 0.02 247.1187 247.1185 0.3-0.6 

ascr#12* C12H22O6 13.10 ± 0.01 261.1344 261.1305 0.1-0.3 

ascr#1* C13H24O6 14.51 ± 0.02 275.1500 275.1494 0.4-0.8 

pasc#9* C23H33NO9 17.10 ± 0.04 466.2083 466.2089 1.0-2.0 

pasc#12 C24H35NO9 17.81 ± 0.03 480.2239 480.2231 0.2-0.5 

pasc#1 C25H37NO9 18.59 ± 0.05 494.2396 494.2390 0.05-0.10 

ubas#1* C27H46N2O13 17.51 ± 0.06 605.2927 605.2928 0.2-0.4 

ubas#2 C28H48N2O13 18.11 ± 0.05 619.3084 619.3067 0.1-0.2 

dasc#1* C26H46O11 19.50 ± 0.01 533.2967 533.2951 0.2-0.5 

part#9* C11H20O6 11.99 ± 0.02 247.1187 247.1181 0.5-1.0 

npar#1* C26H38N6O13 13.64 ± 0.05 641.2424 641.2443 0.5-1.0 

npar#2 C21H30N6O9 14.34 ± 0.07 509.2002 509.1999 0.05-0.10 

 

*Confirmed using synthetic standards.1,5,10 
**HRMS data was obtained from P. pacificus RS2333 exo-metabolome extract analysis.  
***Quantifications were based on intetegration of HPLC-MS signals from the 

corresponding ion-traces. Concentrations were calculated using response factors 

determined for synthetic standards. Concentrations for minor compounds that were not 

synthesized were based on extrapolation of available standards of closely related 

structures. A range of concentrations are reported as observed for multiple biological 

repeats.   
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Table B.2: 1H (600 MHz), 13C (151 MHz), and HMBC NMR spectroscopic data for pasc#9 in 
methanol-d4. Chemical shifts were referenced to (CD2HOD) = 3.31 ppm and (CD3OD) = 49.00 
ppm. 

 

OH3C

HO

O

OH

CH3

O

O

N
H

O

COOH

7
8

9
10

11

1'

2'3'4'

5'6'
6

5

1''
2''

3''
4''

4

3
2

1

2''

3''
 

 

Position 
δ 13C  
[ppm] 

δ 1H 
 [ppm] 

JHH Couplings 
(Hz) 

Key HMBC 
correlations 

1 175.8 ---   

2 31.3 2.44 J2,3 = 7.2 C-1 

3 30.1 2.56  C-4 

4 174.4 ---   

5 45.1 
5a = 3.51 
5b = 3.58 

J5a,5b = 13.7, J5a,6 = 8.5 
J5b,6 = 4.4 

C-4 

6 75.4 5.84  C-7, C-1′′ 

7 173.8 ---   

8 31.3 2.54  C-7 

9 33.0 1.81   

10 71.3 3.80 J10,11 = 6.6 C-1′ 

11 18.8 1.14   

1′ 97.0 4.64 J1′,2′ = 2.3 C-2′, C-3′, C-5′ 

2′ 69.4 3.72 J2′,3′(ax) = 6.6, J2′,3′(eq) = 6.6  

3′ 35.6 
1.70 (ax) 
1.95 (eq) 

J3′(ax),3′(eq) = 13.0, J3′(ax),4′= 11.8, 
J3′(eq),4′ = 4.9 

 

4′ 67.8 3.51 J4′,5′ = 11.8  

5′ 71.0 3.58 J5′,6′(eq) = 6.4  

6′ 17.8 1.20   

1′′ 139.4 ---   

2′′ 127.3 7.29 – 7.37  C-1′′, C-6 

3′′ 129.1 7.29 – 7.37   

4′′ 128.9 7.29 – 7.37   
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Table B.3: 1H (600 MHz), 13C (151 MHz), and HMBC NMR spectroscopic data for part#9 in 
methanol-d4. Chemical shifts were referenced to (CD2HOD) = 3.31 ppm and (CD3OD) = 49.00 
ppm. 

 

1
2

3
4

5

1'

2'
3'4'

5'6'

OH3C

HO

O

CH3

OH

O

OH

 
 

Position 
δ 13C  
[ppm] 

δ 1H  
[ppm] 

JHH Couplings 
(Hz) 

Key HMBC 
correlations 

1 178.3 ---   

2 31.8 2.43 J2,3 = 7.1 C-1, C-3 

3 33.5 1.85   

4 72.4 3.83 J4,5 = 6.3 C-1′ 

5 19.0 1.179   

1′ 95.9 4.74 J1′,2′ = 3.9 C-2′, C-3′, C-5′ 

2′ 68.4 3.60 J2′,3′ (ax) = 12.1; J2′,3′ (eq) = 5.5  

3′ 36.8 
1.74 (ax) 
2.02 (eq) 

J3′(eq),3′(ax) = 12.3; J3′(eq),4′ = 4.7 
J3′(ax),4′ = 10.9 

 

4′ 71.6 3.15 J4′,5′ = 9.4  

5′ 69.9 3.58 J5′,6′(eq) = 6.1  

6′ 17.5 1.18  C-4, C-5 
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Table B.4: 1H (600 MHz), 13C (151 MHz), and HMBC NMR spectroscopic data for npar#1 in 
methanol-d4. Chemical shifts were referenced to (CD2HOD) = 3.31 ppm and (CD3OD) = 49.00 
ppm. 

1
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1''

2''
3''

4''

5''

1'''

2'''

3'''
4'''

5''' 6'''7'''

8'''

9'''

1''''

2''''

3''''
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OH
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O

N

N

O

HO HO
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Position 
δ 13C  
[ppm] 

δ 1H 
 [ppm] 

JHH Couplings 
(Hz) 

Key HMBC 
correlations 

1 173.6 ---   

2 31.5 2.59, 2.49  C-1 

3 33.1 1.84-1.97   

4 72.6 3.82 J4,5 = 6.2 C-1′ 

5 19.0 1.17   

1′ 96.1 4.73 J1′,2′ = 3.9 C-2′, C-3′, C-5′ 

2′ 68.3 3.61 J2′,3′ (ax) = 12.1; J2′,3′ (eq) = 5.8  

3′ 36.7 
1.73 (ax) 
2.02 (eq) 

J3′ (eq),3′ (ax) = 12.4; J3′(eq),4′ = 4.6 
J3′ (ax),4′ = 11.7 

 

4′ 71.5 3.15 J4′,5′ = 9.7  

5′ 69.9 3.53 J5′,6′ (eq) =6.3  

6′ 17.6 1.173  C-5′ 

1′′ 174.7 ---   

2′′ 58.4 4.69 J2′′,3′′ = 6.3 C-1′′, C-3′′, C-5′′ 

3′′ 71.7 5.58 J3′′,4′′ = 6.8  

4′′ 17.4 1.38   

5′′ 154.7 ---   

2′′′ 152.1 8.66  C-6′′′ 

4′′′ 151.9 ---   

5′′′ 121.2 ---   

6′′′ 151.6 ---   

8′′′ 143.3 8.47  C-4′′′, C-5′′′ 

1′′′′ 85.7 
5.56 

 
J1′′′′,2′′′′ = 9 

C-4′′′, C-8′′′, C-
2′′′′, C-3′′′′ 

2′′′′ 72.8 4.15 J2′′′′,3′′′′ = 9.2  

3′′′′ 78.6 3.53 J3’′′′,4′′′′ = 9.2  

4′′′′ 70.4 3.76 J4′′′′,5′′′′(ax) = 10.4, J4′′′′,5′′′′(eq) = 5.5  

5′′′′ 69.7 
3.50 (ax) 
4.04 (eq) 

J5′′′′(ax),5′′′′(eq) = 11.5  
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Table B.5: 1H (600 MHz), 13C (151 MHz), and HMBC NMR spectroscopic data for dasc#1 in 
methanol-d4. Chemical shifts were referenced to (CD2HOD) = 3.31 ppm and (CD3OD) = 49.00 
ppm. 

 

OH3C

O

O

OH

CH3

O

OH

OH3C

HO

O

OH

CH3

O

1

2

3

4

5
6

7

1'

2'3'
4'

5'6'

1''
2''

3''
4''

5''
6''

7''

1'''

2'''3'''4'''
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Position 
δ 13C  
[ppm] 

δ 1H  
[ppm] 

JHH Couplings 
(Hz) 

Key HMBC 
correlations 

1 177.0 ---   

2 37.8 2.25 J2,3 = 7.7 C-1 

3 25.9 or 26.2 1.64   

4 26.4 or 27.1 1.36-1.68   

5 37.9 1.45-1.62   

6 71.9 or 72.7 3.79 J6,7 = 6.3 C-1′ 

7 19.0 1.13   

1′ 97.4 4.68 J1′,2′ = 2.0 C-2′, C-3′, C-5′ 

2′ 69.4 3.72 J2′,3′ (ax) = 6.3; J2′,3′ (eq) = 5.9  

3′ 32.8 
1.83 (ax) 
2.04 (eq) 

J3′(eq),3′ (ax) = 13.5; J3′(eq),4′ = 5.0 
J3′(ax),4′ = 11.7 

 

4′ 71.1 4.86 J4′,5′ = 10.1 C-1′′ 

5′ 68.0 3.84 J5′,6′ (eq) = 6.4  

6′ 17.9 1.14  C-4′, C-5′ 

1′′ 174.4 ---   

2′′ 34.9 2.35 J2′′,3′′ = 7.5 C-1′′ 

3′′ 25.9 or 26.2 1.64   

4′′ 26.4 or 27.1 1.36-1.68   

5′′ 37.9 1.45-1.62   

6′′ 71.9 or 72.7 3.79 J6′′,7′′ = 6.3 C-1′′′ 

7′′ 19.0 1.13   

1′′′ 97.2 4.64 J1′′′,2′′′ = 2.4 
C-2′′′, C-3′′′, C-

5′′′ 

2′′′ 69.4 3.71 J2′′′,3′′′(ax) = 6.2; J2′′′,3′′′(eq) = 6.0  

3′′′ 35.7 
1.76 (ax) 
1.95 (eq) 

J3′′′(eq),3′′′ (ax) = 13.4; J3′′′(eq),4′′′ = 4.7 
J3′′′(ax),4′′′ = 11.8 

 

4′′′ 68.1 3.51 J4′′′,5′′′ = 9.4  

5′′′ 70.9 3.61 J5′′′,6′′′(eq) =6.4  

6′′′ 17.9 1.22  C-4′′′, C-5′′′ 
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Table B.6: 1H (600 MHz), 13C (151 MHz), and HMBC NMR spectroscopic data for ubas#1 in 
methanol-d4. Chemical shifts were referenced to (CD2HOD) = 3.31 ppm and (CD3OD) = 49.00 
ppm. 

OH3C

O

O

O

CH3

OH

O

O

CH3

NH
O

NH2

O
O

H3C

HO

O

OH

1
2

3
4

5

1'

2'3'4'

5'6'

1''
2''

3''
4''

5'' 1'''

2'''

3'''

4'''

5'''
6'''1''''

2''''
3''''

4''''

5''''

 

Position 
δ 13C 
[ppm] 

δ 1H 
 [ppm] 

JHH Couplings 
(Hz) 

Key HMBC 
correlations 

1 174.6 ---   

2 35.0 2.31 J2,3 = 7.4 C-1 

3 34.3 1.83 J3,4 = 6.2  

4 72.7 3.84 J4,5 = 6.4 C-1′ 

5 18.9 1.16   

1′ 94.2 4.77 J1′,2′ = 2.4 C-2′, C-3′, C-5′ 

2′ 71.8 4.80 J2′,3′(ax) = 6.4; J2′,3′ (eq) = 5.8 C-1′′ 

3′ 30.7 
2.01(ax) 
2.10(eq) 

J3′(eq),3′(ax) = 13.7; J3′(eq),4′ = 4.2 
J3′(ax),4′ = 11.7 

 

4′ 71.1 4.73 J4′,5′ = 9.2 C-5′′′′ 

5′ 67.9 3.99 J5′,6′(eq) = 6.4  

6′ 17.8 1.16   

1′′ 173.9 ---   

2′′ 34.5 2.43 J2′′,3′′ = 7.0 C-1′′ 

3′′ 22.7 1.75   

4′′ 29.6 1.67 J4′′,5′′ = 6.2  

5′′ 67.6 
5a′′ = 3.45 
5b′′ = 3.76 

 C-1′′′ 

1′′′ 100.1 4.51 J1′′′,2′′′ = 2.6 C-2′′′, C-3′′′, C-5′′′ 

2′′′ 69.1 3.79 J2′′′,3′′′(ax) = 6.1, J2′′′,3′′′ (eq) = 5.9  

3′′′ 35.7 
1.78 (ax) 
1.95 (eq) 

J3′′′(eq),3′′′(ax) = 13.1, J3′′′(eq),4′′′ = 4.3 
J3′′′(ax),4′′′ = 11.2 

 

4′′′ 68.1 3.51 J4′′′,5′′′ = 9.5  

5′′′ 70.5 3.57 J5′′′,6′′′(eq) = 6.4  

6′′′ 17.9 1.23   

1′′′′ 161.7 ---   

2′′′′ 43.4 3.26 J2′′′′,3′′′′ = 6.8 C-1′′′′ 

3′′′′ 41.5 2.68 J3′′′′,4′′′′ = 6.9 C-5′′′′ 

4′′′′ 14.7 1.14  C-5′′′′ 

5′′′′ 175.6    
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APPENDIX C 

 

COMPARATIVE METABOLOMICS REVEALS ENDOGENOUS LIGANDS OF DAF-12, 

A NUCLEAR HORMONE RECEPTOR REGULATING C. ELEGANS DEVELOPMENT 

 

C.1. Materials and methods: 

C.1.1. C. elegans strains and maintenance: Nematode stocks were maintained on 

Nematode Growth Medium (NGM) plates made with Bacto agar (BD Biosciences) and 

seeded with bacteria (E. coli strain OP50) at 20 °C (http://www.wormbook.org/). C. 

elegans strains with the following genotypes were used: wild-type (N2, Bristol), daf-

22(m130), daf-9(dh6), daf-9(dh6);daf-12(rh411rh61), and strm-1(tm1781). Worms were 

grown at 20 °C for at least two generations under replete growth conditions prior to 

growing in liquid cultures.  

 

C.1.2. Liquid cultures: Worms from four 10 cm NGM agar plates were washed using 

M9-medium into a 100 mL S-complete medium pre-culture where they were grown for 

four days at 22 °C on a rotary shaker. Concentrated bacteria derived from 1 L of E. coli 

OP50 culture was added as food on days one and three. Subsequently, the pre-culture 

was divided equally into sixteen 500 mL Erlenmeyer flasks containing 100 mL of S-

complete medium on day 4, which was then grown for an additional 5 days at 22 °C on 

a rotary shaker and fed with concentrated bacteria ad lib. The cultures were harvested 
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on day 5 and centrifuged to separate the supernatant media ("exo-metabolome") and 

worm pellets ("endo-metabolome"). At harvest, liquid cultures contained approximately 

80% L1-L3 worms. The worm pellets were stored at -20 °C until used for further 

analyses. 

 

C.1.3. Preparation of endo-metabolome extracts: The frozen worm pellets were 

added to pre-chilled (-78 °C) 200 mL of methanol in a Waring laboratory blender and 

blended until no chunks remained. Methanol was evaporated in vacuo at 20 °C and the 

residue resuspended in 300 mL of water. The resulting suspension was then frozen 

using a dry ice-acetone bath and lyophilized. The lyophilized residue was crushed to a 

fine powder using a mortar and pestle over 8 g granular sodium chloride. The powder 

was then extracted twice with 250 mL of 9:1 ethyl acetate:ethanol mixture over 12 h. 

The resulting yellow-brown suspension was filtered and the filtrate evaporated in vacuo 

at room temperature to produce the "endo-metabolome" (worm pellet metabolome) 

extract and was used for chromatographic separations. 

 

C.1.4. Fractionation protocol for C. elegans endo-metabolome extracts: To 8 g of 

Celite, prewashed with ethyl acetate, was added a solution of worm pellet 

metabolome/endo-metabolome extract from 16 cultures. After evaporation of the 

solvent, the Celite® was dry-loaded into an empty 25 g RediSep Rf loading cartridge. 

Fractionation was performed using a Teledyne ISCO CombiFlash system over a 

RediSepRf GOLD 40 g HP Silica Column using a normal phase dichloromethane-
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methanol solvent system, starting with 6 min of 100% dichloromethane, followed by a 

linear increase of methanol content up to 10% at 24 min, followed by another linear 

increase of methanol content up to 40% at 40 min, followed by another linear increase 

of methanol content up to 95% at 45 min which was then continued to 48 min. 70 

fractions (~20 mL each) generated from the combiflash run were individually evaporated 

in vacuo and prepared for bio-assays and analyses by NMR spectroscopy (1H NMR, 

dqfCOSY), HPLC, and SIM-GC/MS. 

For the quantification of lathosterone and 4-cholesten-3-one in daf-22(m130) 

worms, fractions 4-10 from the set of 70 fractions were combined and added to 4 g of 

Celite that had been prewashed with ethyl acetate. After evaporation of the solvent, the 

Celite was dry-loaded into an empty 12 g RediSep Rf loading cartridge. Fractionation 

was performed using the CombiFlash system and a RediSep Rf GOLD 24 g HP silica 

column using a hexanes-ethyl acetate solvent system, starting with 4.8 min of 100% 

hexanes, followed by a linear increase of ethyl acetate content up to 40% at 43.2 min to 

generate 130 fractions (~12 mL each). A synthetic mixture of lathosterone and 4-

cholesten-3-one was subsequently run following an identifcal CombiFlash protocol. A 

range of fractions from the natural sample run that corresponded to the elution profiles 

of the synthetic 3-keto steroids were individually evaporated in vacuo and analyzed by 

NMR spectroscopy (1H NMR, dqfCOSY) and GC/MS for quantification of lathosterone 

and 4-cholesten-3-one. 
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C.1.5. HPLC enrichment protocol: Metabolome fractions of interest were evaporated 

in vacuo, resuspended in 250 L of methanol and submitted to HPLC, using an Agilent 

1100 Series HPLC system equipped with an Agilent Eclipse XDB C-18 column (25 cm x 

9.4 mm, 5 µm particle diameter). A 0.1% acetic acid in water (aqueous) – 9:1 

acetonitrile:methanol (organic) solvent system was used, starting with 70% organic 

solvent for 3 min, which was increased linearly to 100% over a period of 20 min and 

continued at 100% organic solvent for 2 min. One-minute fractions were collected using 

a Teledyne ISCO Foxy 200 X-Y Fraction Collector connected to the HPLC from 12 to 36 

min. Collected fractions were individually evaporated in vacuo for further analysis by 

GC-MS or NMR spectroscopy. 

 

C.1.6. NMR spectroscopic instrumentation and analysis: NMR spectra were 

recorded on a Varian INOVA 600 MHz NMR spectrometer (600 MHz for 1H, 151 MHz 

for 13C) equipped with an HCN indirect detection probe, and a Varian INOVA 500 MHz 

NMR spectrometer (500 MHz for 1H, 125 MHz for 13C) equipped with an DBG 

broadband probe. Each spectrum was manually phased, baseline corrected and 

calibrated to solvent peaks (CHCl3 singlet at 7.26 ppm; CHD2OD quintet at 3.31 ppm). 

Non-gradient phase-cycled dqfCOSY spectra were acquired using the following 

parameters: 0.8 s acquisition time, 500-900 complex increments, 16-64 scans per 

increment. Obtained dqfCOSY spectra were zero-filled to 8k-16k × 4k and a cosine bell-

shaped window function was applied in both dimensions before Fourier transformation. 

NMR spectra were processed using Varian VNMR, MestreLabs’ MestReC, and 

MestRecNova software packages. Dynamic range of the resulting spectra ranged from 
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300:1 to 500:1. For example, coupling constants could be determined for characteristic 

steroidal crosspeaks from dqfCOSY spectra containing as little as 5 µg 1,7-DA in a 2.5 

mg enriched metabolome fraction.  

 

C.1.7. daf-9(dh6) dauer rescue assay:  

C.1.7.1. Plate-based assay: Metabolome fractions were resuspended in ethanol, mixed 

with 40 L of 5 x concentrated OP50 bacteria (from an overnight culture in LB media) 

and plated on 3 cm plates containing 3 mL NGM agar without added cholesterol. For 

rescue, ~100 eggs from a 4-8 hour egg lay were transferred onto the bacterial lawn, and 

scored for dauer arrest at 27 °C after 60 h. For rescue experiments with synthetic 

steroids (0.1 nM – 500 nM tested), 10 L compounds in ethanol (or ethanol alone) were 

mixed with 40 L 5X concentrated OP50 bacteria and plated. Final concentrations 

include the total volume of agar (3 mL). 100 nM 7-DA was used as positive control.  

C.1.7.2. Liquid culture-based assay: Individual metabolome fractions were dried in 

vacuo and resuspended in 500 L EtOH. 20-25 gravid daf-9(dh6) adults were picked 

onto three 6 cm NGM agar plates seeded with OP50 containing 25 L of 10 M 7-DA 

each and allowed to grow for three days. On the third day each of the plates was 

washed with M9 and treated with alkaline hypochlorite solution to obtain eggs. Isolated 

eggs were allowed to hatch overnight in S-complete media without food. 100 l of the 

resulting synchronized L1 suspension was added to 400 L of HB101-seeded S-

complete media and 5 L of ethanol, ethanol solution of metabolome fraction, or ethanol 
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solution of synthetic ligands (1.25 nM – 200 nM tested) per well of a 12 well plate. Wells 

were examined after 48 and 72 h and scored for dauers, recovered animals and 

intermediate worms with molting defects and/or mig phenotypes. For active metabolome 

fractions, additional assays using smaller amounts were conducted. 

Data obtained from both plate based and liquid culture assays are comparable. 

Figures in dissertation Chapter 4 and Appendix C are based on results from the plate 

based assay. 

 

C.1.8. Luciferase assay for DAF-12 transcriptional activation: Luciferase assays to 

determine transcriptional activation of DAF-12 were performed as described earlier.1 

Briefly, HEK-293T cells were seeded and transfected in 96-well plates with (per well) 30 

ng transcription factor vector, 30 ng of GFP expression vector, 30 ng of luciferase 

reporter, and 5 ng β-galactosidase expression vector using the calcium phosphate 

precipitate method. Ethanol or ethanol solutions of ligands (synthetic DAs, 1 nM – 3125 

nM tested and metabolome fractions) were added 8 h after transfection and the 

luciferase and β-galactosidase activities were measured by a Synergy 2 Biotek LC 

Luminometer, 16 h after compound addition. 100 nM 7-DA was used as positive 

control. Data was processed using GEN5 software. Individual fractions were dried in 

vacuo and resuspended in 500 L EtOH. 1 L per 100 L of media solution was added 

to each well. 
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C.1.9. Alphascreen assay for direct binding of DAF-12 ligand candidates: Direct 

binding of ligand candidates to DAF-12 was assessed by measuring ligand dependent 

interaction between a heterologously expressed DAF-12 construct and the mammalian 

coactivator peptide, SRC1-4, in Alphascreen assays (Perkin Elmer). An N-terminally 

GST-6xHis-tagged DAF-12 construct (amino acids 281-753, which includes most of the 

hinge region and the entire ligand binding domain, LBD) was purified from BL21 (DE3) 

cells (Sigma) using a GT sepharose column followed by a size exclusion column. 

Purified DAF-12 (25 nM final concentration) and biotinylated SRC1-4 (synthetic biotin-

QKPTSGPQTPQAQQKSLLQQLLTE obtained from Anaspec, used at 50 nM final 

concentration), were incubated separately in plastic tubes for 20 min with Ni2+ chelate 

acceptor beads (for DAF-12) or streptavidin donor beads (for SRC1-4, 25 g/mL final 

concentration, Perkin Elmer, Cat. No - 6760619C). They were then combined with 

subsequent addition of ligand candidates or ethanol (stored in glass vials) to obtain a 

final volume of 20 L, and incubated for 60 min in white, low volume, 384 well 

Optiplates (Perkin Elmer). The plates were then read using a Synergy 2 Biotek LC 

luminometer using the manufacturer’s Alphascreen detection protocol. All solutions 

were made using assay buffer containing 25 mM HEPES (pH 7.4) and 100 mM NaCl. 

Cholesterol and heptadecanoic acid, assayed at 1 M concentration as additional 

negative controls, gave no signal (Appendix Figure C.7b). Addition of CHAPS (40 M) 

did not significantly affect assay results, whereas addition of 0.01% BSA reduced signal. 

All incubations were carried out at room temperature in the dark. Figure 4.5d shows 

combined data derived from at least independent experiments (each N = 4 or higher) 

run on three or more different days. 
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C.1.10. GC/MS instrumentation and sample preparation: GC/MS analysis was 

carried out with an Agilent Technologies 6890N Network GC system with a DB-

5MS+DG column (25 m, 30 m x 0.25 mm) operating in split-less mode, connected to a 

JEOL JMS-GCmateII mass spectrometer.  

Methylation of 3-keto-DAs: synthetic standards or 1-10 % of active metabolome 

fractions were evaporated in vacuo and resuspended in toluene:methanol (500 L, 3:2), 

followed by the drop-wise addition of trimethylsilyldiazomethane (120 L, 2 M solution in 

Et2O) with stirring. The reaction was stirred at room temperature for 30 min, quenched 

with acetic acid, evaporated in vacuo, and resuspended in dichloromethane (30-200 

L). Of this solution, 1-5 L were injected per GC run.  

 

C.1.11. GC/MS methods:  

C.1.11.1. GC conditions: Injector was kept at 240 °C and 1 mL/min helium flow was 

maintained. Initial column temperature was at 120 °C for 1.4 min, then increased to 320 

°C at a rate of 7 °C/min, and maintained at 320 °C for 10 min.  

C.1.11.2. MS conditions: Electron impact ionization (EI) at 70 eV was used. For 

synthetic samples (high concentrations, >100 ng/L), MS was first operated in scanning 

mode for a mass range of m/z 35-500 for 3-keto-DA methyl ester and 3-keto-steroids, to 

select for the most abundant fragment ions for each compound. For low concentrations 

(<5 ng/L) of synthetic samples and endo-metabolome fractions, MS was operated in 

Selective Ion Monitoring (SIM) mode and the following ions were selectively observed: 



206 

m/z = 428, 271, 229 (7-DA); 426, 269, 227 (1,7-DA); 428, 305, 229, 124 (4-DA); and 

384, 261, 229 (4-cholesten-3-one).  

 

C.1.12. Quantification of DAs from endo-metabolome fractions via SIM-GC/MS: 

GC/MS data was analyzed using Shrader Analytical and Consulting Laboratories, Inc.’s 

TSSPro 3.0 software package. Quantification of DAs was performed by integration of 

GC/MS peaks from the following ion traces: m/z = 428 (7-DA), 426 (1,7-DA), and 428 

(4-DA). Dafachronic acid concentrations were calculated using response factors 

determined from synthetic standards. Mass spectrometer response was roughly linear 

(<5% error) for amounts of 10 pg to 5 ng per GC run per compound injection.  
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C.2. Figures:  

 

 

Figure C.1: Bioactivity of metabolome fractions. Assessment of DAF-12 transcriptional 
activation in the in vitro luciferase assay in HEK-293T cells (left) and dauer rescue activity in 
daf-9(dh6) worms (right) with endo-metabolome fractions obtained from (a) wild type (b) daf-22 
animals. These data show that daf-9(dh6) dauer rescue activity is generally higher in daf-22 
mutant metabolome fractions. (c) DIC images (courtesy, Dr. Joshua J. Wollam, Antebi research 
group, Max-Plank Institute for Biology of Ageing, Cologne, Germany) of daf-9(dh6) worms 
showing different phenotypes scored in the dauer rescue assay. Dauer (top left), adult 
recovered (top right), intermediate phenotypes showing molting defects (bottom left, arrows 
point to incompletely shed cuticle from previous molt), fully recovered late L4 (bottom center), 
and intermediate phenotypes showing incomplete gonad migration (bottom right). Yellow lines 
indicate gonadal shape in shown mig phenotypes. 

  

a 

b 

c 
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Figure C.2: daf-9 independent sterols in metabolome fractions. Structures of major epidioxy 

sterol derivatives that elute with 7 and 1,7-DAs in region I active fractions but can also be 
observed in corresponding inactive daf-9;daf-12 fractions.2,3 

 

 

Figure C.3: Bioassays on HPLC-enriched fractions. Assessment of DAF-12 transcriptional 
activation in the in vitro luciferase assay in HEK-293T cells (left) and dauer rescue activity in 
daf-9(dh6) worms (right) with HPLC-enriched fractions 25-6 and 25-8 obtained from daf-22 
active metabolome fraction 25. 
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Figure C.4: Identification of endogenous daf-9 dependant metabolites in active region I. 

Sections of dqfCOSY spectra (600 MHz, CDCl3) used for identification of 1,7-DA in C. elegans. 

(a) Natural 1,7-DA in HPLC-enriched fraction 25-6 (Figure 4.4) from daf-22 mutant. (b) 

Synthetic 1,7-DA. Characteristic crosspeaks are boxed blue.    

a 

b 
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Figure C.4: Identification of endogenous daf-9 dependant metabolites in active region I. 

Sections of dqfCOSY spectra (600 MHz, CDCl3) confirming presence of 7-DA in C. elegans. (c) 

Natural 7-DA in HPLC-enriched fraction 25-8 from daf-22 mutant (Figure 4.4). (d) Synthetic 7-
DA. Characteristic crosspeaks are boxed blue.     

c 

d 
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Figure C.4: Identification of endogenous daf-9 dependant metabolites in active region I. 

EI-MS for methyl esters of (e) 7-DA and (f) 1,7-DA. (*) Indicates the ion fragments 
subsequently used for SIM-GC/MS analyses of these compounds in endo-metabolome 
fractions.    

e 

f 
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Figure C.4: Identification of endogenous daf-9 dependant metabolites in active region I. 
SIM-GC/MS analyses showing characteristic fragment ion traces for methyl esters of (g) natural 


1,7-DA (left), natural 7-DA (right) in HPLC-enriched fractions 25-6 and 25-8 respectively from 

daf-22, (h) synthetic 1,7-DA (left), and synthetic 
7-DA (right). (i) Characteristic EI-MS 

fragments of 1,7-DA methyl ester (left) and 7-DA methyl ester (right) shown in Appendix 
Figures C.4g,h.  

  

g 

h 

i 
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Figure C.5: EI-MS for 4-DA methyl ester. (*) Indicates the ion fragments subsequently used for 
SIM-GC/MS analysis of this compound in natural samples. See also Figure 4.6e. 
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Figure C.6: Identification of dafachronic acid precursors. Sections of dqfCOSY spectra (600 
MHz, CDCl3) confirming presence of 4-cholesten-3-one in C. elegans. (a) 4-Cholesten-3-one in 
enriched natural fraction from daf-22. (b) Synthetic 4-cholesten-3-one. Characteristic 
crosspeaks are boxed blue.  

a 

b 
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Figure C.6: Identification of dafachronic acid precursors. (c) EI-MS for 4-cholesten-3-one. 
(*) Indicates the ion fragments subsequently used for SIM-GC/MS analysis of this compound in 
natural samples. (d) SIM-GC/MS analysis showing characteristic fragment ion traces for natural 
fraction from daf-22, confirming the presence of 4-cholesten-3-one. (e) SIM-GC/MS analysis of 
a sample of synthetic 4-cholesten-3-one.   

c 

d 

e 
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Figure C.6: Identification of dafachronic acid precursors. Sections of dqfCOSY spectra (600 
MHz, CDCl3) confirming presence of lathosterone in C. elegans. (f) Lathosterone in enriched 
natural fraction from daf-22. (g) Synthetic lathosterone. Characteristic crosspeaks are boxed 
blue.   

f 

g 
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Figure C.7: Alphascreen assays with synthetic DAs. (a) DAF-12-ligand candidates produce 
SRC1-4 dependent signal in the Alphascreen assay. Shown are data obtained from one day of 
experiments (N = 4). Figure 4.5d shows combined data derived from at least independent 
experiments (each N = 4 or higher) run on at least three different days. (b) Cholesterol and 
heptadecanoic acid do not produce signal in the Alphascreen assay.  

a 

b 
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Figure C.8.1: 1H NMR spectrum (600 MHz, CDCl3) of (25S)-1,7-Dafachronic Acid.   
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A
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Figure C.8.2: dqfCOSY spectrum (600 MHz, CDCl3) of (25S)-1,7-Dafachronic Acid.   
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Figure C.8.3: HMQC spectrum (600 MHz for 1H, 151 MHz for 13C, CDCl3) of (25S)-1,7-
Dafachronic Acid.   
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Figure C.8.4: HMBC spectrum (600 MHz for 1H, 151 MHz for 13C, CDCl3) of (25S)-1,7-
Dafachronic Acid.   
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C.3. Tables: 

Table C.1: Table showing EC50 values of synthetic DAs in luciferase, Alphascreen, and daf-
9(dh6) dauer rescue assays and the HPLC retention times of synthetic DAs. 

 

Compound 
EC50 (nM) for 

luciferase 
assay (in vitro) 

EC50 (nM) for 
Alphascreen 

assay (in vitro) 

EC50 (nM) for daf-
9(dh6) dauer rescue 

assay (in vivo) 

HPLC retention 
time ranges (min) 


1,7-DA 146 15 2 20.5-20.9 


7-DA 39 8 3 20.9-21.5 

 

 

Table C.2: 1H (600 MHz), 13C (151 MHz), and important HMBC NMR spectroscopic data for 


1,7-DA in CDCl3. Chemical shifts were referenced to (CHCl3) = 7.26 ppm and (CDCl3) = 77.16 

ppm. 

 

 

Carbon 
No. 

 
(ppm)

Proton 
No. 

  
(ppm)

JHH (Hz) Key HMBC Correlations 

1 157.3 1-H 7.01 J1,2=10 C-10, C-9, C-5, C-3 

2 127.1 2-H 5.89 
 

C-10, C-4 

3 199.8 ---- ---- ---- ---- 

4 40.1 4-H 2.34   C-3, C-10 

    4-H 2.34   C-3, C-10 

5 39.6 5-H 2.05     

6 28.7 6-H 1.89-1.94   C-8 

    6-H 1.89-1.94     

7 117.8 7-H 5.25     

8 138.8 ---- ---- ---- ---- 

9 45.2 9-H 1.93     

O

COOHH

H

H

H

1

2

3

4

5

6

7

8
9

10

11

12

13
14

15

16

17

18

19

20

21
22

23

24
26

25

27

D1,7-dafachronic acid
1,7-Dafachronic acid 
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10 39.6 ---- ---- ---- ---- 

11 21.5 11-H 1.76     

    11-H 1.58     

12 39.2 12-H 1.27     

    12-H 2.09     

13 43.5 ---- ---- ---- ---- 

14 55.1 14-H 1.83     

15 23.0 15-H 1.53     

    15-H 1.42     

16 27.8 16-H 1.89     

    16-H 1.28     

17 55.9 17-H 1.82     

18 11.9 18-H 0.57 ---- C-12, C-13, C-14, C-17 

19 12.6 19-H 0.95 ---- C-1, C-10, C-5, C-9 

20 36.1 20-H 1.38     

21 18.7 21-H 0.93 J21,22=6.4   

22 35.7 22-H 1.05     

    22-H 1.39     

23 23.9 23-H 1.21     

    23-H 1.39     

24 34.0 24-H 1.37     

    24-H 1.68     

25 38.9 25-H 2.48 J25,26=6.9 C-23, C-24, C-27 

26 17.0 26-H 1.19 
 

C-25, C-27, C-24 

27 179.3 ---- ---- ---- ---- 

 

  
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