THE CORNELL PROGRAM SYNTHESIZER:
A MICROCOMPUTER IMPLEMENTATION OF PL/CS

by

Tim Teitelbaum?*

TR 79-370
- Revised June 1, 1979

Department of Computer Science
Cornell University
Ithaca, New York 14853

¥ v
The research described in this report was supported in part
by the National Science Foundation under Grant MCS 77-08198.

The Cornell Program Synthesizer:
A Microcomputer Implementation of PL/CS

Tim Teitelbaum

Department of Computer Science
Cornell University

1. Introduction

The Cornell Program Synthesizer is a system for
developing structured programs at a video display terminal.
The system provides a self-contained programming environment
with integrated facilities to edit, file, execute and debug
programs. /

The principal innovation of the system is its syntax-
directed editor: entry and modification of program text is
guided by a grammar for the host programming language.
Because the parser 1is incorporated into the editor, it is
normally impossible to create a syntactically incorrect pro-
gram. There is no need for error repair because errors are
prevented on entry.

All but the simplest statement types are predefined in
the editor as templates. The template is a formatted syn-
tactic skeleton that contains the keywords, matched
parentheses and other punctuation marks of the given state-
ment form. The template includes "placeholders"™ at each
position where additional code is required to complete the
statement. The placeholders serve as prompts indicating the
syntactic class of each component required to complete the
statement.

Programs are created top-down by inserting new state-
ments and expressions within the skeleton of previously
entered templates. Syntax error detection is immediate
because placeholders can only be replaced by syntactically
appropriate insertions.

The text of a template is never typed; rather, it is
inserted into the program by command. Because a template is
immutable, errors are not only prevented on entry, but can
not be introduced after the fact. The entire statement can
be moved or deleted as a unit and its constituent parts may
be modified, but the concrete syntax of the statement form
is 'unalterable.

Another significant benefit of the template insertion

approach is the sheer reduction of key-strokes; short con-
mands insert long templates. The effect of each template
insertion is instantly visible in the program display. It
is fast and convenient to move an entire template and all
its constituent parts as a single entity.

Expressions and assignment statements are typed
directly as text. Since the compiler is invoked by the edi-
tor on a phrase-by-phrase basis, errors in user-typed text
are detected immediately. Most errors are typographical and
can be corrected by local editing of the erroneous segment.

It is possible, however, to override the error preven-
tion mechanism when non-local modification is required to
correct the program. Erroneous code remaining in the pro-
gram is then highlighted on the display until corrected.
Such highlighted sections are also introduced when changing
a declaration introduces non-local errors in the rest of the
program. For example, when a declaration is deleted, all
fragments containing uses of undeclared variables are marked
as "erroneous" on the display.

The editor's "statement-comment" facility encourages
programming by "stepwise refinement"[U4]. Subordinate to a
statement comment is its refinement: a 1list of statements
that performs the action specified in the comment. By

suppressing the display of a refinement, it is possible to
conceal irrelevant implementation details while increasing
the "field of view" on the screen. Thus, the system rewards
the use of meaningful precise comments with a condensed yet
readable presentation of the program outline.

Since programs are translated into interpretable form
during program entry, compilation is transparent to the
user; there is no delay between editing and execution. Exe-
cution 1is suspended when a missing program element is
encountered and can be resumed after the required code has
been inserted. Thus, program development and testing can be
conveniently interleaved. A

The video display allows the incorporation of some
unique run time debugging features. The flow of execution
through the program can be traced using the screen cursor to -
indicate the location of the instruction pointer at each
moment. Selected variables can be monitored during execu-
tion by displaying their values in a separate partition of
the screen. The utility of these features 1is enhanced by
reducing the rate of execution and by suppressing the
display of irrelevant program refinements. A suppressed
refinement 1is always executed at top speed, giving it the
appearance of being an indivisible operation.

The Synthesizer is currently implemented for the PDP-11
(under UNIX) and the LSI-11 (stand alone on a TERAK). The

initial host programming language is PL/CS, a highly discip-
lined subset of PL/I [1,2,3]. Although the key power of the
Synthesizer is its language-specific editor, the idea of a
"]language-specific editor" is essentially language indepen-
dent. The implementation itself is syntax-directed and
other languages will surely be incorporated in the near
future.

This report provides a tutorial introduction to the use
of the Cornell Program Synthesizer to write PL/CS programs.

2. Creating a program

We illustrate the editing process by writing a program
to compute the square of a given number. The cursor is
indicated by an underscore in the examples below.

Assume that we are already on the system and wish to
create the program in the file named "squares". Then after
typing the command ".ed squares" followed by <return>, the
screen would look as follows:

editing squares

The system is ready to create a progranm. Since there
is no program yet, the word "object" appears on tne screen
as a placeholder. As the program is developed, it will be
displayed below the dashed line where "object" now appears.

Every PL/CS main procedure has the same structure. It
is unnecessary, time-consuming and error-prone to type this
information explicitly each time a program is written.
Rather, the notion of a PL/CS main procedure is built
directly into the editor in the form of a "command".

The command ".main" directs the system to create a main
procedure. The dot (.) at the beginning distinguishes edi-
tor commands from program text. The command ".main" is npot
part of the progran. Rather, it is a directive to the sys-
tem to create a main procedure. Because it is not part of
the program, ".main" appears on the screen above tne dashed
line. The cursor remains below the 1line to indicate your
place in the developing program.

After typing the five characters ".main", the screen
appears as follows:

.main editing squares

The command has not yet been obeyed. However, upon typing
<return>, the system immediately responds:

editing squares
/% comment ¥*/
squares: PROCEDURE OPTIONS (MAIN);
{declaration}
{statement}
END squares;

' In one step, the placeholder "object™ is replaced by
the complete skeleton of a PL/CS main procedure. The name
of the procedure is "squares", inherited from the file name.

Three new placeholders, "comment", "{declaration}" and
n{statement}", identify 1locations where additional prograa
elements can be inserted. The placeholders are descriptive
names that serve as prompts. The cursor is positioned at

"comment". The braces in the placeholder "{declaration}"
indicate that a 1list of declarations is permitted thnere.
Similarly, "{statement}" identifies a place where a list of

statements may occur.

By first repositioning the cursor, any one of the three

placeholders could next be expanded. It is simplest just to
enter the comment next since the <cursor is already posi-
tioned there. Only the comment text is required since the

delimiters "/%#" and "#/" have already been provided.

Any text typed at this point is inserted directly 1into

the progranm. (The only restriction is that the text must
not begin with a dot.) The first character typed replaces
the placeholder "comment"™ whereupon the delimiter "#/"

slides left to close the gap. For example, when an "s" |is
typed the screen responds:

editing squares
/% s_ %/
squares: PROCEDURE OPTIONS (MAIN);
{declaration}
{statement}
END squares;

As each additional character is typed, the delimiter
n#/n gljides right to make room.

editing squares
/% square of an input value_ #/
squares: PROCEDURE OPTIONS (MAIN);
{declaration}
{statement}
END squares;

A mistake can be erased by typing <rubout>, whereby the
n#/n shifts 1left again. If the entire text is rubbed-out,
the placeholder "comment" reappears.

Using <left> and <right> cursor keys, it is possible to
position the cursor at any point within a line of text. As
characters are inserted or deleted, the -entire context to
the right of the cursor immediately shifts to accomodate thae
change. For example, we may position the cursor at the
beginning of the comment and insert the phrase "print the":

editing squares
/% print the_square of an input value %/
squares: PROCEDURE OPTIONS (MAIN);
{declaration}
{statement}
END squares;

Having completed the comment, the cursor is moved to
"{declaration}"™ by typing <return>. The cursor skips over
"squares: PROCEDURE OPTIONS(MAIN)" since it is part of tae
generated program template and can not be altered.

editing squares
/* print the square of an input value */
squares: PROCEDURE OPTIONS (MAIN);
{declaration}
{statement}
END squares;

Two modes of program entry have been illustrated: tem-
plate insertion by command and direct insertion of typed
text:

In general, commands are used to insert declarations
and statement forms containing 1lengthy keywords,
parenthesized lists or DO ... END. Such commands give
the wuser significant generative power while precluding
the possibility of syntax error. The use of a single
command to insert an entire construct emphasizes its
unified, abstract purpose. The specific syntax used to

represent the construct can not be typed and can not be
modified.

In general, direct insertion of typed text is used for
comments, assignment statements, and lists of variables
and expressions. These program elements consist mainly
of English text, user defined symbols and short opera-
tors. The use of commands at this 1level would be
counter-productive.

Continuing to develop the sample program, we generate a
declaration template for FIXED variables by typing the con-
mand ".fx" followed by <return>:

editing squares
/% print the square of an input value ¥/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (list-of-variables) FIXED;
{statement}
END squares;

and by typing "k" followed by <return> we obtain:

editing squares
/% print the square of an input value %/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (k) FIXED;
{declaration}
{statement}
END squares;

Once again the cursor is positioned at "{declaration}".
The editor guarantees the syntactic correctness of the pro-
gram and will only accept a declaration at this point. By
simply typing <return>, however, "{declaration}" disappears
and the cursor moves to "{statement}":

editing squares
/% print the square of an input value %/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (k) FIXED;
{statement}
END squares;

An input statement is generated by typing the command
".g" followed by <return>:

editing squares
/% print the square of an input value #*/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (k) FIXED;
GET LIST (list-of-variables);
END squares;

and by typing "k" followed by <returnb>:

editing squares
/®* print the square of an input value #/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (k) FIXED;
GET LIST (k);
{statement}
END squares;

Typing ".pl" followed by <return> gives the skeleton of
an output statement:

editing squares
/% print the square of an input value */
squares: PROCEDURE OPTIONS (MAIN); .
DECLARE (k) FIXED;
GET LIST (k);
PUT LIST (list-of-expressions);
END squares;

An error in typed text is detected as soon as the user
attempts to move the cursor to another program element. For
example, suppose we next type "k¥kk". Then, as soon as
<{return> 1is typed, the bell rings, an error message appears
on the top line, and the cursor is positioned at the point
of the error:

undeclared variable editing squares
/% print the square of an input value #/
squares: PROCEDURE OPTIONS (MAIN);

DECLARE (k) FIXED;

GET LIST (k);

PUT LIST (k*kk);

END squares;

Typing <clear> erases the extra "k" and corrects the pro-
gram.

3. Execution

The program can be executed by simply striking the
<execute> key. Since compilation into intermediate inter-
pretable code has already taken place during the creation of
the program, execution begins immediately. The display of
the program disappears and the screen responds:

type input data executing squares

We type "2" followed by <return> and the program responds
nyw The system then waits for instructions before return-
ing to the editor. This allows the user to review output
before it is overwritten by the program display.

Alternatively, by using the command ".split" before
program execution, the screen can be split into a progranm
display screen and an execution input/output screen. In
this case, the system returns to the editor immediately
after execution; the program output remains on the execution
screen.

editing sduares

/®* print the square of an input value #*/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (k) FIXED;
GET LIST (k);
PUT LIST (k¥*k);
END squares;

Several symbolic debugging aides are available. The
command ".trace" causes the flow of execution through the
program to be traced using the screen cursor to indicate the
location of the instruction pointer at each moment. The
command ".pace n" causes the program to run with a delay of
n/60 seconds per program segment. The statement "pause;"
can be inserted into the program wherever a breakpoint is
desired. The command ".check k" reserves a screen position
for the value of k. This display is then updated on each
assignment to k. "Single «cycle"™ and "structured single
cycle" execution is also available.

Incomplete programs can be executed at any stage of
their development. Execution is suspended whenever an unex-
panded placeholder is encountered. Control returns to the
editor with the cursor positioned at the unexpanded place-

holder. After the required code has been inserted, execu-
tion can be resumed.

4, Moving the cursor

All modifications of program text occur relative to the
current cursor position. Using the cursor control keys of
the terminal, it is possible to position the cursor wherever
insertions and deletions are permitted. The cursor can only
be positioned where modifications are allowed.

A program template generated by command is denoted by
its left-most character. For example, the "G" in
"GET LIST (k);" designates the entire statement. When the
cursor is positioned at such a point, editing actions refer
to the entire program element. For example, striking the
<{delete> key at that point would delete the whole statement,
replacing it with the placeholder "{statement}".

The cursor control keys move the cursor forward and
backward through the program. For want of better names, we
refer to the keys as <left>, <right>, <up> and <down>.
Despite this nomenclature, the effect of the control keys is
defined with respect to the one-dimensional reading order of
a program, not the two-dimensional coordinate system of its
display. Thus, both <right> and <down> move the cursor for-
ward through the program; <Kleft> and <up> move it back-
wards.,

Since much of the program text is immutable, the cursor
jumps in 1logical increments, not character by character.
Although <right> and <down> both move the cursor forward,
their units of increment differ.

<Up> and <down> move the cursor one program element at
a time, stopping only once per syntactic segment. Possible
stopping points for the cursor using the <up> and <down>
keys are indicated by wunderscores in the sample program
below:

L% print the square of an input value #/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (k) FIXED;
GET LIST (Xk);
PUT LIST (k¥*k);
END squares;

Cursor stopping points for <up> and <down>

<Left> and <right> differ from <up> and <down> by also
stopping at every character of modifiable text. These
places are indicated by underscores in the sample program
below:

YA i ugre of input v ®/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (k_) FIXED;
GET LIST (k_);
PUT LIST (k*k);

END squares;
Cursor stopping points for <left> and <rignt>

Thus, <right> from the "G" of "GET LIST (k);" moves the
cursor to "k", then to the position after "k", then to the

"p" of "PUT ...". <Left> from the "G" moves the cursor to
the position after the "k" in "DECLARE ...", then to the
"k", then to the "D" of "DECLARE ...".

Some templates contain optional comﬁonents; for exam-

ple, DO-loops contain an optional loop-name. Two mechanisms
serve to minimize the visibility of optional 1language

features:

1) The only cursor motion that positions the cursor at
an optional component is the command ".o", meaning
"move to optional part". Optional statement elements
are transparent to all other cursor controls.

2) Placeholders for optional components are only
displayed when the cursor is positioned there.

<{Return> is also a cursor motion key, similar in func-
tion to <down>. It differs, however, by also stopping
everywhere that a program element can be inserted into a
list: that is, at the beginning, at the end, and inbetween
adjacent list elements. A placeholder appears at such a
"list insertion point"™ whenever the cursor is positioned

there; it disappears when the cursor is moved away. The
possible stopping points for the cursor using <return> are
indicated by underscores below. At most one of the place-

holders shown would ever be visible at a time.

/% print the square of an input value ¥/
squares: PROCEDURE OPTIONS (MAIN);
{declaration}
DECLARE (X) FIXED;
{declaration}
{statement}
GET LIST (k);
{statement}
PUT LIST (k*k);
{statement}
END squares;

Cursor stopping points for <return>

Although the illustrated cursor motions are sufficient for

novices, more experienced users will welcome several addi-
tional commands particularly in large, deeply nested pro-
grams,

The two key sequence <long><down> advances the cursor
to the next element not structurally deeper in the program.
The sequence <long><up> moves backward similarly.
<Long><return> is like <long><down> but also stops at "list
insertion points",

Thus, from the "G" of "GET ...", <long><down)> move the
cursor to the "P" of "PUT ..."; <long><up> moves to the "D"
of "DECLARE ..."; <long><return> moves to "{statement}"
inbetween "GET ..." and "PUT ...".

The <diagonal-arr6w> key moves the cursor to the
immediately enclosing program element. Thus, it has the
effect of moving the cursor diagonally up and to the left.

5. -Modifying a program

Phrases typed by the user can be modified by first
repositioning the cursor within the desired line. Characters
can then be deleted or inserted in place. {Rubout> erases
the character to the left of the cursor, <clear> erases the
character at the cursor. Of course, the syntactic correct-
ness of re-edited text must be re-verified.

A single phrase or an entire template and its subordi-
nate parts can be "clipped" or "deleted". The entire sec-
tion of code disappears from the program and is replaced by
the original placeholder.

Clipped code can be reinserted at any syntactically
suitable place by repositioning the cursor and pressing

<insert>. Thus, <clip> and <insert> are analogous to the
functions "move-to-memory" and "insert-from-memory" on a
one-register pocket calculator. 1In point of fact, clipped

code is actually moved to an object of the file system named
"CLIPPED".

Similarly, <delete> (usually used to permanently erase
a code segment) actually moves it to an object of the file
system named "DELETED". Thus, deletion is reversible: in
the event of an inadvertent deletion, the original segment
can be recovered by the command ".ins DELETED".

A separate command is available to clip a list of con-
secutive statements. The two-key sequence <long><clip>
serves this purpose. The user positions the cursor at the
first element of the desired sublist and types the command.
The user then positions the cursor at the 1last element of
the desired list and completes the command by typing ".",

- 12 -

The clipping mechanism is used to enclose existing code
in the scope of a new template. For example, in order to

enclose the "GET..." and "PUT..." statements in a loop, one
clips the list of statements,

editing squares

/* print the square of an input value ¥/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (k) FIXED;
{statements}
END squares;

generates the loop template by command,

editing squares

/* print the square of an input value %/
squares: PROCEDURE OPTIONS (MAIN);
- DECLARE (k) FIXED;
DO WHILE (gondition);
{statement}
END;
END squares;

enters the condition and inserts the clipped code into the

body of the loop. Clipped code is automatically reindented
with respect to its new context when reinserted.

editing squares

/% print the square of an input value ¥*/
squares: PROCEDURE OPTIONS (MAIN);
DECLARE (k) FIXED;
DO WHILE ('"1'b);
GET LIST (k);
PUT LIST (k*k);
END;
END squares;

Similarly, to enclose the loop in a comment, one <clips

it, 1inserts the comment, types the comment and then rein-
serts the clipped code into the scope of the comment.

editing squares
/% print the square of an input value #/
squares: PROCEDURE OPTIONS (MAIN);

DECLARE (k) -FIXED;
/% for each input value k, print the square of Kk

DO WHILE ('1'b);
GET LIST (k);
PUT LIST (k#*k);
END;
END squares;

<Clip>, <delete> and <insert> are used in concert to
delete a statement while preserving one of its subordinate
parts. One merely clips the segment to be preserved,
deletes the statement to be discarded and reinserts the
clipped piece.

The display of code subordinate to a comment can be
suppressed by typing the <...> key.

editing squares
/% priﬁt the square of an input value ¥/
squares: PROCEDURE OPTIONS (MAIN);

DECLARE (k) FIXED;
/% for each input value k, print the square of k

PrRU]

END squares;

The <...> key serves as a toggle and is thus wused to
redisplay suppressed text. By suppressing the display of a
refinement, irrelevant implementation details are concealed
while increasing the "field of view" on the screen. Thus,
the system rewards the use of meaningful precise comments
with a condensed yet readable presentation of the program
outline.

Declarations can be re-edited in the same way as the
rest of the program, but such re-editing may be subject to
non-local errors. For example, 1in order to —change the
declaration of k from FIXED to FLOAT, one first deletes the
FIXED declaration. This leads to several segments in the

program that contain an undeclared variable. These errone-
ous segments are highlighted on the screen (using the com-
plemented character set, if available). When the FLOAT

declaration for k is inserted, these highlighted areas are
redisplayed in the normal font.

%/

*/

6. Ending a session

The command ".off" ends a session. The next time the
system is reinvoked, it resumes in exactly the same state as
if there had been no logoff.

7. Acknowlegements

It is a pleasure to acknowlege the special role of Tho-
mas Reps who has worked closely with me on the development
of the Synthesizer from the beginning. I am deeply indebted
to Alan Demers for our many stimulating discussions and for
writing the LSI-11 operating system kernel. I am also
extremely grateful for the valuable contributions of Richard
Conway, Jim Archer, Carl Hauser, Dean Krafft and Ron Olsson.

8. References

[1] Conway, R. and R. Constable, "PL/CS -- A Disciplined
Subset of PL/I,"™ Technical Report 76-293, Department of
Computer Science, Cornell 1976.

(2] Conway, R., Primer on Disciplined Programming Using
PL/CS, Winthrop 1978.

[3] Teitelbaum, T., "A Formal Syntax for PL/CS", Technical
Report 76-281, Department of Computer Science, Cornell
1976.

[4] Conway, R. and D. Gries, An Introduction to

Programming, Third Edition, Winthrop, 1979.

-y

Cornell Program Synthesizer -- PL/CS Version
PLACE?OLDER COMMAND TEMPLATE
object .main /% comment #*/
file-name: PROCEDURE OPTIONS (MAIN);
{declaration}
{statement}
END file-name;
.proc /% comment #/
file-name: PROCEDURE (list-of-parameters);
{parameter declaration}
{declaration}
{statement}
RETURN;
END file-name;
.text file-name: TEXT
{text}
.Seg proc-name)
file-name: SEGMENT OF proc-name
{statement}
{declaration} .fx DECLARE (list-of-variables) FIXED;
.f1 DECLARE (list-of-variables) FLOAT;
.bt DECLARE (list-of-variables) BIT (1);
.ch DECLARE (list-of-variables)
CHARACTER (expression) VARYING;
.c /% comment #*/
{declaration}
{parameter Sx DECLARE (list-of-parameters) FIXED;
declaration}
£l DECLARE (list-of-parameters) FLOAT;
.bt DECLARE (list-of-parameters) BIT (1);
.ch DECLARE (list-of-parameters)

CHARACTER (*) VARYING;

.c /** comment #/
{parameter declaration}

-10—

Cornell Program Synthesizer

PLACEHOLDER COMMAND TEMPLATE
statement A IF (condition)
or THEN statement
{statement} ELSE statement
Jdt IF (condition)
THEN statement
.8 SELECT;
{when-clause}
OTHERWISE statement
END;
.d DO;
{statement}
END;
.dw [loop-name:] DO WHILE (condition);
{statement}
END;
.du [(loop-name:] DO UNTIL (condition);
{statement}
END;
.di [loop-name:] DO var= exp to exp by exp;
{statement} :
END;
P PUT SKIP LIST (list-of-expressions);
.pl PUT LIST (list-of-expressions);
.psl PUT SKIP(expression) LIST (list-of-expressions);
.ps PUT SKIP(expression);
N4 GET LIST (list-of-variables);
.C /% comment #/
{statement}
{when-clause} .w WHEN (condition)

statement

Cornell Program Synthesizer

PLACEHOLDER PHRASE

comment _ any sequence of characters not including "#/"
itgxt} . any sequence of characters

statement variable= expression; (semi-colonAoptional)
{stZZement} leave loop-name;

- . M.,

goto label;
label:;
call proc-name(argument list);

call proc-name;

pause;
expression any expression
or
condition

var = exp to exp by exp
variable= expression to expression :
variable= expression to expression by expression

SYSTEM COMMANDS

<{boot-switch>

off

.Save

.list

.ed file

pr

Restore the system as it was at the time of the
last ".off" or ".save" command. ’

Save the status of the system and termirate session.
Destroys previous saved status,

Save the status of the system without terminating
session. Destroys previous saved status.

List a directory of all non-empty files.

Edit the file named "file"., If the parameter "file"
is omitted, the file name defaults to "CLIPPED".

Print the currently edited file on a hard-copy printer.

CURSOR MOTION COMMANDS.

e
<down> Move to next program element.
<up> Move to previous program element.
<{return> Move to next program element including points
: in between list elements.
<right> Move to the next character.
<left> Move to the previous character.
<diagonal-arrow> Move to enclosing program element.
<long><right> Move to last character of current program element.
If already at last character, move to next element.
<long><left> Move to fibst character of current program element.
If already at first character, move to previous
element.
<long><down> Move to next program element not subordinate
to the current program element.
<long><up> Move to the previous program element not subordinate
to the current program element.
<long><return> Move to the next program element not subordinate
to the current element but including points
in between list elements.
<long><diagonal-arrow>

<long><long >

«0

Move to the top of the file.

Reposition the program with respect to the screen
so cursor is centered.)

Move cursor to the optional part of the template.

-20-

EDITING COMMANDS

If the parametér "file" is omitted, the file name defaults to "CLIPPED".

<rubout> Delete the character to the left of the cursor.
<{clear> Delete the character at the cursor.
{delete> Delete the current program element. Save it as a

SEGMENT in the file named "DELETED".

<long><rubout> Delete the prefix of the current phrase from the
beginning up to (but not including) the
character at the cursor.

<{long><clear> Delete the suffix of the current phrase from the
character at the cursor to the end.

v file Move the current program element to "file" after
first saving the previous contents of "file®"

in "DELETED".

.ml file : Move a list of program elements beginning with the
current element to "file" after first saving
the previous contents of "file" in "DELETED".

{clip> . Same as f.mv CLIPPED".

<1§ng><clip> Same as ".ml CLIPPED",

.ins file Remove the object contained in "file"™ and insert it
‘ at the current position of the cursor.

<{insert> Same a; ".ins CLIPPED"

€eodd . Suppress the display of code subordinate to the
. immediately enclosing statement comzent. If it
is already suppressed, then display it.

=21~

EXECUTION COMMANDS

<{execute> Execute the most recently edited main procedure with
input from keyboard and output to display screen.

(control)(breék) Interrupt execution.
[Two keys must be pressed simultaneously.]

<control>d . End-of-file on PL/CS input from terminal.
[Two keys must be pressed simultaneously.]
<{resume> Resume where execution was interrupted.
.ex in Execute the most recently edited main procedure with

input from text file named "in" and output to
display screen.

.ex in PRT Execute the most recently edited main procedure with
. input from text file named "in" and output to both
display screen gnd printer.
.ex - PRT Execute the most recently edited main procedure with
input from the keyboard and output to both
display screen and printer.

=ld=-

DEBUGGING COMMANDS

Command parameters enclosed in braces are optional.

.split [#1] [#2]

Simultareous display:

program to have #1 lines,

output to have #2 lines,

check to have (20 - #' - {#2) lines.
defaults: 11 10 [no arguments]

or #1 (21-#1) [1 argument]

.nosplit Program and output each displayed on full screen.
No check screen,

.trace Cursor traces position in the program during
executioni. If the screen has not been split,
it splits with the 11 10 default.

.notrace Cursor rot to trace position in the program during

. execution,

.pace [#] Program will wait #/60 seconds at each program
element. [Default: # = 30]

.nopace Full speed execution.

.step Set sirgle step executiorn mode: when program is
executed or resumed, control returns to the
editor after one step of execution,

.nostep Turn off single step execution mode.

.Show Print calling sequence of currently susperded
environments.

.show var Print the value of var.

Var restricted to scalar variable or parameter.

.check var Display the current value of the variable var

.nocheck var

during execution. If var is omitted, check
all scalar variables of the current procedure.

Don't display the value of the variable var
during execution. If var is omitted, uncheck
all scalar variables of the current procedure.

-‘J-

SPECIAL FUNCTION KEYS

Assignment of special function keys on the Terak 8532-2 keyboard:

key normal special
number graphic function
(1) ESC <execute>
(15) BACKSPACE <diagonal-arrow)
(19) NULL <break> (with control)
(20) LINEFEED <elipd
(36) * <resume>
(38) DC3 <{insert>
(52) DC1 <oodd
(53) DC2 <delete>
(54) Us <clear>
(70) ETX <long>
(71) DEL <rubout>
(1) 1 2 3 4 5 6 T 8 9 o0 - = (15 t { 1} 19
TAB
(20) Q W E R T Y ©U I 0 P [¥ - (36) EOM

(38)LockKA S D F G H J K L ; ' RETURN <& (52)(53)(54)
CIRL SHIFTZ X C V B N M , . / SHIFT > (70) (71)

SPACE BAR

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif

