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ABSTRACT

The advent of recombinant DNA technology and genetic engineering has pro-

vided the fields of biology and engineering with a powerful tool set for dis-

covery, rational design, and manipulation of biological systems and processes.

Mathematical modeling of these biological systems has the potential to provide

valuable insight, to guide experimental design, and to optimize industrial prod-

ucts and processes. Modeling of cell biology, growth, metabolism, and product

formation can assist in strain development and fermentation processes. This

thesis seeks to utilize chemical engineering principles to model several biologi-

cal systems using a variety of approaches. Unstructured and structured models

are developed to model an industrially relevant riboflavin-producing strain of

Bacillus subtilis and to maximize product formation based on fed-batch feeding.

A new technique is developed that combines cybernetic control variables and

flux balance analysis to model cellular metabolism of Escherichia coli capable of

capturing dynamic behavior during cell growth while reducing computational

overhead. A parameter optimization algorithm is developed for the Julia pro-

gramming language and applied to biological systems. Finally, a reduced order

computational model of the complement system, which plays a significant role

in inflammation, host defense as well as many disease processes, is developed

and validated in through its ability to predict experimental data trends.
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CHAPTER 1

INTRODUCTION

1.1 Unstructured Models of Cell Growth

In 1949 Monod proposed a basic model for cell growth based on Michaelis-

Menten kinetics and empirical data that has become a staple in the field of bio-

chemical engineering [52]. The growth of the cell was postulated to be limited

by the availability of one or more substrates and could be described by a hy-

perbolic equation now referred to as the specific growth rate equation [85]. An

additionally notable achievement of the mathematics that Monod proposed is

the ability to predict diauxie, or growth on multiple substrates. Monod kinetics

can be used to model and optimize bioprocesses with low computational over-

head in a relatively simple manner [16] [61]. These models, however, assume

the cell to be a ’black-box’ type system in which the input is substrate and the

output is cell mass and extracellular metabolites. One drawback of the Monod

approach to modeling cell growth is this oversimplification of the complex na-

ture of cellular metabolism; as a result, kinetic parameters often differ for the

same organism and same strain under different culture conditions.

1.2 Structured and Cybernetic Models of Metabolism

Constraints based models are important tools to understand and ultimately to

predict how cells utilize nutrients to produce products. Constraints based meth-

ods such as flux balance analysis (FBA) [60] and network decomposition ap-
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proaches such as elementary modes (EMs) [83] or extreme pathways (EPs) [81]

model intracellular metabolism using the biochemical stoichiometry and other

constraints such as thermodynamical feasibility under pseudo-steady state con-

ditions. FBA has been used to efficiently estimate the performance of metabolic

networks of arbitrary complexity, including genome scale networks, using lin-

ear programming [13]. On the other hand, EMs (or EPs) catalog all possible

metabolic behaviors such that any flux distribution predicted by FBA is a con-

vex combination of the EMs (or EPs) [110]. However, the calculation of EMs

(or EPs) is computationally expensive and currently infeasible for genome scale

networks [42].

Cybernetic models have been developed to approach cell metabolism as a

resource optimization problem; control variables are used to direct the alloca-

tion of resources through the cell in a manner most favorable to cell survival,

growth, and product formation [67]. Cybernetic models have been successful in

describing a variety of biological systems including diauxic growth [39], growth

in low carbon substrate environments [101], simultaneous uptake patterns [55],

and growth on complementary substrates [2]. Young [111] developed an op-

timality framework based on elementary modes representing flux pathways

through a metabolic network to describe the batch culture of E. coli. Kim et

al. (2008) built on the work of Kompala et al. [39] and Young [111] to incorpo-

rate a hybrid cybernetic model with elementary modes (HCM-EM) framework

[37]. This methodology combined the pseudo steady state assumption of in-

tracellular metabolism and the flux pathways described by elementary modes

with dynamic balances describing substrate consumption, product formation,

and cell growth. The cybernetic control variables regulate the allocation of sub-

strate resources through specific combinations of elementary modes by weight-
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ing Michaelis-Menten type rate equations describing the substrate uptake rate

and enzyme synthesis and degredation for each mode.

1.3 JuPOETs Approach to Estimating Biochemical Model En-

sembles

Parameter estimation can often be an obstacle in the modeling of biological sys-

tems; as the level of detail increases, the model size and number of parameters

increase exponentially. Ensemble modeling is a promising approach for obtain-

ing robust predictions and course grained population behavior in deterministic

mathematical models. Ensemble approaches address model uncertainty by us-

ing parameter or model families instead of single best-fit parameters or fixed

model structures. Parameter ensembles can be selected based upon simula-

tion error, along with other criterion such as diversity or steady-state perfor-

mance. Simulations using parameter ensembles can estimate confidence inter-

vals on model variables, and robustly constrain model predictions, despite hav-

ing many poorly constrained parameters.

1.4 Reduced Order Modeling of the Complement System

Complement is an important pathway in innate immunity, inflammation, and

many disease processes. However, despite its importance, there have been few

validated mathematical models of complement activation. The central chal-

lenge of complement model identification is the estimation of model parame-
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ters from experimental measurements. Unlike other important cascades, such

as coagulation where there are well developed experimental tools and publicly

available data sets, the data for complement is relatively sparse. Data sets with

missing or incomplete data, and limited dynamic data also make the identifi-

cation of large mechanistic complement models difficult. Thus, reduced order

approaches which describe the biology of complement using a limited number

of species and parameters could be important for pharmacokinetic model de-

velopment, and for our understanding of the varied role of complement in the

body.

1.5 This Work

This thesis seeks to build upon the advancements in biochemical engineering

and systems biology in an attempt to accurately model the fermentation of B.

subtilis and E. coli. Two approaches were taken towards the modeling of B. sub-

tilis fermentation and riboflavin production: a classical Monod model describ-

ing batch and fed-batch behavior, and an HCM-EM of a network of B. subtilis

metabolism consisting of glycolysis, the pentose-phosphate pathway, and the

TCA cycle. A new technique was developed to model the fermentation of E.

coli that builds upon the principles used in HCM-EM and utilizes FBA to dras-

tically reduce the number of modes, and therefore, the number of ODEs, kinetic

parameters, and computational overhead. The new technique is termed hybrid

cybernetic modeling with flux balance analysis or HCM-FBA.

The B. subtilis Monod model was capable of fitting to experimental data and

model robustness was assessed through parameter perturbation and a sensi-

tivity analysis. The developed Monod model was then used to predict a feed-

4



ing profile capable of increasing the yield of riboflavin in a fed-batch culture.

It was found that an exponential feed improved the titer three-fold. A struc-

tured model using elementary modes to describe intracellular metabolism at a

pseudo steady state was then developed. A hybrid cybernetic model framework

was used to control dynamic flux of substrate through metabolic pathways and

describe growth, substrate uptake, and product formation over the course of

the modeled experiment. The structured model was able to describe cell mass

growth and acetate formation, however, it over predicted the formation of ri-

boflavin. This overestimation is attributed to the large number of ordinary dif-

ferential equations (ODEs) and estimated kinetic parameters coupled with the

need for multiple objective functions. A method is proposed to better train the

model to experimental data using the JuPOETS package in the Julia program-

ming language. The development and future validation of a B. subtilis HCM-EM

has the potential to predict experimentally determined intracellular fluxes and

give the metabolic engineer insight into gene modification targets for strain im-

provement.

HCM-FBA was developed to assess metabolic networks that are too large or

computationally expense to analyze with HCM-EM. First, HCM-FBA perfor-

mance was shown comparable to HCM-EM using a small proof of concept

model and a reduced network model of anaerobic E. coli. HCM-FBA was then

applied to a larger metabolic network of aerobic E. coli metabolism which was

infeasible for HCM-EM. HCM-EM produced 153,000 elementary modes com-

pared to 29 modes generated with HCM-FBA. HCM-FBA was able to capture

the shift from glucose to acetate consumption observed in experimental data

that HCM-EM was not able to model. Global sensitivity analysis further re-

duced the number of FBA modes required to describe the aerobic E. coli data,
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while maintaining model fit. Thus, HCM-FBA is a promising alternative to

HCM-EM for large networks where the generation of elementary modes is in-

feasible.

JuPOETs, the Pareto Optimal Ensemble Technique in the Julia programming

language, was developed as a multiobjective based technique to estimate pa-

rameter or model ensembles. JuPOETs integrates simulated annealing with

Pareto optimality to estimate ensembles on or near the optimal tradeoff surface

between competing training objectives. We demonstrate JuPOETs on a suite of

multiobjective problems, including test functions with parameter bounds and

system constraints as well as for the identification of a proof-of-concept bio-

chemical model with four conflicting training objectives. JuPOETs identified op-

timal or near optimal solutions approximately six-fold faster than a correspond-

ing implementation in Octave for the suite of test functions. For the proof-of-

concept biochemical model, JuPOETs produced an ensemble of parameters that

gave both the mean of the training data for conflicting data sets, while simulta-

neously estimating parameter sets that performed well on each of the individual

objective functions.

Finally, an ensemble of experimentally validated reduced order complement

models was developed. Ordinary differential equations were combined with

logical rules to produce a compact yet predictive complement model. The

model, which described the lectin and alternative pathways, was an order of

magnitude smaller than comparable models in the literature. An ensemble of

model parameters was estimated from in vitro dynamic measurements of the

C3a and C5a complement proteins. Subsequently, we validated the model on

unseen C3a and C5a measurements not used for model training. Despite its

small size, the model was surprisingly predictive. Global sensitivity and robust-

6



ness analysis were performed to elucidate key reactions and binding events in

the system. The model described experimental data, and predicted the need for

multiple points of therapeutic intervention to fully disrupt complement activa-

tion.
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CHAPTER 2

UNSTRUCTURED AND STRUCTURED MODELING OF THE

RIBOFLAVIN PRODUCING BACILLUS SUBTILIS STRAIN RB50::PRF69

AND ITS QUINOL OXIDASE KNOCKOUT MUTANTS

2.1 Introduction

Bacillus subtilis is a model organism used for the industrial production of chem-

icals in the food and feed industries [17] [18]. It is a gram-positive bacteria

commonly found in soil and the gastrointestinal tract of humans. B. subtilis also

has a number of resilient properties that lend it to being ideal for industrial pro-

cesses including the ability to ferment in acidic, neutral, and basic environments

and the ability of certain strains to withstand extreme temperatures [80]. Previ-

ously, strains of B. subtilis have been engineered to produce industrially relevant

quantities of ionosine and guanosine (20-40 g
L ) and the genes responsible for ri-

boflavin biosynthesis pathway were sequenced and shown to be organized in

a single operon [65] [93]. GTP is a precursor to riboflavin and the ability of

the strain to produce it in high quantities stimulated efforts to engineer a strain

capable of producing industrial amounts of riboflavin, or vitamin B2 [4] [20].

The RB50::pRF69 strain was engineered by Perkins et al. (1999) to increase the

production of GTP and was equipped with additional copies of the rib operon

containing the riboflavin biosynthetic genes resulting in a drastic increase in

riboflavin yield [65] [112].

Several metabolic engineering studies have been undertaken to characterize

and improve the RB50::pRF69 strain [14] [15] [112] . Zamboni et al. hypoth-

esized that improving energy generation efficiency and reducing maintenance
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metabolism would increase the production of riboflavin by redirecting electron

flow. A knockout study was conducted of two quinol oxidases in the aerobic

electron transport chain, aa3 oxidase and bd oxidase, encoded by qoxA-D and

cydAB respectively [112]. The work demonstrated that the cyd knockout mu-

tant was capable of growing to higher culture densities and producing a larger

amount of riboflavin in chemostat studies than the unmodified RB50::pRF69.

It was concluded that the knockout of the less efficient cyd quinol oxidase (1

H+/e−) redirected energy flow to a more efficient route, one of which may have

been the the aa3 oxidase (qox) (2 H+/e−) [105] [113]. Knockout of the qox quinol

oxidase resulted in reduced TCA cycle fluxes indicating an inefficient transport

of energy [112]. In an attempt to further characterize these strains and poten-

tially gain insight into areas for either process improvement or genetic modifi-

cation targets for strain improvement, this study modeled the fermentation of

RB50::pRF69 and its mutants using an unstructured model based on Monod ki-

netics and a structured model of B. subtilis metabolism using a hybrid cybernetic

framework combined with elementary modes.

Monod kinetics were used to model the batch culture of RB50::pRF69 and

the cyd and qox mutants and the fed-batch culture of RB50::pRF69. The model

was composed of 5 ODEs and 7 kinetic parameters that were fit to describe

experimental data. For the batch culture simulations, ensembles of randomly

perturbed parameter sets about the best fit were generated to assess model ro-

bustness. A global sensitivity analysis using the python package SALib and

Sobol methodology [27] was performed to determine the parameters that influ-

enced the model the greatest. It was determined that specific growth rate had

the largest overall sensitivity. The developed model was then applied to fed-

batch growth of RB50::pRF69 and fit to experimental data. The estimated kinetic

9



parameters were then fixed and code was generated to optimize riboflavin yield

by varying the feeding profile. The model determined an exponential feed rate

would yield higher culture density and a three-fold improvement in riboflavin

production. Although the Monod model is capable of describing experimental

data and fermentation processes, it fails to take into account the B. subtilis intra-

cellular metabolism, drastically simplifying the complexity of the organism.

To computationally analyze B. subtilis intracellular metabolism a hybrid cy-

bernetic model using elementary modes (HCM-EM) based on the methodology

of Kim et al (2008) was developed to describe the batch culture of B. subtilis

strain RB50::pRF69 [37]. The metabolic network considered was adapted from

Dauner & Sauer [15] and consisted of glycolysis, the pentose phosphate path-

way, and the TCA cycle (Figure 2.1). The cell mass reaction applied to the net-

work was adapted from Dauner, Bailey, and Sauer (2001) [14].

10



Glucose 

G6P 

F6P 

T3P 

PGA 

PEP 

PYR 

ACA Acetate 

P5P 

E4P S7P 

Riboflavin 

SER GLY C1 

OAA 

MAL 

FUM 

OGA 

TCA CYCLE 

NADPH 

NADPH 

NADH 

NADH + 0.25 ATP 

2 NADH + 02 1.5 ATP 

C1 NADH NADH NADPH 

2 NADPH CO2 

NADH 

3 NADH 

2 NADPH 

CO2 

CO2 

CO2 

NADH 

CO2 
NADH 

NADH 

CO2 
CO2 

NADPH 
NADH 

G
LY

C
O

LY
SI

S 

PENTOSE PHOSPHATE 
PATHWAY 

Figure 2.1: B. subtilis reaction network adapted from Dauner & Sauer (2001)
[15]. Network includes 32 reactions involving glycolysis, pentose-phosphate
pathway, and TCA cycle. Boldface arrows indicate that chemical species
are reactants for the formation of biomass. Chemical species abbrevia-
tions: G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; T3P, triose-3-
phosphates; PGA, 3-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyru-
vate; ACA; acetyl coenzyme A; P5P, pentose-5-phosphates; S7P, seduheptulose-
7-phosphate; E4P, erythrose-4-phosphate; SER, serine; GLY, glycine; C1, methyl
group bound to tetrahydrofolate; OAA, oxaloacetate; OGA, oxoglutarate; FUM,
fumarate; MAL, malate.

METATOOL 5.1[34] was used to generate 170 elementary modes and an

HCM-EM framework was generated consisting of 174 ODEs and 386 kinetic

parameters. The developed model is capable of describing batch culture of
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RB50::pRF69 with respect to cell growth and acetate formation, however, it over-

estimates the production of riboflavin. This overestimation is likely due to the

large network size, number of estimated kinetic parameters, and ODEs coupled

with the need for multiple objective functions. The Julia programming language

package JuPOETs is proposed as a way to better fit the model to experimental

data in the future.

2.2 Results and Discussion

2.2.1 Monod Kinetics for Batch Culture of RB50::pRF69 and the

cyd and qox Mutants

Monod kinetics were used to model the batch culture of B. subtilis strain

RB50::pRF69 and its cyd and qox mutants. The model, composed of 5 ODEs

and 7 kinetic parameters, was fit to experimental data from Zamboni’s disserta-

tion (2003) [112] by minimizing the sum of the squared residuals between sim-

ulated and experimental results. An ensemble of 1,600 parameter variants was

generated by randomly perturbing the best fit parameter set for each strain to

demonstrate model robustness. Best fit and ensemble results are shown in Fig-

ure 2.2 for RB50::pRF69 and its two mutant strains. Best fit parameter values

can be found below in Table 2.1.

12



Parameter RB50::pRF69 cyd Mutant qox Mutant
µ (hr−1) 0.713 0.838 0.933
Ks (mmol,glc

L ) 0.001 0.003 0.084
kd (hr−1) 0.239 0.367 0.442
qm,ace (mmol,ace

OD ) 0.511 1 2.88
Yace,glc (mmol,ace

mmol,clc ) 4.02 2.67 8.28
Yribo,glc (mmol,ribo

mmol,glc ) 8.16 3.64 4.22
Ybio,glc ( OD

mmol,glc ) 1.70 2.96 2.03

Table 2.1: Monod Best Fit Kinetic Parameters. Estimated using MATLAB func-
tion fmincon

RB50::pRF69 cyd Mutant qox Mutant

Figure 2.2: Batch culture modeling results of Bacillus subtilis strain RB50::pRF69
and its cyd and qox mutants with Monod kinetics are presented in Figure 2.2.
Experimental data (black dots) compared to model best fit (red line) and 99%
confidence interval range (grey area) from the model output of 1,600 parameter
variant ensemble set generated by perturbing the best fit solution by ±10%.
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In order to determine the parameters with the greatest influence on model

performance, a sensitivity analysis (Figure 2.3) of estimated kinetic parameters

was conducted using the python package SALib and Sobol sensitivity program

[27].
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Figure 2.3: Sobol sensitivity analysis results for Monod batch culture model of
B. subtilis strain RB50::pRF69 and the cyd and qox. Specific growth rate (µ), and
cell death (kd), exhibited the greatest sensitivity. The saturation constant (Ks)
exhibited a smaller, but still meaningful degree of sensitivity. Sobol sensitivity
analysis performed in python using the SALib package to generate an ensemble
of 1,600 parameter variants perturbed around each simulations best fit values.
Error bars represent the 95% confidence intervals of the sensitivity coefficients.

The analysis determined that the values of the specific growth rate of each

strain (µ) and cell death rate (kd) influence the model output the greatest, while

the Monod saturation constant (Ks) also has a significant, yet smaller sensitivity.

It is an expected result that these parameters yield the highest sensitivity values

for the model developed. These three parameters account for the growth and
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death of cell mass which directly influences product formation.

2.2.2 Fed-Batch Feeding Optimization

Given the ability of classical Monod kinetics to accurately describe experimen-

tal data for the batch culture of strain RB50::pRF69 and its mutants, a fed-batch

model of B. subtilis growth was developed to assess culture conditions in a

more industrially relevant process. One shortcoming of modeling cell growth

via Monod kinetics is that kinetic constants are often different for the same or-

ganism and same strain under different culture conditions. As a result of this

shortcoming, when the model was adapted to fed-batch culture the kinetic pa-

rameters had to be refit to describe the data of Ruehl et al. (2010) [75]. The

fed-batch model was able to fit experimental data relatively well with the sole

addition of cell feeding and a dilution due to growth term on each of the mass

balances (Figure 2.4); however, the decrease in acetate concentration over time

observed experimentally could not be captured exactly. The addition of the

MATLAB heaviside function to delay the consumption of acetate due to mainte-

nance facilitated the model to accurately describe the change in acetate observed

experimentally (Figure 2.5).

15



Ac
et

at
e 

(m
m

ol
/L

)

0

50

100

150

Ac
et

at
e 

(m
m

ol
/L

)

0

50

100

150

Bi
om

as
s 

(O
D

)

0

10

20

30

40

50

60

70

Bi
om

as
s 

(O
D

)

0

10

20

30

40

50

60

70

Fe
ed

 R
at

e 
(L

/h
r)

0

0.05

0.1

0.15

0.2

0.25

0.3

Fe
ed

 R
at

e 
(L

/h
r)

0

0.05

0.1

0.15

0.2

0.25

0.3

G
lu

co
se

 (m
m

ol
/L

)

0

0.1

0.2

0.3

0.4

0.5

0.6

G
lu

co
se

 (m
m

ol
/L

)

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (hr)
0 2 4 6 8 10 12

R
ib

of
la

vi
n 

(g
/L

)

0

0.5

1

1.5

2

2.5

3

3.5

Time (hr)
0 2 4 6 8 10 12

R
ib

of
la

vi
n 

(g
/L

)

0

0.5

1

1.5

2

2.5

3

3.5

Time (hr)
0 2 4 6 8 10 12

C
ul

tu
re

 V
ol

um
e 

(L
)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time (hr)
0 2 4 6 8 10 12

C
ul

tu
re

 V
ol

um
e 

(L
)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Figure 2.4: Feeding profile optimization of B. subtilis RB50::pRF69 based on ob-
jective function to increase riboflavin production (black line) per hour yielded
an exponential feeding profile. Model was first fit (grey line) to experimental
data [75] (black circles) in order to identify kinetic parameters. Glucose con-
centration in feed was set to 170 g

L for both parameter estimation and feed opti-
mization cases to coincide with experimental conditions. Parameter estimation
model feed rate was fixed at 6.4 mL

hr . Monod kinetic parameters identified from
experimental data were fixed during feed optimization study.

16



Bi
om

as
s 

(O
D

)

0

5

10

15

20

25

30

35

40

45

50

Bi
om

as
s 

(O
D

)

0

5

10

15

20

25

30

35

40

45

50

Ac
et

at
e 

(m
m

ol
/L

)

0

10

20

30

40

50

60

Ac
et

at
e 

(m
m

ol
/L

)

0

10

20

30

40

50

60

G
lu

co
se

 (m
m

ol
/L

)

0

0.1

0.2

0.3

0.4

0.5

0.6

G
lu

co
se

 (m
m

ol
/L

)

0

0.1

0.2

0.3

0.4

0.5

0.6

Fe
ed

 R
at

e 
(L

/h
r)

0

0.05

0.1

0.15

0.2

0.25

Fe
ed

 R
at

e 
(L

/h
r)

0

0.05

0.1

0.15

0.2

0.25

Time (hr)
0 2 4 6 8 10 12

R
ib

of
la

vi
n 

(g
/L

)

0

0.5

1

1.5

2

2.5

3

Time (hr)
0 2 4 6 8 10 12

R
ib

of
la

vi
n 

(g
/L

)

0

0.5

1

1.5

2

2.5

3

Time (hr)
0 2 4 6 8 10 12

C
ul

tu
re

 V
ol

um
e 

(L
)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time (hr)
0 2 4 6 8 10 12

C
ul

tu
re

 V
ol

um
e 

(L
)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Figure 2.5: Feeding profile optimization of B. subtilis RB50::pRF69 with time de-
lay heaviside function placed on acetate maintenance coefficient. Acetate main-
tenance set to zero until t = 3 hours. Optimized case (black line) based on objec-
tive function to increase riboflavin production per hour yielded an exponential
feeding profile. Model was first fit (grey line) to experimental data [75] (black
circles) in order to identify kinetic parameters. Glucose concentration in feed
was set to 170 g

L for both parameter estimation and feed optimization cases to
coincide with experimental conditions. Parameter estimation model feed rate
was fixed at 6.4 mL

hr . Monod kinetic parameters identified from experimental
data were fixed during feed optimization study.
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Code was then written to maximize the production of riboflavin by varying

the feeding rate subject to reactor volume constraints and limiting the change in

feeding to ±1.75 times the previous volume of feed delivered in order to main-

tain a realistic feeding profile. The optimized model produced an exponential

feed rate capable of achieving a higher cell density and a three-fold improve-

ment on riboflavin yield. The result of an exponential feeding profile is unsur-

prising, as such methods are commonly used in industry to maximize product

formation while maintaining a relatively constant specific growth rate [61] [66].

These results, however, are purely mathematical. Given the opportunity, an

experimental study should be undertaken to validate the prediction that the

optimized feeding profile will indeed produce a higher yield of riboflavin.

Monod kinetics were used to build a model of B. subtilis growth and product

formation capable of fitting experimental data for batch and fed batch scenarios.

The benefits of such a model include the small number of kinetic parameters,

mass balances, and computational overhead coupled with the ability to provide

insight into experimental design for process improvement (i.e. cell feeding).

The Monod approach, however, is limited in the sense that it assumes the com-

plex inner workings of the cell to be a ’black-box’ type environment in which

inputs (substrates) are fed in and outputs (biomass and extracellular metabo-

lites) are produced. This approach fails to provide any biological insight for

the metabolic engineer or biologist to rationally design experiments for strain

development and improvement.
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2.2.3 Structured Model of B. subtilis Metabolism via HCM-EM

The inability of Monod kinetics to describe intracellular metabolism, combined

with the variance of Monod parameters for the same strain under different

culture conditions has motivated the undertaking of the development of a dy-

namic model of B. subtilis metabolism. A reaction network consisting of 32 re-

actions describing the B. subtilis glycolysis backbone, coupled with the pentose-

phosphate pathway and TCA cycles was considered to model cell growth and

product formation. METATOOL 5.1 [34] analysis was used to compute the el-

ementary modes for this reaction network and resulted in the generation of

170 elementary modes. Three types of modes were generated depending on

the substrate(s) consumed: 125 modes responsible for consuming glucose as

the only substrate, 3 modes consuming only acetate, and 42 modes consuming

both glucose and acetate simultaneously. An HCM-EM framework was then

developed to describe dynamic growth behavior through the incorporation of

dynamic balances and cybernetic control variables responsible for the regula-

tion of flux through each elementary mode. The resulting model contained 386

kinetic parameters and 174 ODEs. The preliminary results of this model are

presented in Figure 2.6.
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Figure 2.6: HCM-EM B. subtilis model (line) with experimental data (circles)
from Ruehl et al 2010 [75]. The HCM-EM model decomposed a network of 32
reactions describing glycolysis, the pentose phosphate pathway, and the TCA
cycle into 170 elementary modes, 174 ordinary differential equations, and 386
kinetic parameters. The model was build in the Julia programming language
and trained to experimental data using simulated annealing.
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It should be noted that although the HCM-EM model was able to accurately

describe biomass growth and acetate formation, the model overestimated the

production of riboflavin in the culture. This is most likely due to the large num-

ber of kinetic parameters and ODEs in the model and the use of multiple ob-

jective functions to describe several outputs. In order to better describe the ex-

perimental data, a study utilizing the JuPOETs code, an algorithm specifically

designed for large models and multiple objective functions, will be undertaken

to improve the model. The model will then be assessed to determine if it is ca-

pable of predicting experimental intracellular flux measurements. If successful,

the model has the potential to facilitate the metabolic engineer with a platform

to run simulated experiments of the organism under a variety of conditions, to

observe the differences in intracellular fluxes, and to identify metabolic bottle-

necks and sites for knockouts or gene modifications for rational strain design.

2.3 Materials and Methods

2.3.1 Unstructured Monod Kinetics Model

Traditional Monod Kinetics [85] were used to model culture of riboflavin pro-

ducing B subtilis strain RB50::pRF69 and two quinol oxidase knockout mutants.

Five ordinary differential equations (ODEs) were created to model the time evo-

lution of cell biomass, glucose, acetate and riboflavin, and culture volume:
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dBio
dt

= (µ − kd)Bio −
F
V

Bio (2.1)

dGlc
dt

= −

(
µ

Ybio/glc

)
Bio +

F
V

(Glcin −Glc) (2.2)

dAce
dt

=

(
µ

Yace/glc
− qm,ace

)
Bio −

F
V

Ace (2.3)

dRibo
dt

=

(
µ

Yribo/glc

)
Bio −

F
V

Ribo (2.4)

dVol
dt

= F (2.5)

Where Bio refers to biomass, Glc to glucose, Glcin to the concentration of

glucose in the feed, Ace to acetate, Ribo to riboflavin, Vol to culture volume, and

F to feed rate. Biomass is presented in units of Optical Density (OD600), glucose

and acetate in mmol
L , and riboflavin in g

L or mg
L . A conversion factor 0.33 g cell

dry weight per OD600 was experimentally determined for the RB50::pRF69 and

mutant strains of B. subtitlis [114]. The model results are presented in units of

OD600. The yield coefficients Ybio/glc, Yace/glc, and Yribo/glc refer to the production of

biomass, acetate, and riboflavin due to glucose consumption respectively. qm,ace

accounts for the consumption of acetate for cellular maintenance. µ refers to the

specific growth rate on glucose as governed by the equation:

µ =
µmaxGlc
Ks +Glc

(2.6)

The mass balances were subject to the initial conditions of the experiment

being modeled. Batch culture experimental data from [112] was used to train

the batch mutant models and feed rate F was set to zero. For fed-batch model

training, the feed rate F was fixed at 6.4 mL
hr and glucose feed concentration to

170 g
L to coincide with culture conditions of Ruehl et al 2010 [75]. The model

equations were solved via MATLAB ode45.
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2.3.2 Estimation of Model Parameters

Model parameters were estimated by minimizing the difference between simu-

lations and experimental measurements (squared residual):

min
k

T∑
τ=1

S∑
j=1

(
x̂ j (τ) − x j (τ,k)

ω j (τ)

)2

(2.7)

where x̂ j (τ) denotes the measured value of species j at time τ, x j (τ,k) denotes

the simulated value for species j at time τ, and ω j (τ) denotes the experimental

measurement variance for species j at time τ. The outer summation is with

respect to time, while the inner summation is with respect to state. The model

residual was minimized using the MATLAB function fmincon.

2.3.3 Feeding Profile Optimization

To first estimate the kinetic parameters for the fed-batch culture conditions,

Equation 2.7 was used and culture feed rate was set to 6.4mL
hr and feed concentra-

tion of glucose to 170 g
L to coincide with the experimental conditions of [75]. The

model timestep was set to 1 hour and the area under the riboflavin curve was

approximated using the MATLAB function trapz. The MATLAB function fmin-

con was then used to maximize the area under the curve for riboflavin for each

hour during culture by varying the feeding rate with a constant glucose inlet

concentration of 170 g
L . Several constraints were placed on the optimization rou-

tine to keep the results meaningful: each timestep feed rate was prevented from

increasing more than ±1.75 times the amount fed during the previous timestep

and the maximum culture volume was restricted to 1.2 L to mimic the size of
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the bioreactor used in the experiment. The fed-batch model acetate fit was im-

proved by multiplying the acetate maintenance coefficient by a heaviside func-

tion to delay the consumption of acetate by 3 hours.

2.3.4 Ensemble Generation

Parameter ensembles (N = 1,600) were generated by randomly perturbing pa-

rameters around their best fit values. Plots of the mean model performance,

99% confidence interval, and best fits were generated to demonstrate model ro-

bustness under variation.

2.3.5 Global Sensitivity Analysis

Variance based sensitivity analysis was used to estimate which parameters were

critical to model performance. The performance function used in this study was

previously mentioned squared residual. Candidate parameter sets (N = 1,600)

were generated using Sobol sampling by perturbing the best fit parameter set

for each mutant [27]. Model performance, calculated for each of these parameter

sets, was then used to estimate the total-order sensitivity coefficient and 95%

confidence interval for each model parameter.

2.3.6 Hybrid Cybernetic Model using Elementary Modes

The HCM-EM approach, adapted from [37] is a modification of the Flux Balance

Analysis (FBA) technique in which intracellular reactions are assumed to be at a
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pseudo steady state. HCM-EM modifies this approach by including a set of dif-

ferential equations to describe the dynamic behavior of extracellular variables.

In this study, the abundance of extracellular species i (xi), the pseudo enzyme el

(catalyzes flux through mode l), and cell mass are governed by:

dxi

dt
=

R∑
j=1

L∑
l=1

σi jz jlql (e,k, x) c i = 1, ...,M (2.8)

del

dt
= αl + rEl (k, x) ul − (βl + rG) el l = 1, ...,L (2.9)

dc
dt
= rGc (2.10)

where R andM denote the number of reactions and extracellular species in the

model and L denotes the number of elementary modes. The quantity σi j de-

notes the stoichiometric coefficient for species i in reaction j and z jl denotes the

normalized flux for reaction j in mode l. If σi j > 0, species i is produced by

reaction j; if σi j < 0, species i is consumed by reaction j; if σi j = 0, species i is

not connected with reaction j. Extracellular species balances were subject to the

initial conditions x (to) = xo determined from experimental data. All pseudo en-

zymes were set to the initial value of 0.8. The term ql (e,k, x) denotes the specific

uptake/secretion rate for mode l where e denotes the pseudo enzyme vector, k

denotes the unknown kinetic parameter vector, and x denotes the extracellular

species vector; ql (e,k, x) is the product of a kinetic term (q̄l) and a control vari-

able governing enzyme activity. Flux through each mode was catalyzed by a

pseudo enzyme el, synthesized at the regulated specific rate rE,l (k, x), and con-

stitutively at the rate αl. The term ul denotes the cybernetic variable controlling

the synthesis of enzyme l. The term βl denotes the rate constant governing non-

specific enzyme degradation, and rG denotes the specific growth rate through

all modes. The specific uptake/secretion rates and the specific rate of enzyme
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synthesis were modeled using saturation kinetics. The specific growth rate was

given by:

rG =

L∑
l=1

zµlql (e,k, x) (2.11)

where zµl denotes the growth flux µ through mode l. The control variables ul

and vl, which control the synthesis and activity of each enzyme respectively,

were given by:

ul =
zslq̄l

L∑
l=1

zslq̄l

vl =
zslq̄l

max
l=1,...,L

zslq̄l
(2.12)

where zsl denotes the uptake flux of substrate s through mode l.

Elementary Modes

The model developed contained 386 kinetic parameters and 174 ODEs for the

reaction network of 32 reactions consisting of B. subtilis glycolysis, pentose-

phosphate pathway, and TCA cycle (Figure 2.1) adapted from [15]. The biomass

formation reaction used was modeled after Dauner, Bailey, and Sauer (2001)

[14]. 170 elementary modes were calculated for the network using METATOOL

5.1 [34]. The model equations were implemented in Julia (v.0.4.2) [8] and solved

using SUNDIALS [28]. The model parameters were estimated by minimizing

the difference between simulated and experimental measurements (Eqn 2.7).
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CHAPTER 3

EFFECTIVE DYNAMIC MODELS OF METABOLIC NETWORKS

Submitted to IEEE Life Sciences Letters for publication. Michael Vilkhovoy,

Mason Minot, Jeffrey D. Varner. doi: http://dx.doi.org/10.1101/047316.

3.1 Introduction

Cybernetic models are an alternative to the constraints based approach which

hypothesize that metabolic control is the output of an optimal decision. Cy-

bernetic models have predicted mutant behavior [103, 90], steady-state multi-

plicity [38], strain specific metabolism [89], and have been used in bioprocess

control applications [24]. Hybrid cybernetic models (HCM) have addressed

earlier shortcomings of the approach by integrating cybernetic optimality con-

cepts with EMs. HCMs dynamically choose combinations of biochemical modes

(each catalyzed by a pseudo enzyme whose expression is controlled by an op-

timal decision) to achieve a physiological objective (Fig. 3.1A). HCMs gen-

erate intracellular flux distributions consistent with other approaches such as

metabolic flux analysis (MFA), and also describe dynamic extracellular mea-

surements [37]. However, HCMs are restricted to networks which can be de-

composed into EMs (or EPs).

In this study, we developed the hybrid cybernetic modeling with flux bal-

ance analysis (HCM-FBA) technique. HCM-FBA is a modification of the hy-

brid cybernetic approach of Ramkrishna and coworkers [37] which uses FBA

solutions (instead of EMs) in conjunction with cybernetic control variables to

dynamically simulate metabolism. We compared the performance of HCM-
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FBA to HCM-EM for a prototypical metabolic network along with two E. coli

networks. HCM-FBA performed comparably to HCM-EM for the prototyp-

ical network and a reduced anaerobic E. coli network, despite having fewer

parameters in each case. Next, HCM-FBA was applied to an aerobic E. coli

metabolic network that was infeasible for HCM-EM. HCM-FBA described cell

mass growth and the shift from glucose to acetate consumption with only a

few modes. Global sensitivity analysis allowed us to further reduce the aero-

bic E. coli HCM-FBA model to the minimal model required to describe the data.

Thus, HCM-FBA is a promising approach for the development of reduced order

dynamic metabolic models and a viable alternative to HCM-EM, especially for

large networks where the generation of EMs is infeasible.

3.2 Results

HCM-FBA was equivalent to HCM-EM for a prototypical metabolic network

(Fig. 3.1). The proof of concept network, consisting of 6 metabolites and 7 reac-

tions (Fig. 3.1B), generated 3 FBA modes and 6 EMs. Using the EMs and syn-

thetic parameters, we generated test data from which we estimated the HCM-

FBA model parameters. The best fit HCM-FBA model replicated the synthetic

data (Fig. 3.1C). The HCM-EM and HCM-FBA kinetic parameters were not

quantitatively identical, but had similar orders of magnitude; the FBA approach

had 3 fewer modes, thus identical parameter values were not expected. Taken

together, the HCM-FBA approach replicated synthetic data generated by HCM-

EM, despite having 3 fewer modes. Next, we tested the ability of HCM-FBA to

replicate experimental data.
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Figure 3.1: HCM proof of concept metabolic study. A: HCMs distribute uptake
and secretion fluxes amongst different pathways. For HCM-EM, these path-
ways are elementary modes; for HCM-FBA these are flux balance analysis solu-
tions. HCM-EM combines all possible modes within a network; whereas HCM-
FBA combines only steady-state paths estimated by flux balance analysis. B:
Prototypical network with six metabolites and seven reactions. Intracellular cell
mass precursors A, B, and C are balanced (no accumulation) while the extracel-
lular metabolites (Ae, Be, and Ce) are not balanced (can accumulate). The oval
denotes the cell boundary, q j is the jth flux across the boundary, and vk denotes
the kth intracellular flux. C: Simulation of extracellular metabolite trajectories
using HCM-FBA (solid line) versus HCM-EM (points) for the prototypical net-
work.

The performance of HCM-FBA was equivalent to HCM-EM for anaerobic E.

coli metabolism (Fig. 3.2A). We constructed an anaerobic E. coli network [37],

consisting of 12 reactions and 19 metabolites, which generated 7 FBA modes

and 9 EMs. HCM-EM reproduced cell mass, glucose, and byproduct trajectories
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using the kinetic parameters reported by Kim et al. [37] (Fig. 3.2A, points versus

dashed). HCM-FBA model parameters were estimated in this study from the

Kim et al. data set using simulated annealing. Overall, HCM-FBA performed

within 5% of HCM-EM (on a residual standard error basis) for the anaerobic E.

coli data (Fig. 3.2A, solid), despite having 2 fewer modes and 4 fewer parameters

(17 versus 21 parameters). Thus, while both HCM-EM and HCM-FBA described

the experimental data, HCM-FBA did so with fewer modes and parameters.

HCM-FBA captured the shift from glucose to acetate consumption for a

model of aerobic E. coli metabolism that was infeasible for HCM-EM (Fig. 3.2B).

An E. coli metabolic network (60 metabolites and 105 reactions) was constructed

from literature [82][63]. Elementary mode decomposition of this network (and

thus HCM-EM) was not feasible; 153,000 elementary modes were generated be-

fore the calculation became infeasible. Conversely, flux balance analysis gener-

ated only 29 modes for the same network. HCM-FBA model parameters were

estimated from cell mass, glucose, and acetate measurements [102] using sim-

ulated annealing (Fig. 3.2B, solid). HCM-FBA captured glucose consumption,

cell mass formation, and the switch to acetate consumption following glucose

exhaustion. HCM-FBA described the dynamics of a network that was infeasi-

ble for HCM-EM, thereby demonstrating the power of the approach for large

networks. Next, we demonstrated a systematic strategy to identify the critical

subset of FBA modes required for model performance.

Global sensitivity analysis identified the FBA modes essential to model per-

formance (Fig. 3.3). Total order sensitivity coefficients were calculated for all

kinetic parameters and enzyme initial conditions in the aerobic E. coli model.

Five of the 29 FBA modes were significant; removal of the most significant of
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Figure 3.2: HCM-FBA versus HCM-EM performance for small and large
metabolic networks. A: Batch anaerobic E. coli fermentation data versus HCM-
FBA (solid) and HCM-EM (dashed). The experimental data was reproduced
from Kim et al.[37]. Error bars represent the 90% confidence interval. B: Batch
aerobic E. coli fermentation data versus HCM-FBA (solid). Model performance
is also shown when minor modes (dashed) and major modes (dotted) were re-
moved from the HCM-FBA model. The experimental data was reproduced from
Varma & Palsson [102]. Error bars denote a 10% coefficient of variation.

these modes (encoding aerobic growth on glucose) destroyed model perfor-

mance (Fig. 3.2B, dotted). Conversely, removing the remaining 24 modes had

a negligible effect upon model performance (Fig. 3.2B, dashed). The sensitivity
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Figure 3.3: Global sensitivity analysis of the aerobic E. coli model. Total order
variance based sensitivity coefficients were calculated for the biomass yield on
glucose and acetate. Sensitivity coefficients were computed for kinetic parame-
ters and enzyme initial conditions (N = 183,000). Error bars represent the 95%
confidence intervals of the sensitivity coefficients.

analysis identified the minimal model structure required to explain the experi-

mental data.

3.3 Discussion

In this study, we developed HCM-FBA, an effective modeling technique to sim-

ulate metabolic dynamics. HCM-FBA uses flux balance analysis solutions (in-

stead of elementary modes) in conjunction with cybernetic control variables to

dynamically simulate metabolism. We studied the performance of HCM-FBA

on a prototypical metabolic network, along with two E. coli networks. First, we

showed that the performance of HCM-FBA and HCM-EM were comparable for

the prototypical network and a small model of anaerobic E. coli metabolism. For
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the anaerobic case, both approaches described the experimental data. However,

HCM-FBA (which was within 5% of HCM-EM and slightly better than HCM-

EM for lactate secretion) had fewer modes and parameters. Next, HCM-FBA

was applied to an aerobic E. coli metabolic network that was not feasible for

HCM-EM. Elementary mode decomposition of the aerobic network generated

over 153,000 elementary modes. Conversely, the HCM-FBA approach described

cell mass growth and the shift from glucose to acetate consumption with only

29 FBA modes. Global sensitivity analysis further showed that only 5 of the

29 FBA modes were critical to model performance. Removal of these modes

crippled the model, but removal of the remaining 24 modes had a negligible

impact. Thus, HCM-FBA is an alternative approach to HCM-EM, especially for

large networks where the generation of elementary modes is infeasible.

HCM-FBA is a promising approach to model large metabolic networks

where elementary modes calculations are infeasible. However, there are ad-

ditional studies that should be performed. First, the intracellular flux distribu-

tion predicted by HCM-FBA should be compared to HCM-EM and to flux mea-

surements calculated using MFA or FBA in combination with carbon labeling.

HCM-EM predicted intracellular fluxes that were similar to MFA results [37];

however, the fluxes predicted by HCM-FBA have not yet been validated. Next,

the performance of HCM-FBA should be compared to lumped hybrid cyber-

netic models (L-HCM). L-HCMs, which combine elementary modes into mode

families based upon metabolic function [88, 89], have been applied to an E. coli

network with 67 reactions and a Saccharomyces cerevisiae network with 70 reac-

tions; both cases had satisfactory fits to extracellular experimental data. How-

ever, while L-HCM reduces the dimension of possible alternative modes that

must be considered, it still requires the calculation of an initial set of modes. For
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metabolic networks of even moderate size, EM (or EP) decomposition may not

be possible. On the other hand, the generation of flux balance solutions (convex

combinations of the elementary modes or extreme pathways) is trivial, even for

genome scale metabolic networks. Thus, HCM-FBA opens up the possibility

for dynamic genome scale models of bacterial and perhaps even of mammalian

metabolism.

3.4 Materials and Methods

3.4.1 Elementary mode and flux balance analysis

The HCM-FBA approach is a modification of HCM-EM, where elementary

modes are replaced with flux balance analysis solutions. The dynamic equa-

tions describing cybernetic variables, the formation of extracellular metabolites,

and specific growth have been presented in Section 2.3.6. Elementary modes

were calculated using METATOOL 5.1 [34]. FBA modes were defined as the so-

lution flux vector through the network connecting substrate uptake to cell mass

and extracellular product formation. The FBA problem was formulated as:

max
w

(
wob j = θ

T w
)

Subject to : Sw = 0

αi ≤ wi ≤ βi i = 1, 2, ...,R (3.1)

where S denotes the stoichiometric matrix, w denotes the unknown flux vec-

tor, θ denotes the objective selection vector and αi and βi denote the lower and

upper bounds on flux wi, respectively. The flux balance analysis problem was

solved using the GNU Linear Programming Kit (v4.52) [1]. For each FBA mode,
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the objective wob j was to maximize either the specific growth rate or the spe-

cific rate of byproduct formation. Multiple FBA modes were calculated for each

objective by allowing the oxygen and nitrate uptake rates to vary. For aerobic

metabolism, the specific oxygen and nitrate uptake rates were constrained to

allow a maximum flux of 10 mM/gDW·hr and 0.05 mM/gDW·hr, respectively.

Each FBA mode was normalized by the specified objective flux.

3.4.2 Global sensitivity analysis

Variance based sensitivity analysis was used to estimate which FBA modes were

critical to model performance. The performance function used in this study was

the biomass yield on substrate. Candidate parameter sets (N = 182,000) were

generated using Sobol sampling by perturbing the best fit parameter set ±50%

[27]. Model performance, calculated for each of these parameter sets, was then

used to estimate the total-order sensitivity coefficient for each model parameter.

3.4.3 Estimation of model parameters

Model parameters were estimated by minimizing the difference between sim-

ulations and experimental measurements (Eqn 2.7). The model residual was

minimized using simulated annealing implemented in the Julia programming

language.
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CHAPTER 4

JUPOETS: A CONSTRAINED MULTIOBJECTIVE OPTIMIZATION AP-

PROACH TO ESTIMATE BIOCHEMICAL MODEL ENSEMBLES IN THE

JULIA PROGRAMMING LANGUAGE

Submitted for publication to BMC Systems Biology. David Bassen, Michael

Vilkhovoy, Mason Minot, Jonathan T Butcher, and Jeffrey D. Varner.

doi: http://dx.doi.org/10.1101/056044

Author contributions: J.V. developed the software presented in this study.

M.M and M.V developed the proof-of-concept biochemical model. The

manuscript was prepared and edited for publication by D.B, J.B, and J.V.

4.1 Introduction

Ensemble modeling is a promising approach for obtaining robust predictions

and course grained population behavior in deterministic mathematical models.

Ensemble approaches address model uncertainty by using parameter or model

families instead of single best-fit parameters or fixed model structures. Param-

eter ensembles can be selected based upon simulation error, along with other

criterion such as diversity or steady-state performance. Simulations using pa-

rameter ensembles can estimate confidence intervals on model variables, and

robustly constrain model predictions, despite having many poorly constrained

parameters.

In this study, we present a multiobjective based technique to estimate pa-

rameter or models ensembles, the Pareto Optimal Ensemble Technique in the
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Julia programming language (JuPOETs). JuPOETs integrates simulated anneal-

ing with Pareto optimality to estimate ensembles on or near the optimal trade-

off surface between competing training objectives. We demonstrate JuPOETs

on a suite of multiobjective problems, including test functions with parameter

bounds and system constraints as well as for the identification of a proof-of-

concept biochemical model with four conflicting training objectives. JuPOETs

identified optimal or near optimal solutions approximately six-fold faster than

a corresponding implementation in Octave for the suite of test functions. For

the proof-of-concept biochemical model, JuPOETs produced an ensemble of pa-

rameters that gave both the mean of the training data for conflicting data sets,

while simultaneously estimating parameter sets that performed well on each of

the individual objective functions.

JuPOETs is a promising approach for the estimation of parameter and model

ensembles using multiobjective optimization. JuPOETs can be adapted to solve

many problem types, including mixed binary and continuous variable types,

bilevel optimization problems and constrained problems without altering the

base algorithm. JuPOETs is open source available under an MIT license, and can

be installed using the Julia package manager from the JuPOETs GitHub reposi-

tory

4.2 Background

Ensemble modeling is a promising approach for obtaining robust predictions

and course grained population behavior in deterministic mathematical models.

It is often not possible to uniquely identify all the parameters in biochemical
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models, even when given extensive training data [23]. Thus, despite significant

advances in standardizing biochemical model identification [25], the problem

of estimating model parameters from experimental data remains challenging.

Ensemble approaches address parameter uncertainty in systems biology and

other fields like weather prediction [7, 41, 32, 62] by using parameter families in-

stead of single best-fit parameter sets. Parameter families can be selected based

upon simulation error, along with other criterion such as diversity or steady-

state performance. Simulations using parameter ensembles can estimate confi-

dence intervals on model variables, and robustly constrain model predictions,

despite having many poorly constrained parameters [26, 91]. There are many

techniques to generate parameter ensembles. Battogtokh et al., Brown et al., and

later Tasseff et al. generated experimentally constrained parameter ensembles

using a Metropolis-type random walk [7, 32, 97, 98]. Liao and coworkers devel-

oped methods that generate ensembles that all approach the same steady-state,

for example one determined by fluxomics measurements [100]. They have used

this approach for model reduction [96], strain engineering [12, 95] and to study

the robustness of non-native pathways and network failure [43]. Maranas and

coworkers have also applied this method to develop a comprehensive kinetic

model of bacterial central carbon metabolism, including mutant data [36]. We

and others have used ensemble approaches, generated using both sampling and

optimization techniques, to robustly simulate a wide variety of signal transduc-

tion processes [48, 91, 97, 98, 56], neutrophil trafficking in sepsis [90], patient

specific coagulation behavior [47], uncertainty quantification in metabolic ki-

netic models [3] and to capture cell to cell variation [44]. Thus, ensemble ap-

proaches are widely used to robustly simulate a variety of biochemical systems.

Identification of biochemical models with hundreds or even thousands of
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states and parameters may not be tractable as a single objective optimization

problem. Further, large models require significant training data perhaps taken

from diverse sources, for example different laboratories or cell-lines. These data

are often heterogenous, and contain intrinsic conflicts that complicate parame-

ter estimation. Parameter ensembles which optimally balance tradeoffs between

submodels and conflicts in training data can lead to robust model performance.

Multiobjective optimization is an ensemble generation technique that naturally

balances conflicting training data. Previously, we developed the Pareto Optimal

Ensemble Technique (POETs) algorithm to address the challenge of competing

or conflicting objectives. POETs, which integrates simulated annealing (SA) and

multiobjective optimization through the notion of Pareto rank, estimates pa-

rameter ensembles which optimally trade-off between competing (and poten-

tially conflicting) experimental objectives [92]. However, the previous imple-

mentation of POETs, in the Octave programming language [19], suffered from

poor performance and was not configurable. For example, Octave-POETs does

not accommodate user definable objective functions, bounds and problem con-

straints, cooling schedules, different variable types e.g., a mixture of binary and

continuous design variables or custom diversity generation routines. Octave-

POETs was also not well integrated into a package or source code management

(SCM) system. Thus, upgrades to the approach containing new features, or bug

fixes were not centrally managed.

4.3 Implementation

In this study, we present an open-source implementation of the Pareto optimal

ensemble technique in the Julia programming language (JuPOETs). JuPOETs

39



offers many advantages and improvements compared to Octave-POETs. JuPO-

ETs takes advantage of the unique features of Julia. Julia is a cross-platform,

high-performance programming language for technical computing that has per-

formance comparable to C but with syntax similar to MATLAB/Octave and

Python [8]. Julia also offers a sophisticated compiler, distributed parallel exe-

cution, numerical accuracy, and an extensive function library. Further, the ar-

chitecture of JuPOETs takes advantage of the first-class function type in Julia

allowing user definable behavior for all key aspects of the algorithm, including

objective functions, custom diversity generation logic, linear/non-linear param-

eter constraints (and parameter bounds constraints) as well as custom cooling

schedules. Julia’s ability to naturally call other languages such as Python or

C also allows JuPOETS to be used with models implemented in a variety of

languages across many platforms. Additionally, Julia offers a built-in package

manager which is directly integrated with GitHub, a popular web-based Git

repository hosting service offering distributed revision control and source code

management. Thus, JuPOETs can be adapted to many problem types, including

mixed binary and continuous variable types, bilevel problems and constrained

problems without altering the base algorithm, as was required in the previous

POETs implementation.

4.3.1 JuPOETs optimization problem formulation.

JuPOETs solves the K−dimensional constrained multiobjective optimization

problem:
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min
p
{O1 (x(t,p),p) ...OK (x(t,p),p) (4.1)

subject to:

f(t, x(t,p), ẋ(t,p),u(t),p) = 0

g1 (t, x(t,p),u(t),p) ≥ 0

...

gC (t, x(t,p),u(t),p) ≥ 0

and parameter bound constraints:

L ≤ p ≤ U (4.2)

using a modified simulated annealing approach. The quantity t denotes time,

x (t,p) denotes the model state (with an initial state x0), and u(t) denotes an input

vector. The terms f(t, x(t,p), ẋ(t,p),u(t),p) denote the system of model equations

(e.g., differential equations, differential algebraic equations or linear/non-linear

algebraic equations) where p denotes the unknown parameter vector (D × 1).

The parameter search can be subject to parameter bound constraints, where L

andU denote the lower and upper parameter bounds, respectively as well as C

problem specific constraints gi (t, x(t,p),u(t),p) , i = 1, ...,C.

JuPOETs integrates simulated annealing with Pareto optimality to estimate

parameter sets on or near the optimal tradeoff surface between competing train-

ing objectives (Fig. 4.1 and Fig. 4.2).
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Figure 4.1: Pseudo-code for the main run-loop of JuPOETs. The user specifies
the neighbor, acceptance, cooling and objective functions along with
an initial parameter guess. The rank archive R, solution archive S and objective
archive O are initialized from the initial guess. The initial guess is perturbed
in the neighbor function, which generates a new solution whose performance
is evaluated using the user supplied objective function. The new solution
and objective values are then added to the respective archives and ranked using
the builtin rank function. If the new solution is accepted (based upon a prob-
ability calculated with the user supplied acceptance function) it is added to
the solution and objective archive. This solution is then perturbed during the
next iteration of the algorithm. However, if the solution is not accepted, it is
removed from the archive and discarded. The computational temperature is
adjusted using the user supplied cooling function after each I iterations.
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k : parameter vector
E(k) : multi-objective cost function vector 
 (E(k)=(E1(k),E2(k),...,EN(k)))
K : an archive of the current estimate of the ensemble
rank(k|K) : a Pareto-optimal rank based dominance  
         measure 

k = kinit % the starting point of parameters
T = T0 % initial annealing temperature

Repeat
 knew = perturb (kcurrent) 
 % Generate a new parameter guess (random
 walk or local search)  
 Calculate E(knew) and rank(knew|K)
 Paccept(knew, kcurrent) ≡ exp{-rank(knew|K) / T}
 if  Paccept(knew, kcurrent) > rand(0,1)
  Move to knew
  Update the archive K
 endif
 T=annealing(T)
EndRepeat (until the termination condition is satisfied)

k1

k2

kn

Parameter Space

obj1

obj2

objm

Objective function Space

“Pareto-optimal front”

random walk

pi

pj

Parameter space Objective space

Figure 4.2: Schematic of multiobjective parameter mapping. The performance
of any given parameter set is mapped into an objective space using a ranking
function which quantifies the quality of the parameters. The distance away from
the optimal tradeoff surface is quantified using the Pareto ranking scheme of
Fonseca and Fleming in JuPOETs.
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The central idea of POETs is a mapping between the value of the objective

vector evaluated at pi+1 (parameter guess at iteration i + 1) and Pareto rank.

JuPOETs calculates the performance of a candidate parameter set pi+1 by call-

ing the user defined objective function; objective takes a parameter set

as an input and returns a K × 1 objective vector. Candidate parameter sets are

generated by the user supplied neighbor function. The error vector associated

with pi+1 is ranked using the builtin Pareto rank function, by comparing the

current error at iteration i + 1 to the error archive Oi (all error vectors up to iter-

ation i− 1 meeting a ranking criteria). Pareto rank is a measure of distance from

the trade-off surface; parameter sets on or near the optimal trade-off surface be-

tween the objectives have a rank equal to 0 (no other current parameter sets are

better). Sets with increasing non-zero rank are progressively further away from

the optimal trade-off surface. Thus, a parameter set with a rank = 0 is better

in a trade-off sense than rank > 0. We implemented the Fonseca and Fleming

ranking scheme in the builtin rank function [22]:

rank (Oi+1 (pi+1) | Oi) = r (4.3)

where rank r is the number of parameter sets that dominate (are better than)

parameter set pi+1, and Oi+1 (pi+1) denotes the objective vector evaluated at pi+1.

We used the Pareto rank to inform the SA calculation. The parameter set pi+1

was accepted or rejected by the SA, by calculating an acceptance probability

P (pi+1):

P(pi+1) ≡ exp {−rank (Oi+1 (pi+1) | Oi) /T } (4.4)

where T is the computational annealing temperature. As rank (Oi+1 (pi+1) | Oi)→

0, the acceptance probability moves toward one, ensuring that we explore pa-

rameter sets along the Pareto surface. Occasionally, (depending upon T ) a pa-

rameter set with a high Pareto rank was accepted by the SA allowing a more
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diverse search of the parameter space. However, as T is reduced, the probabil-

ity of accepting a high-rank set occurring decreases. Parameter sets could also

be accepted by the SA but not permanently archived in Si. Only parameter sets

with rank less than or equal to threshold (rank ≤4 by default) were included

in Si, where the archive was re-ranked and filtered after every new parameter

set was accepted. Parameter bounds were implemented in the neighbor func-

tion as box constraints, while problem specific constraints were implemented in

objective using a penalty method:

Oi + λ

C∑
j=1

min
{
0, g j (t, x(t,p),u(t),p)

}
i = 1, ...K (4.5)

where λ denotes the penalty parameter (λ = 100 by default). However,

because both the neighbor and objective functions are user defined, dif-

ferent constraint implementations are easily defined. JuPOETs can be in-

stalled using the Julia package manager from the JuPOETs repository at

https://github.com/varnerlab/POETs.jl. Sample code is included in the

sample/biochemical subdirectory of the JuPOETs repository to help users

get started using JuPOETs in their projects.

4.4 Results and Discussion

JuPOETs identified optimal or nearly optimal solutions sigdfnificantly faster

than Octave-POETs for a suite of multiobjective test problems (Table 4.1). The

wall-clock time for JuPOETs and Octave-POETs was measured for 10 indepen-

dent trials for each of the test problems.

The same cooling, neighbor, acceptance, and objective logic was

employed between the implementations, and all other parameters were held
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FunctionName Dimension Domain Constraints

Binh and Korn 
function 2

O1 (x, y) = 4x2 + 4y2

O2 (x, y) = (x � 5)
2

+ (y � 5)
2

0  x  5

0  y  3

g1 (x, y) = (x � 5)
2

+ y2  25

g2 (x, y) = (x � 8)
2

+ (y + 3)
2 � 7.7

Fonseca and 
Fleming function 3 �4  xi  4O1 (xi) = 1 � exp

 
�

NX

i=1

✓
xi �

1p
N

◆2
!

O2 (xi) = 1 � exp

 
�

NX

i=1

✓
xi +

1p
N

◆2
!

Schaffer 
function 1

O1 (x) = x2

O2 (x) = (x � 2)
2

�10  x  10

Table 4.1: Multi-objective optimization test problems. We tested the JuPOETs
implementation on three two-dimensional test problems, with one-, two- and
three-dimensional parameter vectors. Each problem had parameter bounds
constraints, however, on the Binh and Korn function had additional non-linear
problem constraints. For the Fonesca and Fleming problem, N = 3.

constant. For each test function, the search domain was partitioned into 10 seg-

ments, where an initial parameter guess was drawn from each partition. The

number of search steps for each temperate was I = 10 for all cases, and the

cooling parameter was α = 0.9. On average, JuPOETs identified optimal or near

optimal solutions for the suite of test problems six-fold faster (60s versus 400s)

than Octave-POETs (Fig. 4.3).

JuPOETs produced the characteristic tradeoff curves for each test problem,

given both parameter bound and problem constraints (Fig. 4.4).

Thus, JuPOETs estimated an ensemble of solutions to constrained multiob-

jective optimization test problems significantly faster than the current Octave

implementation. Next, we tested JuPOETs on a proof-of-concept biochemical

model identification problem.

JuPOETs estimated an ensemble of biochemical models that was consistent

with the mean of synthetic training data. Four synthetic training data sets were
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Figure 4.3: The performance of JuPOETs on the multi-objective test suite. The
execution time (wall-clock) for JuPOETs and POETs implemented in Octave was
measured for 10 independent trials for the suite of test problems. The num-
ber of steps per temperature I = 10, and the cooling parameter α = 0.9 for all
cases. The problem domain was partitioned into 10 equal segments, an initial
guess was drawn from each segment. For each of the test functions, JuPOETs
estimated solutions on (rank zero solutions, black) or near (gray) the optimal
tradeoff surface, subject to bounds and problem constraints.

generated from a prototypical biochemical network consisting of 6 metabolites

and 7 reactions (Fig. 4.5).

We considered a common case in which the same measurements were made

on four hypothetical cell types, each having the same biological connectivity

but different performance. Network dynamics were modeled using the hybrid

cybernetic model with elementary modes (HCM-EM) approach of Ramkrishna

and coworkers [37]. In the HCM-EM approach, metabolic networks are first de-

composed into a set of elementary modes (EMs) (chemically balanced steady-

state pathways, see [83]). Dynamic combinations of elementary modes are then

used to characterize network behavior. Each elementary mode is catalyzed by
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Figure 4.4: Representative JuPOETs solutions for problems in the multi-
objective test suite. The number of steps per temperature I = 10, and the cool-
ing parameter α = 0.9 for all cases. The problem domain was partitioned into
10 equal segments, an initial guess was drawn from each segment. For each of
the test functions, JuPOETs estimated solutions on (rank zero solutions, black)
or near (gray) the optimal tradeoff surface, subject to bounds and problem con-
straints.

a pseudo enzyme; thus, each mode has both kinetic and enzyme synthesis pa-

rameters. The proof of concept network generated 6 EMs, resulting in 13 model

parameters. The synthetic data was generated by randomly varying these pa-

rameters. JuPOETs produced an ensemble of approximately dimS ' 13,000

parameters that captured the mean of the measured data sets for extracellular

metabolites and cellmass (Fig. 4.5A and B). JuPOETs minimized the difference

between the simulated and measured values for Ae, Be, Ce and cellmass, where

the residual for each data set was treated as a single objective (leading to four
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Figure 4.5: Proof of concept biochemical network study. Inset right: Prototypi-
cal biochemical network with six metabolites and seven reactions modeled us-
ing the hybrid cybernetic approach (HCM). Intracellular cellmass precursors
A, B, and C are balanced (no accumulation) while the extracellular metabolites
Ae, Be, and Ce are dynamic. The oval denotes the cell boundary, q j is the jth
flux across the boundary, and vk denotes the kth intracellular flux. Four data
sets (each with Ae, Be,Ce and cellmass measurements) were generated by vary-
ing the kinetic constants for each biochemical mode. Each data set was a single
objective in the JuPOETs procedure. A: Ensemble simulation of extracellular
substrate Ae and cellmass versus time. B: Ensemble simulation of extracellular
substrate Be and Ce versus time. The gray region denotes the 95% confidence
estimate of the mean ensemble simulation. The data points denote mean syn-
thetic measurements, while the error bars denote the 95% confidence estimate of
the measurement computed over the four training data sets. C: Trade-off plots
between the four training objectives. The quantity O j denotes the jth training
objective. Each point represents a member of the parameter ensemble, where
black denotes a rank 0 set, while gray denotes rank 1 set.

objectives). The 95% confidence estimate produced by the ensemble was consis-

tent with the mean of the measured data, despite having significant uncertainty

in the training data. JuPOETs produced a consensus estimate of the synthetic

data by calculating optimal trade-offs between the training data sets (Fig. 4.5C).

Multiple trade-off fronts were visible in the objective plots, for example between
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data set 3 (O3) and data set 2 (O2). Thus, without a multiobjective approach, it

would be challenging to capture these data sets as fitting one leads to decreased

performance on the other. However, the ensemble contained parameter sets that

described each data set independently (Fig. 4.6).
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Figure 4.6: Experiment to experiment variation is captured by a single ensem-
ble. Cellmass measurements (points) versus time for experiment 2 and 3 were
compared with ensemble simulations. The full ensemble was sorted by simulta-
neously selecting the top 25% of solutions for each objective with rank ≤ 1. The
best fit solution for each objective (line) ± 1-standard deviation (gray region) for
experiment 2 and 3 brackets the training data despite significant differences the
training values between the two data sets.

Thus, JuPOETs produced an ensemble of parameters that gave the mean of

the training data for conflicting data sets, while simultaneously estimating pa-

rameter sets that performed well on each individual objective function.
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4.5 Conclusions

JuPOETs is a significant advance over the previous POETs implementation.

It offers improved performance and is highly adaptable to different problem

types. We demonstrated JuPOETs on a suite of test problems, and a proof-of-

concept biochemical model. However, there are several areas that could be ex-

plored further to improve JuPOETs. First, JuPOETs should be compared with

other multiobjective evolutionary algorithms (MOEAs) to determine its relative

performance on test and real world problems. Many evolutionary approaches

e.g., the nondominated sorting genetic algorithm (NSGA) family of algorithms,

have been adapted to solve multiobjective optimization problems [33, 31]. It is

unclear if JuPOETs will perform as well as these other approaches; one poten-

tial advantage that JuPOETs may have is the local refinement step which tem-

porarily reduces the problem to a single objective formulation. Previously, this

hybrid approach led to better convergence on a proof-of-concept signal trans-

duction model [92]. For many real world parameter estimation problems, the

bulk of the execution time is spent evaluating the objective functions. One strat-

egy to improve performance could be to optimize surrogates [10], while another

would be parallel execution of the objective functions. Currently, JuPOETs seri-

ally evaluates the objective function vector. However, parallel evaluation of the

objective functions could be easily implemented using a variety of techniques

without changing the main run loop of JuPOETs. Because of the flexible function

pointer architecture of JuPOETs, the only changes required are in the user de-

fined objective function. Taken together, JuPOETs has demonstrated improved

flexibility, and performance over POETs in parameter identification and ensem-

ble generation for multiple objectives. JuPOETs has the potential for widespread
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use due to the flexibility of the implementation, and the high level syntax and

distribution tools native to Julia.
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5.1 Introduction

Complement is an important pathway in innate immunity. It plays a significant

role in inflammation, host defense as well as many disease processes. Comple-

ment was discovered in the late 1880s where it was found to ’complement’ the

bactericidal activity of natural antibodies [59]. However, research over the past

decade has shown the importance of complement extends beyond innate im-

munity. For example, complement contributes to tissue homeostasis [69], and

has been linked with several diseases including Alzheimers, Parkinson’s, mul-

tiple sclerosis, schizophrenia, rheumatoid arthritis and sepsis [70, 73]. Com-

plement also plays positive and negative roles in cancer; attacking tumor cells

with altered surface proteins in some cases, while potentially contributing to

tumor growth in others [79, 71]. Lastly, several other important biochemical

systems are integrated with complement including the coagulation cascade, the
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autonomous nervous system and inflammation [71]. Thus, complement is im-

portant in a variety of beneficial and potentially harmful functions in the body.

However, despite its importance, there have been relatively few approved com-

plement specific therapeutics, largely because of safety concerns and challeng-

ing pharmacokinetic constraints.

The complement cascade involves many soluble and cell surface proteins,

receptors and regulators [107, 108]. The outputs of complement are the Mem-

brane Attack Complex (MAC), and the inflammatory mediator proteins C3a and

C5a. The membrane attack complex, generated during the terminal phase of

the response, forms transmembrane channels which disrupt the membrane in-

tegrity of targeted cells, leading to cell lysis and death. On the other hand, the

C3a and C5a proteins act as a bridge between innate and adaptive immunity,

and play an important role in regulating inflammation [79]. Complement ac-

tivation takes places through three pathways: the classical, the lectin and the

alternate pathways. The classical pathway is triggered by antibody recognition

of foreign antigens or other pathogens. A multimeric protein complex C1 binds

antibody-antigen complexes and undergoes a conformational change, leading

to an activated form with proteolytic activity. The activated complex cleaves sol-

uble complement proteins C4 and C2 into C4a, C4b, C2a and C2b, respectively.

The C4a and C2b fragments bind to form the C4bC2a protease, also known as

the classical pathway C3 convertase (CP C3 convertase). The lectin pathway is

initiated through the binding of L-ficolin or Mannose Binding Lectin (MBL) to

carbohydrates on the surfaces of bacterial pathogens. These complexes, in com-

bination mannose-associated serine proteases 1 and 2 (MASP-1/2), also cleave

C4 and C2, leading to additional CP C3 convertase. Thus, the classical and lectin

pathways, initiated by different cues on foreign surfaces, converge at the CP C3
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convertase. However, the alternate pathway works differently. It is activated by

a ’tickover’ mechanism in which complement protein C3 is spontaneously hy-

drolyzed to form an activated intermediate C3w; C3w recruits factor B and fac-

tor D, leading to the formation of C3wBb. C3wBb cleaves C3 into C3a and C3b,

where the C3b fragment further recruits additional factor B and factor D to form

C3bBb, the alternate C3 convertase (AP C3 convertase) [64]. The role of classical

and alternate C3 convertases is varied. First, AP C3 convertases mediate signal

amplification. AP C3 convertases cleave C3 into C3a and C3b; the C3b fragment

is then free to form additional alternate C3 convertases, thereby forming a pos-

itive feedback loop. Next, AP/CP C3 convertases link complement initiation

with the terminal phase of the cascade through the formation of C5 convertases.

Both classical and alternate C3 convertases can recruit C3b subunits to form

the classical pathway C5 convertase (C4bC2aC3b, CP C5 convertase), and the

alternate pathway C5 convertase (C3bBbC3b, AP C5 convertase), respectively.

Both C5 convertases cleave C5 into the C5a and C5b fragments. The C5b frag-

ment, along with the complement proteins C6, C7, C8 and multiple C9s, form

the membrane attack complex. On the other hand, both C3a and C5a are impor-

tant inflammatory signals involved in several responses [107, 108]. Thus, the

complement cascade attacks invading pathogens, while acting as a beacon for

adaptive immunity.

The complement cascade is regulated by plasma and host cell proteins which

balance host safety with effectiveness. The initiation of the classical pathway via

complement protein C1 is controlled by the C1 Inhibitor (C1-Inh); C1-Inh irre-

versibly binds to and deactivates the active subunits of C1, preventing chronic

complement activation [106]. Regulation of upstream processes in the lectin

and alternate pathways also occurs through the interaction of the C4 binding

55



protein (C4BP) with C4b, and factor H with C3b [9]. Interestingly, both factor

H and C4BP are capable of binding their respective targets while in convertase

complexes as well. At the host cell surface, membrane cofactor protein (MCP

or CD46) can interact with C4b and C3b, which protects the host cell from com-

plement self-activation [72]. Delay accelerating factor (DAF or CD55) also rec-

ognizes and dissociates both C3 and C5 convertases on host cell surfaces [49].

More generally the well known inflammation regulator Carboxypeptidase-N

has broad activity against the complement proteins C3a, C4a, and C5a, render-

ing them inactive by cleavage of carboxyl-terminal arginine and lysine residues

[45]. Although Carboxypeptidase-N does not directly influence complement

activation, it silences the important inflammatory signals produced by com-

plement. Lastly, assembly of the MAC complex itself can be inhibited by vit-

ronectin and clusterin in the plasma, and CD59 at the host surface [11, 115].

Thus, there are many points of control which influence complement across the

three activation pathways.

Developing quantitative mathematical models of complement will be crucial

to fully understanding its role in the body. Traditionally, complement models

have been formulated as systems of linear or non-linear ordinary differential

equations (ODEs). For example, Hirayama et al., modeled the classical com-

plement pathway as a system of linear ODEs [29], while Korotaevskiy and co-

workers modeled the classical, lectin and alternate pathways as a system of

non-linear ODEs [40]. More recently, large mechanistic models of sections of

complement have also been proposed. For example, Liu et al., analyzed the

formation of the classical and lectin C3 convertases, and the regulatory role of

C4BP using a system of 45 non-linear ODEs with 85 parameters [46]. Zewde and

co-workers constructed a detailed mechanistic model of the alternative pathway
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which consisted of 107 ODEs and 74 kinetic parameters and delineated between

the fluid, host and pathogen surfaces [115]. However, these previous modeling

studies involved large models with little experimental validation. Thus, while

these models are undoubtably important theoretical tools, it is unclear if they

can describe or quantitatively predict complement measurements. The central

challenge of complement model identification is the estimation of model param-

eters from experimental measurements. Unlike other important cascades, such

as coagulation where there are well developed experimental tools and publicly

available data sets, the data for complement is relatively sparse. Data sets with

missing or incomplete data, and limited dynamic data also make the identifi-

cation of large mechanistic complement models difficult. Thus, reduced order

approaches which describe the biology of complement using a limited number

of species and parameters could be important for pharmacokinetic model de-

velopment, and for our understanding of the varied role of complement in the

body.

5.2 Results

In this study, we developed an ensemble of experimentally validated reduced

order complement models using multiobjective optimization. The modeling ap-

proach combined ordinary differential equations with logical rules to produce

a complement model with a limited number of equations and parameters. The

reduced order model, which described the lectin and alternative pathways, con-

sisted of 18 differential equations with 28 parameters. Thus, the model was

an order of magnitude smaller and included more pathways than comparable

models in the literature. We estimated an ensemble of model parameters from
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in vitro time series measurements of the C3a and C5a complement proteins. Sub-

sequently, we validated the model on unseen C3a and C5a measurements that

were not used for model training. Despite its small size, the model was sur-

prisingly predictive. After validation, we performed global sensitivity and ro-

bustness analysis to estimate which parameters and species controlled model

performance. Sensitivity analysis suggested CP C3 and C5 convertase parame-

ters were critical, while robustness analyses suggested complement was robust

to any single therapeutic intervention; only the knockdown of both C3 and C5

consistently reduced C3a and C5a formation for all cases. Taken together, we

developed a reduced order complement model that was computationally inex-

pensive, and could easily be incorporated into pre-existing or new pharmacoki-

netic models of immune system function. The model described experimental

data, and predicted the need for multiple points of intervention to disrupt com-

plement activation.

5.2.1 Reduced order complement network.

The complement model described the alternate and lectin pathways (Fig. 5.1).

A trigger event initiated the lectin pathway (encoded as a logical rule), which

activated the cleavage of C2 and C4 into C2a, C2b, C4a and C4b respectively.

Classical Pathway (CP) C3 convertase (C4aC2b) then catalyzed the cleavage of

C3 into C3a and C3b. The alternate pathway was initiated through the spon-

taneous hydrolysis of C3 into C3a and C3b (not C3w). The C3b fragment gen-

erated by hydrolysis (or by CP C3 convertase) could then form the alternate

pathway (AP) C3 convertase (C3bBb). We did not consider C3w, nor the forma-
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Figure 5.1: Simplified schematic of the human complement system. The com-
plement cascade is activated through three pathways: the classical, the lectin,
and the alternate pathways. Complement initiation results in the formation of
classical or alternative C3 convertases, which amplify the initial complement
response and signal to the adaptive immune system by cleaving C3 into C3a
and C3b. C3 convertases further react to form C5 convertases which catalyze
the cleavage of the C5 complement protein to C5a and C5b. C5b is critical to
the formation of the membrane attack complex (MAC), while C5a recruits an
adaptive immune response.
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tion of the initial alternate C3 convertase (C3wBb). Rather, we assumed C3w

was equivalent to C3b and only modeled the formation of the main AP C3 con-

vertase. Both the CP and AP C3 convertases catalyzed the cleavage of C3 into

C3a and C3b. A second C3b fragment could then bind with either the CP or AP

C3 convertase to form the CP or AP C5 convertase (C4bC2aC3b or C3bBbC3b).

Both C5 convertases catalyzed the cleavage of C5 into the C5a and C5b frag-

ments. In this initial study, we simplified the model by assuming both factor B

and factor D were in excess. However, we did explicitly account for two con-

trol proteins, factor H and C4BP. Lastly, we did not consider MAC formation,

instead we stopped at C5a and C5b. Lectin pathway activation, and C3/C5

convertase activity was modeled using a combination of saturation kinetics and

non-linear transfer functions, which facilitated a significant reduction in the size

of the model while maintaining performance. Binding interactions were mod-

eled using mass-action kinetics, where we assumed all binding was irreversible.

Thus, while the reduced order complement model encoded significant biology,

it was highly compact consisting of only 18 differential equations and 28 model

parameters. Next, we estimated an ensemble of model parameters from time

series measurements of the C3a and C5a complement proteins.

5.2.2 Estimating an ensemble of reduced order complement

models.

A critical challenge for the development of any dynamic model is the estimation

of model parameters. We estimated an ensemble of complement model param-

eters using in vitro time-series data sets generated with and without zymosan, a
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lectin pathway activator [53]. The residual between model simulations and ex-

perimental measurements was minimized using the dynamic optimization with

particle swarms (DOPS) routine, starting from a random parameter guess. The

best fit parameter set estimated by DOPS was then used to generate a parame-

ter ensemble using multiobjective optimization. Unless otherwise specified, all

initial conditions were assumed to be their mean physiological values. While

we had significant training data, the parameter estimation problem was under-

determined (we were not able to uniquely determine model parameters). Thus,

instead of using the best-fit yet uncertain parameter set generated by DOPS,

we estimated an ensemble of probable parameter sets to quantify model uncer-

tainty (N = 2100, see materials and methods). The complement model ensemble

captured the behavior of both the alternate and lectin pathways (Fig. 5.2). For

the alternate pathway, we used C3a and C5a measurements in the absence of

zymosan (Fig. 5.2A and B). On the other hand, lectin pathway parameters were

estimated from C3a and C5a measurements in the presence of 1mg/ml zymosan

(Fig. 5.2C and D). The reduced order model reproduced a panel of alternate

and lectin pathway data sets in the neighborhood of physiological factor and

inhibitor concentrations. However, it was unclear whether the reduced order

model could predict new data, without updating the model parameters. To ad-

dress this question, we fixed the model parameters and simulated data sets not

used for model training.

We tested the predictive power of the reduced order complement model

with data not used during model training (Fig. 5.3). Six validation cases were

considered, three for C3a and C5a, respectively. All model parameters and ini-

tial conditions were fixed for the validation simulations (with the exception of

zymosan, and other experimentally mandated changes). The ensemble of re-
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Figure 5.2: Reduced order complement model training. An ensemble of model
parameters were estimated using multiobjective optimization from C3a and C5a
measurements with and without zymosan [53]. The model was trained using
C3a and C5a data generated from the alternative pathway (A–B) and lectin
pathway initiated with 1 mg/ml zymosan (C–D). The solid black lines show the
simulated mean value of C3a or C5a for the ensemble, while the dark shaded
region denotes the 99% confidence interval of mean. The light shaded region de-
notes the 99% confidence interval of the simulated C3a and C5a concentration.
All initial conditions were assumed to be at their physiological serum levels
unless otherwise noted.

duced order models predicted the qualitative dynamics of C3a formation (Fig.

5.3, top), and C5a formation (Fig. 5.3, bottom) at three inducer concentrations.

The rate of C3a formation and C3a peak time were directly proportional to ini-

tiator dose. Similarly, the C5a plateau and rate of formation were also directly

proportional to initiator dose, with the lag time being indirectly proportional

to initiator exposure for both C3a and C5a. However, there were shortcom-

ings with model performance. First, while the overall C3a trend was captured
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(within the 99% confidence interval), the C3a dynamics were too fast with the

exception of the low dose case. We believe the C3a time scale was related to our

choice of training data, how we modeled the tickover mechanism, and factor B

and D limitation. We trained the model using either no or 1 mg/ml zymosan,

but predicted cases in a different initiator range; comparing training to predic-

tion, the model performance e.g., the shape of the C3a trajectory was biased

towards either high or very low initiator doses. Next, tickover was modeled

as a first-order generation processes where C3wBb formation and activity was

lumped into the AP C3 convertase. Thus, we skipped an important upstream

step which could strongly influence AP C3 convertase formation by slowing

down the rate C3 cleavage into C3a and C3b. We also assumed both factor B

and factor D were not limiting, thereby artificially accelerating the rate of AP

C3 convertase formation. The C5a predictions followed a similar trend as C3a;

we captured the long-time C5a behavior but over predicted the time scale of

C5 cleavage. However, because the C5a time scale depends strongly upon C3

convertase formation, we can likely correct the C5 issues by fixing the rate of C3

cleavage. Despite these shortcomings, we qualitatively predicted unseen exper-

imental measurements typically within the 99% confidence of the ensemble, for

three inducer levels. Next, we used global sensitivity and robustness analysis

to determine which parameters and species controlled the performance of the

complement model.

5.2.3 Global analysis of the reduced order complement model.

We conducted sensitivity analysis to estimate which parameters controlled the

performance of the reduced order complement model. We calculated the total
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Figure 5.3: Reduced order complement model predictions. Simulations of C3a
and C5a generated in the lectin pathway using 0.1 mg/ml, 0.01 mg/ml, and
0.001 mg/ml zymosan were compared with the corresponding experimental
measurements. The solid black lines show the simulated mean value of C3a or
C5a for the ensemble, while the dark shaded region denotes the 99% confidence
interval of mean. The light shaded region denotes the 99% confidence interval of
the simulated C3a and C5a concentration. All initial conditions were assumed
to be at their physiological serum levels unless otherwise noted.

sensitivity of the C3a and C5a residual to changes in model parameters with

and without zymosan (Fig. 5.4). In the absence of zymosan (where only the al-

ternative pathway is active), the most sensitive parameter was the rate constant

governing the assembly of the AP C3 convertase, as well as the rate constant

controlling basal C3b formation. The C5a trajectory was sensitive to the AP

C5 convertase kinetic parameters (Fig. 5.4A). Interestingly, neither the rate nor

the saturation constant governing AP C3 convertase activity were sensitive in

the absence of zymosan. Thus, C3a formation in the alternative pathway was

more heavily influenced by the spontaneous hydrolysis of C3, rather than AP

C3 convertase activity, in the absence of zymosan. In the presence of zymosan,

the C3a residual was controlled by the formation and activity of the CP C3 con-

64



vertase, as well as tickover and degradation parameters. On the other hand,

the C5a residual was controlled by the formation and activity of CP C5 con-

vertase, and tickover C3b formation in the presence of zymosan (Fig. 5.4B). The

lectin initiation parameters were sensitive, but to a lesser extent than CP conver-

tase kinetic parameters and tickover C3b formation. Thus, sensitivity analysis

suggested that CP C3/C5 convertase formation and activity dominated in the

presence of zymosan, but tickover parameters and AP C5 convertase were more

important without initiator. AP C3 convertase assembly was important, but its

activity was not. Next, we compared the sensitivity results to current therapeu-

tic approaches; pathways involving sensitive parameters have been targeted for

clinical intervention (Fig. 5.4C). In particular, the sensitivity analysis suggested

AP/CP C5 convertase inhibitors, or interventions aimed at attenuating C3 or

C5 would most strongly influence complement performance. Thus, there was

at least a qualitative overlap between sensitivity and the potential of biochem-

ical efficacy. However, sensitivity coefficients are only a local measure of how

small changes in parameters affect model performance. To more closely simu-

late a clinical intervention e.g., administration of an anti-complement inhibitor,

we performed robustness analysis.

Robustness analysis suggested there was no single intervention that inhib-

ited complement activation in the presence of both initiation pathways (Fig.

5.5). Robustness coefficients quantify the response of a protein to a macroscopic

structural or operational perturbation to a biochemical network. Here, we com-

puted how the C3a and C5a trajectories responded to a decrease in the initial

abundance of C3 and/or C5 with and without lectin initiator. We simulated the

addition of different doses of anti-complement inhibitor cocktails by decreasing

the initial concentration of C3, C5 or the combination of C3 and C5 by 50%, 90%
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Figure 5.4: Global sensitivity analysis of the reduced order complement model.
Sensitivity analysis was conducted on the two objectives used for model train-
ing. A: Sensitivity of the C3a and C5a residual w/o zymosan. B: Sensitiv-
ity of the C3a and C5a residual with 1 mg/ml zymosan. The bars denote the
mean total sensitivity index for each parameter, while the error bars denote the
95% confidence interval. C: Pathways controlled by the sensitivity parameters.
Bold black lines indicate the pathway involves one or more sensitive parame-
ters, while the red lines show current therapeutics targets. Current complement
therapeutics were taken from the review of Morgan and Harris [54].

and 99%. This would be conceptually analogous to the administration of a C3

inhibitor e.g., Compstatin alone or combination with Eculizumab (Fig. 5.4C).

The response of the complement model to different knock-down magnitudes

was non-linear; a 90% knock-down had an order of magnitude more impact

than a 50% knock-down. As expected, a C5 knockdown had no effect on C3a

formation for either the alternate (Fig. 5.5A) or lectin pathways (Fig. 5.5B).
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However, C3a and to a greater extent C5a abundance decreased with decreas-

ing C3 concentration in the alternate pathway (Fig. 5.5A). This agreed with the

sensitivity results; changes in AP C3-convertase formation affected the down-

stream dynamics of C5a formation. Thus, if we only considered the alternate

pathway, C3 alone could be a reasonable target, especially given that C5a for-

mation was surprisingly robust to C5 levels in the alternate pathway. Yet, when

both pathways were activated, C5a levels were robust to the initial C3 concen-

tration (Fig. 5.5B); even 1% of the nominal C3 was able to generate enough

AP/CP C5 convertase to maintain C5a formation. Thus, the only reliable in-

tervention that consistently reduced both C3a and C5a formation for all cases

was a knockdown of both C3 and C5. For example, a 90% decrease of both C3

and C5 reduced the formation of C5a by an order of magnitude, while C3a was

reduced to a lesser extent (Fig. 5.5B).

5.3 Discussion

In this study, we developed an ensemble of experimentally validated reduced

order complement models using multiobjective optimization. The modeling ap-

proach combined ordinary differential equations with logical rules to produce

a complement model with a limited number of equations and parameters. The

reduced order model, which described the lectin and alternative pathways, con-

sisted of 18 differential equations with 28 parameters. Thus, the model was

an order of magnitude smaller and included more pathways than comparable

mathematical models in the literature. We estimated an ensemble of model pa-

rameters from in vitro time series measurements of the C3a and C5a comple-

ment proteins. Subsequently, we validated the model on unseen C3a and C5a
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Figure 5.5: Robustness analysis of the complement model. Robustness coeffi-
cients were calculated for a 50, 90, and 99 percent reduction in C3, C5, or C3
and C5 initial conditions. A: Mean robustness index for C3a and C5a generated
from the alternate pathway (w/o zymosan). B: Mean robustness index for C3a
and C5a generated from the lectin and alternate pathway (1 mg/ml zymosan).
The color describes the degree of reduction of C3a or C5a following the network
perturbation. Robustness coefficients were calculated using all parameter sets
with Pareto rank less than five (N = 65).

measurements that were not used for model training. Despite its small size,

the model was surprisingly predictive. After validation, we performed global

sensitivity and robustness analysis to estimate which parameters and species

controlled model performance. These analyses suggested complement was ro-

bust to any single therapeutic intervention. The only intervention that consis-

tently reduced C3a and C5a formation for all cases was a knockdown of both

C3 and C5. Taken together, we developed a reduced order complement model

that was computationally inexpensive, and could easily be incorporated into

pre-existing or new pharmacokinetic models of immune system function. The

model described experimental data, and predicted the need for multiple points
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of intervention to disrupt complement activation.

Despite its importance, there has been a paucity of validated mathemati-

cal models of complement pathway activation. To our knowledge, this study

is one of the first complement models that combined multiple initiation path-

ways with experimental validation of important complement products like C5a.

However, there have been several theoretical models of components of the

cascade in the literature. Liu and co-workers modeled the formation of C3a

through the classical pathway using 45 non-linear ODEs [46]. In contrast, in

this study we modeled lectin mediated C3a formation using only five ODEs.

Though we did not model all the initiation interactions in detail, especially the

cross-talk between the lectin and classical pathways, we successfully captured

C3a dynamics with respect to different concentrations of lectin initiators. The

model also captured the dynamics of C3a and C5a formed from the alternate

pathway using only seven ODEs. The reduced order model predictions of C5a

were qualitatively similar to the theoretical complement model of Zewde et al.,

which involved over 100 ODEs [115]. However, we found that the C3a pro-

duced in the alternate pathway was nearly three orders of magnitude greater

than the C5a generated. While this was in agreement with the experimental

data [53], it differed from the theoretical predictions made by Zewde et al., who

showed C3a was eight orders of magnitude greater than the C5a concentration

[115]. In our model, the time profile of both C3a and C5a generated changed

with respect to the quantity of zymosan (the lectin pathway initiator). In partic-

ular, the C3a peak time was directly proportional to initiator, while the lag phase

for generation was inversely proportional to the initiator concentration. Koro-

taevskiy et al. showed a similar trend using a theoretical model of complement,

albeit for much shorter time scales [40]. Thus, the reduced order complement
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model performed at least as well as existing larger mechanistic models, despite

being significantly smaller.

Global analysis of the complement model suggested potentially important

therapeutic targets. Complement malfunctions are implicated in a spectrum

of diseases, however the development of complement specific therapeutics has

been challenging [70, 54]. Previously, we have shown that mathematical mod-

eling and analysis can be useful tools to estimate therapeutically important

mechanisms [48, 57, 97, 68]. In this study, we analyzed a validated ensemble

of reduced order complement models to better understand the strengths and

weaknesses of the cascade. In the presence of an initiator, C3a and C5a for-

mation was sensitive to CP C3/C5 convertase assembly and activity, and to a

lesser extent lectin initiation parameters. Formation of the CP convertases can

be inhibited by targeting upstream protease complexes like MASP-1,2 from the

lectin pathway (or C1r, C1s from classical pathway). For example, Omeros, a

protease inhibitor that targets the MASP-2 complex, has been shown to inhibit

the formation of downstream convertases [84]. Lampalizumab and Bikaciomab,

which target factor B and factor D respectively, or naturally occurring proteins

such as Cobra Venom Factor (CVF), an analogue of C3b, could also attenuate AP

convertase formation [104, 35, 30]. Removing supporting molecules could also

destabilize the convertases. For example, Novelmed Therapeutics developed

the antibody, NM9401 against propedin, a small protein that stabilizes alter-

nate C3 convertase [5]. Lastly, convertase catalytic activity could be attenuated

using small molecule protease inhibitors. All of these approaches are consis-

tent with the results of the sensitivity analysis. On the other hand, robustness

analysis suggested C3a and C5a generation could only be significantly atten-

uated by modulating the free levels of C3 and C5. The most commonly used
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anti-complement drug Eculizumab, targets the C5 protein [54]. Several other

antibodies targeting C5 are also being developed; for example, LFG316 targets

C5 in Age-Related Macular Degeneration [74], while Mubodina is used to treat

Atypical Hemolytic-Uremic Syndrome (aHUS) [51]. Other agents such as Cov-

ersin [109] or the aptamer Zimura [21] could also be used to knockdown C5.

The peptide inhibitor Compstatin and its derivatives are promising approaches

for the inhibition of C3 [50]. However, while the knockdown of C3 and C5

affect C3a and C5a levels downstream, the abundance, turnover rate and popu-

lation variation of these proteins make them difficult targets [86, 94]. For exam-

ple, the eculizumab dosage must be significantly adjusted during the course of

treatment for aHUS [58]. A validated complement model, in combination with

personalized pharmacokinetic models of immune system function, could be an

important development for the field.

The performance of the complement model was impressive given its limited

size. However, there are several questions that should be explored further. A

logical progression for this work would be to expand the network to include the

classical pathway and the formation of the membrane attack complex (MAC).

However, time course measurements of MAC abundance (and MAC formation

dynamics) are scarce, making the inclusion of MAC challenging. On the other

hand, inclusion of classical pathway activation is straightforward. Liu et al.,

have shown cross-talk between the activation of the classical and lectin path-

ways through C reactive proteins (CRP) and L-ficolin (LF) under inflammation

conditions [46]. Thus, inclusion of these species, in addition to a lumped ac-

tivation term for the classical pathway should allow us to capture classical ac-

tivation. Next, we should address the C3a time scale issue. We believe the

C3a time scale was related to our choice of training data, how we modeled
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the tickover mechanism, and factor B and D limitation. Tickover was mod-

eled as a first-order generation processes where C3wBb formation and activity

was lumped into the AP C3 convertase. Thus, we skipped an important step

which could strongly influence AP C3 convertase formation by slowing down

the rate C3 cleavage into C3a and C3b. The model should be expanded to in-

clude the C3wBb intermediate, where C3wBb catalyzes C3 cleavage at a slow

rate compared to normal AP or CP C3 convertases. We also assumed both factor

B and factor D were not limiting, thereby artificially accelerating the rate of AP

C3 convertase formation. This shortcoming could be addressed by including

balances around factor B and D, and including these species in the appropriate

kinetic rates. The C5a predictions also had an accelerated time scale. However,

because the C5a time scale depended strongly upon C3 convertase formation,

we can likely correct the C5 issues by fixing the rate of C3 cleavage. Lastly, we

should also consider including the C2-bypass pathway, which was not included

in the model. The C2-bypass mediates lectin pathway activation, without the

involvement of MASP-1/2. Thus, this pathway could be important for under-

standing the role of MASP-1/2 inhibitors on complement activation.
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5.4 Materials and Methods

5.4.1 Formulation and solution of the complement model equa-

tions.

We used ordinary differential equations (ODEs) to model the time evolution of

complement proteins (xi) in the reduced order model:

1
τi

dxi

dt
=

R∑
j=1

σi jr j (x, ε,k) i = 1, 2, ...,M (5.1)

where R denotes the number of reactions andM denotes the number of proteins

in the model. The quantity τi denotes a time scale parameter for species i which

captures unmodeled effects. For the current study, τ scaled with the level of

initiator (z) for C5a and C5b; τi = z/z∗ for i = C5a, C5b where z∗ was 1mg/ml,

τi = 1 for all other species. The quantity r j (x, ε,k) denotes the rate of reaction j.

Typically, reaction j is a non-linear function of biochemical and enzyme species

abundance, as well as unknown model parameters k (K × 1). The quantity σi j

denotes the stoichiometric coefficient for species i in reaction j. If σi j > 0, species

i is produced by reaction j. Conversely, if σi j < 0, species i is consumed by

reaction j, while σi j = 0 indicates species i is not connected with reaction j.

Species balances were subject to the initial conditions x (to) = xo.

Rate processes were written as the product of a kinetic term (r̄ j) and a control

term (v j) in the complement model. The kinetic term for the formation of C4a,

C4b, C2a and C2b, lectin pathway activation, and C3 and C5 convertase activity

was given by:

r̄ j = kmax
j εi

 xηs
Kη

js + xηs

 (5.2)
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where kmax
j denotes the maximum rate for reaction j, εi denotes the abundance of

the enzyme catalyzing reaction j, η denotes a cooperativity parameter, and K js

denotes the saturation constant for species s in reaction j. We used mass action

kinetics to model protein-protein binding interactions within the network:

r̄ j = kmax
j

∏
s∈m−j

x−σs j
s (5.3)

where kmax
j denotes the maximum rate for reaction j, σs j denotes the stoichiomet-

ric coefficient for species s in reaction j, and s ∈ m j denotes the set of reactants

for reaction j. We assumed all binding interactions were irreversible.

The control terms 0 ≤ v j ≤ 1 depended upon the combination of factors

which influenced rate process j. For each rate, we used a rule-based approach to

select from competing control factors. If rate j was influenced by 1, . . . ,m factors,

we modeled this relationship as v j = I j

(
f1 j (·) , ..., fm j (·)

)
where 0 ≤ fi j (·) ≤ 1 de-

notes a regulatory transfer function quantifying the influence of factor i on rate

j. The function I j (·) is an integration rule which maps the output of regulatory

transfer functions into a control variable. Each regulatory transfer function took

the form:

fi j

(
Zi, ki j, ηi j

)
= kηi j

i j Z
ηi j

i /
(
1 + kηi j

i j Z
ηi j

i

)
(5.4)

whereZi denotes the abundance of factor i, ki j denotes a gain parameter, and ηi j

denotes a cooperativity parameter. In this study, we used I j ∈ {min,max} [77].

If a process has no modifying factors, v j = 1. The model equations were im-

plemented in Julia and solved using the CVODE routine of the Sundials package

[8, 28]. The model code and parameter ensemble is freely available under an

MIT software license and can be downloaded from http://www.varnerlab.org.
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5.4.2 Estimating an ensemble of complement model parame-

ters.

We estimated a single initial parameter set using the Dynamic Optimization

with Particle Swarms (DOPS) technique [76]. DOPS is a novel hybrid meta-

heuristic which combines a multi-swarm particle swarm method with the dy-

namically dimensioned search approach of Shoemaker and colleagues [99].

DOPS minimized the squared residual between simulated and C3a and C5a

measurements with and without zymosan as a single objective. The best fit

set estimated by DOPS served as the starting point for multiobjective ensemble

generation using Pareto Optimal Ensemble Technique in the Julia programming

language (JuPOETs) [6]. JuPOETs is a multiobjective approach which integrates

simulated annealing with Pareto optimality to estimate model ensembles on or

near the optimal tradeoff surface between competing training objectives. JuPO-

ETs minimized training objectives of the form:

O j(k) =
T j∑
i=1

(
M̂i j − ŷi j(k)

)2
+

M′
i j −max yi j

M′
i j

2

(5.5)

subject to the model equations, initial conditions and parameter bounds L ≤

k ≤ U. The first term in the objective function measured the shape difference

between the simulations and measurements. The symbol M̂i j denotes a scaled

experimental observation (from training set j) while the symbol ŷi j denotes the

scaled simulation output (from training set j). The quantity i denotes the sam-

pled time-index and T j denotes the number of time points for experiment j. The

scaled measurement is given by:

M̂i j =
Mi j −miniMi j

maxiMi j −miniMi j
(5.6)

75



Under this scaling, the lowest measured concentration become zero while the

highest equaled one, where a similar scaling was defined for the simulation

output. The second-term in the objective function quantified the absolute er-

ror in the estimated concentration scale, where the absolute measured con-

centration (denoted by M′
i j) was compared with the largest simulated value.

In this study, we minimized two training objectives, the total C3a and C5a

residual w/o zymosan (O1) and the total C3a and C5a residual for 1 mg/ml

zymosan (O2). JuPOETs identified an ensemble of N ' 2100 parameter sets

which were used for model simulations and uncertainty quantification sub-

sequently. JuPOETs is open source, available under an MIT software license.

The JuPOETs source code is freely available from the JuPOETs GitHub reposi-

tory at https://github.com/varnerlab/POETs.jl. The objective functions used

in this study are available in the GitHub model repository available from

http://varnerlab.org.

5.4.3 Sensitivity and robustness analysis of complement model

performance.

We conducted global sensitivity and robustness analysis to estimate which pa-

rameters and species controlled the performance of the reduced order model.

We computed the total variance-based sensitivity index of each parameter rel-

ative to the training residual for the C3a/C5a alternate and C3a/C5a lectin ob-

jectives using the Sobol method [87]. The sampling bounds for each parameter

were established from the minimum and maximum value for that parameter in

the parameter ensemble. We used the sampling method of Saltelli et al. to com-
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pute a family of N (2d + 2) parameter sets which obeyed our parameter ranges,

where N was the number of trials per parameters, and d was the number of

parameters in the model [78]. In our case, N = 400 and d = 28, so the total sen-

sitivity indices were computed using 23,200 model evaluations. The variance-

based sensitivity analysis was conducted using the SALib module encoded in

the Python programming language[27].

Robustness coefficients quantify the response of a marker to a structural or

operational perturbation to the network architecture. Robustness coefficients

were calculated as shown previously [98]. Log-transformed robustness coeffi-

cients denoted by α̂
(
i, j, to, t f

)
are defined as:

α̂
(
i, j, to, t f

)
= log10

(∫ t f

to
xi (t) dt

)−1 (∫ t f

to
x( j)

i (t) dt
) (5.7)

Here to and t f denote the initial and final simulation time, while i and j de-

note the indices for the marker and the perturbation, respectively. A value of

α̂
(
i, j, to, t f

)
> 0, indicates increased marker abundance, while α̂

(
i, j, to, t f

)
< 0 in-

dicates decreased marker abundance following perturbation j. If α̂
(
i, j, to, t f

)
∼

0, perturbation j did not influence the abundance of marker i. In this study, we

perturbed the initial condition of C3 or C5 or a combination of C3 and C5 by

50%, 90% and 99% and measured the area under the curve (AUC) of C3a or C5a

with and without lectin initiator. We computed the robustness coefficients for a

subset of the parameter ensemble.
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CHAPTER 6

CONCLUSION

This thesis seeks to add to the fields of biochemical engineering and systems

biology in an attempt to accurately model the fermentation of B. subtilis and E.

coli. The B. subtilis fermentation models developed include batch and fed-batch

Monod kinetics and an HCM-EM model of glycolysis, the pentose phosphate

pathway, and the TCA cycle. HCM-FBA was developed to model E. coli fermen-

tation and proposed as an alternative to HCM-EM due to its ability to reduce

model size and computational overhead. JuPOETs was developed to estimate

model parameters and ensembles and applied to a variety of test problems. Fi-

nally, a reduced order model of the complement system was developed and

capable of describing experimental data and predicting targets for therapeutic

intervention.

The Monod kinetic models were trained with experimental data and capable

of describing the fed-batch fermentation of the RB50::pRF69 strain and batch fer-

mentation of RB50::pRF69 and the cyd and qox knockout mutants. The Monod

models consisted of 5 ODEs and 7 kinetic parameters determined by minimiz-

ing the difference in model and experimental results. The fed-batch model was

then modified to maximize the increase in riboflavin production by varying the

feeding profile. An exponential feeding profile was determined to increase the

riboflavin yield 3-fold. However, as these results are purely mathematical, they

must be validated experimentally.

The HCM-EM model of RB50::pRF69 incorporated cybernetic control vari-

ables that dynamically directed flux through the modeled metabolism. The

model consisted of 174 ODEs and 386 kinetic parameters and was capable of de-
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scribing biomass and acetate formation when trained with experimental data.

The model overestimated the production of riboflavin, however, and it was pro-

posed that the Julia programming language package JuPOETs could be a poten-

tial method to retrain the model to describe the experimental data completely. If

the model can be improved it could potentially be used to predict intracellular

flux data found in literature. If validated via flux prediction, the model could be

used to rapidly run a large number of simulated experiments with the organism

to identify metabolic bottlenecks and knockout targets for strain improvement.

HCM-FBA was shown to have comparable performance to HCM-EM for a

proof of concept metabolic network and a reduced network of anaerobic E. coli.

HCM-FB A was then applied to a larger aerobic E. coli network that was compu-

tationally infeasible by HCM-EM due to the large number of elementary modes.

HCM-EM generated 153,000 elementary modes while HCM-FBA generated 29

modes. Sobol sensitivity analysis was used to further reduce the number of FBA

modes from 29 to 5 while maintaining model fit. HCM-FBA was also able to cap-

ture the experimentally observed switch from glucose to acetate consumption

that HCM-EM could not. HCM-FBA is a promising alternative to HCM-EM for

large networks where the generation of elementary modes is infeasible, but still

requires further validation. HCM-FBA could potentially be applied to a wide

variety of biological systems and organisms for the production of proteins and

other valuable products in more complex cells in which networks are too large

to be considered by other methods.

JuPOETs is a promising approach for the estimation of parameter and model

ensembles using multiobjective optimization. JuPOETs integrates simulated

annealing with Pareto optimality to estimate ensembles on or near the opti-
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mal tradeoff surface between competing training objectives. JuPOETs can be

adapted to solve many problem types, including mixed binary and continuous

variable types, bilevel optimization problems and constrained problems with-

out altering the base algorithm. JuPOETs is open source available under an MIT

license, and can be installed using the Julia package manager from the JuPOETs

GitHub repository.

Finally, a reduced order model of the complement system that was compu-

tationally inexpensive and could easily be incorporated into pharmacokinetic

models of immune system function was developed. The model described exper-

imental data, and predicted the need for multiple points of therapeutic interven-

tion to fully disrupt complement activation. ODEs, saturation and Michaelis-

Menten type rate laws, and, logical rules were combined to produce a com-

putationally inexpensive model without sacrificing performance and predictive

capability. The model described the lectin and alternative pathways and was

an order of magnitude smaller than comparable models in the literature. An

ensemble of model parameters was estimated from in vitro dynamic measure-

ments of the C3a and C5a complement proteins. The model was capable of

predicting unseen C3a and C5a experimental data trends. Global sensitivity

and robustness analysis suggested complement was robust to any single ther-

apeutic intervention, however, the knockdown of both C3 and C5 consistently

reduced C3a and C5a formation from all pathways.
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