
  

 

FUNCTIONAL STUDIES OF TRANSCRIPTION, FROM RNA-PROTEIN 

INTERACTIONS, TO PROMOTER PROXIMAL PAUSING, TO THE 

FUNDAMENTAL UNITS OF TRANSCRIPTION INITIATION 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University  

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

by 

Jacob Michael Tome 

May 2018



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018, Jacob Michael Tome



 

FUNCTIONAL STUDIES OF TRANSCRIPTION, FROM RNA-PROTEIN 

INTERACTIONS, TO PROMOTER PROXIMAL PAUSING, TO THE 

FUNDAMENTAL UNITS OF TRANSCRIPTION INITIATION 

 

Jacob Michael Tome, Ph. D.  

Cornell University 2018 

 

 To understand gene regulation, we need both targeted approaches to probe 

individual regulatory components, and systems level approaches to understand the 

functional state of cells.  Presented here are several studies at different points on this 

functional spectrum, with a focus on the crucial regulatory step of promoter proximal 

pausing. 

RNA-protein interactions have critical roles in gene regulation.  We adapted an 

Illumina GAIIx sequencer to make several millions of these measurements with a 

High-Throughput Sequencing – RNA Affinity Profiling (HiTS-RAP) assay.  Millions 

of cDNAs are sequenced, bound by the E. coli replication terminator protein Tus, and 

transcribed in situ, whereupon Tus halts transcription leaving RNA stably attached to 

its template DNA. Binding of fluorescently-labeled protein is then quantified in the 

sequencer.  By measuring the affinity of mutagenized libraries of an RNA aptamer to 

NELF-E, an RNA binding subunit of the pausing factor NELF, we show that this 

interaction is due to a short RNA motif, but the three dimensional structure of the 

aptamer is critical for its high affinity.  We used this aptamer as an in vivo inhibitor of 

the interaction between NELF-E and nascent RNA in Drosophila S2 cells.  Pausing 

was globally reduced, but promoters with the transcription factor GAF were 



 

unchanged.  Thus, the interaction between NELF-E and nascent RNA is not critical for 

pausing when GAF aids NELF recruitment, but is a strong component of NELF 

recruitment elsewhere. 

In higher eukaryotes, the timing and level of transcription at gene promoters by 

RNA Polymerase II (Pol II) is specified largely by the sum of information from the 

promoter itself and from distal enhancers .Transcription widely occurs at enhancers, 

suggesting Pol II may be a ubiquitous nexus of regulatory signaling. To explore this, 

we sequenced nascent RNAs at single-molecule resolution to identify Pol II initiation, 

capping, and pause sites. Our analyses reveal distinct sequence-specified pause classes 

associated with differences in RNA capping dynamics. Initiation typically occurs 

within large clusters, especially at gene promoters.  Integrated analysis of nearby 

chromatin and transcription factors suggests a model of gene regulation in which Pol 

II initiation provides a biophysical scaffold to create and maintain regulatory domains. 
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Chapter 1: Introduction 

Transcription 

 Transcription is the process by which genetic information in deoxyribonucleic acid, or 

DNA is transcribed into ribonucleic acid, or RNA, which then can serve as the template for 

protein synthesis.  Since this basic framework of gene regulation was developed(Jacob and 

Monod, 1961), our understanding of how transcription is regulated has evolved constantly.  

Transcription in metazoans is carried out by three RNA polymerase enzymes, Pol I, Pol II, and 

Pol III, named after the ammonium sulfate fractions in which they were originally 

purified(Roeder and Rutter, 1969).  Pol II is responsible for transcription of most protein coding 

genes, and for transcription of many non-coding transcripts.  Mammalian genomes are 

pervasively transcribed, giving rise to a plethora of both protein coding and noncoding 

transcripts(Djebali et al., 2012).  Varying transcriptional programs are the means by which a 

genome that is essentially identical in every cell within an organism gives rise to different cell 

types, and aberrations in these programs are the cause of many diseases(Lee and Young, 2013).  

Therefore, understanding transcription and its regulation is paramount for our understanding of 

development, normal homeostasis, and disease. 

The Transcription Cycle 

 Transcription by Pol II must proceed through several steps to produce a full length 

transcript(Fuda, Ardehali and Lis, 2009), each of which is potentially rate limiting in certain 

cases.  A schematic of this process is presented in Figure 1. 1.  For transcription factors and the 

general transcription machinery to bind, chromatin must first be made accessible.  Next, 

transcription factors recruit the general transcription machinery to promoters.  The general 
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transcription factors then recruit RNA Polymerase II (Pol II) and facilitate initiation(Murakami et 

al., 2013).  To accomplish this, general transcription factors and activators first assemble a pre-

initiation complex (PIC) at a promoter.  These protein factors recruit Pol II to the promoter.  

There is then an ATP dependent remodeling step in which the DNA is unwound at the 

transcription start site, allowing Pol II to begin transcribing(Sainsbury, Bernecky and Cramer, 

2015).  Now, the initiated polymerase must break its contacts with the promoter to become a 

transcribing polymerase(Saunders, Core and Lis, 2006; Fuda, Ardehali and Lis, 2009).  During 

this process, general transcription factors are evicted from the polymerase, contacts with the 

promoter and associated factors are broken, the transcription bubble collapses, TFIIH 

phosphorylates Ser5 of the CTD, and Pol II proceeds quickly to the site of the promoter proximal 

pause(Saunders, Core and Lis, 2006; Fuda, Ardehali and Lis, 2009; Adelman and Lis, 2012; 

Sainsbury, Bernecky and Cramer, 2015).  As Pol II transitions from initiation to promoter 

proximal pausing, capping takes place(Rasmussen and Lis, 1993).  Pol II remains in a promoter 

proximal paused state for varying amounts of time, providing an opportunity for regulatory input 

and assembly of an elongation complex.  Pause release and entry into productive elongation is 

marked by P-TEFb mediated phosphorylation of Pol II.  Unstable transcripts, like upstream 

divergent and eRNA transcripts will terminate shortly after pause release.  For mRNA and 

lncRNA genes, Pol II transcribes through a transcription unit that could be up to many hundreds 

of kilobases.  This phase is marked by cotranscriptional splicing, and gradual maturation and 

acceleration of the transcribing Pol II(Jonkers and Lis, 2015).  At the end of the transcription 

unit, cleavage and polyadenylation takes place after Pol II transcribes through the cleavage and 

polyadenylation (CPA) site.  Pol II continues transcribing beyond the CPA site, at a slower rate, 

as termination is carried out(Proudfoot, 2016; Schwalb et al., 2016).  The final step is recycling 
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of the Pol II enzyme and associated factors, so that they can be reused for subsequent rounds of 

transcription. 

 
Figure 1. 1: The Transcription Cycle 

Schematic of transcription adapted from (Fuda, Ardehali and Lis, 2009).  The path of the normal 

cycle is indicated with black arrows.  Alternative paths, such as termination before capping, and 

early termination after pause release, are indicated with gray arrows.  Reversible steps are 

indicated by two headed arrows.  Bidirectional mammalian promoters are presented here: after 

pause release, the upstream divergent polymerase terminates, and the polyadenylated transcript is 

degraded.  Enhancer transcription would be most similar to all upstream divergent transcription, 

with termination soon after pause release. 
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 Though the process of transcription is presented here as a cycle, in reality transcription at 

any given site in the genome moves through this process as more of a web, indicated with gray 

arrows in Figure 1. 1.  For example, chromatin does not need to be made accessible for each 

round: accessible sites often remain as such in differentiated cells(Neph et al., 2012; Thurman et 

al., 2012).  Many transcription units (such as eRNAs) terminate shortly after pause release, and 

thus do not go through an elongation phase(Almada et al., 2013).  At some rate, paused Pol II 

terminates before undergoing release(Buckley et al., 2014; Krebs et al., 2017).  Even from an 

mRNA promoter, Pol II could terminate after pause release with some frequency(Brannan et al., 

2012).  At any given locus, multiple transcripts could be taking any number of paths through this 

web.  For example, at an mRNA promoter, the mRNA transcript will undergo pause release and 

enter productive elongation while the upstream divergent transcript terminates shortly after 

release(Leighton J Core et al., 2014).  Transcription can serve many purposes, of which 

production of a functional RNA product is only one.  For example, promoter proximal pausing 

has a role in maintaining nucleosome free promoters and modulating chromatin 

environment(Adelman and Lis, 2012), and enhancers produce transcripts as they carry out their 

role of regulating transcription at a distance(Leighton J Core et al., 2014).  These extra functions 

can involve any step in the transcription cycle: for example, splicing at ‘lncRNA’ enhancers has 

been shown to promote transcriptional activity at nearby targets(Engreitz et al., 2016).  Thus, 

these many paths through the transcription cycle all serve the purpose of regulating gene 

expression.   

Throughout the transcription cycle, the status of the carboxyl-terminal domain (CTD) of 

the largest subunit of Pol II (Rpb1) is a bellwether of these events, and plays a crucial role in 

recruitment of critical regulatory factors at different stages of the cycle(Saunders, Core and Lis, 
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2006).  This disordered domain consists of many repeats of the seven amino acid consensus 

sequence YSPTSPS.  The CTD is important in regulation of the activity of the polymerase and of 

RNA processing events through the transcription cycle.  It serves as a site of assembly for 

processing factors including capping proteins, the spliceosome, and termination factors, as well 

as a site of binding for regulatory proteins(Prelich, 2002).  Many such proteins function in part 

by directly modifying the CTD.  Notably, serines 2, 5, and 7 (Ser2, Ser5, and Ser7) and threonine 

4 (Thr4) are phosphorylated depending on the step of the transcription cycle.  Generally, Ser5 

and Ser7 phosphorylation peak near the beginning of the gene, while Ser2 phosphorylation peaks 

in the gene body(Saunders, Core and Lis, 2006), and Thr4P peaks at the end of the gene.  These 

modifications are critical, as a modified CTD plays a role in recruiting different regulatory 

factors to polymerase through the transcription cycle(Harlen and Churchman, 2017).  A recent 

study by the Churchman lab used mass spectrometry to identify factors that associate with Pol II 

with various CTD modifications in yeast(Harlen et al., 2016).  They find that Ser2P is most 

associated with elongation, and that termination factors are preferentially associated with Pol II 

with a Thr4P modified CTD.  Beyond this, modifications in different regions of the CTD can 

have different functions, as different heptad repeats within the CTD have different proclivities to 

modification(Schuller et al., 2016). 

Modes of Gene Regulation 

 Any step of the transcription cycle can be modulated to tune the levels of mRNA 

produced for a given gene.  Much of this dissertation will focus on promoter proximal pausing as 

a regulated step in gene expression.  Outlined below are some of the basic mechanisms of 

regulation.  A basic theme of this section is that regulatory potential expands exponentially as 
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larger functional units of gene expression are considered.  Thereby, information poor core 

promoters are subjected to extremely tight control. 

The Core Promoter 

 Transcription initiation in eukaryotes is somewhat enigmatic.  Though many core 

promoter elements are specified by well-defined DNA sequences that are recognized by the 

general transcription factors(Vo Ngoc et al., 2017), many promoters have very poor or no 

matches to these sequence elements(Kadonaga, 2012; Lenhard, Sandelin and Carninci, 2012; 

Siebert and Söding, 2014).  Furthermore, promoters that do contain some of these sequence 

elements often do not contain the others(Ohler et al., 2002), so a ‘complete’ core promoter is 

exceedingly rare.  In fact, the simple rational design of a ‘super core promoter’ resulted in a 

promoter that drives transcription at a level higher even than many viral promoters(Juven-

Gershon, Cheng and Kadonaga, 2006).  Thus, a perfect promoter would in fact be undesirable at 

an endogenous gene as it would drive transcription at a level that is too high and thus affords 

little opportunity for fine tuning.  This means that a well-organized core promoter is absolutely 

not required for transcription initiation, especially in mammals, and that the core promoters of 

genes are in reality relatively information poor, though some core promoter elements are 

associated with certain types of transcription units, such as the TCT motif which is present at 

most ribosomal protein genes(Kadonaga, 2012; Lenhard, Sandelin and Carninci, 2012).  Despite 

this, transcription is regulated with exquisite precision, through components of the transcription 

cycle beyond the core promoter and initiation.  Many of these modes of regulation conspire to 

adjust the accessibility of different sequence elements to transcription factors, and to tune the 

availability of the transcription machinery at a locus, so that initiation occurs at the best match to 

a core promoter at the site where these other factors have driven the basal transcription 
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machinery.  Steps beyond initiation, such as promoter proximal pausing and entry into 

productive elongation then provide additional layers of control. 

Transcription Factors 

 Regulation of transcription is carried out at many levels beyond the core promoter 

elements.  Foremost is the availability of transcription factors (TFs).  The human genome 

encodes approximately 1,400 sequence specific transcription factors that can fine-tune the 

expression of promoters by binding their sequence elements near the promoter and then 

recruiting Pol II and the general transcription machinery, pause factors, factors involved in 

altering chromatin environment, or carry out any number of other roles(Vaquerizas et al., 2009).  

Transcription factors are some of the most potent marks of cell identity and drivers of cellular 

responses(Lee and Young, 2013).  As such, the genes encoding key transcription factors are 

among those with the most elaborate systems in place for their regulation, from super-

enhancers(Hnisz et al., 2013), to extremely complex enhancer organization(Fulco et al., 2016) 

and functional relationships(Diao et al., 2016), to vast chromatin domains around their 

promoters(Chen et al., 2015).  With the vast number of transcription factors expressed in any 

give cell type, the possible combinatorics for promoters are huge.  TFs tend to bind in clusters, 

which are often anchored by a few stable binders(Wei et al., 2017).  Thus, transcription factor 

binding underlies most of the other mechanisms of gene regulation that will be discussed here. 

 Understanding the DNA binding specificities of transcription factors is critical for 

assessing their function.  Several methods exist to quantitatively characterize transcription 

binding specificities.  SELEX-based method such as PB-seq(Guertin et al., 2012) or Bind-N-

Seq(Zykovich, Korf and Segal, 2009) have been used to quantitatively determine affinities of 
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transcription factors to naked genomic DNA or random oligonucleotides.  The HiTS-FLIP 

method(Nutiu et al., 2011), which serves as the foundation of my work with RNA binding 

measurements that is described in Chapter 2, images the binding of fluorescently labeled 

transcription factors to random oligonucleotides at different protein concentrations on an 

Illumina sequencing instrument to quantitatively determine affinity to every possible n-mer (up 

to 12-mers).  In recent years, quantitative characterizations of transcription factor binding have 

been scaled up immensely by the Taipale group.  They used SELEX to determine the binding 

specificities of hundreds of TFs(Jolma et al., 2013), to characterize the specificity of pairs of TFs 

which synergize to bind in tandem in ways that would not be predicted from each individual 

factors’ specificity(Jolma et al., 2015), and to characterize affinity in the context of the a 

nucleosome(Zhu et al., 2017).  The hope of these types of characterizations is that they could be 

used to model the regulatory state of a cell if enough parameters are known, such as the 

availability of transcription factors, their affinity to different DNA elements, and the barrier that 

different chromatin environments present. 

Chromatin Environment 

 Chromatin environment is another mechanism by which gene regulation occurs.  Many 

transcription factors are not able to bind their target sequence elements when they are buried in 

closed chromatin(Guertin and Lis, 2010).  The first step in activating transcription in a region of 

closed chromatin is often the binding of a transcription factor that is able to recognize its target 

within closed chromatin (pioneer factor)(Zaret and Carroll, 2011).  After this initial recruitment, 

there is constant cross-talk between chromatin environment and transcription.  The presence of 

the transcription machinery keeps promoters accessible(Adelman and Lis, 2012).  Furthermore, 

the histones of nearby nucleosomes are post translationally modified(Berger, 2002), and these 
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modifications themselves serve to modulate the structure of chromatin and recruit coactivators 

that recognize them(Bannister and Kouzarides, 2011).  Chromatin state is often used to infer the 

activity at loci across the genome.  Generally, the histone modifications H3K4me3 and H3K27ac 

are used as marks of active promoters, and H3K4me1 and H3K27ac for active 

enhancers(Heintzman et al., 2007).  The different histone modifications can thus be used to 

predict activity with varying success: for example, H3K9ac and H3K4me2 have been found to be 

most predictive of Pol II occupancy(Chen et al., 2011).  Integrated analysis of many histone 

marks has been used to develop an HMM based classifier to characterize chromatin state 

genome-wide(Ernst and Kellis, 2012): these powerful predictions are widely used to characterize 

loci as active/inactive and promoter/enhancer, etc.  Thus, transcription factor binding, chromatin 

structure, histone post-translational modifications, and the presence of many co-activators all 

serve to expand the information content at promoters to tune gene expression.  A recent study by 

the Wysocka and Adelman groups highlights these features and how interconnected and 

multifunctional each component is.  They find that the catalytic activity of the H3K4 

methyltransferase MLL3/4 is dispensable for its role in activation of transcription through 

enhancers, but that the presence of MLL is essential(Dorighi et al., 2017).  This indicates that 

these factors have a plethora of functions, and that the environment around promoters is 

extremely complex. 

Three-Dimensional Organization and Enhancers 

 Finally, three dimensional genome organization is another important avenue of 

regulation.  If the possible space for regulatory logic is expanded by considering different levels 

from the core promoter to TF binding to chromatin environment, then another massive gain in 

regulatory potential is made by considering large scale genome organization and the close spatial 
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proximity between loci separated by a long genomic distance that it creates.  Each locus that 

joins a regulatory hub is subject to all of the other regulatory levels discussed up to this point.  

Enhancers, or genomic loci that regulate promoters from a distance, have been known to be 

critical in the regulation of gene expression for decades(Serfling, Jasin and Schaffner, 1985).  

Enhancers often contain critical regulatory information for genes, and are thus frequently are 

misregulated in disease(Smith and Shilatifard, 2014).  Thus, recent efforts have focused on 

mapping the three dimensional organization of the genome to understand where functional distal 

interactions occur.  In order to pack a 2 meter long DNA genome into a cell’s nucleus, it 

undergoes a great deal of packaging.  The genome is folded into large Topologically Associated 

Domains (TADS)(Dixon et al., 2012), which constrain potential distal interactions.  The logic for 

formation of three dimensional interactions is complex.  CTCF is a DNA-binding master 

regulator of folding(Tang et al., 2015), and the cohesion complex is a critical cofactor which 

forms a ring which physically tethers distant loci.  Pol II could serve as the motor for extruding 

DNA through cohesion rings to mediate distal looping interactions(Busslinger et al., 2017).  In 

addition to activating interactions, transcriptional repression is often carried out through high-

order structures as well.  For example, a repressive chromatin environment can spread across 

entire TADs(Lieberman-aiden et al., 2009).  In summary, three dimensional genome 

organization can expand all of the regulatory principles discussed up to this point to many loci 

that act at a distance to affect transcription from a gene promoter, thus constituting a major 

fraction of the total regulatory potential at promoters. 

 The nature of enhancers is somewhat difficult to capture with a simple definition.  

Classically, they are defined as a DNA element that can activate transcription at a distance 

independent of their orientation.  They are subject to many of the same levels of regulation as 
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promoters, and thus can be used to tune the environment around their target sites.  They are sites 

of transcription factor binding(Whyte et al., 2013), carry histone modifications(Calo and 

Wysocka, 2013), are often transcribed(Kim et al., 2010), and loop to promoters in three-

dimensional space(Zabidi and Stark, 2016).  Much of the field uses histone modifications to 

identify enhancers(Heintzman et al., 2007; Ernst and Kellis, 2012).  In the Lis lab, many of our 

efforts to characterize enhancers focus on the fact that they are transcribed.  PRO-cap, a method 

for mapping transcription initiation sites genome-wide by sequencing the 5’ ends of capped 

nascent RNAs(Kruesi et al., 2013), is an extremely sensitive way of identifying sites of 

transcription initiation.  Thus, it provides a way of calling regulatory elements, whether they are 

enhancers or promoters, in a sensitive, comprehensive fashion from a single assay.  Putative 

enhancers are sites of initiation that do not produce a stable transcript, when assessed by to 

Capped Analysis of Gene Expression, or CAGE(Carninci et al., 2006), a method for mapping the 

start sites of accumulated mRNAs.  Fundamentally, transcription at enhancers is very similar to 

transcription a gene promoters, and in fact, the histone modifications normally used to 

distinguish promoters from enhancers are strongly correlated with transcriptional activity, and 

are therefore not likely a reliable mark of enhancer activity(Andersson et al., 2014; Leighton J. 

Core et al., 2014).  Therefore, gene promoters, upstream divergent promoters, and eRNA 

promoters share a common architecture, so it is not surprising that any site of transcription 

initiation can potentially act as an enhancer: even gene and lncRNA promoters can have 

enhancer activity(Diao et al., 2017).  However, not all enhancers are transcribed: some enhancers 

that are activated during heat shock and seem to be functional carry histone H4 acetylation, but 

no detectible transcription(Vihervaara et al., 2017).  In fact, different features of enhancers may 

be critical for their activity in different contexts.  In an elegant study, the Lander group found 
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through a series of deletion mutants that elongation and splicing from lncRNA genes that act as 

enhancers is critical for their enhancer activity in some cases, while in others just initiation and 

promoter proximal pausing there is sufficient(Engreitz et al., 2016).  Similarly, the Shilatifard 

group has shown that Paf1 at enhancers can help stimulate pause release at their target 

promoters(Chen et al., 2017).   

 Some of the most exciting work in the field of gene regulation in the past several years 

seeks to catalogue enhancers comprehensively.  The massively parallel reporter assay STARR-

seq tests genomic fragments for enhancer activity(Arnold et al., 2013).  STARR-seq assesses the 

intrinsic enhancer activity of the elements being interrogated: other approaches assess enhancer 

function by perturbation of the test element’s endogenous locus.  Large-scale CRISPR screens 

tile across a locus containing an essential gene, so that cell growth is compromised when a 

potential target is critical for the gene’s expression(Fulco et al., 2016; Gasperini et al., 2016; 

Diao et al., 2017).  Recently, this approach has been adapted to single-cells, so that enhancer 

activity can be tested at non-essential genes and in a way that does not make assumptions about 

which gene is the target(Dixit et al., 2016).  Thus, between these functional tests of enhancers 

and efforts to map the three-dimensional organization of the genome, a major goal of the field is 

to develop a comprehensive map of the functional connections between distant loci in order to 

understand regulation at gene promoters.  The nature of enhancers varies depending on the 

specific context of individual genes, and the assay and criteria used to define enhancers.  

However, some common themes emerge from all of these definitions which will be touched 

upon throughout this dissertation. 
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Steps in the Transcription Cycle Important in This Dissertation 

Initiation 

 Pol II initiation occurs at tens of thousands of sites across the genome, only a small 

fraction of which is at mRNA promoters.  Efforts to map initiation comprehensively have 

utilized the ends of mature transcripts(Carninci et al., 2006), mapping of polymerase genome-

wide(Kim et al., 2005), and more recently mapping of nuclear RNAs’ 5’ ends(Nechaev et al., 

2010; Kruesi et al., 2013) to infer initiation sites.  In mammals, Pol II generally initiates 

bidirectionally from separate core promoters oriented outward(Core, Waterfall and Lis, 2008; 

Preker et al., 2008; Seila et al., 2008).  These upstream divergent promoters were unexpected 

and unique to mammals(Kwak et al., 2013), and present an intriguing way of regulating gene 

expression by influencing promoters’ local environment.  Upstream divergent transcription 

originates from separate core promoter elements, with separate PICs as evidenced by separate 

peaks in high resolution mapping of PIC components by ChIP-Exo(Leighton J. Core et al., 2014; 

Pugh and Venters, 2016).  Though it originates from a separate core promoter from the stable 

transcript, upstream divergent transcription is often not completely autonomous.  In a genome-

wide reporter screen of autonomous promoter activity, the van Steensel group found that 

upstream divergent transcription relies on TF binding sites within the stable transcript’s 

promoter, while the primary transcript from a divergent pair can often initiate transcription 

without sequence from the upstream divergent promoter(Arensbergen et al., 2016).  Upstream 

divergent transcription’s primary function is likely to alter the chromatin environment around 

promoters.  It creates a large nucleosome free region that can make a wide region of transcription 

factor binding sites available(Scruggs et al., 2015). 
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 Another unexpected class of Pol II transcribed elements is enhancers(Kim et al., 2010).  

Our group has found that the architecture of transcription initiation at enhancers and promoters is 

virtually identical(Leighton J. Core et al., 2014).  The major difference between promoters for 

stable transcripts like mRNA and lncRNA promoters and those of unstable transcripts like 

upstream divergent and enhancer promoters is after the entry into productive elongation.  

Unstable transcripts rapidly terminate, while stable transcription proceeds for up to many 

hundreds of kilobases.  Much of this is due to the enrichment of 5’ splice sites versus cleavage 

and polyadenylation (CPA) sites.  Sites with an abundance of splice sites and a lack of CPA sites 

enter productive elongation, while an enrichment of CPA sites early on promotes rapid cleavage 

and polyadenylation and termination(Almada et al., 2013).  This U1/CPA axis can explain much 

of this stability(Leighton J. Core et al., 2014).  Chromatin environment may also help to specify 

the stability of transcipts.  In flies, a first nucleosome with the histone variant H2A.Z is 

associated with a much lower barrier to passage of Pol II(Christopher M Weber, Ramachandran 

and Henikoff, 2014), illustrating the ability of chromatin environment to influence the activity of 

Pol II.  In summary, initiation of Pol II transcriptions occurs in many contexts, which serve 

different purposes in carrying out gene regulation. 

Capping 

The addition of a 5’ inverted methylguanosine cap is essential for mRNA export from the 

nucleus, stability, and translation(Ramanathan et al., 2016).  Capping occurs leading up to and 

during pausing(Figure 1. 2)(Rasmussen and Lis, 1993; Nilson et al., 2015).  The cap is added in 

three main steps. First the RNA 5’ triphosphate is reduced to a diphosphate.  Next, an inverted 

GTP is added in a 5’ to 5’ triphosphate linkage.  Finally, the G cap is methylated at carbon 7.  

This particular cap structure is unique to Pol II transcription(Grohmann et al., 1978).  It is found 
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at virtually all Pol II transcripts, including mRNAs, lncRNA, upstream divergent transcripts, and 

eRNAs(Leighton J. Core et al., 2014).  Therefore, sequencing of the capped ends or RNAs has 

been used extensively for mapping sites of Pol II initiation with precision(Carninci et al., 2006; 

Nechaev et al., 2010; Kruesi et al., 2013; Andersson et al., 2014). Capping occurs very soon 

after initiation, as promoter proximally paused Pol II is associated primarily with capped 

transcripts(Rasmussen and Lis, 1993). After initiation, it is likely that DSIF binds polymerase 

almost immediately (Figure 1. 2B), and then in turn helps recruit capping enzyme (Figure 1. 

2C)(Wen and Shatkin, 1999; Mandal et al., 2004) and NELF (Figure 1. 2D)(Missra and Gilmour, 

2010; Li et al., 2013).  Cdk7 mediated phosphorylation of Ser5 of the CTD could play a role in 

stimulating the addition of the cap(Nilson et al., 2015).  Therefore, although capping occurs very 

early, it is not immediate.  In fact, capping can occur as soon as RNA emerges from polymerase 

in an in vitro transcription system subjected to a high salt wash, and is actually delayed when 

nuclear extract is present(Nilson et al., 2015).  Therefore it is possible that in the milieu of the 

nucleus, capping is delayed from its earliest possible occurrence by some other factor present 

during the transition from initiation to pausing, or simply by the normal order of assembly of the 

capping and pausing machinery.   
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Figure 1. 2: Steps leading to promoter proximal pausing 

Capping of the nascent RNA and promoter proximal pausing occur after initiation, and are 

intimately coupled as will be discussed in Chapter 4.  A.)  After initiation, the uncapped 

(triphosphate) 5’ end of the nascent transcript first emerges from the nascent RNA.  B.)  DSIF is 

recruited to polymerase rapidly, partly through an interaction with the nascent RNA.  C.)  The 

capping encyme (HCE, Human Capping Enzyme) is recruited through interactions with DSIF 

and Pol II.  Ser5 CTD phosphorylation mediated by Cdk7 enhances its activity.  D.)  NELF is 

recruited through interactions with Pol II, DSIF, and nascent RNA.  TFs such as GAF can aid 

recruitment. 

Promoter Proximal Pausing 

 The mechanism by which the pause is induced is a major focus of this work.  Paused 

polymerase was first characterized by UV-ChIP at heat shock genes in Drosophila(Gilmour and 

Lis, 1986).  It was later found to be capable of resuming transcription in a radioactive run-on 

experiment, showing that it is transcriptionally engaged(Rougvie and Lis, 1988).  Paused 

polymerase was then shown to be associated with predominantly capped transcripts from 20-40 

nt in length(Rasmussen and Lis, 1993).  The first genome-wide mapping of Pol II with ChIP-

Chip showed a strong enrichment at the 5’ end of genes, raising the intriguing possibility that 



 

17 

 

promoter proximal could be a general feature of Pol II transcription(Kim et al., 2005).  Mapping 

nuclear run-ons genome-wide in human cells later showed that pausing is indeed 

widespread(Core, Waterfall and Lis, 2008).  Pause release is often the rate limiting step for 

determining level of transcription from a promoter: thus, it is one of the most critical steps in the 

transcription cycle for understanding gene regulation.  It frequently changes in response to 

developmental signals(Levine, 2011), or in cellular responses such as heat shock(Dig B. Mahat 

et al., 2016; Duarte et al., 2016). 

Paused polymerase is transcriptionally engaged (and therefore capable of resuming 

elongation), has transcribed ~20-60 nucleotides, and has had a guanosine cap added to the 

transcript’s 5’ end(Rougvie and Lis, 1988; Rasmussen and Lis, 1993; Saunders, Core and Lis, 

2006; Fuda, Ardehali and Lis, 2009; Adelman and Lis, 2012).  Most measurements show that the 

half-life of most paused Pol II is on the order of several minutes and that extreme cases remain 

stably paused for several hours (Henriques et al., 2013; Buckley et al., 2014; Chen, Gao and 

Shilatifard, 2015; Shao and Zeitlinger, 2017).  However, some recent measurements show 

shorter half-lives for heat shock genes(Krebs et al., 2017) and globally than expected(Nilson et 

al., 2017).  Many genes, especially those which are capable of rapid induction, are held in this 

paused state, poised for transcription elongation(Muse et al., 2007; Zobeck et al., 2010; 

Galbraith et al., 2013).  However, all genes go through some version of a pause, as evidenced by 

the fact that flavopiridol, an inhibitor of Positive Transcription Elongation Factor b (P-TEFb) 

subunit Cdk9, prevents elongation in almost all genes, even those without an observable 

promoter proximally paused polymerase(Chao and Price, 2001; Peterlin and Price, 2006; 

Jonkers, Kwak and Lis, 2014; Gressel et al., 2017).  P-TEFb is the major factor involved in 

alleviating promoter proximal pausing(Wada, Takagi, Yamaguchi, Watanabe, et al., 1998; 
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Peterlin and Price, 2006).  Therefore, the pause is an important, ubiquitous step in the 

transcription cycle.  It serves as a major point of regulation at many genes(Core, Waterfall and 

Lis, 2008; Core et al., 2012), and at the very least serves as a checkpoint for the assembly of a 

polymerase that is fully capable of productive elongation even at genes without an observable 

pause.  This regulatory checkpoint is likely universal.  Even in organisms like yeast with no 

observable promoter proximal pausing, perturbation of the pausing and elongation factor DSIF 

results in a slow moving Pol II, inefficient splicing, and increased noncoding antisense and 

convergent transcription(Booth et al., 2016; Shetty et al., 2017).  A host of different factors 

associates with polymerase in the short space from initiation to pause release(Adelman and Lis, 

2012), including PIC components(Kwak et al., 2013), DSIF(Li et al., 2013), capping 

enzyme(Mandal et al., 2004; Nilson et al., 2015), NELF, splicing machinery, elongation factors, 

nucleosome chaperones, histone modifying enzymes, topoisomerases(Baranello et al., 2016; 

Miller et al., 2017), and termination factors(Brannan et al., 2012). 

 The establishment and release of a promoter proximal pause involve the interplay of 

many factors.  During the pause, the net effect of these factors is to regulate the amount of time 

that Pol II remains in a paused state before transcribing through the gene.  NELF, DSIF, and P-

TEFb are three protein complexes that play pivotal roles in this process(Saunders, Core and Lis, 

2006; Adelman and Lis, 2012).  Negative ELongation Factor (NELF) and 5,6-Dichloro-1-β-D-

ribofuranosylbenzimidazole (DRB) Sensitivity Inducing Factor (DSIF) bind to a Pol II with a 

hypophosphorylated CTD and cooperatively maintain the promoter proximal pause(Saunders, 

Core and Lis, 2006).  This means that when these factors bind, Ser5 has been phosphorylated by 

the Cdk7 subunit of the general transcription factor TFIIH, but Ser2 has not yet been 

phosphorylated.  These two complexes were initially identified in a biochemical fractionation 
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approach by their ability to render transcription elongation sensitive to DRB inhibition in in vitro 

transcription reactions(Wada, Takagi, Yamaguchi, Ferdous, et al., 1998; Yamaguchi et al., 

1999).  The nucleoside analog DRB is a cyclin-dependent kinase inhibitor, so the fact that it 

inhibits entry into elongation indicates that a cyclin-dependent kinase is responsible for 

transitioning from a paused to elongating polymerase.  Therefore, DRB represses transcription 

by inhibiting the step that causes inhibitory factors to leave the polymerase, meaning that NELF 

and DSIF are unable to be rearranged to produce an elongating polymerase.  P-TEFb is the DRB 

inhibited cyclin-dependent kinase that is most significant in facilitating pause escape(Marshall 

and Price, 1992).  It binds the promoter proximally paused polymerase complex and facilitates 

pause escape by phosphorylating Ser2 of the CTD and DSIF(Peng, 1996, 1998; Lis et al., 2000; 

Yamada et al., 2006; Zobeck et al., 2010).  This results in a rearrangement of the complex that 

favors elongation.  At this point, NELF leaves the polymerase, and DSIF remains, but acts as a 

positive elongation factor(Hartzog et al., 1998; Peterlin and Price, 2006).  In summary, the 

promoter proximal pausing stage of the transcription cycle is accentuated by the NELF and DSIF 

complexes, and relieved by P-TEFb. 
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Figure 1. 3: Status of promoter proximally paused polymerase 

Three possible states of promoter proximal pausing are determined by the primary barrier to 

transcription there.  A.)  At very proximally paused polymerase, interactions with the PIC 

contribute to the pause.  B.)  At intermediate distance, the position of the pause is determined by 

a combination of the energy landscape of DNA sequence, and the rate at which pause factors 

bind.  C.)  At some sites, the energy barrier of transcribing through the first nucleosome is 

responsible for a small fraction of pausing. 

 

 The precise location of the promoter proximal pause depends upon the sequence 

composition of the DNA template as well as the action pause factors, the PIC, and chromatin.  In 

flies, Pol II that is paused very proximal to the TSS has not broken all of its interactions with the 

PIC components (Figure 1. 3A)(Kwak et al., 2013).  More distally paused polymerase is no 

longer associated with the PIC and is still upstream of the first nucleosome; thus it is held by 

interactions with DSIF and NELF (Figure 1. 3B).  Interactions with the first nucleosome 

constitute a third potential pause-inducing boundary (Figure 1. 3C).  Though this has been 

postulated as a major mechanism of promoter proximal pausing(Jimeno-González, Ceballos-

Chávez and Reyes, 2015), only the extreme distal portion of the pause is associated with the 
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energetic barrier of the nucleosome(Kwak et al., 2013).  The barrier constituted by the first 

nucleosome is context specific: nucleosomes that have incorporated the histone variant H2A.Z 

present a significantly lower barrier in vivo than non-H2A.Z nucleosomes(Christopher M Weber, 

Ramachandran and Henikoff, 2014).  The location of the DSIF and NELF dependent promoter 

proximal pause is likely determined by a combination of sequence and factor recruitment.  The 

pause in flies is associated with a strong RNA-DNA hybrid within polymerase, with a weaker 

hybrid just downstream, consistent with a tendency to pause at a strong RNA-DNA hybrid and 

possibly backtracking from a weak hybrid to reach that pause(Nechaev et al., 2010), a pattern 

which is conserved in mammals(Gressel et al., 2017).  The rate of pause factor recruitment also 

plays a role in pausing.  In flies, GAF bound genes are typically very highly paused, and devoid 

of nucleosomes(Fuda et al., 2015).  GAF is able to recruit NELF to promoters independent of 

transcription(Li et al., 2013).  Therefore, GAF primes promoters for pausing partially by 

increasing the availability of NELF.  These sequence and pause factor driven models of pause 

site choice are not mutually exclusive: the DNA sequence can create an energy landscape that 

slows polymerase, which determines when pause factors are recruited.  This concept is explored 

in Chapter 4.  In summary, promoter proximal pausing can be caused by a variety of interrelated 

mechanisms, which can all collaborated to provide a regulatory checkpoint before entering 

productive elongation. 

The Role of DSIF 

 DSIF is the first pause-inducing protein to associate with an initiated polymerase(Missra 

and Gilmour, 2010).  It consists of two proteins, SPT4 and SPT5, thus named because they are 

homologues of two transcription factors of the same name in yeast(Wada, Takagi, Yamaguchi, 

Ferdous, et al., 1998).  This complex is rapidly recruited to initiated Pol II(Missra and Gilmour, 
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2010).  DSIF seems to track Pol II from the pause region through the gene body(Andrulis, 2000).  

This is because it binds paused polymerase, acting as a repressor of elongation, but remains 

bound after entry into productive elongation, now enhancing the activity of the 

polymerase(Andrulis, 2000).  The elongation factor potential of DSIF was most eloquently 

demonstrated in in vitro studies when it increased the transcription rate of nucleotide deprived or 

mutant polymerase(Wada, Takagi, Yamaguchi, Ferdous, et al., 1998).  This activity is likely 

carried out by a direct interaction between DSIF and Pol II.  The two protein complexes have 

been found to coimmunoprecipitate in extracts(Wada, Takagi, Yamaguchi, Ferdous, et al., 1998), 

suggesting that they have an affinity for each other.  However, Gilmour and colleagues only see 

an interaction between DSIF and Pol II when the polymerase is engaged with a transcript longer 

than 18 nt by Electrophoretic Mobility Shift Assay (EMSA)(Missra and Gilmour, 2010).  

Regardless of the precise timing and extent of the interaction, DSIF certainly binds transcribing 

polymerase, and this interaction is likely strengthened by the presence of a transcript.  DSIF’s 

RNA binding potential is conferred by the SPT5 subunit.  Human SPT5 contains four tandem 

KOW motifs; these known RNA binding motifs have a high degree of homology with NusG, a 

bacterial elongation factor which also binds RNA(Wada, Takagi, Yamaguchi, Ferdous, et al., 

1998).  Furthermore, Drosophila SPT5 has been cross-linked to nascent RNA.  Again, this 

interaction was only observed if more than 18 nt had been transcribed(Missra and Gilmour, 

2010).  The literature lacks a characterization of this interaction, however.  It appears to lack 

sequence specificity, as the crosslinking experiment was done using an artificial G-less cassette, 

rather than a transcript of biological origin.   



 

23 

 

The Role of NELF 

 NELF is a pausing factor that binds after DSIF to accentuate promoter proximal 

pausing(Missra and Gilmour, 2010).  Its association with the polymerase strongly inhibits entry 

into productive elongation(Yamaguchi et al., 1999; Wu et al., 2003, 2005).  NELF is recruited to 

the paused polymerase complex after DSIF.  It is a complex composed of four proteins:  NELF 

A, B, C/D, and E.  It is generally most strongly associated with polymerase at the pause site, as it 

is recruited to the paused polymerase during the pause, and is expelled once Pol II enters 

productive elongation(Lee et al., 2008).  In coimmunoprecipitation and electro-mobility shift 

assays, it shows no appreciable binding to DSIF or Pol II alone, but does bind to DSIF-Pol II 

complexes(Missra and Gilmour, 2010).  Thus, in contrast with DSIF, it seems that NELF’s sole 

role is to inhibit entry into productive elongation.  NELF is also strongly associated with the 

transcription factor GAGA Factor (GAF); at highly paused genes it seems that GAF recruits 

NELF before transcription initiation, so that NELF can be quickly loaded onto the 

polymerase(Lee et al., 2008; Li et al., 2013).  Thus, there are multiple mechanisms by which 

NELF is recruited to newly transcribing polymerase, ensuring that a promoter proximal pause is 

induced.   

 Much like DSIF, NELF contains an RNA binding domain.  The NELF-E subunit contains 

an RNA Recognition Motif (RRM).  In humans, this domain has been shown to be important for 

proper regulation of elongation by NELF; with a series of mutations, it has been shown that the 

NELF-E RRM likely binds in a sequence specific way, and has a strong preference for 

RNA(Yamaguchi et al., 2002).  However, Gilmour and colleagues did not find any interaction 

between NELF-E and paused transcripts in an in vitro transcription assay, when they were able 

to find a direct interaction between the SPT5 subunit of DSIF and the nascent transcript(Missra 



 

24 

 

and Gilmour, 2010).  This could be because of the sequence specificity of the NELF-E RRM 

meant that the artificial G-less cassette in their experiment was a poor substrate for NELF-E 

binding.  Recently, the Lis lab has made a strong case for a biological role of NELF-E RRM 

binding the nascent transcript in promoter proximal pausing.  A Systematic Evolution of Ligands 

by EXponential enrichment (SELEX) against the NELF-E RRM revealed a seven nucleotide 

binding motif.  This motif, the NELF Binding Element (NBE) is strongly associated with tight 

binding by NELF-E.  Furthermore, the motif is enriched near the pause site of highly paused 

genes(Pagano et al., 2014).  This enrichment is found both before and after the pause site, 

suggesting that a mechanism more complicated than just a single binding event is taking place.  

We hypothesize that this additional site could either serve as a redundant site to ensure pausing, 

or that it could be involved in removal of NELF from the polymerase after pause escape.  In 

addition, our lab has shown that human NELF-E binds a NBE like sequence in the HIV-1 TAR 

RNA(Rao et al., 2006; Pagano et al., 2014).  In addition to the RRM of NELF-E, NELF has been 

found to associate with RNA through its other subunits in vivo(Vos et al., 2016).  Within the 

nucleus, other RNAs besides the nascent transcript may regulate NELF’s activity by competing 

for binding, as enhancer RNAs have been shown to do(Schaukowitch et al., 2014).  The 

interaction between NELF and RNA may also be modulated by post-translational modification 

of NELF: NELF-E has been identified as a target for poly(ADP) ribosylation by PARP-1, and 

this modification reduces the affinity of NELF for RNA in vitro(Gibson et al., 2016).  Taken 

together, these data suggest that an interaction between NELF and nascent RNA is a widespread 

mechanism by which promoter proximal pause is maintained, and that this phenomenon is 

conserved from flies to humans.  Furthermore, this interaction can be regulated, both through the 

intrinsic specificity of NELF binding RNA, and through modulation of NELF’s ability to bind 
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nascent RNA.  This is just one of the many interactions that function cooperatively to ensure that 

NELF is delivered to newly transcribing polymerase so that it can contribute to the promoter 

proximal pause. 

P-TEFb Mediated Pause Escape 

 P-TEFb is the protein complex most involved in releasing the promoter proximal 

pause(Peterlin and Price, 2006).  It exists in vivo as a heterodimer of cyclin-dependent kinase 9 

(Cdk9) and a cyclin (either cyclin T or K in Drosophila(Peng, 1998), and cyclin T1, T2, or K in 

mammals)(Peng et al., 1998).  Cdk9 is the catalytic subunit of this complex, while the cyclin 

subunit generally acts as a regulatory subunit.  It functions by binding the paused polymerase 

complex, and phosphorylating the Pol II CTD at Ser2, DSIF at SPT5(Kim and Sharp, 2001; 

Yamada et al., 2006), NELF at NELF-E(Fujinaga et al., 2004), and itself.  After these 

phosphorylation events the polymerase enters productive elongation; NELF is lost from the 

polymerase, DSIF begins to act to enhance the rate of transcription, and P-TEFb remains bound 

to the transcribing polymerase.  P-TEFb is regulated by its association with the 7SK snRNA and 

HEXIM protein in the nucleoplasm: when engaged in this complex it is inactive(Nguyen et al., 

2001; Yang et al., 2005).  Some support exists for a variety of mechanisms of activating P-TEFb 

and targeting it to paused polymerase.  Typically, these involve another factor such as a 

coactivator like Mediator(Galbraith et al., 2013), a transcription factor such as c-Myc(Rahl et al., 

2010) or HSF(Dig B. Mahat et al., 2016; Duarte et al., 2016; Vihervaara et al., 2017).  Active P-

TEFb is associated with a group of other factors that can also facilitate its role in pause release 

and elongation.  In the promoter proximal region, it has long been known to interact with the 

potent chromatin interacting activator bromodomain containing factor 4, Brd4(Yang et al., 

2005).  In addition, P-TEFb is a component of the super elongation complex (SEC), which 
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promotes rapid and efficient Pol II transcription through gene bodies(Luo, Lin and Shilatifard, 

2012).  The plurality of methods for targeting P-TEFb to polymerase demonstrates the 

importance of this step in transcription.   

 

Strategies for Studying Gene Regulation 

 Almost any study in science adheres to the principle of observe, perturb, re-observe.  The 

philosophy behind this is that in order to fully understand a system, one most first observe it in 

its normal state.  But, to elevate understanding, it is critical to understand how the status of the 

system changes in response to particular perturbations.  It is this response to perturbations that 

provides real insight into the ways in which the components of a biological system function.  

However, when a lot is already known about how a system works, a new perspective of one 

aspect of it is equally valuable.  This is the state that we find ourselves in in the new era of 

genomics.  In a well-used cell line such as Drosophila S2 or human K562, hundreds of genome-

wide datasets are available, enabling a savvy researcher to gain important new insights from 

comparison to these reference datasets.  All of the work in this dissertation is related to one of 

these three simple steps of observe, perturb, re-observe.   The rest of this section provides 

background on some of the key strategies that will be drawn upon. 

Observe (and Re-observe) 

High-throughput Sequencing 

 Illumina sequencing instruments are the workhorses of the genomics revolution.  These 

instruments borrow from the principles of Sanger sequencing(Sanger, Nicklen and Coulson, 

1977).  They follow the incorporation of reversible chain terminating nucleotides at DNA 
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clusters of around 1000 molecules of identical sequence covalently linked to a glass 

flowcell(Bentley et al., 2008).  Isothermal PCR is used to generate these clusters: after a single 

DNA molecule hybridizes to a lawn of DNA oligos covalently linked to a glass surface, the lawn 

of oligos is used as primers during subsequent annealing and extension steps to generate a cluster 

of copies of the original DNA molecule.  This scales up the single DNA molecule to a larger 

cluster unit that is more easily interrogated by microscopy.  The DNA is made single stranded by 

chemically cleaving one strand away.  The sequence of the cluster is then determined by 

incorporating single fluorescently labeled nucleotides at a time.  A primer is annealed and a 

mixture of all 4 reversible chain terminating dNTPs with different fluorescent labels is 

incorporated.  The sequencer is an automated TIRF microscope that images the nucleotide added 

to each cluster.  The reversible chain terminator and fluorescent dye are then removed 

chemically.  This process of incorporation, imaging, and reversal is repeated to walk across the 

sequence of each cluster in a process known as sequencing by synthesis.  The instrument is thus 

repeatedly imaging dye labeled nucleotide incorporation, identifying clusters, and calling 

basepairs added using fluorescence intensity measurements.  This process can be used to 

determine the sequences of millions of short DNA fragments in a single run.  The sophisticated 

microfluidics and optics of these instruments makes them an attractive platform for developing 

new assays the measure interactions between fluorescently labeled molecules and DNA(Perkel, 

2015).  Inspired by a method that used a GAIIx to image fluorescently labeled transcription 

factor binding to DNA to the solve Kds of its interaction with tens of thousands of DNA 

sequences at once(Nutiu et al., 2011), I developed a method to quantitatively solve thousands of 

Kds for interactions between RNA and a protein(Tome et al., 2014). 
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The GAIIx, an older instrument that I modified to image fluorescent protein interaction 

with clusters in Chapter 2, could sequence up to 240 million 150 bp reads in a single run.  The 

NextSeq 500, a newer instrument used for sequencing PRO-seq libraries in Chapters 3 and 4, can 

sequence up to 400 million 150 bp reads in a single run, but at around 1/10
th

 the cost of a GAIIx 

run.  Therefore, in addition to their usefulness in sequencing genomes de novo and identifying 

unknown DNA sequences, a litany of genome-wide assays use high-throughput sequencing 

instruments to count DNA fragments in a library where the reference genome is known.  These 

counts are then mapped back to the reference, so that each position across the genome can be 

assigned a value for its enrichment in the library.  This principle underlies all genome-wide 

analyses presented in this dissertation. 

 

PRO-seq 

 Precision Run-On Sequencing, or PRO-seq is the latest in a series of methods used to 

measure the locations of actively transcribing polymerases, genome-wide.  Nuclear run-ons have 

long been used to determine whether RNA polymerases are transcriptionally engaged(Weber, 

Jelinek and Darnell, 1977).  This involves isolating nuclei from cells, washing away native 

nucleotides, and then providing labeled nucleotides under conditions that allow for polymerase 

to resume transcription briefly so that the nascent transcripts incorporates the label.  This 

principle was used to determine that the Pol II promoter proximally paused at the 5’ end of the 

Hsp70 gene in flies is transcriptionally engaged(Rougvie and Lis, 1988).  In this case, 

radiolabeled nucleotides were incorporated in the run-on, and the resulting run-on RNA was used 

as the probe in a Southern blot to show that the Hsp70 gene contained a large amount of engaged 

promoter proximally paused polymerase (at a much higher density than the gene body).  
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Subsequent modifications have adapted these run-ons to high throughput sequencing, so that 

transcriptionally engaged Pol II can be mapped genome-wide.  Global Run-On Sequencing 

(GRO-seq) was the first method to do this.  It uses incorporation of bromouridine during a ~50-

100 bp run-on to label nascent transcripts, which are then affinity purified with an anti-BrU 

antibody between consecutive enzymatic steps during the preparation of a stranded RNA-seq 

library.  This first genome-wide look at the location of engaged Pol II showed that human 

promoters are divergently transcribed, and, comprehensively for the first time, that promoter 

proximal pausing is nearly ubiquitous(Core, Waterfall and Lis, 2008).  PRO-seq is a higher 

resolution version of GRO-seq(Kwak et al., 2013; Dig Bijay Mahat et al., 2016).  PRO-seq uses 

biotin-11-NTPs to label nascent transcripts during the run-on.  However, unlike radioactive and 

bromouridine labels, Pol II is only able to incorporate a single biotin NTP, on average, before the 

bulk of biotin prevents subsequent nucleotide addition(Kwak et al., 2013).  Therefore, in the 

strand specific RNA-seq library of PRO-seq, the first nucleotide in the read corresponds to the 

single nucleotide incorporated during the run-on, and thus the exact location of the active site of 

Pol II in the nuclei before the run-on.  PRO-cap and GRO-cap are modifications of GRO- and 

PRO-seq that map only initiation sites of transcription(Kruesi et al., 2013; Kwak et al., 2013).  

Here, the 5’ end of nascent transcripts is mapped after selecting enzymatically for capped 

nascent RNA specifically.  Critically, the RNA is not fragmented in PRO-cap, so that the biotin 

incorporated in the run-on remains linked to the 5’ cap.  Thus, only nascent RNAs short enough 

to be incorporated as the insert in a Illumina sequencing library will be detected.  This means that 

PRO-cap detects initiation sites with both extreme precision and high sensitivity.  It maps 

initiation sites with basepair resolution, and is it is extremely sensitive because it has no 
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background from accumulated RNA as CAGE would, and does not waste reads on the bodies of 

genes as PRO-seq would. 

Perturb 

 Both Chapters 2 and 3 deal with my efforts toward the development of RNA aptamers as 

a new type of inhibitor for highly specific perturbations of biological systems.  Aptamers are 

nucleic acids that have high affinity for a target molecule due to their three dimensional 

structure(Ozer, Pagano and Lis, 2014).  They are selected from large libraries of random 

nucleotides by an iterative process of binding to the target, elution, and amplification know as 

Sequential Evolution of Ligands by EXponential enrichment, or SELEX(Ellington and Szostak, 

1990; Tuerk and Gold, 1990).  Aptamers act much like an antibody in their ability to recognize 

target molecules, but offer several advantages.  The process of SELEX offers greater control than 

raising antibodies: the selection can be designed to target a particular domain of a factor and 

nothing else.  Aptamers can be selected in several weeks, and do not require the sacrifice of an 

animal.  Once identified, they can be cheaply synthesized.  RNA aptamers can be expressed in 

cells, and bind their target in vivo.  They often recognize larger epitopes than antibodies, and can 

thus recognize targets with high specificity.  They are often easier to select to nucleic acid 

domains, thus making them an attractive inhibitor of interactions with nucleic acids. 

 Our group has developed a suite of improvements to the SELEX process.  We have 

developed an efficient column based binding and elution scheme(Latulippe et al., 2013), sped up 

enrichment by binding and eluting multiple times between amplification steps(Szeto et al., 

2013), multiplexed selections so that dozens can be carried out in tandem(Szeto et al., 2014), 

characterized non-specific cooperative binding to targets(Ozer et al., 2013), and integrated these 
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changes in a fast, streamlined, multiplex selection scheme(Reinholt et al., 2016).  The 

characterization of the resulting aptamer libraries from these selection schemes has remained a 

bottleneck in this process.  To that end, I developed a method to quantitatively measure the 

binding affinity of thousands of aptamers to their target in single assay called HiTS-RAP(Tome 

et al., 2014), which is the focus of Chapter 2.  Thus, HiTS-RAP falls under the observe phase of 

the strategy for studying transcription, but with the purpose of developing reagents to perturb. 

 Chapter 3 focuses on my efforts to develop RNA aptamers as a potent and specific 

inhibiter of biological interactions in vivo.  Our group has long been interested in this strategy, as 

it has the potential of rapidly and specifically perturbing one surface of a factor, without 

affecting its stability or interactions with other factors, as compared with a knockdown which 

takes several days and results in loss of the entire protein.  We have used aptamers as an inhibitor 

of the splicing factor B52 in whole files(Shi, Hoffman and Lis, 1999), of HSF in cell culture in 

both fly(Salamanca et al., 2011) and human cells(Salamanca et al., 2014), and of TBP in in vitro 

transcription reactions(Sevilimedu, Shi and Lis, 2008).  However, none of these studies used the 

power of genomics to interrogate the effects of these targeted perturbations.   
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Chapter 2: Comprehensive Analysis of RNA-Protein Interactions by 

High Throughput Sequencing-RNA Affinity Profiling
1
 

RNA-protein interactions have critical roles in gene regulation.  However, high-

throughput methods to quantitatively analyze these interactions are lacking.  We adapted an 

Illumina GAIIx sequencer to make several millions of these measurements with a High-

Throughput Sequencing – RNA Affinity Profiling (HiTS-RAP) assay.  Millions of cDNAs are 

sequenced, bound by the E. coli replication terminator protein Tus, and transcribed in situ, 

whereupon Tus halts transcription leaving RNA stably attached to its template DNA. The 

binding of fluorescently-labeled protein is then quantified in the sequencer.  We used HiTS-RAP 

to measure the affinity of mutagenized libraries of GFP-binding and NELF-E binding aptamers 

to their respective targets and thereby identified regions in both aptamers that are critical for their 

RNA-protein interaction. We show that mutations additively affect the binding affinity of a 

NELF-E binding aptamer, whose interaction depends mainly on a single-stranded RNA motif, 

but not that of the GFP aptamer, whose interaction depends primarily on secondary structure. 

Introduction 

 RNA-protein interactions are ubiquitous in biology and critical at many regulatory steps 

of gene expression and various stages of development(Lee, 2012). Defects are involved in a 

variety of disease conditions(Lukong et al., 2008; Esteller, 2011). A quantitative analysis of 

interactions between RNA and RNA Binding Proteins (RBPs) is necessary for a more profound 

understanding of basic biological mechanisms(König et al., 2011). Several methods exist for 

                                                 
1
 Most of this chapter was published in a paper was co-written with Abdullah Ozer and John Lis: 

Tome, J. M., Ozer, A., Pagano, J. M., Gheba, D., Schroth, G. P., & Lis, J. T. (2014). Comprehensive analysis of 

RNA-protein interactions by high-throughput sequencing–RNA affinity profiling. Nature Methods. 

https://doi.org/10.1038/nmeth.2970 
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determining RNA-protein affinities, though the quantitative methods are low-throughput and 

laborious(Wong and Lohman, 1993; Katsamba, Park and Laird-Offringa, 2002; Ryder, Recht 

and Williamson, 2008; Salim and Feig, 2009; Pagano, Clingman and Ryder, 2011).  High-

throughput techniques such as SELEX(Campbell et al., 2012) or RNA-MITOMI(Martin et al., 

2012) can be used to determine binding motifs, but are either not quantitative or are difficult to 

scale genome-wide.  Existing genome-wide assays, such as RIP-Seq(Tenenbaum et al., 2000), 

CLIP(Licatalosi et al., 2008), and PAR-CLIP(Hafner et al., 2010) provide a great deal of 

information by identifying RNA molecules that interact with a protein.  Nonetheless, these 

methods have significant limitations: they depend on antibodies, cannot quantitatively measure 

the affinities of the interactions, are difficult to multiplex, and they generally depend on 

crosslinking, which may not be uniform for every target and can be affected by the presence of 

other proteins. Here, we developed a high-throughput, quantitative RNA-protein interaction 

assay that does not require an antibody, can be scaled genome-wide and, in principle, applied to 

interactions of RNA with molecules other than proteins. 

The Illumina platform allows the simultaneous sequencing of hundreds of millions of 

DNA clusters, which are each derived from the amplification of a single molecule with primers 

that are covalently linked to the glass flowcell(Bentley et al., 2008). These sequencers can also 

be used as versatile and programmable instruments to automatically image and analyze the 

binding of fluorescently labeled proteins to these DNA clusters as was done in the creative 

HiTS-FLIP protocol(Nutiu et al., 2011). A corresponding assay for RNA binding to protein is 

conceivable, but has not been realized due to the difficulty of converting the DNA of clusters 

into RNA that is retained at the cluster(Evanko, 2011).  
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Here, we devise a method called High Throughput Sequencing- RNA Affinity Profiling 

(HiTS-RAP) to transcribe DNA at each cluster of an Illumina flowcell and use it to measure the 

affinity of mutants of two well characterized RNA aptamers at an unprecedented scale.  We 

measured the binding constants of 1,875 mutants of the GFP aptamer (GFPapt)(Shui et al., 

2012), and 9,832 mutants of NELFapt(Pagano et al., 2014), an RNA aptamer that binds 

Drosophila NELF-E (Negative Elongation Factor E), an RNA binding subunit of a protein 

complex involved in maintaining promoter proximally paused RNA Polymerase II(Yamaguchi et 

al., 1999, 2002, Wu et al., 2003, 2005).  We then analyzed these data to determine the features of 

these two aptamers that are most important for their protein interactions, and to gain insight into 

their complex structures.  

Results 

Tus Stably Halts Transcription 

 A critical feature of the HiTS-RAP strategy is to transcribe DNA on the Illumina 

instrument and have the RNA transcript stably retained at each DNA cluster.  We have used the 

E. coli replication terminator protein Tus as a roadblock to transcription to achieve this.  Tus 

prevents DNA replication through sites of replication termination in an orientation-specific 

manner by binding to a 32 bp sequence element (ter) with high affinity, specificity, and 

stability(Kamada et al., 1996; Mohanty, Sahoo and Bastia, 1996; Mulugu et al., 2001; Mulcair et 

al., 2006).  In addition, Tus has been shown to stop many RNA polymerases including T7 RNA 

polymerase (T7 RNAP) from transcribing through Tus-bound ter sites in the non-permissive 

orientation, resulting in either terminated or halted transcription(Mohanty, Sahoo and Bastia, 

1996; Guajardo and Sousa, 1999). T7 RNAP produces only truncated transcripts on our DNA 
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templates used for HiTS-RAP, many of which remain anchored to the DNA, when Tus is bound 

to DNA in the non-permissive orientation (Figure 2. 2a).  In contrast, T7 RNAP produces mostly 

free full-length run-off transcripts when Tus is bound in the permissive orientation.  

Electrophoretic Mobility Shift Assay (EMSA) with radiolabeled DNA shows that after 

transcription halting, nearly every DNA is engaged in a complex of intermediate mobility 

containing an RNA transcript (Figure 2. 1a).  RNase treatment results in a lower mobility 

complex, consistent with the loss of charged RNA and the added mass of T7 RNAP to the DNA-

Tus complex (Figure 2. 2b). Thus, T7 RNAP transcribing into a non-permissive Tus-ter complex 

halts upstream of the ter site with an RNA transcript still bound to the DNA through the 

polymerase.  

 
Figure 2. 1:  T7 RNA polymerase halting with Tus gives stable complexes containing DNA 

and functional RNA 

a. EMSA was carried out with radiolabeled DNA that encodes the GFP aptamer and has a 

binding site for Tus.  Naked DNA runs with high mobility.  Binding Tus to the ter DNA element 

(red segment) retards DNA mobility.  After transcription, nearly every DNA participates in a 

complex of intermediate mobility, containing Tus, T7 RNA polymerase (orange), and RNA 

(green).  This band is very sharp, indicating that each DNA-Tus-T7RNAP-RNA complex is 

mainly of homogeneous composition.  b.  454 Life Sciences polystyrene beads covered in 

covalently linked DNA templates for transcription.  After transcription halting, beads were 

incubated with EGFP and then washed.  EGFP bound to beads presenting halted GFP aptamer 

RNA, but not to beads presenting SRB-2 aptamer RNA.  
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Figure 2. 2: Transcription halts or terminates at Tus-bound ter sites in the non-permissive 

orientation 

a. Radiolabeled in vitro transcription of Tus-bound DNA templates.  Biotinlyated GFP aptamer 

DNA templates contained two ter sites, either in the non-permissive (NP) or permissive (P) 

orientation.  The DNA templates were bound to streptavidin-agarose beads (Pierce) and then 

bound by Tus protein.  After transcription for 30 minutes at 37
o
C in the presence of radiolabeled 

CTP, beads and supernatant were separated and run on an 8% denaturing PAGE (7 M urea).  

Most transcription does not proceed past ter site in the non-permissive orientation.  16% of the 

transcripts produced in the non-permissive ter reaction remained bound to beads in halted 

transcription complexes, while the rest terminated and released to the supernatant.  RNA 

transcripts of a single, distinct length, consistent with halting or termination at the ter site but not 

before, produced in these reactions can be explained by forced termination of leading T7 

RNAP(s) stopped at the ter site by the trailing ones, thus leaving a single halted T7 RNAP on the 

template at the ter site(Epshtein et al., 2003). RNAs in the supernatant were produced by 

polymerases that terminated at the Tus-bound ter site or passed through and ran off the end of the 

template.  In the permissive orientation, the vast majority of the transcripts produced are run off 

transcripts, and thus are found in the supernatant. Only 6% of the transcripts remained bound to 

the beads, and most of these are run off transcripts, indicating that they are likely due to non-

specific binding to beads by full-length RNAs which are no longer engaged in halted 

transcription complexes. b.  EMSA of halted transcription complexes with radiolabeled DNA.  

Complexes produced after transcription halting contain RNA.  This experiment is identical to 

that of Figure 2. 1A, except that no SUPERase In (Ambion) was used and the addition of a lane 

that was treated with RNase cocktail (Ambion) after transcription halting. The RNase treatment 

caused the band of intermediate mobility created by transcription halting to slow to a mobility 

even less than that of Tus bound DNA, presumably a consequence of the loss of full length 

charged RNA and presence of bound T7 RNAP (the lanes are all from a single gel, thus 

mobilities can be directly compared).    
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In this work, we used an RNA aptamer that has high affinity to and specificity for GFP 

and its derivatives (i.e. EGFP)(Shui et al., 2012) to develop the assay. As an initial test of our 

DNA anchored RNA-protein binding assay, we attached DNA to beads and generated halted 

transcription complexes.  EGFP binds to halted transcription complexes presenting GFPapt but 

not to a negative control SRB-2 aptamer(Holeman et al., 1998) (Figure 2. 1b).  To show that the 

interaction with GFPapt complexes is due to the presence of the full length RNA, a similar 

experiment was carried out with single round transcription.  EGFP bound to beads with GFPapt 

template after transcription had been chased to the Tus-ter complex to produce a full length 

aptamer, but not after initiation only (Figure 2. 3).  The initiated complexes contain every 

component of the chased complexes with the exception of the full length GFPapt RNA.  

Together, this demonstrates that halted GFPapt transcription complexes bind EGFP through the 

specific interaction between the full-length RNA and EGFP.  
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Figure 2. 3: EGFP only binds to transcription complexes with full-length GFP aptamer 

RNA 

GFP aptamer halting templates with two ter sites were immobilized on glutathione beads through 

the GST tagged Tus protein. Single round transcription was initiated by incubating beads in a 

transcription solution lacking CTP. One sample was then chased with all four nucleotides 

including CTP, allowing T7 RNAP to transcribe up to the Tus bound ter site, while the other 

sample was not, leaving an initiated polymerase with an 11 nt transcript. The transcription 

complexes present in both samples contain identical components of DNA template, GST-tagged 

Tus protein, T7 RNAP, and the glutathione beads, but differ in that the ‘initiated control” has 

only an 11 nt transcript while the ‘chased’ has the full aptamer RNA. EGFP only binds to 

‘chased’ sample that presents the full-length GFP aptamer RNA. Thus, EGFP labeling of halted 

transcription complexes is due to an interaction with the full-length RNA transcript. 
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Transcription Halting with Tus is Functional on the GAIIx Sequencing Instrument 

 To couple Tus-dependent halting of T7 RNA polymerase transcription with sequencing 

on an Illumina GAIIx, we used DNA templates that contain a sequence encoding the RNA to be 

transcribed flanked by a T7 promoter immediately upstream and by the ter sequence downstream 

(Figure 2. 4).  Figure 2. 5a shows a schematic of the HiTS-RAP assay.  All steps of HiTS-RAP 

are carried out automatically.  After sequencing, a new second DNA strand is generated at all 

clusters in the flowcell.  Transcription halting is then carried out, presenting the RNA encoded 

by the millions of DNAs that have been sequenced.  The binding properties of these RNAs of 

known sequence can then be probed by allowing an mOrange labeled protein to interact with the 

halted RNAs(Shaner et al., 2004; Bentley et al., 2008).  Illumina’s software is used to image the 

flowcell at equilibrium with different concentrations of protein and measure fluorescence 

intensity of bound mOrange fusion protein at each cluster.  The TIRF microscopy of the 

sequencer enables this equilibrium measurement, as excess protein in solution does not interfere 

with imaging of protein bound to clusters(Bentley et al., 2008; Nutiu et al., 2011). 

 

Figure 2. 4:  Schematic of HiTS-RAP templates 

Different sequence elements needed in DNA templates for HiTS-RAP are labeled.  Illumina 

adaptors located at the extreme 5’ and 3’ ends are used to generate clusters on the sequencer.  

The sequence of interest in flanked by a T7 RNA polymerase promoter at the 5’end, and the 

Illumina sequencing primer and ter site at the 3’ end.  Thus, during transcription, T7 RNAP 

initiates at its promoter transcribes through the sequence of interest (the GFP aptamer in this 

case), and then begins to transcribe the Illumina sequencing primer before it encounters the non-

permissive Tus bound ter site and halts transcription.  Thus, the entire GFP aptamer RNA should 

have emerged from the polymerase.  The approximate positions on the template of Tus protein 

and T7 RNAP in a halted transcription complex are shown.  
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Figure 2. 5:  RNA-protein interactions can be assayed by HiTS-RAP on an Illumina GAIIx 

instrument 

a.  HiTS-RAP schematic. Sequencing is done following the standard Illumina workflow.  The 

strand synthesized during sequencing is then stripped away, a primer is annealed and the second 

strand is regenerated with Klenow enzyme.  Tus is then bound to the ter site, and DNAs on the 

flowcell are transcribed.  T7 RNAP initiates at its promoter, transcribes through the sequence of 

interest, and halts just upstream of the Tus bound ter site.  The RNA transcript is stably linked to 

its DNA template through the polymerase.  Fluorescently labeled protein is then bound to the 

RNA and imaged.  b. Sample images from a HiTS-RAP run with GFP and SRB-2 aptamers.  

‘All clusters’ (left panels) are labeled during sequencing and shown as a maximum intensity 

projection of the four channels.  After transcription halting and EGFP-mOrange binding, the 

flowcell is imaged at equilibrium with 625 nM EGFP-mOrange.  Clusters are labeled by 

mOrange in a lane containing all GFP aptamer halting templates, but not in a lane containing 

only SRB-2 aptamer templates.  c. Binding curves for the GFP aptamer (n =2,665,064), and 

mutants C58U (n =3,833), C76U (n =4,758), and G8U_U56C (n =29), and the SRB-2 aptamer 

(n =1,588,404). G8U_U56C and SRB-2 aptamer are scored as not binding.  Data are 

representative, from one lane of the sequencer (SRB-2 aptamer is from a separate lane).  

Intensities are the average of all clusters of each sequence in the lane, normalized by dividing by 

the average sequencing intensity and subtracting the average intensity at no EGFP-mOrange.  

Error bars represent standard error. Error of fitted Kds are the square root of variances returned 

by the fitting algorithm. 
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The GFP aptamer and a population of point mutants and control RNA were assayed by 

HiTS-RAP for their affinity to an EGFP-mOrange fusion protein.  EGFP-mOrange was used 

because EGFP is not compatible with the optics of the sequencer(Shaner et al., 2004; Bentley et 

al., 2008).  Figure 2. 5b shows that the vast majority of GFPapt DNA clusters produce halted 

RNA capable of binding to EGFP-mOrange, while those in a lane where all clusters encode the 

SRB-2 aptamer negative control RNA do not.  To measure the stability of the Tus halted 

transcription complexes, three lanes containing only GFPapt clusters were imaged repeatedly in 

the presence of 625 nM EGFP-mOrange.  This concentration is well above the Kd(Shui et al., 

2012), so all RNAs should be bound by EGFP-mOrange .  Using the characteristic lifetime of the 

halted RNA complex measured on the sequencer we estimate that the assay is sensitive to 

measurements above background for the first 48 cycles, or 72 hours, given an approximate cycle 

time of 1.5 hours (Methods, Figure 2. 6a).  Thus, the halted transcription complexes are 

sufficiently stable to carry out the several sequential measurements at various target protein 

concentrations, which are necessary to determine dissociation constants (Kds).  This decay rate 

was used to correct all intensities used for determining Kds with HiTS-RAP (Online Methods, 

Figure 2. 6a).   
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Figure 2. 6: Corrections applied to HiTS-RAP data 

a.  Stability of halted transcription complexes modeled by linear approximation of exponential 

decay. GFP aptamer RNA presenting clusters were imaged at equilibrium with 625 nM EGFP-

mOrange nine successive times following a single transcription halting reaction. The average 

raw, non-normalized fluorescence intensity of bound EGFP-mOrange at canonical GFP aptamer 

clusters in three lanes (~2.5 million clusters per lane) are plotted in blue, with error bars 

representing the standard deviation between the three lanes.  The reported decay rate is the 

average ± standard deviation of the fits from the three lanes. The fitted line is plotted as a straight 

blue line. Decay rate corrected intensities (see Online Methods) were plotted in red together with 

a line fit to these intensities (red straight line).  b-d.  HiTS-RAP binding curves for GFPapt and 

the eight mutants verified by EMSA (see Figure 2. 7) in each of the three lanes (L005-L007).  

Not every mutant is plotted in every lane: it is excluded if scipy.optimize.curve_fit failed to 

converge on a fit.  The number of clusters and percent increase in signal is reported for each lane.  

Percent increase is the percent increase in fluorescence signal between the average of the first 

and last two measured intensities in the average binding curve.  Intensities decrease across the 

flowcell due to photobleaching.  Variants with lower affinity tend to saturate at lower 

fluorescence intensities.  These data were used to determine the threshold for signal increase 

considered as not binding, for assigning sequences in each lane affinities of >125 nM.  

G8A_U56C (violet), a variant which was confirmed as having an affinity of >125 nM by EMSA 

has a 2.8% increase in signal in lane 5 and a 2.6% decrease in lane 7 (and was not present in lane 

6).  G68C (purple), a mutant with a confirmed affinity of 75 nM, increased by 12.4, 5.8, and 2.5 

% in lanes 5, 6, and 7.  Thus, we determined that sequences with an increase of less than 3% in 

signal should be scored as not binding within the detection limit of our assay.  
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Measuring Equilibrium Binding Constants for the GFP Aptamer and Mutants with 

HiTS-RAP 

HiTS-RAP was carried out using a flowcell with three lanes containing a GFPapt 

template that was subjected to many rounds of PCR and thereby accumulated a population of 

mutants in addition to the canonical GFP aptamer.  Seven protein concentrations increasing in 

five-fold increments from 0.04 to 625 nM were used to measure the Kds of interactions between 

RNAs and EGFP-mOrange.  We identified 1,875 mutant GFP aptamer sequences that had at 

least 10 copies in at least one of the three lanes with quality scores greater than 25 at the mutated 

residue. We measured a Kd of 4.27 ×/ 1.11 nM (geometric mean ×/ (times/divide) geometric 

standard deviation(Limpert and Stahel, 2011)) for the EGFP-GFP aptamer interaction, which 

agrees well with its published affinity of between 5 and 15 nM(Shui et al., 2012). The SRB-2 

aptamer negative control RNA shows no appreciable binding in HiTS-RAP (Figure 2. 5c). 

Most GFPapt mutants do not differ significantly in sequence from the canonical aptamer, 

and therefore bind EGFP with similar affinity.  However, some showed altered affinity.  To 

verify HiTS-RAP measured Kds, we picked eight mutants, three with higher affinity, and five 

with lower affinity including some with no appreciable binding, and measured their binding 

affinity by EMSA(Ryder, Recht and Williamson, 2008) (Figure 2. 7a). Affinities of these eight 

mutants measured by HiTS-RAP and EMSA show a good correlation (Figure 2. 7b).  Many of 

the GFPapt mutants that we identified were represented by only a few dozen clusters, a very 

small fraction of the total number on the flowcell, demonstrating that HiTS-RAP can reliably 

measure Kds of even low copy number sequences in a library.  These results show that such a 

library of mutagenized RNA can be used to determine the affinity of variations of a particular 

sequence to a target protein at a scale that would not be possible by conventional methods.  
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Figure 2. 7: Confirmation of HiTS-RAP measured affinities by EMSA 

a.  EMSA of fluorescently-labeled canonical GFP aptamer and eight mutants with varying 

affinities.  Duplicate EMSA (left panels) were done with varying GST-EGFP concentration in 

three-fold increments from 0.03 to 625 nM.  The bottom band corresponds to unbound RNA, and 

the top band to EGFP bound RNA. A representative scan of the GST-EGFP used in EMSA, 

visualized by EGFP fluorescence, is shown for the last EMSA gel (bottom left panel). Fraction 

of aptamer bound by EGFP, quantified from gels, are plotted (black dots in right panels) and 

fitted to the Hill equation (red solid line) to determine the Kds. Minimum and maximum fraction 

of aptamer bound, Hill coefficient and the Kd of the fits are reported in the figure legend for wt 

(canonical), C58U, U60A, G7A, C76U, U34C, A66U, G68C, G8A_U56C mutant GFP aptamers. 

b.  Agreement between HiTS-RAP and EMSA.  Affinities measured by EMSA in (a) are plotted 

against their HiTS-RAP counterpart as log(Kd, nM).  Mutants scored as not binding in at least 

one lane (or in all lanes as is the case with G8A_U56C) are plotted as open circles.  The r
2
 of 

0.64 is for all eight mutants and the GFP aptamer.  
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Comprehensive mutagenesis of the GFP Aptamer 

We have used our library of mutants to carry out an in-depth analysis of the 82 nt of 

GFPapt that we have sequenced.  Of the 246 possible single base substitution mutants, 236 are 

present in our data set. Many of these mutations resulted in affinities that were too low to be 

measured by the EGFP-mOrange concentrations used in this experiment (Figure 2. 6b-d, 

Methods): therefore they were assigned a Kd of >125 nM (the second highest protein 

concentration used).  If this occurred in only a subset of lanes, it was assigned a Kd of 125 nM 

for the lanes where it did not bind, and averaged with the rest.  Figure 2. 8a shows all of the 

measured affinities of single point mutants.  Most have a negative effect on the binding affinity 

of the GFP aptamer (log2(Kd_mut/Kd_wt) > 0), consistent with its highly optimized nature. 

However, two notable exceptions to this are C58U (Kd = 1.21 ×/ 1.03 nM) and U60A (Kd = 1.71 

×/ 1.13 nM). Both of these mutations do not alter the predicted secondary structure of GFPapt, 

but they reduce the free energy of folding (Figure 2. 9a), so they likely make the overall structure 

more flexible. The Kds of both of these mutants were verified by EMSA (Figure 2. 7).   

To determine the contribution of each nucleotide in GFPapt to its interaction with EGFP, 

we calculated the average effect of all measured mutations at each position (Figure 2. 8b). In 

agreement with the structural and binding affinity characterization reported in the original 

study(Shui et al., 2012),  the majority of the high impact positions (average log2(Kd_mut/Kd_wt)>3) 

are located in either stem-loop #2 or #3. Secondary structure predictions of two representative 

single point mutants which have Kds >125 nM, G68C and G46C are shown in Figure 2. 9b. 

Consistent with their effects on binding affinity, both of these mutations cause gross alterations 

in the predicted structure of the GFP aptamer.  
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Figure 2. 8: Analysis of GFPapt by HiTS-RAP. 

a) GFP binding affinities of all 236 measured single-point mutants of GFPapt. Binding affinities 

in nM are plotted in logarithmic scale. Mutations at each position are color-coded. Wild-type 

GFPapt binding affinity is indicated by the colored dashed line and the sequence is shown at the 

bottom of the graph. Error bars represent the standard deviations in log(Kd). 175 mutants qualify 

as binding in all three lanes. Single point mutants that qualify as not binding and are thus 

assigned an affinity of 125 nM in at least one lane are plotted with open circles, with no error 

bars.  Those that do not bind in all three lanes are plotted at the top of the plot.  b) Predicted 

secondary structure of GFPapt. GFPapt is predicted to fold into a three stem-loop structure 

connected by a central 3-way junction. Each position is colored by the average absolute effect 

|log2(Kd_mut/Kd_wt)| of all of its measured mutants.  Mutations that qualify as not binding were 

assigned an affinity of 125 nM for this plot. Positions where the average effects are greater than 

4 (>16-fold effect in affinity) are colored red. Most mutations have a negative effect or less than 

a 2-fold positive effect on binding affinity, except C58U and U60A (indicated by asterisk).  c) 

Correlation between measured and predicted effects of GFPapt double mutants. Measured 

log10(Kd_mut1_2/Kd_wt) is plotted against the value predicted based on single-point mutants (log10 

(Kd_mut1/Kd_wt) + log10 (Kd_mut2/Kd_wt)).   Points are colored based on the difference between the 

measured and the predicted effects. There is a positive but small correlation (r
2
 = 0.10) between 

the measured and predicted effects, and they differ as much as 1.98, or ~100-fold.  
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Figure 2. 9:  Secondary structure predictions of GFP aptamer single point mutants with 

higher or lower affinities 

a) Predicted secondary structures of the two highest affinity GFP aptamer single point mutants. 

C58U (1.21 ×/ 1.03 nM Kd) and U60A (1.71 ×/ 1.13 nM Kd) mutants are predicted to have 

structures that are very similar to that of wild-type GFP aptamer. Compared to the wild-type 

aptamer (Figure 2. 8b), U60A mutant has a slight expansion of the terminal loop (6 nt vs. 4 nt) 

and a concurrent shortening of the preceding stem (4 bp vs. 5 bp) in stem-loop#3. b) Predicted 

secondary structures of the two lower affinity GFP aptamer single point mutants. Both G45C 

(>125 nM Kd) and C57A (>125 nM Kd) single point mutants are predicted to have significantly 

altered secondary structures when compared to the wild-type aptamer structure (Figure 2. 8b). 

Mutated nucleotides are colored in red. Folded structures and the folding free energies are 

predicted by mFold.  

 

To gain further insight into the relationship between the binding affinity and sequence of 

the GFP aptamer, the relationship between the effects on affinity of double mutants and their two 

corresponding single point mutants was analyzed.  This analysis was restricted to base 
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substitutions, and to the 76 nt region in the center of the aptamer so that the ends could be 

matched to GFPapt to ensure against insertions and deletions.  We identified 181 double mutants 

(of the 60,516 possible) where the double mutant and corresponding two single mutants bound 

EGFP above the threshold for signal increase and had high confidence EGFP-binding affinities. 

If two single point mutations affect binding independently of each other, the binding of a double 

mutant would be predicted by the additive effect of the two individual mutations.  However, in 

cases where two mutations affect the interaction of the aptamer with its protein target in either a 

cooperative or antagonistic manner, the measured effect of the double mutant would differ from 

the additive effect of the two individual mutations.  We used a metric analogous to ΔΔG (the 

difference in Gibbs free energy change) to make this comparison: the effect of a mutation is 

represented by the log ratio of the mutant and canonical aptamers’ Kds (log(Kd_mut / Kd_wt)).  

There is only a weak correlation (r
2
 = 0.10) between the measured and the predicted effect of the 

GFPapt double mutants (Figure 2. 8c).   

Double mutants with significantly higher or lower affinity than predicted by the single 

point mutants are common, and can provide insights into the structural components important for 

the interaction with GFP. For example, A23G_U34C reconstitutes an AU base pair as a GC base 

pair in the predicted secondary structure and binds with higher affinity than either mutant alone, 

while the same U34C in combination with the C58U mutation fails to rectify the structural 

perturbation caused by U34C and has lower affinity than either single mutant (Figure 2. 10). 

Overall, mutational analysis and structural predictions indicate that the interaction between the 

GFP aptamer and its target protein EGFP is complex in nature, depending upon an intricate 

structure dictated by its sequence.    
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Figure 2. 10:  Secondary structure predictions of GFP aptamer double point mutants with 

significantly higher or lower affinities than predicted by the single point mutants 

a) Predicted secondary structures of the two single point mutants and the corresponding double 

mutant GFP aptamer with better affinity than predicted from single point mutants. A23G single 

point mutant (5.87 ×/ 1.23 nM Kd) and A23G_U34C double point mutant (1.23 ×/ 1.95 nM Kd) 

are predicted to have wild-type GFP aptamer-like structures, whereas U34C single point mutant 

(24.21 ×/ 1.58 nM Kd) is predicted to have altered structure. A23G_U34C double point mutant is 

expected to have 33.3 ×/ 1.6 nM Kd based on A23G and U34C single point mutants’ effect on 

affinity. b) Predicted secondary structures of the two single point mutants and the corresponding 

double mutant GFP aptamer with worse affinity than predicted from single point mutants. U34C 

single point mutant (24.21 ×/ 1.58 nM Kd) and U34C_C58U double point mutant (68.24 ×/ 1.63 

nM Kd) are predicted to have altered secondary structures, whereas C58U single point mutant 

(1.21 ×/ 1.03 nM Kd) has a wild-type GFP aptamer-like structure. U34C_C58U double mutant is 

expected to have 6.85 ×/ 1.28 nM Kd based on U34C and C58U single point mutants’ effect on 

affinity. Mutated nucleotides are colored in red. Folded structures and the folding free energies 

are predicted by mFold. 
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High-Throughput Affinity Profiling of Drosophila NELF-E 

As a second example, we examined an interaction between NELF-E, an RNA binding 

protein with a highly conserved RNA recognition motif (RRM)(Pagano et al., 2014), and a target 

RNA using HiTS-RAP. Our group has recently selected an RNA aptamer, NELFapt, which binds 

Drosophila NELF-E with high specificity and affinity.  A truncated version, NELFapt min, of 

this aptamer binds NELF-E with ~20-50 nM affinity measured by EMSA or Fluorescence 

Polarization assay(Pagano et al., 2014).  Within NELFapt, NELF-E recognizes an 7-8 nucleotide 

motif (CUGAGGA(U)), called the NELF-E Binding Element (NBE), which is located within a 

putative k-turn motif that forms a sharp bend between two stems to present the NBE on a single 

stranded loop region(Pagano et al., 2014).  To further characterize this interaction, we mutated 

NELFapt through error prone PCR (epPCR) (Methods), and performed HiTS-RAP to probe 

NELF-E binding using a single lane of an Illumina GAIIx flowcell.  We measured high 

confidence binding affinities for 9,832 mutants. The binding constant for the full length 

NELFapt was measured to be 5.2 nM, which is in good agreement with the 8.5 nM affinity 

measured by EMSA (Figure 2. 11). 

The effects of single point mutants were analyzed to identify regions of the aptamer that 

are critical for its interaction with NELF-E.  All of the 210 possible single base substitution 

mutants within the 70 nt long NELFapt were identified, 206 with high confidence fits for Kd 

(Figure 2. 12a).  The majority of single point mutations did not have a significant effect on 

binding affinity, and none had a significantly higher affinity than the canonical aptamer. Based 

on the average effect of all three possible mutations at each position, mutations within the NBE 

were among the most disruptive to the interaction between the aptamer and NELF-E (Figure 2. 

12b), with affinities as low as 76 nM for A43C (~15-fold weaker).  Interestingly, the bases in the 
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loop region opposite of the NBE in the predicted secondary structure (GAUU, nucleotides 58-61) 

were also found to be important for binding (Figure 2. 12b).  The most critical residues outside 

of the NBE were located at positions G58 and A59 (with G58C and A59C mutations having 65 

nM and 110 nM Kds, respectively).  The deleterious effects of these two mutations were 

confirmed by EMSA (Figure 2. 11).  These residues likely interact with G45 and A46 through 

non-Watson-Crick base pairing(Leontis, Stombaugh and Westhof, 2002) characteristic in k-turn 

structures.  The observed effects of the single point mutations strongly support the putative k-

turn structure of this aptamer and the presentation of the NBE as a single stranded loop.   

 

Figure 2. 11: EMSA confirmation of HiTS-RAP affinities for NELFapt 

Affinities of two NELFapt mutations within the k-turn were verified by EMSA.  These 

experiments were carried out using the minimal (35 nt) aptamer with one GC base pair added 

due to the need for a G rich region at the beginning of a T7 transcription template, as was done in 

the original publication(Pagano et al., 2014).  The minimal aptamer binds with lower affinity 

than observed by HiTS-RAP when measured by EMSA (50 nM for the minimal aptamer vs 8.5 

nM for the full length by EMSA).  Consistent with HiTS-RAP, A59G binds NELF with lower 

affinity (48 nM for the full length by HiTS-RAP, 360 nM for the minimal version by EMSA), 

and G58C binds with even lower affinity (65 nM for the full length by HiTS-RAP, 640 nM for 

the minimal version by EMSA).  Thus, these two bases are as important as those within the NBE.  
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Figure 2. 12:  Analysis of NELFapt by HiTS-RAP 

a) NELF-E binding affinities of 206 single-point mutants of NELFapt. Binding affinities in nM 

are plotted in logarithmic scale. Mutations and the canonical aptamer sequence shown at the 

bottom of the graph are colored as in Figure 2. 8a. b) Predicted secondary structure of NELFapt. 

NELFapt is predicted to have 2 stem-loops connected via a loop-stem-loop structure in between. 

Predicted secondary structure is drawn and colored as in Figure 2. 8b. Most mutations show a 

less than 2-fold effect (log2(Kd_mut/Kd_wt) ≤ 1) on binding affinity. c) Correlation between 

measured and predicted effects of NELFapt double mutants (n = 2,442). Measured fold effect of 

double mutants is plotted against the fold effect predicted by single mutations as in Figure 2. 8c.  

In this case, there is a strong positive correlation (r
2
 = 0.87) between measured and predicted fold 

effect.  

To assess the interplay of different nucleotides, we compared affinities of mutant NELF-

E aptamers with single and double point mutations.  We identified 2,442 double mutants with 

high confidence Kds.  In contrast with the GFP aptamer, the affinities of NELFapt double 
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mutants were predicted well by the affinities of their individual single mutants (r
2 

= 0.87) (Figure 

2. 12c).  The majority of single mutations had less than a two-fold effect on affinity, and their 

effects were additive.  Thus, most double mutants have small effects, and are well predicted by 

an additive model.  Many of the double mutants that do not follow this trend are notable.  Some 

are compensatory: for example, both A39G_U61C and A39U_U61A bind NELF-E far better 

than predicted by their corresponding single mutants’ effect on affinity, presumably because the 

double mutants reconstitute a predicted AU base-pair in NELFapt as GC and AU base-pairs, 

respectively, at the end of a critical stem immediately adjacent to the NBE (Figure 2. 13a).  

Others, such as A39G_G63A bind with lower affinity than predicted by individual mutations 

because they may result in occlusion of the NBE within a double stranded region (Figure 2. 13b), 

which was shown to be deleterious for NELF-E interaction(Pagano et al., 2014).  Other double 

mutants that deviate from additive behavior for less obvious reasons have both mutations within 

the NBE, such as C40G_U41G.  Altogether, this analysis shows that most mutations within 

NELFapt affect its interaction with NELF-E in an additive way with only a few notable and 

informative exceptions. 
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Figure 2. 13: Secondary structure predictions of NELF-E aptamer double point mutants 

with 

a) Predicted secondary structures of the two single point mutants and the corresponding double 

mutant NELF-E aptamer with better affinity than predicted from single point mutants. A39G 

single point mutant (8.97 nM Kd) and A39G_U61C double point mutant (8.89 nM Kd) are 

predicted to have wild-type NELF-E aptamer-like structures, whereas U61C single point mutant 

(63.68 nM Kd) is predicted to have altered structure where 3’-end of the NBE and the k-turn 

inducing GA nucleotides, colored in blue, are in a stem. A39G_U61C double mutant is expected 

to have 109.04 nM Kd based on A39G and U61C single point mutants’ effect on affinity. b) 

Predicted secondary structures of the two single point mutants and the corresponding double 

mutant NELFapt with worse affinity than predicted from single point mutants. A39G single point 

mutant (8.97 nM Kd) is predicted to have wild-type NELF-E aptamer-like structure. Both G63A 

single point mutant (12.81 nM Kd) and A39G_G63A double point mutant (87.06 nM Kd) are 

predicted to have altered secondary structures where the NBE and the k-turn GA are partially or 

completely in a stem. A39G_G63A double mutant is expected to have 21.93 nM Kd based on 

A39G and G63A single point mutants’ effect on affinity. Mutated nucleotides are colored in red, 

and NBE and k-turn inducing nucleotides are colored in cyan. Folded structures and the folding 

free energies are predicted by mFold.  
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Discussion 

Here, we developed a new method that combines high-throughput binding affinity 

measurements for RNA and sequencing in one assay, which we named HiTS-RAP. After a 

normal sequencing run, all additional manipulations for HiTS-RAP are carried out automatically 

by incorporating these steps into the .xml recipe used for the run, so that it adds very little to cost 

and hands-on time, but generates a large and useful data set.  As presented here, this technique is 

streamlined enough that it could be carried out by anyone familiar with the GAIIx instrument.  

The fact that the sequencing chemistry used is identical across all of Illumina’s instruments 

means that this would be possible in the future with HiSeq and MiSeq instruments as well, for 

increased data output or faster small-scale readout, respectively.  Using this assay, we have 

accurately measured the affinities of two previously selected aptamers that bind GFP and NELF-

E. In addition to the canonical aptamers, affinities of thousands of mutants of each aptamer were 

accurately measured. The effects of these mutations on affinity provided insight into the structure 

of the aptamers and identified regions that are critical for their RNA-protein interactions.  

The interaction between GFPapt and EGFP is based upon the complex three dimensional 

structure of the RNA aptamer. Analysis of all possible single base substitutions showed that most 

positions critical for EGFP binding reside within stem-loops #2 and #3, while the rest of the 

aptamer is still required for proper folding (Figure 2. 8b). Of particular interest, two GFPapt 

mutants with higher affinities than the canonical aptamer were identified, highlighting the 

potential impact of HiTS-RAP for in-depth analysis and optimization of a pre-selected aptamer 

in a cost-effective high throughput manner.   

In contrast, the interaction between NELFapt and NELF-E is primarily due to a short 

consensus motif presented on a single-stranded region.  This analysis can also be used to identify 
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a minimal aptamer: in fact, HiTS-RAP shows that the sequence outside of the 35 nt minimal 

aptamer defined in the original publication(Pagano et al., 2014) does not influence binding 

appreciably (Figure 2. 12b). The strong effect of mutations in bases opposite the NBE sequence 

motif in the predicted secondary structure shows that the presentation of the NBE within 

NELFapt, in the single stranded region of a k-turn, is just as important as its presence for 

recognition by this RNA binding protein.  Thus, the sequence specified recognition of RNA by 

the RRM of NELF-E has a strong structural component as well.   

The behavior of double mutants shows that the interaction between EGFP and GFPapt is 

fundamentally different from that of NELF-E with NELFapt.  Multiple mutations within the 

intricate structure of GFPapt confound each other, so that the affinity of a double mutant is 

poorly predicted by the effects of the two individual mutations.  In contrast, most double mutants 

of NELFapt are well predicted as the additive effect of their individual mutations, as we would 

expect for an interaction where only a small fraction of the total RNA is indispensable for 

binding.  Moreover, many of the double mutants that deviate from this trend occur within the 

NBE, suggesting that mutations within this short consensus motif are less likely to affect the 

interaction additively.  Sequences with two mutations within the NBE that have higher affinity 

than predicted by their single mutants could be used to identify an alternative NBE that deviates 

from the canonical motif, but could not be identified by single mutations alone.  Such insights 

are enabled only by the large number of quantitative binding constants determined by HiTS-

RAP.  With a larger library of mutants, it may be possible to derive a comprehensive three 

dimensional model of an RNA-protein interaction. 

HiTS-RAP has as its foundation a technique of halting transcription by sequence-specific 

binding of Tus to ter sites so that the RNA transcript emanating from the polymerase (i.e. T7 
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RNA polymerase) remains stably halted on DNA template and competent for interaction with 

fluorescently-labeled molecules for many hours.  This could effectively be used to convert assays 

deemed to be restricted to DNA, such as microarrays, to measure properties of RNA as well.  

Additionally, although we have used HiTS-RAP to measure affinities of RNAs to a protein, its 

utility extends to any entity that can be fluorescently labeled (e.g., small molecules and peptides).  

Lastly, DNA libraries tailored for many applications, including random sequence libraries, 

aptamer libraries generated by SELEX, random genomic fragments, or targeted genomic 

libraries (such as nascent RNA, mRNA, ncRNA, enhancer regions, or pre-mRNA) can be easily 

adapted or constructed de novo for HiTS-RAP.  Thus, HiTS-RAP could facilitate genome-wide, 

direct, quantitative measurement of RNA affinity for regulatory proteins with known or yet to be 

discovered RNA interactions.  Overall, we have shown here that HiTS-RAP can determine 

quantitatively the affinity of specific RNA-protein interactions at an unprecedented scale and 

resolution.   
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Methods 

Purification of proteins 

The gene encoding Tus protein was PCR amplified from a vector provided by the D. Bastia lab, 

and then inserted between BamHI and XhoI restriction sites in the expression vector pGST-

║(Sheffield, Garrard and Derewenda, 1999).  GST-Tus was then overexpressed in BL21 (DE3) 

RIPL bacteria for 4 hours after induction with 1mM IPTG at 37
o
C.  The protein was purified 

using glutathione coupled agarose resin (Pierce), dialyzed into 40 mM Tris-HCl pH 7.5, 40 mM 

NaCl, 2 mM EDTA, 10 mM β-mercaptoethanol(Mohanty, Sahoo and Bastia, 1996), mixed with 

an equal volume of 80% glycerol, and stored at -80
o
C. 

An EGFP-mOrange construct with a 4x GGGS flexible linker was produced by overlap 

extension PCR, and inserted between the BamHI and XhoI restriction sites of the expression 

vector pHis-║(Sheffield, Garrard and Derewenda, 1999).  6xHis-EGFP-mOrange was 

overexpressed in BL21 (DE3) RIPL bacteria for 4 hours after induction with 1mM IPTG at 37
o
C.  

The protein was purified using Ni-NTA coupled agarose resin (Pierce), dialyzed into 10 mM 

Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 5 mM β-mercaptoethanol, allowed to mature at 

4
o
C for one month, mixed with an equal volume of 80% glycerol, and stored at -80

o
C. 

NELF-E mOrange was made following a protocol similar to EGFP-mOrange.  mOrange was first 

PCR amplified with BglII and BamHI sites at either end, digested with those enzymes, and 

inserted into the BamHI site of pHis-║, conserving its entire multiple cloning site.  NELF-E was 

then subcloned from pHis-║ into the mOrange containing pHis-║ using EcoRI and SpeI 

restriction sites.  Expression and purification were carried out exactly as for EGFP-mOrange. 
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Library preparation 

Figure 2. 4 shows a schematic of a HiTS-RAP template.  In the case of NELFapt, error-prone 

PCR (epPCR) was first carried out as described elsewhere(Mccullum et al., 2010).  DNA 

templates were prepared for sequencing and transcription halting by sequential addition of 

primers by PCR. First, a T7 promoter was added to the 5’ ends of the GFP, Sulforhodamine B 

(SRB), and NELF-E binding aptamers, and the Illumina sequencing primer site to the 3’ ends.  

Then, adaptors complementary to oligos on the Illumina flowcell were added to either end along 

with a ter site immediately 3’ of the Illumina sequencing primer site.  A third PCR step was used 

to add adaptors for the 454 Life Sciences sequencing platform for templates used to make 

polystyrene beads with covalently linked halting templates.  Sequences of primers used in this 

work are listed in Table 3.1.  

Final halting templates for HiTS-RAP (T7 RNAP promoter in italics, aptamer sequence 

underlined, ter sequence in bold): 

GFPapt halting template used for HiTS-RAP: 
5’-

CAAGCAGAAGACGGCATACGAGATCGGTGATAATACGACTCACTATAGGGAATGGATCCACATC

TACGAATTCAGCTTCTGGACTGCGATGGGAGCACGAAACGTCGTGGCGCAATTGGGTGGGGAAA

GTCCTTAAAAGAGGGCCACCACAGAAGCTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAA

ATTAGTATGTTGTAACTAAAGTCACGTCATGAGATCTCGGTGGTCGCCGTATCATT-3’ 

 

SRB-2 aptamer halting template used for HiTS-RAP: 
5’-

CAAGCAGAAGACGGCATACGAGATCGGTGATAATACGACTCACTATAGGGAATGGATCCACATC

TACGAATTCGGAACCTCGCTTCGGCGATGATGGAGAGGCGCAAGGTTAACCGCCTCAGGTTCCA

GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAAATTAGTATGTTGTAACTAAAGTCACGTCAT

GAGATCTCGGTGGTCGCCGTATCATT-3’ 

NELFapt template used for epPCR: 
5’-

GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTCCCAACGACTGCCGAGCGAG
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ATTACGCTTGAGCGCCCCACTGAGGATGCCCACGGGCGATTGGGGCACGGCTTCACTGCAGACT

TGACGAAGCTT-3’ 

NELFapt halting template used for HiTS-RAP: 
5’-

CAAGCAGAAGACGGCATACGAGATCGGTGATAATACGACTCACTATAGGGAATGGATCCACATC

TACGAATTCCCAACGACTGCCGAGCGAGATTACGCTTGAGCGCCCCACTGAGGATGCCCACGGG

CGATTGGGGCACGGCTTCACTGCAGACTTGACGAAGCTTATGGCTAGATCGGAAGAGCGTCGTG

TAGGGAAAGAGTGTAAATTAGTATGTTGTAACTAAAGTCACGTCATGAGATCTCGGTGGTCGCC

GTATCATT -3’ 

 

EMSA of halted transcription complex 

An electrophoretic mobility shift assay (EMSA) was performed to resolve DNAs engaged in 

different complexes with Tus, T7 RNA polymerase, and RNA.  The DNA template contains the 

GFP aptamer template flanked by a T7 RNA polymerase promoter at the 5’ end and a ter 

element at the 3’ end.  This was then end labeled with 
32

P using T4 Polynucleotide Kinase and γ 

32
P- ATP as its substrate.  The resulting radiolabeled-DNA was purified using a P30 size 

exclusion column (BioRad), mixed with either 1x T7 transcription buffer or GST-Tus at ~100 

times the concentration of DNA in 1x T7 transcription buffer (30 mM HEPES pH 7.8, 80mM 

Potassium Glutamate, 15mM MgAc, 0.25 mM EDTA, 5 mM DTT, 0.05% Tween-20, 2 mM 

Spermidine), and incubated at 37
o
C for 30 minutes.  Then, an equal volume of 1x T7 

transcription buffer was added to DNA alone and DNA + Tus protein samples, and an equal 

volume of 2x transcription reaction was added to another DNA + Tus sample to make the Tus + 

DNA + transcription sample, and incubated at 37
o
C for another 30 minutes. The final 

transcription reaction consists of 1x T7 transcription buffer, 0.5 mM NTPs, 3 ng/µL T7 RNAP, 

0.001 unit/ µL YIPP (New England Biolabs), 0.2 units/ µL SUPERase In (Ambion), 0.5 µM 

GST-Tus).  Glycerol was then added to a final concentration of 10%, and equal volumes of the 
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resulting reactions were run on a 4% native polyacrylamide gel.  The gel was then dried, exposed 

to a PhosphorImager screen, scanned by a Typhoon 9400 Imager, and analyzed by ImageQuant 

software. 

 

Transcription halting on 454 beads 

Halting DNA templates compatible with the 454 sequencing platform were made by adding 454 

adaptors via PCR to the halting templates used for the HiTS-RAP assay.  These were used to 

coat 454 polystyrene beads with either SRB-2 aptamer or GFP aptamer templates by PCR 

(without an emulsion) using the bead-bound 454 Primer A and in solution 454 Primer B.  An 

aliquot of these beads was washed with 1x T7 transcription buffer, incubated with 1 µM GST-

Tus in 1x T7 transcription buffer for 30 minutes at room temperature, washed in transcription 

buffer, and then resuspended in a transcription reaction.  After transcription (30 minutes at 

37
o
C), beads were washed with GFP aptamer binding buffer (1x PBS, 5 mM MgCl2, 0.01% 

Tween-20), and incubated with 1 µM 6xHis-EGFP.  After 20 minutes of binding at room 

temperature, beads were washed with GFP aptamer binding buffer and imaged with a Zeiss 

Axioplan II epifluorescence microscope using a FITC/Fluo filter set (Chroma Technology Corp. 

Cat # 41001).  Both DIC and fluorescence images are taken. 

 

Transcription halting on glutathione beads 

DNA templates were prepared with the GFP aptamer template flanked on the 5’ end by a T7 

promoter and an 11 nt C-less cassette, and two ter sites on its 3’ end.  First, these templates were 
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bound to GST-Tus in 10x molar excess in 1x T7 transcription buffer for 30 minutes at 37
o
C.  The 

resulting Tus-DNA complexes were then incubated with glutathione coupled agarose beads 

(Pierce) in 1x T7 transcription buffer for 30 minutes at 37
o
C.  An equal volume of 2x 

transcription reaction lacking CTP was then added to the resulting bead slurry, and transcription 

was allowed to proceed for 30 minutes at 37
o
C.  At this time, the one aliquot of beads was 

washed three times in 1x T7 transcription buffer and then mixed with an equal volume of 2x 

transcription reaction mix lacking polymerase but containing all four NTPs.  Transcription was 

allowed to proceed for another 30 minutes at 37
o
C. Both bead treatments were then washed with 

GFP aptamer binding buffer, incubated with 1 µM 6xHis-EGFP for 30 minutes at RT, washed 

again, and imaged as described before for 454 beads. 

 

HiTS-RAP 

A protocol paper for HiTS-RAP has been published:  (Ozer et al., 2015) 

Libraries for sequencing were prepared to contain an RNA template insert flanked by a 5’ T7 

promoter and 3’ ter binding site with the appropriate adaptors complimentary to the lawn of 

oligos on the Illumina flowcell at the extreme 5’ and 3’ ends.  The ter site was positioned 3’ of 

the Illumina sequencing primer site to ensure that the target RNA is fully emerged from the 

polymerase upon halting and so that sequencing begins with the target RNA.  A standard 

sequencing run was performed with these libraries on an Illumina GAIIx using an 82 cycle read 

length on a paired end flowcell.  The same .xml recipe used for the sequencing run included all 

subsequent steps to effect transcription halting and binding of mOrange labeled protein to the 

sequenced DNA clusters, so that fresh solutions are added at once for all steps through 
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transcription halting, and then once for the binding curve.  Thus, reagents for HiTS-RAP are 

loaded onto the Paired End Module (PEM) twice.  The recipe program is details the exact 

reagent delivery used for HiTS-RAP. 

Table 3. 1: Oligonucleotides Used in HiTS-RAP 

PCR Step Library Name Sequence 

epPCR NELFapt Temp DNA N70 Library FOR GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC 

epPCR NELFapt Temp DNA N70 Library REV 
TACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGCTTCGTCA 

AGTCTGCAGTGAA 

1 NELFapt Temp DNA N70 Library FOR GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC 

1 NELFapt 

IllumFORSeq-BC2-

AptLibConsREV 
TACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCTAAGCT 

TCGTCAAGTCTGCAGTGAA 

1 GFPapt GFP_Temp_DNA_FOR 
GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC 

AGCTTCTGGACTGCGATGGGAG 

1 GFPapt Temp_DNA_REV 
TACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTCTGTGGT 

GGCCCTCTTTTAAGG 

1 SRB2apt Temp_DNA_SRB-2_FOR 
GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC 

GGAACCTCGCTTCGGCGATGA 

1 SRB2apt Temp_DNA_SRB-2_REV 
TACACTCTTTCCCTACACGACGCTCTTCCGATCTGGAACCTGAGG 

CGGTTAACCTTGC 

2 All Illum_IllumAdaptor_T7 
CAAGCAGAAGACGGCATACGAGATCGGTGATAATACGACTCACTA 

TAGGGAATGGATCC 

2 All IllumFORAdapt_T1_IllumFORSeq 
AATGATACGGCGACCACCGAGATCTCATGACGTGACTTTAGTTAC 

AACATACTAATTTACACTCTTTCCCTACACGACGCTCTTCCGAT 

3 All 454RevPrimer_IllumFORAdapt 
CTATGCGCCTTGCCAGCCCGCTCAGAATGATACGGCGACCACCGA 

GATCT 

3 All 454PrimerA_IllumREVLawn 
CGTATCGCCTCCCTCGCGCCATCAGCAAGCAGAAGACGGCATACG 

AGATCGGT 

 

2.25 mL of each solution was loaded onto its own position on the PEM of the GAIIx.  The .xml 

recipe delivered reagents in the proper sequence, and set the flowcell temperature using the 

Peltier heater in the instrument.  During each reaction or binding step, 75 µL of solution is 

flowed through each lane, and then the flowcell is incubated for 30 minutes to equilibrate.  

During the incubation, 15 µL of fresh solution is delivered to each lane every 5 minutes.  The 

second strand generated during sequencing was stripped away and 1 µM primer 

(IllumFORAdapt_T1_IllumFORSeq, Table 3. 1) for double stranded DNA regeneration annealed 

as per the standard Illumina protocol.  Excess primer was then washed away with 1x NEB buffer 

4 with 0.01 % Tween-20 (New England Biolabs).  DNA was then made completely double 

stranded by flowing in a Klenow exo- enzyme reaction mix (1x NEB Buffer 4, 0.01% Tween-20, 
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0.2 mM dNTPs, Klenow exo-(New England Biolabs)) and incubating for 30 minutes at 37
o
C.  

The flowcell containing double stranded DNA clusters was then equilibrated with 1x T7 

transcription buffer.  Tus was allowed to bind the DNA templates’ ter elements by equilibrating 

with 1 µM GST-Tus in 1x T7 transcription buffer for 30 minutes at 37
o
C.  The flowcell was then 

equilibrated with a transcription reaction (1x T7 transcription buffer, 0.5 mM NTPs, T7 RNAP, 

YIPP, Superase In, ~0.5 µM GST-Tus).  Transcription and halting was allowed to proceed for 30 

minutes at 37
o
C.   

After transcription halting, the flowcell was equilibrated with GFP or NELF (10 mM HEPES, pH 

7.5, 100 mM NaCl, 25 mM KCl, 5 mM MgCl2, 0.02% Tween-20) aptamer binding buffer at 

room temperature.  It was imaged immediately, just as during sequencing, to measure the 

background intensity at every cluster.  It was then equilibrated successively with increasing 

concentrations of mOrange labeled protein in binding buffer and imaged.  Imaging at each 

concentration was carried out in equilibrium binding after 30 minutes equilibration at room 

temperature.  Concentrations of EGFP-mOrange varied from 0.04 nM to 625 nM, increasing in 

fivefold increments.  The images in Figure 2. 5b are from .tif files collected by the Illumina SCS 

during this binding.  HiTS-RAP for NELF-E mOrange was identical to EGFP-mOrange, except 

that concentrations of protein varied from 0.064 to 1000 nM.   

Sequencing and data extraction 

Sequencing, transcription, and protein binding are executed as a single run on a GAIIx.  In the 

case of NELF-E, transcription and protein binding were carried out twice.  The first binding 

curve was used for all analyses.  Intensity data were collected and basecalling done using the 

Illumina SCS version 2.9.  During the run, .cif and .bcl files were saved, along with 5% of the 
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raw .tif images taken.  For labeled protein binding steps, intensities are measured for all four 

channels for every cycle at every cluster, and saved in binary .cif files, just as during the 

sequencing portion of the run.  We used scripts generously provided by Robin Friedman to 

extract intensities from these files corresponding to mOrange fluorescence for every cluster.  

This gives the coordinates of each cluster, together with its protein binding intensities (in the T 

channel) and average intensity during sequencing.  These data were then matched by cluster 

coordinates to their sequence from .qseq.txt files generated by the Illumina OLB version 1.9.4.  

Only clusters that passed filter were included.  If a cluster contained a mutation (deviating from 

NELFapt or GFPapt), it was only included if the mutated base had a quality score greater than 25 

(<0.003 probability of an incorrect base call).  A threshold of quality score >20 is common 

practice for SNP calling algorithms (Nielsen et.al Nature Review Genetics 2011 Vol 12, page 

443). 

Loss of signal correction 

All development of HiTS-RAP was done using the interaction between the GFP aptamer and 

EGFP-mOrange as a model RNA-protein interaction.  After the binding curve, the flowcell was 

imaged 9 successive times after reequilibrating with 625 nM EGFP mOrange.  After three of 

these cycles, imaging was not carried out, but rather the flowcell was allowed to sit in 625 nM 

EGFP-mOrange for the time that it would take for one equilibration and binding cycle.  Thus, the 

9 imaging steps span the time that it would take for 12 equilibration and imaging steps.  A 

similar rate of decay was observed between successive and staggered imaging cycles, indicating 

that most loss of signal is due to time rather than photobleaching caused by the number of times 

that the flowcell was imaged (Figure 2. 6).  We find that in the regime where our imaging takes 

place (i.e. where time is much less than the characteristic lifetime), the observed decay is 
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described well by a linear approximation to exponential decay.  Thus, we took the average 

intensities of clusters with canonical GFP aptamer sequence though the nine cycles imaged and 

used scipy.optimize.curve_fit to perform a weighted linear least squares regression, using 

weights determined from the standard deviation of the intensities at each time point.  The 

equation used was: 

𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝐼0 (1 −
𝑡

𝜏
) 

where Iobserved is the measured mOrange intensity, I0 is the initial intensity, t is the time in units of 

cycles, and τ is the characteristic lifetime in cycles.  I0 and τ were solved for the GFP aptamer 

clusters in each of the three lanes (each containing ~2.7 million clusters with canonical GFP 

aptamer sequence); the final characteristic lifetime is the average of these three fitted lifetimes.  

In this regime, halted complexes are decaying at a rate corresponding to a characteristic lifetime 

of 137 ± 7 cycles, or 206 ± 11 hours (at an average cycle time of ~1.5 hours).  This lifetime 

simply describes the rate at which the halted transcription complexes are decaying, independent 

of the actual intensity.  Given that the background intensity in these lanes is approximately 85, 

this means that fluorescence signal will be above background for 48 cycles, or 72 hours (at the 

decay rate we have measured, it takes 48 cycles to decay to the background intensity of 85 from 

the initial intensity of 131).   

The characteristic lifetime was used to apply a correction factor to each fluorescence intensity 

measured in binding curves, using the equation: 

𝐼𝑎𝑐𝑡𝑢𝑎𝑙 =
𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

(1 −
𝑡
𝜏)

=
𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

1 − 0.00730 × 𝑡
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where Iactual is the fluoresce intensity used in the fit for Kd,  Iobserved is the measured intensity, 

0.00730 is the decay rate in cycle
-1

 (the inverse of τ), and t is the time since transcription, in 

cycles.  Figure 2. 6 shows intensity data from three lanes, together with the same intensities after 

applying the correction factor.   

 

Kd calculation 

Sequential measurements of the corrected mOrange intensities at increasing concentrations give 

a binding curve for each cluster.  Intensities were normalized for cluster size and position in the 

tile by dividing each intensity by the average sequencing intensity(Nutiu et al., 2011).  This 

correction is applied so that all intensities from a lane can be averaged, to be representative of 

each sequence.  Clusters with the same sequence in each lane were matched, and average binding 

curves were generated by taking the mean of their normalized intensities for each protein 

concentration.  This gives an average binding curve representative of each sequence.  If more 

than 10 clusters had a given sequence in a lane, this binding curve was fit to a Hill equation, 

solving the equilibrium dissociation constant (Kd) of the interaction(Barlow and Blake, 1989).  

We have used the following Hill equation: 

I = b +  
𝑚 − 𝑏

1 + (
𝐾𝑑

𝐶 )
𝑛

 

 

Where b is the background fluorescence intensity at the cluster, m is the maximum fluorescence 

intensity, Kd is the dissociation constant, n is the Hill coefficient, and C is the concentration of 

target protein.  The intensities measured by imaging at several different concentrations are then 

used to solve m, b, Kd, and n in a weighted non-linear least squares regression.  We have found 
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that letting these four parameters vary gives reliable fits; this also means that the Kd that we solve 

is independent of the intensity values, so that it shows the inflection point in the binding curve.  

Only fits for which the scipy.optimize.curve_fit algorithm of the NumPy Python package 

returned a variance of less than 1,000,000 were considered to be high confidence and used in 

these analyses. 

The GFPapt run contained three lanes of GFPapt.  To generate a single data set from all three 

lanes, Kds for every unique sequence in each lane were determined by fitting to average binding 

curves.  The Kds for all unique sequences in the flowcell were then determined by geometrically 

averaging the fitted Kds across the three lanes: therefore the Kd values are reported as the average 

Kd ×/ (multiply or divide by) standard deviation.   

The GFPapt data have the added complication of very low background binding.  Thus, there are 

sequences in this data set which do not bind GFP measurably, while for NELF-E, background 

binding for this RNA binding protein is high enough that every sequence is expected to bind to 

some extent.  To mitigate this problem, only sequences which show a 3% increase (determined 

in Figure 2. 6b-d) between the first and last two measured intensities were considered as binding: 

all others were called as not binding, meaning that they effectively have a Kd greater than 125 

nM.  We set the limit at 125 nM because this was the second highest concentration probed, so we 

do not expect to be able to measure affinities greater than this.  For analysis of single mutants, 

any mutant scored as not binding based on its intensity increase was assigned an affinity of 125 

nM; this value was averaged with other real measurements from other lanes if it was called as 

binding there.  This results in a Kd measurement of greater than that average.  Such mutants were 

excluded from analysis of double mutants. 
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EMSA of GFPapt and NELFapt and mutants 

EMSA was used to verify the HiTS-RAP measured binding affinities of wild-type and mutant 

GFP binding aptamers to EGFP. To this end, in vitro transcribed aptamers were 3’ end-labeled 

with AlexaFluor647 Hydrazide (Invitrogen) as described elsewhere(Pagano, Clingman and 

Ryder, 2011) and quantified by Qubit Fluorometer (Invitrogen). Fluorescently labeled aptamers 

were mixed with recombinant GST-EGFP protein at 25
o
C for 45 min. The GST-EGFP 

concentration in the binding reaction was varied as a 2/3 dilution series starting from 500 nM, 

and a no protein control. The final 20 µl binding reaction was composed of 1X PBS, 5 mM 

MgCl2, 0.4 U of Superase In, 1 µg of yeast tRNA, 0.005% NP-40, and 5 nM fluorescently-

labeled aptamer. After addition of Bromocresol Green containing 30% glycerol to 6% final 

glycerol concentration, binding reactions were loaded on a 6% polyacrylamide slab gel (0.5X 

TBE, 5 mM MgCl2) that was pre-equilibrated to 4
o
C and pre-run at 120V for 10 min at 4

o
C. 

Loaded gels were run at 120V for 90 min at 4
o
C, and then imaged with a Typhoon 9400 scanner 

using Cy5 settings. Images were quantified by ImageQuant5.2 software, and data were fitted to 

Hill Equation to determine the Kd values using Igor software. 

EMSA was carried out with fluorescein labeled minimal NELFapt as described 

elsewhere(Pagano et al., 2014). 

RNA secondary structure predictions 

The average absolute effect of all three mutations at each position was calculated using the 

following equation:   [|log2(Kd_mut1/Kd_wt)| + |log2(Kd_mut2/Kd_wt)| + |log2(Kd_mut3/Kd_wt)|]/(Number 

of point mutants observed at that position). 
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We used Kinefold(Xayaphoummine, Bucher and Isambert, 2005) to predict the folded structures 

and the associated folding free energies. Kinefold, unlike other programs which predict 

secondary structures based on minimal free energy, predicts the structure of RNA as it is being 

synthesized, and thus recapitulates what is happening in HiTS-RAP, where the RNA folds co-

transcriptionally. This predicted structure is consistent with the published secondary structure of 

the GFP aptamer which was supported by significant mutational analysis(Shui et al., 2012). 

Perhaps minimal free energy based programs would be more suited if the aptamer had undergone 

a heat denaturation and renaturation cycle following synthesis in its entirety. 

Predicted secondary structures and the Gibbs Free Energy (ΔG) of the folded structures are 

obtained from Kinefold, unless indicated otherwise, however the actual drawings are obtained 

from mFold(Zuker, 2003), because they are easier to manipulate.  
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Notes on HiTS-RAP
2
 

Efficiency of halting 

 While halted transcription complexes contain a single RNA per DNA after washing, we 

see that during the transcription reaction, T7 RNAP is likely transcribing until it reaches Tus, 

whereupon it either halts or terminates.  In the situations presented here, we have separated the 

transcription complexes from the other components of the transcription reaction that allow the 

cycle of halting and termination to continue; in the EMSA the unincorporated NTPs are removed 

from the complexes quickly due to their high mobility through the gel, in the cases of halting on 

beads, the beads were washed, and on the GAIIx, the flowcell was washed.  In these cases, we 

have shown that halted complexes with functional RNAs are very stable.  However, we see that 

during transcription, RNA produced by polymerase that terminates at the ter site accumulates.  

When we transcribe DNAs bound to beads, a large amount of transcript remains anchored to 

beads, but an even larger fraction is released into the supernatant (Figure 2. 2a).  Bacterial RNA 

polymerases have been shown to terminate through a cooperative forward translocation 

mechanism when presented by roadblocks(Epshtein et al., 2003).  Thus, removal of the 

components of the transcription reaction from the halted transcription complexes is likely to be at 

least partially responsible for the stability that we observe.   

The experiment in Figure 2. 2a also demonstrated the polarity of Tus.  In a parallel 

reaction, the templates used were identical to those in the first except that their ter sites were in 

the opposite orientation.  In this case, T7 RNAP is able to break through the barrier of Tus and 

run off the end of the template in most cases; this template had two ter sites in the permissive 

                                                 
2
 Supplementary text from (Tome et al., 2014) 
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orientation and only minor bands corresponding with each ter site are seen (Figure 2. 2a).  

Therefore, when Tus is bound to DNA in the non-permissive orientation, nearly every T7 RNAP 

either halts or terminates, while in the opposite orientation, most polymerases proceed past the 

Tus/ter complex. 

 We believe that the technique for transcription halting presented in this work will be 

suited to a wide range of applications.  It is the first technique, to our knowledge, capable of 

producing stable complexes containing both a DNA molecule and its RNA transcript.  We have 

presented one case where it was coupled with high-throughput DNA sequencing technology to 

analyze RNA properties at the time of sequencing.   

 

Strategies for solving Kds 

 We have determined that a single weighted nonlinear regression to an average binding 

curve representative of a unique sequence is the best way to solve dissociation constants.  In this 

way of fitting, the intensities of each individual clusters’ binding curve are normalized for cluster 

size and position(Nutiu et al., 2011) by dividing by the average intensity of that cluster during 

sequencing.  After this normalization, each average intensity is representative of each sequence’s 

behavior at a given concentration.  The standard deviation of the clusters’ intensity gives a good 

measure of confidence in how that average intensity is truly representative of the RNA’s 

behavior; thus, it is used as the weight in the fit.  We find that median and average binding 

curves give similar dissociation constants, especially considering that this is a case where we are 

measuring point mutants, so we expect many of the measured affinities to be near that of the 

canonical aptamer.   
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 We have also used a method of fitting where we solve a dissociation constant for each 

cluster individually in a nonlinear regression.  This method truly exploits the data to its full 

potential, as each cluster is itself an independent binding event.  Rather than giving each unique 

sequence only one opportunity to converge on a good fit to the Hill equation, this method gives 

these sequences as many fits as there are clusters.  The dissociation constant for a unique 

sequence is then the geometric mean of these fitted Kds.  While we find that the geometric mean 

of all fitted Kds is usually accurate, individual clusters tend to contain a large amount of noise 

and therefore give poor fits.  Because of this, we use only those whose fits return a low 

covariance when taking the mean for a unique sequence.  A major disadvantage of this method, 

however, is that it is computationally expensive.  When doing fits to average binding curves, we 

take only unique sequences with a certain number of clusters in the flowcell.  This amounts to 

only several thousand fits per lane of the flowcell.  Individual fits, however, require several 

million fits per lane.  The fact that these two methods give similar results means the extra time 

and complication of individual fits is unnecessary.   

HiTS-RAP as a Tool for Identification, Characterization, and Optimization of 

Aptamers 

HiTS-RAP can be used to optimize aptamers that are selected by SELEX. Although they 

have enormous diversity (up to 10
16

 unique sequences), libraries used for SELEX are far from 

having complete coverage of the potential sequence space (70 nt random library = 1.4 x 10
42

 

unique sequences). Therefore, SELEX identifies the highest affinity aptamers present within the 

starting library, but the true highest affinity aptamer could be a related sequence that was not 

present. In addition, even the most enriched aptamer pools at the end of a SELEX process with 

10 rounds of selection often have a large complexity with thousands to millions of different 
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aptamers(Schütze et al., 2011). The highest affinity aptamers in such pools are not necessarily 

the most abundant ones either, therefore, a high-throughput analysis method, like HiTS-RAP, 

would be useful in identifying the highest affinity aptamers for downstream applications. While 

large-scale, quantitative characterization of DNA aptamer libraries has been carried out(Cho et 

al., 2013), no such method has been developed for RNA libraries.  HITS-RAP could be used to 

rapidly identify the true highest affinity RNA aptamers. This point is well demonstrated by 

identification of GFP aptamer mutants that have higher affinity than the canonical aptamer (i.e. 

C58U and U60A). The original selection of the GFPapt was exceptionally difficult, requiring a 

laborious two stage selection process with 27 total rounds of selection, followed by mutational 

analysis, and structure minimization.  Therefore, the starting, unmutated GFP aptamer that was 

used in this study had already undergone a substantial optimization.  Also, HITS-RAP could be 

modified in ways to select aptamers for additional functions such as disruption of a specific 

interaction of the target molecule. Such applications would be valuable given the fact that many 

aptamers which disrupt their target proteins’ function or interaction with other molecules are in 

clinical trials(Ni et al., 2011; Sundaram et al., 2013). 
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Overview of HiTS-RAP
3
 

RNA encoding DNA Library. 

Any library suitable for Illumina sequencing could be adapted for HiTS-RAP.  Thus, 

biological assays such as PAR-CLIP or ChIP-seq could be used to enrich for specific candidate 

regulatory regions of the genome, which could then be interrogated for their RNA transcript’s 

affinity for a protein.  The quality of the DNA templates used for HiTS-RAP is very important. 

Since multiple PCR steps are used for creation of the DNA template, we optimized the number 

of PCR cycles for each step and monitored the quality of the PCR product by polyacrylamide gel 

electrophoresis at each step. PCR products are purified by PCR purification kit or gel extraction 

(especially for the final template) to ensure the best quality and sufficient removal of primer 

dimers and other PCR byproducts. Shorter fragments can easily dominate the flowcell due to 

better amplification efficiency during cluster generation, and as a result diminish the number of 

full-length templates that can be analyzed. We use home-made Taq or Phusion polymerases for 

PCR amplification. Depending on the purpose (i.e. mutational analysis of a single RNA-single 

protein or a library of RNAs with a single protein) the choice of DNA polymerase and PCR 

conditions (e.g. buffer composition, number of PCR cycles) in each PCR step can be modified to 

increase or to minimize the rate of PCR introduced mutations using Taq polymerase under error-

prone PCR conditions(Mccullum et al., 2010) or high fidelity Phusion polymerase, respectively. 

Quantification of DNA template concentration, for which we use Qubit dsDNA HS Assay, is 

also critical to get the optimum number of cluster on the flowcell.  Each type of library produces 

                                                 
3
 This section is an excerpt from a paper co-written with Abdullah Ozer and John Lis: 

Ozer, A., Tome, J. M., Friedman, R. C., Gheba, D., Schroth, G. P., & Lis, J. T. (2015). Quantitative assessment of 

RNA-protein interactions with high-throughput sequencing-RNA affinity profiling. Nature Protocols, 10(8), 

1212–33. https://doi.org/10.1038/nprot.2015.074 
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clusters with different efficiencies, so we have found that it takes some experience to reliably 

reach an optimal cluster density on the flowcell. 

 T7 RNA polymerase is used for transcription because it has a short, specific promoter 

sequence, and is widely available commercially or easily prepared in-house, and very active.  

The DNA templates that we have used in HiTS-RAP so far are designed for single-read 

sequencing of a single template and mutants derived from it; however, conceptually it is possible 

to do paired-end sequencing by incorporating TruSeq or Paired-end sequencing oligos into the 

template design. This would allow analysis of protein interactions of longer RNAs that are 

derived from the genome or transcriptome. In such a template the RNA encoding DNA would be 

flanked by the two Illumina paired-end sequencing oligos on either end, then by a T7 RNA 

polymerase promoter and Tus binding Ter site, and finally the Illumina flowcell adaptors. The 

portion of the Illumina sequencing oligo that becomes part of the transcript can be used to 

quantitate the amount of RNA transcript in each cluster using a fluorescently labeled 

complementary oligo as has been done in RNA-MaP(Buenrostro et al., 2014). A barcode 

sequence can be introduced between the T7 RNA polymerase promoter and Illumina sequencing 

oligo and can be read by an index read as part of multiplex sequencing protocol, and allow 

simultaneous processing and analysis of multiple RNA libraries in a single-lane of a GAIIx 

flowcell, thus minimizing experimental differences between the two libraries.  This might be 

particularly useful for analyzing interactions of a protein with RNA libraries prepared from 

different sources or under different conditions, and SELEX enriched aptamer libraries from 

various rounds or perform under different conditions. 
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Critical considerations in designing such a template: We always design libraries so that 

sequencing is done toward the flowcell, and transcription proceeds away from the flowcell 

surface.  We reason that this increased accessibility of RNA transcript for the fluorescently 

labeled protein of interest.  Sequencing toward the flowcell allows us to place the Illumina 

sequencing primer just upstream of the Tus binding site, so that it serves as a stalling site during 

transcription. Limitations on the length of DNA template (~500 bp max total) restricts the length 

of the RNA encoding DNA region to ~400 bp. Longer DNA are ideal templates for neither 

sequencing nor bridge-amplification during cluster generation. Transcription halting by Tus-

bound Ter site is orientation specific; that is, the Tus-bound Ter site is permissive to read-

through transcription in one orientation but not in the opposite direction (similar to DNA 

polymerases).   

We strongly recommend a testing the materials used for a HiTS-RAP run in vitro before 

applying to the sequencer.  This includes testing transcription, with and without halting, of the 

template DNA by simply transcribing overnight and running RNA on a denaturing gel, and 

EMSA, respectively.  We also like to test a known interaction of the labeled RBP by EMSA.  

The cost and labor associated with the HiTS-RAP assay is immense for a failure, which could 

have been avoided by these tests. Assessing a rough estimate of Kd is also important for deciding 

what protein concentrations to use for HiTS-RAP protein binding steps. 

Writing an .xml recipe for a GAIIx run 

1. Recipes begin by setting the tile selection, in the TileSelection definitions section.  This 

defines which tiles are imaged in every step of a recipe. The same tile selection must be used in 

each step (i.e. it is not possible to sequence a whole flowcell and then image protein binding to a 
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subsection of it within the same recipe). There are two types of tile selection. Incorporation 

defines the tiles used during sequencing and protein binding, and ReadPrep defines the tiles to be 

used in the first cycle of sequencing for finding focus and defining the edges of the flowcell. 

If one were only using a subsection of the flowcell, as in (Gravina, Lin and Levine, 2013), 

the Incorporation definition would be changed to indicate this. 

2.  Chemistry definitions. Chemistry attributes are defined at the beginning of a recipe.  

a. Each attribute definition begins by defining the name, which can be used to call the 

chemistry during the protocol.   

b. Next, set the temperature to be used for the attribute with the Temp command. This uses 

the Peltier heater in the instrument to warm or cool the flowcell. If no temperature is defined, the 

flowcell will be at ambient temperature. A Duration element can be used here to set the length of 

time that the flowcell will be held at the specified temperature. 

c. After that, solutions can be pumped through the flowcell with the PumpToFlowcell 

attribute. The Solution element for this attribute indicates which port on the GAIIx or PEM the 

instrument will pull solution from. AspirationRate sets the rate of flow, in µl/min.  We leave the 

DispenseRate at 2500 µl/min.  Finally, the Volume element indicates how much of the solution, 

in µl, will be pumped through each of the eight lanes of the flowcell (thus, it is one eighth of the 

total solution used).   

d. We typically use a Wait command between PumpToFlowcell commands to set 

incubation times. The Duration element of this command sets the time of the incubation, in 

milliseconds. 
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e. The chemistry definition that we use for transcription is included below as an example.  

First, we set the temperature of the Peltier heater to 37 C. Next, we pump 75 µl of transcription 

reaction through the flowcell (the port at position 11 on the PEM was loaded with 2.25 ml of 

transcription reaction). The flowcell is then incubated for 5 minutes. Then, 15 more µl of 

solution is flowed through each lane, followed by a five minute incubation, several times so that 

150 µl of solution is flowed through each lane of the flowcell and it is incubated for 30 minutes 

total for transcription.  We carry out every step with periodic addition of more solution in this 

way.  Finally, 75 µl of the next solution (transcription buffer only) is flowed through each lane, 

through position 14 of the PEM. The TempOff element removes the Peltier heater from the 

flowcell. Finally, we close the attribute definition with </Chemistry>. 

<Chemistry Name="Transcription"> 
  <Temp Temperature="37" Duration="120000"/> 
  <PumpToFlowcell Solution="11" AspirationRate="50" DispenseRate="2500" 
Volume="75" /> 
  <Wait Duration="300000"/> 
  <PumpToFlowcell Solution="11" AspirationRate="50" DispenseRate="2500" 
Volume="15" /> 
  <Wait Duration="300000"/> 
  <PumpToFlowcell Solution="11" AspirationRate="50" DispenseRate="2500" 
Volume="15" /> 
  <Wait Duration="300000"/> 
  <PumpToFlowcell Solution="11" AspirationRate="50" DispenseRate="2500" 
Volume="15" /> 
  <Wait Duration="300000"/> 
  <PumpToFlowcell Solution="11" AspirationRate="50" DispenseRate="2500" 
Volume="15" /> 
  <Wait Duration="300000"/> 
  <PumpToFlowcell Solution="11" AspirationRate="50" DispenseRate="2500" 
Volume="15" /> 
  <Wait Duration="300000"/> 
  <PumpToFlowcell Solution="14" AspirationRate="60" DispenseRate="2500" 
Volume="75" /> 
  <TempOff /> 
 </Chemistry> 
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3. Protocol section. This section contains instructions for carrying out the run. It utilizes the 

attributes defined in the TileSelection and ChemistryDefininition sections to carry out the run.  

Instructions are carried out in the order that they are listed in the protocol. Our HiTS-RAP 

recipes have all started with a complete sequencing run, which we leave unchanged from the 

standard Illumina recipes. We then perform the protein binding (i.e. RNA Affinity Profiling 

(RAP)) steps at the end. We have utilized three types of commands: UserWait, ChemistryRef, 

and Incorporation.   

a. UserWait commands are used to pause the run until the user loads solutions required for 

the next step. Text can be entered in the Message element, which then directs the user to click 

OK to continue with the next step in the protocol.   

b. ChemistryRef commands are used to carry out a chemistry step, as defined in 

ChemistryDefinitions, without imaging. The Name element is used to indicate the chemistry step 

used.   

c. Incorporation commands are used for steps where the flowcell is to be imaged. 

‘Incorporation’ indicates the tile selection that was defined in the TileSelection section. The 

ChemistryName element indicates which chemistry step to carry out before imaging. The four 

Exposure elements (ExposureA, G, T, C) indicate exposure times to be used during imaging, in 

milliseconds, for each channel. 

We typically wait to prime a refrigerated (enzyme or protein containing) solution until just 

before it is used. Priming fills the fluidic lines with the solution; thus, solution that is primed 

early will sit in the line, at room temperature, before being pumped into the flowcell. The dead 
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volume within the lines from the PEM to the flowcell is ~550 µL [1], which is a large fraction of 

the total solution used for each step. 

The following is an example from a protocol section of one of our recipes. It starts with a 

chemistry reference that primes reagent port 11 on the PEM (which contains transcription 

reaction). Another chemistry reference then carries out transcription, without imaging. A 

comment, contained within <!--  "comment”  -->, then tells readers of the recipe what should 

have happened at this point in the recipe. A UserWait attribute then pauses the run so that the 

protein solutions can be loaded on to the instrument.  It includes a Message element which tells 

the operator of the instrument what should have happened up to this point and how to proceed.  

Next, there is another comment, indicating the imaging cycle number (this is helpful when 

carrying out analysis). Last is the incorporation step carried out immediately after the UserWait.  

Incorporation indicates that the tile selection defined as Incorporation in the TileSelection section 

will be used for imaging. The ChemistryName element dictates that the TargetWash chemistry 

definition will be used before imaging (this washes the flowcell with the protein binding buffer).  

Exposure elements are then used to define what exposure times to use for each channel in the 

imaging. 

<ChemistryRef Name="Prime11x3" /> 
<ChemistryRef Name="Transcription" /> <!-- At this point, all clusters are transcribed and 

halted.  No target has been added yet--> 
<UserWait Message="Transcription complete.  Replace chilled reagents on PEM with protein 

target dilutions,  
with concentration increasing from positions 16 to 20 and then 9 to 13. Click OK to Proceed, or 

CANCEL to Stop." /> 
<!--      Cycle 83       -->  
<Incorporation ChemistryName="TargetWash" ExposureA="500" ExposureC="350" 

ExposureG="200" ExposureT="175" /> 
 
 4.  Check that the recipe contains no errors and can be read by SCS 2.9 software.  
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a. To do this, first place the modified recipe into the custom recipes folder on the 

computer controlling the GAIIx instrument 

(C:\Ilumina\SCS2.9\DataCollection\bin\Recipes\Custom). 

b. Open the recipe from within the SCS2.9. Select the Open Recipe command under File 

tab. Select the recipe to open. 

c. If the recipe contains an error, it will not open. Type of the error and the line 

containing the error will be indicated under the Comment column of the open recipe dialogue 

box, and the recipe will be marked as “Invalid” under File Status column, as shown below. 
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d. Correct the error in the recipe file using NotePad++.  Special characters such as #, &, ! 

have specific uses, therefore their use in comments and messages should be avoided. Once 

corrected, the first comment in the recipe will be displayed under the Comment column, and the 

file status will be displayed as “UserCreated”, as shown below. 

 

e. If desired the steps of the recipe can be visualized and inspected in the SCS2.9 program 

after opening it, displayed on the left panel as shown below.  Hovering the mouse above a step 

will display all of its elements (volume, flowrate, duration, etc.). 
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Cluster generation and sequencing. 

Upwards of 30 million clusters can be sequenced per lane of Illumina GAIIx flowcell; 

however, in HiTS-RAP assays we performed, we aimed at ~20 million clusters per lane to get 

good separation between neighboring clusters. This generally gives better quality sequencing and 

protein binding data. Proper cluster generation is extremely important for extracting the 

maximum possible amount of data from a HiTS-RAP run.  Both under-clustering and over-

clustering will result in reduced yields, and can ruin runs almost entirely.  Unfortunately, this 

takes experience.  Thus, we recommend erring on the side of under clustering the first time a run 

is carried out: we started by loading 10 pM library in our earliest runs.  Every library is different.  

We have found that our libraries actually produce the optimal cluster density (~20 million per 

lane), when we load 200 pM denatured library, or about ten times the maximum concentration 

recommended by Illumina. 

Through our experience, we have learned to accurately and reproducibly cluster flowcells using 

Qubit measurements.  As each run is a fairly large financial investment, we recommend that new 

users carefully consider loading the optimal library concentration during clustering.  Quantitative 

PCR is the most precise way to measure library concentration, as it measures not just DNA 

concentration, but cluster forming units, when primers identical to those on the flowcell are used.  

Therefore, it likely provides the most reliable measurement of library concentration for novice 

users. 

An Illumina GAIIx flowcell has 8 lanes, each of which can be used for a different DNA 

template. We recommend that one of these lanes to be used for PhiX control DNA to ensure high 

quality sequencing in all lanes.  This should be specified as the control lane when starting the 

Illumina SCS before a run. Inclusion of a control lane is especially important if the first few 
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bases read in a library are not very diverse, as this will not allow the analysis software to 

generate a suitable basecalling matrix.  If possible and available, one of the lanes should be used 

for a template that has no affinity for the protein of interest (negative control), and one lane for a 

well-established target protein binding RNA (positive control). These can be mixed in a single 

lane as well and distinguished based on the sequence of the template or the barcode. Although all 

8 lanes of the flowcell can be addressed individually on the cBot instrument during cluster 

generation, Illumina GAIIx instrument processes all of them simultaneously with the same 

solutions at any given time. Recently, modifications to the GAIIx instrument that enable 

individual processing of 8 lanes has been published(Gravina, Lin and Levine, 2013).  This could 

be implemented to perform up to 8 HiTS-RAP assays with a single flowcell. 

We perform sequencing and protein binding as a part of the same run.  This means that 

we write a single .xml recipe program to operate the sequencer through the entire protocol.  

Illumina’s standard software can then be use to image during protein binding, and analyze these 

images to get protein binding intensities.  We feel that this is the simplest way of carrying out 

HiTS-RAP.  It allows even an inexperienced user to operate the instrument, with no 

modifications.  More complicated protocols, with more elegant ways of extracting data can be 

used, as in RNA-MaP, but would require much more sophisticated software for analyzing data, a 

much more intimate knowledge of the instrument, and engineering expertise. 

dsDNA regeneration and transcription halting. 

Regeneration of a clean full-length dsDNA template following sequencing is necessary 

for three main reasons; (i) to generate a double stranded Ter site for Tus binding, (ii) to generate 

a double stranded T7 promoter for transcription by T7 RNA polymerase, and (iii) to generate a 
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template strand for transcription that is full-length and free of any artifacts introduced during 

sequencing.  

A Tus-bound Ter site has been shown to halt progression of many DNA and RNA 

polymerases in one orientation but not in the other(Mohanty, Sahoo and Bastia, 1996; Mohanty, 

1998).  Also, it is well-documented in the literature that an RNA polymerase that has synthesized 

at least a 9 nt long transcript is extremely stable when stalled because of a physical barrier or 

absence/limiting levels of ribonucleotides(Core et al., 2012). HiTS-RAP combines these two 

phenomenons to tether RNA transcripts to their DNA templates in each cluster, enabling 

observation of interactions with the target protein. We initially tested halting of T7 RNA 

polymerase using a streptavidin-biotin interaction on the template strand of DNA without 

success.  We believe this is because Tus has a specific contra-helicase activity that impedes T7 

RNAP’s progress, rather than acting as a simple roadblock.  However, E.coli RNA polymerase 

can be halted by streptavidin bound to a biotin moiety on template strand of DNA, under single-

round transcription conditions, as demonstrated with RNA-MaP(Buenrostro et al., 2014).    

Protein Binding. 

To get an accurate measure of binding affinity (Kd), concentrations of the fluorescently-

labeled target protein (in protein binding steps of HiTS-RAP) need to be centered around the 

expected Kd. Ideally, 5 or more concentrations below and 5 or more concentrations above the Kd 

(total 11 points), each separated in 5-fold increments, should be used. For proteins that are 

known or suspected to bind DNA, contribution of protein binding at each DNA cluster needs to 

be measured by performing protein binding at the same concentrations without transcription 

halting. 
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Our estimates of the halted transcription complex lifetime is ~72 hours, which is 

sufficient to perform 48 protein binding steps(Tome et al., 2014).  Based on this slow 

dissociation of the complex, a correction is applied to account for the loss in protein binding 

signal, and the corrected values are used for calculation of the binding affinities.  

Data Analysis. 

 

Figure 2. 14:  HiTS-RAP data analysis workflow 

Raw output from a sequencing and binding run must be processed through several steps to 

extract sequence and binding information (separately), match them, and then fit Kds.  

After a HiTS-RAP run, the run folder contains a number of files created by Illumina's 

Real-Time Analysis (RTA) software (Figure 2. 14).  Most notably for the purpose of HiTS-RAP, 

the RTA analyzes the raw .tif images collected during the run to measure the fluorescence 

intensity of each cluster.  These measurements are stored in binary .cif files.  RTA uses this 

intensity information from all four channels to determine the base added at each cluster, at each 

cycle, by comparing to a basecalling matrix generated in the first cycles.  This dictates which 
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intensity measurements across the four channels correspond to which base.  While the intensity 

measurements recorded within .cif files are generated for the purpose of comparing relative 

signals to determine the most suitable basecall, they are also sufficient for comparing intensities 

within a single channel across cycles to make affinity measurements for HiTS-RAP.  In this way, 

the RTA is carrying out the laborious task of identifying clusters and measuring fluorescence 

intensities from raw images that is necessary for making binding measurements.  We use a set of 

scripts written by Robin Friedman to extract intensity data from .cif files into more accessible 

text files.  These text files contain the intensity measurements for every cluster in a lane, for the 

specified channel and cycles of the run.  Each cluster is identified by its tile number, and x and y 

coordinates within that tile.  We use the channel that is used for T during sequencing, as this 

most closely fits mOrange fluorescence with the least amount of noise. 

Basecalling is carried out by the Illumina RTA during the run.  Thus, after a run is 

finished, the run folder contains this information stored in binary .bcl files.  Each individual .bcl 

file contains basecalls for clusters within a single tile, at a single cycle.  To get the full sequence 

of each read, the information in these files must be assembled through all cycles.  This is done by 

the .bcl to .qseq function of Illumina's OffLine Basecaller (OLB) software, which uses .bcl, 

.stats, .filter, .control, .pos.txt, and the config.xml file created during the run to make .qseq.txt 

files.  We carried this out using the setupBclToQseq.py script on a machine running CentOS 

Linux, with OLB version 1.9.4 installed.  Each .qseq.txt file contains all of the sequence 

information, divided by tile.  As in the intensity file created by reading .cif files, clusters are 

identified by lane, tile number, and x and y coordinates within the tile.  In addition to sequence, 

the entry for each cluster contains a quality string, and a binary pass filter metric (last entry, 
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index 10), which are important for determining which clusters to include in downstream 

analyses. 

The first step in analyzing the raw data is to match clusters sequences to their 

corresponding intensities.  We do this using the coordinates of clusters contained in both files.  

Because this information is recorded in .bcl and .cif files differently, the x and y coordinate 

numbers in intensity files must be converted to match the sequence file coordinates by 

multiplying by 10, adding 1000, and rounding to an integer.  During this matching stage, we only 

include clusters for which we have both sequence and intensities, and which pass Illumina's 

quality filter as recorded in the last field of every entry in .qseq.txt files.  At this stage, the 

quality string can also be used to implement a more stringent quality filter.  For example, when 

we were performing HiTS-RAP against a library of mutagenized versions of a single sequence, 

we controlled for sequencing errors resulting in unmutated clusters being called as mutants by 

requiring that any bases different than the original sequence have a Phred quality score of at least 

25.  Next, we prepare for determining Kds by averaging all clusters corresponding to each 

sequence to generate a single binding curve that is representative of that sequence.  We then do a 

nonlinear, least squares fit to the Hill equation to determine the Kd.  We have found that this 

works best when the four parameters for the Kd, hill coefficient, base intensity, and maximum 

intensity are found to vary.  We use the covariance matrix returned by SciPy’s fitting algorithm 

to identify good fits; a covariance below ~1000000 for Kd generally indicates a good 

measurement.  It is also helpful to look at the other parameters as well when assessing an 

individual Kd measurement.  Our Hill coefficients are generally less than one, indicating negative 

cooperativity in binding, which we interpret as steric hindrance as saturation of the cluster is 

reached.  In addition, when the fitted base intensity is close to the first few measured intensities, 
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and the fitted maximum is close to the measured values of the last intensities, this is indicative of 

a good fit.  Fitted Kds that are either above or below the range of concentrations assayed 

generally fail the covariance filter.  However, if they do not, they are not reliable.  We expect the 

dynamic range of the assay to be only within the concentrations of target protein imaged to 

generate binding curves. 

Alternatively, we have considered fitting binding curves from individual clusters and 

averaging the results to give a representative Kd, rather than averaging intensities and doing a 

single fit per sequence.  These two approaches give similar results, so we recommend the simpler 

procedure of averaging intensities. 

Anticipated Results 

The number of Kd measurements that can be made in a single HiTS-RAP experiment 

depends entirely on the library and the application. We have solved as many as 10,000 

dissociation constants from a single lane in experiments with SELEX libraries and mutagenized 

aptamers. In our experience, HiTS-RAP gives reliable results for sequences represented by as 

few as 5 clusters in a lane, so with an ideal library (20 million reads per lane) up to ~4 million 

measurements per lane should be possible. Analyzing targeted libraries with long sequences 

approaching this maximum might be difficult. However, for other applications, such as k-mer 

analysis with a longer random library, the number of motifs that can be assessed with a single 

lane could exceed the number of clusters. 

The first step in assessing the success of a HiTS-RAP run is to make sure that the 

sequencing portion of the run was successful. This can be determined from the run metrics is the 

Sequencing Analysis Viewer (SAV) software as the run progresses (though some metrics are not 
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available until cycle 25). Favorable run metrics indicate that the instrument is functioning 

properly. We generally try to reach a cluster density of 200,000-400,000 clusters/mm
2
. 

Underclustering means that the potential of the assay is underutilized, and overclustering results 

in lower quality data, and lower pass filter rates. The percent Q30 rate serves as a measure of 

overall confidence in basecalling in a lane. In successful runs, at least 85 to 90% of reads are 

above Q30. A lower Q30 rate indicates that the instrument is not functioning properly: we have 

observed lower rates when lanes are overclustered and when the optics of the instrument were 

not functioning properly. The SAV will also report error rates for lanes containing the PhiX 

genome control. Error rates are typically low (below 1%). It is important to only check the Q30 

and error rate values for sequencing cycles, and to keep in mind that they begin to drop 

precipitously with longer reads (past ~75 cycles). Once the protein binding portion of the HiTS-

RAP starts, the aggregate values for these metrics will decrease drastically, as the SCS includes 

the measurements from these cycles in calculation of the run metrics.  

Assessing HiTS-RAP results will depend on the application. When we have applied it to 

aptamer libraries, we expect most sequences assessed to bind the target protein, while in other 

applications binding could be a rare event. We first look at the intensity measurements reported 

in the Illumina SAV during the protein binding to assess whether protein binding is taking 

place.  With libraries in which the majority of sequences bind the protein, the binding curve can 

be seen in the T and G channels. If a negative control (or PhiX) lane was included, lack of signal 

in that lane indicates low background and low nonspecific binding of the labeled protein to DNA 

and other components of a halted transcription complex (i.e. T7 RNA polymerase and Tus 

protein). 
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The results of Kd curve fitting, as described in Data Retrieval and Analysis section, will 

ultimately determine whether the run was successful or not. Low covariances of fitted 

parameters, Hill coefficients that are close to one, base and maximum values close to the first 

and last protein binding intensity measurements, and Kds within the range of protein 

concentrations assayed are all indicators of good fits and thus a successful HiTS-RAP run.  

 
Figure 2. 15: Example binding curves.   

(a)  A set of binding curves from a successful experiment.  These RNAs represent a range of Kds 

and copy numbers.  In all panels, intensities are the average of all clusters with a given sequence 

in one lane, normalized by dividing by average sequencing intensity.  Error bars, s.e.m.  Error of 

the Kd is the square root of the variance returned by the analysis pipeline.  (b)  Binding curves 

which only have one point above background.  Kds are able to be fitted, but are likely 

unreliable.  (c)  Binding curves with bad fits.  In both of these cases, the fitted base is above the 

maximum, so these measurements should be disregarded.  (d)  Binding curves from an 

experiment where no binding is observed.  Here, intensities decrease throughout the run.  These 

data are from an experiment where several biochemical steps leading up to the binding 

measurements did not work properly. 

a, c, and d are from a HiTS-RAP done to characterize HSF1 SELEX libraries.  The same 

flowcell was reused for several binding measurements after a single run.  b is from a separate run 

to characterize BEAF-32 SELEX libraries. 
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The protein binding curves used to determine Kds should also be inspected to determine 

whether a run has worked well and the results obtained from data analysis are consistent. In the 

lowest concentrations of protein, fluorescence intensities of protein binding should be near 

background, similar to that of no protein control. As the protein concentration increases, 

intensities should also increase. We have found that the highest intensity measurements are 

generally noisier than lower intensity measurements. Transition to protein binding is often easily 

identifiable in raw HiTS-RAP data, but the measurements after that point tend to be noisy.  In 

successful runs, we are able to solve reliable Kds through a range of affinities. Figure 2. 15a 

shows a series from one such run, in which different sequences, all from the same lane, show low 

fluorescence in the first few protein concentrations, and then saturate binding at different points. 

Seeing a range of affinities in one lane is the ultimate indicator of a successful HiTS-RAP run, 

and the binding measurements observed are due to real binding, rather than a systematic bias.   

Binding curves that do not match the calculated affinities are indicators of a failed run. 

There could be many reasons for a measurement to be unreliable. Sometimes, the fitting 

algorithm simply fails to find parameters that are a good match for the data (Figure 2. 15b): such 

a fit will usually have a high covariance value. Other times, only one binding measurement rises 

above background (Figure 2. 15c). This occurs in cases where the range of protein concentrations 

assayed were not within the range of the affinities of the RNAs probed. We have also observed 

instances where the intensity data show no binding at all (Figure 2. 15d). These data are from a 

run where several different protein binding series were carried out on the same flowcell 

(sequenced once) after denaturing and remaking double stranded DNA, transcribing and halting, 

and introducing each labeled protein successively. In that run, we suspect that at least one of the 
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biochemical steps leading up to the halted RNA complex was unsuccessful in the later protein 

binding series.  
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Chapter 3: In Vivo Disruption of NELF-E’s Interaction with 

Nascent RNA by NELFapt Expression 

Introduction 

The NELF complex is critical for establishing a promoter proximally paused polymerase in 

Drosophila(Wu et al., 2005; Fuda, Ardehali and Lis, 2009).  This four subunit complex is 

recruited to polymerase by various contacts, including DSIF, Pol II, and the nascent RNA(Missra 

and Gilmour, 2010).  NELF binds RNA with a higher level of specificity than other pausing 

factors(Missra and Gilmour, 2010), primarily through the RRM of NELF-E(Rao et al., 2006, 

2008), which has a high potential for specific interactions.  Our group has previously 

characterized this specificity of RNA binding by NELF-E by identifying a preferred sequence 

motif by SELEX(Pagano et al., 2014), and the importance of 3D RNA structure for proper 

recognition of that motif(Pagano et al., 2014; Tome et al., 2014).  NELF may have many 

contacts with the nascent RNA, as some support exits for each subunit to have some capacity for 

RNA binding.  In a thorough characterization of the human NELF complex’s architecture(Vos et 

al., 2016), the Cramer lab found that the NELF A/C subunits form the core of the NELF 

complex, and together form a positively charged pocket that binds RNA primarily through 

NELF-C.  The NELF-B subunit also binds RNA, and serves to tether NELF-E to the A/C core.  

Therefore, interactions with the nascent RNA likely constitute an important facet of NELF’s 

association with and influence upon paused Pol II. 

 Previous efforts to characterize the role of NELF in pausing genome-wide have utilized 

RNAi to deplete NELF (Gilchrist et al., 2008, 2010; Core et al., 2012).  These perturbations 

result in the loss of multiple subunits of the NELF complex, and are typically carried out over the 



 

97 

 

several days(Zhou et al., 2013), allowing secondary effects to accumulate.  These and other 

studies(Missra and Gilmour, 2010; Li et al., 2013) implicate NELF in the fine-tuning of pausing, 

as some pausing is still observed when NELF is perturbed.  RNA aptamers are an attractive 

alternative to degradation by RNAi, as they can be expressed inducibly(Shi, Hoffman and Lis, 

1999; Salamanca et al., 2011), and selected to specifically target single domains of individual 

factors(Ozer, Pagano and Lis, 2014), rather than depleting the entire protein.  Our group has 

previously used RNA aptamers as inhibitors both in vitro(Shi, Hoffman and Lis, 1999; Zhao et 

al., 2006; Sevilimedu, Shi and Lis, 2008) and in vivo(Shi, Hoffman and Lis, 1999; Salamanca et 

al., 2011, 2014).  Therefore, expressing the NELF aptamer (NELFapt), an RNA which binds the 

RRM of NELF-E with high affinity and specificity(Pagano et al., 2014; Tome et al., 2014), is an 

attractive alternative to RNAi for understanding the role that NELF plays in pausing.  Because 

NELFapt binds only the RRM of NELF-E, the aptamer should be able to specifically prevent 

NELF from interacting with nascent RNA with NELF-E’s RRM.  Thus, it allows us to ask what 

the role of this interaction is in establishing the level of paused polymerase near promoters: 

NELFapt inhibition should not affect the stability of the entire NELF complex, or any other of 

the many interactions by which NELF is recruited to polymerase.  PRO-seq(Kwak et al., 2013) 

was used as a highly specific readout for the highly specific perturbation of NELF-E by 

NELFapt.  PRO-seq maps transcriptionally engaged RNA polymerase, genome-wide, by 

sequencing the RNA after a single nucleotide biotin run-on.  Therefore, it allows assessment of 

both the precise position and level of promoter proximally paused polymerase. 

 In this chapter, I describe the strategy that we used to express NELFapt as an inhibitor of 

NELF’s ability to use the interaction between NELF-E and nascent RNA as it plays its role in 

promoter proximal pausing.  NELFapt binds NELF-E well in the context of the transgene, and 
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was expressed to a very high level in the nucleus.  I carried out two sets of PRO-seq experiments 

to assess the effect of this inhibition.  Altogether, these experiments show that the aptamer did 

affect promoter proximal pausing, and that this effect is mitigated at promoters with GAF.  

Though some common biology seems to be revealed in my two PRO-seq experiments, a few 

issues limit my ability to draw many concrete conclusions:  some of the effects of the aptamer 

were not reproduced in the two experiments, and a control scrambled RNA showed the same 

effect as NELFapt.   
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Results 

Overview of NELFapt Inhibition Strategy 

To understand the role of interactions between NELF and nascent RNA, I expressed the 

NELF-E aptamer in Drosophila S2 cells to specifically occlude its RRM while leaving the rest of 

the four subunit complex intact.  I used PRO-seq(Kwak et al., 2013) as the readout, to measure 

the active site of engaged polymerase genome –wide.  This enables interrogation of the exact site 

used for promoter proximal pausing, and precise measurement of the level of pausing, genome-

wide.  In total, I carried out two rounds of PRO-seq experiments (Figure 3. 1); the first with just 

stably selected aptamer transfected cells and untransfected cells as a control (before and after 

aptamer induction), and the second with the aptamer, a scrambled aptamer control, and an empty 

vector control (all before and after induction). 

 

Figure 3. 1: NELFapt PRO-seq Experimental Design 

Two rounds of PRO-seq were carried out.  All cell lines in the second PRO-seq were new stable 

transfected lines (different NELFapt lines were used).  PRO-seq was carried out for each cell line 

(orange) with both copper treated and no copper treatments (blue), with two replicates each. 
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Figure 3. 2:  NELFapt in vivo expression strategy 

A.)  pRMHa3 expression vector.  18 NELFapt units are arranged in tandem in the expression 

vector.  This places them under the control of the copper inducible metallothionein promoter, and 

with the 3’ UTR from the Adhr gene to facilitate 3’ end formation (cleavage and 

polyadenylation, termination).  B.)  Each aptamer unit is composed of two different NELF 

aptamers(Pagano et al., 2014) with similar features; both have an NBE within a putative k-turn.  

The hammerhead ribozyme forms the third arm: it self-cleaves so that multiple units can be 

arranged in tandem to amplify expression and ensure that most units are neither capped nor 

polyadenylated.  Cleaved units have some tendency to circularize(Canny, Jucker and Pardi, 

2007), which could further enhance stability.  These three arms are separated by a separate 3-

way junction.   

 

The strategy used for expressing the aptamer borrows from previous in vivo aptamer 

inhibitions and inducible transgene expressions done in the lab(Shi, Hoffman and Lis, 1999; Lis 

et al., 2000; Salamanca et al., 2011, 2014).  The NELFapt vector, originally made by John 

Pagano in the lab, contains 18 total aptamer units under the control of the Drosophila 

metallothionein promoter.  The expression vector used, pRMHA3(Bunch, Grinblat and 

Goldstein, 1988), contains the metallothionein promoter, a multiple cloning site, and 3’ UTR 

from the Adhr gene (Figure 3. 2A).  The metallothionein promoter is induced up to 100 fold 

upon addition of CuSO4 to the media, and cleavage and polyadenylation of the transgene is 

carried out at the end of the Adhr 3’ UTR.  Each unit of the 18-mer (Figure 3. 2B) contains two 
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NELF aptamer arms(Pagano et al., 2014), and a hammerhead ribozyme arm(McCall, Hendry and 

Jennings, 1992; Scott, Finch and Klug, 1995), separated by a central three-way junction(Germer, 

Leonard and Zhang, 2013).  Two aptamer arms were included to ensure that the resulting unit 

has extremely high affinity for NELF-E.  Each NELFapt arm had its GC rich stem extended 

slightly to ensure that the units are well separated after folding.  This, coupled with the highly 

stable 3-way junction, means that the aptamer RNA folds into an exceptionally tight structure.  

The hammerhead ribozyme efficiently self-cleaves as the 18-mer is transcribed, so that 

transcription once through the transgene produces 18 separate NELFapt units.  Such cleaved 

units are retained in the nucleus and resistant to degradation, as they have neither a 5’ cap nor a 

poly(A) tail, as shown in our lab previously(Shi, Hoffman and Lis, 1999).  I chemically 

transfected Drosophila S2 cells with this transgene, with a blasticidin resistance marker 

cotransfected to enable selection of cells that took up the vector.  After selecting stably 

transfected lines, this should result in cells with the transgene stably inserted in random locations 

in the cells’ genome. 

For my second round of PRO-seq I made a scramble aptamer control and empty vector 

transfection control (so that the cells underwent the same selection and were all grown with 

blasticidin in the media).  The scrambled aptamer control was similar to the NELFapt construct, 

but with the aptamer arms of each unit scrambled (with the same base composition).  To 

facilitate gene synthesis, I used 9 different scrambled versions, and assembled two scrambled 9-

mers to make an 18-mer.  Because each arm of each unit is different, this means that the control 

contains 18 different scrambled aptamers.  I checked that none of them had matches to the NBE 

by FIMO(Grant, Bailey and Noble, 2011), and manually inspected secondary structure 
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predictions for the presence of NELFapt like stem-loops(Zuker, 2003).  Each scrambled unit 

leaves the hammerhead ribozyme and 3-way junction intact.   

Characterization of the NELFapt Construct 

To assess the NELFapt and Scramble’s ability to bind NELF and act as an inhibitor, I 

carried out EMSA with NELF-E using RNA transcribed from a linearized expression vector.  In 

vitro, cleavage by the ribozyme is highly efficient, as the T7 transcription reaction from the 3000 

bp vector produced mostly 160 nt monomer RNA (Figure 3. 3A).  NELF-E has high background 

affinity for RNA as a nucleic acid interacting factor: some binding is observed no matter what 

the sequence or structure of the RNA.  The N70 library of random 70-mers served as a control 

for non-specific binding.  The three RNAs tested all bind at some level to NELF-E.  The RNAs’ 

mobility changes in steps as it binds RNA (Figure 3. 3B, top, right of gel). First, free, unbound 

RNA moves through the gel with high mobility.  Next, RNA bound by a single NELF-E 

molecule moves with intermediate mobility.  Two intermediate mobility bands are seen in the 

NELFapt EMSA (Figure 3. 3B, top), likely representing RNA monomers bound by one and two 

NELF-E molecules (as the RNA contains two aptamer units).  This behavior is unique to 

NELFapt, as NELF-E binds the aptamer even at very low concentrations, before the formation of 

aggregates.  Finally, aggregates fail to enter the gel and are seen in the well.  Aggregation is 

more of an issue in these vertical gels than in slab gels in (Figure 2. 11): it has often been my 

experience that EMSA is cleaner in a slab gel, though slab gels are more cumbersome to dry 

when using radioactivity as readout.  Thus, there is a trade-off between the sensitivity and wide 

dynamic range of radioactivity, and the ease of handling and cleaner behavior of fluorescent 

labeled EMSA in slab gels.    
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Figure 3. 3: In vitro characterization of the NELFapt transgene 

A.)  In vitro transcription of the transgene.  A version of the construct with a T7 promoter 

between the MtnA promoter and first NELFapt repeat was linearized by cutting with a restriction 

enzyme after the last NELFapt repeat, and then used as the template for in vitro transcription.  

The transcription reaction was treated with DNase, run on 7 M Urea 8% PAGE with a 10 bp 

DNA ladder as a reference, and stained with ethidium bromide.  Most of the RNA has been self-

cleaved to a 159 nt monomer.  B.)  EMSA for the NELFapt, and Scrambled transgene RNAs, 

with N70 random 70-mer as a non-specific control.  All are P
32

 labeled RNA transcribed from 

linearized T7 promoter containing vector, in 4% vertical PAGE.  No protein control is the 

furthest left lane, then NELF-E increases in 2-fold increments from 0.24 to 1000 nM.  Binding 

modes are indicated to the left of the NELFapt (Aptamer) gel.  Aggregates remain stuck in the 

well.  Bound complexes (NELFapt + NELF-E) enter the gel, and runs with low mobility.  Two 

binding steps are seen here, corresponding to the two NELFapt arms of the construct. Unbound 

RNA runs with high mobility.  C.)  Quantifications of binding from B, with the three RNAs 

color coded.  Kd of the three RNAs is indicated on the plot.  At top, fraction bound is calculated 

as a fraction of the maximum amount of signal seen in the well.  At middle, fraction bound is 

calculated by setting 0 nM NELF-E as 0, and the minimum signal in the unbound region as 1.  At 

bottom, fraction bound is calculated by setting 0 nM NELF-E as zero, and 1 as maximum signal 

in the bound+aggregated regions. 

 

To quantify binding, signal in three different regions of the gel was used.  First, binding 

is assessed by just appearance of aggregates of RNA and NELF-E.  All three RNAs aggregated 

at similar NELF-E concentrations (Figure 3. 3C, bottom), indicating that this behavior is not 
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specific in this assay.  Next, disappearance of free RNA alone was used (Figure 3. 3C, middle).  

As the amount of RNA used is constant and protein amount varies across the EMSA, the total 

amount of signal should remain the same.  So, to use disappearance of free, I simply use the 

amount of signal in the unbound region in the zero protein well as 100%, and quantify the 

amount in the free region of the other wells as a fraction of that.  Using this method, a Kd of 5 

nM is measured for NELFapt, in good agreement with HiTS-RAP and previous EMSA 

experiments, while the scrambled aptamer and N70 library do not bind with affinity higher than 

the nonspecific aggregation measured with the first quantification scheme.  Finally, binding is 

assessed as fraction of RNA bound (intermediate mobility) vs fraction free (Figure 3. 3C, 

bottom).  The bound fraction is specific to the NELFapt construct, as binding is observed almost 

from the beginning of the dilution curve.  A very small amount of bound RNA is observed for 

the scrambled RNA, but not the N70 random RNA control (Figure 3. 3B, middle and bottom, 

respectively), indicating that one of the scrambled arms may exhibit some specific binding with 

NELF-E (this may explain similar effects seen after expressing the scrambled and aptamer, as 

discussed later in this chapter).  This small amount of bound RNA was not enough to 

significantly affect Kd measurements for the scrambled aptamer mixture, so again this method 

gave a Kd of 5 nM for NELFapt but no measurable affinity above nonspecific aggregation for the 

others.  Altogether, these results show that incorporation of NELFapt into the construct, with the 

3-way junction and hammerhead ribozyme did not adversely affect its affinity for NELF-E.  The 

high affinity of the NELF aptamer construct indicates that it could function as a promising 

inhibitor of NELF-E’s interactions with endogenous RNA, as those are unlikely to contain the 

distinct tertiary structure and RNA motif present in the aptamer.   
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Figure 3. 4: Quantification of in vivo NELFapt expression by qPCR 

A.) Strategy used for qPCR.  NELFapt was quantified using RT and qPCR primers at the 3’ end 

of the last unit (Adhr 3’ UTR).  Because the endogenous Adhr gene is not induced by copper, 

new expression beyond the 20 nM basal level is likely all due to aptamer induction.  B.)  Nuclear 

NELFapt concentration, nM, after induction with varying amount of CuSO4 for 1, 2, and 4 hours.  

C.)  Induction of the endogenous MtnA gene in the same time course as B.  D.)  Hsp26 induction 

in a separate time course, with varying copper concentration, measured with RT-qPCR.  Minimal 

stress response is observed up to 500 nM CuSO4. 

 

 Quantifying aptamer expression after transfecting into Drosophila S2 cells proved to be 

difficult.  Because of the extremely stable secondary structure of the 3-way junction and GC rich 

stems of NELFapt, reverse transcription of the cleaved units was extremely inefficient.  To get 

accurate quantifications, I used two alternative strategies; Northern blot and using the 3’ UTR of 

the transgene for qPCR.  The last unit of the 18-mer transgene includes a cleaved hammerhead 

ribozyme, two aptamer units, the 3’ UTR of Adhr from the pRMHa3 vector, and a poly(A) tail.  

Therefore, I could simply do reverse transcription and qPCR from the Adhr 3’ UTR (Figure 3. 

4A) to measure the last unit of the transgene, which constitutes 1/18
th

 of the total aptamer within 
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cells.  Even though this only detects one of the 18 units of the transgene, it proved to be much 

more sensitive than RT-qPCR for the core aptamer portion of the repeats.  Through careful 

tracking of number of cells used per assay and calibration to an in vitro transcribed aptamer 

standard, I was able to approximate a nuclear aptamer concentration of 500 nM after 2 hours of 

induction with CuSO4, and 20 nM before (Figure 3. 4B).  This copper concentration and time 

point has been used with this vector previously(Shi, Hoffman and Lis, 1999; Salamanca et al., 

2011), and was chosen as it gives strong induction of both the transgene and the endogenous 

MtnA gene (Figure 3. 4C), with no detectible stress response (Figure 3. 4D), and in a brief 

enough induction that secondary effects should have minimal time to accumulate.   

 
Figure 3. 5: Quantification of in vivo NELFapt expression by Northern Blot 

Various aptamer containing cell lines are assayed for expression before and after.  Cell lines are 

named as follows:  First letter, vector transfected (A for NELFapt, S for scramble, E for empty 

vector).  Number in middle, amount of vector transfected (100 ng) per 1 million cells.  Last 

letter, P for circular plasmid transfected, L for linearized plasmid.  + indicates copper induction 

at 500 nM for 2 hours, - is no induction.  The probe used is a PCR amplified single aptamer 

monomer, end labeled with P
32

.  Total cellular RNA was isolated with Trizol, run as a 2-fold 

dilution series on 7M Urea 8% PAGE, and transferred to Biodyne B nylon membrane.  NELFapt 

(Napt18) and Scramble (Napt18 Scr) in vitro transcribed standards produced as in Figure 3. 3A.  

4B is John Pagano’s NELFapt line, used in the first PRO-seq.  A8L is my NELFapt line used in 

the second.  S8P is the scrambled RNA line used in the second PROseq.  E8L, empty vector line 

used in second PRO-seq.  Aptamer sized RNAs (aligned to standard) are unique to NELFapt and 

Scramble containing cell lines.  The same amount of RNA (ng) was used for the top of a 2-fold 

dilution curve for each cell line, except S4L. 

The membrane was stripped and reprobed for Rp49 as a control, scan at bottom.  
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 Northern blot also proved to be an efficient and sensitive way of assaying NELFapt 

expression in vivo despite the RNA’s difficult secondary structure.  I used radiolabeled, in vitro 

transcribed NELFapt construct as a probe.  Therefore, this one probe worked for NELFapt and 

Scramble detection through common sequences like the hammerhead ribozyme, junction, and 

portion of methallothionein promoter in the first aptamer unit and the 3’ UTR in the last.  In 

addition to confirming the level of expression measured by RT-qPCR, Northern blots provide 

information about the size of the RNAs being detected.  Thus, I see that in contrast with the in 

vitro transcribed multimer where most units were monomers, only ~60% of units have self-

cleaved to monomers with the hammerhead ribozyme (Figure 3. 5), with a large fraction existing 

as larger units, presumably dimers and trimers (PAGE purified standard is monomer size).  The 

fraction cleaved to monomer was much higher in an earlier experiment where I used a column 

purification kit with DNase digestion to isolate RNA rather than Trizol (Figure 3. 5, far right), 

likely because the DNase step afforded the ribozyme more time to cleave in vitro.  Thus, the 

lower efficiency compared to the in vitro transcribed multimer is likely due to more cleavage 

during handling.  Northern blots were also useful because, in my hands, their sensitivity was 

higher than qPCR.  With Northern, I robustly detect basal aptamer expression in uninduced cells 

(Figure 3. 5, series labeled -).  Because Northern also shows that the size of these RNAs is 

consistent with the cleaved aptamer, I can rule out the possibility that the basal expression 

measured from qPCR is from the endogenous Adhr 3’ UTR.  From these results, I picked cell 

lines for the second round of PRO-seq.  Rather than using John Pagano’s cell line from the first 

PRO-seq, I picked a new aptamer transfected line (Figure 3. 5 A8L line) that had been selected 

alongside the Scramble (Figure 3. 5 S8P line) and Empty vector (Figure 3. 5 E8L line) lines (and 

had thus been treated equally both in number of passages and growth conditions).  In Figure 3. 5, 
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the same amount of total cellular RNA (in ng) was loaded in each well, except for the S4L 

scramble line which grew more slowly.  Thus, aptamer expression in the 4B line and my A8L 

line can be compared: the A8L line expresses much more aptamer.  The S8P and E8L lines were 

chosen as controls as they had been transfected with the same amount of vector per cell as the 

A8L line, and S8P showed similar levels of transgene expression as A8L. 

 
Figure 3. 6: Correlation between replicates in the first PRO-seq experiment 

Gene body read number is highly correlated between replicates of the first PRO-seq experiment, 

in the four treatments used (Aptamer and S2 WT, before and after copper).  Reads collected from 

+300 of the annotated start site to -300 of the annotated CPA site.  Induction of the MtnA gene 

can be seen by highlighting it in red in all four plots: its expression is much higher after adding 

copper.  Spearman rank correlation indicated on each plot. N = 9,452  
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NELFapt Inhibition in the First Experiment Caused a Downstream Shift in Pausing 

 I carried out two rounds of PRO-seq to measure the effect of occluding NELF-E’s RRM 

with NELFapt on promoter proximal pausing.  In both rounds, each cell line was assayed before 

and after induction of with CuSO4, with replicates for each treatment.  In both sets of 

experiments, replicates were highly correlated, both when considering signal across the entire 

gene body and when considering only signal in the pause region.  The high level of induction 

from copper treatment can be observed at the endogenous MtnA gene, which is highly induced in 

all copper treated samples.  This is seen both by highlighting this gene in the plot assessing 

correlation of replicates (Figure 3. 6) and in the genome browser (Figure 3. 7A).  Furthermore, 

induction of the transgene can be seen by examining reads that map to the Adhr gene (Figure 3. 

7B).  There, signal from the 3’ UTR of the transgene aligns to the endogenous gene, and is 

specific to the copper induced, transfected cells, as expected. 

 
Figure 3. 7: Effects of copper treatment in S2 cells 

A.)  IGV browser shot of the metallothionein (MtnA) gene, whose promoter was used in the 

NELFapt transgene.  In these PRO-seq data from the first set of experiments, strong induction of 

this gene is seen, in both WT and aptamer containing cells treated with copper.  Nascent 

transcription beyond the CPA is apparent.  B.)  PRO-seq at the 3’ UTR of the Adhr gene, which 

was used for its poly(A) site in the expression vector.  Here, nascent transcripts from the 

NELFapt transgene map to the endogenous copy of Adhr.  Thus, the strong induction at the 

NELFapt site can be seen here only in the NELFapt cells after copper treatment.  All tracks are 

RPM normalized, and displayed at a fixed scale from -2.5 to 2.5.  
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Figure 3. 8: Differences between WT and NELFapt are greater than either upon induction 

DESeq2 normalized MA plots comparing PRO-seq signal from the first round of experiments in 

various libraries (rows), in promoter proximal pause regions (TSS to +300, left column) and gene 

bodies (+200 from TSS to -200 from CPA, right column).   Significantly changed genes (padj < 

0.01) indicated in green (increased) and red (decreased).  N = 9,452 A.)  Comparison of 

NELFapt uninduced to copper treated cells.  Promoter proximal pause regions are much more 

changed than gene bodies  B.)  Comparison of WT uninduced to copper treated cells.  C.)  

Comparison of copper treated empty vector to NELFapt.  More changes are seen here than in 

copper induction of NELFapt.    
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 I first used DESeq2 to assess changes in transcription at both the promoter proximal 

pause region (Promoter, Figure 3. 8, first column) and the bodies of genes (Gene Body, Figure 3. 

8, second column).  DESeq2(Love, Anders and Huber, 2014) assesses significance of changes in 

sequencing density at genes by asking whether changes observed are greater than the variation 

between replicates.  Critically, when no normalization is provided, it assumes that the bulk of 

expression is unchanged (thus it will miss shifts in the distribution of the data).  In the first PRO-

seq experiment, overall PRO-seq levels in the pause region (defined as a fixed window from 

annotated TSS to +300) become noisier in the aptamer expressing cells upon copper induction 

(Figure 3. 8A, left), with 146 promoters called as significantly changed.  However, these changes 

are not much greater than the changes seen upon induction in the WT cells (Figure 3. 8B).  The 

greatest change in pausing is seen when comparing aptamer transfected cells to WT cells, with 

500 promoters called as significantly changed (Figure 3. 8C).  Overall, most changes are in the 

pause region, with much less change in the aptamer expressing cells’ gene bodies (Figure 3. 8, 

compare first and second column).   

 
Figure 3. 9: Pausing at NELF Bound genes 

A.)  Metaplot of PRO-seq in the pause region of genes called as bound by both NELF-E and 

NELF-B by ChIP-chip(Lee et al., 2008).  Centered on annotated TSS.  NELFapt cells in blue, 

WT in red.  Both are for cells without copper induction.  Bootstrapped estimates of median (solid 

lines) with 12.5 to 87.5% confidence intervals are shown for all metaplots in this chapter  B.)  

Same promoter regions as A., after copper induction.  C.)  Metaplot of pause region of genes not 

called as binding NELF-B or NELF-E, in copper induced NELFapt and WT cells.  
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 Analysis of the most changed promoters in aptamer expressing cells yielded few results: 

genes with in increased pausing were enriched for GAF, but little else could be gleaned from the 

500 changed genes.  I also examined genes with features that could make them more dependent 

upon the interaction between NELF and nascent RNA for proper regulation of pausing.  When I 

examined genes that were called as bound by NELF-B by ChIP-chip(Lee et al., 2008), I see that 

pausing is slightly reduced there in aptamer containing cells when compared to WT, both before 

(Figure 3. 9A) and after (Figure 3. 9B) aptamer induction, however, this change is not greater 

than the global reduction in pausing as a similar change is seen at genes where NELF was not 

called as binding at the promoter (Figure 3. 9C).  Therefore, his change is not specific for a 

greater reliance on NELF.  Genes not called as having NELF binding have much less PRO-seq 

signal in the pause region (Figure 3. 9C), though they are still paused overall as the signal in the 

promoter proximal region is much higher than the gene body.  NELF likely plays a role in an 

obligatory checkpoint before polymerase enters elongation, as stated in the publication whose 

NELF ChIP calls were used(Lee et al., 2008). Therefore, the genes not called as binding are 

simply not expressed enough that NELF was detectable above background with ChIP-Chip, even 

if it associates with polymerase at a frequency similar to more highly expressed genes that were 

called as NELF bound. 

 Previously, our lab showed than an NBE-like element is enriched downstream of gene 

promoters with higher levels of pausing(Pagano et al., 2014).  To assess whether such genes are 

more dependent upon NELF-E interacting with the nascent RNA for establishing the level of 

pausing, I compared genes with a good match to the NBE (Figure 3. 10A) downstream of the 

TSS (where it is transcribed and the RNA could help recruit NELF) to a separate control set with 

a match to the NBE 25 bp or greater upstream of the TSS by FIMO (where the NBE could not 
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predispose the nascent RNA to associate with NELF).  Both sets of promoters show a slight 

reduction in pausing in induced NELFapt expressing cells when compared to CuSO4 treated 

control cells (Figure 3. 10B and C).  Therefore, genes with strong matches to the NBE do not 

appear to be any more dependent upon a specific interaction between NELF-E and nascent RNA 

for proper regulation of the pause. 

 
Figure 3. 10: Effect of NELFapt inhibition in pause regions with NBEs 

A.)  Position Weight Matrix (PWM) of the NELF Binding Element (NBE) determined by 

SELEX(Pagano et al., 2014) with Meme(Bailey et al., 2009), used to identify NBE containing 

genes.  B.)  Metaplot of PRO-seq signal in the pause region of genes with a match to the NBE by 

FIMO from -25 to -175 upstream of the TSS. Here, the NBE is not transcribed, so it could not 

play a role in recruiting NELF through the nascent RNA.  Compare pause levels in WT (red) and 

NELFapt containing cells (blue). C.)  PRO-seq signal in the pause region of genes with an NBE 

match between +25 to +175 downstream of the TSS.  Here, the NBE could help recruit NELF 

through the nascent RNA. 

 

 While the level of pausing did not drastically change with NELFapt expression, the first 

round of PRO-seq experiments showed a dramatic shift of the pause further downstream at a 

subset of genes that was not reproduced in the second round of experiments.  CG5854 

exemplifies this shift (Figure 3. 11).  In WT cells, there are two peaks of pausing separated about 

50 bp, with more signal at the first peak.  In aptamer expressing cells, the first peak is reduced 

while the second peak remains the same.    
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Figure 3. 11:  CG5854 shows a downstream shift in pausing in the first PRO-seq 

IGV browser shot of the CG5854 pause region in Aptamer expressing and WT cells, before and 

after induction.  RPM normalized PRO-seq, scale set from -1.3 to +46 (group autoscale). 

 

To quantify these shifts genome wide, I used a cumulative distribution function (CDF) of 

to describe the distribution of PRO-seq signal within the pause region (Figure 3. 12A for PRO-

seq Signal at CG5854, Figure 3. 12B for the corresponding CDF).  The CDF tracks the 

cumulative fraction of total signal within the window seen up to each position.  Pause regions 

where most signal is seen very close to the TSS will saturate early, and the CDF value will be 

close to 1 beyond the pause peak.  Therefore, the area under the CDF is much higher at 

promoters where all signal occurs early in the pause region than it is at those where it is later.  A 

downstream shift in pausing thus results in a reduction of area under the CDF.  I did not use area 

under the CDF alone to identify shifts, as some small changes in dispersed pause peaks manifest 

as a large change in CDF area even though rearrangements are minor, as exemplified by CG7324 

(Figure 3. 13A).  Therefore, in addition to requiring that both the copper treated and untreated 

aptamer containing cells show a reduction of CDF area of at least 10 (as the shift is observed 

both before and after induction, I used the untreated and treated as replicates), I also require that 

a reduction of CDF area of at least 4.5 occur in at least one single 20 bp window (Figure 3. 13A, 
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bottom, and Figure 3. 13B).  503 genes met these criteria for being called as significantly shifted 

out of 2,913 genes filtered for expression above background and lack of run-through 

transcription from upstream genes (Figure 3. 13C).  391 genes exhibiting a minimal 

redistribution of signal within their promoter proximal region were identified as an unshifted 

control.  

 
Figure 3. 12: Quantifying shifts in pause distributions with CDF area. 

A.)  CG5854 PRO-seq, in CuSO4 induced NELFapt and WT cells.  Normalized as fraction of 

total from -50 to +250 of TSS.  B.)  CDF of the CG5854 pause region.  The region from -50 to 

+250 of the start site is used.  At each bp, the cumulative fraction of total reads within the 

window seen up to that point is calculated.  The total area under the CDF curve is a measure of 

the center of the pause distribution.  At CG5854, ~35% of the total pause is observed from 40 nt 

to 45 nt downstream of initiation in WT cells, but in NELFapt cells, only ~5% of the pause is 

located there.  Because the pause distribution shifts later in the NELFapt cells, the total area 

under the CDF curve is reduced from 191 in WT cells to 177 in NELFapt cells.  Approximate 

positions of shifts (gray vertical lines) were called as the center of the 20bp window with the 

biggest decrease (solid) or increase (dashed) in cumulative fraction.  
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Figure 3. 13: Calling genes with shifts in pause distribution in the first PRO-seq 

A.)  CG7324-RA pause region PRO-seq, with different features plotted.  This is a problematic 

pause region, with many subtle changes over a long distance that could potentially be called as a 

downstream shift.  Top, PRO-seq in the pause region normalized as in Figure 3. 12A (-50 to 250 

to TSS).  2
nd

, PRO-seq CDF, made as in Figure 3. 12B.  3
rd

, difference between NELFapt and 

WT CDF value at each position in the pause region, before (red) and after (orange) copper 

induction.  Total difference indicate at top.  Bottom, binned difference in CDF area.  At each 

position, this is the difference in the CDF area (as in 3
rd

) in the 20 bp bin centered on that 

position.  B.)  Density plot of the biggest binned CDF drop between aptamer and WT cells (i.e. 

the minimum value of A, bottom for CG7324-RA).  This is a measure of how abrupt the drop in 

CDF area is.  A cutoff of 4.5 was chosen for calling a promoter as shifted.  This corresponds to a 

22.5% drop in cumulative sum sustained for 20 bp.  C.)  Correlation in CDF area change 

(between WT and NELFapt cells) before and after copper induction.  2,913 genes filtered for 

expression and lack of readthrough from upstream transcription are shown.  503 were called as 

shifted (red) by having a decrease in total CDF area both before and after induction (as in A, 2
nd

 

from top), and by having a minimum abruptness of change (as in B, and A bottom).  
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Figure 3. 14:  A shift in pause distributions with NELFapt the first PRO-seq experiment 

Metaplots of RPM normalized PRO-seq in the pause region of genes called as shifted (N = 503) 

or unshifted (N = 391).  Comparison of NELFapt (red) to WT (blue) before (left column) or after 

(right column) copper treatment.  A.)  Shifted genes before induction.  B.)  Shifted genes after 

induction.  The early part the promoter proximal pause peak is strongly reduced.  This effect is 

present before induction, but amplified with induction.  C.) Unshifted genes before induction.  

D.) Unshifted genes after induction.  Levels of promoter proximal pausing are much higher at 

unshifted genes, and less affected by the aptamer.  

 

Shifted genes show a reduction in the more proximal part of the pause with little change 

in the downstream portion, overall (Figure 3. 14), and have less total paused polymerase on 

average when compared with unshifted genes (Figure 3. 14A and B compared to C and D).  

Transcription factors known to play a role in pausing like GAF, M1BP, and BEAF-70 were 

differentially enriched at shifted genes.  Unshifted genes are strongly enriched for GAF, while 

genes with the shift are more likely to be bound by M1BP or BEAF-70 (Figure 3. 15).  

Consistent with their enrichment for GAF, which is known to recruit nucleosome remodelers to 

keep GAF bound genes relatively nucleosome free(Fuda et al., 2015), genes with no shift have 

reduced nucleosome positioning and occupancy while shifted genes have a highly bound first 
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nucleosome, with strong downstream phasing(Gilchrist et al., 2010).  Figure 3. 14 looks at PRO-

seq in the pause region aligned to the annotated TSS in order to represent the distance that 

polymerase has likely transcribed after initiation before pausing.  Thus, the information surmised 

from such a metaplot depends upon the perspective from which the loci being summarized are 

aligned.  In Figure 3. 16, I plot the same PRO-seq data as Figure 3. 14, but aligned to the dyad of 

the first nucleosome (from the subset of genes that had a nucleosome call(Kwak et al., 2013)).  

From this perspective, it becomes apparent that shifted genes (Figure 3. 16B) have a reduction in 

pausing far upstream of the first nucleosome, but not near it, while unshifted genes again do not 

show this reduction (Figure 3. 16A).  Thus, the shift is in reality a proximal decrease, without an 

accompanying distal decrease that shifts the balance of the pause distribution.  

 
Figure 3. 15: Genes with shifts in pause distribution are depleted for GAF, but have high 

nucleosome occupancy and positioning. 

ChIP-seq for GAF(Fuda et al., 2015), BEAF(Yang, Ramos and Corces, 2012), M1BP(Li and 

Gilmour, 2013), and MNase-seq(Gilchrist et al., 2010) around the TSSes of genes whose pause 

distribution was called as shifted (top) or not shifted (bottom).  1000 bp window centered on the 

TSS.  All data are sorted by the position of the bin with the greatest signal.  Thus, intensity 

shows levels of occupancy, and the shape of the curve through the plot shows preference for 

certain locations relative to the TSS.  
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Figure 3. 16: Shifted pause distributions are a result of reduction of proximal pausing with 

no change in pausing at the first nucleosome. 

A.)  Metaplot of PRO-seq centered on the dyad of the first nucleosome at unshifted genes.  All 

data are after copper induction, NELFapt (red) and WT (blue).  N = 223 shifted genes with calls 

for first nucleosome dyad(Kwak et al., 2013).  B.)  Same as A, but for shifted genes.  N=403  C.)  

Metaplot of MNase at shifted genes, centered on the position of the reduction (red) or the 

increase in fraction signal (blue).  Thus, the same data are plotted from two different 

perspectives.  Vertical lines at 40 bp from the increase (blue) and 80 bp from the decrease (red). 

 

A similar trick of switching perspective in making a metaplot from the same sites reveals 

the relationship of the nucleosome to the shift.  I called the location of the shifts as the center of 

the 20 bp bin with the largest change in CDF area (both the proximal decrease and distal increase 

in CDF, Figure 3. 12 for an example).  When MNase is plotted around the decrease, I see that the 

position of the decrease is near 80 bp from the nucleosome dyad (Figure 3. 16C, red).  When the 

same MNase data from the same genes is plotted from the perspective of the gain in fraction 

signal portion of the shift, I see that it is positioned closer to -40 bp from the nucleosome dyad, 

where the greatest energetic barrier to unwinding nucleosomes occurs(Hall et al., 2009).  The 

position of the decrease is consistent with the previously reported average distance of the pause 

peak from the nucleosome dyad, while the position of the gain in fraction signal is consistent 

with a small fraction of the distal portion of the pause occurring at the barrier of the first 

nucleosome(Kwak et al., 2013).  Thus, the shift that I have observed is the result of a decrease in 

pausing at the normal location, upstream of the energetic barrier of the nucleosome, while the 
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amount of polymerase slowing through the energetic barrier of the first nucleosome is 

unchanged. 

NELF Aptamer Inhibition in a Second Experiment Confirmed GAF’s Role in Recruiting 

NELF 

The second round of NELFapt PRO-seq was designed to have more robust controls.  In the 

first, the control was normal Drosophila S2 cells, with the same copper treatment as the aptamer 

containing cells.  This means that the aptamer was under selection for blasticidin resistance, 

while the control was not, and the two cell lines were on different passages.  The main goal for 

this second round of experiments was to include a scrambled aptamer control to ensure that 

effects seen are not due to a response to expression of high levels of a short RNA, but also to use 

a new no aptamer control that was transfected with the empty pRMHa3 expression vector to 

ensure that all cells used were on the same passage number, and cultured under the same 

conditions (with blasticidin selection).  Replicates were very highly correlated in this second 

experiment, whether considering only pause regions (Figure 3. 17A) or gene bodies (Figure 3. 

17B).  In this second round of experiments, I did not observe the shift in pause distributions seen 

in the first, though I did see a global reduction in pausing that was more pronounced at genes 

with features similar to those that showed the shift in the first experiment.  Furthermore, the 

effects seen were the same in the scrambled aptamer control and NELFapt cells: this is either due 

to one or several of the scrambled units still having a specific interaction with NELF-E or to a 

lack of specificity of the response seen (a change in pausing is part of a cellular response to RNA 

accumulation in the nucleus).  However, the results of this inhibition recapitulate known aspects 

of NELF’s function, and its mechanism of recruitment.  
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Figure 3. 17: Correlation between replicates in the second PRO-seq experiment 

A.)  Promoter correlations, from -150 to +150 of the annotated start site.  This is designed to 

capture pausing, to assess its reproducibility.  N = 9,452, Spearman rank order correlation 

reported on each plot  B.)  Gene body correlation, as in Figure 3. 6. 

 
Figure 3. 18: CG5854’s downstream shift is not reproduced in the second PRO-seq 

UCSC genome browser shot of the CG5854 pause region in NELFapt, Scramble, and Empty 

vector cells, before and after induction.  RPM normalized PRO-seq, scale set to autoscale.   
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Figure 3. 19: The shift in pause distributions with NELFapt was not reproduced in the 

second PRO-seq experiment 

Metaplots of RPM normalized PRO-seq in the pause region of genes called as shifted (N = 503) 

or unshifted (N = 391) in the first experiment.  Comparison of NELFapt or Scramble to Empty 

vector before (left column) or after (right column) copper treatment.  A.)  Shifted genes, 

comparing NELFapt (red) to empty vector (blue)  B.)  Genes with no shift, comparing NELFapt 

(red) to empty vector (blue).  C,D.)  Same as A and B, but for Scrambled aptamer.  
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The shift in pausing observed in the first NELF inhibition was not reproduced in the second.  

This is seen at both individual genes such as CG5854 where a strong shift was seen in the first 

experiment (Figure 3. 11 for first PRO-seq, Figure 3. 18 for the second), and in aggregate with 

metaplots of the genes with shifts (Figure 3. 19).  As before, there is a global reduction in 

pausing that is more pronounced in genes called as shifted in the first experiment (Figure 3. 19A, 

C) than genes called as unshifted (Figure 3. 19B, D).  This reduction is similar when comparing 

both NELFapt (Figure 3. 19A, B) and Scramble (Figure 3. 19C, D) to the empty vector cells, 

both before (Figure 3. 19, first column) and after (Figure 3. 19, second column) copper 

induction.  In the first experiment, proximal pausing was strongly reduced at this subset of genes, 

while this reduction was not seen in the same region of the pause at a set called as not having a 

shift (Figure 3. 14A, B compared to Figure 3. 14C, D).  That change in the shape of the pause 

distribution from control to aptamer expressing cells is not seen here. 

Though the distal shift in pause distributions was not seen in the second round of 

experiments, the aptamer did have a profound effect on pausing.  There is a nearly global 

decrease in the amount of paused polymerase in the promoter proximal region of genes.  Figure 

3. 20 shows MA plots normalized by DESeq2 for both promoter regions (left column) and gene 

bodies (right column).  Though very few genes are called as significantly changed in the 

promoter proximal region, the distribution has an unusual shape where the most paused genes are 

either slightly up or unchanged, and the rest of the genes show a slight decrease in pausing.  

Despite these changes in the promoter proximal region, gene bodies remain largely unchanged.  

This change amplified upon copper induction in aptamer containing cells (Figure 3. 20 A), and is 

apparent when comparing both aptamer expressing (Figure 3. 20A, B) and scramble cells (Figure 

3. 20C) to empty vector cells. NELFapt and scrambled aptamer cells have very similar levels of 
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paused polymerase across the distribution (Figure 3. 20D).  Therefore, this change is nearly the 

same in both aptamer and scrambled aptamer expressing cells.   

 
Figure 3. 20: NELFapt and scrambled control have very similar effects 

DESeq2 normalized MA plots comparing PRO-seq signal from the second round of experiments 

in various libraries (rows), in promoter proximal pause regions (TSS to +300, left column) and 

gene bodies (+200 from TSS to -200 from CPA).   Significantly changed genes (padj < 0.01) 

indicated in green (increased) and red (decreased).  N = 9,452 A.)  Changes in NELFapt cells 

upon induction.  B.) Difference between induced NELFapt and empty vector cells  C.)  

Difference between induced Scramble and empty vector cells  D.)  Differences between induced 

NELFapt cells and Scramble cells are minimal.  



 

125 

 

DESeq2 normalizes genes to account for variation between replicates, assuming that the 

whole distribution has not changed(Love, Anders and Huber, 2014).  Thus, the importance of 

slight variations in lowly expressed sites is appropriately minimized (Figure 3. 20, low 

normalized mean expression).  Though useful for interpreting changes where low signal means 

that observed variation is not reliable, this feature could mask systematic shifts.  Therefore, to 

characterize the full magnitude of the aptamer’s perturbation of pausing, I made MA plots using 

just the RPM normalized PRO-seq data (Figure 3. 21).  Plotted this way the systematic reduction 

in levels of paused polymerase at most genes is more apparent.  Now, the bulk of promoters 

show reduced pausing (negative log2 fold change), while the most highly paused promoters are 

unchanged (high expression promoters are near 0 log2 fold change).  DESeq2’s normalization 

averaged out this shift, so that the most highly paused promoters appeared to increase.  The 

reduction in pausing occurs in both NELFapt containing (Figure 3. 21A, B) and scramble 

containing (Figure 3. 21C, D) cells when compared to empty vector, and is present both before 

(Figure 3. 21A, C) and after (Figure 3. 21B, D) copper induction, though it is amplified after 

induction in both cell lines (Figure 3. 21B, D).  In these plots where variation between replicates 

and expression level are not considered in normalization, wide variation in promoters with low 

counts is seen as wide scattering at the low expression end of the plot.  There is little global 

change in the amount of polymerase transcribing through gene bodies (Figure 3. 21, right 

column), confirming that the effect seen here is primarily on pausing.  RPM normalization takes 

into account all transcribing polymerase seen with PRO-seq.  This is not significantly affected by 

the reduction in pausing as paused polymerase is still a minority of total engaged Pol II.  Thus, 

RPM normalization uses the lack of change in gene bodies to reveal the change in the levels of 

paused polymerase.  
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Figure 3. 21: NELFapt and scrambled NELFapt cause a global reduction in pausing at 

most promoters that is amplified upon induction. 

RPM normalized MA comparing PRO-seq signal from the second round of experiments in 

various libraries (rows), in promoter proximal pause regions (TSS to +300, left column) and gene 

bodies (+200 from TSS to -200 from CPA).  Global changes are more apparent here than with 

DESeq2 normalization.  N = 9,452 A.) Comparison of uninduced NELFapt to empty vector  B.)  

Comparison of copper treated NELFapt to empty vector.  The gene body is largely unchanged.  

The pause at moderately paused genes is reduced, while highly paused genes show no reduction.  

C.) Comparison of uninduced Scramble to empty vector  D.)  Comparison of copper treated 

Scramble to empty vector.  Changes in the pause region are almost identical to NELFapt.  
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To understand features of promoters that made them susceptible to the reduction in pausing 

after NELFapt expression, I selected genes whose total expression and log2 fold change fell in 

certain regions of the DESeq2 normalized distribution.  Reduced moderate pause genes (Figure 

3. 22A, red) show reduced pausing in the NELFapt and scramble expressing cells, and have 

moderate levels of paused polymerase.  Moderate Unchanged genes are taken from the same 

range of pause levels as the reduced set, but do not have a reduction in pausing.  Finally, highly 

paused unchanged genes fall at the high end of pause levels, but show no reduction upon aptamer 

expression.  A metaplot confirms that the moderate unchanged genes do not show a reduction in 

pausing between aptamer expressing and empty vector cells in aggregate, while the changed 

genes do have a marked reduction in pausing (Figure 3. 22B).  Furthermore, even though they 

were selected from the same range of pause levels, the unchanged genes have higher pausing.  

High unchanged genes are strongly enriched for GAF (Figure 3. 22C), moderate unchanged 

genes have some GAF binding, while the moderate reduced genes show almost no GAF binding.  

M1BP(Li and Gilmour, 2013), another transcription factor associated genes with high promoter 

proximal pausing is enriched in all three classes.  BEAF-32(Yang, Ramos and Corces, 2012; 

Satya Prakash Avva and Hart, 2016), an insulator factor also implicated in regulation of 

transcription, is enriched at moderate reduced promoters (Figure 3. 22C).  Finally, nucleosome 

positioning and occupancy is highest at moderate reduced promoters and lowest at high 

unchanged promoters (Figure 3. 22C, MNase), consistent with GAF’s association with low 

nucleosome occupancy. 
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Figure 3. 22: Pause regions affected in the second PRO-seq are depleted for GAF, and have 

high nucleosome positioning and occupancy. 

A.)  DESeq2 normalized MA plot of PRO-seq from 0 to 300 bp of the TSS in copper treated 

NELFapt cells compared to empty vector cells.  Genes were divided into classes based on 

DESeq2 normalized mean expression (for NELFapt or Scramble cells) and log2 fold change.  

Moderate unchanged genes (yellow) have moderate levels of pausing and do not have a decrease 

in pausing between empty vector and NELFapt or Scramble containing cells.  Highly paused 

unchanged genes (green) are highly paused and do not show a decrease in pausing.  Moderate, 

reduced pause genes (red) are moderately paused, and show a reduction in pausing between 

empty vector and NELFapt or Scramble.  B.)  Metaplot of PRO-seq signal in NELFapt (dark) 

and empty vector (lighter) cells, treated with copper.  Moderate reduced pause genes (red, N = 

1,079) and moderate unchanged pause genes (yellow, N = 519).  C.)  Metaplot of ChIP-seq for 

GAF, M1BP, BEAF, and MNase-seq around the sets of genes indicated in A.  Color scheme 

identical to A. 
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Conclusions and Discussion 

NELF-E’s Interaction with Nascent RNA Is More Important at Moderately Paused 

Genes 

Though the two PRO-seq experiments using NELFapt as a specific inhibiter have issues 

with reproducibility of some of the results, and with critical controls, the effects that I see fit well 

with what is known about NELF’s mechanisms of recruitment, and refine our understanding of 

formation and maintenance of a promoter proximally paused RNA polymerase.  In both sets of 

experiments, GAF bound genes were largely unaffected by NELFapt, indicating that the 

presence of GAF means that NELF recruitment is less dependent upon an interaction between 

the nascent RNA and NELF-E.  GAF is able to recruit NELF independent of many of NELF’s 

other interactions (such as DSIF and Pol II)(Li et al., 2013); thus, it makes sense that GAF bound 

genes are less dependent upon NELF’s other interactions for its role in orchestrating pausing.  In 

this way, I have refined our understanding of NELF’s mode of recruitment by inhibiting just one 

of the many interactions that can bring it to paused polymerase. 

In the first experiment, the most prominent effect of NELFapt was a shift in the distribution 

of the pause at many genes (Figure 3. 23 for a summary).  At genes with more moderate levels of 

pausing the more proximal pause is reduced, while the distal portion is largely unaffected.  This 

distal portion is associated with the energetic barrier to transcribing through the first nucleosome.  

Promoter proximal pausing can be composed of heterogeneous set of complexes at some genes, 

especially when pausing is dispersed (in different cells, as these polymerases would be too close 

to exist on the same strand of DNA).  These complexes can vary in their composition and their 

mechanism.  As I will show in chapter 4, some are more likely to be associated with a capped 
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nascent transcript than others.  As seen by others(Kwak et al., 2013; Christopher M. Weber, 

Ramachandran and Henikoff, 2014), I found that some of those polymerases are in a canonical 

paused state, likely through the action of DSIF and NELF, while others are paused at the 

energetic barrier to transcribing through the first nucleosome.  When the paused complex is 

reduced, the total fraction of promoter proximally paused polymerase that is contacting the first 

nucleosome increases.   

 
Figure 3. 23: Aptamer inhibition of NELF-E results in a reduction of pausing at genes 

where NELF-E to nascent RNA interactions are critical. 

Schematic of NELF’s role in pausing, and NELFapt’s effect in the first PRO-seq experiment.  

Level of paused polymerase is indicated by the shading off the polymerase shape.  GAF helps to 

recruit NELF independent of some of its other interactions.  Thus, promoters with GAF are less 

dependent upon a free NELF-E RRM to establish the normal level of promoter proximal 

pausing.  At other promoters, NELF’s recruitment and the proper level of pausing are more 

dependent upon the interaction between NELF-E and nascent RNA.  However, types of pausing 

that are not dependent upon NELF, like the pause seen at the energetic barrier to transcription 

through the first nucleosome, are not affected. 

 

In my second set of experiments, I did not reproduce this shift. However, I saw a reduction 

in pausing at moderately paused promoters where GAF is not present (Figure 3. 24 for a 
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summary).  Thus, both of these observations are at similar types of genes, where GAF is not 

present and NELF is more dependent upon interactions with nascent RNA for recruitment.  

Because of its role in recruiting NELF and modulating chromatin environment, GAF is, in many 

ways, a potent pausing factor in flies(Duarte et al., 2016).  GAF bound genes have much lower 

nucleosome occupancy(Fuda et al., 2015), therefore, in both of these experiments, the genes 

most affected have higher nucleosome occupancy by virtue of a lack of GAF and lower 

transcriptional activity.  Thus, the genes most affected by NELFapt, in both experiments, are 

those that are most predisposed to nucleosomes presenting a barrier to elongation: this reconciles 

the observations made in the two experiments, to some extent.  

 
Figure 3. 24: NELF-E’s interaction with nascent RNA has a greater contribution to NELF 

recruitment in the absence of GAF. 

Similar to Figure 3. 23.  Schematic of NELF’s role in pausing, and NELFapt’s effect in the 

second PRO-seq experiment.  GAF helps to recruit NELF independent of some of its other 

interactions.  Thus, promoters with GAF are less dependent upon a free NELF-E RRM to 

establish the normal level of promoter proximal pausing.  At other promoters, NELF’s 

recruitment and the proper level of pausing are more dependent upon the interaction between 

NELF-E and nascent RNA.   
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Difficulties in Determining the Effect of NELFapt from These Data 

Though some interesting biology seems to shine through in both sets of PRO-seq data, some 

major issues prevent us from publishing these data as is.  The effects that I see are modest, 

inconsistent between the two PRO-seq experiments, not fully inducible despite placing the 

transgene under a copper inducible promoter, and the same in my scrambled RNA control.  The 

first major issue is that the ‘shift’, a reduction in proximal pausing with no change in polymerase 

at the barrier of the nucleosome, was not reproduced.  I have not been able to find an 

experimental reason for this.  Initially, I worried that a band cutting artifact from the PAGE 

purification step was responsible: the most proximally paused polymerase amplicons are only 

~20 bp longer than the adapter dimer which we are trying to eliminate, so cutting too late could 

skew the pause distribution.  However, I’ve found that the pause lengths, in aggregate, are not 

different between libraries, and the unshifted genes have proximally paused polymerase where I 

see no reduction in pausing, but are of a similar length to those that were reduced with the 

aptamer.  The fact that short nascent RNAs are not globally affected alleviates concerns about a 

systematic problem with these libraries.  The biggest difference in the two sets of experiments is 

the stable transfect S2 cell line used.  The first used an aptamer expressing line made by John 

Pagano, and the second was made by me.  My line expresses much more aptamer per cell, as 

seen by both Northern (Figure 3. 5), and in the fraction of uniquely mappable reads that align to 

the aptamer in the two (0.4% of total in the first experiment, 3% of total in the second).  

The second major issue is that the scrambled control has the same effect as the aptamer. The 

aptamer tips only constitute around 40% of the total sequence of each unit. So the scrambled 

control leaves most of the structure intact.  Thus, if the GC-richness predisposes an RNA to 

interact with NELF-E(Li et al., 2013), it could be interacting with the core structure at some 
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level above background.  I included 9 different scrambled sequences, as this made gene synthesis 

possible. This may increase the likelihood of a lucky scrambled sequence that binds NELF-E 

with some specificity.  I may have one such lucky scrambled sequence: though it was difficult to 

quantify, the scrambled RNA does have a faint shifted band by EMSA (Figure 3. 3) similar to 

the aptamer that is not present in the N70 random 70-mer control.  Even NELFapt binding would 

likely not be readily apparent if it were only 1/9
th

 of a mixture.  This is especially worrisome 

considering that aptamer expression is so high. Before induction, the aptamer is already around 

20 nM in the nucleus (above the Kd of the aptamer-NELF interaction) in the cell line from the 

first experiment, and likely closer to 40 nM in the second. Copper induces expression, so that the 

aptamer reaches 500 nM in the cell line from the first experiment, and around 2 µM in the 

second, where it accounts for 3% of Pol II transcription by PRO-seq. Thus, even a weak 

interaction with NELF-E could result in full occupancy. Many RNA binding proteins' 

background affinity to RNA is below 500 nM; NELF-E binds to the N70 library with 120 nM 

affinity, so at 500 nM and higher, non-specific effects have to be a concern.  Thus, more aptamer 

is not necessarily better, as non-specific effects likely begin to accumulate at a certain aptamer 

concentration.  Therefore, without a new scrambled RNA control, or similar non-specific RNA 

control, I cannot rule out the possibility that the effect that I have seen here is not specific to 

occluding the RRM of NELF-E, but rather would be observed any time a small RNA is 

expressed at a sufficiently high level. 

The effects of the aptamer were not fully inducible.  Both the shift in pausing seen in the 

first experiment and the reduction in pausing at moderately paused genes see in the second were 

observed by comparing aptamer expressing cells to control (either WT or empty vector 

containing), and were seen both before and after aptamer expression was induced by addition of 
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copper.  Both effects were amplified upon induction, however.  This makes sense given the 

amount of leaky expression seen before induction: even in the first cell line, with lower 

expression, the measured nuclear aptamer concentration is above NELFapt’s Kd.  If the problem 

with the scrambled control showing the same effect as NELFapt is due to expression being too 

high, then the lack of inducibility does not bode well for attempting to titrate aptamer expression 

for specific effects.  One of the major goals of inhibition with aptamers is to observe effects 

shortly after expression of the aptamer, before secondary effects accumulate.  Knockdowns in 

Drosophila S2 cells take 3-6 days to take effect, while the goal here was to look two hours after 

the start of inhibition.  However, it takes several weeks to select a stable transfected cell line, so 

if basal expression has almost the full effect, then secondary effects have had much longer to 

accumulate and the cells have reached a new equilibrium. 

The cell lines that I used to express NELFapt were populations of cells selected for 

integration of the transgene by selection for blasticidin resistance.  The resistance marker is on a 

separate vector, cotransfected with the aptamer construct at a 1:20 ratio.  This means that this is a 

heterogeneous mixture.  Each cell likely has the transgene integrated at several locations, though 

it is possible that some cells have blastidin resistance but no aptamer.  Therefore, it is difficult to 

interpret differences in aptamer expression.  While it is likely that the population of cells in the 

second PRO-seq express more aptamer per cell than the first, it is possible that expression is 

similar, but a higher fraction of cells are transfected. 

Finally, the effects of NELFapt are modest.  In the first experiment, about 20% of my 

filtered set of genes show a downstream shift.  The criteria used to identify shifted genes 

correspond to a drop in 25% of the cumulative fraction seen sustained for at least 20 bp when 

comparing NELFapt to WT cells.  In the second experiment, the reduction in pausing at 
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modestly paused genes is, in aggregate, around a 30% reduction in the total amount of pausing, 

but only at genes that already had modest levels of pausing.  These are subtle changes, observed 

broadly.  This makes them difficult to quantify, as they are not readily apparent in bulk 

summarizations of the data, but rather require a nuanced interpretation of a targeted comparison 

(i.e., I have to compare RPM normalized pause levels between empty vector and NELFapt, but 

the effect is the same in scramble).  NELF likely serves to fine-tune the control of promoter 

proximal pausing.  Thus, these effects are very different than what is seen when a critical factor’s 

perturbation affects viability, as is the case for M1BP knockdown(Li and Gilmour, 2013), or 

where one factor is critical in the regulation of a small fraction of genes, where a strong effect is 

seen upon its perturbation, such as HSF(Duarte et al., 2016).  PRO-seq is an extremely sensitive 

assay, with basepair resolution.  Thus, there is always some worry of over-interpreting subtle 

differences. 

 

Future Directions 

In retrospect, the experimental design used here was not ideal: under the control of a copper 

inducible metallothionein promoter, we use a bivalent aptamer, expressed as an 18-mer whose 

self-cleaving hammerhead ribozyme arms should result in the release of 18 bivalent aptamer 

molecules for each time the construct is transcribed.  While the strategy of bivalent aptamers to 

increase the apparent affinity of the resulting aptamer for its target has some merit, there is some 

worry that one aptamer unit could recruit additional NELF once its first aptamer arm binds.  

Furthermore, self-cleavage of units within the 18-mer is not complete: in vitro, I see ~90% 

cleavage, but in vivo, I see ~60% single units, with the rest primarily 2 or 3 unit multimers by 

Northern.  Thus, there is some possibility that NELFapt could cause additional recruitment and 
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aggregation of NELF-E at promoters.  In addition, as addressed in the previous section, leaky 

expression was enough to give a partial inhibition, and the scrambled RNA control showed the 

same effect as NELFapt either because one of the scrambled monomers binds NELF, something 

in the core 3-way junction and ribozyme binds NELF, or abundant small RNAs in the nucleus 

have a non-specific effect. 

Widespread use of RNA aptamers will require extensive investment in development of a 

suitable system for carrying out this specific inhibition. I would rather see the aptamer truly 

expressed inducibly, as a monomer with minimal extra sequence, with an ironclad control RNA, 

at a level that is specifically titered to bind the target while minimizing off-target effects, 

targeting an interaction whose disruption will give a strong and easily discernable phenotype, 

and in a stable clonal cell line where we also have a wealth of genome-wide data to aid in our 

interpretation of results.  This effort is only worthwhile when a lot stands to be learned when 

inhibiting with the aptamer being used.  NELFapt seemed like a perfect case: it binds NELF-E’s 

RRM with high affinity, and would allow us to ask what the role of this single domain is in 

pausing, when the complex being studied has many interactions whose various contributions are 

hard to quantify.  The aptamer was extremely well characterized, as we know what surface of 

NELF it binds, and in what way(Pagano et al., 2014; Tome et al., 2014), thus facilitating 

interpretation of results.  NELF is instrumental in promoter proximal pausing, and we have PRO-

seq as a highly sensitive readout of pausing. 

Many of the issues outlined in the previous section are potentially addressable.  However, 

this would require considerable investment.  An extremely optimistic timeline would be for 

design, synthesis, cloning, and characterization of a new scrambled control to take around two 

months.  Selecting stable cell lines takes around six to eight weeks to get lines that grow near the 
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normal rate under selection.  Northerns for picking clones take around a week.  Scaling up 

cultures, preparing cells for PRO-seq, and carrying out PRO-seq takes two to four weeks.  

Sequencing and analysis would take one month, if the sequencing queue is short, the exact 

question being addressed is simple and well defined, and pipelines are in place.  Thus, in total, 

each new iteration of aptamer inhibition experiments in S2 cells with PRO-seq as the readout 

takes at a minimum six months and costs around $3,000 in reagents and sequencing, if you know 

what you’re doing.  If a well-functioning expression system were in place, cell line selection 

would still be a bottleneck.  Selection of clonal cell lines in S2 is difficult, and would add 

considerable time and effort(Cherbas and Cherbas, 2007).  Thus, for an experiment that is close 

to working, but not quite there, the time and effort taken for each iteration was simply too great 

for this to be carried to fruition in the time that I had available.  Future students should be wary 

of this, and start with an experiment with no known design flaws and only after a thorough cost-

benefit analysis.  Sometimes, it makes sense to proceed with an imperfect experiment in the hope 

of learning something and then perfecting the approach.  This strategy works well with basic 

biochemistry such as protein purification or EMSA, where each iteration takes around a week.  

However, a new mentality is needed for experiments involving the generation of a stably 

transfected cell line and genomics.  

The idea of blocking a single domain of a protein with a highly specific and well 

characterized aptamer is still extremely attractive.  To regulate transcription with exquisite 

precision, regulatory factors are often involved in many complex macromolecular interactions.  

Knockdowns are a blunt instrument for depleting the entire factor, but more specific inhibitors 

are needed to understand the role of individual interactions.  Thus, aptamer inhibitors could 

provide important new insights.  But, methods for using these inhibitors are not at a point where 
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they can routinely be used to study biology.  Considerable investment in this strategy as a 

technology development oriented project is required before aptamers’ widespread adoption as 

inhibitors. 

Materials and Methods 

Transfection and Stable Cell Line Generation 

Drosophila S2 cells were cultured in M3 + BPYE medium with 10% FBS at room temperature, 

as described(Roberts, 1998).  Cells were transfected with pRMHa3 vectors containing either no 

insert, an 18-mer NELFapt insert, or an 18-mer scrambled aptamer insert using Effectene 

(Qiagen, cat. 301425), following the manufacturer’s protocol.  800 ng vector was transfected per 

1 million cells, along with 40 ng of the pCO-Blast to enable antibiotic selection.  After 72 hours, 

the cells were spun down and resuspended in new media with 6 µg/mL blasticidin.  Cells were 

grown under blasticidin selection until the transformed cultures grew under selection grew at a 

similar rate to WT cells in normal media (about 6 weeks).  As a control, no growth occurred for 

WT cells under selection in the same span of time. 

Northern Blot 

Selected S2 cell lines or WT control were grown to 3 to 5 million cells/mL, and treated with 

CuSO4 for varying amounts of time.  Total RNA was isolated as indicated (either Qiagan 

RNeasy, cat. 74104 or Trizol, ThermoFisher, cat. 15596026).  RNA was quantified with 

nanodrop, and then 300 ng was run on 7M urea, 8% PAGE in 0.5x TBE.  RNA was transferred 

to Biodyne B membrane with a semi-dry transfer apparatus, and UV crosslinked with energy set 

to 1200.  The rest of the protocol followed the instructions of the ThermoFisher NorthernMax kit 
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(cat. AM1940).  The probe used was a PCR amplified aptamer unit from the NELFapt vector, 

end labeled with P
32

 using PNK, following the manufacturer’s instructions (NEB cat. M0201S).  

To reprobe for Rp49, the membrane was stripped by adding 100 mL boiling 0.1% SDS and 

allowing the container to cool to room temperature, and reprobed with an end labeled Rp49 

probe made by amplifying genomic DNA with the lab’s stock qPCR primer. 

Blots were kept damp while being exposed to a PhosphorImager screen, scanned by a Typhoon 

9400 Imager, and analyzed by ImageQuant software. 

EMSA 

P
32

 body labeled aptamer was made by linearizing the appropriate pRMHa3 vector with KpnI, 

and in vitro transcription with T7 RNA polymerase, as described in Chapter 3.  Single unit sized 

products were purified from a PAGE band as described in Chapter 3. 

EMSA was carried out essentially as described in Chapter 3, with 0.5x TBE vertical 4%  PAGE.  

Dried gels were exposed to a PhosphorImager screen, scanned by a Typhoon 9400 Imager, and 

analyzed by ImageQuant software. 

PRO-seq 

Cultures grown to 3 to 5 million cells/mL.  For copper treated cells, CuSO4 was added to the 

media to 0.5 mM two hours before harvesting.  In the first set of experiments, nuclei were 

isolated, and in the second, permeabilized cells were used.  PRO-seq was carried out as 

described(Dig Bijay Mahat et al., 2016).   

Libraries were sequenced on an Illumina NextSeq 500, and processed and aligned to the dm3 

build of the Drosophila genome as described(Duarte et al., 2016).  
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Chapter 4: Human transcription characterized by single molecule 

coupling of Pol II initiation and active site
4
 

 

In higher eukaryotes,  the timing and level of transcription at gene promoters by RNA 

Polymerase II (Pol II) is specified largely by the sum of information from the promoter itself and 

from distal enhancers .Transcription and Pol II pausing has been observed at enhancers, 

suggesting Pol II may be a ubiquitous nexus of regulatory signaling. To explore this idea, we 

sequenced nascent RNAs at single-molecule resolution to identify Pol II initiation, capping, and 

regulated pause sites. Our analyses reveal distinct sequence-specified pause classes associated 

with differences in RNA capping dynamics. Integrated analysis of nearby chromatin and 

transcription factors suggests a model of gene regulation in which Pol II initiation provides a 

biophysical scaffold to create and maintain regulatory domains, with pause checkpoints to limit 

transcription of non-coding RNAs. 

 

Introduction: Nascent RNA Sequencing for Dissecting Gene Regulatory 

Mechanisms 

Recent studies have revealed widespread transcription at active regulatory sites in mammalian 

genomes, raising numerous questions about the role of transcription in gene regulation and 

chromatin architecture(Kim et al., 2010; Leighton J. Core et al., 2014). Existing methods track 

the active site of RNA Polymerase II (Pol II) (Core, Waterfall and Lis, 2008; Nechaev et al., 

2010; Kwak et al., 2013; Mayer et al., 2015a; Nojima et al., 2015) and have identified promoter-

proximal pausing as a key regulatory step for Pol II gene expression.  Similarly, variants of these 

                                                 
4
 This chapter is a draft of a manuscript co-written with Nate Tippens and John Lis 



 

141 

 

methods(Andersson et al., 2014; Leighton J. Core et al., 2014; Scruggs et al., 2015) map sites of 

transcription initiation with high sensitivity, revealing an unexpected abundance of initiation 

from enhancer loci. Previously, most studies have relied on efficient cap selection and aggregate 

molecular profiles to identify Pol II initiation and pause sites.  Here, we developed paired-end 

PRO-seq with selection for distinct 5’ RNA capping states (Uncapped, Capped, or 

Capped+Uncapped; see Methods), with the goal of providing coordinated information about 5’ 

and 3’ events during early Pol II transcription genome-wide (Coordinated Precision Run-On and 

sequencing, or CoPRO).  
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Results  

CoPRO Facilitates Identification of Transcription Initiation Sites 

 
Figure 4. 1: coPRO simultaneously measures initiation site and active site of engaged RNA 

polymerase II genome-wide.   

A.)  coPRO capped RNA paired plot for the IPO7 gene.  0 is the RefSeq annotated start site.  

Each bin represents a unique pairing of 5’ end of RNA (initiation site, x axis), and 3’ end 

(polymerase active, y axis), and is colored according to the number of reads observed with that 

pairing.  Expanded view of the same site below.  B.) Heirarchy of transcription initiation.  

coPRO capped (top) is used to call individual nucleotides where initiation occurs (TSN), TSNs 

within 60 nt are grouped into TSSes, divergently oriented TSSes within 300 bp are grouped into 

TSS pairs, and TSSes within 750 bp are grouped into TIDs.  C.)  Hexbin of TSN usage vs total 

coPRO capped expression at TSSes, N = 75,057.  D.)  Hexbin of TSS usage vs total coPRO 

capped expression at TIDs, N = 24,171  E.) True initiation site resolved pause profile of capped, 

uncapped, and capped + uncapped coPRO at TSNs that are uniquely mappable at 18 nt, N = 

133,622.  Bootstrapped median of signal, solid line, 12.5% and 87.5% confidence intervals, 

shaded. 
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CoPRO provides a distinct elongation profile for each base in the genome (Figure 4. 1A).  

Polymerases elongating from the same transcription start nucleotide (TSN) make a vertical line 

in a heatmap of coPRO for a single locus, while Pol II initiating from different TSNs but pausing 

at the same nucleotide create a horizontal line. This characteristic “initiation profile” – a 

common RNA 5’ end with numerous 3’ ends – provides a sensitive method to discriminate real 

initiation sites from background, independent of capping efficiency and enzymatic biases. As an 

example, the IPO7 gene promoter initiates at multiple positions within ~50 nt, with strong 

preference for the most used two (Figure 4. 1A). We often detect polymerase at multiple 

positions (vertical lines) both within and beyond the pause.  Notably, transcription from nearby 

positions tends to pause at the same nucleotide.  A wider view (Figure 4. 1A, inset) reveals 

elongation beyond the pause (within the insert size limit of sequencing), as well as antisense 

transcription.  Thus, CoPRO can deconvolve the interplay between initiation, capping, and 

pausing to provide a single-molecule view of transcription initiation genome-wide. 

We organized transcription initiation into a functional hierarchy to facilitate subsequent 

analyses (Figure 4. 1B, Methods).  First, individual nucleotides where initiation occurs 

(Transcription Start Nucleotides, or TSNs) are identified by having at least 5 distinct 3’ ends.  

We cluster nearby TSNs into Transcription Start Sites (TSSes), as they are likely driven by the 

same transcription factors (TFs) and pre-initiation complex (PIC). Nearby TSSes are also 

clustered into higher-order structures: Divergent Pairs are pairs of TSS transcribing in opposite 

directions <300 bp apart(Leighton J. Core et al., 2014; Scruggs et al., 2015; Chen et al., 2016). 

Finally, Transcription Initiation Domains (TIDs) are larger TSS clusters (<750 bp apart) on 

either strand, that are thus likely to cooperatively position or modify nearby nucleosomes.  We 

use CAGE data to determine which TSNs and TSSes give rise to stable RNAs such as mRNAs 
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and lncRNAs. However, most TSSes produce unstable RNAs(Leighton J. Core et al., 2014) of 

unknown function (e.g., eRNA, ncRNA, upstream antisense RNA).  In total, CoPRO identified 

503,631 TSNs, 75,057 TSSes, 17,925 divergent pairs, and 24,171 TIDs.   

 
Figure 4. 2: Dispersion of initiation within TSSes 

A.) TSNs used plotted against TSS activity at TSSes that give rise to stable transcripts by CAGE.  

N = 11,768 TSSes B.) Same as a.), but for TSSes that do not give rise to stable transcripts.  N = 

63,289 TSSes C.) Dispersion of initiation within TSSes is best described as individual basepair 

spikes, not a smooth Gaussian.  Both plots use the top 50% most expressed TSSes, N = 37,522.  

This analysis tests the maximum amount of signal at each TSS that can be seen either at different 

numbers of basepairs (left) or windows of different size (right), which is the x axis for both.  Y 

axis is maximum percent of signal seen with a window of size x.  Color is number of TSSes 

described by that x,y combination.  Each column thus sums to total number of TSSes (N = 37, 

522).  D.)  The left plot (single basepairs) saturates much faster than the right (windows).  Thus, 

initiation is primarily situated at a small number of non-contiguous basepairs at TSSes. 
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As previously described(Carninci et al., 2006; Vo Ngoc et al., 2017), most TSSes initiate 

at multiple TSNs and TSN number increases with TSS activity (Figure 4. 1C), though the degree 

of dispersion varies widely (Figure 4. 2C).  Extremely focused TSSes are primarily 

housekeeping genes, such as ACTB (Figure 4. 3) and HIST1H1, where initiation remains focused 

at a small number of TSNs despite very high activity (Figure 4. 2A), while initiation at unstable 

promoters (i.e. upstream divergent promoters, putative enhancers) tends to be more dispersed 

(Figure 4. 2B).   Consistent with previous work, the basic unit of initiation is a divergent pair, 

each with its own PIC(Leighton J. Core et al., 2014; Duttke et al., 2015; Scruggs et al., 2015; 

Arensbergen et al., 2016; Chen et al., 2016).  Interestingly, most TIDs, especially those 

producing stable transcripts, are composed of a constellation larger than a divergent pair of 

TSSes (Figure 4. 1D).  Previous work was limited to Stable TSS constellations such as nearby 

alternative TSSes and head to head genes(Chen et al., 2016), but CoPRO reveals that these 

constellations are much more prominent when all unstable TSSes are considered: stable TIDs 

(i.e. promoters), on average, contain 1.3 stable TSSes paired with 4.1 unstable TSSes. 
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Figure 4. 3: ACTB, an extremely focused promoter. 

The ACTB promoter is seen from three viewpoints: 

Top left, 2D coPRO capped plot around the promoter.  0 is the annotated start site for all 2D 

plots.  Top, right, 2D coPRO showing divergent transcription and higher order organization in 

TIDs.  Bottom, IGV browser shot showing coPRO capped (set to autoscale independently for 

each strand, scale indicated at left), transcription initiation calls (TSN, TSS, Divergent pair, TID) 

colored by strand (red for plus, blue for minus) and with transcript stability calls from CAGE for 

TSNs and TSSes, MNase from ENCODE, DNase-seq, H3K27ac ChIP-seq, H3K4me3 ChIP-seq, 

and H3K4me1 ChIP-seq from Epigenomics Roadmap.  RefSeq gene annotation at the bottom. 

ACTB is an extremely highly expressed, focused TSS.  The most used TSN is used 29-fold more 

than the next most used.  The TID is highly directional as well; the sense TSS is expressed 75-

fold more than its upstream divergent.  The RefSeq annotation is perfect for ACTB in K562 cells.  
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The majority of Capped RNAs at TSNs are within the pause region, reported to occur 

between 20-120 bp(Kwak et al., 2013; Leighton J. Core et al., 2014; Gressel et al., 2017). At 

single-molecule resolution, pausing is restricted to 20-60 nt (Figure 4. 1E, blue).  In contrast, 

Uncapped 5’ ends from TSNs are found associated with very short RNAs (Figure 4. 1E, gold), 

confirming that capping begins as the 5’ triphosphate first emerges from polymerase (~18 nt), 

and expanding gene-specific observations(Rasmussen and Lis, 1993; Nilson et al., 2015). 

Two Types of Promoter Proximal Pausing 

Sequence Largely Determines Pause Position 

A histogram of the most abundant pause position per TSN (maxPause) reveals a bimodal 

distribution: one population from 20-32 nt (Early), and another from 32-60 nt (Late; Figure 4. 

4A), though most initiation sites have some pausing in both windows (Fig 2B). After grouping 

TSNs by their maxPause, the sequence determinants of pausing become clear (Fig 2C).  Early 

pause TSNs are more AT-rich overall, whereas Late pause are GC-rich +5 from the initiation site 

to 8 nt before the pause site. AT-richness is seen -30 to the initiation site, particularly in the Early 

class, reflecting a stronger enrichment for the TATAWR motif of early pausing TSNs (Figure 4. 

4, A/T richness at -30).  All sites show a strong preference for initiation on CA dinucleotides (the 

Inr motif(Vo Ngoc et al., 2017)), and pausing on cytosine with some enrichment for guanidine 

just before(Gressel et al., 2017) (Figure 4. 4, top). This strong preference at the exact pause base 

is likely due to the fact that CTP is the least abundant nucleotide(Traut, 1994) and to the high 

energetic cost of stacking interactions between GC dinucleotides.  For both Early and Late pause 

TSNs, the sequence at the exact pause position is very similar (Figure 4. 5A and B), indicating 

that a similar mechanism determines the precise position of the pause.  On a larger scale, the 

sequence determinants of these two pause types are very different (Figure 4. 4C).  From this, we 
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conclude that the lower availability of CTP strongly influences the selection of pause sites on a 

basepair scale.  The pause catches polymerase during incorporation of a CTP as this is a slow 

step, so CTP is the last nucleotide incorporated at the pause.  Elsewhere, when polymerase is 

transcribing, diffusion of CTP into the active site is slower due to its lower abundance, so 

polymerase is observed just before incorporating CTP more frequently than other nucleotides 

(Figure 4. 5C).  Overall, these results refine previous kinetic models for pausing: the position of 

the pause is dictated by the energy landscape of nucleotide incorporation, the transcriptional 

bubble, and the strength of the RNA-DNA hybrid(Nechaev et al., 2010; Gressel et al., 2017), 

and the rate of pause factor recruitment(Missra and Gilmour, 2010; Li et al., 2013).    
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Figure 4. 4: Two distinct modes of promoter proximal pausing exhibit different capping 

dynamics. 

A.)  Most used pause site at the most used TSN in each TSS (maxTSN), N = 31,464   b.)  coPRO 

capped and uncapped at maxTSNs, sorted by the center of their pause.  TNSs are identical for 

capped and uncapped.  Row normalized so that the highest value for each row is 1.  Early/late 

called TSNs are indicated at the far right.  N = 31,464  C.)  Average GC content around 

maxTSNs, sorted by distance transcribed at max pause.  Each row is the average of all maxTSNs 

with each possible maxPause in the pause region defined in a.), from 20 to 60 nt.  Sequence logo 

for initiation site and pause site at top. N = 31,464  D.)  Three cap state selected libraries at 

maxTSNs mappable at 18 nt in pause classes, same maxTSNs as c).  Bootstrapped median, 

12.5% and 87.5% confidence intervals.  Early N = 5,907, Both N = 17,047, Late N = 8,510    E.)  

Joint probability distribution of uncapped coPRO with capped coPRO signal at the same TSN, 

from 18 to 100 nt.  All maxTSNs mappable at 18 nt were used (N = 31,464).  Each TSN is 

normalized to sum to 1 in both Capped and Uncapped before calculating joint probability, thus, 

the entire distribution sums to 1.  F.)  ChIP-seq for factors enriched at pause classes.  All data 

from ENCODE.  Same TSNs and method as d. G.) Fraction of auxiliary TSNs that pause at the 

same site (red) and same length (blue) as their maxTSN.  Number of auxiliary TSNs observed at 

each distance (black).  N = 97,021 auxiliary TSNs 
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Figure 4. 5:  DNA sequence around and pause sites 

A.) Sequence at the pause position of early pause TSNs.  0 indicates the last nucleotide 

incorporated in the reads used to generate the positon weight matrix.  B.)  Sequence at the pause 

position of late pause TSNs.  C.)  Sequence around the 3’ ends of coPRO reads outside the pause 

region.  Here, the C is just upstream of the 3’ end.   

 

Different Capping Dynamics in Early and Late Pause Classes 

The Early and Late pause classes have different uncapped RNA distributions, indicating 

an interplay between the processes of capping and pausing. TSNs of both classes have very short 

uncapped RNA (less than 22 nt), but Late also have uncapped RNAs at the pause site (Figure 4. 

4C, right, and Figure 4. 4D).  Capped + Uncapped coPRO shows that the overall distribution of 

RNAs at Early TSNs is continuous (Figure 4. 4D, red), transitioning from mostly uncapped at the 

beginning to a mostly capped RNAs at the end (Figure 4. 4C and D). These different uncapped 

distributions are best understood with joint probabilities (Figure 4. 4E), which quantify co-

occurrence of uncapped and capped RNAs at all positions for individual TSNs. After averaging 
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joint probabilities across all TSNs, it is clear that capped RNAs in the late pause (33-60 nt) 

mostly co-occur with uncapped RNAs of the same length (diagonal in Figure 4. 4E), while 

capped RNAs in the early pause (20-32 nt) are more likely to co-occur with very short uncapped 

RNAs (below the diagonal). Early pause TSNs are capped at shorter RNA lengths than late pause 

TSNs, consistent with longer residence time between 20-32 nt. By contrast, late-pausing Pol II 

proceeds efficiently through the first 32 nt, resulting in less time for capping and thus more 

uncapped RNAs at late pause sites. This is consistent with an order of assembly where DSIF is 

rapidly recruited to Pol II partly through an interaction with the nascent RNA(Missra and 

Gilmour, 2010), and then helps to recruit capping enzyme(Mandal et al., 2004).These results 

extend previous capping analyses(Rasmussen and Lis, 1993; Nilson et al., 2015) genome-wide, 

and reveal a new pause-dependent variability in the location of capping. 

Early Pausing Is Linked to a Poised State of Chromatin 

Overall, sequence specifies pause distributions from TSNs that exhibit a spectrum of 

pause fraction within Early and Late windows.  Pausing in both windows is detectible from most 

TSNs (Figure 4. 4C). To understand the functional consequences of pause distance, we examined 

TSNs at the top and bottom quartiles of this spectrum (Methods). These pause classifications are 

reproducible between replicates. The enrichment for TATAWR at early pause TSNs supports a 

model where this type of pausing remains coupled to the PIC, similar to Drosophila(Kwak et al., 

2013), and is supported by ChIP-seq assays showing greater levels of TBP and a higher ratio of 

Ser5 to Ser2 CTD phosphorylation in the Early class (Figure 4. 6).  
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Figure 4. 6: Transcription factors, chromatin environment, and Pol II phosphorylation at 

Early and Late pause TSNs.   
Extension of Figure 2F.  ChIP-seq for factors enriched at pause classes.  All data from 

ENCODE, except histone modification and DNase data from Roadmap Epigenomics.  Early N = 

5,907, Both N = 17,047, Late N = 8,510 

 

Early pause sites are also enriched for binding of lineage-specific TFs such as GATA1, 

GATA2, and TAL1, the polycomb subunit EZH2 (Figure 4. 4F), and the H3K4me3 demethylase 

LSD1(Whyte et al., 2012) (Figure 4. 6).  Enhancer-specific TF binding, the CTD 

phosphorylation status, lower GC content, and overall less active chromatin state (Figure 4. 6), 
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implicates Early pausing as a novel feature of the “poised” state of RNA polymerase(Ferrai et 

al., 2017). Early pause TSNs are less expressed than Late, and are much less likely to undergo 

pause release (Figure 4. 7).  From this, we conclude that the Early pause counteracts productive 

elongation. In contrast, Late pause TSNs are enriched for binding of activating TFs such as 

GABPA, ATF3, ELF1, the H3K9 demethylase PHF8, and are enriched for H3K4me3 and 

H3K27ac (Figure 4. 6). Therefore, TSNs with late pausing are endowed with a pattern of GC 

content, transcription factor binding, and chromatin environment that facilitate productive 

elongation. 

 

Figure 4. 7:  Expression Level and Pausing at Early and Late TSNs 

When compared to Late pause TSNs, Early pause TSNs are significantly more paused (ratio of 

reads beyond 80 nt to total), less expressed (total capped reads), and less likely to undergo pause 

release (total capped reads beyond 80 nt).   

 

 

Figure 4. 8: Dispersion of Pausing 

Analysis of dispersion of pause sites similar to analysis of dispersion of initiation sites within 

TSSes in Figure 4. 2.  Signal saturates much faster by gathering from individual non-contiguous 

basepairs (left) than by gathering from windows of contiguous positions (right).  
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Comparison of Pause Sites Used by Nearby TSNs 

Given that most TSSes initiate on multiple TSNs using the same PIC, structural insights may be 

gained from comparing pause and initiation distributions at TSNs within the same TSS. That is, 

by comparing pausing of the maximum TSN to other TSNs in the same TSS (auxiliary TSNs), 

we can determine the frequency of pausing on the same base and how it varies with the distance 

between TSNs (Figure 4. 4G). As expected from a sequence-specified pausing mechanism, 

nearby TSNs frequently share exact pause sites (red line), whereas a model with a fixed initiation 

to pause distance for each TSN is not supported (blue line).  Pausing at individual TSNs is often 

distributed across several noncontiguious basepairs (Figure 4. 8): examination of pause profiles 

at individual TSNs shows that even minor pause sites are generally shared by nearby TSNs.  

MAPK1 is a good example of such pause sharing (Figure 4. 9): it has an exceptionally dispersed 

TSS, enabling comparison of the pause profiles of multiple nearby TSNs.  Nearby TSNs often 

pause at the same position.  Even where pause sites are minor, they are shared by nearby TSNs, 

indicating that the mechanisms determining major and minor pause site choice are similar.  

Further supporting a model of multiple pause sites per TSNs, pausing is best described as 

occurring on several non-contiguous basepairs, rather than a smooth Gaussian of contiguous site 

(Figure 4. 8).  Furthermore, auxiliary TSNs are clustered within 10 bp of the maximum TSN 

before reaching background (Figure 4. 4G, black line), likely reflecting the maximum scanning 

distance for the PIC (Fishburn, Galburt and Hahn, 2016; Vo Ngoc et al., 2017).  
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Figure 4. 9:  Many TSNs Pause at Shared Sites in the MAPK1 Promoter 

The MAPK1 promoter is seen from three viewpoints: 

Top left, 2D coPRO capped plot around the promoter.  0 is the annotated start site for all 2D 

plots.  Top, right, 2D coPRO showing divergent transcription and higher order organization in 

TIDs.  Bottom, IGV browser shot showing coPRO capped (set to autoscale independently for 

each strand, scale indicated at left), transcription initiation calls (TSN, TSS, Divergent pair, TID) 

colored by strand (red for plus, blue for minus) and with transcript stability calls from CAGE for 

TSNs and TSSes, MNase from ENCODE, DNase-seq, H3K27ac ChIP-seq, H3K4me3 ChIP-seq, 

and H3K4me1 ChIP-seq from Epigenomics Roadmap.  RefSeq gene annotation at the bottom.  

MAPK1 is a highly expressed, dispersed TSS.  This makes it good for visualizing sharing of 

pause sites by nearby TSNs (top left).  The major pause site is on the same nucleotide for nearby 

TSNs.  Even minor pauses are often shared.  Pause sites are indicated by the 3’ end (y axis), so a 

pause site shared by different TSNs makes a horizontal line on this plot; even minor pause sites 

have increased signal at that site for most TSNs with signal there.  
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Figure 4. 10:  A global view of transcription initiation shows rules for divergent pairing and 

reveals widespread complex organization.   

a.)  CoPROcap initiation centered on the strongest sense TSS in per TID.  Sites are sorted by the 

distance to the strongest peak on the opposite strand, from +1 kb (convergent) to -1 kb (upstream 

divergent).  Sites filtered for expression, at least 7 reads per strand.  N = 13,731 (3,444 

Convergent TIDs, 7,988 Divergent TIDs, and 2,299 Extended TIDs, labeled to right of C).  

Similar sites averaged to generate 200 rows in final heatmap.  b.)  coPRO capped antisense, 

same sites as a.  c.)  MNase (ENCODE) at same sites as a. and b.   

Transcription Initiation Occurs in Clusters 

Arrangement of TSSes within TIDs  

While widespread bidirectional pairing of mammalian TSSes has received considerable attention 

(Leighton J Core et al., 2014; Duttke et al., 2015; Scruggs et al., 2015; Chen et al., 2016), larger 

TSS clusters, or transcription initiation domains (TIDs), remain uncharacterized.  To compare 

and refine these two conceptual frameworks, we identified the most Pol II occupied TSS 

(maxTSS) on each strand of TIDs and sorted them by distance (Figure 4. 10A, B). At 25% of 

TIDs, the antisense maxTSS is downstream (Convergent), and at 17% the antisense maxTSS is 

>300 bp upstream (Extended) (Figure 4. 10B). In both cases, there is still a clear upstream 
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divergent TSS for both maxTSSes (sense and antisense; Figure 4. 10A, B). Thus, as recently 

reported for stable TSSes (Chen et al., 2016), divergent pairs are separated by at most 300 bp, as 

TSSes separated by >300 bp are best described as two divergent pairs. Convergent transcription 

from intronic enhancers through promoters has been reported to attenuate gene 

expression(Mayer et al., 2015b; Cinghu et al., 2017), but the dense clustering of divergent TSS 

pairs within most TIDs necessarily creates convergent relationships between some TSSes within 

the TID.  These studies are referring to convergent transcription with a more downstream origin.  

Elongation through TIDS by such convergent transcription with a distal origin likely results in a 

more repressive chromatin environment at the TID and thus lower expression(Cinghu et al., 

2017).  A study more similar to ours found that nearby convergent TSSes can extend the active 

chromatin environment further downstream, and can even increase expression(Lavender et al., 

2016).  Therefore, it is unlikely that all convergent transcription between divergent pairs is 

repressive.  In fact, in this section we show that the many TSSes within TIDs collaborate to 

create an active chromatin compartment around gene promoters.  Convergent relationships 

inevitably arise from such clusters thus may not be unique in their relationship to the promoter. 
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Figure 4. 11:  The first nucleosome is positioned by paused polymerase 

A.)  Meta profile of coPRO capped initiation (dark blue), pausing (light blue) and MNase (dark 

gray) at TSNs called as early paused and mappable at 20 nt (N = 6,176)  B.) Same as a.), for late 

pause TSNs (N = 8,838)  C.) Row normalized MNase downstream of maxTSNs.  Signal 

normalized to highest bin.  Same elements and order as Fig 2c,  N = 31,464 TSNs binned into 

200 rows. Sorted by pause center.  Early/Late called TSNs shown to right. D.) Same TSNs and 

order as c.), from initiation site to +500 bp.  No row normalization to show higher nucleosome 

occupancy at early pause TSNs. 

The Strongest TSSes Determine Nucleosome Phasing within TIDs 

As reported previously(Gilchrist et al., 2010; Scruggs et al., 2015), we find that the 

maxTSS on each strand sets nucleosome phasing from Simple Divergent and Extended TIDs 

(Figure 4. 10A-C, 0 to 1 kb).  Here, we expand this model by asking how nucleosomes are 

positioned within larger clusters of TSSes at the scale of TIDs.  At a finer scale, we find that 
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nucleosomes are more closely aligned to pausing than initiation by comparing Early and Late 

TSNs (Figure 4. 11), consistent with paused Pol II specifying precise nucleosome positioning 

and occupancy.  At Convergent TIDs, nucleosomes are still phased to the maxTSS between the 

convergent TSSes, but maxTSS phasing is disrupted beyond the convergent TSS (Figure 4. 10C, 

Convergent TIDs, 0 to 1 kb, Figure 4. 13).  This indicates that maxTSS phasing largely 

supersedes phasing from weaker TSSes, but weaker TSSes can dominate phasing downstream 

(model in Figure 4. 13A).  Nucleosome phasing from the max TSS determines where TSSes are 

likely to fall downstream: the distribution of convergent TSSes is serpentine, falling 

preferentially between phased nucleosomes while the distribution of upstream TSSes is smooth 

(Figure 4. 13A, sense and antisense maxTSS lines, and Figure 4. 10B).  Upstream divergent 

TSSes do not interfere with sense maxTSS phasing and thus operate under less constraint than 

convergent TSSes. In Convergent and Extended TIDs, nucleosome occupancy is reduced 

between the multiple divergent TSS pairs (Figure 4. 10C, top and bottom portions), meaning that 

TSSes within TIDs collaborate to reduce nucleosome occupancy and establish phasing.  Finally, 

weak TSSes are enriched in the gaps between nucleosomes (Figure 4. 10A, upstream and Figure 

4. 10B, downstream of maxTSS, and Figure 4. 14): these TSSes are phased within the constraints 

of nucleosome positioning established by the stronger TSSes. In summary, nucleosome phasing 

appears to be preferentially specified by the strongest TSSes and constrains weaker TSSes within 

the TID (Figure 4. 13A); the weaker TSSes fine-tune phasing and occupancy of nucleosomes 

within the TID and beyond.   
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Figure 4. 12: The maxTSS is usually part of a divergent pair 

All stable TSS containing TIDs centered on the bin with the most signal, and sorted by the 

distance to the antisense coPRO capped bin with the most signal from -300 bp to 0 bp to the 

maxTSS. A.)  Sense coPRO capped.  Sense means the strand with the highest activity TSS.  B.)  

Antisense coPRO capped.  C.) MNase.  Here, more complex organizations, such as convergent 

and extended TIDs in Figure 4. 10, are randomly distributed along the heatmap. 

 

Spacing between adjacent phased nucleosomes appears to be very consistent: the 

variability of phasing patterns comes from this ability of new sense TSSes to reset phasing, and 

the fact that such TSSes arise from divergent pairs where the upstream divergent TSS (the 

convergent) is constrained by nucleosome phasing from the maxTSS.  Thus, the variability in the 

distance between the divergent pairs within TIDs is strongly associated with the intricate phasing 

patterns within TIDs.  These intricate patterns of nucleosomes around TIDs are only apparent 

when MNase data are sorted appropriately.  For example, the strongest divergent pair in the TID 

explains much of the nucleosome phasing there.  TIDs where other divergent pairs reset phasing 

are randomly distributed along the continuum of divergent pair distances, so the distance 

between the main divergent pair appears to explain all phasing when TIDs are sorted this way 

(Figure 4. 12).  However, when MNase data are sorted by the location of other TSSes relative to 
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the max TSS, as in Figure 4. 13B, the way in which these minor TSSes refine the pattern of 

nucleosomes around TIDs within the constraints of phasing from major TSSes becomes 

apparent.  In summary, the precise nucleosome organization within TIDs is set by two simple 

rules.  First, TSSes only phase nucleosomes in the downstream direction, so upstream divergent 

TSSes phase independently.  Therefore, the distance between divergent pairs is what determines 

how phasing emanates from the pair.  Second, the strongest TSSes dominate in phasing.  This 

means that downstream convergent TSSes are constrained by phasing from the strongest TSS.  

The sense TSS paired with the convergent can reset phasing in the downstream direction.  Thus, 

from these two simple rules about nucleosome phasing within TIDs, we can explain the 

association of complex TID organization with nucleosome organization.  Because nucleosomes 

tend to phase uniformly downstream of individual TSSes, the distance between divergent pairs is 

the source of complex patterns of phasing.  Future work could dissect this relationship: here, we 

cannot definitively say whether TSSes are the primary determinant of phasing, or to what extent 

nucleosome phasing is established by DNA sequence composition and the action of a few 

transcription factors which in turn constrains TSS location.  However, the constraint of 

convergent TSSes, and the ability of downstream sense TSSes to reset phasing implies that it is 

TSSes which determine the precise arrangement of nucleosomes. 
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Figure 4. 13:  Nucleosome phasing in complex TIDs 

Same sites as Figure 4. 10, sorted in different ways to show nucleosome phasing.  Proper sorting 

is critical for visualizing patterns in heatmaps; thus, nucleosome phasing cannot be seen in 

various regions at the same time, as it is oriented to different TSSes in different regions. N = 

13,731 (3,444 Convergent TIDs, 7,988 Divergent TIDs, and 2,299 Extended TIDs, labeled to 

right of C)  A.) Schematic of phasing.  The sense and antisense max TSS position are indicated 

in red and blue lines.  Nucleosome phasing relative to TSSes on the sense and antisense strands 

is indicated by red or blue shading respectively.  Shading is dark when phasing is to the max TSS 

on that strand, lighter when it is a weaker TSS.  B.) Sort Convergent TIDs by the most used 

Sense TSS from 300 to 1000 bp of the max Sense TSS (thus the TSS on the sense strand paired 

with the strong convergent TSS on the antisense strand).  Now, nucleosome phasing beyond the 

convergent TSS can be seen; these nucleosomes are phased to the sense TSS paired with the 

strong convergent TSS. C.) Sort Convergent TIDs by the upstream divergent TSS to the max 

sense TSS (max antisense from -1000 to 0 to the max sense TSS).  Now, upstream phasing to the 

upstream divergent is seen. 
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Figure 4. 14:  Minor TSSes are restricted to the gaps between nucleosomes phased by 

stronger TSSes. 

A.)  Overlay of Figs. 3A and 3B.  Divergent pairing at Convergent and Extended TIDs becomes 

apparent  B.)  Overlay of Figs. 3A and 3C.  Phasing of the first downstream nucleosome to the 

sense Max TSS is apparent.  Weak sense TSSes are phased between upstream nucleosomes  C.)  

Overlay of Figs. 3B and 3C.  Phasing of upstream nucleosomes to antisense transcription in 

Divergent TIDs is apparent.  Weak antisense TSSes are phased between downstream 

nucleosomes  
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Figure 4. 15: Large TIDs Are Strong Outliers 

A.)  TID rank plotted against TID size in bp.  N = 24,171  B.) TID rank plotted against number 

of TSSes in the TID.  N = 24,171 

 

 
Figure 4. 16: ARID1B, an Exceptionally Large TID 

The ARID1B promoter falls within one of the largest TIDs.  None of its 37 TSSes have enough 

CAGE signal to be called as stable.  Most of the TID is devoid of MNase (ENCODE), yet is 

enriched for ChIP signal for active histone marks H3K4me3 and H3K27ac.  H3K4me3 extends 

past H3K27ac, especially into the gene body.  H3K4me1 is depleted within the TID, similar to 

MNase, and enriched at its edges 
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Gene Promoters Are Found in Large TIDs 

Simple divergent pairs are not sufficient to characterize TID architecture at the majority 

of sites: 42% of TIDs contain >2 TSSes, and 75% of TSSes are within a TID containing >2 

TSSes.  Furthermore, 77% of TIDs containing at least one stable TSS (Stable TIDs, i.e. 

promoters) are complex. The largest TIDs are strong outliers, both by length and the number of 

TSSes that they contain (Figure 4. 15).  The ARID1b promoter is among the largest TIDs, 

spanning 3.4 kbp and containing 37 TSSes (Figure 4. 16), all of which are called as unstable due 

to a lack of CAGE signal. This extreme case illustrates many features of the chromatin 

environment observed around TIDs.  TSS number is correlated with TID activity (Figure 4. 1D), 

indicating that, to some extent, more transcriptionally active loci utilize or generate more TSSes.  

The size distribution of stable TIDs, with a median width of 729 bp (and 4 TSSes), is very 

different from unstable TIDs (i.e. putative enhancers), with a median width of 39 bp (1 TSS), 

reflecting their lower overall transcriptional activity (Figure 4. 17 coPRO).   

TID Structure and Chromatin Environment Are Tightly Linked 

Chromatin environment and transcription are inexorably linked(Karlic et al., 2010), and 

the comprehensive map of initiation afforded by coPRO provides a framework with which to 

better understand their interplay. CoPRO is enriched at TID boundaries (oriented outward) and 

scattered throughout their center, regardless of TID size (Figure 4. 17), a pattern which is 

corroborated by Pol II ChIP-seq (Figure 4. 19).  TID boundaries are strongly enriched for 

outward transcription, consistent with TSSes generally existing as divergent pairs (sup fig).  

TIDs are DNase hypersensitive and conserved (PhastCons), with good agreement between 

boundaries (Figure 4. 18).  MNase mapping of nucleosomes shows marked positioning just 

beyond TID boundaries, with broad depletion and intricate patterning inside (Figure 4. 17).  
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Figure 4. 17:  TID organization is linked to chromatin environment 

All heatmaps made as described in Methods.  TIDs are sorted by width (in bp), and aligned by 

their center.  N = 24,171 TIDs.  coPRO Capped initiation is the sum of signal on both strands.  

Other than coPRO and histone modification ChIP datasets (Roadmap Epigenomics), all others 

are from ENCODE.  Color scale is from the minimum to the maximum bin’s signal.  Histone 

modifications are on a linear color scale of processed fold-change values from Roadmap 

Epigenomics, all others are on a log color scale. 

Histone modifications and variants also show diverse patterning relative to TIDs.  The 

active histone marks H3K27ac and H3K4me3 are strongly enriched inside TIDs and just outside 

(Figure 4. 17), with depletion at the boundary corresponding to the nucleosome free region.  

Thus, these marks decorate histones that are found within TIDs, and one or two nucleosomes 

flanking TIDs.  To better understand H3K27ac spreading, we use published Native MNase ChIP 

(Pradeepa et al., 2016). This nucleosome-resolution data strongly suggests that H3K27ac is 

primarily confined to nucleosomes immediately adjacent to TSSes within TIDs (Figure 4. 20).  

While nucleosome-resolution data are not available for H3K4me3 in K562, two ChIP datasets 

show this mark extending past H3K27ac (Figure 4. 17, Figure 4. 20), and data in other cell types 

show that H3K4me3 peaks tend to be wider than H3K27ac peaks(Heintzman et al., 2007).  Thus, 

it is tempting to speculate that both marks are usually deposited at the first nucleosome outside 
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TIDs, while the second nucleosome and beyond are more likely to have H3K4me3 and not 

H3K27ac.  Other active marks have distributions within TIDs that are very similar to H3K4me3 

and H3K27ac, with variable spreading beyond the TID boundaries.  H3K27ac and H3K9ac 

(Figure 4. 21) are strongly enriched within large TIDs, while H2A.Z (Figure 4. 17) shows 

stronger enrichment at nucleosomes flanking small, stable TIDs.   

 

Figure 4. 18:  Features of TIDs Irrespective of Transcript Stability 

All 24,171 TIDs in the preceding figures, without separating by stability.  Here, enrichment at 

small or large TIDs is more apparent.   
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Figure 4. 19:  Distinct binding modes within TIDs 

A.) Polymerase-like.  RNA Pol II is provided as a reference.  Strongly enriched in stable TIDs 

with signal extending past the boundary.  Pausing factors DSIF (SUPT5H, Spt5 subunit) and 

NELF-E show similar distributions.  Pol III shows very little enrichment with respect to TIDs 

called from coPRO.  TIDs and sorting identical to Figure 4. 17.  (N = 8,568 stable TIDs, N = 

13,829 unstable TIDs)  B.)  Transcription factors.  ATF3 is enriched preferentially in smaller, 

stable TSS containing TIDs.  JUN is enriched in both stable and unstable TIDs.  LEF1 is bound 

infrequently at stable TID boundaries and frequently within narrow, unstable RNA producing 

TIDs.  C.)  Stable TID exclusion.  DNA replication initiation factor MCM5 is excluded from 

TIDs, and bound outside.  SWI/SNF subunit SMARCA5 is excluded from TIDs, and exhibits 

some nucleosome-like phasing outside.  SWI/SNF subunit SMARCA4 is excluded from the 

interior of stable TIDs, binds at their boundaries, and is found within short unstable RNA 

producing TIDs.  D.)  Phased.  Kinetochore associating factor CHAMP1 binds at either side of 

stable TID boundaries, and within unstable TIDs.  Cold Shock protein CSDE1 binds at 

boundaries of both stable and unstable TIDs.  H4K16 acetyltransferase KAT8 binds outside of 

TIDs, with stronger enrichment outside of stable TIDs.  
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Figure 4. 20:  Native MNase ChIP for histone modifications at TIDs reveals tight 

covariation with transcription initiation that is supported by multiple datasets 

A.)  Native MNase ChIP for H3K4me1, H3K27ac, and H3K122ac at TIDs in K562 

cells(Pradeepa et al., 2016).  Order and elements are identical to figure 4 (N = 8,568 stable TIDs, 

N = 13,829 unstable TIDs).  These data were produced without crosslinking, and thus show 

where the globular domains of nucleosomes with the given mark on their tails are localized.  

B.)  ENCODE ChIP-seq for K3K4me1, H3K27ac and H3K4me3.  Validation of patterns in 

Figure 4. 17.  



 

170 

 

Surprisingly, H3K4me1 is almost entirely excluded from TIDs (Figure 4. 17), and instead 

accumulates outside their borders, with a strong preference for narrow TIDs. Narrow TIDs are 

more likely to be unstable (Figure 4. 17, coPRO), lowly expressed (Figure 4. 1D), and have a 

single nucleosome free region (Figure 4. 17, MNase), and thus lack any internal nucleosomes.  

This strong exclusion from TIDs is more similar to the pattern of repressive marks like 

H3K9me3 and H3K27me3 (Figure 4. 21) than it is to other active marks. The ratio of H3K4me3 

to H3K4me1 has been proposed to distinguish promoters from enhancers(Heintzman et al., 

2007); we previously suggested this ratio is correlated with transcription and not exclusively 

promoter activity(Leighton J. Core et al., 2014)(Pundhir et al., 2016). Here, we reveal the 

patterns of these histone modifications, and many others, are intimately coupled to TID 

architecture and provide a novel framework for understanding genome architecture and function. 

Enrichment within specific sizes of TIDs is more apparent when data unstable and stable 

TIDs are combined within a single plot (Figure 4. 18).  All TIDs are enriched for coPRO, DNase, 

cMYC binding, and conservation (PhastCons 100 way).  H3K4me1 is enriched outside of small 

TIDs while H3K4me3 and H3K27ac are enriched inside large TIDs.  H3K9me3 is excluded from 

TIDs.  GATA1 is enriched in narrow TIDs (which are more likely to be putative enhancers).  

Rad21 and EZH2 are enriched in narrow TIDs and at the boundaries of large TIDs.  This 

enrichment at the boundaries of large TIDs is likely due to the fact that they are boundaries; 

CTCF is the archetypical boundary factor, and EZH2 limits the spread of active chromatin. 
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Figure 4. 21: Histone modifications show strong patterns around TIDs. 

Heatmaps for all histone marks and DNase from the Roadmap Epigenomics project, with MNase 

from ENCODE at bottom as a visual aid.  MNase is on a log scale (minimum of the matrix to 

maximum), the rest are linear from minimum to maximum.  TIDs and sorting are identical to 

Figure 4. 17.  Plots repeated from Figure 4. 17 indicated by gray title (N = 8,568 stable TIDs, N 

= 13,829 unstable TIDs).  Active marks are bound within and just outside of TIDs, while 

repressive marks are depleted within and found outside.  Marks of elongation such as 

H3K36me3 are also depleted within TIDs and found outside.  
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Transcription Factors’ Distribution within TIDs Reflects Their Function 

TFs are positioned within TIDs in patterns that belie their function (Figure 4. 19).  

Histone modifiers such as the H3K4me3 demethylase LSD1, and the H3K9me3 demethylase 

PHF8 are positioned commensurate with their targeting and activity (Figure 4. 17). Activating 

TFs such as MYC and ATF3 are enriched within stable TIDs (Figure 4. 17, Figure 4. 19). TFs 

associated with the transcription machinery like TBP are distributed within TIDs and accumulate 

moderately at their edges, similar to Pol II (Figure 4. 19).  The lineage-specific TFs GATA1, 

GATA2, and TAL1 (Figure 4. 17) are enriched at the boundaries of small, unstable TIDs 

(putative enhancers). The chromatin looping factors CTCF and cohesin (RAD21) are markedly 

enriched at TID boundaries (Figure 4. 17), consistent with their known role in establishing 

chromatin boundaries.  In contrast, a TF recently implicated in mediating activating distal 

interactions, YY1(Beagan et al., 2017; Weintraub et al., 2018), is strongly enriched within TIDs 

(Figure 4. 17).   

Possible Functional Roles of TIDs in Gene Regulation 

TIDs have the seemingly paradoxical properties of low nucleosome occupancy while 

containing abundant active histone modifications. Internal TID nucleosomes may be too labile 

for efficient detection by MNase-seq, or highly modified despite low occupancy.  H3K4me3 and 

Pol II are known to engage in a feed-forward loop that may help to explain TID creation and 

maintenance. The propensity of TSSes to cluster into TIDs likely serves to mark or sustain 

chromatin modification and TF binding, or may even drive phase-separation. The presence of 

disordered domains (histone tails, Pol II CTD, and Cyclin T1) with a high potential for trans-

activating interactions may create an active compartment around the stable TSSes within large 

TIDs. This phase separation could also facilitate their co-localization with enhancers, as active 



 

173 

 

compartments are postulated to form phase separated liquid droplets within nuclei(Hnisz et al., 

2017). Phase separation occurs when many active enhancers and promoters are in close spatial 

proximity, and each constituent element is associated with many macromolecules with several 

multivalent interaction domains that form a network of macromolecular interactions.  Similarly, 

TIDs form a chromatin compartment around TSSes, so that promoters are best described as the 

clusters of TSSes included within TIDs on a systems level.  The special relationship between 

TID boundaries and chromatin compartments is seen across a wide range of TID widths, 

indicating that this phenomenon occurs across most of the spectrum of transcribed domains.  

Thus, the array of minor TSSes that we find near stable promoters, including the upstream 

divergent TSS, could serve to mediate this phase separated behavior and to precisely tune the 

availability of factors to stable RNA producing TSSes within large TIDs.  Together, these many 

TSSes likely exert a level of transcriptional control that would be impossible with a single 

divergent pair, without necessarily relying on distal enhancers for fine tuning of expression.  

There must be an upper limit to the information content that a single divergent pair of TSSes can 

contain, so larger TIDs could serve to increase the sequence space that is available for regulation 

of promoters, akin to building a giant satellite dish to receive critical but subtle signals rather 

than relying on a standardized small dish.  This is very similar to the way in which enhancers 

expand the regulatory potential at promoters by increasing the information content there.  

Consistent with these ideas, broad H3K4me3 domains have been found to be located at 

promoters of genes critical for cell identity, and to be associated with less cell to cell variability 

in transcript level(Benayoun et al., 2014; Chen et al., 2015).  Our highly sensitive map of 

initiation allows us to link these domains to TID structure, as the many unstable TSSes present 

within these domains evaded detection in earlier work.  
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Methods 

coPRO Experiments 

K562 cells were obtained from ATCC and cultured antibiotic-free in accordance with 

their standards in DMEM, high glucose + HEPES (ThermoFisher cat. 12430054). Cultures were 

verified to be mycoplasma-free(Young et al., 2010) prior to library preparation and sequencing.  

Two biological replicates were cultured independently, separated by two passages, with library 

preparations done separately for technical and biological replicates.  See Figure 4. 22 for an 

overview of coPRO.  Cells were permeabilized, and run-on reactions with all four biotin NTPs 

were carried out with 20 million cells per reaction as described previously(Dig Bijay Mahat et 

al., 2016).  After isolating RNA from the run-on with Trizol (ThermoFisher, cat. 10296028), 

three run-ons per biological replicate were pooled, and cap state specific RNA spike-ins were 

added to the pool (see below).  Two adapter ligations and reverse transcription were performed 

as described(Dig Bijay Mahat et al., 2016), with custom adapters detailed in Table 4. 1.  

Critically, no RNA fragmentation was done so that the pairing of RNA 5’ and 3’ ends remains 

biologically meaningful.  The first ligation adds a sample barcode to the library; TruSeq 

barcodes were chosen to minimize predicted secondary structure of the adapter(Zuker, 2003).  

Between adapter ligations, cap state selection reactions were performed.  The three cap state 

selections use a series of enzymatic treatments to reduce specific populations of RNAs to 5’ 

monophosphate, making them capable of ligation to an RNA adapter by T4 RNA ligase (NEB, 

cat. M0204S).  All steps were carried out following the manufacturer’s protocol, with 

phenol:chloroform extraction and ethanol precipitation between steps.    
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Figure 4. 22: Schematic of coPRO 

coPRO is similar to a PRO-seq experiment(Kwak et al., 2013), with three major differences.  

First, there is no RNA fragmentation step, so initiation site remains coupled to active site 

(detectible insert size is restricted by the DNA length limit of the Illumina platform(Fan et al., 

2010)).  Second, we select for specific 5’ end capping states.  Third, coPRO uses paired end 

sequencing to map both initiation site and polymerase active site (pause) with basepair 

resolution.   

Overall workflow is as follows:  i.) K562 cells are rapidly cooled and permeabilized, washing 

away native nucleotides and preserving RNA polymerase in place  ii.) Run-on with only biotin-

11-NTPs in the presence of sarkosyl.  Polymerases that were engaged when cells were isolated 

will incorporate a single biotin nucleotide, labeling the location of the active site of polymerase.  

The biotin is used for affinity purification three times between subsequent enzymatic steps.  iii.)  

Enzymatic selections for different capping states (Figure 4. 23).  Ligation of the 5’ adapter for 

library construction requires a 5’ monophosphate RNA, so all treatments are designed to 

specifically reduce a targeted population of RNAs to 5’ monophosphate.  Capped selection yields 

pure capped RNA (regardless of cap methylation state).  Capped + Uncapped can incorporate 

any capped RNA, 5’ triphosphate (pppRNA) or 5’ monophosphate (pRNA).  Uncapped captures 

pppRNA, pRNA, and 5’ hydroxyl RNA (OHRNA).  pRNA is a product of nucleolytic cleavage 

during termination and is thus not observed with the same 5’ end created when initiation 

occurred.  Therefore, throughout this work, we specifically observe pppRNA by calling sites of 

initiation from the capped library and then looking for RNAs from the uncapped library that 

share 5’ ends with these capped RNAs.  iv.)  Strand specific RNA-seq library construction and 

paired end sequencing. 

 



 

176 

 

 
Figure 4. 23: Enzymatic steps for cap state selection in coPRO 

A.)  Test of enzymatic steps using degradation by terminator as a readout.  All experiments use 

P
32

 body labeled RNA.  In each pair of lanes, the RNA is subjected to the indicated series of 

enzymatic reactions, and then, the RNA is split and subjected to a terminator exonuclease 

treatment or mock treatment (without enzyme), and equal amounts are loaded onto a 7M urea 8% 

polyacrylamide gel.  Enzymes’ activity is listed to the right.  7meGpppRNA was capped using 

the vaccinia capping system (NEB cat. M2080S); separate tests showed that this is ~80% 

efficient.  pppRNA is simply T7 transcribed RNA.  pppRNA body biotin was labeled with biotin 

by substituting ½ of the CTP in the T7 transcription reaction with 14-Biotin CTP.  Intact RNA 

indicated in brackets, degradation products (free NTPs) labeled at the bottom of the gel. 

Capped RNA is rendered sensitive to terminator after decapping with RppH, regardless of buffer 

used (NEB buffer 2 is supplied with the enzyme, NEB ThermoPol buffer is recommended for 

decapping).  Capped RNA is much less sensitive to degradation than decapped.  Most of the 

degradation here is due to incomplete capping by vaccinia enzyme.  RNA body labeled with 

biotin is still sensitive to terminator; thus, this approach was used to label spike-ins during 

coPRO library preparation.  Uncapped RNA is much more sensitive to terminator degradation 

after CIP and PNK treatment than capped.  This treatment is designed to specifically reduce 

uncapped RNA to monophosphate. Labeled 10 bp ladder is in the first lane of each gel. 

B.)  Similar to a.), using ligation by T4 RNA ligase as the readout.  If the series of enzymatic 

steps reduced the RNA to monophosphate, a 20 nt RNA adapter was able to be ligated (indicated 

to left of gel).  12% acrylamide sequencing gel.  Reactions are similar to final steps used for 

coPRO cap selections.  C.)  Final enzymatic steps used for coPRO  
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We designed three separate 5’ state selections (Figure 4. 23): 

1.) Uncapped RNAs were selected by treating with CIP, Calf Intestinal alkaline Phosphatase 

(NEB, cat. M0290S) and PNK, T4 Polynucleotide Kinase 3’ phosphatase minus (NEB, 

cat. M0236S), in order to reduce all uncapped RNAs to 5’ hydroxyl and then add 5’ 

monophosphate, but without removing the cap from capped RNA.  

2.) Capped RNAs were selected by treating with Terminator 5’ Phosphate dependent 

exonuclease (Epicentre, cat. TER51020) to degrade 5’ monophosphate RNA (from 

terminating polymerase) and CIP to reduce other uncapped RNAs to 5’ hydroxyl, making 

them incapable of ligating to 5’ adapter.  5’ cap was removed with RNA 5’ 

pyrophosphohydrolase, RppH (NEB, cat. M0356S), using ThermoPol buffer (NEB, cat. 

B9004S).   

3.) Capped + Uncapped RNAs were selected by treating with RppH, reducing both capped 

RNA and pre-capped RNA (5’ triphosphate) to 5’ monophosphate.  

Each library was sequenced on a NextSeq 500 as both cDNA (no PCR), and after PCR 

amplification and PAGE purification.  See Figure 4. 24 for a schematic of library design. 

  



 

178 

 

 
Figure 4. 24: coPRO library design schematic 

A.) Conventional PRO-seq library design.  TruSeq small RNA primer is used for sequencing.  A 

separate index read is carried out on the same strand of DNA.  Primers used in the final PCR 

amplification are indicated with a dashed line. B.) coPRO library design.  Here, most of the 

adapter is added with the RNA ligation, rather than PCR as with conventional coPRO.  This 

library design is compatible with PCR-free sequencing (for this work, half of the sequencing was 

done PCR-free, with just cDNA, and half after PCR amplification).  The oligo used for final 

amplification is indicated with a dashed line.  Read 1 uses the TruSeq small RNA sequencing 

primer, with the index sequenced in-line with read 1.  Read 2 uses the Nextera read 2 sequencing 

primer. 
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Table 4. 1: Oligonucleotides used for coPRO 

Purpose Name Sequence 

Librar

y 

3 ' 

Adapter 

PCRfreeRC3_BR2 

/5Phos/rGrCrGrArUrGrUrGrArUrCrGrUrCrGrGrArCrUrGrUrArGrArArCrUr

CrUrGrArArC/3InvdT/ 

Uncapp

ed, Rep 
2 

PCRfreeRC3_BR3 

/5Phos/rGrUrUrArGrGrCrGrArUrCrGrUrCrGrGrArCrUrGrUrArGrArArCrUr

CrUrGrArArC/3InvdT/ 

Capped, 

Rep 2 

PCRfreeRC3_BR4 

/5Phos/rGrUrGrArCrCrArGrArUrCrGrUrCrGrGrArCrUrGrUrArGrArArCrUr

CrUrGrArArC/3InvdT/ 

Capped 

+ 
Uncapp

ed, Rep 

2 

PCRfreeRC3_BR6 

/5Phos/rGrGrCrCrArArUrGrArUrCrGrUrCrGrGrArCrUrGrUrArGrArArCrUr

CrUrGrArArC/3InvdT/ 

Uncapp
ed, Rep 

1 

PCRfreeRC3_BR8 

/5Phos/rGrArCrUrUrGrArGrArUrCrGrUrCrGrGrArCrUrGrUrArGrArArCrUr

CrUrGrArArC/3InvdT/ 

Capped, 

Rep 1 

PCRfreeRC3_BR9 

/5Phos/rGrGrArUrCrArGrGrArUrCrGrUrCrGrGrArCrUrGrUrArGrArArCrUr

CrUrGrArArC/3InvdT/ 

Capped 
+ 

Uncapp

ed, Rep 
1 

        

5' Adapter 

5Adapt_Paired_ePR

O 

rCrArArGrCrArGrArArGrArCrGrGrCrArUrArCrGrArGrArUrGrUrCr -  

        

UrCrGrUrGrGrGrCrUrCrGrGrArGrArUrGrUrGrUrArUrArArGrArGrArCrArG All 

        

Reverse 

Transcrip

tion RP1 AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA All 

        

Final 

Library 

PCR 

PairEPRO_For_Fina

lAmp CAAGCAGAAGACGGCATACGAGATGTC All 

PairEPRO_Rev_Fin
alAmp AATGATACGGCGACCACCGAGATCTAC All 

 

Cap State Spike-ins  

Spike-in RNA for different cap states were added to calculate enrichment between the 

different coPRO cap state treatments.  RNA was made using home-made T7 RNA polymerase 

and buffer (30 mM HEPES pH 7.8, 80mM Potassium Glutamate, 15mM MgAc, 0.25 mM 

EDTA, 5 mM DTT, 0.05% Tween-20, 2 mM Spermidine), with YIPP (NEB cat. M2403S) and 

Superase-In (ThermoFisher cat. AM2696) added as per the manufacturer’s protocol.  2.5 mM 

ATP, GTP, and UTP, 1.25 mM CTP, and 1.25 mM Biotin-14-CTP (ThermoFisher cat 19519016) 
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were used in the transcription, so that the spike-in could be captured with the streptavidin pull-

downs used in coPRO library preparation.  Full-size RNA products were purified from a 7M urea 

8% polyacrylamide gel.  Capped spike-in was then capped using the vaccinia capping system 

(NEB cat. M2080S), and remaining uncapped RNA was removed by treating with CIP, PNK and 

then Terminator.  5’ triphosphate spike-in did not require any treatment after gel purification as 

the product of T7 transcription has a 5’ triphosphate.   

For tests of coPRO treatments, radiolabeled RNA was made similar to the spike-in by 

incorporating P
32

 into the body of the RNA during transcription.  Capped RNA was made by 

vaccinia capping, but without subsequent uncapped clean-up (so some uncapped background 

remains).  Triphosphate requires no additional steps.  A radiolabeled, biotinylated RNA was 

made to test terminator degradation of biotin labeled RNA.  The ability of different series of 

treatments to selectively reduce capped and uncapped RNA to monophosphate was assessed in 

two ways: first by using Terminator degradation as readout as it requires a 5’ monophosphate for 

its exonuclease activity just as adapter ligation requires a 5’ monophosphate in library 

preparation (Figure 4. 23A), and second by using ligation of the 5’ adapter from a standard PRO-

seq(Dig Bijay Mahat et al., 2016) as the readout (Figure 4. 23B).  

 

Sequence alignment 

Adaptor sequences were trimmed from paired-end reads with the ‘cutadapt’ toolkit. 

Internal barcodes were used to de-multiplex pooled libraries with a custom Python script. The 

remaining sequences were aligned with the bowtie2 --very-sensitive option, which greatly 

improved alignment of very short RNAs (<25 nt). We specific –X 1000 (maximum insert size), -
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-no-mixed (discard unpaired reads), --no-discordant (no alignments > 1 kbp apart), and --no-unal 

(discard unaligned pairs). Alignments were performed against a pooled genome index that 

contained dm6, hg19, and spike-in RNA sequences. For most analyses, we only use reads shorter 

than 400 bp to avoid complications from co-transcriptional splicing. 

 

Read summarization and normalization 

Alignments (e.g. BAM files) were processed with a custom R script to summarize 

alignments sharing identical genomic coordinates (start and end) with an individual ‘count’ 

score. Normalization factors were computed as follows: 

    and     

where WCR is the weight applied to Capped reads, and WUR is the weight applied to Uncapped 

reads. We validated this normalization scheme by quantifying the agreement between Capped, 

Uncapped, and RppH reads genome-wide. 

Reads were additionally weighted to correct for the known length bias of Illumina sequencers 

using previously reported weights(Fan et al., 2010). 
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Defining transcription start nucleotides (TSNs), start sites (TSSs), and initiation 

domains (TIDs) 

Start bases were identified as any 5’ end associated with at least 5 distinct 3’ ends shorter 

than 60 nt, thus enriching for RNA polymerase pausing independently of total TSS activity and 

capping efficiency. Nevertheless, we removed TSNs with less than 33% capped reads longer 

than 100 nt, as these were predominantly Pol II termination or Pol I and Pol III transcription 

products. Sites with more than a 5-fold difference between the RppH and Capped treatments 

were removed (likely enzymatic bias). Chromosome M was removed from all analyses. 

Using these candidate TSNs, TSSs were defined as TSN clusters on the same strand with 

no gaps larger than 60 nt. Similarly, TIDs were defined as TSS clusters on either strand with no 

gaps larger than 750 nt. Single-stranded TIDs with >90% total uncapped reads were removed as 

they were predominantly found in regions with high levels of terminating polymerase. Only TSS 

and TSNs associated with a valid TID were retained for further analysis.  Oppositely oriented 

TSSes < 300 bp apart (oriented outward) were paired as TSS pairs. 

TSNs were called as stable if at least eight CAGE reads overlapped them, as done 

previously(Leighton J Core et al., 2014).  TSSes were called as stable if they contained at least 

one stable TSN. 

Some analyses are restricted to “maxTSN” or “maxTSS” to minimize effects from other 

nearby elements. We defined maxTSN as the TSN with the highest number of Capped reads 

within a TSS. Similarly, maxTSS are defined as TSS with the highest number of Capped TSN 

reads on each strand of a TID. 
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Pause classification 

First, to determine whether the 60 nt window used to define TSNs affected pause profiles, 

we extended the window to 120 nt for TSN identification. The pause distributions from this set 

of TSNs are still heavily biased for reads <60 nt. 

To better understand pause behaviors, the pause probability within the first 100 nt was 

computed for each maxTSN. Analysis of the individual TSNs’ pause distributions revealed that 

pausing is stochastic and mostly occurs on 1-10 major positions at mTSNs (Figure 4. 8).  Further 

analysis of the max pause positions revealed a bimodal distribution (Figure 4. 4A). To classify 

individual distributions as Early or Late pause, the probability of pausing anywhere between 20-

32 nt was computed and divided into quartiles. Early is the first quartile (highest probability of 

pausing between 20-32 nt) and late is the fourth quartile (highest probability of pausing between 

33-60 nt). This classification is robust to experimental noise, as classes were consistent across 

our experimental replicates. 

In several plots, we sort by the center of the pause (Figure 4. 4B, Figure 4. 11C, D).  The 

strategy here is the same as CDF area for quantifying shifts in pausing, as in Figure 3. 12.  To 

calculate this, we normalize TSNs so that the sum of all reads from 20 to 60 is 1.  The 

cumulative sum at each nt within the pause is calculated by scanning from 20 to 60.  The sum of 

this cumulative density function (CDF), or rather the area under the CDF curve, quantifies how 

skewed the distribution is toward the beginning (high area) or end (low area) of the pause 

window. 
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Metaplots and heatmaps 

All metaplots in this work show a bootstrapped estimate of average signal from the sites being 

summarized, along with 87.5% and 12.5% confidence intervals.  Briefly, this is done by taking 

1000 random samples of 10% of the data, and calculating the median and confidence intervals 

from the averages of each of these 1000 samples. 

Heatmaps in this work summarize sorted data into 200 lines averaging every N/200 rows to 

produce a representative heatmap.  This was initially developed for coPRO data, as individual 

TSNs’ stochastic pause profiles are sparse, and was subsequently used for all other data for 

which heatmaps are shown.  The rational here is that the resolution of the files used for figures, 

and the screen or printer used to display them often would only allocate at best a few hundred 

pixels to the heatmap, so it is best to intentionally bin data rather than allowing binning to occur 

by default. 
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Chapter 5: General Conclusions and Future Directions 

General Conclusions 

 My work in as a graduate student all served the goal of understanding how gene 

regulation is carried out, with a focus on the mechanism of promoter proximal pausing.  In the 

pursuit of this, I carried out both extremely targeted studies of the role of NELF and extremely 

broad analyses of transcription with coPRO.  Thus, all of this work fits somewhere along the 

spectrum of functional levels of gene regulation outlined in the Introduction.  HiTS-RAP is a 

highly targeted technique: the goal of a HiTS-RAP experiment is to understand how an RNA 

binding protein interacts with RNA.  This quantitative measure of a single set of interactions 

constitutes one small piece of the broader regulatory puzzle.  Expressing NELFapt to explore the 

importance of interactions between NELF-E and nascent RNA in pausing is a broader study.  

Unlike HiTS-RAP, where one feature is interrogated essentially without other moderating 

influences, this necessitated the inclusion of many other factors to understand the effects on 

pausing.  Finally, the coPRO study spanned virtually all of the functional levels of gene 

regulation.  Some targeted analyses were highly informative, such as asking what the sequence 

determinants of pausing are and where transcripts become capped.  The interplay between 

pausing and capping involved several variables.  Finally, analyses of TIDs was a systems level 

question: we asked what is the fundamental unit of sites of transcription initiation and saw that, 

from the perspective of chromatin, it is a large clusters of TSSes that are largely grouped into 

divergent pairs.  Biology makes the most sense when a result is put into this framework.  Is this 

telling me about a specific interaction?  What does that mean for chromatin?  How does that feed 

back to the promoter?  How does this affect other nearby loci?  The general strategy of 
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observation, perturbation, re-observation is most effective when the question being addressed is 

contextualized in this way. 

Future Directions 

HiTS-RAP 

 Interactions between RNA and protein are a pervasive avenue of gene regulation, and 

noncoding RNAs are postulated to play important roles in gene expression(Lee, 2012; Kim and 

Shiekhattar, 2016).  Thus, large-scale characterizations of interactions between key regulatory 

proteins and RNA could provide valuable biological insights.  As a new graduate student, I was 

fascinated by these potential modes of regulation.  The noncoding RNA field was at its zenith: 

enhancer RNAs had recently been discovered, and new roles were being found for noncoding 

RNAs.  We were particularly excited about a study showing that eRNAs may help activate their 

target loci through interactions with Mediator(Lai et al., 2013).  Enhancer RNAs would later be 

shown to have functional interactions with other factors critical for the regulation of 

transcription, such as NELF(Schaukowitch et al., 2014) and the histone acetyltransferase 

P300(Bose et al., 2017).  However, for every study that found a function for eRNAs, others find 

that they are not functional as RNAs but are rather a byproduct of activity of enhancers(Hah et 

al., 2013; Young et al., 2016).  Furthermore, many long noncoding RNA promoters act as potent 

enhancers(Engreitz et al., 2016), raising the possibility that many lncRNAs are simply enhancers 

that have evolved stability and slicing, and are not functional as RNAs.  In fact, there is now 

considerable debate about whether HOTAIR, one of the first discovered and most well-known 

lncRNAs(Rinn et al., 2007), is actually functional(Amândio et al., 2016).  Further complicating 

matters is the fact that the rules for RNA binding specificity are different than DNA binding 
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specificity, so much of the logic for understanding interactions with DNA do not translate well to 

RNA.  RNA-protein interactions often have a strong structural component, and thus cannot be 

neatly summarized as a short motif as DNA binding interactions can, as was the case with both 

the GFP and NELF aptamers.  Furthermore, many RNA binding proteins bind with less 

specificity than we are accustomed to from DNA-protein interactions.  In fact, the most specific 

interactions with RNA that come to mind are microRNA interactions, which are mediated by 

basepairing with other RNAs(Agarwal et al., 2015).  Another example is riboswitches, which are 

natural RNAs that have high affinity for small molecules, and can induce structural changes that 

help regulate metabolism related to the target(Serganov and Nudler, 2013).  Defining specificity 

is sometimes problematic as well(Jankowsky and Harris, 2015): for example, the tRNA 

processing factor C5 from E. coli binds RNA with little sequence preference, but its catalytic 

activity does have strong sequence preference(Guenther et al., 2013).  In summary, while there 

absolutely are functional RNAs in gene regulation that have specific and important interactions 

with proteins, I decided that it was unlikely that I would discover these interactions with HiTS-

RAP.   

 Despite these problems in interpreting the relevance of biological RNA-protein 

interactions, there are some cases where a HiTS-RAP experiment measuring the affinity of 

genome-derived RNAs to a protein would be very illuminating.  However, the expectation is 

different than what I was hoping for eRNAs and lncRNAs near the beginning of my PhD.  I 

initially hoped that such measurements of binding specificity, similar to the high-throughput 

measurements of transcription factor binding specificity mentioned in the Introduction(Jolma et 

al., 2013, 2015), could be used to quantitatively model gene regulation.  If the strength of each 

interaction in a system is known with high precision, then we could predict the outcome given a 
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few starting parameters.  I do not believe, however, that there are many RNA-protein interactions 

where this would be possible.  I think that it is unlikely that one of the protein factors relevant to 

transcriptional regulation, like NELF or Mediator, has highly specific interactions with a set of 

RNAs that play an interesting role in gene regulation.  But, I do think that factors like NELF that 

bind RNA as they function normally could have preferences for certain RNAs that would be 

informative in understanding pausing.  One feature of HiTS-RAP is that any Illumina sequencing 

library could be adapted for it (such as ATAC, ChIP, PRO-seq, RNA-seq, etc).  I once had plans 

to use a PRO-seq (or better yet, PRO-cap) library for HiTS-RAP against NELF.  This would 

allow us to determine whether NELF interacts with nascent RNA with some preference.  

Furthermore, I could ask whether NELF has higher affinity to RNA before or after pause escape 

by comparing PRO-RAP (affinity to the paused RNA… it already has an acronym) and GRO-

RAP (longer run-on simulates pause escape, in the RNA length).  While I do not think we would 

see orders of magnitude specificity, I think that there would be slight differences that would be 

very informative.  Such measurements have already been successfully carried out by other 

groups(She et al., 2017), and have been highly informative.  In addition to HiTS-RAP, we could 

carry out measurements of DNA binding affinity as well with the infrastructure that I have set 

up. 

 Another useful application of HiTS-RAP, and indeed our original goal with it, is the 

characterization of SELEX libraries.  In an unpublished series of experiments, I carried out 

HiTS-RAP for the NELF-E SELEX libraries and Fabiana’s HSF1 SELEX libraries.  With NELF, 

I found that aptamers with perfect matches to the NBE all bind similarly, while aptamers with no 

NBE do not bind well.  And in the HSF pool, most aptamers’ Kd is within the same order of 

magnitude, though with the large number of measurements that I have with HiTS-RAP in a run 
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of 20 million reads, I am highly confident in measuring small differences in affinity.  Therefore, 

we need the right kind of library for HiTS-RAP to be successful and useful.  It must be highly 

enriched, as we need at least 5 reads in to make a measurement and we would like to make at 

least a few thousand high confidence measurements.  It needs to have been an ok but not stellar 

selection: HSF1 aptamers bind with similar affinity so not much was gained by HiTS-RAP.  And 

it would need to be worthwhile: with NELF, we already knew from a motif search that the best 

aptamers have a 7-mer NBE.  I was hoping to find an aptamer to another surface of NELF (that 

would thus lack the NBE), but did not find any other candidates that looked promising.  If we 

had such a library, and stood to learn a lot with a good aptamer to the target, then a HiTS-RAP 

could be extremely valuable. 

 As our HiTS-RAP paper was under review, the Greenleaf lab published a paper on RNA-

MaP, a very similar technology(Buenrostro et al., 2014).  Their method also makes RNA binding 

affinity measurements on an Illumina sequencing instrument, but has many fundamental 

differences.  As it is, HiTS-RAP uses an unmodified sequencer, and Illumina’s software, so I am 

confident that any competent graduate student could do it.  RNA-MaP, however, uses the optics 

of the GAIIx, but with many modifications enabling imaging of other fluors and greater control 

of reagent delivery and imaging times.  With this, they are able to measure rate constants as well 

as equilibrium binding.  We should consider borrowing from this.  Rate constants could be very 

informative in some cases: for example, in the HSF1 aptamer SELEX library, we see no 

correlation between enrichment in SELEX and equilibrium binding affinity, but may see 

differences with rate constants.  I can envision an assay where we follow association by using the 

timestamps on images of different tiles to infer association dynamics for abundant sequences that 

are represented many times in each tile.  But, as it is, their setup is far superior for measuring 
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kinetics.  A used GAIIx costs less than 1/10
th

 what it did when I started.  If we had the right 

expertise in the lab, someone could buy a few extras and scavenge parts to set up some custom 

workstations. 

Aptamers as Inhibitors 

 Strategies for improving aptamer inhibition studies are listed in the conclusion of Chapter 

3.  In the specific case of NELFapt, I wanted to try another non-specific control to try to 

understand the scrambled aptamer result explained in Chapter 3.  The Scrambled aptamer had the 

same effect as NELFapt.  This is either because one of the scrambled aptamer units binds NELF 

specifically, or because any RNA overexpressed in the nucleus would produce the same result.  

If I were carrying out another aptamer inhibition experiment, I would want to understand what 

went wrong with the NELFapt experiment.  To this end, I made a stably transfected S2 line with 

a scrambled aptamer to DSIF that was made by Judhajeet Ray in the lab.  The PRO-seq for this 

experiment failed, but there are more nuclei in the freezer. 

 Given my experience with using NELFapt as an inhibitor, I would be very cautious 

before attempting to use an aptamer in vivo again.  It would have to be for a case where I knew 

the specific interaction that the aptamer is disrupting, and only with an experimental design that 

is well suited to a genome-wide readout, as discussed at the end of Chapter 3.  Thus, given the 

time and uncertainty involved in selecting a suitable aptamer, and the difficulties of using it in a 

way that meaningful biological insights stand to be gained, I do not think that this is the most 

efficient way of using resources in the lab when the goal is to gain biological insights.  Future 

efforts should focus on developing technology for aptamer inhibition that address some of the 

issues seen in the NELF experiment.  Our broader group has vastly improved the process of 
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selecting and characterizing aptamers: now it is time to focus our efforts on ways to use 

aptamers.  For now, an alternative approach has a much higher likelihood of success for 

deciphering the biological role of factors when this is the goal.  Knockdowns have repeatedly 

been used successfully in the past(Core et al., 2012; Duarte et al., 2016).  Several new strategies 

for perturbation are extremely promising.  Auxin induced degrons are used to rapidly and 

specifically degrade proteins with a small peptide tag inserted in the endogenous gene upon 

addition of a drug, and often function more completely than knockdowns, and take effect 

rapidly(Nishimura et al., 2009), thus negating aptamer’s promise of rapid induction.  Analogue 

sensitive mutants can be made to render specific enzymes sensitive to a bulky substrate analogue 

molecule(Gregan et al., 2007).  This strategy has been used successfully in our lab to rapidly and 

specifically inhibit Cdk7 and Cdk9(Booth et al., 2017).  These types of experiments target 

catalytic activities of factors rapidly and specifically, and thus have virtually all of the features 

that we were attempting to gain with aptamers.  This strategy is limited to biological questions 

concerning the catalytic activity of the target.  Similarly, because aptamers to non-nucleic acid 

binding domains of factors are exceedingly difficult to select and characterize(Shui et al., 2012), 

I would argue that aptamer inhibition is somewhat limited to perturbations of nucleic acid 

interactions.  In total, I believe that our efforts are much more likely to be rewarded if we focus 

on some of these other strategies rather than RNA aptamers for the time being.  Investment in 

strategies for aptamer inhibition, as a purely technology development oriented project, could 

bring us to a point where aptamers can routinely be used as a tool to answer biological questions 

in the future. 
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Termination, Capping and Transcription Initiation Domains 

 The greatest untapped potential of coPRO lies in a study of termination.  Terminating Pol 

II has undergone cleavage and polyadenylation and is being chased down by the exonuclease 

Xrn2(Proudfoot, 2016).  This means that the nascent transcript associated with terminating Pol II 

has a 5’ monophosphate end, and is short enough to make a good insert for an Illumina library, 

and is thus incorporated into my uncapped coPRO library.  This significantly hurt our ability to 

look at capping with the experiment as is: though there is a strong peak of signal at TSNs 

corresponding to 5’ triphosphate transcripts (pre-capped transcripts), most of the reads in the 

library map to the termination region of genes (Figure 5. 1A).  This significantly reduced our 

coverage of pre-capped RNA.  With an experiment designed intentionally to interrogate 

monophosphate 5’ ends, we could draw important conclusions about termination. This 

monophosphate specific library would be made by proceeding immediately to 5’ adapter ligation 

after the run-on (thus excluding capped and 5’ triphosphate pre-capped RNA).  As it is, the 

uncapped library will also incorporate degradation products of RNA hydrolysis during handling 

(PNK treatment rescues 5’ hydroxyl RNA), so a monophosphate specific library could be 

analyzed with greater confidence.  With such an analysis, we would gain new mechanistic 

insights into termination.  As it is, the data already show a stair shaped pattern in paired coPRO 

Uncapped plots similar to Figure 4. 1 (see Figure 5. 1B).  Termination occurs at sites where the 

DNA template sequence stalls polymerase: this stair pattern supports a model where an 

individual polymerase stalls repeatedly in the termination region, while Xrn2 uniformly chases it 

down.  Sites of fixed 5’ ends, similar to initiation sites, that are unique to the uncapped library 

indicate that multiple rounds of cleavage and polyadenlylation could occur.  Such uncapped, 

polyadenylated chasedown RNA products would likely be highly unstable.  We could 
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specifically sequence these to validate this model of repeated cleavage and polyadenylation.  

Other groups detect rapidly degraded RNAs, like upstream divergent and enhancer RNAs, by 

depleting the RNA exosome and mapping sites of initiation with CAGE(Andersson et al., 2014).  

We could map chasedown products by depleting exosome and sequencing uncapped 

polyadenylated RNAs specifically, similar to coPRO uncapped.   

A thoughtfully designed coPRO experiment could ask how close Xrn2 is as it chases 

polymerase, where termination occurs, and whether multiple rounds of cleavage and 

polyadenylation occur.  An Xrn2 degron could compliment this by validating the patterns 

observed as exonucleolytic cleavage.  We could also measure, quantitatively, the amount of 

termination near promoters by careful comparison between capped and uncapped nascent RNA 

there.  This would give new insight into the prevalence of termination from the pause region, 

without pause release.  Someone doing this needs to think very carefully about normalizing for 

the length of RNA: inserts beyond 100 bp are subject to an exponential decay in their ability to 

be sequenced.  This would be another study where clarity of what is being measured is 

paramount, so while it is an easy experiment, the analysis is not simple.  All genome-wide assays 

are a snapshot of the average of millions of cells.  Deriving rates of movement, or frequencies of 

termination from such data requires careful thought. 
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Figure 5. 1: Observing Pol II termination with coPRO Uncapped. 

A.)  Metaplot of coPRO at RefSeq annotated genes.  Signal is plotted in fixed bins +/-2500 bp to 

the annotated TSS and CPA signal, and scaled in the middle (the jump in bin size when scaling 

creates some discontinuity).  In coPRO capped, most signal is at the TSS.  In coPRO Uncapped, 

much of the signal is from 5’ pRNA in the termination region.  B.)  Paired plots of the 

termination region of Myc similar to Figure 4. 1A, for different coPRO libraries (and a regular 

PRO-seq library with the subset of reads spanned with 75 bp reads).  0 corresponds to the 

annotated CPA.  Note the strong enrichment of uncapped over capped (coPRO capped here is 

likely uncapped background that is captured at a low frequency).  The stair pattern of termination 

is apparent in RppH only (the Capped + Uncapped library), and Uncapped. 
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 In Chapter 4, I describe functional relationships between capping and pausing that were 

illuminated by coPRO.  These results suggest that capping is not always complete before 

pausing.  Some simple experiments could provide additional insight into their interplay.  Using 

the Cdk7 inhibitor THZ1, the Price group showed that Cdk7 mediated phosphorylation of the 

CTD affects capping enzyme activity(Nilson et al., 2015).  We could explore this genome-wide 

with THZ1 or, better yet, analogue sensitive Cdk7 mutants made by the Fisher group, with 

coPRO for capped and uncapped RNA as readout.  It would be interesting to see if capping is 

impaired uniformly, of if different pause classes responded differently.  I suspect that the Late 

pause class will be more sensitive to this inhibition, as I believe that capping there is more 

dependent upon DSIF mediated recruitment of capping enzyme.  Thus, these promoters seem to 

adhere to a more rigid ordered assembly of factors.  We could further explore the interplay 

between capping and pausing by perturbing the capping enzyme, for example with an auxin 

induced degron.  This strategy is more direct that trying to assess the importance of capping by 

inhibiting Cdk7.  With coPRO as readout, we could assess whether impaired capping inhibits 

normal pausing and pause release, and increases the rate of premature termination after pause 

release.  In such experiments, we could design an enzymatic selection that would be more 

specific to pre-capped RNA than what we have already used, thus greatly reducing the 

background from termination as we assess capping.  To do this, I would first use Terminator 

exonuclease to degrade monophosphate RNA.  I have confirmed that pre-capped RNA is much 

less susceptible to Terminator degradation than monophosphate (Figure 4. 23), as advertised by 

the supplier, Lucigen.  Apyrase, an enzyme from NEB, could then be used to specifically reduce 

5’ triphosphate RNA to monophosphate, without decapping capped transcripts.  I suspect that 

this enrichment scheme would allow us to make a pre-capped library where we could sequence 
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capping with much higher coverage from the same depth, and therefore provide greater insight 

into any perturbations of capping and pausing. 

 Another rich avenue for further experimentation is tests of the functional significance of 

minor TSSes within TIDs, and their relationship to chromatin environment.  One potential way 

that we could assess the relationship could be by perturbing the chromatin environment in TIDS.  

As a part of their work showing that broad active chromatin regions at promoters are important 

in regulating cell to cell consistency(Benayoun et al., 2014), the Burnet group modulated the 

width of H3K4me3 peaks by knocking down erasers and writers of this mark.  Knockdown of 

JARID2, an eraser of this mark, resulted in a broadening of H3K4me3 domains.  Similarly, they 

found that knockdown of WDR5, a core subunit of the H3K4me3 methyltransferase complex 

COMPASS, reduced the breadth of H3K4me3 peaks.  By using coPRO after such a perturbation, 

we could ask whether the peripheral TSSes of TIDs are specifically affected or not.  With this, 

we would gain insight into the interplay between chromatin environment and initiation: I suspect 

that the peripheral TSSes of TIDs are involved in the fine tuning of the boundaries of chromatin 

domains and are thus sensitive to changes in spreading of H3K4me3.  Stronger peripheral TSSes 

would therefore be less sensitive.  I also suspect that H3K27ac would have a much stronger 

effect, if a similar strategy were devised for it.    
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